Advanced Bash-Scripting Guide

An in-depth exploration of the art of shell scripting

Mendel Cooper

<thegrendel .abs@gmail.com>
6.2
17 March 2010

Revision History

Revision 6.0 23 Mar 2009 Revised by: mc
"THIMBLEBERRY" release: Major Update.
Revision 6.1 30 Sep 2009 Revised by: mc
'BUFFALOBERRY' release: Minor Update.
Revision 6.2 17 Mar 2010 Revised by: mc

'ROWANBERRY' release

This tutorial assumes no previous knowledge of scripting or programming, but progresses rapidly toward an
intermediate/advanced level of instruction . . . all the while sneaking in little nuggets of UNIX® wisdom and
lore. It serves as a textbook, a manual for self-study, and a reference and source of knowledge on shell
scripting techniques. The exercises and heavily-commented examples invite active reader participation, under
the premise that the only way to really learn scripting is to write scripts.

This book is suitable for classroom use as a general introduction to programming concepts.

Dedication

For Anita, the source of all the magic

mailto:thegrendel.abs@gmail.com

Advanced Bash-Scripting Guide

Table of Contents

Chapter 1. Shell Programming!

hapter 2. Starting Off With a Sha-Ban

Part 2. Basics

Chapter 3. Special Characters

29

Chapter 4. Introduction to Variables and Parameters

4.1. Variable SUDSHLULION.uueeiieeeieeteeeeeeeeeeeeeeeeeererereeeeeeeeeeseseeeeeees

Chapter 5. Quoting

... 29
... 32
... 33
... 34

5.1. Quoting Variables.......ceeoueeierieiieiierie ettt
5.2, BSCAPIME .ttt ettt sttt sttt sbe e bt e bt e b e bt e naeas

48

Chapter 6. Exit and Exit Status,
Chapter 7. Tests

51

T, TSt COMSIITICES . ..vvuuuuueeeeeieeeeiitiee e et e e ettt e e e e e e ettt e e e e e e eeessaaaanaans

Chapter 8. Operations and Related Topics

... 51
... 58
... 61
... 67
... 67

69

8. 1. OPEIALOIS . uveeeuvreetreeiteeniteeeteesbeeebee ettt enbaeesabeesabeesabeesbeeebeeenareesareesares
8.2. NUMETICAl CONSLANLS ..evvviviiiiiiiieieieieeeeeeeeee et ee et eeereeeseeeeseeeeeesnes

8.3. The Double-Parentheses CONSIIUCE..........ccoveviiiieiiiiiieieeeeeeeeeeeeeeeeeeeeans
8.4. Operator PreCedenCe. .. .covrerureeriiiiiieeiieeniieesiee ettt

Part 3. Bevond the Basics.

... 69
... 75
... 77
... 78

81

Chapter 9. Another Look at Variables

9.1. Internal VariableS.....ccuvvviiiiiiiiieeeeie e
9.2. Typing variables: declare Or tyPESEL........ceerveerueeeerrieerieeieeieeieeeeeiens

9.2.1. Another use for deClare...........ooovuvvveeeiiiiiiiieiiieeeeeeeeee e
9.3. SRANDOM: generate random inteZeL.......oververeererrerrereeeereerereereeeerenes

Chapter 10. Manipulating Variables

10.1. Manipulating STNGSccoeerreerueerieerieenieenieenieesieeniee st et e sieesbe e e e naeas

10.1.1. Manipulating strings using awk..........cecoeereereeneeneeneeneeneeneenn
10.1.2. Further REfEreNCEoooveeeeeeeeeeeeeeeeeeeeeeee e

10.2. Parameter SUDSUEULION. ...vvvvvereeiiiiiiiieeeeeeeeeeeeeeeeeeeee e e e e eeeeeeeeeeeeaes

Advanced Bash-Scripting Guide

Table of Contents

Chapter 11. Loops and Branches

Chapter 12. Command Substitution

Chapter 13. Arithmetic Expansion

Chapter 14. Recess Time,
Part 4. Commands

Chapter 15. Internal Commands and Builtins
15.1. Job Control Commands.................ee....

Chapter 16. External Filters, Programs and Commands

16.1. Basic Commands.........cccuueveeveveeeeeeeennes

16.2. Complex Commands........cc.ccevveerueenen.
16.3. Time / Date Commands.................ee....

16.4. Text Processing Commands................

16.5. File and Archiving Commands.

16.6. Communications Commands..............
16.7. Terminal Control Commands..............
16.8. Math CommandS........cccevvveeveeveeeeeeeennes

Chapter 17. System and Administrative Commands
17.1. Analyzing a System Script.......c..........

Part 5. Advanced Topics

133
133
146
147
150

159

165

166

167

175
204

209
209
214
224
228
250
269
283
284
295

309

338

340

Chapter 18. Regular Expressions.

342

18.1. A Brief Introduction to Regular Expressions
18.2. GIODDING. .. veveveeeeeieieeiieieie e

342
346

348

Chapter 19. Here Documents

19.1. Here Strings......cccceeveeneeneeneeneencennens

Chapter 20. I/0 Redirection

358

362

20.3. APPLICAIONS. ..vveeuveeneeenieeieenieeieeieeneeen

Chapter 21. Subshells

365
368
373

375

Advanced Bash-Scripting Guide

Table of Contents

Chapter 22. Restricted Shells 380
Chapter 23. Process Substitution 382
Chapter 24. Functions 386
24.1. Complex Functions and Function COMPIEXITIES eeuverveertierierieniieniieniienieenieesieesieenteesieeneeeneeas 390

24,2, T.0CAL VATTADIES. .. vttt e e e e e e e et e e e e e st e e e e e e e s e sasasssssasssssasasasasanes 400

24.2.1. Local variables and TECUISION. .. .uuuueeeeeeieeeeeeeeeeteeeeeeeeeeeeeeeeeeeeeeeeeesereeerereeeseeseeeseseeeseseeseses 401

24.3. Recursion Without 1ocal VariableS.coouvviiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeee e aaeaaaeaeaees 403
Chapter 25. Aliases 407
Chapter 26. List Constructs. 410
Chapter 27. Arrays 413
Chapter 28. Indirect References 442
Chapter 29. /dev and /proc 446
20 L BV ettt ettt et et et e e e et e tetat et et e a———atarara—————aaaaaaanana—_————————————tararatataranes 446

20,2 JDIOC ittt e e ettt et aeettttat—————————aettttat——————————rettata————— 448
Chapter 30. Of Zeros and Nulls 455
Chapter 31. Debugging 459
Chapter 32. Options 469
Chapter 33. Gotchas 472
Chapter 34. Scripting With Style 481
34.1. Unofficial Shell Scripting StylEShEet.......ccuevieiiiiiiiieiierete ettt 481
Chapter 35. Miscellany. 484
35.1. Interactive and non-interactive shells and SCIIPES......c.uereerierirriierienienieneesee e 484

35.2. SHEIL WIADDETS . .veuteeuteettertteriteetteette et e sttesttesttesuteeutesutesbtesbtesbeesbeesbeeabee bt e bt anbeesbeesbeenbeenbeabeensean 485

35.3. Tests and Comparisons: AIEIMALIVES.cuterterierierierierttenttesiee st esteesteesbeesbeesbeesbeesbeesbeenbeeneeas 490

35.4. A script calling itSEIf (TECUISIOM).« .veurerueertieriteniieetieetiest et te st e st et e sbte bt e bt e sbeesbeesbeesbeenbeenbeeeeas 491

35.5. "COlOTIZING" SCIIDES. .. uvevtertteruteeiieetieette et te et testtestteettesttesbtesbeesbeesbeesueesbeesbee bt enbeesbeesbeenbeenbeabeeneean 493

35.6. ODUIMIZATIONS -+ vveeuteuteettertteetteetteette et e sttesttesutesteeeutesbtesbeesbeesbeesbeesbee bt e bt enbeenbeesbeeabeanseenbeabeensean 506

35.7. ASSOTEEA TIPS, .ttt ettt h e b e b e s bt e s bt e sbe e s bt e sbe e bt e bt e bt e sbeesbee bt ebeebeenbean 507

35.7.1. Ideas for more POWETTUL SCTIDESvevvtertterieetieniiertiertte st et ettt e stee et esbeesbeesbeesbeebeenbeas 507

3572 WIAGEES ..ttt h et b e s bt e sbe e s bt e s bt e sbe e s bt e bt e bt e sbe e bt e bt e bt e beebean 517

35.8. SECUIILY ISSUES. .. .eeuieiieieieitie ittt ettt et e st e bt e s bt e s bt e sbeesbeesbe e bt e bt e bt e sbeesbeenbeenbeebeensean 519

35.8.1. Infected Shell SCIIDES. . ..ueetteieiieriestte ettt ettt sttt et et e bt e bt e sbeesbe e b e beebeenbeas 519

35.8.2. Hiding Shell SCript SOUICE......ccuueiutiriieriieiiieeiieeieri ettt sttt ettt sbe e nbeenbeas 520

35.8.3. Writing Secure Shell SCIIDES.ueitiiterieiieiieiieri ettt sttt e st et e b e b e b eneeas 520

35.9. POrtabilify ISSUES ...uveeueerutertiertieetie ettt ettt e sttt et e st esb e s bt e sbeesbeesbe e bt enbeesbeesbeesbee bt ebeenbeeneean 520

Advanced Bash-Scripting Guide

Table of Contents
Chapter 35. Miscellany

35,0 1 A TSt SUILE ..oeeeeieieeeeeee et a e s e e e e e e e s e aeaeseeeeeseseseeeeseeasesaseeeeeeeees 521

35.10. Shell Scripting Under WINAOWS.........coeiiierienieiieiieritesite sttt ettt et et e e e b e b e nbeenbeeneeas 522
Chapter 36. Bash, versions 2, 3, and 4 523
36.1. BaASH, VEISIOM 2.ttt ettt eeeeeeeeeeeeeeeeeeeeeeeeeeseeeesesesesssesesassssssssssasssssssssssssssssssasasssanes 523

36.2. BaASH, VEISIOM 3..uuuiiiiiiiiieiieiieeieieeeeeee ettt ettt eeeeeeeeeeeeeeeeeeeeeseeeeeesesesesssesesassssssnssasssssssssssssssssssasssssanes 527

36.2.1. BaSh, VEISION 3.1 iiiiiiiiiiiiieeeeeeeeeeeeeeee e e e e e et et e e aeeeeeseseseeeseseeeeeaseseeeeeseeeens 530

36.2.2. BaSh, VEISION 3.2 . e iiiiiiiieeeeeeeeeeeeeeeeee e e s e e et et e e eeaeseeeeeseeeseseeseeaseseseseseeaens 530

360.3. BaASH, VEISIOM 4 ...ttt ettt et e e e e e e e e e e e e et e e eeeeeeeeeesesesesesesass s ssnssasssssssssssssssssssasasssanes 531
Chapter 37. Endnotes 538
37 1 AULNOT'S INOLE. ...ttt ettt e et e e eeeeeeeeeeeeeeeeeeeeeeeeeeeesesesesssesssasssssssnsssssssssssnssssssssssasssssanes 538

372 ADOUL TNE AULROT. ...ttt et e e e et et e et e e et e e e e e e e e e asasasesssasaassssssasasasanes 538

37.3. Where t0 GO FOT HelD ... eeiueeiieiieeiee ettt ettt as 538

37.4. Tools Used t0 Produce ThiS BOOK......cciviiiiiiiiiiiiiiiiiiiieieee et aaeaeaeaeaees 539

3741 HATAWATE.ooveeneeeieeeeeeeeee ettt e e e e e ettt e e e e e et s b bt e e e eeseeessasannans 539

37.4.2. Software and PIINEWATE.cooeeeeeeeeeeeeeeeeee e e eeeeeeeeeeeeeseseeeseeeseseeseeeseseeeeeseesess 539

ST 5=« 11 1RO OROPRRPRPRPPPRPPPPPRRt 539

3 0. DISCIAIITIEE . ettt ettt ettt eeeeeeeeeeeeeeeeeeeeeeeeseseeeesesesasssesassssssssssnsssssssssssnssssssssssasesssanes 541
Bibliography. 542
Appendix A. Contributed Scripts 550
Appendix B. Reference Cards 747
Appendix C. A Sed and Awk Micro-Primer 752
L S e e e e e e e ————e e e e e e e ——————eeeeeaaa —————eeeeaaar————teesaaan————eaaaan 752

G2 A K e et ee e e e e e e—————eeeeaaa——————eeeeeaaa——————aeesaaar————eeesaaan———aeaaaan 755
Appendix D. Exit Codes With Special Meanings 758
Appendix E. A Detailed Introduction to and Redirection 759
Appendix F. Command-Line tions 761
E.1. Standard Command-Line OPHOMS.......ceuertieiiiieiiinie ettt sttt sttt e st sate st e saee s 761

E.2. Bash Command-Line ODHOMS.ccuerttrierieiieeiieeite ettt ettt sttt st e st e st saeesaeesatesatesaeeeas 762
Appendix G. Important Files 764
Appendix H. Important System Directories 765
Appendix I. An Introduction to Programmable Completion 767
Appendix J. Localization 770

Advanced Bash-Scripting Guide

Table of Contents

774
775
789
793
793
795

805

808

809

811

Appendix K. History Commands
Appendix L.. A Sample .bashrc File
Appendix M. Converting D Batch Files to Shell Scripts
Appendix N. Exercises.
Nl ANAIYZING SCIIPES . .tteuveeuteeuteeiieeite ettt ettt ettt et et eseteeate et e sabesatesaeesaeesatesseesaeesaeesueesaeesabesaeenas
INL2. WIIINE SCIIDES . e vteeuteeuteeiteeite et ettt e ettt eat e st se b e st e satesate e st e satesaeesaeesaeesatessbesaeesaeesaeesaeesatesaeenas
Appendix O. Revision Histor
Appendix P. Download and Mirror Sites
Appendix Q. To Do List
Appendix R. Copyright
Appendix S. ASCII Table
DA X e e ettt eeettttt—————————aetttttt—————————ertttaaa————
DN O ettt ettt e et ettt e e e e e et ettt e eeee ettt b uu——————aeeeettata——————aeeettttaa————atettttrta———_

Chapter 1. Shell Programming!

No programming language is perfect. There is
not even a single best language; there are only
languages well suited or perhaps poorly suited
for particular purposes.

--Herbert Mayer
A working knowledge of shell scripting is essential to anyone wishing to become reasonably proficient at
system administration, even if they do not anticipate ever having to actually write a script. Consider that as a
Linux machine boots up, it executes the shell scripts in /et c/rc.d to restore the system configuration and
set up services. A detailed understanding of these startup scripts is important for analyzing the behavior of a
system, and possibly modifying it.

The craft of scripting is not hard to master, since the scripts can be built in bite-sized sections and there is only
a fairly small set of shell-specific operators and options [1] to learn. The syntax is simple and straightforward,
similar to that of invoking and chaining together utilities at the command line, and there are only a few "rules"
governing their use. Most short scripts work right the first time, and debugging even the longer ones is
straightforward.

In the 1970s, the BASIC language enabled anyone reasonably computer
to write programs on an early generation of microcomputers. Decades
scripting language enables anyone with a rudimentary knowledge of I
on much more powerful machines.

A shell script is a quick-and-dirty method of prototyping a complex application. Getting even a limited subset
of the functionality to work in a script is often a useful first stage in project development. This way, the
structure of the application can be tested and played with, and the major pitfalls found before proceeding to
the final coding in C, C++, Java, Perl, or Python.

Shell scripting hearkens back to the classic UNIX philosophy of breaking complex projects into simpler
subtasks, of chaining together components and utilities. Many consider this a better, or at least more
esthetically pleasing approach to problem solving than using one of the new generation of high powered
all-in-one languages, such as Perl, which attempt to be all things to all people, but at the cost of forcing you to
alter your thinking processes to fit the tool.

According to Herbert Mayer, "a useful language needs arrays, pointers, and a generic mechanism for building
data structures." By these criteria, shell scripting falls somewhat short of being "useful." Or, perhaps not. . . .

When not to use shell scripts

e Resource-intensive tasks, especially where speed is a factor (sorting, hashing, recursion [2] ...)

¢ Procedures involving heavy-duty math operations, especially floating point arithmetic, arbitrary
precision calculations, or complex numbers (use C++ or FORTRAN instead)

¢ Cross-platform portability required (use C or Java instead)

Chapter 1. Shell Programming! 1

Advanced Bash-Scripting Guide

e Complex applications, where structured programming is a necessity (type-checking of variables,
function prototypes, etc.)

e Mission-critical applications upon which you are betting the future of the company

e Situations where security is important, where you need to guarantee the integrity of your system and
protect against intrusion, cracking, and vandalism

® Project consists of subcomponents with interlocking dependencies

¢ Extensive file operations required (Bash is limited to serial file access, and that only in a
particularly clumsy and inefficient line-by-line fashion.)

¢ Need native support for multi-dimensional arrays

e Need data structures, such as linked lists or trees

¢ Need to generate / manipulate graphics or GUIs

¢ Need direct access to system hardware

¢ Need port or socket I/O

¢ Need to use libraries or interface with legacy code

e Proprietary, closed-source applications (Shell scripts put the source code right out in the open for all
the world to see.)

If any of the above applies, consider a more powerful scripting language -- perhaps Perl, Tcl, Python, Ruby
-- or possibly a compiled language such as C, C++, or Java. Even then, prototyping the application as a
shell script might still be a useful development step.

We will be using Bash, an acronym for "Bourne-Again shell" and a pun on Stephen Bourne's now classic
Bourne shell. Bash has become a de facto standard for shell scripting on most flavors of UNIX. Most of the
principles this book covers apply equally well to scripting with other shells, such as the Korn Shell, from
which Bash derives some of its features, [3] and the C Shell and its variants. (Note that C Shell programming
is not recommended due to certain inherent problems, as pointed out in an October, 1993 Usenet post by Tom
Christiansen.)

What follows is a tutorial on shell scripting. It relies heavily on examples to illustrate various features of the
shell. The example scripts work -- they've been tested, insofar as was possible -- and some of them are even
useful in real life. The reader can play with the actual working code of the examples in the source archive
(scriptname.sh or scriptname.bash), [4] give them execute permission (chmod u+rx
scriptname), then run them to see what happens. Should the source archive not be available, then
cut-and-paste from the HTML or pdf rendered versions. Be aware that some of the scripts presented here
introduce features before they are explained, and this may require the reader to temporarily skip ahead for
enlightenment.

Unless otherwise noted, the author of this book wrote the example scripts that follow.
His countenance was bold and bashed not.

--Edmund Spenser

Chapter 1. Shell Programming! 2

http://www.etext.org/Quartz/computer/unix/csh.harmful.gz
http://bash.webofcrafts.net/abs-guide-latest.tar.bz2
http://www.tldp.org/LDP/abs/abs-guide.html.tar.gz
http://bash.webofcrafts.net/abs-guide.pdf
mailto:thegrendel.abs@gmail.com

Chapter 2. Starting Off With a Sha-Bang

Shell programming is a 1950s juke box . . .

--Larry Wall
In the simplest case, a script is nothing more than a list of system commands stored in a file. At the very least,
this saves the effort of retyping that particular sequence of commands each time it is invoked.

Example 2-1. cleanup: A script to clean up the log files in /var/log

Cleanup
Run as root, of course.

cd /var/log

cat /dev/null > messages
cat /dev/null > wtmp
echo "Logs cleaned up."

There is nothing unusual here, only a set of commands that could just as easily have been invoked one by one
from the command-line on the console or in a terminal window. The advantages of placing the commands in a
script go far beyond not having to retype them time and again. The script becomes a program -- a tool -- and it
can easily be modified or customized for a particular application.

Example 2-2. cleanup: An improved clean-up script

#!/bin/bash
Proper header for a Bash script.

Cleanup, version 2

Run as root, of course.
Insert code here to print error message and exit if not root.

LOG_DIR=/var/log

Variables are better than hard-coded values.
cd SLOG_DIR

cat /dev/null > messages

cat /dev/null > wtmp

echo "Logs cleaned up."

exit # The right and proper method of "exiting" from a script.

Now that's beginning to look like a real script. But we can go even farther . . .

Example 2-3. cleanup: An enhanced and generalized version of above scripts.

#!/bin/bash
Cleanup, version 3

Warning:

Chapter 2. Starting Off With a Sha-Bang 3

Advanced Bash-Scripting Guide

This script uses quite a number of features that will be explained
#+ later on.
By the time you've finished the first half of the book,

#+ there should be nothing mysterious about it.

LOG_DIR=/var/log

ROOT_UID=0 # Only users with SUID 0 have root privileges.
LINES=50 # Default number of lines saved.
E_XCD=86 # Can't change directory?

E_NOTROOT=87 # Non-root exit error.

Run as root, of course.

if ["SUID" —-ne "SROOT_UID"]

then
echo "Must be root to run this script."
exit S$SE_NOTROOT

fi

if [-n "S$1"]

Test whether command-line argument is present
then

lines=$1
else

lines=$SLINES # Default,
fi

Stephane Chazelas suggests the following,

(

non—empty) .

if not specified on command-line.

#+ as a better way of checking command-line arguments,
#+ but this is still a bit advanced for this stage of the tutorial.

"SLOG_DIR"

#
E_WRONGARGS=85 # Non-numerical argument
#
case "$1" in
") lines=50;;
[!10-9]) echo "Usage: “basename $0° file-to-cleanup";
&) lines=$1;;
esac
#
#* Skip ahead to "Loops" chapter to decipher all this.
cd SLOG_DIR
if ["pwd® != "SLOG_DIR"] # or if ["S$PwWD" !=
Not in /var/log?
then
echo "Can't change to $LOG_DIR."

exit S$E_XCD

fi # Doublecheck if in right directory before

Far more efficient is:
cd /var/log || {

echo "Cannot change
exit S$E_XCD;

to necessary directory.

4 o o 3 o3 o

Chapter 2. Starting Off With a Sha-Bang

(bad argument format) .

exit S$E_WRONGARGS; ;

]

messing with log file.

>&2

Advanced Bash-Scripting Guide

tail -n $lines messages > mesg.temp # Save last section of message log file.
mv mesg.temp messages # Becomes new log directory.

cat /dev/null > messages
#* No longer needed, as the above method is safer.

cat /dev/null > wtmp # ': > wtmp' and '> wtmp' have the same effect.
echo "Logs cleaned up."

exit O
A zero return value from the script upon exit indicates success
#+ to the shell.

Since you may not wish to wipe out the entire system log, this version of the script keeps the last section of
the message log intact. You will constantly discover ways of fine-tuning previously written scripts for
increased effectiveness.

k sk sk

The sha-bang (#!) [5] at the head of a script tells your system that this file is a set of commands to be fed to
the command interpreter indicated. The #! is actually a two-byte [6] magic number, a special marker that
designates a file type, or in this case an executable shell script (type man magic for more details on this
fascinating topic). Immediately following the sha-bang is a path name. This is the path to the program that
interprets the commands in the script, whether it be a shell, a programming language, or a utility. This
command interpreter then executes the commands in the script, starting at the top (the line following the
sha-bang line), and ignoring comments. [7]

#!/bin/sh
#!/bin/bash
#!/usr/bin/perl
#!/usr/bin/tcl
#!/bin/sed —-f
#!/usr/awk —-f

Each of the above script header lines calls a different command interpreter, be it /lbin/sh, the default shell
(bash in a Linux system) or otherwise. [8] Using #! /bin/sh, the default Bourne shell in most commercial
variants of UNIX, makes the script portable to non-Linux machines, though you sacrifice Bash-specific
features. The script will, however, conform to the POSIX [9] sh standard.

Note that the path given at the "sha-bang" must be correct, otherwise an error message -- usually "Command
not found." -- will be the only result of running the script. [10]

#! can be omitted if the script consists only of a set of generic system commands, using no internal shell
directives. The second example, above, requires the initial #!, since the variable assignment line, 1ines=50,
uses a shell-specific construct. [11] Note again that #! /bin/sh invokes the default shell interpreter, which
defaults to /bin/bash on a Linux machine.

i) This tutorial encourages a modular approach to constructing a script. Make note of and collect
"boilerplate" code snippets that might be useful in future scripts. Eventually you will build quite an
extensive library of nifty routines. As an example, the following script prolog tests whether the script has

been invoked with the correct number of parameters.

E_WRONG_ARGS=85

Chapter 2. Starting Off With a Sha-Bang 5

Advanced Bash-Scripting Guide

script_parameters="-a -h -m -z"

-a = all, -h = help, etc.
if [$S# —-ne S$SNumber_ of_expected_args]

then

echo "Usage: "basename $0° S$script_parameters"

"basename $0° 1is the script's filename.

exit SE_WRONG_ARGS
fi
Many times, you will write a script that carries out one particular task. The first script in this chapter is
an example. Later, it might occur to you to generalize the script to do other, similar tasks. Replacing the
literal ("hard-wired") constants by variables is a step in that direction, as is replacing repetitive code

blocks by functions.

2.1. Invoking the script

Having written the script, you can invoke it by sh scriptname, [12] or alternatively bash
scriptname. (Not recommended is using sh <scriptname, since this effectively disables reading from
stdin within the script.) Much more convenient is to make the script itself directly executable with a chmod.

Either:

chmod 555 scriptname (gives everyone read/execute permission) [13]
or

chmod +rx scriptname (gives everyone read/execute permission)

chmod u+rx scriptname (gives only the script owner read/execute permission)

Having made the script executable, you may now test it by . /scriptname. [14] If it begins with a
"sha-bang" line, invoking the script calls the correct command interpreter to run it.

As a final step, after testing and debugging, you would likely want to move it to /usr/local/bin (as root,
of course), to make the script available to yourself and all other users as a systemwide executable. The script
could then be invoked by simply typing scriptname [ENTER] from the command-line.

2.2. Preliminary Exercises

1. System administrators often write scripts to automate common tasks. Give several instances where
such scripts would be useful.

2. Write a script that upon invocation shows the time and date, lists all logged-in users, and gives the
system uptime. The script then saves this information to a logfile.

Chapter 2. Starting Off With a Sha-Bang 6

Part 2. Basics

Table of Contents

3. Special Characters

4. Introduction to Variables and Parameters
4.1. Variable Substitution

4.2. Variable Assignment
4.3. Bash Variables Are Untyped
4.4. Special Variable Types
5. Quoting
5.1. Quoting Variables

5.2. Escaping
Exit and Exit Status
Tests

6.
7.

7.1. Test Constructs

7.2. File test operators

7.3. Other Comparison Operators

7.4. Nested 1 £/t hen Condition Tests

7.5. Testing Your Knowledge of Tests
8. Operations and Related Topics

8.1. Operators
8.2. Numerical Constants

8.3. The Double-Parentheses Construct
8.4. Operator Precedence

Part 2. Basics

Chapter 3. Special Characters

What makes a character special? If it has a meaning beyond its literal meaning, a meta-meaning, then we refer
to it as a special character.

Special Characters Found In Scripts and Elsewhere

#

Comments. Lines beginning with a # (with the exception of #!) are comments and will not be
executed.

This line is a comment.

Comments may also occur following the end of a command.

echo "A comment will follow." # Comment here.
~ Note whitespace before

Comments may also follow whitespace at the beginning of a line.

A tab precedes this comment.
Comments may even be embedded within a pipe.

initial=(‘cat "Sstartfile" | sed -e '/#/d' | tr -d '\n' |\
Delete lines containing '#' comment character.

sed -e 's/\./\. /g' -e 's/_/_ /g')
Excerpted from life.sh script

<1> A command may not follow a comment on the same line. There is no method of

terminating the comment, in order for "live code" to begin on the same line. Use a new
line for the next command.

=) Of course, a quoted or an gscaped # in an echo statement does not begin a comment.
Likewise, a # appears in certain parameter-substitution constructs and in numerical
constant expressions.

echo "The # here does not begin a comment."
echo 'The # here does not begin a comment.'
echo The \# here does not begin a comment.
echo The # here begins a comment.

echo S$S{PATH#*:} # Parameter substitution, not a comment.
echo $((2#101011)) # Base conversion, not a comment.

Thanks, S.C.
The standard quoting and escape characters (" '\) escape the #.
Certain pattern matching operations also use the #.

Command separator [semicolon]. Permits putting two or more commands on the same line.

echo hello; echo there

if [-x "S$filename"]; then # Note the space after the semicolon.

Chapter 3. Special Characters 8

Advanced Bash-Scripting Guide

#+ an

echo "File S$filename exists."; cp S$filename S$filename.bak
else # an

echo "File S$filename not found."; touch $filename
fi; echo "File test complete."

Note that the ";" sometimes needs to be escaped.
Terminator in a case option [double semicolon].

case "Svariable" in

abc) echo "\S$variable = abc" ;;
xyz) echo "\$variable = xyz" ;;
esac

&, &
Terminators in a case option (version 4+ of Bash).

"dot" command [period]. Equivalent to source (see Example 15-22). This is a bash builtin.

""dot"', as a component of a filename. When working with filenames, a leading dot is the prefix of a
"hidden" file, a file that an Is will not normally show.

bash$ touch .hidden-file
bash$ 1s -1

total 10

—rwW—r——r—— 1 bozo 4034 Jul 18 22:04 datal.addressbook
—rW—r——r—— 1 bozo 4602 May 25 13:58 datal.addressbook.bak
—rW—r——r—— 1 bozo 877 Dec 17 2000 employment.addressbook

bash$ 1s -al

total 14

ArwXrwxr—x 2 bozo Dbozo 1024 Aug 29 20:54 ./

drwx—————— 52 bozo Dbozo 3072 Aug 29 20:51 ../

—rW—r——r—— 1 bozo bozo 4034 Jul 18 22:04 datal.addressbook
—rW—r——r—— 1 bozo bozo 4602 May 25 13:58 datal.addressbook.bak
—rW—r——r—— 1 bozo bozo 877 Dec 17 2000 employment.addressbook
—IW—YrwW-—Ir—— 1 bozo bozo 0 Aug 29 20:54 .hidden-file

When considering directory names, a single dot represents the current working directory, and two dots
denote the parent directory.

bash$ pwd
/home/bozo/projects

bash$ ed
bash$ pwd
/home/bozo/projects

bash$ ed
bash$ pwd
/home /bozo/

The dot often appears as the destination (directory) of a file movement command, in this context
meaning current directory.

Chapter 3. Special Characters 9

Advanced Bash-Scripting Guide

bash$ cp /home/bozo/current_work/junk/* .

Copy all the "junk" files to $PWD.

"dot'" character match. When matching characters, as part of a regular expression, a "dot" matches a
single character.

partial quoting [double quote]. "STRING" preserves (from interpretation) most of the special
characters within STRING. See Chapter 5.

full quoting [single quote]. 'STRING' preserves all special characters within STRING. This is a
stronger form of quoting than "STRING". See Chapter 5.

comma operator. The comma operator [15] links together a series of arithmetic operations. All are
evaluated, but only the last one is returned.

let "t2 = ((a =9, 15/ 3))"
Set "a = 9" and "t2 = 15 / 3"

The comma operator can also concatenate strings.

for file in /{,usr/}bin/*calc

" Find all executable files ending in "calc"
#+ in /bin and /usr/bin directories.
do

if [-x "S$file"]

then

echo $file

fi

done

/bin/ipcalc

/usr/bin/kcalc

/usr/bin/oidcalc
/usr/bin/oocalc

Thank you, Rory Winston, for pointing this out.
Lowercase conversion in parameter substitution (added in yersion 4 of Bash).
escape [backslash]. A quoting mechanism for single characters.

\X escapes the character X. This has the effect of "quoting" X, equivalent to 'X'. The \ may be used to
quote " and ', so they are expressed literally.

See Chapter 5 for an in-depth explanation of escaped characters.

Filename path separator [forward slash]. Separates the components of a filename (as in
/home/bozo/projects/Makefile).

This is also the division arithmetic operator.

command substitution. The “‘command” construct makes available the output of command for
assignment to a variable. This is also known as backquotes or backticks.

Chapter 3. Special Characters 10

Advanced Bash-Scripting Guide

null command [colon]. This is the shell equivalent of a "NOP" (no op, a do-nothing operation). It

may be considered a synonym for the shell builtin true. The ":" command is itself a Bash builtin, and
its exit status is true (0).

écho S? # 0
Endless loop:

while :

do
operation-1
operation-2

operation—-n
done
Same as:
while true
do
..
done
Placeholder in if/then test:

if condition

then : # Do nothing and branch ahead
else # Or else

take-some—action
fi

Provide a placeholder where a binary operation is expected, see Example 8-2 and default parameters.

${username="whoami }
S{username='whoami’ } Gives an error without the leading :
unless "username" is a command or builtin...

Provide a placeholder where a command is expected in a here document. See Example 19-10.
Evaluate string of variables using parameter substitution (as in Example 10-7).

S{HOSTNAME?} ${USER?} ${MAIL?}
Prints error message
#+ 1f one or more of essential environmental variables not set.

Variable expansion / substring replacement.

In combination with the > redirection operator, truncates a file to zero length, without changing its
permissions. If the file did not previously exist, creates it.

> data.xxx # File "data.xxx" now empty.
Same effect as cat /dev/null >data.xxx
However, this does not fork a new process, since ":" is a builtin.

See also Example 16-15.

In combination with the >> redirection operator, has no effect on a pre-existing target file (: >>
target_file). If the file did not previously exist, creates it.

Chapter 3. Special Characters 11

Advanced Bash-Scripting Guide

<& This applies to regular files, not pipes, symlinks, and certain special files.

May be used to begin a comment line, although this is not recommended. Using # for a comment
turns off error checking for the remainder of that line, so almost anything may appear in a comment.
However, this is not the case with :.

This is a comment that generates an error, (if [$x -eqg 3]).
The ":" also serves as a field separator, in /et c/passwd, and in the $PATH variable.

bash$ echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/sbin:/usr/sbin:/usr/games

reverse (or negate) the sense of a test or exit status [bang]. The ! operator inverts the exit status of
the command to which it is applied (see Example 6-2). It also inverts the meaning of a test operator.
This can, for example, change the sense of equal (=) to not-equal (!="). The ! operator is a Bash

keyword.

In a different context, the ! also appears in indirect variable references.

In yet another context, from the command line, the ! invokes the Bash history mechanism (see
Appendix K). Note that within a script, the history mechanism is disabled.

*
wild card [asterisk]. The * character serves as a "wild card" for filename expansion in globbing. By
itself, it matches every filename in a given directory.
bash$ echo *
abs-book.sgml add-drive.sh agram.sh alias.sh
The * also represents any number (or zero) characters in a regular expression.
*
arithmetic operator. In the context of arithmetic operations, the * denotes multiplication.
** A double asterisk can represent the exponentiation operator or extended file-match globbing.
?
test operator. Within certain expressions, the ? indicates a test for a condition.
In a double-parentheses construct, the ? can serve as an element of a C-style trinary operator, ? :.
((var0O = varl<9829:21))
A A
if ["$varl" -1t 98]
then
var0=9
else
var0=21
fi
In a parameter substitution expression, the ? tests whether a variable has been set.
?

wild card. The ? character serves as a single-character "wild card" for filename expansion in
globbing, as well as representing one character in an extended regular expression.

Chapter 3. Special Characters 12

Advanced Bash-Scripting Guide

$
Yariable substitution (contents of a variable).
varl=5
varz2=23skidoo
echo $varl # 5
echo $var2 # 23skidoo
A $ prefixing a variable name indicates the value the variable holds.
$
end-of-line. In a regular expression, a "$" addresses the end of a line of text.
${}
Parameter substitution.
$*, $@
positional parameters.
$?
exit status variable. The $? variable holds the exit status of a command, a function, or of the script
itself.
$$
process ID variable. The $$ variable holds the process ID [16] of the script in which it appears.
0

command group.

(a=hello; echo $a)

!) A listing of commands within parentheses starts a subshell.

Variables inside parentheses, within the subshell, are not visible to the rest of the
script. The parent process, the script, cannot read variables created in the child
process, the subshell.

a=123
(a=321;)

echo "a = sa" # a = 123
"a" within parentheses acts like a local variable.

array initialization.

Array=(elementl element2 element3)

{xxx,yyy,zzz,...}
Brace expansion.

echo \"{These,words, are, quoted}\" # " prefix and suffix
"These" "words" "are" "quoted"

cat {filel,file2,file3} > combined_file
Concatenates the files filel, file2, and file3 into combined_file.

cp file22.{txt,backup}
Copies "file22.txt" to "file22.backup"

Chapter 3. Special Characters 13

Advanced Bash-Scripting Guide

A command may act upon a comma-separated list of file specs within braces. [17] Filename
expansion (globbing) applies to the file specs between the braces.

<1 No spaces allowed within the braces unless the spaces are quoted or escaped.
echo {filel, file2}\ :{\ A," B",' C'}

filel : A filel : B filel : C file2 : A file2 : B file2
C
{a..z}

Extended Brace expansion.

echo {a..z} # abcdefghijklmnopgrstuvwzixyz
Echoes characters between a and z.

echo {0..3} # 0 1 2 3
Echoes characters between 0 and 3.

The {a..z} extended brace expansion construction is a feature introduced in yersion 3 of Bash.

{}
Block of code [curly brackets]. Also referred to as an inline group, this construct, in effect, creates
an anonymous function (a function without a name). However, unlike in a "standard" function, the
variables inside a code block remain visible to the remainder of the script.

bash$ { local a;
a=123; }
bash: local: can only be used in a
function
a=123
{ a=321; }
echo "a = S$a" # a = 321 (value inside code block)

Thanks, S.C.

The code block enclosed in braces may have I/O redirected to and from it.

Example 3-1. Code blocks and 1/0 redirection

#!/bin/bash
Reading lines in /etc/fstab.

File=/etc/fstab

{

read linel
read line2
} < $File

echo "First line in $File is:"
echo "$linel"

echo

echo "Second line in $File is:"
echo "$line2"

Chapter 3. Special Characters

14

Advanced Bash-Scripting Guide

exit O

Now, how do you parse the separate fields of each line?
Hint: use awk, or
. . . Hans-Joerg Diers suggests using the "set" Bash builtin.

Example 3-2. Saving the output of a code block to a file

#!/bin/bash
rpm-check.sh

Queries an rpm file for description, listing,
#+ and whether it can be installed.

Saves output to a file.

#

This script illustrates using a code block.

SUCCESS=0
E_NOARGS=65

if [-z "S$1"]

then
echo "Usage: "basename $0° rpm-file"
exit SE_NOARGS

fi

{ # Begin code block.

echo
echo "Archive Description:"
rpm —gpi $1 # Query description.
echo
echo "Archive Listing:"
rpm —gpl $1 # Query listing.
echo
rpm —-i —-test $1 # Query whether rpm file can be installed.
if ["$?" -eq S$SUCCESS]
then
echo "$1 can be installed."
else
echo "$1 cannot be installed."
fi
echo # End code block.
} > "Sl.test" # Redirects output of everything in block to file.

echo "Results of rpm test in file $1l.test"
See rpm man page for explanation of options.

exit O

=) Unlike a command group within (parentheses), as above, a code block enclosed by
{braces} will not normally launch a subshell. [18]
{}
placeholder for text. Used after xargs —i (replace strings option). The {} double curly brackets are a
placeholder for output text.

Chapter 3. Special Characters 15

N

[]

(L1

[]

[]

$[...

()

Advanced Bash-Scripting Guide

ls . | xargs -i -t cp ./{} $1

AA AN

From "ex42.sh" (copydir.sh) example.
anchor id="semicolonesc">

pathname. Mostly used in find constructs. This is not a shell builtin.

&) The ";" ends the —exec option of a find command sequence. It needs to be escaped to
protect it from interpretation by the shell.

test.

Test expression between []. Note that [is part of the shell builtin test (and a synonym for it), not a
link to the external command /usr/bin/test.

test.

Test expression between [[]]. More flexible than the single-bracket [] test, this is a shell keyword.

See the discussion on the [[...]] construct.
array element.
In the context of an array, brackets set off the numbering of each element of that array.

Array[l]=slot_1
echo ${Array[1]}

range of characters.
As part of a regular expression, brackets delineate a range of characters to match.
integer expansion.

Evaluate integer expression between $[.

echo $[$a+$b] # 10
echo $[$a*S$b] # 21

Note that this usage is deprecated, and has been replaced by the ((...)) construct.
integer expansion.
Expand and evaluate integer expression between (()).

See the discussion on the ((...)) construct.

> &> >&>><<>

redirection.

Chapter 3. Special Characters

16

<<

<

<, >

Advanced Bash-Scripting Guide

scriptname >filename redirects the output of scriptname to file f£ilename. Overwrite
filename if it already exists.

command &>filename redirects both the st dout and the stderr of command to £ilename.

&) This is useful for suppressing output when testing for a condition. For example, let us
test whether a certain command exists.

bash$ type bogus_command &>/dev/null

bash$ echo $?
1

Or in a script:

command_test () { type "S$1" &>/dev/null; }
A
cmd=rmdir # Legitimate command.
command_test $cmd; echo $? # 0
cmd=bogus_command # Illegitimate command
command_test $cmd; echo $? # 1

command >&2 redirects stdout of command to stderr.
scriptname >>filename appends the output of scriptname to file filename. If

filename does not already exist, it is created.

[i]<>filename opens file £ilename for reading and writing, and assigns file descriptor i to it. If
filename does not exist, it is created.

process substitution.

(command) >

< (command)

In a different context, the "<" and ">" characters act as string comparison operators.

nn

In yet another context, the "<" and ">" characters act as integer comparison operators. See also
Example 16-9.

redirection used in a here document.
redirection used in a here string.

ASCII comparison.

Chapter 3. Special Characters 17

\<, \>

Advanced Bash-Scripting Guide

vegl=carrots
veg2=tomatoes

if [["$Svegl" < "Sveg2"]]
then
echo "Although $vegl precede $veg2 in the dictionary,"
echo —n "this does not necessarily imply anything "
echo "about my culinary preferences."
else
echo "What kind of dictionary are you using, anyhow?"
fi

word boundary in a regular expression.

bash$ grep '\<the\>' textfile

pipe. Passes the output (stdout of a previous command to the input (st din) of the next one, or to
the shell. This is a method of chaining commands together.

echo 1ls -1 | sh
Passes the output of "echo 1ls —-1" to the shell,
#+ with the same result as a simple "ls -1".

cat *.lst | sort | unig
Merges and sorts all ".lst" files, then deletes duplicate lines.

A pipe, as a classic method of interprocess communication, sends the stdout of one process to the
stdin of another. In a typical case, a command, such as cat or echo, pipes a stream of data to a
filter, a command that transforms its input for processing. [19

cat $filenamel $filename2 | grep $search_word

For an interesting note on the complexity of using UNIX pipes, see the UNIX FAQ, Part 3.

The output of a command or commands may be piped to a script.

#!/bin/bash
uppercase.sh : Changes input to uppercase.

tr 'a-z' 'A-Z'
Letter ranges must be quoted
#+ to prevent filename generation from single-letter filenames.

exit O

Now, let us pipe the output of Is -1 to this script.

bash$ 1s -1 | ./uppercase.sh

—RW-RW-R—— 1 BOZO BOZO 109 APR 7 19:49 1.TXT
—RW-RW-R—— 1 BOZO BOZO 109 APR 14 16:48 2.TXT
~RW-R—-R—— 1 BOZO BOZO 725 APR 20 20:56 DATA-FILE

& The stdout of each process in a pipe must be read as the st din of the next. If this
is not the case, the data stream will block, and the pipe will not behave as expected.

Chapter 3. Special Characters 18

http://www.faqs.org/faqs/unix-faq/faq/part3/

Advanced Bash-Scripting Guide

cat filel file2 | 1ls -1 | sort
The output from "cat filel file2" disappears.

A pipe runs as a child process, and therefore cannot alter script variables.

variable="initial_value"

echo "new_value" | read variable

echo "variable = S$Svariable" # variable = initial_value

If one of the commands in the pipe aborts, this prematurely terminates execution of the
pipe. Called a broken pipe, this condition sends a SIGPIPE signal.

>|
force redirection (even if the noclobber option is set). This will forcibly overwrite an existing file.
Il
OR logical operator. In a test construct, the Il operator causes a return of O (success) if either of the
linked test conditions is true.
&

Run job in background. A command followed by an & will run in the background.

bash$ sleep 10 &
[1] 850
[1]+ Done sleep 10

Within a script, commands and even loops may run in the background.

Example 3-3. Running a loop in the background

#!/bin/bash
background-loop.sh

for i in 1 2 3 45 6 7 8 9 10 # First loop.
do
echo -n "$1i "
done & # Run this loop in background.
Will sometimes execute after second loop.

echo # This 'echo' sometimes will not display.

for i in 11 12 13 14 15 16 17 18 19 20 # Second loop.

do
echo -n "$1i "
done
echo # This 'echo' sometimes will not display.
mmmmm——————————————— e —— e m e

The expected output from the script:
12345678910
11 12 13 14 15 16 17 18 19 20

+

Sometimes, though, you get:

11 12 13 14 15 16 17 18 19 20
123456789 10 bozo $

(The second 'echo' doesn't execute. Why?)

H= o

Occasionally also:

Chapter 3. Special Characters 19

&&

Advanced Bash-Scripting Guide

#1 23456789 10 11 12 13 14 15 16 17 18 19 20
#

The first 'echo' doesn't execute. Why?)

Very rarely something like:
11 12 13 1 2 3 45 6 7 8 9 10 14 15 16 17 18 19 20
The foreground loop preempts the background one.

exit O
Nasimuddin Ansari suggests adding sleep 1
#+ after the echo —n "$i" in lines 6 and 14,

#+ for some real fun.

“1> A command run in the background within a script may cause the script to hang,

waiting for a keystroke. Fortunately, there is a remedy for this.

AND logical operator. In a test construct, the && operator causes a return of 0 (success) only if both

the linked test conditions are true.

option, prefix. Option flag for a command or filter. Prefix for an operator. Prefix for a default

parameter in parameter substitution.

COMMAND -[Optionl] [Option2][...]
ls -al

sort —-dfu $filename

if [$filel -ot $file2]
then # ~

echo "File $filel is older than S$file2."
fi

if ["$a" -eq ll$bvl]

then # ~
echo "S$a is equal to $b."
fi
if ["$c" -eq 24 -a "$d" -eq 47]
then # ~ A
echo "S$c equals 24 and $d equals 47."
fi

param2=S$ {paraml : ~-SDEFAULTVAL}
A

The double-dash —— prefixes long (verbatim) options to commands.

sort —--ignore-leading-blanks

Used with a Bash builtin, it means the end of options to that particular command.

Chapter 3. Special Characters

20

Advanced Bash-Scripting Guide

bash$ 1ls -1

—-rw-r——r—— 1 bozo bozo 0 Nov 25 12:29 -badname

bash$ rm -- -badname

bash$ 1ls -1
total 0

The double-dash is also used in conjunction with set.
set —- $variable (asin Example 15-18)

redirection from/to stdin or stdout [dash].

i) This provides a handy means of removing files whose names begin with a dash.

bash$ cat -
abc
abc

Ctl-D

As expected, cat - echoes stdin, in this case keyboarded user input, to stdout. But, does I/O

redirection using - have real-world applications?

(cd /source/directory && tar cf - .) | (cd /dest/directory && tar xpvf -)

Move entire file tree from one directory to another
[courtesy Alan Cox <a.cox@swansea.ac.uk>, with a minor change]

1) cd /source/directory
Source directory, where the files to be moved are.

6) cd /dest/directory
Change to the destination directory.

7) &&
"And-1list", as above

8) tar xpvf -
Unarchive ('x'), preserve ownership and file permissions ('p'),
and send verbose messages to stdout ('v'),

reading data from stdin ('f' followed by '-"').

Note that 'x' is a command, and 'p', 'v', 'f' are options.

S oS o S S S e S o e o S S o e S e o o e S e o e

Whew!

More elegant than, but equivalent to:

Chapter 3. Special Characters

2) &&
"And-1list": if the 'cd' operation successful,
then execute the next command.
3) tar cf -
The 'c' option 'tar' archiving command creates a new archive,
the 'f' (file) option, followed by '-' designates the target file
as stdout, and do it in current directory tree ('.').
4) |
Piped to
5) (...)
a subshell

21

Advanced Bash-Scripting Guide

cd source/directory
tar c¢cf - . | (cd ../dest/directory; tar xpvf -)

Also having same effect:

cp —a /source/directory/* /dest/directory
@ g

cp —a /source/directory/* /source/directory/.[".]* /dest/directory
If there are hidden files in /source/directory.

e o S 3 o o o

bunzip2 -c linux-2.6.1l6.tar.bz2 | tar xvf -

—-uncompress tar file—- | ——then pass it to "tar"-—-

If "tar" has not been patched to handle "bunzip2",

#+ this needs to be done in two discrete steps, using a pipe.

The purpose of the exercise is to unarchive "bzipped" kernel source.

Note that in this context the "-" is not itself a Bash operator, but rather an option recognized by certain
UNIX utilities that write to stdout, such as tar, cat, etc.

bash$ echo "whatever" | cat -
whatever

Where a filename is expected, — redirects output to stdout (sometimes seen with tar c£f), or
accepts input from stdin, rather than from a file. This is a method of using a file-oriented utility as
a filter in a pipe.

bash$ file
Usage: file [-bciknvzL] [-f namefile] [-m magicfiles] file...

By itself on the command-line, file fails with an error message.

Add a "-" for a more useful result. This causes the shell to await user input.

bash$ file -
abc
standard input: ASCII text

bash$ file -
#!/bin/bash
standard input: Bourne-Again shell script text executable

Now the command accepts input from stdin and analyzes it.

The "-" can be used to pipe stdout to other commands. This permits such stunts as prepending lines
to a file.

Using diff to compare a file with a section of another:
grep Linux filel | diff file2 -

Finally, a real-world example using — with tar.

Example 3-4. Backup of all files changed in last day
#!/bin/bash

Chapter 3. Special Characters 22

Advanced Bash-Scripting Guide

Backs up all files in current directory modified within last 24 hours
#+ in a "tarball" (tarred and gzipped file).

BACKUPFILE=backup-$ (date +%m—-%d-%Y)

Embeds date in backup filename.

Thanks, Joshua Tschida, for the idea.
archive=${1:-$BACKUPFILE}

If no backup-archive filename specified on command-line,
#+ it will default to "backup-MM-DD-YYYY.tar.gz."

tar cvf - "find . -mtime -1 -type f -print® > Sarchive.tar
gzip $archive.tar
echo "Directory $PWD backed up in archive file \"S$Sarchive.tar.gz\"."

Stephane Chazelas points out that the above code will fail
#+ 1f there are too many files found
#+ or if any filenames contain blank characters.

He suggests the following alternatives:

find . -mtime -1 -type f -print0 | xargs -0 tar rvf "Sarchive.tar"
using the GNU version of "find".

find . —-mtime -1 -type f —-exec tar rvf "Sarchive.tar" '{}' \;

portable to other UNIX flavors, but much slower.

exit O

nn "non

<1> Filenames beginning wit may cause problems when coupled with the
redirection operator. A script should check for this and add an appropriate prefix to
such filenames, for example . /-FILENAME, $PWD/-FILENAME, or
SPATHNAME /-FILENAME.

If the value of a variable begins with a —, this may likewise create problems.

var="-n"
echo $var
Has the effect of "echo -n", and outputs nothing.

previous working directory. A cd - command changes to the previous working directory. This uses

the SOLDPWD environmental variable.

"non non

<1> Do not confuse the "-" used in this sense with the "-" redirection operator just
discussed. The interpretation of the "-" depends on the context in which it appears.

Minus. Minus sign in an arithmetic operation.

Equals. Assignment operator

a=28
echo $a # 28

Chapter 3. Special Characters

23

Advanced Bash-Scripting Guide

In a different context, the "=" is a string comparison operator.

+
Plus. Addition arithmetic operator.
In a different context, the + is a Regular Expression operator.
+
Option. Option flag for a command or filter.
Certain commands and builtins use the + to enable certain options and the - to disable them. In
parameter substitution, the + prefixes an _alternate value that a variable expands to.
%
modulo. Modulo (remainder of a division) arithmetic operation.
leie Tz = 5 % 30
echo $z # 2
In a different context, the % is a pattern matching operator.
home directory [tilde]. This corresponds to the SHOME internal variable. ~bozo is bozo's home
directory, and Is ~bozo lists the contents of it. ~/ is the current user's home directory, and Is ~/ lists the
contents of it.
bash$ echo ~bozo
/home /bozo
bash$ echo ~
/home /bozo
bash$ echo ~/
/home/bozo/
bash$ echo ~:
/home/bozo:
bash$ echo ~nonexistent-user
~nonexistent-user
~+
current working directory. This corresponds to the $PWD internal variable.
previous working directory. This corresponds to the SOLDPWD internal variable.
regular expression match. This operator was introduced with version 3 of Bash.
AN
beginning-of-line. In a regular expression, a """ addresses the beginning of a line of text.
ANRAYAS

Uppercase conversion in parameter substitution (added in yersion 4 of Bash).

Control Characters
change the behavior of the terminal or text display. A control character is a CONTROL + key
combination (pressed simultaneously). A control character may also be written in octal or
hexadecimal notation, following an escape.

Control characters are not normally useful inside a script.

Chapter 3. Special Characters 24

Advanced Bash-Scripting Guide

0ctl-a

Moves cursor to beginning of line of text (on the command-line).
0Ctl-B

Backspace (nondestructive).
Q
ctl-C

Break. Terminate a foreground job.
0
Ctl-D

Log out from a shell (similar to exit).
EOF (end-of-file). This also terminates input from stdin.

When typing text on the console or in an xterm window, Ct1-D erases the character under
the cursor. When there are no characters present, Ct1-D logs out of the session, as expected.
In an xterm window, this has the effect of closing the window.

0Ctl-E

Moves cursor to end of line of text (on the command-line).
0 Ctl-F

Moves cursor forward one character position (on the command-line).
Q
Ctl-G

BEL. On some old-time teletype terminals, this would actually ring a bell. In an xterm it
might beep.

0
Ctl-H

Rubout (destructive backspace). Erases characters the cursor backs over while backspacing.

#!/bin/bash
Embedding Ctl-H in a string.

a=""H"H" # Two Ctl-H's —-- backspaces
ctl-V ctl-H, using vi/vim
echo "abcdef" # abcdef
echo
echo -n "abcdef$a " # abcd f
Space at end * ~ Backspaces twice.
echo
echo -n "abcdefs$a" # abcdef
No space at end ~ Doesn't backspace (why?).

Results may not be quite as expected.
echo; echo

Constantin Hagemeier suggests trying:
a=$'\010\010"
a=$"'\b\b'

Chapter 3. Special Characters 25

0

0

0

0

0

Advanced Bash-Scripting Guide
a=$"'\x08\x08"'
But, this does not change the results.
Ctl-I
Horizontal tab.
Ctl-gJ
Newline (line feed). In a script, may also be expressed in octal notation -- \012' or in
hexadecimal -- \x0a'.
Ctl-K

Vertical tab.

When typing text on the console or in an xterm window, Ct 1-K erases from the character

under the cursor to end of line. Within a script, Ct 1-K may behave differently, as in Lee Lee

Maschmeyer's example, below.
Ctl-L

Formfeed (clear the terminal screen). In a terminal, this has the same effect as the clear
command. When sent to a printer, a Ct1-L causes an advance to end of the paper sheet.

Ctl-M
Carriage return.

#!/bin/bash
Thank you, Lee Maschmeyer, for this example.

read -n 1 -s —p \

$'Control-M leaves cursor at beginning of this line. Press Enter. \x0d'
Of course, '0d' is the hex equivalent of Control-M.

echo >&2 # The '-s' makes anything typed silent,
#+ so it is necessary to go to new line explicitly.

read -n 1 -s -p $'Control-J leaves cursor on next line. \x0a'
'Oa' is the hex equivalent of Control-J, linefeed.
echo >&2

#H4#

read —-n 1 -s -p $'And Control-K\x0Obgoes straight down.'
echo >&2 # Control-K is vertical tab.

A better example of the effect of a vertical tab is:

var=$'\x0aThis is the bottom line\x0bThis is the top line\x0a'

echo "Svar"

This works the same way as the above example. However:

echo "$var" | col

This causes the right end of the line to be higher than the left end.
It also explains why we started and ended with a line feed —-

#+ to avoid a garbled screen.

As Lee Maschmeyer explains:

Chapter 3. Special Characters

26

Advanced Bash-Scripting Guide

In the [first vertical tab example] . . . the vertical tab
#+ makes the printing go straight down without a carriage return.
This is true only on devices, such as the Linux console,
#+ that can't go "backward."
The real purpose of VT is to go straight UP, not down.
It can be used to print superscripts on a printer.
The col utility can be used to emulate the proper behavior of VT.
exit O
0ctl-N

Erases a line of text recalled from history buffer [20] (on the command-line).
¢ctl-o0

Issues a newline (on the command-line).
dctl-p

Recalls last command from history buffer (on the command-line).
¢ctl-9

Resume (XON).

This resumes stdin in a terminal.
0 Cctl-R

Backwards search for text in history buffer (on the command-line).
¢Cctl-s

Suspend (XOFF).

This freezes st din in a terminal. (Use Ctl-Q to restore input.)
dctl-T

Reverses the position of the character the cursor is on with the previous character (on the
command-line).
0ctl-u

Erase a line of input, from the cursor backward to beginning of line. In some settings, Ct1-U
erases the entire line of input, regardless of cursor position.
¢Cctl-v

When inputting text, Ct 1-V permits inserting control characters. For example, the following
two are equivalent:

echo -e '\x0a'
echo <Ctl-V><Ctl-J>

Ct1-V is primarily useful from within a text editor.
0ctl-w

When typing text on the console or in an xterm window, Ct 1-W erases from the character
under the cursor backwards to the first instance of whitespace. In some settings, Ct1-W
erases backwards to first non-alphanumeric character.

Chapter 3. Special Characters 27

Advanced Bash-Scripting Guide

0ctl-X

In certain word processing programs, Cuts highlighted text and copies to clipboard.
0ctl-y

Pastes back text previously erased (with Ct1-U or Ct1-W).
0ctl-z

Pauses a foreground job.
Substitute operation in certain word processing applications.

EOF (end-of-file) character in the MSDOS filesystem.

Whitespace

functions as a separator between commands and/or variables. Whitespace consists of either
spaces, tabs, blank lines, or any combination thereof. [21] In some contexts, such as variable
assignment, whitespace is not permitted, and results in a syntax error.

Blank lines have no effect on the action of a script, and are therefore useful for visually separating
functional sections.

$IES, the special variable separating fields of input to certain commands. It defaults to whitespace.

Separating each field from adjacent fields is either whitespace or some other designated character
(often determined by the $IFS). In some contexts, a field may be called a record.

Definition: A field is a discrete chunk of data expressed as a string of consecutive characters.

To preserve whitespace within a string or in a variable, use guoting.

UNIX filters can target and operate on whitespace using the POSIX character class [:space:].

Chapter 3. Special Characters

28

Chapter 4. Introduction to Variables and
Parameters

Variables are how programming and scripting languages represent data. A variable is nothing more than a
label, a name assigned to a location or set of locations in computer memory holding an item of data.

Variables appear in arithmetic operations and manipulation of quantities, and in string parsing.

4.1. Variable Substitution

The name of a variable is a placeholder for its value, the data it holds. Referencing (retrieving) its value is
called variable substitution.

$

Let us carefully distinguish between the name of a variable and its value. If variablel is the name
of a variable, then $variablel is a reference to its value, the data item it contains. [22]

bash$ wvariablel=23

bash$ echo variablel
variablel

bash$ echo $variablel
23

The only time a variable appears "naked" -- without the $ prefix -- is when declared or assigned, when
unset, when exported, or in the special case of a variable representing a signal (see Example 31-5).
Assignment may be with an = (as in var1=27), in a read statement, and at the head of a loop (for
var2 in 1 2 3).

Enclosing a referenced value in double quotes (" ... ") does not interfere with variable substitution.
This is called partial quoting, sometimes referred to as "weak quoting.” Using single quotes (' ...")
causes the variable name to be used literally, and no substitution will take place. This is full quoting,
sometimes referred to as 'strong quoting.' See Chapter 5 for a detailed discussion.

Note that $variable is actually a simplified form of $ {variable}. In contexts where the
$variable syntax causes an error, the longer form may work (see Section 10.2, below).

Example 4-1. Variable assignment and substitution

#!/bin/bash
ex9.sh

Variables: assignment and substitution

a=375
hello=S$a

Chapter 4. Introduction to Variables and Parameters 29

Advanced Bash-Scripting Guide

No space permitted on either side of = sign when initializing variables.
What happens if there is a space?

"VARIABLE =value"

A

#% Script tries to run "VARIABLE" command with one argument, "=value".
"VARIABLE= value"

A

#% Script tries to run "value" command with

#+ the environmental variable "VARIABLE" set to "".

echo hello # hello
Not a variable reference, just the string "hello"

echo S$hello # 375

~ This *is* a variable reference.
echo ${hello} # 375

Also a variable reference, as above.

Quoting .
echo "S$Shello" # 375
echo "${hello}" # 375

echo

hello="A B C D"

echo $hello # A BCD

echo "Shello" # A B C D

As you see, echo S$hello and echo "Shello" give different results.
Why?

#
Quoting a variable preserves whitespace.
#

echo

echo 'Shello' # Shello

A A

Variable referencing disabled (escaped) by single quotes,
#+ which causes the "$" to be interpreted literally.

Notice the effect of different types of quoting.

hello= # Setting it to a null value.

echo "\Shello (null value) = Shello"

Note that setting a variable to a null value is not the same as
#+ unsetting it, although the end result is the same (see below) .

It is permissible to set multiple variables on the same line,
#+ 1f separated by white space.
Caution, this may reduce legibility, and may not be portable.

varl=21 var2=22 var3=$V3

echo
echo "varl=S$varl var2=$var?2 var3=Svar3"

Chapter 4. Introduction to Variables and Parameters

Advanced Bash-Scripting Guide

May cause problems with older versions of "sh"

echo; echo

numbers="one two three"

A A
other_ numbers="1 2 3"
AN A

If there is whitespace embedded within a variable,
#+ then quotes are necessary.

other numbers=1 2 3 # Gives an error message.
echo "numbers = $numbers"

echo "other numbers = S$Sother numbers" # other_numbers = 1 2 3
Escaping the whitespace also works.

mixed_bag=2\ —---\ Whatever

" ~ Space after escape (\).

echo "Smixed_bag" # 2 ——— Whatever

echo; echo

echo "uninitialized_variable = Suninitialized_variable"
Uninitialized variable has null value (no value at all!).
uninitialized_variable= # Declaring, but not initializing it --

#+ same as setting it to a null value, as above.
echo "uninitialized_variable = Suninitialized_variable"

It still has a null value.

uninitialized_variable=23 # Set it.
unset uninitialized_variable # Unset it.
echo "uninitialized_variable = Suninitialized_variable"
It still has a null value.
echo
exit O

An uninitialized variable has a "null" value -- no assigned value at all (not zero!).

if [-z "Sunassigned"]
then

echo "\Sunassigned is NULL."
fi # Sunassigned is NULL.

Using a variable before assigning a value to it may cause problems. It is nevertheless
possible to perform arithmetic operations on an uninitialized variable.

echo "Suninitialized" # (blank line)
let "uninitialized += 5" # Add 5 to it.
echo "Suninitialized" # 5

Conclusion:

An uninitialized variable has no value,

#+ however it acts as if it were 0 in an arithmetic operation.
This is undocumented (and probably non-portable) behavior,
#+ and should not be used in a script.

See also Example 15-23.

Chapter 4. Introduction to Variables and Parameters

Advanced Bash-Scripting Guide

4.2. Variable Assignment

the assignment operator (no space before and after)
¢] Do not confuse this with = and -eq, which test, rather than assign!

Note that = can be either an assignment or a test operator, depending on context.

Example 4-2. Plain Variable Assignment

#!/bin/bash
Naked variables

echo

When is a variable "naked", i.e., lacking the '$' in front?
When it is being assigned, rather than referenced.

Assignment
a=879
echo "The value of \"a\" is $a."

Assignment using 'let'
let a=16+5
echo "The value of \"a\" is now S$a."

echo
In a 'for' loop (really, a type of disguised assignment) :
echo —-n "Values of \"a\" in the loop are: "
for a in 7 8 9 11
do
echo -n "$a "

done

echo
echo

In a 'read' statement (also a type of assignment) :
echo —n "Enter \"a\" "

read a

echo "The value of \"a\" is now S$a."

echo

exit O

Example 4-3. Variable Assignment, plain and fancy

#!/bin/bash

a=23 # Simple case
echo $a

Chapter 4. Introduction to Variables and Parameters

Advanced Bash-Scripting Guide

b=Sa
echo $b

Now, getting a little bit fancier (command substitution).

a="echo Hello!" # Assigns result of 'echo' command to 'a'
echo $a
Note that including an exclamation mark (!) within a

#+ command substitution construct will not work from the command-line,
#+ since this triggers the Bash "history mechanism."
Inside a script, however, the history functions are disabled.

a="1ls -1° # Assigns result of 'ls -1' command to 'a'

echo $Sa # Unquoted, however, it removes tabs and newlines.
echo

echo "S$Sa" # The quoted variable preserves whitespace.

(See the chapter on "Quoting.")

exit O

Variable assignment using the $(...) mechanism (a newer method than backquotes). This is actually a
form of command substitution.

From /etc/rc.d/rc.local
R=$ (cat /etc/redhat-release)
arch=$ (uname -m)

4.3. Bash Variables Are Untyped

Unlike many other programming languages, Bash does not segregate its variables by "type." Essentially, Bash
variables are character strings, but, depending on context, Bash permits arithmetic operations and
comparisons on variables. The determining factor is whether the value of a variable contains only digits.

Example 4-4. Integer or string?

#!/bin/bash
int-or-string.sh

a=2334 # Integer.

let "a += 1"

echo "a = $a " # a = 2335

echo # Integer, still.

b=${a/23/BB} # Substitute "BB" for "23".
This transforms $b into a string.
echo "b = $b" # b = BB35
declare -i b # Declaring it an integer doesn't help.
echo "b = $b" # b = BB35
let "b += 1" # BB35 + 1
echo "b = $b" # b =1
echo # Bash sets the "integer value" of a string to O.

c=BB34

Chapter 4. Introduction to Variables and Parameters 33

Advanced Bash-Scripting Guide

echo "c = S$c" # ¢ = BB34

d=${c/BB/23} # Substitute "23" for "BB".
This makes $d an integer.

echo "d = $d" # d = 2334

let "d += 1" # 2334 + 1

echo "d = $d" # d = 2335

echo

What about null variables?

@="" # ... Or e="" ... Or e=

echo "e = Se" # e =

let "e += 1" # Arithmetic operations allowed on a null variable?
echo "e = S$e" #e=1

echo # Null variable transformed into an integer.

What about undeclared variables?

echo "f = S$f" # £ =

let "f += 1" # Arithmetic operations allowed?

echo "f = S$f" # £ =1

echo # Undeclared variable transformed into an integer.
#

However

let "f /= Sundecl_var" # Divide by zero?

let: £ /= : syntax error: operand expected (error token is " ")

Syntax error! Variable S$undecl_var is not set to zero here!

#

But still

let "f /= Q"

let: £ /= 0: division by 0 (error token is "0")
Expected behavior.

Bash (usually) sets the "integer value" of null to zero
#+ when performing an arithmetic operation.

But, don't try this at home, folks!

It's undocumented and probably non-portable behavior.

Conclusion: Variables in Bash are untyped,
#+ with all attendant consequences.

exit $°?

Untyped variables are both a blessing and a curse. They permit more flexibility in scripting and make it easier
to grind out lines of code (and give you enough rope to hang yourself!). However, they likewise permit subtle
errors to creep in and encourage sloppy programming habits.

To lighten the burden of keeping track of variable types in a script, Bash does permit declaring variables.

4.4. Special Variable Types

Local variables

Variables visible only within a code block or function (see also local variables in functions)
Environmental variables

Variables that affect the behavior of the shell and user interface

- In a more general context, each process has an "environment", that is, a group of

Chapter 4. Introduction to Variables and Parameters 34

Advanced Bash-Scripting Guide

variables that the process may reference. In this sense, the shell behaves like any other
process.

Every time a shell starts, it creates shell variables that correspond to its own
environmental variables. Updating or adding new environmental variables causes the
shell to update its environment, and all the shell's child processes (the commands it
executes) inherit this environment.

<1 The space allotted to the environment is limited. Creating too many environmental
variables or ones that use up excessive space may cause problems.

bash$ eval "'seq 10000 | sed -e 's/.*/export var&=ZZZZZZZZZZZZZZ/' "

bash$ du
bash: /usr/bin/du: Argument list too long

Note: this "error" has been fixed, as of kernel version 2.6.23.

(Thank you, Stéphane Chazelas for the clarification, and for providing the above
example.)

If a script sets environmental variables, they need to be "exported," that is, reported to the
environment local to the script. This is the function of the export command.

&) A script can export variables only to child processes, that is, only to commands or
processes which that particular script initiates. A script invoked from the
command-line cannot export variables back to the command-line environment.
Child processes cannot export variables back to the parent processes that spawned
them.

Definition: A child process is a subprocess launched by another process, its

parent.
Positional parameters
Arguments passed to the script from the command line [23] : $0, $1, $2, $3 ...

$0 is the name of the script itself, $1 is the first argument, $2 the second, $3 the third, and so forth.
[24] After $9, the arguments must be enclosed in brackets, for example, ${10}, ${11}, ${12}.

The special variables $* and $@ denote all the positional parameters.

Example 4-5. Positional Parameters

#!/bin/bash

Call this script with at least 10 parameters, for example
./scriptname 1 2 3 4 5 6 7 8 9 10

MINPARAMS=10

echo

echo "The name of this script is \"S$O\"."

Chapter 4. Introduction to Variables and Parameters 35

Advanced Bash-Scripting Guide

Adds ./ for current directory
echo "The name of this script is \" basename $0 \"."
Strips out path name info (see 'basename')

echo

if [-n "S1"] # Tested variable is quoted.
then

echo "Parameter #1 is $1" # Need quotes to escape #

fi

if [-n ll$2ll]
then

echo "Parameter #2 is $2"
fi

if [-n "$3"]

then

echo "Parameter #3 is $3"
fi

if [-n "S{10}"] # Parameters > $9 must be enclosed in {brackets}.
then

echo "Parameter #10 is ${10}"

fi

EhE Yom—mmmmmeeoeeeeeeeeeeeeeseeseeesees
echo "All the command-line parameters are: "s$*""

if [$# -1t "S$SMINPARAMS"]
then

echo

echo "This script needs at least SMINPARAMS command-line arguments!"
fi

echo

exit O
Bracket notation for positional parameters leads to a fairly simple way of referencing the last
argument passed to a script on the command-line. This also requires indirect referencing.

args=S# # Number of args passed.
lastarg=${'!args}
Note: This is an *indirect reference* to $args

Or: lastarg=S${!#} (Thanks, Chris Monson.)
This is an *indirect reference* to the $# variable.
Note that lastarg=${!$#} doesn't work.

Some scripts can perform different operations, depending on which name they are invoked with. For
this to work, the script needs to check $0, the name it was invoked by. There must also exist symbolic
links to all the alternate names of the script. See Example 16-2.

Chapter 4. Introduction to Variables and Parameters 36

Advanced Bash-Scripting Guide

If a script expects a command-line parameter but is invoked without one, this may
cause a null variable assignment, generally an undesirable result. One way to prevent
this is to append an extra character to both sides of the assignment statement using the
expected positional parameter.

variablel =$1_ # Rather than variablel=$1
This will prevent an error, even if positional parameter is absent.

critical_argumentOl=Svariablel_

The extra character can be stripped off later, like so.
variablel=${variablel_/_/}

Side effects only if $variablel_ begins with an underscore.

This uses one of the parameter substitution templates discussed later.
(Leaving out the replacement pattern results in a deletion.)

A more straightforward way of dealing with this is
#+ to simply test whether expected positional parameters have been passed.
if [-z $1]
then
exit $E_MISSING_POS_PARAM
fi

However, as Fabian Kreutz points out,

#+ the above method may have unexpected side-effects.
A better method is parameter substitution:

S{l:-$DefaultVval}

See the "Parameter Substition" section

#+ in the "Variables Revisited" chapter.

Example 4-6. wh, whois domain name lookup

#!/bin/bash
ex18.sh

Does a 'whois domain-name' lookup on any of 3 alternate servers:

ripe.net, cw.net, radb.net

Place this script —-- renamed 'wh' -- in /usr/local/bin
Requires symbolic links:

1ln -s /usr/local/bin/wh /usr/local/bin/wh-ripe

1n -s /usr/local/bin/wh /usr/local/bin/wh-apnic

1n -s /usr/local/bin/wh /usr/local/bin/wh-tucows

E_NOARGS=75

if [-z "$1"]
then

echo "Usage: "basename $0° [domain-name]"

exit S$E_NOARGS
fi

Check script name and call proper server.

case "basename $0° in

Or:

"wh") whois $1@whois.tucows.com; ;

Chapter 4. Introduction to Variables and Parameters

case S$S{O0##*/} in

37

"wh-ripe"
"wh—apnic"
"wh—cw"

*

esac

exit $7?

Advanced Bash-Scripting Guide

whois $1@whois.ripe.net;;

whois $1@whois.apnic.net;;

whois $1@whois.cw.net;;

echo "Usage: "basename $0° [domain-namel]";;

The shift command reassigns the positional parameters, in effect shifting them to the left one notch.

$1<---52,52<---$3, $3 <--- $4, etc.

The old $1 disappears, but SO (the script name) does not change. If you use a large number of
positional parameters to a script, shift lets you access those past 10, although {bracket} notation also

permits this.

Example 4-7. Using shift

#!/bin/bash

shft.sh: Using

'shift' to step through all the positional parameters.

Name this script something like shft.sh,
#+ and invoke it with some parameters.

#+ For example:

sh shft.sh a b ¢ def 23 Skidoo

until [—z "S1"
do
echo -n "$1 "
shift
done

echo

Until all parameters used up

Extra linefeed.

But, what happens to the "used-up" parameters?

echo "s$2"

Nothing echoes!

When $2 shifts into $1 (and there is no $3 to shift into $2)
#+ then $2 remains empty.

So, it is not a parameter *copy*, but a *movex*.

exit

See also the echo-params.sh script for a "shiftless"
#+ alternative method of stepping through the positional params.

The shift command can take a numerical parameter indicating how many positions to shift.

#!/bin/bash

shift-past.sh

shift 3 # Shift 3 positions.

n=3; shift $n

Has the same effect.

echo "S$1"

Chapter 4. Introduction to Variables and Parameters 38

Advanced Bash-Scripting Guide

exit O

S sh shift-past.sh 1 2 3 4 5

4

However, as Eleni Fragkiadaki, points out,

#+ attempting a 'shift' past the number of

#+ positional parameters ($#) returns an exit status of 1,
#+ and the positional parameters themselves do not change.
This means possibly getting stuck in an endless loop.

For example:

until [-z "$1"]

do

echo —n "$1 "

shift 20 # If less than 20 pos params,

done #+ then loop never ends!

#

When in doubt, add a sanity check.

shift 20 || break

AAAAANAAAN

&) The shift command works in a similar fashion on parameters passed to a function. See
Example 35-16.

Chapter 4. Introduction to Variables and Parameters

39

Chapter 5. Quoting

Quoting means just that, bracketing a string in quotes. This has the effect of protecting special characters in
the string from reinterpretation or expansion by the shell or shell script. (A character is "special" if it has an
interpretation other than its literal meaning. For example, the asterisk * represents a wild card character in

globbing and Regular Expressions).

bash$ 1s -1 [Vv]*

—IW—Yrw-r—-— 1 bozo Dbozo 324 Apr 2 15:05 VIEWDATA.BAT
—rW—YW-—Ir—— 1 bozo bozo 507 May 4 14:25 vartrace.sh
—rW—YrwW—Ir—— 1 bozo bozo 539 Apr 14 17:11 viewdata.sh

bash$ 1s =1 '[Vv]*'
ls: [Vv]*: No such file or directory

In everyday speech or writing, when we "quote" a phrase, we set it apart and give it special meaning. In a
Bash script, when we quote a string, we set it apart and protect its liferal meaning.

Certain programs and utilities reinterpret or expand special characters in a quoted string. An important use of
quoting is protecting a command-line parameter from the shell, but still letting the calling program expand it.

bash$ grep '[Fflirst' *.txt
filel.txt:This is the first line of filel.txt.
file2.txt:This is the First line of file2.txt.

Note that the unquoted grep [Ff]irst *.txt works under the Bash shell. [25]

Quoting can also suppress echo's "appetite" for newlines.

bash$ echo $(1ls -1)
total 8 —rw—rw-r—— 1 bo bo 13 Aug 21 12:57 t.sh —-rw-rw-r—— 1 bo bo 78 Aug 21 12:57 u.sh

bash$ echo "$(1s -1)"

total 8
—-rw—rw-r—— 1 bo bo 13 Aug 21 12:57 t.sh
—-rw—rw-r—— 1 bo bo 78 Aug 21 12:57 u.sh

5.1. Quoting Variables

When referencing a variable, it is generally advisable to enclose its name in double quotes. This prevents
reinterpretation of all special characters within the quoted string -- except $, * (backquote), and \ (escape). [26]
Keeping $ as a special character within double quotes permits referencing a quoted variable
("Svariable™), that is, replacing the variable with its value (see Example 4-1, above).

Use double quotes to prevent word splitting. [27] An argument enclosed in double quotes presents itself as a
single word, even if it contains whitespace separators.

List="one two three"

Chapter 5. Quoting 40

Advanced Bash-Scripting Guide

for a in $List # Splits the variable in parts at whitespace.
do
echo "S$Sa"
done
one
two
three

echo "——-"

for a in "S$List" # Preserves whitespace in a single variable.
do # A A
echo "S$Sa"
done
one two three

A more elaborate example:

variablel="a variable containing five words"
COMMAND This is $variablel # Executes COMMAND with 7 arguments:
"This" "is" "a" "variable" "containing" "five" "words"

COMMAND "This is $variablel" # Executes COMMAND with 1 argument:
"This is a variable containing five words"

variable2="" # Empty.
COMMAND $variable2 S$variable2 S$variable?2
Executes COMMAND with no arguments.
COMMAND "S$variable2" "S$Svariable2" "Svariable2"
Executes COMMAND with 3 empty arguments.
COMMAND "S$variable2 S$variable2 S$variable2"
Executes COMMAND with 1 argument (2 spaces).

Thanks, Stéphane Chazelas.

i) Enclosing the arguments to an echo statement in double quotes is necessary only when word splitting or
preservation of whitespace is an issue.

Example 5-1. Echoing Weird Variables

#!/bin/bash
weirdvars.sh: Echoing weird variables.

echo

var="" (]\\{ }\s\vlll

echo $var # U (IN{}S"

echo "Svar" # P (I\{}s" Doesn't make a difference.
echo

IFS="\"

echo $var # (1 {1S$" \ converted to space. Why?
echo "Svar" # ' (IN{}S"

Examples above supplied by Stephane Chazelas.

Chapter 5. Quoting 41

Advanced Bash-Scripting Guide

echo

var2="\\\\\""

echo S$Svar2 # "

echo "Svar2" # A\

echo

But ... var2="\\\\"" is illegal. Why?
var3="\\\\"

echo "$var3" # \\\\

Strong quoting works, though.

exit

Single quotes (' ') operate similarly to double quotes, but do not permit referencing variables, since the special
meaning of $ is turned off. Within single quotes, every special character except ' gets interpreted literally.
Consider single quotes ("full quoting") to be a stricter method of quoting than double quotes ("partial
quoting").

&) Since even the escape character (\) gets a literal interpretation within single quotes, trying to enclose a
single quote within single quotes will not yield the expected result.

echo "Why can't I write 's between single quotes"

echo

The roundabout method.

echo 'Why can'\''t I write '"'"'s between single quotes'
N R [!

Three single-quoted strings, with escaped and quoted single quotes between.

This example courtesy of Stéphane Chazelas.

5.2. Escaping

Escaping is a method of quoting single characters. The escape (\) preceding a character tells the shell to
interpret that character literally.

<1 With certain commands and utilities, such as echo and sed, escaping a character may have the opposite
effect - it can toggle on a special meaning for that character.

Special meanings of certain escaped characters

used with echo and sed

\n

means newline
\r

means return
\t

means tab
\v

means vertical tab
\b

means backspace
\a

Chapter 5. Quoting 42

Advanced Bash-Scripting Guide

means alert (beep or flash)
\0Oxx

translates to the octal ASCII equivalent of Onn, where nn is a string of digits

Example 5-2. Escaped Characters

#!/bin/bash
escaped.sh: escaped characters

echo; echo

Escaping a newline.

echo ""

echo "This will print
as two lines."

This will print

as two lines.

echo "This will print \
as one line."
This will print as one line.

echo; echo

echo | L ——— |

echo "\v\v\v\v" # Prints \v\v\v\v literally.

Use the —-e option with 'echo' to print escaped characters.
echo | L ——— |

echo "VERTICAL TABS"

echo —e "\v\v\v\v" # Prints 4 vertical tabs.

echo n Al

echo "QUOTATION MARK"

echo —e "\042" # Prints " (quote, octal ASCII character 42).
echo n Al

The $'\X' construct makes the -e option unnecessary.

echo; echo "NEWLINE AND BEEP"

echo $'\n' # Newline.

echo $'\a' # Alert (beep).

echo n n

echo "QUOTATION MARKS"

Version 2 and later of Bash permits using the $'\nnn'
Note that in this case, '\nnn' is an octal value.
echo $'\t \042 \t' # Quote (") framed by tabs.

It also works with hexadecimal values, in an $'\xhhh'
echo $'\t \x22 \t' # Quote (") framed by tabs.

Thank you, Greg Keraunen, for pointing this out.

Farlier Bash versions allowed '\x022'.

echo n n

echo

Chapter 5. Quoting

construct.

construct.

43

\ll

\$

\

=) The behavior of \ depends on whether it is escaped, strong-quoted, weak-quoted, or appearing within
command substitution or a here document.

Advanced Bash-Scripting Guide

Assigning ASCII characters to a variable.

quote=$'\042" # " assigned to a variable.

echo "S$Squote This is a quoted string, S$quote and this lies outside the quotes."

echo

Concatenating ASCII chars in a variable.
triple_underline=$'\137\137\137"'" # 137 is octal ASCII code for '_'.
echo "S$Striple_underline UNDERLINE S$triple_underline"

echo
ABC=$'\101\102\103\010" # 101, 102, 103 are octal A, B, C.
echo S$ABC

echo; echo

escape=$'\033" # 033 is octal for escape.
echo "\"escape\" echoes as S$escape"
no visible output.

echo; echo

exit O

See Example 36-1 for another example of the $' ... ' string-expansion construct.

gives the quote its literal meaning

echo "Hello" # Hello
echo "\"Hello\" ... he said." # "Hello" ... he said.

gives the dollar sign its literal meaning (variable name following \$ will not be referenced)

echo "\$variableO1l" # SvariableOl
echo "The book cost \$7.98." # The book cost $7.98.

gives the backslash its literal meaning

echo "\\" # Results in \
Whereas

echo "\" # Invokes secondary prompt from the command-line.
In a script, gives an error message.

However

echo "\' # Results in \

Chapter 5. Quoting

44

Advanced Bash-Scripting Guide

Simple escaping and quoting
echo \z # z
echo \\z # \z
echo '\z' # \z
echo "\\z' # \\z
echo "\z" # \z
echo "\\z" # \z
Command substitution
echo “echo \z° # z
echo “echo \\z’ ¥ z
echo ‘echo \\\z’ # \z
echo ‘echo \\\\z° # \z
echo “echo \\\\\\z® # \z
echo ‘echo \\\\\\\z' # \\z
echo “echo "\z"" # \z
echo “echo "\\z™ # \z

Here document
cat <<EOF
\z
EOF # \z

cat <<EOF
\\z
EOF # \z

These examples supplied by Stéphane Chazelas.
Elements of a string assigned to a variable may be escaped, but the escape character alone may not be
assigned to a variable.

variable=\
echo "S$variable"
Will not work - gives an error message:

test.sh: : command not found

A "naked" escape cannot safely be assigned to a variable.

#

What actually happens here is that the "\" escapes the newline and
#+ the effect is variable=echo "S$variable"

#+ invalid variable assignment

variable=\

23skidoo

echo "S$variable" # 23skidoo
This works, since the second line
#+ is a valid variable assignment.

variable=\
% escape followed by space
echo "S$variable" # space

variable=\\
echo "Svariable" # \

variable=\\\

echo "S$variable"

Will not work - gives an error message:

test.sh: \: command not found

#

First escape escapes second one, but the third one is left "naked",
#+ with same result as first instance, above.

Chapter 5. Quoting 45

Advanced Bash-Scripting Guide

variable=\\\\

echo "S$variable" # \\
Second and fourth escapes escaped.
This is o.k.

Escaping a space can prevent word splitting in a command's argument list.

file_list="/bin/cat /bin/gzip /bin/more /usr/bin/less /usr/bin/emacs-20.7"
List of files as argument (s) to a command.

Add two files to the list, and list all.
ls -1 /usr/X11R6/bin/xsetroot /sbin/dump $file_list

What happens if we escape a couple of spaces?

1s -1 /usr/X11R6/bin/xsetroot\ /sbin/dump\ $file_list

Error: the first three files concatenated into a single argument to 'ls -1'
because the two escaped spaces prevent argument (word) splitting.

The escape also provides a means of writing a multi-line command. Normally, each separate line constitutes a
different command, but an escape at the end of a line escapes the newline character, and the command
sequence continues on to the next line.

(cd /source/directory && tar cf - .) | \

(cd /dest/directory && tar xpvf -)

Repeating Alan Cox's directory tree copy command,
but split into two lines for increased legibility.

As an alternative:

tar cf - -C /source/directory . |
tar xpvf - -C /dest/directory

See note below.

(Thanks, Stéphane Chazelas.)

&) If a script line ends with a |, a pipe character, then a \, an escape, is not strictly necessary. It is, however,
good programming practice to always escape the end of a line of code that continues to the following
line.

echo "foo
bar"
#foo
fbar

echo

echo 'foo

bar' # No difference yet.
#foo

#bar

echo

echo foo\

bar # Newline escaped.

#foobar

echo

Chapter 5. Quoting 46

Advanced Bash-Scripting Guide

echo "foo\
bar" # Same here, as \ still interpreted as escape within weak quotes.
#foobar

echo

echo 'foo\

bar' # Escape character \ taken literally because of strong quoting.
#foo\

#bar

Examples suggested by Stéphane Chazelas.

Chapter 5. Quoting

47

Chapter 6. Exit and Exit Status

... there are dark corners in the Bourne shell, and
people use all of them.

--Chet Ramey
The exit command terminates a script, just as in a C program. It can also return a value, which is available to
the script's parent process.

Every command returns an exit status (sometimes referred to as a refurn status or exit code). A successful
command returns a 0, while an unsuccessful one returns a non-zero value that usually can be interpreted as an
error code. Well-behaved UNIX commands, programs, and utilities return a 0 exit code upon successful
completion, though there are some exceptions.

Likewise, functions within a script and the script itself return an exit status. The last command executed in the
function or script determines the exit status. Within a script, an exit nnncommand may be used to deliver
an nnn exit status to the shell (nnn must be an integer in the 0 - 255 range).

=) When a script ends with an exit that has no parameter, the exit status of the script is the exit status of the
last command executed in the script (previous to the exit).

#!/bin/bash

COMMAND_ 1

COMMAND_LAST
Will exit with status of last command.

exit

The equivalent of a bare exit is exit $? or even just omitting the exit.

#!/bin/bash

COMMAND_ 1

COMMAND_LAST
Will exit with status of last command.

exit $?

#!/bin/bash

COMMAND1

COMMAND_LAST

Chapter 6. Exit and Exit Status 48

Advanced Bash-Scripting Guide

Will exit with status of last command.

$? reads the exit status of the last command executed. After a function returns, $? gives the exit status of the
last command executed in the function. This is Bash's way of giving functions a "return value." [28]

Following the execution of a pipe, a $? gives the exit status of the last command executed.

After a script terminates, a $? from the command-line gives the exit status of the script, that is, the last
command executed in the script, which is, by convention, 0 on success or an integer in the range 1 - 255 on
error.

Example 6-1. exit / exit status

#!/bin/bash

echo hello

echo $? # Exit status 0 returned because command executed successfully.
1lskdf # Unrecognized command.

echo $? # Non-zero exit status returned because command failed to execute.
echo

exit 113 # Will return 113 to shell.
To verify this, type "echo $?" after script terminates.

By convention, an 'exit 0' indicates success,
#+ while a non-zero exit value means an error or anomalous condition.

$? is especially useful for testing the result of a command in a script (see Example 16-35 and Example 16-20).

=& The !, the logical not qualifier, reverses the outcome of a test or command, and this affects its exit status.

Example 6-2. Negating a condition using !

true # The "true" builtin.

echo "exit status of \"true\" = $?" # 0

! true

echo "exit status of \"! true\" = $?" # 1

Note that the "!" needs a space between it and the command.

'true leads to a "command not found" error

#

The '!' operator prefixing a command invokes the Bash history mechanism.
true

'true

No error this time, but no negation either.
It just repeats the previous command (true).

===
Preceding a _pipe_ with ! inverts the exit status returned.
ls | bogus_command # bash: bogus_command: command not found
echo $7? # 127

! 1s | bogus_command # bash: bogus_command: command not found

Chapter 6. Exit and Exit Status 49

Advanced Bash-Scripting Guide

echo $°? # 0

Note that the ! does not change the execution of the pipe.

Only the exit status changes.

#

Thanks, Stéphane Chazelas and Kristopher Newsome.

<1 Certain exit status codes have reserved meanings and should not be user-specified in a script.

Chapter 6. Exit and Exit Status

50

Chapter 7. Tests

Every reasonably complete programming language can test for a condition, then act according to the result of

the test. Bash has the test command, various bracket and parenthesis operators, and the if/then construct.

7.1. Test Constructs

¢ An if/then construct tests whether the exit status of a list of commands is O (since 0 means "success”
by UNIX convention), and if so, executes one or more commands.

¢ There exists a dedicated command called [(left bracket special character). It is a synonym for test,
and a builtin for efficiency reasons. This command considers its arguments as comparison expressions
or file tests and returns an exit status corresponding to the result of the comparison (O for true, 1 for
false).

¢ With version 2.02, Bash introduced the [[...]] extended test command, which performs comparisons
in a manner more familiar to programmers from other languages. Note that [[is a keyword, not a
command.

Bashsees [[$a —1t $b]] as a single element, which returns an exit status.

[]
The ((...)) and let ... constructs also return an exit status, according to whether the arithmetic
expressions they evaluate expand to a non-zero value. These arithmetic-expansion constructs may
therefore be used to perform arithmetic comparisons.

(0 && 1)) # Logical AND
echo $7? # 1 LR

And so

let "num = ((0 && 1))"

echo S$num # 0

But

let "num = ((0 && 1))"

echo $7? # 1 LR

((200 || 11)) # Logical OR
echo $? # 0 * kK

#

let "num = ((200 || 11))"

echo S$num # 1

let "num = ((200 || 11))"

echo $? # 0 LR

((200 | 11)) # Bitwise OR
echo $°? # 0 * Kk
...

let "num = ((200 | 11))"

echo S$num # 203

let "num = ((200 | 11))"

echo $°? # 0 * ok x

The "let" construct returns the same exit status
#+ as the double-parentheses arithmetic expansion.

Chapter 7. Tests 51

Advanced Bash-Scripting Guide

¢ An if can test any command, not just conditions enclosed within brackets.

if cmp a b &> /dev/null # Suppress output.
then echo "Files a and b are identical."
else echo "Files a and b differ."

fi

The very useful "if-grep" construct:
if grep —g Bash file
then echo "File contains at least one occurrence of Bash."

fi

word=Linux
letter_sequence=inu

if echo "Sword" | grep —-g "Sletter_ sequence"
The "-g" option to grep suppresses output.
then

echo "S$Sletter_sequence found in S$Sword"
else

echo "S$Sletter_sequence not found in S$word"
fi

if COMMAND_WHOSE_EXIT_STATUS_IS_0_UNLESS_ERROR_OCCURRED
then echo "Command succeeded."
else echo "Command failed."

fi

® These last two examples courtesy of Stéphane Chazelas.

Example 7-1. What is truth?

#!/bin/bash

Tip:

If you're unsure of how a certain condition would evaluate,
#+ test it in an if-test.

echo

echo "Testing \"O\""

if [0] # zero
then
echo "0 is true."
else # Or else
echo "0 is false."
fi # 0 is true.
echo

echo "Testing \"1\""

if [1] # one
then
echo "1 is true."
else
echo "1 is false."
fi # 1 is true.
echo

Chapter 7. Tests

52

Advanced Bash-Scripting Guide

echo "Testing \"-1\""

if [-1 1] # minus one
then

echo "-1 is true."
else

echo "-1 is false."
fi # -1 is true.
echo

echo "Testing \"NULL\""

if [] # NULL (empty condition)
then
echo "NULL is true."
else
echo "NULL is false."
fi # NULL is false.
echo

echo "Testing \"xyz\""

if [xyz] # string
then
echo "Random string is true."
else
echo "Random string is false."
fi # Random string is true.
echo

echo "Testing \"\S$xyz\""
if [Sxyz] # Tests if $xyz is null, but...
it's only an uninitialized variable.

then
echo "Uninitialized variable is true."
else
echo "Uninitialized variable is false."
fi # Uninitialized variable is false.
echo

echo "Testing \"-n \S$xyz\""

if [-n "Sxyz"] # More pedantically correct.
then
echo "Uninitialized variable is true."
else
echo "Uninitialized variable is false."
fi # Uninitialized variable is false.
echo
Xy zZ= # Initialized, but set to null value.

echo "Testing \"-n \S$xyz\""

if [-n "Sxyz"]
then
echo "Null variable is true."
else
echo "Null variable is false."
fi # Null variable is false.

Chapter 7. Tests

53

Advanced Bash-Scripting Guide

echo

When is "false" true?

echo "Testing \"false\""

if ["false"] # It seems that "false" is just a string.
then
echo "\"false\" is true." #+ and it tests true.
else
echo "\"false\" is false."
fi # "false" is true.
echo
echo "Testing \"\S$false\"" # Again, uninitialized variable.
if ["Sfalse"]
then
echo "\"\Sfalse\" is true."
else
echo "\"\Sfalse\" is false."
fi # "Sfalse" is false.

Now, we get the expected result.
What would happen if we tested the uninitialized variable "Strue"?
echo

exit O

Exercise. Explain the behavior of Example 7-1, above.

if [condition-true]
then

command 1

command 2

else # Or else
Adds default code block executing if original condition tests false.

command 3
command 4

=& When if and then are on same line in a condition test, a semicolon must terminate the if statement. Both if
and then are keywords. Keywords (or commands) begin statements, and before a new statement on the
same line begins, the old one must terminate.

if [-x "$filename"]; then

Else if and elif

elif
elif is a contraction for else if. The effect is to nest an inner if/then construct within an outer one.

Chapter 7. Tests 54

Advanced Bash-Scripting Guide

if [conditionl]
then
commandl
command?2
command3
elif [condition2]
Same as else if
then
command4
command5
else
default-command
fi

The if test condition-true constructis the exact equivalentof if [condition-true]. As
it happens, the left bracket, [, is a foken [29] which invokes the test command. The closing right bracket,], in
an if/test should not therefore be strictly necessary, however newer versions of Bash require it.

&) The test command is a Bash builtin which tests file types and compares strings. Therefore, in a Bash
script, test does not call the external /usr/bin/test binary, which is part of the sh-utils package.
Likewise, [does not call /usr/bin/ [, whichis linked to /usr/bin/test.

bash$ type test

test is a shell builtin
bash$ type '['

[is a shell builtin
bash$ type '[['

[[is a shell keyword
bash$ type '11'

11 1is a shell keyword
bash$ type ']’

bash: type:]: not found

If, for some reason, you wish to use /usr/bin/test in a Bash script, then specify it by full
pathname.

Example 7-2. Equivalence of test, /usr/bin/test,[], and /usr/bin/ [

#!/bin/bash
echo

if test -z "S1"

then
echo "No command-line arguments."
else
echo "First command-line argument is S$1."
fi
echo
if /usr/bin/test -z "S$1" # Equivalent to "test" builtin.
FONNNANNAAAAAAA # Specifying full pathname.
then
echo "No command-line arguments."
else

Chapter 7. Tests 55

Advanced Bash-Scripting Guide

echo "First command-line argument is $1."

fi
echo
if [-z "S1"] # Functionally identical to above code blocks.
if [-z "s1" should work, but...
#+ Bash responds to a missing close-bracket with an error message.
then
echo "No command-line arguments."
else
echo "First command-line argument is $1."
fi
echo
if /usr/bin/[-z "S$1"] # Again, functionally identical to above.
if /usr/bin/[-z "S$1" # Works, but gives an error message.
Note:
This has been fixed in Bash, version 3.x.
then
echo "No command-line arguments."
else
echo "First command-line argument is $1."
fi
echo
exit O

The [[]] construct is the more versatile Bash version of []. This is the extended test command, adopted from
ksh88.

No filename expansion or word splitting takes place between [[and]], but there is parameter expansion and
command substitution.

file=/etc/passwd

if [[—e S$file]]
then

echo "Password file exists."
fi

Using the [[...]] test construct, rather than [...] can prevent many logic errors in scripts. For example, the
&&, I, <, and > operators work within a [[]] test, despite giving an error within a [] construct.
Arithmetic evaluation of octal / hexadecimal constants takes place automatically within a [[...]] construct.

[[Octal and hexadecimal evaluation]]
Thank you, Moritz Gronbach, for pointing this out.

decimal=15
octal=017 # = 15 (decimal)

Chapter 7. Tests 56

Advanced Bash-Scripting Guide

hex=0x0f # = 15 (decimal)
if ["Sdecimal" -eqg "Soctal"]
then
echo "S$Sdecimal equals Soctal"
else
echo "$decimal is not equal to $Soctal" # 15 is not equal to 017
fi # Doesn't evaluate within [single brackets]!
if [["$decimal" -eqg "Soctal" 1]
then
echo "S$Sdecimal equals Soctal" # 15 equals 017
else
echo "$decimal is not equal to Soctal"
fi # Evaluates within [[double brackets 1]!
if [["$decimal" -eq "Shex"]]
then
echo "S$decimal equals Shex" # 15 equals 0xO0f
else
echo "$decimal is not equal to Shex"
fi # [[Shexadecimal]] also evaluates!

=) Following an if, neither the test command nor the test brackets ([] or [[]]) are strictly necessary.

dir=/home/bozo

if cd "$dir" 2>/dev/null; then # "2>/dev/null" hides error message.
echo "Now in $dir."

else
echo "Can't change to $dir."

fi

The "if COMMAND" construct returns the exit status of COMMAND.

Similarly, a condition within test brackets may stand alone without an if, when used in combination with
a list construct.

varl=20
var2=22
["$varl" -ne "S$var2"] && echo "$varl is not equal to S$var2"

home=/home/bozo

[-d "Shome"] || echo "Shome directory does not exist."
The (()) construct expands and evaluates an arithmetic expression. If the expression evaluates as zero, it
returns an exit status of 1, or "false". A non-zero expression returns an exit status of 0, or "true". This is in
marked contrast to using the test and [] constructs previously discussed.

Example 7-3. Arithmetic Tests using (())

#!/bin/bash
arith-tests.sh
Arithmetic tests.

The ((...)) construct evaluates and tests numerical expressions.
Exit status opposite from [...] construct!

Chapter 7. Tests 57

Advanced Bash-Scripting Guide

(C0))

echo "Exit status of \"((0))\" is $2." # 1
(1))
echo "Exit status of \"((1))\" is $2." # 0
(5 >4)) # true
echo "Exit status of \"((5 > 4))\" is $?2." # 0
((5>9)) # false
echo "Exit status of \"((5 > 9))\" is $2." # 1
((5 ==5)) # true
echo "Exit status of \"((5 == y)\" is $2." # 0
((5=5)) gives an error message.
(5 -5)) # 0
echo "Exit status of \"((5 - 5))\" is $2." # 1
(57 4)) # Division o.k.
echo "Exit status of \"((5 / 4))\" is $2." # 0
(1 /7 2)) # Division result < 1.
echo "Exit status of \"((1 / 2))\" is $2." # Rounded off to O.
1
(¢1 / 0)) 2>/dev/null # Illegal division by 0.
AAAAAAAANAANAAN
echo "Exit status of \"((1 / 0))\" is $2." # 1

What effect does the "2>/dev/null" have?
What would happen if it were removed?
Try removing it, then rerunning the script.

#

((...)) also useful in an if-then test.

varl=5
var2=4

if ((varl > var2))

then #° A Note: Not $varl, S$var2. Why?
echo "S$varl is greater than S$var2"

fi # 5 is greater than 4

exit O

7.2. File test operators

Returns true if...

file exists
file exists

This is identical in effect to -e. It has been "deprecated," [30] and its use is discouraged.

Chapter 7. Tests

Advanced Bash-Scripting Guide

-f
file is a regular file (not a directory or device file)
-S
file is not zero size
-d
file is a directory
-b
file is a block device
-C
file is a character device
device0="/dev/sda2" # / (root directory)
if [-b "SdeviceO"]
then
echo "S$deviceO is a block device."
fi
/dev/sda2 is a block device.
devicel="/dev/ttyS1l" # PCMCIA modem card.
if [—c "Sdevicel"]
then
echo "S$devicel is a character device."
fi
/dev/ttySl is a character device.
P
file is a pipe
-h
file is a symbolic link
-L
file is a symbolic link
-S
file is a socket
-t
file (descriptor) is associated with a terminal device
This test option _may be used to check whether the stdin [=t 0 Jorstdout [=t 1]ina
given script is a terminal.
T
file has read permission (for the user running the test)
-W
file has write permission (for the user running the test)
-X
file has execute permission (for the user running the test)
-8

set-group-id (sgid) flag set on file or directory

If a directory has the sgid flag set, then a file created within that directory belongs to the group that
owns the directory, not necessarily to the group of the user who created the file. This may be useful
for a directory shared by a workgroup.

Chapter 7. Tests 59

Advanced Bash-Scripting Guide

-u
set-user-id (suid) flag set on file
A binary owned by root with set ~user-id flag set runs with root privileges, even when an
ordinary user invokes it. [31] This is useful for executables (such as pppd and cdrecord) that need to
access system hardware. Lacking the suid flag, these binaries could not be invoked by a non-root
user.
—rwsr—-xr-t 1 root 178236 Oct 2 2000 /usr/sbin/pppd
A file with the suid flag set shows an s in its permissions.

-k
sticky bit set
Commonly known as the sticky bit, the save-text-mode flag is a special type of file permission. If a
file has this flag set, that file will be kept in cache memory, for quicker access. [32] If set on a
directory, it restricts write permission. Setting the sticky bit adds a ¢ to the permissions on the file or
directory listing.
drwxrwxrwt 7 root 1024 May 19 21:26 tmp/
If a user does not own a directory that has the sticky bit set, but has write permission in that directory,
she can only delete those files that she owns in it. This keeps users from inadvertently overwriting or
deleting each other's files in a publicly accessible directory, such as /tmp. (The owner of the
directory or root can, of course, delete or rename files there.)

-0
you are owner of file

-G
group-id of file same as yours

-N
file modified since it was last read

f1 -nt £2
file £1 is newer than 2

f1 -ot f2
file £1 is older than £2

fl -ef £2

files £1 and £2 are hard links to the same file

"not" -- reverses the sense of the tests above (returns true if condition absent).

Example 7-4. Testing for broken links

#!/bin/bash

broken-link.sh

Written by Lee bigelow <ligelowbee@yahoo.com>
Used in ABS Guide with permission.

A pure shell script to find dead symlinks and output them quoted
#+ so they can be fed to xargs and dealt with :)

#+ eg. sh broken-link.sh /somedir /someotherdir|xargs rm

#

Chapter 7. Tests 60

Advanced Bash-Scripting Guide
This, however, is a better method:

find "somedir" -type 1 —-print0]\

xargs -r0 file]\

grep "broken symbolic"|

sed -e 's/”\|: *broken symbolic.*$/"/g'

+ but that wouldn't be pure Bash, now would it.
Caution: beware the /proc file system and any circular links!
FHHFE A

S oS S e e o o o

If no args are passed to the script set directories-to-search
#+ to current directory. Otherwise set the directories-to-search
#+ to the args passed.

iR E AL RS RS L LR RS &L

[$# —eq 0] && directorys=pwd || directorys=$@

Setup the function linkchk to check the directory it is passed
#+ for files that are links and don't exist, then print them quoted.
If one of the elements in the directory is a subdirectory then
#+ send that subdirectory to the linkcheck function.

RS E LT L L
linkchk () {
for element in $1/*; do
[-h "Selement" -a ! —-e "Selement"] && echo \"Selement\"
[-d "Selement"] && linkchk S$element
Of course, '-h' tests for symbolic link, '-d' for directory.
done

Send each arg that was passed to the script to the linkchk() function
#+ 1if it is a valid directoy. If not, then print the error message
#+ and usage info.
iz Ea AR A EEEEE
for directory in S$directorys; do
if [-d S$directory]
then linkchk $directory
else
echo "S$directory is not a directory"
echo "Usage: $0 dirl dir2 ..."
fi
done

exit $°7?

Example 30-1, Example 11-7, Example 11-3, Example 30-3, and Example A-1 also illustrate uses of the file
test operators.

7.3. Other Comparison Operators

A binary comparison operator compares two variables or quantities. Note that integer and string comparison
use a different set of operators.

integer comparison

_eq
Chapter 7. Tests 61

Advanced Bash-Scripting Guide

is equal to
lf [n$au _eq u$bn]
-ne
is not equal to
lf [n$au -ne u$bn]
_gt
is greater than
lf [n$au _gt u$bn]
_ge
is greater than or equal to
lf [n$au _ge u$bn]
-1t
is less than
lf [n$au _lt u$bn]
-le
is less than or equal to
lf [n$au _le u$bn]
<
is less than (within double parentheses)
((u$an < n$bu))
<=
is less than or equal to (within double parentheses)
((u$an <= "$b"))
>
is greater than (within double parentheses)
((u$an > n$bu))
>=

is greater than or equal to (within double parentheses)

((u$an >=

string comparison

is equal to
if ["$a"
is equal to
if ["$a"

Chapter 7. Tests

"$b"))

= u$bn]

= $bu]

62

Advanced Bash-Scripting Guide

This is a synonym for =.

5 ") The == comparison operator behaves differently within a double-brackets test than
~ within single brackets.

[[Sa == z* 1] # True if $a starts with an "z" (pattern matching) .
[[Sa == "z*"]] # True if S$Sa is equal to z* (literal matching).

[Sa == z*] # File globbing and word splitting take place.

["Sa" == "z*"] # True if S$Sa is equal to z* (literal matching).

Thanks, Stéphane Chazelas

is not equal to

if ["$a" != "$b"]

This operator uses pattern matching within a [[...]] construct.
is less than, in ASCII alphabetical order

if [["$a" < "$b" 1]

if ["$a" \< "$b"]

Note that the "<" needs to be escaped withina [] construct.
is greater than, in ASCII alphabetical order

if [["$a" > "$b" 1]

if ["$a" \> "$b"]

Note that the ">" needs to be escaped withina [] construct.
See Example 27-11 for an application of this comparison operator.
string is null, that is, has zero length

String="" # Zero—-length ("null") string variable.

if [-z "$String"]
then

echo "\$String is null."
else

echo "\$String is NOT null."
fi # $String is null.

string is not null.

g 1 » The —n test requires that the string be quoted within the test brackets. Using an
unquoted string with / -z, or even just the unquoted string alone within test brackets

(see Example 7-6) normally works, however, this is an unsafe practice. Always quote a

Chapter 7. Tests

63

Advanced Bash-Scripting Guide

tested string. [33]

Example 7-5. Arithmetic and string comparisons

#!

A=
b=

&€
if
th
fi
&€

if
th

fi
#
ec

ex

/bin/bash
4
5
Here "a" and "b" can be treated either as integers or strings.

There is some blurring between the arithmetic and string comparisons,
since Bash variables are not strongly typed.

Bash permits integer operations and comparisons on variables
whose value consists of all-integer characters.
Caution advised, however.

ho

[n $all —-ne A\l $b'l]
en
echo "$a is not equal to S$b"
echo " (arithmetic comparison)"
ho

[ll$all != ll$bll]
en
echo "$a is not equal to $b."
echo " (string comparison)"
ll4ll != ll5ll
ASCII 52 != ASCII 53
In this particular instance, both "-ne" and "!=" work.
ho
it 0

Example 7-6. Testing whether a string is null

#!
#
#+
#

#
#

if
th

el

fi
#

/bin/bash
str-test.sh: Testing null strings and unquoted strings,
but not strings and sealing wax, not to mention cabbages and kings

Using if [...]

If a string has not been initialized, it has no defined value.

This state is called "null" (not the same as zero!).
[-n $stringl] # stringl has not been declared or initialized.
en
echo "String \"stringl\" is not null."
se

echo "String \"stringl\" is null."
Wrong result.
Shows $stringl as not null, although it was not initialized.

Chapter 7. Tests

64

Advanced Bash-Scripting Guide

echo

Let's try it again.

if [-n "S$stringl"] # This time, $stringl is quoted.
then
echo "String \"stringl\" is not null."
else
echo "String \"stringl\" is null."
fi # Quote strings within test brackets!
echo
if [S$stringl] # This time, $stringl stands naked.
then
echo "String \"stringl\" is not null."
else
echo "String \"stringl\" is null."
fi # This works fine.
The [...] test operator alone detects whether the string is null.

However it is good practice to quote it (if ["S$Sstringl" 1]).
#
As Stephane Chazelas points out,

if [$stringl] has one argument, "]"
if ["S$stringl"] has two arguments, the empty "$stringl" and "]"
echo

stringl=initialized

if [S$stringl] # Again, $stringl stands unquoted.
then
echo "String \"stringl\" is not null."
else
echo "String \"stringl\" is null."
fi # Again, gives correct result.

Still, it is better to quote it ("$stringl"), because

stringl="a = b"

if [S$stringl] # Again, S$stringl stands unquoted.
then
echo "String \"stringl\" is not null."
else
echo "String \"stringl\" is null."
fi # Not quoting "S$stringl" now gives wrong result!
exit O # Thank you, also, Florian Wisser, for the "heads-up".

Example 7-7. zmore

#!/bin/bash
zmore

View gzipped files with 'more' filter.

E_NOARGS=65

Chapter 7. Tests

Advanced Bash-Scripting Guide

E_NOTFOUND=66
E_NOTGZIP=67

if [$# -eq 0] # same effect as: if [-z "S$1"]
$1 can exist, but be empty: zmore "" arg2 arg3
then

echo "Usage: “basename $0° filename" >&2

Error message to stderr.

exit SE_NOARGS

Returns 65 as exit status of script (error code).
fi

filename=S$1

if [! —f "Sfilename"] # Quoting $filename allows for possible spaces.
then
echo "File S$filename not found!" >&2 # Error message to stderr.
exit S$SE_NOTFOUND
fi
if [${filename##*.} != "gz"]
Using bracket in variable substitution.
then

echo "File $1 is not a gzipped file!"
exit SE_NOTGZIP
fi

zcat $1 | more

Uses the 'more' filter.
May substitute 'less' if desired.

exit $? # Script returns exit status of pipe.
Actually "exit $?" is unnecessary, as the script will, in any case,
#+ return the exit status of the last command executed.

compound comparison

-a
logical and

expl —-a expZ2returns true if both expl and exp?2 are true.
logical or

expl -o expZ2 returns true if either expl or exp2 is true.

These are similar to the Bash comparison operators && and Il, used within double brackets.

[[conditionl && condition2]]

The -0 and -a operators work with the test command or occur within single test brackets.

if ["Sexprl" -a "Sexpr2"]
then

echo "Both exprl and expr2 are true."
else

echo "Either exprl or expr2 is false."
fi

Chapter 7. Tests

66

Advanced Bash-Scripting Guide

<1 But, as rihad points out:

[1 —eg 1] & [—n "“echo true 1>&2°"] # true
[1 —eg 2] & [—-n "“echo true 1>&2°"] # (no output)
""AAAMN False condition. So far, everything as expected.

However
[1 —eg 2 —a —n "“echo true 1>&2°"] # true
""AAAMN False condition. So, why "true" output?

Is it because both condition clauses within brackets evaluate?
[[1 —eq 2 && -n " echo true 1>&2 " 1] # (no output)
No, that's not it.

Apparently && and || "short-circuit" while -a and -o do not.

Refer to Example 8-3, Example 27-17, and Example A-29 to see compound comparison operators in action.

7.4. Nested if/then Condition Tests

Condition tests using the 1 £/t hen construct may be nested. The net result is equivalent to using the &&
compound comparison operator.

a=3
if ["$a" -gt 0]
then
if ["$a" -1t 5]
then
echo "The value of \"a\" lies somewhere between 0 and 5."
fi
fi

Same result as:

if ["$a" -gt 0] && ["$a" -1t 5]
then

echo "The value of \"a\" lies somewhere between 0 and 5."
fi

Example 36-4 demonstrates a nested i £/then condition test.

7.5. Testing Your Knowledge of Tests

The systemwide xinitrc file can be used to launch the X server. This file contains quite a number of if/then
tests. The following is excerpted from an "ancient" version of xinitrc (Red Hat 7.1, or thereabouts).

if [—-f $SHOME/.Xclients]; then
exec S$SHOME/.Xclients
elif [-f /etc/X1l/xinit/Xclients]; then
exec /etc/X11l/xinit/Xclients
else
failsafe settings. Although we should never get here
(we provide fallbacks in Xclients as well) it can't hurt.
xclock —-geometry 100x100-5+5 &
xterm —-geometry 80x50-50+150 &
if [-f /usr/bin/netscape -a —-f /usr/share/doc/HTML/index.html]; then
netscape /usr/share/doc/HTML/index.html &

Chapter 7. Tests 67

Advanced Bash-Scripting Guide

fi
fi
Explain the test constructs in the above snippet, then examine an updated version of the file,
/etc/X11/xinit/xinitrc, and analyze the if/then test constructs there. You may need to refer ahead to

the discussions of grep, sed, and regular expressions.

Chapter 7. Tests

68

Chapter 8. Operations and Related Topics

8.1. Operators

assignment

variable assignment
Initializing or changing the value of a variable

All-purpose assignment operator, which works for both arithmetic and string assignments.

var=

27

category=minerals # No spaces allowed after the "=".

<1> Do not confuse the "=" assignment operator with the = test operator.

= as a test operator
if ["S$stringl" = "S$string2"]
then
command
fi
if ["XS$stringl" = "XS$string2"] is safer,
#+ to prevent an error message should one of the variables be empty.
(The prepended "X" characters cancel out.)

arithmetic operators

+

ksk

%

plus

minus

multiplication

division

exponentiation

Bash, version 2.02, introduced the "**" exponentiation operator.

let "z=5%*3"

echo

5 *5 *5
"z = $z" # z = 125

modulo, or mod (returns the remainder of an integer division operation)

2

bash$ expr 5 % 3

5/3 = 1, with remainder 2

Chapter 8. Operations and Related Topics

69

Advanced Bash-Scripting Guide

This operator finds use in, among other things, generating numbers within a specific range (see

Example 9-11 and Example 9-15) and formatting program output (see Example 27-16 and Example

A-6). It can even be used to generate prime numbers, (see Example A-15). Modulo turns up
surprisingly often in numerical recipes.

Example 8-1. Greatest common divisor

#!/bin/bash
gcd.sh: greatest common divisor
Uses Euclid's algorithm

The "greatest common divisor" (gcd) of two integers
#+ is the largest integer that will divide both, leaving no remainder.

Euclid's algorithm uses successive division.

In each pass,

#+ dividend <-—-- divisor

#+ divisor <-—— remainder

#+ until remainder = 0.

The gcd = dividend, on the final pass.
#

For an excellent discussion of Euclid's algorithm, see
#+ Jim Loy's site, http://www.jimloy.com/number/euclids.htm.

Argument check
ARGS=2
E_BADARGS=85

if [$# -ne "SARGS"]

then
echo "Usage: “basename $0° first-number second-number"
exit S$E_BADARGS

fi
__
gcd ()
{
dividend=$1 # Arbitrary assignment.
divisor=5$2 #! It doesn't matter which of the two is larger.
Why not?
remainder=1 # If an uninitialized variable is used inside
#+ test brackets, an error message results.
until ["Sremainder" -eqg 0]
do # "oannaaannr Must be previously initialized!
let "remainder = $dividend % S$divisor"
dividend=S$divisor # Now repeat with 2 smallest numbers.
divisor=$remainder
done # Euclid's algorithm
} # Last S$dividend is the gcd.
ged $1 $2

Chapter 8. Operations and Related Topics

70

%=

Advanced Bash-Scripting Guide
echo; echo "GCD of $1 and $2 = S$dividend"; echo

Exercises

1) Check command-line arguments to make sure they are integers,

#+ and exit the script with an appropriate error message if not.

2) Rewrite the gcd () function to use local variables.

exit 0

plus-equal (increment variable by a constant)

let "var += 5" results in var being incremented by 5.
minus-equal (decrement variable by a constant)

times-equal (multiply variable by a constant)

let "var *= 4" results in var being multiplied by 4.
slash-equal (divide variable by a constant)

mod-equal (remainder of dividing variable by a constant)

Arithmetic operators often occur in an expr or let expression.

Example 8-2. Using Arithmetic Operations

#!/bin/bash
Counting to 11 in 10 different ways.

n=1; echo —-n "$n "

let "n = Sn + 1" # let "n = n + 1" also works.
echo -n "S$n "

$((n = $n + 1))
":" necessary because otherwise Bash attempts
#+ to interpret "S((n = Sn + 1))" as a command.
echo -n "$n "

((n=mn+1))

A simpler alternative to the method above.

Thanks, David Lombard, for pointing this out.
echo —n "$n "

n=s ((sn + 1))

echo -n "S$n "

S[n=5%n + 1]
":" necessary because otherwise Bash attempts
#+ to interpret "S[n = Sn + 1 " as a command.
Works even if "n" was initialized as a string.

Chapter 8. Operations and Related Topics

71

Advanced Bash-Scripting Guide
echo -n "$n "
n=$[$n + 1]
Works even if "n" was initialized as a string.
#* Avoid this type of construct, since it is obsolete and nonportable.
Thanks, Stephane Chazelas.

echo —n "$n "

Now for C-style increment operators.
Thanks, Frank Wang, for pointing this out.

let "n++" # let "++n" also works.
echo —n "S$n "

((n+t+)) # ((++n)) also works.
echo -n "$n "

S((nt+)) # : $((++n)) also works.
echo -n "$n "

S[n++] # : S[++n] also works
echo —n "$n "

echo

exit O

&) Integer variables in older versions of Bash were signed long (32-bit) integers, in the range of
-2147483648 to 2147483647. An operation that took a variable outside these limits gave an erroneous
result.

echo $BASH VERSION # 1.14

a=2147483646

echo "a = sa" # a = 2147483646
let "at+=1" # Increment "a"
echo "a = sa" # a = 2147483647
let "at+=1" # increment "a" again, past the limit.
echo "a = sa" # a = —2147483648
ERROR: out of range,
+ and the leftmost bit, the sign bit,
+ has been set, making the result negative.

As of version >= 2.05b, Bash supports 64-bit integers.

Bash does not understand floating point arithmetic. It treats numbers containing a decimal point as
strings.

a=1.5

let "b = Sa + 1.3" # Error.

t2.sh: let: b = 1.5 + 1.3: syntax error in expression
(error token is ".5 + 1.3")
echo "b = $b" # b=1

Use be in scripts that that need floating point calculations or math library functions.

Chapter 8. Operations and Related Topics

Advanced Bash-Scripting Guide

bitwise operators. The bitwise operators seldom make an appearance in shell scripts. Their chief use seems to
be manipulating and testing values read from ports or sockets. "Bit flipping" is more relevant to compiled
languages, such as C and C++, which provide direct access to system hardware.

bitwise operators

<<
bitwise left shift (multiplies by 2 for each shift position)
<<=
left-shift-equal
let "wvar <<= 2" resultsin var left-shifted 2 bits (multiplied by 4)
>>
bitwise right shift (divides by 2 for each shift position)
>>=
right-shift-equal (inverse of <<=)
&
bitwise AND
&=
bitwise AND-equal
I
bitwise OR
|=
bitwise OR-equal
bitwise NOT
AN
bitwise XOR
N—

bitwise XOR-equal

logical (boolean) operators

!

NOT
if [! —-f SFILENAME]
then
&&
AND
if [Sconditionl] && [Scondition2]
Same as: 1if [Sconditionl —-a S$condition2]

Returns true if both conditionl and condition2 hold true...

if [[Sconditionl && Scondition2 1] # Also works.
Note that && operator not permitted inside brackets
#+ of [...] construct.

B " && may also be used, depending on context, in an and list to concatenate commands.
|

Chapter 8. Operations and Related Topics 73

Advanced Bash-Scripting Guide

OR
if [Sconditionl] || [Scondition2]
Same as: 1f [$Sconditionl -o S$condition2]

Returns true if either conditionl or condition2 holds true...

if [[$Sconditionl || S$condition2]] # Also works.
Note that || operator not permitted inside brackets
#+ of a [...] construct.

&) Bash tests the exit status of each statement linked with a logical operator.

Example 8-3. Compound Condition Tests Using && and ||

#!/bin/bash

a=24
b=47

if ["Sa" -eq 24] && ["Sb" -eqg 47]

then
echo "Test #1 succeeds."
else
echo "Test #1 fails."
fi
ERROR: if ["$a" -eqg 24 && "Sb" -eqg 47]
#+ attempts to execute ' ["$a" -eq 24 '
#+ and fails to finding matching ']'.
#

Note: if [[$a —-eq 24 && Sb -eq 24]] works.
The double-bracket if-test is more flexible
#+ than the single-bracket version.

(The "&&" has a different meaning in line 17 than in line 6.)
Thanks, Stephane Chazelas, for pointing this out.
if ["Sa" -eq 98] || ["S$b" -eq 47]
then
echo "Test #2 succeeds."
else
echo "Test #2 fails."
fi

The -a and -o options provide
#+ an alternative compound condition test.
Thanks to Patrick Callahan for pointing this out.

if ["$a" -eq 24 -a "$b" -eq 47]

then

echo "Test #3 succeeds."
else

echo "Test #3 fails."
fi

if ["$a" -eq 98 -o "$b" -eq 47]
then

Chapter 8. Operations and Related Topics

74

Advanced Bash-Scripting Guide

echo "Test #4 succeeds."
else

echo "Test #4 fails."
fi

a=rhino
b=crocodile
if ["$a" = rhino] && ["S$b" = crocodile]
then
echo "Test #5 succeeds."
else
echo "Test #5 fails."
fi

exit O

The && and Il operators also find use in an arithmetic context.

bash$ echo $((1 && 2)) $((3 && 0)) $((4 || 0)) $((0 || 0))
1010

miscellaneous operators

Comma operator

The comma operator chains together two or more arithmetic operations. All the operations are
evaluated (with possible side effects. [34]

let "tl = ((5 + 3, 7 -1, 15 - 4))"

echo "tl = $t1" Ananan £l = 11

Here tl is set to the result of the last operation. Why?

let "t2 = ((a =9, 15 / 3))" # Set "a" and calculate "t2".
echo "t2 = $t2 a = $a" # t2 =5 a =9

The comma operator finds use mainly in for loops. See Example 11-12.

8.2. Numerical Constants

A shell script interprets a number as decimal (base 10), unless that number has a special prefix or notation. A
number preceded by a 0is octal (base 8). A number preceded by 0x is hexadecimal (base 16). A
number with an embedded # evaluates as BASE#NUMBER (with range and notational restrictions).

Example 8-4. Representation of numerical constants

#!/bin/bash
numbers.sh: Representation of numbers in different bases.

Decimal: the default

let "dec = 32"

echo "decimal number = $dec" # 32
Nothing out of the ordinary here.

Chapter 8. Operations and Related Topics 75

Advanced Bash-Scripting Guide

Octal: numbers preceded by '0' (zero)
let "oct = 032"

echo "octal number = S$oct" # 26
Expresses result in decimal.

Hexadecimal: numbers preceded by 'Ox' or '0X'
let "hex = 0x32"

echo "hexadecimal number = Shex" # 50
echo $((0x9%9abc)) # 39612
an an double-parentheses arithmetic expansion/evaluation

Expresses result in decimal.

Other bases: BASE#NUMBER
BASE between 2 and 64.
NUMBER must use symbols within the BASE range, see below.

let "bin = 2#111100111001101"
echo "binary number = S$bin" # 31181

let "b32 = 32#77"

echo "base-32 number = S$b32" # 231

let "b64 = 64#@_"

echo "base-64 number = S$bo64" # 4031

This notation only works for a limited range (2 - 64) of ASCII characters.

10 digits + 26 lowercase characters + 26 uppercase characters + @ + _

echo

echo $((36#zz)) $((2#10101010)) S ((L6#AF16)) S ((53#1ad))
1295 170 44822 3375

Important note:

e

Using a digit out of range of the specified base notation
#+ gives an error message.

let "bad_oct = 081"
(Partial) error message output:

Dbad_oct = 081l: value too great for base (error token is "081")
Octal numbers use only digits in the range 0 - 7.
exit $°? # Thanks, Rich Bartell and Stephane Chazelas, for clarification.

$ sh numbers.sh
S echo $?
S 1

Chapter 8. Operations and Related Topics

76

Advanced Bash-Scripting Guide
8.3. The Double-Parentheses Construct

Similar to the let command, the ((...)) construct permits arithmetic expansion and evaluation. In its simplest
form,a=$((5 + 3)) wouldsetato5 + 3, or 8. However, this double-parentheses construct is also a
mechanism for allowing C-style manipulation of variables in Bash, for example, ((var++)).

Example 8-5. C-style manipulation of variables

#!/bin/bash
c-vars.sh
Manipulating a variable, C-style, using the ((...)) construct.

echo

((a=23)) # Setting a value, C-style,
#+ with spaces on both sides of the "=".

echo "a (initial wvalue) = $a" # 23

((a++)) # Post-increment 'a', C-style.
echo "a (after a++) = $a" # 24

((a=—)) # Post-decrement 'a', C-style.
echo "a (after a—--) = $a" # 23

((++a)) # Pre-increment 'a', C-style.
echo "a (after ++a) = $a" # 24

((——a)) # Pre-decrement 'a', C-style.
echo "a (after --a) = $a" # 23

echo

FHAFEHS A
Note that, as in C, pre- and post-decrement operators
#+ have different side—-effects.

echo "False" # False

=1; let --n && echo "True"
1 echo "False" # True

; let n—— && echo "True"

(i
(i
Thanks, Jeroen Domburg.

B o

echo

((t = a<45?27:11)) # C-style trinary operator.

A A A

echo "If a < 45, then t = 7, else t = 11." # a = 23
echo "t = St " # t =7
echo

Easter Egg alert!

Chapter 8. Operations and Related Topics 77

Advanced Bash-Scripting Guide

Chet Ramey seems to have snuck a bunch of undocumented C-style
#+ constructs into Bash (actually adapted from ksh, pretty much).
In the Bash docs, Ramey calls ((...)) shell arithmetic,

#+ but it goes far beyond that.

Sorry, Chet,

See also "for"

and "while" loops using the ((...))

the secret is out.

These work only with version 2.04 or later of Bash.

exit

See also Example 11-12 and Example 8-4.

construct.

8.4. Operator Precedence

In a script, operations execute in order of precedence: the higher precedence operations execute before the

lower precedence ones. [35]

Table 8-1. Operator Precedence

Operator Meaning Comments
HIGHEST PRECEDENCE
var++ var—- post-increment, post-decrement |C-style operators
++var —--var pre-increment, pre-decrement
I~ negation logical / bitwise, inverts sense of
following operator
*x exponentiation arithmetic operation
* /0% multiplication, division, modulo |arithmetic operation
+ - addition, subtraction arithmetic operation
<< >> left, right shift bitwise
-z -n unary comparison string is/is-not null
-e -f -t -x, etc. unary comparison file-test
< -1t > —gt <= -le >= -ge |compound comparison string and integer
-nt —ot -ef compound comparison file-test
== -eq l= -ne equality / inequality test operators, string and integer
& AND bitwise
~ XOR exclusive OR, bitwise
OR bitwise

Chapter 8. Operations and Related Topics

78

Advanced Bash-Scripting Guide

&§& —a AND logical, compound comparison

|| -o OR logical, compound comparison

?: trinary operator C-style

= assignment (do not confuse with equality
test)

*= /= %= += —= <<= >>= &= |combination assignment times-equal, divide-equal,
mod-equal, etc.

, comma links a sequence of operations
LOWEST PRECEDENCE

In practice, all you really need to remember is the following:

¢ The "My Dear Aunt Sally" mantra (multiply, divide, add, subtract) for the familiar arithmetic

operations.
® The compound logical operators, &&, Il, -a, and -o have low precedence.

¢ The order of evaluation of equal-precedence operators is usually left-to-right.

Now, let's utilize our knowledge of operator precedence to analyze a couple of lines from the
/etc/init.d/functions file, as found in the Fedora Core Linux distro.

while [-n "S$remaining" -a "Sretry" -gt 0]; do
This looks rather daunting at first glance.

Separate the conditions:

while [-n "S$remaining" -a "Sretry" -gt 0]; do

—-—condition 1-—- " —-condition 2-

If variable "S$remaining" is not zero length

#+ AND (-a)

#+ variable "Sretry" is greater-than zero

#+ then

#+ the [expresion-within-condition-brackets] returns success (0)
#+ and the while-loop executes an iteration.

#

Evaluate "condition 1" and "condition 2" ***before***

#+ ANDing them. Why? Because the AND (-a) has a lower precedence
#+ than the -n and -gt operators,

#+ and therefore gets evaluated *last*.

FHAHEH S H AR A A A A
if [-f /etc/sysconfig/il8n —-a -z "${NOLOCALE:-}"] ; then

Again, separate the conditions:

if [-f /etc/sysconfig/il8n —-a -z "${NOLOCALE:-}"] ; then

——condition 1-————————— A~ ——condition 2-————-

If file "/etc/sysconfig/il8n" exists

#+ AND (-a)
#+ variable S$SNOLOCALE is zero length
#+ then

Chapter 8. Operations and Related Topics

79

Advanced Bash-Scripting Guide

the [test-expresion-within-condition-brackets] returns success (0)
and the commands following execute.

As before, the AND (-a) gets evaluated *last*
because it has the lowest precedence of the operators within
the test brackets.

Note:

S{NOLOCALE:-} is a parameter expansion that seems redundant.
But, if SNOLOCALE has not been declared, it gets set to *null~*,
in effect declaring it.

This makes a difference in some contexts.

To avoid confusion or error in a complex sequence of test operators, break up the sequence into
bracketed sections.

if ["S$vI" —-gt "Sv2" -o "Svl" -1t "$v2" -a -e "S$filename"]
Unclear what's going on here...

if [["$v1" —gt "S$v2" 1] || [["Svl" -1t "$v2"]] && [[—-e "Sfilename"]]
Much better -- the condition tests are grouped in logical sections.

Chapter 8. Operations and Related Topics

80

Part 3. Beyond the Basics

Table of Contents
9. Another Look at Variables
9.1. Internal Variables

9.2. Typing variables: declare or typeset
9.3. SRANDOM: generate random integer
10. Manipulating Variables
10.1. Manipulating Strings
10.2. Parameter Substitution
11. Loops and Branches
11.1. Loops
11.2. Nested Loops
11.3. Loop Control
11.4. Testing and Branching
12. Command Substitution

13. Arithmetic Expansion
14. Recess Time

Part 3. Beyond the Basics

81

Chapter 9. Another Look at Variables

Used properly, variables can add power and flexibility to scripts. This requires learning their subtleties and
nuances.

9.1. Internal Variables

Builtin variables:

variables affecting bash script behavior
SBASH

The path to the Bash binary itself

bash$ echo $BASH
/bin/bash

$BASH ENV

An environmental variable pointing to a Bash startup file to be read when a script is invoked
$BASH_SUBSHELL

A variable indicating the subshell level. This is a new addition to Bash, version 3.

See Example 21-1 for usage.

$BASHPID
Process ID of the current instance of Bash. This is not the same as the $$ variable, but it often gives
the same result.

bash4$ echo $$
11015

bash4$ echo $BASHPID
11015

bash4$ ps ax | grep bash4
11015 pts/2 R 0:00 bash4

But ...

#!/bin/bash4

echo "\S$\$ outside of subshell = S" # 9602

echo "\S$SBASH_SUBSHELL outside of subshell = $BASH_SUBSHELL" # 0

echo "\$BASHPID outside of subshell = S$SBASHPID" # 9602

echo

(echo "\\S inside of subshell = s" # 9602
echo "\S$SBASH_SUBSHELL inside of subshell = $BASH_SUBSHELL" # 1
echo "\S$SBASHPID inside of subshell = $BASHPID") # 9603

Note that $$ returns PID of parent process.
SBASH_VERSINFO[n]

A 6-element array containing version information about the installed release of Bash. This is similar
to SBASH_VERSION, below, but a bit more detailed.

Chapter 9. Another Look at Variables 82

Advanced Bash-Scripting Guide
Bash version info:

for n in 0 1 2 3 4 5

do

echo "BASH_VERSINFO[Sn] = ${BASH VERSINFO[Sn]}"
done
BASH_VERSINFO[0] = 3 # Major version no.
BASH_VERSINFO[1] = 00 # Minor version no.
BASH_VERSINFO[2] = 14 # Patch level.
BASH_VERSINFO[3] = 1 # Build version.
BASH_VERSINFO[4] = release # Release status.
BASH_VERSINFO[5] = i386-redhat-linux-gnu # Architecture

(same as SMACHTYPE) .

SBASH_VERSION
The version of Bash installed on the system

bash$ echo $BASH VERSION
3.2.25(1)-release

tcsh% echo $BASH VERSION
BASH_VERSION: Undefined variable.

Checking $BASH_VERSION is a good method of determining which shell is running. $SHELL does
not necessarily give the correct answer.

$CDPATH
A colon-separated list of search paths available to the ¢cd command, similar in function to the $PATH
variable for binaries. The SCDPATH variable may be set in the local ~/ . bashrc file.

bash$ ed bash-doc
bash: cd: bash-doc: No such file or directory

bash$ CDPATH=/usr/share/doc
bash$ ed bash-doc
/usr/share/doc/bash-doc

bash$S echo $PWD
/usr/share/doc/bash-doc

SDIRSTACK
The top value in the directory stack [36] (affected by pushd and popd)

This builtin variable corresponds to the dirs command, however dirs shows the entire contents of the
directory stack.
SEDITOR
The default editor invoked by a script, usually vi or emacs.
SEUID
"effective" user ID number

Identification number of whatever identity the current user has assumed, perhaps by means of su.

<1 The SEUID is not necessarily the same as the $UID.

Chapter 9. Another Look at Variables 83

Advanced Bash-Scripting Guide

SFUNCNAME
Name of the current function

xyz23 ()
{
echo "SFUNCNAME now executing." # xyz23 now executing.
}
xyz23
echo "FUNCNAME = S$SFUNCNAME" # FUNCNAME =

Null value outside a function.

See also Example A-50.

SGLOBIGNORE
A list of filename patterns to be excluded from matching in globbing.
SGROUPS

Groups current user belongs to

This is a listing (array) of the group id numbers for current user, as recorded in /et c/passwd and
/etc/group.

root# echo $GROUPS
0

root# echo ${GROUPS[1]}
1

root# echo ${GROUPS[5]}
6

SHOME

Home directory of the user, usually /home /username (see Example 10-7)
SHOSTNAME

The hostname command assigns the system host name at bootup in an init script. However, the

gethostname () function sets the Bash internal variable SHOSTNAME. See also Example 10-7.
SHOSTTYPE

host type

Like SMACHTYPE, identifies the system hardware.

bash$ echo $HOSTTYPE
1686

SIFS
internal field separator

This variable determines how Bash recognizes fields, or word boundaries, when it interprets character
strings.

$IFS defaults to whitespace (space, tab, and newline), but may be changed, for example, to parse a
comma-separated data file. Note that $* uses the first character held in $IFS. See Example 5-1.

Chapter 9. Another Look at Variables 84

Advanced Bash-Scripting Guide

bash$S echo "$IFS"

(With $IFS set to default, a blank line displays.)
bash$ echo "$IFS" | cat -vte

/\Is

$

(Show whitespace: here a single space, "I [horizontal tab],
and newline, and display "$" at end-of-line.)

bash$ bash -c 'set w x y z; IFS=":—;"; echo "$*"'
WiX:iy:z
(Read commands from string and assign any arguments to pos params.)

<1> SIFS does not handle whitespace the same as it does other characters.
Example 9-1. $IFS and whitespace

#!/bin/bash
ifs.sh

varl="a+b+c"
var2="d-e—-f"
var3="g,h,i"

IFS=+
The plus sign will be interpreted as a separator.

echo $varl # a b c
echo $var2 # d-e-f
echo $var3 # g,h, 1
echo

IFS="-"

The plus sign reverts to default interpretation.
The minus sign will be interpreted as a separator.

echo $varl # at+b+c
echo $var2 # de £
echo $var3 # g,h, 1
echo

IFS=","

The comma will be interpreted as a separator.
The minus sign reverts to default interpretation.

echo $varl # at+b+c
echo $var?2 # d-e-f
echo $var3 # gh i
echo

IFS=" "

The space character will be interpreted as a separator.
The comma reverts to default interpretation.

Chapter 9. Another Look at Variables

85

Advanced Bash-Scripting Guide

echo $varl # atb+c
echo S$Svar2 # d-e-f
echo S$var3 # g,h, 1
#

However
SIFS treats whitespace differently than other characters.

output_args_one_per_line ()
{
for arg
do
echo "[Sarg]"
done # * " Embed within brackets, for your viewing pleasure.

}

echo; echo "IFS=\" \""
echo "-—————- "

IFS=" "

var=" a b c "

A AN AAN

output_args_one_per_line $var # output_args_one_per_line ‘echo " a b c W=
[a]

[b]

[c]

echo; echo "IFS=:"
echo "-————— "

IFS=:

var=":a::b:c:::" # Same pattern as above,

Noan AAN #+ but substituting ":" for " "
output_args_one_per_line Svar

[1]
]

[
[
[
[b]
[c]
[

[

HH= = = = H T

a
]
b
e
]
]

4=

Note "empty" brackets.
The same thing happens with the "FS" field separator in awk.

4=

echo

exit

(Many thanks, Stéphane Chazelas, for clarification and above examples.)

See also Example 16-41, Example 11-7, and Example 19-14 for instructive examples of using $IFS.
S IGNOREEOF

Ignore EOF: how many end-of-files (control-D) the shell will ignore before logging out.
SLC_COLLATE

Often set in the _bashrc or /etc/profile files, this variable controls collation order in filename

expansion and pattern matching. If mishandled, LC_COLLATE can cause unexpected results in

filename globbing.

Chapter 9. Another Look at Variables 86

Advanced Bash-Scripting Guide

5 " As of version 2.05 of Bash, filename globbing no longer distinguishes between
~ lowercase and uppercase letters in a character range between brackets. For example, Is
[A-M]* would match both Filel.txt and filel.txt. Torevert to the customary
behavior of bracket matching, set LC_COLLATE to C by an export
LC_COLLATE=Cin /etc/profile and/or ~/ .bashrec.

SLC_CTYPE

This internal variable controls character interpretation in globbing and pattern matching.

SLINENO

This variable is the line number of the shell script in which this variable appears. It has significance
only within the script in which it appears, and is chiefly useful for debugging purposes.

*** BEGIN DEBUG BLOCK ***
last_cmd_arg=S$_ # Save it.

echo "At line number SLINENO, variable \"v1\" = $v1"
echo "Last command argument processed = $last_cmd_arg"
*** END DEBUG BLOCK ***

SMACHTYPE

machine type

Identifies the system hardware.

bash$ echo $MACHTYPE
1686

SOLDPWD

Old working directory ("OLD-Print-Working-Directory", previous directory you were in).

SOSTYPE

SPATH

operating system type

bash$S echo $OSTYPE
linux

Path to binaries, usually /usr/bin/, /usr/X11R6/bin/, /usr/local/bin, etc.

When given a command, the shell automatically does a hash table search on the directories listed in
the path for the executable. The path is stored in the environmental variable, SPATH, a list of
directories, separated by colons. Normally, the system stores the SPATH definition in

/etc/profile and/or ~/ .bashrc (see Appendix G).

bash$ echo $PATH
/bin:/usr/bin:/usr/local/bin:/usr/X11R6/bin:/sbin:/usr/sbin

PATH=$ {PATH} : /opt/bin appends the /opt /bin directory to the current path. In a script, it
may be expedient to temporarily add a directory to the path in this way. When the script exits, this
restores the original $PATH (a child process, such as a script, may not change the environment of the
parent process, the shell).

;' The current "working directory", . /, is usually omitted from the $PATH as a security
measure.

SPIPESTATUS

Chapter 9. Another Look at Variables

Array variable holding exit status(es) of last executed foreground pipe.

87

Advanced Bash-Scripting Guide

bash$ echo $PIPESTATUS
0

bash$ 1s —-al | bogus_command

bash: bogus_command: command not found
bash$ echo ${PIPESTATUS[1]}

127

bash$ 1s —-al | bogus_command

bash: bogus_command: command not found
bash$ echo $?

127

The members of the SPTPESTATUS array hold the exit status of each respective command executed

in a pipe. SPIPESTATUS [0] holds the exit status of the first command in the pipe,
SPIPESTATUS [1] the exit status of the second command, and so on.

<1> The SPIPESTATUS variable may contain an erroneous 0 value in a login shell (in

releases prior to 3.0 of Bash).

tcsh% bash

bash$ who | grep nobody | sort
bash$ echo ${PIPESTATUS[*]}
0

The above lines contained in a script would produce the expected 0 1 0 output.

Thank you, Wayne Pollock for pointing this out and supplying the above example.

& The SPTPESTATUS variable gives unexpected results in some contexts.

bash$ echo $BASH VERSION
3.00.14 (1) -release

bash$ $§ 1s | bogus_command | wc
bash: bogus_command: command not found
0 0 0

bash$ echo ${PIPESTATUSI[Q]}
141 127 0

Chet Ramey attributes the above output to the behavior of Is. If Is writes to a pipe
whose output is not read, then STGPIPE Kkills it, and its exit status is 141. Otherwise

its exit status is 0, as expected. This likewise is the case for tr.

&) SPIPESTATUS is a "volatile" variable. It needs to be captured immediately after the

pipe in question, before any other command intervenes.

bash$ $§ 1s | bogus_command | wc
bash: bogus_command: command not found
0 0 0

bash$ echo ${PIPESTATUSI[Q]}
0 127 0

Chapter 9. Another Look at Variables

88

Advanced Bash-Scripting Guide

bash$ echo ${PIPESTATUS[Q]}
0

<& The pipefail option may be useful in cases where SPIPESTATUS does not give the
desired information.

SPPID
The $PPID of a process is the process ID (pid) of its parent process. [37]

Compare this with the pidof command.
SPROMPT__COMMAND
A variable holding a command to be executed just before the primary prompt, SPS1 is to be
displayed.
$PS1
This is the main prompt, seen at the command-line.
$PS2
The secondary prompt, seen when additional input is expected. It displays as ">".
$PS3
The tertiary prompt, displayed in a select loop (see Example 11-29).
$PS4
The quartenary prompt, shown at the beginning of each line of output when invoking a script with the
-x option. It displays as "+".
SPWD
Working directory (directory you are in at the time)

This is the analog to the pwd builtin command.

#!/bin/bash

E_WRONG_DIRECTORY=83

clear # Clear screen.
TargetDirectory=/home/bozo/projects/GreatAmericanNovel

cd S$TargetDirectory
echo "Deleting stale files in $TargetDirectory."

if ["SPWD" != "S$TargetDirectory"]
then # Keep from wiping out wrong directory by accident.
echo "Wrong directory!"
echo "In $PWD, rather than $TargetDirectory!"
echo "Bailing out!"
exit S$E_WRONG_DIRECTORY
fi

rm —-rf *

rm .[A-Za-z0-9]%* # Delete dotfiles.
rm —f .[".]*F ..2% to remove filenames beginning with multiple dots.
(shopt -s dotglob; rm -f *) will also work.

Thanks, S.C. for pointing this out.
A filename (" basename’) may contain all characters in the 0 - 255 range,

#+ except "/".
Deleting files beginning with weird characters, such as -

Chapter 9. Another Look at Variables 89

Advanced Bash-Scripting Guide
#+ is left as an exercise.

echo

echo "Done."

echo "Old files deleted in $TargetDirectory."
echo

Various other operations here, as necessary.

exit $°?

SREPLY
The default value when a variable is not supplied to read. Also applicable to select menus
supplies the item number of the variable chosen, not the value of the variable itself.

#!/bin/bash
reply.sh

REPLY is the default value for a 'read' command.
echo

echo —n "What is your favorite vegetable?
read

echo "Your favorite vegetable is $REPLY."
REPLY holds the value of last "read" if and only if
#+ no variable supplied.

echo

echo —n "What is your favorite fruit?
read fruit

echo "Your favorite fruit is S$fruit."
echo "but..."

echo "Value of \$REPLY is still $REPLY."

SREPLY is still set to its previous value because
#+ the variable S$fruit absorbed the new "read" value.

echo

exit O
SSECONDS
The number of seconds the script has been running.

#!/bin/bash

TIME_LIMIT=10

INTERVAL=1
echo
echo "Hit Control-C to exit before S$TIME_LIMIT seconds."
echo
while ["SSECONDS" -le "STIME_LIMIT"]
do
if ["SSECONDS" -eq 1]
then
units=second
else
units=seconds
fi

Chapter 9. Another Look at Variables

, but only

90

Advanced Bash-Scripting Guide

echo "This script has been running $SECONDS S$units."
On a slow or overburdened machine, the script may skip a count
#+ every once in a while.
sleep $INTERVAL
done

echo -e "\a" # Beep!

exit O
SSHELLOPTS
The list of enabled shell options, a readonly variable.

bash$S echo $SHELLOPTS
braceexpand:hashall:histexpand:monitor:history:interactive—-comments:emacs

$SSHLVL

Shell level, how deeply Bash is nested. [38] If, at the command-line, $SSHLVL is 1, then in a script it
will increment to 2.

& This variable is _not affected by subshells. Use $BASH SUBSHELL when you need
an indication of subshell nesting.

STMOUT

If the $TMOUT environmental variable is set to a non-zero value t ime, then the shell prompt will
time out after $t ime seconds. This will cause a logout.

As of version 2.05b of Bash, it is now possible to use $TMOUT in a script in combination with read.
Works in scripts for Bash, versions 2.05b and later.

TMOUT=3 # Prompt times out at three seconds.

echo "What is your favorite song?"

echo "Quickly now, you only have $TMOUT seconds to answer!"
read song

if [-z "$song"]
then
song=" (no answer)"
Default response.
fi

echo "Your favorite song is $song."

There are other, more complex, ways of implementing timed input in a script. One alternative is to set
up a timing loop to signal the script when it times out. This also requires a signal handling routine to
trap (see Example 31-5) the interrupt generated by the timing loop (whew!).

Example 9-2. Timed Input

#!/bin/bash
timed-input.sh

TMOUT=3 Also works, as of newer versions of Bash.

TIMER_INTERRUPT=14

Chapter 9. Another Look at Variables 91

Advanced Bash-Scripting Guide

TIMELIMIT=3 # Three seconds in this instance.
May be set to different value.

PrintAnswer ()
{
if ["Sanswer" = TIMEOUT]
then
echo S$Sanswer
else # Don't want to mix up the two instances.
echo "Your favorite veggie is S$Sanswer"
kill $! # Kills no-longer-needed TimerOn function
#+ running in background.
$! is PID of last job running in background.
fi
}
TimerOn ()

{
sleep $TIMELIMIT && kill -s 14 $$ &
Waits 3 seconds, then sends sigalarm to script.

Intl4Vector ()

{
answer="TIMEOUT"
PrintAnswer
exit STIMER_ INTERRUPT

trap Intl4Vector $TIMER INTERRUPT
Timer interrupt (14) subverted for our purposes.

echo "What is your favorite vegetable "

TimerOn

read answer

PrintAnswer

Admittedly, this is a kludgy implementation of timed input.
However, the "-t" option to "read" simplifies this task.

See the "t-out.sh" script.

However, what about timing not just single user input,

#+ but an entire script?

If you need something really elegant
#+ consider writing the application in C or C++,
#+ using appropriate library functions, such as 'alarm' and 'setitimer.

exit O

An alternative is using stty.

Example 9-3. Once more, timed input

#!/bin/bash
timeout.sh

Chapter 9. Another Look at Variables

Advanced Bash-Scripting Guide

Written by Stephane Chazelas,
#+ and modified by the document author.

INTERVAL=5 # timeout interval

timedout_read () {
timeout=$1
varname=S$2
old_tty_settings="stty -g’
stty —icanon min 0 time ${timeout}O
eval read S$varname # or just read S$varname
stty "S$Sold_tty_settings"
See man page for "stty."

echo; echo -n "What's your name? Quick! "
timedout_read $INTERVAL your_name

This may not work on every terminal type.
The maximum timeout depends on the terminal.
#+ (it is often 25.5 seconds).

echo
if [! -z "Syour_name"] # If name input before timeout
then
echo "Your name is S$your_name."
else
echo "Timed out."
fi
echo

The behavior of this script differs somewhat from "timed-input.sh."
At each keystroke, the counter resets.

exit O

Perhaps the simplest method is using the —t option to read.

Example 9-4. Timed read

#!/bin/bash
t-out.sh
Inspired by a suggestion from "syngin seven" (thanks).

TIMELIMIT=4 # 4 seconds

read -t S$STIMELIMIT variable <&l

AAA

In this instance, "<&l1" is needed for Bash 1.x and 2.x,
Dbut unnecessary for Bash 3.x.

echo
if [-z "Svariable"] # Is null?
then
echo "Timed out, variable still unset."
else

Chapter 9. Another Look at Variables

93

SUID

Advanced Bash-Scripting Guide

echo "variable = $variable"
fi

exit O
User ID number

Current user's user identification number, as recorded in /et c/passwd

This is the current user's real id, even if she has temporarily assumed another identity through su.
SUID is a readonly variable, not subject to change from the command line or within a script, and is
the counterpart to the id builtin.

Example 9-5. Am I root?

#!/bin/bash
am—-i-root.sh: Am I root or not?

ROOT_UID=0 # Root has SUID 0.

if ["SUID" -eqg "S$ROOT_UID"] # Will the real "root" please stand up?
then

echo "You are root."
else

echo "You are just an ordinary user (but mom loves you Jjust the same) ."
fi

exit O

#
Code below will not execute, because the script already exited.

An alternate method of getting to the root of matters:
ROOTUSER_NAME=root

username="id -nu’ # Or... username=" whoami’
if ["Susername" = "SROOTUSER_NAME"]
then
echo "Rooty, toot, toot. You are root."
else
echo "You are just a regular fella."
fi

See also Example 2-3.

- The variables SENV, SLOGNAME, SMAIL, STERM, SUSER, and SUSERNAME are not
Bash builtins. These are, however, often set as environmental variables in one of the
Bash startup files. $SHELL, the name of the user's login shell, may be set from
/etc/passwd or in an "init" script, and it is likewise not a Bash builtin.

tcsh% echo $LOGNAME
bozo

tcsh% echo $SHELL
/bin/tcsh

tcsh% echo $TERM

Chapter 9. Another Look at Variables

94

Advanced Bash-Scripting Guide
rxvt

bash$ echo $LOGNAME
bozo

bash$ echo $SHELL
/bin/tcsh

bash$ echo $TERM
rxvt

Positional Parameters

$0, 81, $2, etc.
Positional parameters, passed from command line to script, passed to a function, or set to a variable
(see Example 4-5 and Example 15-16)

S#
Number of command-line arguments [39] or positional parameters (see Example 35-2)
$ *
All of the positional parameters, seen as a single word
&) "$*" must be quoted.
s@

Same as $*, but each parameter is a quoted string, that is, the parameters are passed on intact, without
interpretation or expansion. This means, among other things, that each parameter in the argument list
is seen as a separate word.

&) Of course, "$@" should be quoted.

Example 9-6. arglist: Listing arguments with $* and $@

#!/bin/bash
arglist.sh
Invoke this script with several arguments, such as "one two three".

E_BADARGS=65

if [! —n "$S1"]

then
echo "Usage: "basename $0° argumentl argument2 etc."
exit SE_BADARGS

fi

echo
index=1 # Initialize count.

echo "Listing args with \"\S$*\":"
for arg in "$*" # Doesn't work properly if "$*" isn't quoted.
do
echo "Arg #Sindex = Sarg"
let "index+=1"
done # $* sees all arguments as single word.
echo "Entire arg list seen as single word."

echo

Chapter 9. Another Look at Variables 95

Advanced Bash-Scripting Guide

index=1 # Reset count.
What happens if you forget to do this?

echo "Listing args with \"\S@\":"
for arg in "S$@"
do
echo "Arg #Sindex = Sarg"
let "index+=1"
done # S@ sees arguments as separate words.
echo "Arg list seen as separate words."

echo
index=1 # Reset count.

echo "Listing args with \$* (unquoted) :"
for arg in $*
do
echo "Arg #Sindex = Sarg"
let "index+=1"
done # Unquoted $* sees arguments as separate words.
echo "Arg list seen as separate words."

exit O
Following a shift, the $@ holds the remaining command-line parameters, lacking the previous $1,
which was lost.

#!/bin/bash
Invoke with ./scriptname 1 2 3 4 5

echo "s@" # 12 345
shift

echo "s@" # 2 3 45
shift

echo "s@" # 345

Each "shift" loses parameter $1.
"S$Q" then contains the remaining parameters.

The $@ special parameter finds use as a tool for filtering input into shell scripts. The cat ""$@"'
construction accepts input to a script either from stdin or from files given as parameters to the

script. See Example 16-24 and Example 16-25.

<1 The $* and $@ parameters sometimes display inconsistent and puzzling behavior,
depending on the setting of $IFS.

Example 9-7. Inconsistent $* and $@ behavior

#!/bin/bash
Erratic behavior of the "$*" and "$Q" internal Bash variables,

#+ depending on whether they are quoted or not.
Inconsistent handling of word splitting and linefeeds.

set —— "First one" "second" "third:one" "" "Fifth: :one"
Setting the script arguments, $1, $2, etc.

echo

Chapter 9. Another Look at Variables

echo 'IFS unchanged,
c=0

for i in "$*"

do echo "S$((ct+=1)):

done
echo ———

echo 'IFS unchanged,
c=0
for 1 in $*

Advanced Bash-Scripting Guide
uslng Il$*ll \l

quoted

[$i]" # This line remains the same in every instance.

Echo args.

using $*'

unquoted

do echo "$((c+=1)): [Si]"

done

echo ——-

echo 'IFS unchanged, using "$Q@"'
c=0

for i in "sSQ@"

do echo "$((c+=1)): [Si]"

done

echo ——-

echo 'IFS unchanged, using $@'
c=0

for 1 in $@

do echo "$((c+=1)): [Si]"

done

echo ——-

IFS=:

echo 'IFS=":", using "S$*"!'

c=0

for i in "S*"

do echo "$((c+=1)): [Si]"

done

echo ——-

echo 'IFS=":", using $*'

c=0

for 1 in $*

do echo "$((c+=1)): [Si]"

done

echo ——-

var=S$*

echo 'IFS=":", using "Svar" (var=S$*)"'
c=0

for 1 in "Svar"

do echo "$((c+=1)): [S1i]"

done

echo ——-

echo 'IFS=":", using Svar (var=$¥*)'
c=0

for 1 in $var

do echo "$((c+=1)): [Si]"

done

echo ——-

var="3$*"

echo 'IFS=":", using S$var (var="$*")"'
c=0

Chapter 9. Another Look at Variables

97

for 1 in $var

Advanced Bash-Scripting Guide

do echo "$((c+=1)): [Si]"

done
echo ——-

echo 'IFS=":",
c=0

for i in "Svar"

using "S$var" (var="S$*")'

do echo "$((c+=1)): [Si]"

done
echo ———

echo 'IFS=":",
c=0
for i in "s$@"

using ns@me

do echo "$((c+=1)): [Si]"

done
echo ——-

echo 'IFS=":",
c=0
for i in $@

using $@'

do echo "$((c+=1)): [Si]"

done
echo ——-

var=s@

echo 'IFS=":",
c=0

for 1 in $var

using S$var (var=$Q@)"'

do echo "$((c+=1)): [Si]"

done
echo ——-

echo 'IFS=":",
c=0

for i in "Svar"

using "S$var" (var=s@)'

do echo "$((c+=1)): [S1i]"

done

echo ——-
var:ll $@ n

echo 'IFS=":",
c=0

for i in "Svar"

using "S$var" (var="$a@")'

do echo "$((c+=1)): [Si]"

done
echo ——-

echo 'IFS=":",
c=0
for 1 in $var

using Svar (var="$@")'

do echo "$((c+=1)): [Si]"

done

echo

Try this script with ksh or zsh -y.

exit O

This example script by Stephane Chazelas,

Chapter 9. Another Look at Variables

98

Advanced Bash-Scripting Guide

and slightly modified by the document author.

&) The $@ and $* parameters differ only when between double quotes.

Example 9-8. $* and $@ when $IFS is empty

#!/bin/bash

TIf SIFS set, but empty,
#+ then "$*" and "$Q@" do not echo positional params as expected.

mecho () # Echo positional parameters.
{

echo "$1,$2,$3";

}

IFS="" # Set, but empty.

set a b ¢ # Positional parameters.
mecho "$*" # abgc, ,

AN

mecho $* # a,b,c

mecho $@ # a,b,c

mecho "S$Q@" # a,b,c

The behavior of $* and $Q@ when S$IFS is empty depends
#+ on which Bash or sh version being run.
It is therefore inadvisable to depend on this "feature" in a script.

Thanks, Stephane Chazelas.

exit

Other Special Parameters

$ —
Flags passed to script (using set). See Example 15-16.
<1 This was originally a ksh construct adopted into Bash, and unfortunately it does not
seem to work reliably in Bash scripts. One possible use for it is to have a script
self-test whether it is interactive.
$!

PID (process ID) of last job run in background

LOG=50.1log

COMMAND1="sleep 100"

echo "Logging PIDs background commands for script: $0" >> "SLOG"
So they can be monitored, and killed as necessary.

echo >> "SLOG"

Logging commands.

Chapter 9. Another Look at Variables

$9

Advanced Bash-Scripting Guide

echo -n "PID of \"$COMMANDI1\": " >> "SLOG"
$ {COMMAND1} &

echo $! >> "SLOG"

PID of "sleep 100": 1506

Thank you, Jacques Lederer, for suggesting this.
Using $! for job control:

possibly_hanging_job & { sleep ${TIMEOUT}; eval 'kill -9 $!' &> /dev/null; }
Forces completion of an ill-behaved program.
Useful, for example, in init scripts.

Thank you, Sylvain Fourmanoit, for this creative use of the "!" wvariable.
Or, alternately:

This example by Matthew Sage.
Used with permission.

TIMEOUT=30 # Timeout value in seconds
count=0

possibly_hanging_job & {
while ((count < TIMEOUT)); do

eval '[! -d "/proc/$!"] && ((count = TIMEOUT)) '
/proc is where information about running processes is found.
"-d" tests whether it exists (whether directory exists).
So, we're waiting for the job in gquestion to show up.
((count++))
sleep 1

done

eval '[-d "/proc/$!"] && kill -15 $!!

If the hanging job is running, kill it.

Special variable set to final argument of previous command executed.

Example 9-9. Underscore variable

#!/bin/bash

/bin/bash
Just called /bin/bash to run the script.
Note that this will vary according to

+ how the script is invoked.

echo $_

H= H H FH

du >/dev/null # So no output from command.
echo $_ # du

1ls —-al >/dev/null # So no output from command.
echo S$_ # -al (last argument)

echo $_ #

Exit status of a command, function, or the script itself (see Example 24-7)

Chapter 9. Another Look at Variables

100

Advanced Bash-Scripting Guide

Process ID (PID) of the script itself. [40] The $$ variable often finds use in scripts to construct
"unique" temp file names (see Example 31-6, Example 16-31, and Example 15-27). This is usually
simpler than invoking mktemp.

9.2. Typing variables: declare or typeset

The declare or typeset builtins, which are exact synonyms, permit modifying the properties of variables. This
is a very weak form of the fyping [41] available in certain programming languages. The declare command is
specific to version 2 or later of Bash. The fypeset command also works in ksh scripts.

declare/typeset options

-r readonly
(declare -r varl works the same as readonly varl)

This is the rough equivalent of the C const type qualifier. An attempt to change the value of a
readonly variable fails with an error message.

declare -r varl=l
echo "varl = S$varl" # varl = 1

((varl++)) # x.sh: line 4: varl: readonly variable

-i integer

declare —-i number
The script will treat subsequent occurrences of "number" as an integer.

number=3
echo "Number = S$number" # Number = 3

number=three
echo "Number = S$number" # Number = 0
Tries to evaluate the string "three" as an integer.

Certain arithmetic operations are permitted for declared integer variables without the need for expr or
let.

n=6/3
echo "n = S$n" # n=6/3

declare -i n
n=6/3
echo "n = $n" # n=2

-a array

declare -a indices
The variable indices will be treated as an array.
-f function(s)

declare -f

A declare -f line with no arguments in a script causes a listing of all the functions previously
defined in that script.

Chapter 9. Another Look at Variables 101

Advanced Bash-Scripting Guide

declare -f function_name
A declare -f function_name in a script lists just the function named.

-X export

declare -x var3
This declares a variable as available for exporting outside the environment of the script itself.

-x var=$value

declare -x var3=373

The declare command permits assigning a value to a variable in the same statement as setting its

properties.

Example 9-10. Using declare to type variables

#!/b

func

{

in/bash

10

echo This is a function.

decl

echo

decl
varl
echo
varl
echo
At
echo
varl
echo

echo

decl

echo
var2

echo

exit

are —-f # Lists the function above.

are -i varl # varl is an integer.

=2367
"varl declared as S$varl"

=varl+l # Integer declaration eliminates the need for 'let'.
"varl incremented by 1 is Svarl."

tempt to change variable declared as integer.
"Attempting to change varl to floating point value, 2367.1."

=2367.1 # Results in error message, with no change to variable.
"varl is still Svarl"

are -r var2=13.36 # 'declare' permits setting a variable property

#+ and simultaneously assigning it a value.

"var2 declared as $var2" # Attempt to change readonly variable.

=13.37 # Generates error message, and exit from script.
"var2 is still Svar2" # This line will not execute.
0 # Script will not exit here.

<1 Using the declare builtin restricts the scope of a variable.

foo ()

{
FOO="bar"

}

bar ()
{

foo

Chapter 9. Another Look at Variables

102

Advanced Bash-Scripting Guide

echo S$FOO
}

bar # Prints bar.

However. ..

foo (){
declare FOO="bar"
}

bar ()

{

foo

echo S$SFOO
}

bar # Prints nothing.

Thank you, Michael Iatrou, for pointing this out.

9.2.1. Another use for declare

The declare command can be helpful in identifying variables, environmental or otherwise. This can be
especially useful with arrays.

bash$ declare | grep HOME
HOME=/home /bozo

bash$ zzy=68
bash$ declare | grep zzy
z7Zy=68

bash$ Colors=([0]="purple" [l]="reddish-orange" [2]="1light green")
bash$ echo ${Colors[@]}

purple reddish-orange light green

bash$ declare | grep Colors

Colors=([0]="purple" [l]="reddish-orange" [2]="light green")

9.3. SRANDOM: generate random integer

SRANDOM is an internal Bash function (not a constant) that returns a pseudorandom [42] integer in the range O
- 32767. It should not be used to generate an encryption key.
Example 9-11. Generating random numbers

#!/bin/bash

SRANDOM returns a different random integer at each invocation.
Nominal range: 0 - 32767 (signed 16-bit integer).

Chapter 9. Another Look at Variables 103

Advanced Bash-Scripting Guide

MAXCOUNT=10
count=1

echo
echo "SMAXCOUNT random numbers:"
e Vommmmcmsmmmsssass
while ["Scount" -le $SMAXCOUNT] # Generate 10 (SMAXCOUNT) random integers.
do

number=$RANDOM

echo S$number

let "count += 1" # Increment count.
done
e Vommmmcmsmmmsssmss

If you need a random int within a certain range, use the 'modulo' operator.
This returns the remainder of a division operation.

RANGE=500
echo

number=$RANDOM
let "number %= SRANGE"

AN
echo "Random number less than $SRANGE —-—-- S$number"
echo

If you need a random integer greater than a lower bound,
#+ then set up a test to discard all numbers below that.

FLOOR=200
number=0 #initialize
while ["Snumber" -le SFLOOR]
do
number=$RANDOM
done
echo "Random number greater than $FLOOR —--- S$number"
echo
Let's examine a simple alternative to the above loop, namely
let "number = S$SRANDOM + SFLOOR"
That would eliminate the while-loop and run faster.
But, there might be a problem with that. What is it?

Combine above two techniques to retrieve random number between two limits.
number=0 #initialize
while ["Snumber" -le $SFLOOR]
do
number=$RANDOM
let "number %= SRANGE" # Scales S$number down within S$SRANGE.
done
echo "Random number between $FLOOR and SRANGE --- Snumber"
echo

Chapter 9. Another Look at Variables 104

Advanced Bash-Scripting Guide

Generate binary choice, that is, "true" or "false" value.
BINARY=2

T=1

number=$RANDOM

let "number %= S$SBINARY"

Note that let "number >>= 14" gives a better random distribution
#+ (right shifts out everything except last binary digit).
if ["Snumber" -eq ST]
then
echo "TRUE"
else
echo "FALSE"
fi
echo

Generate a toss of the dice.
SPOTS=6 # Modulo 6 gives range 0 - 5.
Incrementing by 1 gives desired range of 1 - 6.
Thanks, Paulo Marcel Coelho Aragao, for the simplification.
diel=0
die2=0
Would it be better to just set SPOTS=7 and not add 1? Why or why not?

Tosses each die separately, and so gives correct odds.
let "diel = S$RANDOM % S$SPOTS +1" # Roll first one.
let "die2 = SRANDOM % $SPOTS +1" # Roll second one.

Which arithmetic operation, above, has greater precedence —-—
#+ modulo (%) or addition (+)?2

let "throw = $diel + $die2"
echo "Throw of the dice = $throw"
echo

exit O

Example 9-12. Picking a random card from a deck

#!/bin/bash
pick-card.sh

This is an example of choosing random elements of an array.

Pick a card, any card.
Suites="Clubs

Diamonds

Hearts

Spades"

Denominations="2
3

4
5
6

Chapter 9. Another Look at Variables

105

Advanced Bash-Scripting Guide

7

8

9

10
Jack
Queen
King
Ace"

Note variables spread over multiple lines.

suite=($Suites) # Read into array variable.
denomination= ($Denominations)

num_suites=S${#suite[*]} # Count how many elements.
num_denominations=${#denomination[*]}

echo —-n "${denomination[$ ((RANDOM$num_denominations))]} of "
echo ${suite[$ ((RANDOM%num_suites))]}

Sbozo sh pick-cards.sh
Jack of Clubs

Thank you, "jipe," for pointing out this use of $RANDOM.
exit O

Example 9-13. Brownian Motion Simulation

#!/bin/bash

brownian.sh

Author: Mendel Cooper
Reldate: 10/26/07

License: GPL3

This script models Brownian motion:

#+ the random wanderings of tiny particles in a fluid,

#+ as they are buffeted by random currents and collisions.
#+ This is colloquially known as the "Drunkard's Walk."

It can also be considered as a stripped-down simulation of a
#+ Galton Board, a slanted board with a pattern of pegs,

#+ down which rolls a succession of marbles, one at a time.

#+ At the bottom is a row of slots or catch basins in which

#+ the marbles come to rest at the end of their Jjourney.

Think of it as a kind of bare-bones Pachinko game.

As you see by running the script,

#+ most of the marbles cluster around the center slot.

#+ This is consistent with the expected binomial distribution.
As a Galton Board simulation, the script

#+ disregards such parameters as

#+ board tilt-angle, rolling friction of the marbles,

#+ angles of impact, and elasticity of the pegs.

To what extent does this affect the accuracy of the simulation?

PASSES=500 # Number of particle interactions / marbles.

Chapter 9. Another Look at Variables 106

Advanced Bash-Scripting Guide

ROWS=10 # Number of "collisions" (or horiz. peg rows).

RANGE=3 # 0 - 2 output range from $SRANDOM.

POS=0 # Left/right position.

RANDOM=S$ # Seeds the random number generator from PID
#+ of script.

declare -a Slots # Array holding cumulative results of passes.

NUMSLOTS=21 # Number of slots at bottom of board.

Initialize_Slots () { # Zero out all elements of the array.
for i in $(seg S$SNUMSLOTS)
do
Slots[$1i]=0
done

echo # Blank line at beginning of run.

}

Show_Slots () {

echo -n " "
for i in $(seg S$SNUMSLOTS) # Pretty-print array elements.
do

printf "%3d" ${Slots[$i]} # Allot three spaces per result.
done

echo # Row of slots:
echo " |__|__ ||| ||| ||| |_|_J_ |||l "
echo " ann
echo # Note that if the count within any particular slot exceeds 99,
#+ it messes up the display.
Running only(!) 500 passes usually avoids this.

Move () { # Move one unit right / left, or stay put.
Move=$RANDOM # How random is SRANDOM? Well, let's see

let "Move %= RANGE" # Normalize into range of 0 - 2.
case "S$Move" in

0y o¢ # Do nothing, i.e., stay in place.
1) ((POS--));; # Left.
2) ((POS++));; # Right.
*) echo -n "Error ";; # Anomaly! (Should never occur.)
esac
}
Play () { # Single pass (inner loop) .
1i=0
while ["$i" -1t "SROWS"] # One event per row.
do
Move
((i++));
done
SHIFT=11 # Why 11, and not 107
let "POS += SSHIFT" # Shift "zero position" to center.

((Slots[SPOS]++)) # DEBUG: echo $POS
}

Chapter 9. Another Look at Variables 107

Advanced Bash-Scripting Guide

Run () { # Outer loop.
p=0
while ["S$p" -1t "SPASSES"]
do
Play
((ptt))
POS=0 # Reset to zero. Why?
done

main ()
Initialize_Slots
Run

Show_Slots

exit $7?

Exercises:

1) Show the results in a vertical bar graph, or as an alternative,
#+ a scattergram.

2) Alter the script to use /dev/urandom instead of S$RANDOM.

Will this make the results more random?

Jipe points out a set of techniques for generating random numbers within a range.

Generate random number between 6 and 30.
rnumber=S$ ((RANDOM%25+6))

Generate random number in the same 6 - 30 range,
#+ but the number must be evenly divisible by 3.
rnumber=S$ (((RANDOM%$30/3+1) *3))

Note that this will not work all the time.
It fails if SRANDOM%30 returns 0.

Frank Wang suggests the following alternative:
rnumber=S$ ((RANDOM%27/3*3+6))

Bill Gradwohl came up with an improved formula that works for positive numbers.

rnumber=3$ (((RANDOMS (max-min+divisibleBy)) /divisibleBy*divisibleBy+min))
Here Bill presents a versatile function that returns a random number between two specified values.

Example 9-14. Random between values

#!/bin/bash

random-between.sh

Random number between two specified values.

Script by Bill Gradwohl, with minor modifications by the document author.
Used with permission.

randomBetween () {
Generates a positive or negative random number
#+ between $min and S$max
#+ and divisible by $divisibleBy.

Chapter 9. Another Look at Variables 108

Advanced Bash-Scripting Guide

Gives a "reasonably random" distribution of return values.
#
Bill Gradwohl - Oct 1, 2003

syntax () {

Function embedded within function.
echo
echo "Syntax: randomBetween [min] [max] [multiple]"
echo
echo -n "Expects up to 3 passed parameters, "
echo "but all are completely optional."
echo "min is the minimum value"
echo "max i1s the maximum value"
echo —n "multiple specifies that the answer must be "
echo "a multiple of this value."
echo " i.e. answer must be evenly divisible by this number."
echo
echo "If any value is missing, defaults area supplied as: 0 32767 1"
echo -n "Successful completion returns 0, "
echo "unsuccessful completion returns"
echo "function syntax and 1."
echo —-n "The answer is returned in the global variable "
echo "randomBetweenAnswer"
echo -n "Negative values for any passed parameter are "
echo "handled correctly."

local min=${1:-0}

local max=${2:-32767}

local divisibleBy=${3:-1}

Default values assigned, in case parameters not passed to function.

local x
local spread

Let's make sure the divisibleBy value is positive.
[${divisibleBy} -1t 0] && divisibleBy=$((0-divisibleBy))

Sanity check.

if [$# —-gt 3 -o ${divisibleBy} -eqg 0 -o ${min} -eq ${max}]; then
syntax
return 1

fi

See if the min and max are reversed.
if [${min} -gt ${max}]; then

Swap them.

x=${min}

min=${max}

max=3${x}

If min is itself not evenly divisible by $divisibleBy,
#+ then fix the min to be within range.
if [$((min/divisibleBy*divisibleBy)) -ne ${min}]; then
if [${min} -1t 0]; then
min=$ ((min/divisibleBy*divisibleBy))
else
min=$ ((((min/divisibleBy)+1) *divisibleBy))
fi

Chapter 9. Another Look at Variables 109

Advanced Bash-Scripting Guide

If max is itself not evenly divisible by $divisibleBy,
#+ then fix the max to be within range.
if [$((max/divisibleBy*divisibleBy)) -ne ${max}]; then
if [S$S{max} -1t 0]; then
max=$ ((((max/divisibleBy)-1) *divisibleBy))
else
max=$ ((max/divisibleBy*divisibleBy))

Note that to get a proper distribution for the end points,
#+ the range of random values has to be allowed to go between
#+ 0 and abs (max-min)+divisibleBy, not just abs (max-min)+1.

The slight increase will produce the proper distribution for the
#+ end points.

Changing the formula to use abs(max-min)+1 will still produce
#+ correct answers, but the randomness of those answers is faulty in

#+ that the number of times the end points (Smin and S$max) are returned

#+ 1is considerably lower than when the correct formula is used.

spread=$ ((max-min))

Omair Eshkenazi points out that this test is unnecessary,

#+ since max and min have already been switched around.

[${spread} -1t 0] && spread=$((0-spread))

let spread+=divisibleBy
randomBetweenAnswer=S$ (((RANDOMS$spread) /divisibleBy*divisibleBy+min))

return 0
However, Paulo Marcel Coelho Aragao points out that
when $max and $min are not divisible by $divisibleBy,

the formula fails.

He suggests instead the following formula:
rnumber = $(((RANDOM% (max-min+1)+min) /divisibleBy*divisibleBy))

HH= = = FH= = S

Let's test the function.
min=-14

max=20

divisibleBy=3

Generate an array of expected answers and check to make sure we get
#+ at least one of each answer if we loop long enough.

declare —-a answer
minimum=${min}
maximum=$ {max}
if [$((minimum/divisibleBy*divisibleBy)) —-ne ${minimum}]; then
if [${minimum} -1t O]; then
minimum=$ ((minimum/divisibleBy*divisibleBy))
else
minimum=$ ((((minimum/divisibleBy)+1) *divisibleBy))
fi

Chapter 9. Another Look at Variables

110

Advanced Bash-Scripting Guide

If max is itself not evenly divisible by $divisibleBy,
#+ then fix the max to be within range.

if [$((maximum/divisibleBy*divisibleBy)) -ne ${maximum}]; then
if [${maximum} -1t O]; then
maximum=$ ((((maximum/divisibleBy)-1) *divisibleBy))
else
maximum=$ ((maximum/divisibleBy*divisibleBy))
fi

We need to generate only positive array subscripts,
#+ so we need a displacement that that will guarantee
#+ positive results.

disp=5$ ((0-minimum))

for ((i=${minimum}; i<=${maximum}; i+=divisibleBy)); do
answer [1+disp]=0

done

Now loop a large number of times to see what we get.
loopIt=1000 # The script author suggests 100000,
#+ but that takes a good long while.

for ((i=0; i<S${loopIt}; ++i)); do

Note that we are specifying min and max in reversed order here to
#+ make the function correct for this case.

randomBetween ${max} ${min} S${divisibleBy}

Report an error if an answer is unexpected.

[${randomBetweenAnswer} -1t ${min} -o ${randomBetweenAnswer} -gt ${max}
&& echo MIN or MAX error — ${randomBetweenAnswer}!

[$((randomBetweenAnswer$S${divisibleBy})) -ne 0] \

&& echo DIVISIBLE BY error - ${randomBetweenAnswer}!

Store the answer away statistically.
answer [randomBetweenAnswer+disp]=$ ((answer [randomBetweenAnswer+disp]+1))
done

Let's check the results

for ((i=${minimum}; i<=${maximum}; i+=divisibleBy)); do

[${answer[i+displacement]} —-eq 0] \

&& echo "We never got an answer of $i." \

|| echo "${i} occurred S${answer[it+displacement]} times."
done

exit O

T A

Just how random is SRANDOM? The best way to test this is to write a script that tracks the distribution of

"random" numbers generated by SRANDOM. Let's roll a SRANDOM die a few times . . .

Chapter 9. Another Look at Variables

111

Advanced Bash-Scripting Guide
Example 9-15. Rolling a single die with RANDOM

#!/bin/bash
How random is RANDOM?

RANDOM=S$ # Reseed the random number generator using script process ID.

PIPS=6 # A die has 6 pips.
MAXTHROWS=600 # Increase this if you have nothing better to do with your time.
throw=0 # Throw count.

ones=0 # Must initialize counts to zero,

twos=0 #+ since an uninitialized variable is null, not zero.
threes=0

fours=0

fives=0

sixes=0

print_result ()

{

echo

echo "ones = Sones"
echo "twos = Stwos"
echo "threes = $threes"
echo "fours = S$fours"
echo "fives = S$fives"
echo "sixes = S$sixes"
echo

}
update_count ()

case "$1" in

0) let "ones += 1";; # Since die has no "zero", this corresponds to 1.
1) let "twos += 1";; # And this to 2, etc.
2) let "threes += 1";;
3) let "fours += 1";;
4) let "fives += 1";;
5) let "sixes += 1";;
esac
}
echo

while ["Sthrow" -1t "SMAXTHROWS"]
do
let "diel = RANDOM % S$PIPS"
update_count $diel
let "throw += 1"
done

print_result

exit O

The scores should distribute fairly evenly, assuming RANDOM is fairly random.
With SMAXTHROWS at 600, all should cluster around 100, plus-or-minus 20 or so.
#

Keep in mind that RANDOM is a pseudorandom generator,

#+ and not a spectacularly good one at that.

Chapter 9. Another Look at Variables 112

Advanced Bash-Scripting Guide

Randomness 1s a deep and complex subject.
Sufficiently long "random" sequences may exhibit
#+ chaotic and other "non-random" behavior.

Exercise (easy):

Rewrite this script to flip a coin 1000 times.

Choices are "HEADS" and "TAILS".

As we have seen in the last example, it is best to reseed the RANDOM generator each time it is invoked. Using
the same seed for RANDOM repeats the same series of numbers. [43] (This mirrors the behavior of the
random () function in C.)

Example 9-16. Reseeding RANDOM

#!/bin/bash
seeding-random.sh: Seeding the RANDOM variable.

MAXCOUNT=25 # How many numbers to generate.

random_numbers ()
{
count=0
while ["Scount" -1t "S$SMAXCOUNT"]
do
number=$RANDOM
echo —n "S$number "
let "count += 1"
done

}
echo; echo

RANDOM=1 # Setting RANDOM seeds the random number generator.
random_numbers

echo; echo

RANDOM=1 # Same seed for RANDOM...
random_numbers # ...reproduces the exact same number series.

#

When is it useful to duplicate a "random" number series?
echo; echo
RANDOM=2 # Trying again, but with a different seed...
random_numbers # gives a different number series.

echo; echo

RANDOM=S$$ seeds RANDOM from process id of script.
It is also possible to seed RANDOM from 'time' or 'date' commands.

Getting fancy...

SEED=S (head -1 /dev/urandom | od -N 1 | awk '{ print $2 }')

Pseudo-random output fetched

#+ from /dev/urandom (system pseudo-random device-file),

#+ then converted to line of printable (octal) numbers by "od",
#+ finally "awk" retrieves just one number for SEED.
RANDOM=S$SEED

Chapter 9. Another Look at Variables 113

Advanced Bash-Scripting Guide
random_numbers
echo; echo
exit O
&) The /dev/urandom pseudo-device file provides a method of generating much more "random"
pseudorandom numbers than the $SRANDOM variable. dd if=/dev/urandom of=targetfile
bs=1 count=XX creates a file of well-scattered pseudorandom numbers. However, assigning these

numbers to a variable in a script requires a workaround, such as filtering through od (as in above
example, Example 16-14, and Example A-36), or even piping to mdSsum (see Example 35-14).

There are also other ways to generate pseudorandom numbers in a script. Awk provides a convenient
means of doing this.

Example 9-17. Pseudorandom numbers, using awk

#!/bin/bash
random2.sh: Returns a pseudorandom number in the range 0 - 1.
Uses the awk rand() function.

AWKSCRIPT=' { srand(); print rand() } '
Command (s) / parameters passed to awk
Note that srand() reseeds awk's random number generator.

echo -n "Random number between 0 and 1 = "

echo | awk "SAWKSCRIPT"
What happens if you leave out the 'echo'?

exit O
Exercises:

1) Using a loop construct, print out 10 different random numbers.
(Hint: you must reseed the "srand()" function with a different seed
#+ in each pass through the loop. What happens if you fail to do this?)

2) Using an integer multiplier as a scaling factor, generate random numbers
#+ in the range between 10 and 100.

3) Same as exercise #2, above, but generate random integers this time.

The date command also lends itself to generating pseudorandom integer sequences.

Chapter 9. Another Look at Variables 114

Chapter 10. Manipulating Variables
10.1. Manipulating Strings

Bash supports a surprising number of string manipulation operations. Unfortunately, these tools lack a unified
focus. Some are a subset of parameter substitution, and others fall under the functionality of the UNIX expr
command. This results in inconsistent command syntax and overlap of functionality, not to mention
confusion.

String Length
${#string}
expr length $string
These are the equivalent of strlen() in C.

expr "$string” : "'

stringZ=abcABC1l23ABCabc

echo S${#stringZz} # 15
echo "expr length $stringZ’ # 15
echo “expr "S$stringz" : '.*'° # 15

Example 10-1. Inserting a blank line between paragraphs in a text file

#!/bin/bash
paragraph-space.sh
Ver. 2.0, Reldate 05Aug08

Inserts a blank line between paragraphs of a single-spaced text file.
Usage: $0 <FILENAME

MINLEN=60 # May need to change this value.
Assume lines shorter than SMINLEN characters ending in a period
#+ terminate a paragraph. See exercises at end of script.

while read line # For as many lines as the input file has...
do
echo "$line" # Output the line itself.

len=${#line}

if [["$len" -1t "SMINLEN" && "$line" =~ \[*\.\] 1]
then echo # Add a blank line immediately
fi #+ after short line terminated by a period.
done
exit

Exercises:

,,,,,,,,,

1) The script usually inserts a blank line at the end

#+ of the target file. Fix this.

2) Line 17 only considers periods as sentence terminators.

Modify this to include other common end-of-sentence characters,

Chapter 10. Manipulating Variables 115

#+

such as 2?2, !,

Advanced Bash-Scripting Guide

and ".

Length of Matching Substring at Beginning of String

expr match "$string" '$substring'

Ssubstringis aregular expression.

expr "$string" : '$substring'

Index

Ssubstringis aregular expression.

stringZ=abcABC1l23ABCabc
12345678

echo "expr match "$stringz"
echo "expr "S$stringz" 'abc[A-Z]*.2""

expr index $string $substring
Numerical position in $string of first character in $substring that matches.

stringZ=abcABC1l23ABCabc
123456
echo ‘expr index "S$stringz" C12°

echo ‘expr index "S$stringzZ" 1lc®
'c' (in #3 position)

This is the near equivalent of strchr() in C.

Substring Extraction

${string:position}

Extracts substring from $stringat Sposition.

'abc[A-Z]*.2""

matches before '1'.

8
8

6
C position.

3

If the $string parameter is "*" or "@", then this extracts the positional parameters, [44] starting at

S$position.

${string:position:length}
Extracts $1ength characters of substring from Sstringat Sposition.

stringZ=abcABC1l23ABCabc
0123456789.....
0-based indexing.

echo ${stringz:0}
echo ${stringz:1}
echo ${stringz:7}

echo ${stringZ:7:3}

abcABC123ABCabc
bcABC123ABCabc
23ABCabc

23A
Three characters of substring.

Is it possible to index from the right end of the string?

Chapter 10. Manipulating Variables

116

Advanced Bash-Scripting Guide

echo ${stringZ:-4} # abcABCl23ABCabc
Defaults to full string, as in ${parameter:-default}.
However

echo ${stringZ: (-4)} # Cabc

echo S${stringZ: -4} # Cabc

Now, it works.

Parentheses or added space "escape" the position parameter.

Thank you, Dan Jacobson, for pointing this out.
The position and length arguments can be "parameterized," that is, represented as a variable, rather
than as a numerical constant.

Example 10-2. Generating an 8-character '"'random' string

#!/bin/bash
rand-string.sh
Generating an 8-character "random" string.

if [-n "$1"] # If command-line argument present,

then #+ then set start-string to it.
str0="Ss1"

else # Else use PID of script as start-string.
str0="ss$"

fi

POS=2 # Starting from position 2 in the string.
LEN=8 # Extract eight characters.

strl=$(echo "$str0" | md5sum | md5sum)
Doubly scramble: AANAAA ANNAAA

randstring="${str1 :SPOS:SLEN}"
Can parameterize """~ AN

echo "S$randstring"
exit $°?

bozo$./rand-string.sh my-password
1bdd88c4

No, this is is not recommended
#+ as a method of generating hack-proof passwords.

If the $string parameter is "*" or "@", then this extracts a maximum of $1ength positional
parameters, starting at Sposition.

echo ${*:2} # Echoes second and following positional parameters.
echo ${@:2} # Same as above.
echo ${*:2:3} # Echoes three positional parameters, starting at second.

expr substr $string $position $length
Extracts $1ength characters from $string starting at Sposition.

stringZ=abcABC123ABCabc

Chapter 10. Manipulating Variables 117

Advanced Bash-Scripting Guide

123456789......

l-based indexing.

echo "expr substr S$stringZ 1 2° # ab
echo "expr substr $stringZ 4 3° # ABC

expr match "$string" "\($substring\)’

Extracts Ssubstring at beginning of Sstring, where Ssubstringis a regular expression.

expr "$string” : "\($substring\)’

Extracts Ssubstring at beginning of Sstring, where Ssubstringis aregular expression.

stringZ=abcABC1l23ABCabc

4 .

echo "expr match "$stringz" '\ (.[b-c]*[A-Z]..[0-9]\)"" # abcABC1l
echo “expr "S$stringzZ" : '\ (.[b-c]l*[A-Z]..[0-9]\)"" # abcABC1l
echo ‘expr "S$stringzZ" : '"\(....... \) " # abcABC1l

All of the above forms give an identical result.
expr match "$string" '.*\($substring\)'

Extracts Ssubstringatend of Sstring, where Ssubstringis aregular expression.

expr "$string” : . *\($substring\)’

Extracts Ssubstringatend of Sstring, where Ssubstringis aregular expression.

stringZ=abcABC1l23ABCabc

n e
echo "expr match "$stringz" '.*\([A-C][A-C][A-C][a-c]*\)"'" # ABCabc
echo “expr "S$stringz" : ' *\(...... \) " # ABCabc

Substring Removal

${string#substring }

Deletes shortest match of Ssubstring from front of $string.
${string##substring }

Deletes longest match of Ssubstring from front of Sstring.

stringZ=abcABC123ABCabc

|====]| shortest
[————— | longest
echo ${stringZ#a*C} # 123ABCabc

Strip out shortest match between 'a' and 'C'.

echo ${stringZ##a*C} # abc
Strip out longest match between 'a' and 'C'.
${string%substring }

Deletes shortest match of Ssubstringfrom back of Sstring.
For example:

Rename all filenames in S$PWD with "TXT" suffix to a "txt" suffix.
For example, "filel.TXT" becomes "filel.txt"

SUFF=TXT
suff=txt

for i in $(ls *.$SUFF)

Chapter 10. Manipulating Variables

118

Advanced Bash-Scripting Guide

do
mv —f $1i ${i%.S$SSUFF}.Ssuff
Leave unchanged everything *except* the shortest pattern match
#+ starting from the right-hand-side of the variable $i

done ### This could be condensed into a "one-liner" if desired.

Thank you, Rory Winston.

${string%%substring }

Deletes longest match of $Ssubstring from back of $string.

stringZ=abcABC1l23ABCabc

|| shortest
| -——————————— | longest
echo ${stringZ%b*c} # abcABCl23ABCa

Strip out shortest match between 'b' and 'c', from back of $stringZ.

echo ${stringZzZ%%b*c} # a

Strip out longest match between 'b' and 'c', from back of $stringz.

This operator is useful for generating filenames.

Example 10-3. Converting graphic file formats, with filename change

#!/bin/bash
cvt.sh:

Converts all the MacPaint image files in a directory to "pbm" format.

Uses the "macptopbm" binary from the "netpbm" package,
#+ which is maintained by Brian Henderson (bryanh@giraffe-data.com) .
Netpbm is a standard part of most Linux distros.

OPERATION=macptopbm

SUFF IX=pbm # New filename suffix.
if [-n "S$1"]
then
directory=5$1 # If directory name given as a script argument...
else
directory=$PWD # Otherwise use current working directory.
fi

Assumes all files in the target directory are MacPaint image files,

#+ with a ".mac" filename suffix.

for file in $directory/* # Filename globbing.
do
filename=${file%.*c} # Strip ".mac" suffix off filename
#+ ('.*c' matches everything
#+ between '.' and 'c', inclusive).

SOPERATION S$file > "$filename.S$SSUFFIX"
Redirect conversion to new filename.

rm —f S$file # Delete original files after converting.

echo "S$filename.$SUFFIX" # Log what is happening to stdout.
done

exit O

Exercise:

Chapter 10. Manipulating Variables

119

Advanced Bash-Scripting Guide
As it stands, this script converts *all* the files in the current

#+ working directory.
Modify it to work *only* on files with a ".mac" suffix.

Example 10-4. Converting streaming audio files to ogg

#!/bin/bash
ra2ogg.sh: Convert streaming audio files (*.ra) to ogg.

Uses the "mplayer" media player program:

http://www.mplayerhqg.hu/homepage

Uses the "ogg" library and "oggenc":

http://www.xiph.org/

#

This script may need appropriate codecs installed, such as sipr.so
Possibly also the compat-libstdc++ package.

OFILEPREF=${1%%ra} # Strip off the "ra" suffix.

OFILESUFF=wav # Suffix for wav file.

OUTFILE="SOFILEPREF""SOFILESUFFE"
E_NOARGS=85

if [-z "sS1v] # Must specify a filename to convert.
then

echo "Usage: "basename $0° [filename]"

exit SE_NOARGS
fi

G o i o i ki
mplayer "$1" -ao pcm:file=$SOUTFILE

oggenc "SOUTFILE" # Correct file extension automatically added by oggenc.
G i i o i ki

rm "SOUTFILE" # Delete intermediate *.wav file.
If you want to keep it, comment out above line.

exit $°?

Note

—_——

On a Website, simply clicking on a *.ram streaming audio file
#+ usually only downloads the URL of the actual *.ra audio file.
You can then use "wget" or something similar

#+ to download the *.ra file itself.

Exercises:

,,,,,,,,,

As is, this script converts only *.ra filenames.

Add flexibility by permitting use of *.ram and other filenames.

#

If you're really ambitious, expand the script

#+ to do automatic downloads and conversions of streaming audio files.
Given a URL, batch download streaming audio files (using "wget")

#+ and convert them on the fly.

A simple emulation of getopt using substring-extraction constructs.

Chapter 10. Manipulating Variables 120

Advanced Bash-Scripting Guide
Example 10-5. Emulating getopt

#!/bin/bash

getopt-simple.sh

Author: Chris Morgan

Used in the ABS Guide with permission.

getopt_simple ()

{
echo "getopt_simple ()"
echo "Parameters are 'S$*'"

until [-z "S$1"]
do
echo "Processing parameter of: '$1'"
if [${1:0:1} = '/"']
then
tmp=${1:1} # Strip off leading '/'

parameter=${tmp%$=*} # Extract name.
value=${tmp##*=} # Extract value.
echo "Parameter: 'Sparameter', value: 'Svalue'"
eval S$parameter=$value
fi
shift
done

Pass all options to getopt_simple() .
getopt_simple $*

echo "test is 'Stest'"
echo "test2 is 'Stest2'"

exit 0 # See also, UseGetOpt.sh, a modified versio of this script.

sh getopt_example.sh /test=valuel /test2=value2

Parameters are '/test=valuel /test2=valuel'

Processing parameter of: '/test=valuel'
Parameter: 'test', value: 'valuel'
Processing parameter of: '/test2=value2'
Parameter: 'test2', value: 'value2'

test is 'valuel'
test2 is 'value2'

Substring Replacement

${string/substring/replacement }

Replace first match of $substring with Sreplacement. [45]
${string//substring/replacement }

Replace all matches of Ssubstring with Sreplacement.

stringZ=abcABC1l23ABCabc

echo ${stringZ/abc/xyz} # xyzABC123ABCabc
Replaces first match of 'abc' with 'xyz'.

echo ${stringZ//abc/xyz} # xyzABC123ABCxyz

Chapter 10. Manipulating Variables 121

Advanced Bash-Scripting Guide
Replaces all matches of 'abc' with # 'xyz'.

echo -—————-——————-—
echo "S$stringz" # abcABC123ABCabc
echo -———————————-—
The string itself is not altered!

Can the match and replacement strings be parameterized?
match=abc

repl=000

echo ${stringZ/Smatch/Srepl} # 000ABC123ABCabc
A A AAN

echo ${stringZ//$match/Srepl} # 000ABC123ABCO000
echo

What happens if no Sreplacement string is supplied?
echo ${stringZ/abc} # ABC123ABCabc

echo ${stringZz//abc} # ABC123ABC

A simple deletion takes place.

${ string/#substring/replacement }

If $substring matches front end of Sstring, substitute Sreplacement for Ssubstring.
${string/%substring/replacement }

If Ssubstring matches back end of Sstring, substitute Sreplacement for Ssubstring.

stringZ=abcABC1l23ABCabc

echo ${stringZ/#abc/XYZ} # XYZABC1l23ABCabc
Replaces front-end match of 'abc' with 'XYZ'.

echo ${stringZ/%abc/XYZ} # abcABC123ABCXYZ
Replaces back-end match of 'abc' with 'XYZ'.

10.1.1. Manipulating strings using awk

A Bash script may invoke the string manipulation facilities of awk as an alternative to using its built-in
operations.

Example 10-6. Alternate ways of extracting and locating substrings

#!/bin/bash
substring-extraction.sh

String=23skidool

012345678 Bash

123456789 awk

Note different string indexing system:

Bash numbers first character of string as 0.
Awk numbers first character of string as 1.

echo ${String:2:4} # position 3 (0-1-2), 4 characters long
skid

The awk equivalent of ${string:pos:length} is substr(string,pos, length).
echo | awk '

Chapter 10. Manipulating Variables 122

Advanced Bash-Scripting Guide

{ print substr("'"${String}"'",3,4) # skid
}

v

Piping an empty "echo" to awk gives it dummy input,
#+ and thus makes it unnecessary to supply a filename.

echo "———-"

And likewise:

echo | awk '
{ print index("'"${String}"'", "skid")
}

! # The awk equivalent of "expr index"

3
#

skid starts at position 3)

exit O

10.1.2. Further Reference

For more on string manipulation in scripts, refer to Section 10.2 and the relevant section of the expr command
listing.

Script examples:

1. Example 16-9

2. Example 10-9

3. Example 10-10
4. Example 10-11
5. Example 10-13
6. Example A-36
7. Example A-41

10.2. Parameter Substitution

Manipulating and/or expanding variables

$ {parameter}
Same as Sparameter, i.e., value of the variable parameter. In certain contexts, only the less
ambiguous $ {parameter} form works.

May be used for concatenating variables with strings.

your_id=${USER}-on-${HOSTNAME }
echo "S$your_id"
#
echo "Old \S$SPATH = SPATH"
PATH=${PATH}:/opt/bin # Add /opt/bin to $PATH for duration of script.
echo "New \SPATH = S$PATH"
${parameter-default}, ${parameter:-default}

If parameter not set, use default.

varl=1l

Chapter 10. Manipulating Variables 123

Advanced Bash-Scripting Guide

var2=2
var3 is unset.

echo ${varl-S$var2} # 1
echo ${var3-S$var2} # 2
~ Note the $ prefix.

echo ${username- whoami' }
Echoes the result of ‘whoami®, if variable Susername is still unset.

& S{parameter—-default} and ${parameter:-default } are almost
equivalent. The extra : makes a difference only when parameter has been declared,
but is null.

#!/bin/bash
param-sub.sh

Whether a variable has been declared
#+ affects triggering of the default option
#+ even if the variable is null.

username(=
echo "username(O has been declared, but is set to null."
echo "usernameO = ${username(O- whoami }"

Will not echo.
echo
echo usernamel has not been declared.

echo "usernamel = ${usernamel- whoami }"
Will echo.

usernamez=

echo "username2 has been declared, but is set to null."

echo "username2 = ${username2:- whoami }"

+ A

Will echo because of :- rather than just - in condition test.

Compare to first instance, above.

#
Once again:

variable=
variable has been declared, but is set to null.

echo "S${variable-0}" # (no output)
echo "S${variable:-1}" # 1
A

unset variable

echo "S${variable-2}"
echo "S${variable:-3}"

exit O
The default parameter construct finds use in providing "missing" command-line arguments in scripts.

Chapter 10. Manipulating Variables 124

Advanced Bash-Scripting Guide

DEFAULT_FILENAME=generic.data

filename=${1:-$DEFAULT_FILENAME }

If not otherwise specified, the following command block operates
#+ on the file "generic.data".

Begin-Command-Block

#

#

...

End-Command-Block

From "hanoi2.bash" example:

DISKS=${1:-E_NOPARAM} # Must specify how many disks.
Set $DISKS to $1 command-line-parameter,

#+ or to SE_NOPARAM if that is unset.

See also Example 3-4, Example 30-2, and Example A-6.

Compare this method with using an and list to supply a default command-line argument.
${parameter=default}, ${parameter:=default}

If parameter not set, set it to default.

Both forms nearly equivalent. The : makes a difference only when $Sparameter has been declared
and is null, [46] as above.

echo ${var=abc} # abc
echo ${var=xyz} # abc
Svar had already been set to abc, so it did not change.

${parameter+alt_value}, ${parameter:+alt_value}
If parameter set, use alt_value, else use null string.

Both forms nearly equivalent. The : makes a difference only when parameter has been declared
and is null, see below.

echo "###### \S{parameter+alt_value} ####HH#4"
echo

a=${paraml+xyz}

echo "a = $a" # a =

param2=

a=${param2+xyz}

echo "a = $a" # a = xyz

param3=123

a=${param3+xyz}

echo "a = $a" # a = xyz

echo

echo "###### \S{parameter:+alt_value} ##H####H#"
echo

a=S${paramé:+xyz}
echo "a = $a" # a =

paramb=
a=${paramb:+xyz}

Chapter 10. Manipulating Variables 125

Advanced Bash-Scripting Guide

echo "a = $a" # a =
Different result from a=${param5+xyz}

param6=123

a=${paramb6:+xyz}

echo "a = $a" # a = xyz
${parameter?err_msg}, ${parameter:?err_msg}

If parameter set, use it, else print err_msg.

Both forms nearly equivalent. The : makes a difference only when parameter has been declared
and is null, as above.

Example 10-7. Using parameter substitution and error messages

#!/bin/bash

Check some of the system's environmental variables.

This is good preventative maintenance.

If, for example, S$USER, the name of the person at the console, is not set,
+ the machine will not recognize you.

S

S{HOSTNAME?} S${USER?} S${HOME?} S${MAIL?}
echo

echo "Name of the machine is $HOSTNAME."
echo "You are S$SUSER."

echo "Your home directory is SHOME."

echo "Your mail INBOX is located in $MAIL."
echo

echo "If you are reading this message,"
echo "critical environmental variables have been set."
echo

echo

The S${variablename?} construction can also check
#+ for variables set within the script.

ThisVariable=Value-of-ThisVariable

Note, by the way, that string variables may be set

#+ to characters disallowed in their names.
${ThisVariable?}

echo "Value of ThisVariable is $ThisVariable".

echo; echo

${ZZXy23AB?"ZZXy23AB has not been set."}
Since ZZXy23AB has not been set,
#+ then the script terminates with an error message.

You can specify the error message.
: S{variablename?"ERROR MESSAGE"}

Same result with: dummy_variable=${ZZXy23AB?}

dummy_variable=${ZZXy23AB?"ZXy23AB has not been set."}
#

echo ${ZZXy23AB?} >/dev/null

Chapter 10. Manipulating Variables 126

Advanced Bash-Scripting Guide

Compare these methods of checking whether a variable has been set
#+ with "set -u"

echo "You will not see this message, because script already terminated."

HERE=0
exit SHERE # Will NOT exit here.

In fact, this script will return an exit status (echo $?) of 1.
Example 10-8. Parameter substitution and ""usage'' messages

#!/bin/bash
usage-message.sh

${1?"Usage: $0 ARGUMENT"}
Script exits here if command-line parameter absent,
#+ with following error message.
usage-message.sh: 1: Usage: usage-message.sh ARGUMENT

echo "These two lines echo only if command-line parameter given."
echo "command-line parameter = \"S$1\""

exit 0 # Will exit here only if command-line parameter present.

Check the exit status, both with and without command-line parameter.
If command-line parameter present, then "$?" is O.
If not, then "$?" is 1.

Parameter substitution and/or expansion. The following expressions are the complement to the match in
expr string operations (see Example 16-9). These particular ones are used mostly in parsing file path names.

Variable length / Substring removal

${#var}
String length (number of characters in $var). For an array, ${#array} is the length of the first

element in the array.

=& Exceptions:

¢
${#*} and ${#@} give the number of positional parameters.

O For an array, ${#array[*]} and ${#array[@]} give the number of elements in
the array.

Example 10-9. Length of a variable

#!/bin/bash
length.sh

E_NO_ARGS=65
if [$# -eq 0] # Must have command-line args to demo script.

then
echo "Please invoke this script with one or more command-line arguments."

Chapter 10. Manipulating Variables 127

Advanced Bash-Scripting Guide

exit SE_NO_ARGS
fi

varO0l=abcdEFGH281j
echo "var0l = ${varO1}"

echo "Length of var0l = ${#var0l}"

Now, let's try embedding a space.

var02="abcd EFGH28ij"

echo "var02 = ${var02}"

echo "Length of var02 = ${#var02}"

echo "Number of command-line arguments passed to script = ${#@}"
echo "Number of command-line arguments passed to script = $S{#*}"
exit O

${var#Pattern}, ${var#i#Pattern}

${var#Pattern} Remove from S$Svar the shortest part of SPattern that matches the front end

of Svar.

${var##Pattern} Remove from $var the longest part of SPattern that matches the front

of Svar.

A usage illustration from Example A-7:

Function from "days-between.

Strips leading zero(s) from

strip_leading_zero () #

{ #+ from
return=S{1#0} # The

} # The

wqn
non

sh" example.
argument passed.

Strip possible leading zero(s)

argument passed.
refers to "$1" -- passed arg.

is what to remove from "$1" —-- strips zeros.

Manfred Schwarb's more elaborate variation of the above:

strip_leading_zero2 () #
{ #
shopt -s extglob #
local val=$S{1##+(0)} #
shopt -u extglob #

Bash
Turn

Turn

Strip possible leading zero(s),

Use local variable,

since otherwise
will interpret such numbers as octal values.
on extended globbing.

longest matching series of 0's.
off extended globbing.

_strip_leading_zero2=${val:-0}

If input was O,

}
Another usage illustration:

echo "basename $SPWD® #

echo "S${PWD##*/}" #

echo

echo "basename $0° #

echo $0 #

echo "S${O##*/}" #

echo

filename=test.data

echo "$S{filename##*.}" #
#

${var%Pattern}, ${var%%Pattern}

Chapter 10. Manipulating Variables

return 0 instead of "".

Basename of current working directory.
Basename of current working directory.

Name of script.
Name of script.
Name of script.

data
Extension of filename.

end

128

Advanced Bash-Scripting Guide

${var %Pattern} Remove from Svar the shortest part of SPattern that matches the back end
of Svar.

${var % %Pattern} Remove from $var the longest part of SPattern that matches the back end
of Svar.

Version 2 of Bash added additional options.

Example 10-10. Pattern matching in parameter substitution

#!/bin/bash
patt-matching.sh

oe

Pattern matching wusing the # ## %% parameter substitution operators.

varl=abcdl2345abc6789

patternl=a*c # * (wild card) matches everything between a - c.
echo
echo "varl = S$varl" # abcdl2345abc6789
echo "varl = ${varl}" # abcdl2345abc6789
(alternate form)
echo "Number of characters in ${varl} = S${#varl}"
echo
echo "patternl = S$Spatternl" # a*c (everything between 'a' and 'c')
echo w._ Al
echo 'S${varl#S$Spatternl} =' "S${varl#Spatternl}" # dl2345abc6789
Shortest possible match, strips out first 3 characters abcdl2345abc6789
AAAAA |_|
echo 'S$S{varl##Spatternl} =' "S{varl##Spatternl}" # 6789
Longest possible match, strips out first 12 characters abcdl2345abc6789
AAAAA | __________ I

echo; echo; echo

pattern2=b*9 # everything between 'b' and '9'

echo "varl = S$varl" # Still abcdl2345abc6789

echo

echo "pattern2 = S$pattern2"

echo "-————-———————— "

echo 'S${varl%pattern2} =' "S{varl%Spattern2}" # abcdl2345a

Shortest possible match, strips out last 6 characters abcdl2345abc6789
Anan ===
echo 'S${varl%$%$pattern2} =' "${varl%%Spattern2}" # a

Longest possible match, strips out last 12 characters abcdl2345abc6789
aann [=mmmm— |

Remember, # and ## work from the left end (beginning) of string,
% and %% work from the right end.

echo

exit O

Example 10-11. Renaming file extensions:

Chapter 10. Manipulating Variables 129

Advanced Bash-Scripting Guide

#!/bin/bash
rfe.sh: Renaming file extensions.

#

rfe old_extension new_extension

#

Example:

To rename all *.gif files in working directory to *.jpg,
rfe gif Jjpg

E_BADARGS=65

case S$# in
0]1) # The vertical bar means "or" in this context.
echo "Usage: "basename $0° old_file_suffix new_file suffix"
exit SE_BADARGS # If 0 or 1 arg, then bail out.

rr

esac

for filename in *.$1

Traverse list of files ending with 1lst argument.

do
mv $filename S${filename%$$1}$2
Strip off part of filename matching 1lst argument,
#+ then append 2nd argument.

done

exit O

Variable expansion / Substring replacement
These constructs have been adopted from ksh.
${var:pos}
Variable var expanded, starting from offset pos.
${var:pos:len}
Expansion to a max of Ien characters of variable var, from offset pos. See Example A-13 for an
example of the creative use of this operator.
${var/Pattern/Replacement}
First match of Pattern, within var replaced with Replacement.

If Replacement is omitted, then the first match of Pat tern is replaced by nothing, that is,
deleted.

${var//Pattern/Replacement}
Global replacement. All matches of Pattern, within var replaced with Replacement.

As above, if Replacement is omitted, then all occurrences of Pat tern are replaced by nothing,
that is, deleted.
Example 10-12. Using pattern matching to parse arbitrary strings

#!/bin/bash

varl=abcd-1234-defg
echo "varl = S$varl"

t=${varl#*—*}

Chapter 10. Manipulating Variables 130

Advanced Bash-Scripting Guide

echo "varl (with everything, up to and including first - stripped out) = $t"
t=S${varl#*-} works just the same,

#+ since # matches the shortest string,

#+ and * matches everything preceding, including an empty string.

(Thanks, Stephane Chazelas, for pointing this out.)

t=S{varl##*—*}
echo "If varl contains a \"-\", returns empty string... varl = st"

t=${varls*—*}

echo "varl (with everything from the last - on stripped out) = $t"
echo

path_name=/home/bozo/ideas/thoughts.for.today

echo "path_name = S$path_name"

t=${path_name##/*/}

echo "path_name, stripped of prefixes = $t"

Same effect as t="basename S$path_name’ in this particular case.

t=S{path_name%/}; t=S{t##*/} is a more general solution,

#+ but still fails sometimes.

If Spath_name ends with a newline, then “basename S$path_name’ will not work,
#+ but the above expression will.

(Thanks, S.C.)

t=${path_name%/*.*}

Same effect as t="dirname S$path_name’
echo "path_name, stripped of suffixes = $t"
These will fail in some cases, such as "../", "/foo////", # "foo/", "/".

Removing suffixes, especially when the basename has no suffix,
#+ but the dirname does, also complicates matters.
(Thanks, S.C.)

echo

t=${path_name:11}

echo "S$path_name, with first 11 chars stripped off = $t"
t=${path_name:11:5}

echo "S$Spath_name, with first 11 chars stripped off, length 5 = $t"

echo

t=${path_name/bozo/clown}

echo "S$path_name with \"bozo\" replaced by \"clown\" = $t"
t=${path_name/today/}

echo "S$path_name with \"today\" deleted = S$t"
t=${path_name//0/0}

echo "S$path_name with all o's capitalized = s$t"
t=${path_name//o/}

echo "S$path_name with all o's deleted = S$t"

exit O
${var/#Pattern/Replacement}

If prefix of var matches Pattern, then substitute Replacement for Pattern.
${var/%Pattern/Replacement}

If suffix of var matches Pattern, then substitute Replacement for Pattern.

Chapter 10. Manipulating Variables 131

Advanced Bash-Scripting Guide

Example 10-13. Matching patterns at prefix or suffix of string

#!/bin/bash
var-match.sh:
Demo of pattern replacement at prefix / suffix of string.

vO0=abcl234zipl234abc # Original variable.
echo "v0 = S$vO" # abcl234zipl234abc
echo

Match at prefix (beginning) of string.

v1=${v0/#abc/ABCDEF} # abcl234zipl234abc
-
echo "vl = $v1" # ABCDEF1234zipl234abc
it ===l
Match at suffix (end) of string.
v2=${v0/%abc/ABCDEF} # abcl234zipl23abc
[-1
echo "v2 = $v2" # abcl234zipl234ABCDEF
[————1
echo
__

Must match at beginning / end of string,
#+ otherwise no replacement results.
__

v3=${v0/#123/000} # Matches, but not at beginning.
echo "v3 = S$v3" # abcl234zipl234abc

NO REPLACEMENT.
v4=${v0/%123/000} # Matches, but not at end.
echo "v4 = Sv4" # abcl234zipl234abc

NO REPLACEMENT.
exit O

${!varprefix*}, ${!varprefix@}
Matches names of all previously declared variables beginning with varprefix.

This i1s a variation on indirect reference, but with a * or Q.

Bash, version 2.04, adds this feature.

xyz23=whatever

xyz24=

a=S${!xyz*} # Expands to *names* of declared variables
1~ 0 A + beginning with "xyz"

echo "a = $a" # a = xyz23 xyz24

a=5${!xyzQ} # Same as above.

echo "a = $a" # a = xyz23 xyz24

echo n___nmn

abc23=something_else

b=${!abc*}

echo "b = S$b" # b = abc23

c=${!b} # Now, the more familiar type of indirect reference.
echo S$c # something_else

Chapter 10. Manipulating Variables

132

Chapter 11. Loops and Branches

What needs this iteration, woman?
--Shakespeare, Othello

Operations on code blocks are the key to structured and organized shell scripts. Looping and branching
constructs provide the tools for accomplishing this.

11.1. Loops

A loop is a block of code that iterates [47] a list of commands as long as the loop control condition is true.

for loops

for argin [1list]
This is the basic looping construct. It differs significantly from its C counterpart.

for argin[1ist]
do

command (s) ...
done

=& During each pass through the loop, arg takes on the value of each successive variable
inthe 1ist.

for arg in "S$varl" "S$var2" "Svar3" ... "SvarN"
In pass 1 of the loop, arg = $varl

In pass 2 of the loop, arg = $var2

In pass 3 of the loop, arg = $var3

...

In pass N of the loop, arg = $varN

Arguments in [list] quoted to prevent possible word splitting.
The argument 11 st may contain wild cards.

If do is on same line as for, there needs to be a semicolon after list.

for argin[list];do

Example 11-1. Simple for loops

#!/bin/bash
Listing the planets.

for planet in Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto

do
echo $planet # Each planet on a separate line.

Chapter 11. Loops and Branches

133

Advanced Bash-Scripting Guide
done
echo; echo

for planet in "Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto"
All planets on same line.
Entire 'list' enclosed in quotes creates a single variable.
Why? Whitespace incorporated into the variable.
do
echo S$planet
done

echo; echo "Whoops! Pluto is no longer a planet!"

exit O

Each [1ist] element may contain multiple parameters. This is useful when processing parameters
in groups. In such cases, use the set command (see Example 15-16) to force parsing of each [1ist]
element and assignment of each component to the positional parameters.

Example 11-2. for loop with two parameters in each [list] element

#!/bin/bash
Planets revisited.

Associate the name of each planet with its distance from the sun.

for planet in "Mercury 36" "Venus 67" "Earth 93" "Mars 142" "Jupiter 483"
do
set —— S$planet # Parses variable "planet"
#+ and sets positional parameters.
The "--" prevents nasty surprises if S$planet is null or
#+ begins with a dash.

May need to save original positional parameters,
#+ since they get overwritten.
One way of doing this is to use an array,

original_params=("$Q@")

echo "S$1 $2,000,000 miles from the sun"

e two tabs---concatenate zeroes onto parameter $2
done

(Thanks, S.C., for additional clarification.)

exit O

A variable may supply the [1ist] in a for loop.

Example 11-3. Fileinfo: operating on a file list contained in a variable

#!/bin/bash
fileinfo.sh

FILES="/usr/sbin/accept
/usr/sbin/pwck

Chapter 11. Loops and Branches 134

Advanced Bash-Scripting Guide

/usr/sbin/chroot
/usr/bin/fakefile
/sbin/badblocks
/sbin/ypbind" # List of files you are curious about.
Threw in a dummy file, /usr/bin/fakefile.
echo

for file in S$SFILES

do
if [! —e "S$file"] # Check 1if file exists.
then
echo "$file does not exist."; echo
continue # On to next.
fi
ls -1 S$file | awk '{ print $8 " file size: " S$5 }' # Print 2 fields.
whatis "basename $file’ # File info.

Note that the whatis database needs to have been set up for this to work.
To do this, as root run /usr/bin/makewhatis.
echo

done

exit O

If the [1ist] in a for loop contains wild cards (* and ?) used in filename expansion, then globbing
takes place.

Example 11-4. Operating on files with a for loop

#!/bin/bash
list-glob.sh: Generating [list] in a for-loop, using "globbing"

echo

for file in *

~ Bash performs filename expansion
#+ on expressions that globbing recognizes.
do

1ls -1 "$file" # Lists all files in S$PWD (current directory).
Recall that the wild card character "*" matches every filename,
#+ however, in "globbing," it doesn't match dot-files.

If the pattern matches no file, it is expanded to itself.
To prevent this, set the nullglob option
#+ (shopt -s nullglob) .
Thanks, S.C.
done

echo; echo

for file in [Jx]*

do
rm —f S$file # Removes only files beginning with "J" or "x" in S$PWD.
echo "Removed file \"$file\"".

done

echo

Chapter 11. Loops and Branches 135

Advanced Bash-Scripting Guide

exit O

Omitting the in [1list] part of a for loop causes the loop to operate on $@ -- the positional
parameters. A particularly clever illustration of this is Example A-15. See also Example 15-17.

Example 11-5. Missing in [list] in a for loop

#!/bin/bash

Invoke this script both with and without arguments,
#+ and see what happens.

for a
do
echo —-n "$Sa "

done

The 'in list' missing, therefore the loop operates on 'S$Q@'
#+ (command-line argument list, including whitespace) .

echo

exit O

It is possible to use command substitution to generate the [1ist] in a for loop. See also Example
16-54, Example 11-10 and Example 16-48.

Example 11-6. Generating the [1ist] in a for loop with command substitution

#!/bin/bash
for-loopcmd.sh: for-loop with [list]
#+ generated by command substitution.

NUMBERS="9 7 3 8 37.53"
for number in “echo $NUMBERS' # for number in 9 7 3 8 37.53
do

echo -n "S$number "

done

echo
exit O

Here is a somewhat more complex example of using command substitution to create the [1ist].

Example 11-7. A grep replacement for binary files

#!/bin/bash
bin-grep.sh: Locates matching strings in a binary file.

A "grep" replacement for binary files.
Similar effect to "grep -a"

E_BADARGS=65

Chapter 11. Loops and Branches 136

Advanced Bash-Scripting Guide
E_NOFILE=66

if [$# -ne 2]

then
echo "Usage: "basename $0° search_string filename"
exit S$E_BADARGS

fi

if [! -f£ "S2"]

then
echo "File \"$2\" does not exist."
exit SE_NOFILE

fi

IFS=$'\012" # Per suggestion of Anton Filippov.
was: IFS="\n"

for word in $(strings "$2" | grep "S$1")

The "strings" command lists strings in binary files.
Output then piped to "grep", which tests for desired string.
do
echo S$word
done

As S.C. points out, lines 23 - 30 could be replaced with the simpler

strings "$2" | grep "$1" | tr —-s "SIFS" '[\n*]'

Try something like "./bin-grep.sh mem /bin/1ls"
#+ to exercise this script.

exit O

More of the same.

Example 11-8. Listing all users on the system

#!/bin/bash
userlist.sh

PASSWORD_FILE=/etc/passwd
n=1 # User number

for name in $(awk 'BEGIN{FS=":"}{print $1}' < "$SPASSWORD_FILE"
Field separator = AANNAA
Print first field AANNANNN
Get input from password file
do

echo "USER #$n = S$name"

let "n += 1"
done

AAAAAAAAAAAAAAAAA

USER #1 = root

USER #2 = bin
USER #3 = daemon
#

USER #30 = bozo

exit O

Chapter 11. Loops and Branches

137

Advanced Bash-Scripting Guide

Exercise:

How is it that an ordinary user (or a script run by same)
#+ can read /etc/passwd?

Isn't this a security hole? Why or why not?

Yet another example of the [1ist] resulting from command substitution.

Example 11-9. Checking all the binaries in a directory for authorship

#!/bin/bash
findstring.sh:
Find a particular string in the binaries in a specified directory.

directory=/usr/bin/

fstring="Free Software Foundation" # See which files come from the FSF.
for file in $(find $directory -type f -name '*' | sort)
do

strings —-f $file | grep "Sfstring" | sed -e "s%$Sdirectory%%"

In the "sed" expression,
#+ it is necessary to substitute for the normal "/" delimiter
#+ because "/" happens to be one of the characters filtered out.
Failure to do so gives an error message. (Try it.)

done

exit $°?

Exercise (easy):

,,,,,,,,,,,,,,,

Convert this script to take command-line parameters
#+ for $directory and S$fstring.

A final example of [1ist] / command substitution, but this time the "command" is a function.

generate_list ()

{

echo "one two three"

for word in $(generate_list) # Let "word" grab output of function.
do
echo "Sword"
done
one

two
three

The output of a for loop may be piped to a command or commands.

Example 11-10. Listing the symbolic links in a directory

#!/bin/bash
symlinks.sh: Lists symbolic links in a directory.

directory=${1-"pwd }

Chapter 11. Loops and Branches 138

Advanced Bash-Scripting Guide

Defaults to current working directory,
#+ 1f not otherwise specified.
Equivalent to code block below.

__
ARGS=1 # Expect one command-line argument.
#

1f [S$S# -ne "SARGS"] # If not 1 arg...

then

directory="pwd’ # current working directory

else

directory=5$1

fi

__

echo "symbolic links in directory \"$directory\""

for file in "$(find S$directory -type 1)" # —type 1 = symbolic links
do
echo "S$file"

done | sort # Otherwise file list is unsorted.

Strictly speaking, a loop isn't really necessary here,

#+ since the output of the "find" command is expanded into a single word.

However, it's easy to understand and illustrative this way.

As Dominik 'Aeneas' Schnitzer points out,

#+ failing to quote $(find S$Sdirectory -type 1)

#+ will choke on filenames with embedded whitespace.
containing whitespace.

exit O

Jean Helou proposes the following alternative:

echo "symbolic links in directory \"$directory\""

Backup of the current IFS. One can never be too cautious.
OLDIFS=SIFS

TF§=¢

for file in $(find S$directory -type 1 -printf "%$pSIFS")

do # AAAAAAAAAAAAAAAAN

echo "$file"
done|sort

And, James "Mike" Conley suggests modifying Helou's code thusly:

OLDIFS=S$IFS

IFS='' # Null IFS means no word breaks
for file in $(find $directory -type 1)
do

echo S$file

done | sort

This works in the "pathological" case of a directory name having

#+ an embedded colon.

"This also fixes the pathological case of the directory name having
#+ a colon (or space in earlier example) as well."

The stdout of a loop may be redirected to a file, as this slight modification to the previous example

shows.

Chapter 11. Loops and Branches

139

Advanced Bash-Scripting Guide

Example 11-11. Symbolic links in a directory, saved to a file

#!/bin/bash
symlinks.sh: Lists symbolic links in a directory.

OUTFILE=symlinks.list # save file
directory=${1-"pwd’ }

Defaults to current working directory,
#+ 1f not otherwise specified.

echo "symbolic links in directory \"$directory\"" > "SOUTFILE"

CEnNE Vosmmmmmmmcemosssosssssesass " >> "SOUTFILE"
for file in "$(find $directory -type 1)" # —type 1 = symbolic links
do

echo "S$file"
done | sort >> "SOUTFILE" # stdout of loop
AANANANANNNNN redirected to save file.
exit O

There is an alternative syntax to a for loop that will look very familiar to C programmers. This
requires double parentheses.

Example 11-12. A C-style for loop

#!/bin/bash
Multiple ways to count up to 10.

echo

Standard syntax.
for a in 1 2 345 6 7 8 9 10
do
echo -n "S$a "
done

echo; echo

+ i

Using "seq" ...
for a in “seq 10°
do

echo -n "S$a "
done

echo; echo

+ i

Using brace expansion
Bash, version 3+.
for a in {1..10}
do
echo -n "S$a "
done

Chapter 11. Loops and Branches 140

Advanced Bash-Scripting Guide

echo; echo

+ i

Now, let's do the same, using C-like syntax.

LIMIT=10
for ((a=1l; a <= LIMIT ; a++)) # Double parentheses, and "LIMIT" with no "S$".
do
echo -n "$a "
done # A construct borrowed from 'ksh93'.

echo; echo

+ n

Let's use the C "comma operator" to increment two variables simultaneously.

for ((a=1, b=1; a <= LIMIT ; a++, b++))

do # The comma chains together operations.
echo -n "$a-$b "

done

echo; echo

exit O

See also Example 27-16, Example 27-17, and Example A-6.

Now, a for loop used in a "real-life" context.

Example 11-13. Using efax in batch mode

#!/bin/bash
Faxing (must have 'efax' package installed).

EXPECTED_ARGS=2

E_BADARGS=85

MODEM_PORT="/dev/ttyS2" # May be different on your machine.
Annnn PCMCIA modem card default port.

if [$# —-ne SEXPECTED_ARGS]
Check for proper number of command-line args.
then
echo "Usage: "basename $0° phone# text-file"
exit S$E_BADARGS

fi

if [! —f "sS2"]

then
echo "File $2 is not a text file."
File is not a regular file, or does not exist.
exit SE_BADARGS

fi

Chapter 11. Loops and Branches 141

while

Advanced Bash-Scripting Guide

fax make $2 # Create fax—formatted files from text files.

for file in $(1ls $2.0%*) # Concatenate the converted files.
Uses wild card (filename "globbing")
#+ in variable list.

do
fil="S$fil S$file"
done
efax -d "SMODEM_PORT" -t "TS$S1" S$fil # Finally, do the work.

Trying adding -0l if above line fails.

As S.C. points out, the for-loop can be eliminated with
efax -d /dev/ttyS2 -ol -t "TS$1" $2.0*
#+ but it's not quite as instructive [grin].

exit $7 # Also, efax sends diagnostic messages to stdout.

This construct tests for a condition at the top of a loop, and keeps looping as long as that condition is
true (returns a 0 exit status). In contrast to a for loop, a while loop finds use in situations where the
number of loop repetitions is not known beforehand.

while [condition]
do
command (s) ...
done
The bracket construct in a while loop is nothing more than our old friend, the test brackets used in an

if/then test. In fact, a while loop can legally use the more versatile double-brackets construct (while [[
condition]]).

As is the case with for loops, placing the do on the same line as the condition test requires a
semicolon.
while [condition];do

Note that the test brackets are not mandatory in a while loop. See, for example, the getopts construct.

Example 11-14. Simple while loop

#!/bin/bash

var0=0
LIMIT=10
while ["S$varQ" -1t "SLIMIT"]
A A
Spaces, because these are "test-brackets"
do
echo -n "$var0 " # —-n suppresses newline.
~ Space, to separate printed out numbers.

Chapter 11. Loops and Branches 142

Advanced Bash-Scripting Guide

var0="expr Svar0 + 1° # var0=$(($var0+1l)) also works.

var0=$((var0 + 1)) also works.

let "varQ += 1" also works.
done # Various other methods also work.
echo
exit O

Example 11-15. Another while loop

#!/bin/bash

echo
Equivalent to:
while ["Svarl" != "end"] # while test "S$varl" != "end"
do
echo "Input variable #1 (end to exit) "
read varl # Not 'read S$Svarl' (why?).
echo "variable #1 = S$varl" # Need quotes because of "#"

If input is 'end', echoes it here.
Does not test for termination condition until top of loop.
echo

done

exit O

A while loop may have multiple conditions. Only the final condition determines when the loop

terminates. This necessitates a slightly different loop syntax, however.

Example 11-16. while loop with multiple conditions

#!/bin/bash

varl=unset
previous=S$varl

while echo "previous-variable = $previous"
echo
previous=S$varl

["$varl" != end] # Keeps track of what S$varl was previously.
Four conditions on "while", but only last one controls loop.

The *last* exit status is the one that counts.
do
echo "Input variable #1 (end to exit) "
read varl
echo "variable #1 = S$varl"
done

Try to figure out how this all works.
It's a wee bit tricky.

exit O

As with a for loop, a while loop may employ C-style syntax by using the double-parentheses construct

(see also Example 8-5).

Chapter 11. Loops and Branches

143

Advanced Bash-Scripting Guide

Example 11-17. C-style syntax in a while loop

#!/bin/bash
wh-loopc.sh: Count to 10 in a "while" loop.

LIMIT=10
a=1

while ["$a" -le SLIMIT]

do
echo -n "$a "
let "a+=1"
done # No surprises, so far.

echo; echo

+ n

Now, repeat with C-like syntax.

((a =1)) # a=1
Double parentheses permit space when setting a variable, as in C.

while ((a <= LIMIT)) # Double parentheses, and no "$" preceding variables.
do

echo -n "$a "

((a += 1)) # let "at+=1"

Yes, indeed.

Double parentheses permit incrementing a variable with C-like syntax.
done
echo

C programmers can feel right at home in Bash.

exit O
Inside its test brackets, a while loop can call a function.

t=0
condition ()
{

((t++))

if [$t -1t 5]

then

return 0 # true
else

return 1 # false
fi

while condition

AAAAAANAAAN
Function call -- four loop iterations.
do
echo "Still going: t = $t"
done

Still going: t = 1

Chapter 11. Loops and Branches 144

Advanced Bash-Scripting Guide

Still going: t = 2
Still going: t
Still going: t

I
DSw

Similar to the if-test construct, a while loop can omit the test brackets.

while condition
do

command (s)
done

By coupling the power of the read command with a while loop, we get the handy while read construct,
useful for reading and parsing files.

cat $filename | # Supply input from a file.
while read line # As long as there is another line to read ...

while read value # Read one data point at a time.
do

rt=$ (echo "scale=$SC; Srt + Svalue" | bc)

((ct++))
done

am=$ (echo "scale=$SC; S$rt / S$Sct" | bc)

echo $am; return S$Sct # This function "returns" TWO values!
Caution: This little trick will not work if $ct > 255!
To handle a larger number of data points,
#+ simply comment out the "return $ct" above.
} <"$datafile" # Feed in data file.

<& A while loop may have its stdin redirected to a file by a < at its end.

A while loop may have its stdin _supplied by a pipe.
until
This construct tests for a condition at the top of a loop, and keeps looping as long as that condition is
false (opposite of while loop).

until [condition—-is-true]
do

command (s)...
done

Note that an until loop tests for the terminating condition at the fop of the loop, differing from a
similar construct in some programming languages.

As is the case with for loops, placing the do on the same line as the condition test requires a
semicolon.

Chapter 11. Loops and Branches 145

Advanced Bash-Scripting Guide

until [condition-is-true];do

Example 11-18. until loop

#!/bin/bash

END_CONDITION=end

until ["$varl" = "S$SEND_CONDITION"]
Tests condition here, at top of loop.
do

echo "Input variable #1 "
echo " (SEND_CONDITION to exit)"
read varl
echo "variable #1 = S$varl"
echo
done

As with "for" and "while" loops,
#+ an "until" loop permits C-like test constructs.

LIMIT=10
var=0

until ((var > LIMIT))

do # "~ 7 A AN No brackets, no $ prefixing variables.
echo -n "$var "
((var++))

done #0012 345678910

exit O

How to choose between a for loop or a while loop or until loop? In C, you would typically use a for loop
when the number of loop iterations is known beforehand. With Bash, however, the situation is fuzzier. The
Bash for loop is more loosely structured and more flexible than its equivalent in other languages. Therefore,
feel free to use whatever type of loop gets the job done in the simplest way.

11.2. Nested Loops

A nested loop is a loop within a loop, an inner loop within the body of an outer one. How this works is that
the first pass of the outer loop triggers the inner loop, which executes to completion. Then the second pass of
the outer loop triggers the inner loop again. This repeats until the outer loop finishes. Of course, a break
within either the inner or outer loop would interrupt this process.

Example 11-19. Nested Loop

#!/bin/bash
nested-loop.sh: Nested "for" loops.

outer=1 # Set outer loop counter.

Chapter 11. Loops and Branches 146

Advanced Bash-Scripting Guide

Beginning of outer loop.
for a in 1 2 3 4 5

do
echo "Pass Souter in outer loop."
echo n_ n
inner=1 # Reset inner loop counter.
#

Beginning of inner loop.
for b in 1 2 3 4 5

do
echo "Pass $inner in inner loop."
let "inner+=1" # Increment inner loop counter.
done
End of inner loop.
#
let "outer+=1" # Increment outer loop counter.
echo # Space between output blocks in pass of outer loop.
done

End of outer loop.

exit O

See Example 27-11 for an illustration of nested while loops, and Example 27-13 to see a while loop nested
inside an until loop.

11.3. Loop Control

Tournez cent tours, tournez mille tours,

Tournez souvent et tournez toujours . . .

--Verlaine, "Chevaux de bois"
Commands affecting loop behavior

break, continue
The break and continue loop control commands [48] correspond exactly to their counterparts in other
programming languages. The break command terminates the loop (breaks out of it), while continue

causes a jump to the next iteration of the loop, skipping all the remaining commands in that particular
loop cycle.

Example 11-20. Effects of break and continue in a loop

#!/bin/bash
LIMIT=19 # Upper limit

echo
echo "Printing Numbers 1 through 20 (but not 3 and 11)."

a=0

while [$a -le "SLIMIT"]

Chapter 11. Loops and Branches 147

Advanced Bash-Scripting Guide

do

a=s$((sa+l))

if ["S$a" -eq 3] || ["sa" -eqg 11] # Excludes 3 and 11.
then

continue # Skip rest of this particular loop iteration.

fi

echo -n "S$a " # This will not execute for 3 and 11.
done

Exercise:
Why does the loop print up to 207

echo; echo

echo Printing Numbers 1 through 20, but something happens after 2.
FHAFE A A
Same loop, but substituting 'break' for 'continue'.

a=0
while ["$a" -le "SLIMIT"]

do

a=s$((sa+l))

if ["S$a" -gt 2]

then

break # Skip entire rest of loop.

fi

echo —n "$a "
done

echo; echo; echo

exit O

The break command may optionally take a parameter. A plain break terminates only the innermost
loop in which it is embedded, but a break N breaks out of N levels of loop.

Example 11-21. Breaking out of multiple loop levels

#!/bin/bash
break-levels.sh: Breaking out of loops.

"break N" breaks out of N level loops.
for outerloop in 1 2 3 4 5

do
echo -n "Group S$outerloop: "

for innerloop in 1 2 3 4 5
do
echo -n "S$innerloop "

Chapter 11. Loops and Branches 148

Advanced Bash-Scripting Guide

if ["Sinnerloop" -eq 3]
then
break # Try break 2 to see what happens.
("Breaks" out of both inner and outer loops.)
fi
done
__
echo
done
echo
exit O

The continue command, similar to break, optionally takes a parameter. A plain continue cuts short

the current iteration within its loop and begins the next. A continue N terminates all remaining

iterations at its loop level and continues with the next iteration at the loop, N levels above.

Example 11-22. Continuing at a higher loop level

#!/bin/bash
The "continue N" command, continuing at the Nth level loop.

for outer in I II III IV V # outer loop
do
echo; echo -n "Group Souter: "

,,
for inner in 1 2 3 4 5 6 7 8 9 10 # inner loop
do
if [["Sinner" -eq 7 && "Souter" = "III"]]
then
continue 2 # Continue at loop on 2nd level, that is "outer loop".
Replace above line with a simple "continue"
to see normal loop behavior.
fi
echo -n "$inner " # 7 8 9 10 will not echo on "Group III."
done
,,
done

echo; echo

Exercise:
Come up with a meaningful use for "continue N" in a script.

exit O
Example 11-23. Using continue N in an actual task

Albert Reiner gives an example of how to use "continue N":

Suppose I have a large number of Jjobs that need to be run, with
#+ any data that is to be treated in files of a given name pattern in a

Chapter 11. Loops and Branches

149

Advanced Bash-Scripting Guide
#+ directory. There are several machines that access this directory, and
#+ I want to distribute the work over these different boxen. Then T

#+ usually nohup something like the following on every box:

while true

do
for n in .iso.*
do
["$Sn" = ".iso.opts"] && continue
beta=${n#.iso.}
[-r .Iso.S$beta] && continue
[-r .lock.S$beta] && sleep 10 && continue
lockfile -r0 .lock.Sbeta || continue
echo -n "S$Sbeta: " ‘date’
run—-isotherm S$beta
date
ls —-alF .Iso.S$beta
[-r .Iso.$beta] && rm —-f .lock.Sbeta
continue 2
done
break
done

The details, in particular the sleep N, are particular to my
#+ application, but the general pattern is:

while true

do
for job in {pattern}
do
{job already done or running} && continue
{mark job as running, do job, mark job as done}
continue 2
done
break # Or something like “sleep 600' to avoid termination.
done

This way the script will stop only when there are no more jobs to do
#+ (including jobs that were added during runtime). Through the use

#+ of appropriate lockfiles it can be run on several machines

#+ concurrently without duplication of calculations [which run a couple
#+ of hours in my case, so I really want to avoid this]. Also, as search
#+ always starts again from the beginning, one can encode priorities in
#+ the file names. Of course, one could also do this without ‘continue 2°',
#+ but then one would have to actually check whether or not some job

#+ was done (so that we should immediately look for the next job) or not
#+ (in which case we terminate or sleep for a long time before checking
#+ for a new job).

<1> The continue N construct is difficult to understand and tricky to use in any
meaningful context. It is probably best avoided.

11.4. Testing and Branching

The case and select constructs are technically not loops, since they do not iterate the execution of a code
block. Like loops, however, they direct program flow according to conditions at the top or bottom of the

block.

Chapter 11. Loops and Branches

150

Advanced Bash-Scripting Guide

Controlling program flow in a code block

case (in) / esac
The case construct is the shell scripting analog to switch in C/C++. It permits branching to one of a
number of code blocks, depending on condition tests. It serves as a kind of shorthand for multiple
if/then/else statements and is an appropriate tool for creating menus.

case "$variable" in

"$conditionl")
command...

L]

"$condition2")
command...

L]

esac

¢ Quoting the variables is not mandatory, since word splitting does not take
place.

¢ Each test line ends with a right paren).

¢ Each condition block ends with a double semicolon ;;.

O If a condition tests true, then the associated commands execute and the case
block terminates.

O The entire case block ends with an esac (case spelled backwards).

Example 11-24. Using case

#!/bin/bash
Testing ranges of characters.

echo; echo "Hit a key, then hit return."
read Keypress

case "SKeypress" in

[[:1lower:]]) echo "Lowercase letter";;

[[:upper:]]) echo "Uppercase letter";;

[0-9]) echo "Digit";;

€5) echo "Punctuation, whitespace, or other";;
esac # Allows ranges of characters in [square brackets],

#+ or POSIX ranges in [[double square brackets.

In the first version of this example,
+ the tests for lowercase and uppercase characters were
+ [a-z] and [A-Z].
This no longer works in certain locales and/or Linux distros.
POSIX is more portable.
Thanks to Frank Wang for pointing this out.

Exercise:

As the script stands, it accepts a single keystroke, then terminates.

Chapter 11. Loops and Branches 151

Advanced Bash-Scripting Guide
Change the script so it accepts repeated input,
#+ reports on each keystroke, and terminates only when "X" is hit.

Hint: enclose everything in a "while" loop.

exit O
Example 11-25. Creating menus using case

#!/bin/bash
Crude address database

clear # Clear the screen.

echo " Contact List"

echo " = @ ———— —— "

echo "Choose one of the following persons:"
echo

echo "[E]vans, Roland"

echo "[J]ones, Mildred"

echo "[S]mith, Julie"

echo "[Z]ane, Morris"

echo

read person

case "Sperson" in
Note variable is quoted.

"E" | "e")

Accept upper or lowercase input.
echo

echo "Roland Evans"

echo "4321 Flash Dr."

echo "Hardscrabble, CO 80753"

echo " (303) 734-9874"

echo " (303) 734-9892 fax"

echo "revans@zzy.net"

echo "Business partner & old friend"
rs

Note double semicolon to terminate each option.

gt "3t)

echo

echo "Mildred Jones"

echo "249 E. 7th St., Apt. 19"
echo "New York, NY 10009"

echo " (212) 533-2814"

echo " (212) 533-9972 fax"

echo "milliej@loisaida.com"
echo "Ex-girlfriend"

echo "Birthday: Feb. 11"

i
Add info for Smith & Zane later.
*)
Default option.
Empty input (hitting RETURN) fits here, too.

echo
echo "Not yet in database."

Chapter 11. Loops and Branches 152

Advanced Bash-Scripting Guide

esac
echo

Exercise:

Change the script so it accepts multiple inputs,

#+ instead of terminating after displaying just one address.

exit O

An exceptionally clever use of case involves testing for command-line parameters.

#! /bin/bash

case "$1" in
"") echo "Usage: ${0##*/} <filename>"; exit S$SE_PARANM; ;
No command-line parameters,
or first parameter empty.
Note that ${0##*/} is S${var#f#pattern} param substitution.
Net result is $0.

—*) FILENAME=./$1;; # If filename passed as argument ($1)
#+ starts with a dash,
#+ replace it with ./$1
#+ so further commands don't interpret it
#+ as an option.

*) FILENAME=S1;; # Otherwise, $1.
esac

Here is an more straightforward example of command-line parameter handling:

#! /bin/bash

while [$# -gt 0]; do # Until you run out of parameters
case "$1" in
—d|-—debug)
"-d" or "--debug" parameter?
DEBUG=1
i
-c|—--conf)
CONFFILE="S2"
shift
if [! —f SCONFFILE]; then
echo "Error: Supplied file doesn't exist!"
exit $SE_CONFFILE # File not found error.
fi
i
esac
shift # Check next set of parameters.
done

From Stefano Falsetto's "Log2Rot" script,
#+ part of his "rottlog" package.
Used with permission.

Example 11-26. Using command substitution to generate the case variable

Chapter 11. Loops and Branches 153

Advanced Bash-Scripting Guide

#!/bin/bash
case-cmd.sh: Using command substitution to generate a "case" variable.

case $(arch) in # "arch" returns machine architecture.
Equivalent to 'uname -m'

1386) echo "80386-based machine";;
1486) echo "80486-based machine";;
1586) echo "Pentium-based machine";;
1686) echo "Pentium2+-based machine";;
%5) echo "Other type of machine";;
esac
exit O

A case construct can filter strings for globbing patterns.

Example 11-27. Simple string matching

#!/bin/bash
match-string.sh: Simple string matching.

match_string ()
{ # Exact string match.
MATCH=0
E_NOMATCH=90
PARAMS=2 # Function requires 2 arguments.
E_BAD_PARAMS=91

[$# —eq S$PARAMS] || return S$E_BAD_PARAMS
case "$1" in
"$2") return SMATCH; ;

%) return S$E_NOMATCH; ;
esac

a=one
b=two
c=three
d=two

match_string $a # wrong number of parameters
echo $7? # 91

match_string $a $b # no match
echo $7? # 90

match_string $b $d # match
echo $? # 0

exit O

Example 11-28. Checking for alphabetic input

Chapter 11. Loops and Branches

154

Advanced Bash-Scripting Guide

#!/bin/bash
isalpha.sh: Using a "case" structure to filter a string.

SUCCESS=0
FAILURE=-1
isalpha () # Tests whether *first character* of input string is alphabetic.
{
if [-z "s1"] # No argument passed?
then
return SFAILURE
fi

case "$1" in
[a—zA-Z]*) return S$SUCCESS;; # Begins with a letter?

w3) return SFAILURE;;
esac
} # Compare this with "isalpha ()" function in C.
isalpha2 () # Tests whether *entire string* is alphabetic.
{

[$# —eq 1] || return $SFAILURE

case $1 in
[la-zA-Z]|"") return SFAILURE;;
*) return S$SSUCCESS;;

esac
}
isdigit () # Tests whether *entire string* is numerical.
{ # In other words, tests for integer variable.
[$# —eq 1] || return $SFAILURE

case $1 in
[10-9]1|"") return SFAILURE;;
*) return S$SUCCESS;;
esac

check_var () # Front-end to isalpha ().

{

if isalpha "$@"

then
echo "\"$*\" begins with an alpha character."
if isalpha2 "s@"

then # No point in testing if first char is non-alpha.
echo "\"$*\" contains only alpha characters."
else
echo "\"$*\" contains at least one non-alpha character."
fi
else

echo "\"$*\" begins with a non-alpha character."
Also "non-alpha" if no argument passed.
fi

echo

Chapter 11. Loops and Branches 155

select

Advanced Bash-Scripting Guide

digit_check () # Front-end to isdigit ().
{
if isdigit "g@"
then
echo "\"$*\" contains only digits [0 - 9]."
else
echo "\"$*\" has at least one non-digit character."
fi

echo

a=23skidoo

b=H311lo

c=-What?

d=What?

e="echo $b° # Command substitution.
f=AbcDef

g=27234

h=27a34

i=27.34

check_var $a
check_var $b
check_var $c
check_var $d
check_var $e
check_var $f
check_var # No argument passed, so what happens?
#

digit_check $g
digit_check $h
digit_check $i

exit 0 # Script improved by S.C.

Exercise:

Write an 'isfloat ()' function that tests for floating point numbers.
Hint: The function duplicates 'isdigit ()',

#+ but adds a test for a mandatory decimal point.
The select construct, adopted from the Korn Shell, is yet another tool for building menus.

select variable [in 1ist]
do

command...

break
done

This prompts the user to enter one of the choices presented in the variable list. Note that select uses
the $PS3 prompt (4 ?) by default, but this may be changed.

Example 11-29. Creating menus using select

Chapter 11. Loops and Branches 156

Advanced Bash-Scripting Guide
#!/bin/bash

PS3='Choose your favorite vegetable: ' # Sets the prompt string.
Otherwise it defaults to #7?

echo

select vegetable in "beans" "carrots" "potatoes" "onions" "rutabagas"
do

echo

echo "Your favorite veggie is S$Svegetable."

echo "Yuck!"

echo

break # What happens if there is no 'break' here?
done

exit
Exercise:

Fix this script to accept user input not specified in

#+ the "select" statement.

For example, if the user inputs "peas,"

#+ the script would respond "Sorry. That is not on the menu."

If in list is omitted, then select uses the list of command line arguments ($@) passed to the script
or the function containing the select construct.

Compare this to the behavior of a

for variable [in 1ist]

construct with the in 1ist omitted.

Example 11-30. Creating menus using select in a function

#!/bin/bash
PS3="'Choose your favorite vegetable: '
echo

choice_of ()
{
select vegetable
[in list] omitted, so 'select' uses arguments passed to function.
do
echo
echo "Your favorite veggie is S$Svegetable."
echo "Yuck!"
echo
break
done

}

choice_of beans rice carrots radishes tomatoes spinach
S$1 $2 $3 $4 $5 $6
passed to choice_of () function

Chapter 11. Loops and Branches 157

Advanced Bash-Scripting Guide

exit O

See also Example 36-3.

Chapter 11. Loops and Branches 158

Chapter 12. Command Substitution

Command substitution reassigns the output of a command [49] or even multiple commands; it literally plugs
the command output into another context. [S0

The classic form of command substitution uses backquotes ("..."). Commands within backquotes (backticks)
generate command-line text.

script_name="basename $0°

echo "The name of this script is $script_name."

The output of commands can be used as arguments to another command, to set a variable, and even for
generating the argument list in a for loop.

rm "cat filename’ # "filename" contains a list of files to delete.
#

S. C. points out that "arg list too long" error might result.

Better is xargs rm —— < filename

(—— covers those cases where "filename" begins with a "-")

textfile_listing="1ls *.txt’
Variable contains names of all *.txt files in current working directory.
echo $textfile_ listing

textfile_listing2=$(ls *.txt) # The alternative form of command substitution.
echo $textfile_ listing2

Same result.

A possible problem with putting a list of files into a single string
is that a newline may creep in.

A safer way to assign a list of files to a parameter is with an array.
shopt -s nullglob # If no match, filename expands to nothing.

#
#
#
#
#
textfile_listing=(*.txt)
#

#

Thanks, S.C.

&) Command substitution invokes a subshell.

<1> Command substitution may result in word splitting.

COMMAND ‘“echo a b’ # 2 args: a and b
COMMAND "‘echo a b " # 1 arg: "a b"
COMMAND " echo’ # no arg

COMMAND "'echo™" # one empty arg

Thanks, S.C.

Even when there is no word splitting, command substitution can remove trailing newlines.

cd "‘pwd'" # This should always work.
However...

Chapter 12. Command Substitution 159

Advanced Bash-Scripting Guide

mkdir 'dir with trailing newline
A\l

cd 'dir with trailing newline
A\l

cd "'pwd' " # Error message:
bash: cd: /tmp/file with trailing newline: No such file or directory

cd "SPWD" # Works fine.
old_tty_setting=$(stty -g) # Save old terminal setting.
echo "Hit a key "
stty —icanon —echo # Disable "canonical" mode for terminal.
Also, disable *local* echo.
key=$ (dd bs=1 count=1 2> /dev/null) # Using 'dd' to get a keypress.
stty "Sold_tty_setting" # Restore old setting.
echo "You hit ${#key} key." # S${#variable} = number of characters in S$Svariable
#

Hit any key except RETURN, and the output is "You hit 1 key."
Hit RETURN, and it's "You hit 0 key."

The newline gets eaten in the command substitution.

#Code snippet by Stéphane Chazelas.

<1 Using echo to output an unquoted variable set with command substitution removes trailing newlines
characters from the output of the reassigned command(s). This can cause unpleasant surprises.

dir_listing="1ls -1°
echo $dir_listing # unquoted

Expecting a nicely ordered directory listing.
However, what you get is:
total 3 -rw-rw-r—- 1 bozo bozo 30 May 13 17:15 1l.txt -rw-rw-r-- 1 bozo

bozo 51 May 15 20:57 t2.sh -rwxr-xr-x 1 bozo bozo 217 Mar 5 21:13 wi.sh

The newlines disappeared.

echo "$dir_listing" # quoted

—rw-rw-r—— 1 bozo 30 May 13 17:15 1l.txt
—rw-rw-r—— 1 bozo 51 May 15 20:57 t2.sh
—IrwWXr—-xr-x 1 bozo 217 Mar 5 21:13 wi.sh

Command substitution even permits setting a variable to the contents of a file, using either redirection or the
cat command.

variablel="<filel"
variable2="cat file2"

Set "variablel" to contents of "filel".
Set "variable2" to contents of "file2".
This, however, forks a new process,
+ so the line of code executes slower than the above version.

H o

Note that the variables may contain embedded whitespace,
#+ or even (horrors), control characters.

Chapter 12. Command Substitution 160

Advanced Bash-Scripting Guide

It is not necessary to explicitly assign a variable.
echo "° <$S0O°" # Echoes the script itself to stdout.

Excerpts from system file, /etc/rc.d/rc.sysinit
#+ (on a Red Hat Linux installation)

if [-f /fsckoptions]; then
fsckoptions="cat /fsckoptions®

#
#
if [-e "/proc/ide/${disk[$device]}/media"] ; then
hdmedia="cat /proc/ide/${disk[Sdevice]}/media’
fi
#
#
if [! -n ""uname -r | grep —— "-"""]; then
ktag=""cat /proc/version'"

fi
#
#
if [Susb = "1"]; then

sleep 5

mouseoutput="cat /proc/bus/usb/devices 2>/dev/null|grep -E "~I.*Cls=03.*Prot=02""

kbdoutput="cat /proc/bus/usb/devices 2>/dev/null|grep -E ""I.*Cls=03.*Prot=01""
fi

<1 Do not set a variable to the contents of a long text file unless you have a very good reason for doing so.
Do not set a variable to the contents of a binary file, even as a joke.

Example 12-1. Stupid script tricks

#!/bin/bash

stupid-script-tricks.sh: Don't try this at home, folks.

From "Stupid Script Tricks," Volume I.

dangerous_variable="cat /boot/vmlinuz’ # The compressed Linux kernel itself.
echo "string-length of \$dangerous_variable = ${#dangerous_variable}"

string-length of $dangerous_variable = 794151

(Does not give same count as 'wc -c /boot/vmlinuz'.)

echo "S$dangerous_variable"

Don't try this! It would hang the script.

The document author is aware of no useful applications for

#+ setting a variable to the contents of a binary file.

exit O

Chapter 12. Command Substitution 161

Advanced Bash-Scripting Guide

Notice that a buffer overrun does not occur. This is one instance where an interpreted language, such as
Bash, provides more protection from programmer mistakes than a compiled language.

Command substitution permits setting a variable to the output of a loop. The key to this is grabbing the output
of an echo command within the loop.

Example 12-2. Generating a variable from a loop

#!/bin/bash
csubloop.sh: Setting a variable to the output of a loop.

variablel="for i in 1 2 3 4 5
do

echo —n "$i" # The 'echo' command is critical
done’ #+ to command substitution here.

echo "variablel = $variablel" # variablel = 12345

1i=0

variable2="while ["$i" -1t 10]

do
echo -n "$i" # Again, the necessary 'echo'.
let "1 += 1" # Increment.

done”

echo "variable2 = S$variable2" # variable2 = 0123456789

Demonstrates that it's possible to embed a loop
#+ within a variable declaration.

exit O

Command substitution makes it possible to extend the toolset available to Bash. It is simply a matter of

writing a program or script that outputs to stdout (like a well-behaved UNIX tool should) and assigning
that output to a variable.

#include <stdio.h>
/* "Hello, world." C program */

int main ()

{
printf("Hello, world.\n");
return (0);

}
bash$ gcec -o hello hello.c

#!/bin/bash
hello.sh

greeting="./hello"’
echo $greeting

Chapter 12. Command Substitution 162

Advanced Bash-Scripting Guide

bash$ sh hello.sh
Hello, world.

&) The $(...) form has superseded backticks for command substitution.

output=$(sed -n /"$1"/p $file) # From "grp.sh" example.

Setting a variable to the contents of a text file.
File_contentsl=$(cat $filel)
File_contents2=$(<$file2) # Bash permits this also.

The $(...) form of command substitution treats a double backslash in a different way than "...".

bash$ echo “echo \\°

bashS echo $(echo \\)
\

The $(...) form of command substitution permits nesting. [51]

word_count=$(wc -w $(echo * | awk '{print $8}'))

Or, for something a bit more elaborate . . .

Example 12-3. Finding anagrams

#!/bin/bash
agram?2.sh
Example of nested command substitution.

Uses "anagram" utility

#+ that is part of the author's "yawl" word list package.
http://ibiblio.org/pub/Linux/libs/yawl-0.3.2.tar.gz

http://bash.neuralshortcircuit.com/yawl-0.3.2.tar.gz

E_NOARGS=66
E_BADARG=67

MINLEN=7
if [-z "S1"]
then
echo "Usage $0 LETTERSET"
exit $E_NOARGS # Script needs a command-line argument.
elif [${#1} -1t SMINLEN]
then

echo "Argument must have at least S$SMINLEN letters."
exit S$E_BADARG

fi

FILTER='....... ! # Must have at least 7 letters.
1234567

Anagrams=($(echo $(anagram $1 | grep SFILTER)))

S ($(nested command sub.))

Chapter 12. Command Substitution

163

Advanced Bash-Scripting Guide

(array assignment)
echo

echo "S${#Anagrams[*]} 7+ letter anagrams found"
echo

First anagram.
Second anagram.
Etc.

echo ${Anagrams[0]
echo ${Anagrams([1]

}
}

echo "${Anagrams[*]}" # To list all the anagrams in a single line .

Look ahead to the "Arrays" chapter for enlightenment on
#+ what's going on here.

See also the agram.sh script for an example of anagram finding.

exit $°?

Examples of command substitution in shell scripts:

. Example 11-7
. Example 11-26
. Example 9-16
. Example 16-3
. Example 16-22
. Example 16-17
. Example 16-54
. Example 11-13
9. Example 11-10
10. Example 16-32
11. Example 20-8
12. Example A-16
13. Example 29-3
14. Example 16-47
15. Example 16-48
16. Example 16-49

01NN kW=

Chapter 12. Command Substitution 164

Chapter 13. Arithmetic Expansion

Arithmetic expansion provides a powerful tool for performing (integer) arithmetic operations in scripts.

Translating a string into a numerical expression is relatively straightforward using backticks, double
parentheses, or let.

Variations
Arithmetic expansion with backticks (often used in conjunction with expr)

z="expr $z + 3° # The 'expr' command performs the expansion.

Arithmetic expansion with double parentheses, and using let

The use of backticks (backquotes) in arithmetic expansion has been superseded by double parentheses

- ((...))and $((...)) -- and also by the very convenient let construction.
z=$(($z+3))
z=$ ((z+3)) # Also correct.

Within double parentheses,
#+ parameter dereferencing
#+ is optional.

S ((EXPRESSION)) is arithmetic expansion. # Not to be confused with
#+ command substitution.

You may also use operations within double parentheses without assignment.

n=0
echo "n = $n" # n=0
((n +=1)) # Increment.
((Sn += 1)) is incorrect!
echo "n = $n" # n=1
let z=z+3
let "z += 3" # Quotes permit the use of spaces in variable assignment.

The 'let' operator actually performs arithmetic evaluation,
#+ rather than expansion.

Examples of arithmetic expansion in scripts:

1. Example 16-9
2. Example 11-14
3. Example 27-1
4. Example 27-11
5. Example A-16

Chapter 13. Arithmetic Expansion

165

Chapter 14. Recess Time

This bizarre little intermission gives the reader a chance to relax and maybe laugh a bit.

Fellow Linux user, greetings! You are reading something which
will bring you luck and good fortune. Just e-mail a copy of
this document to 10 of your friends. Before making the copies,
send a 100-1line Bash script to the first person on the list
at the bottom of this letter. Then delete their name and add
yours to the bottom of the list.

Don't break the chain! Make the copies within 48 hours.
Wilfred P. of Brooklyn failed to send out his ten copies and
woke the next morning to find his job description changed

to "COBOL programmer." Howard L. of Newport News sent

out his ten copies and within a month had enough hardware

to build a 100-node Beowulf cluster dedicated to playing
Tuxracer. Amelia V. of Chicago laughed at this letter

and broke the chain. Shortly thereafter, a fire broke out

in her terminal and she now spends her days writing
documentation for MS Windows.

Don't break the chain! Send out your ten copies today!

Courtesy 'NIX "fortune cookies", with some alterations and many apologies

Chapter 14. Recess Time 166

Part 4. Commands

Mastering the commands on your Linux machine is an indispensable prelude to writing effective shell scripts.

This section covers the following commands:

e . (See also source)

® ac

e adduser

® agett

® agre

®ar

® arch

e at

e autoload

® awk (See also Using awk for math operations)
e badblocks

® banner

® basename

® batch

® bc

[]
 bind

* bison
® builtin
® bzgre
® bzip2
®cal

e caller
cat

5

3

® 6 6 o6 o o o o o o o o o o o
l
=
=
O
O
=

o
o
c.
=
=i
=3

e comm
e command
e compgen

O

Part 4. Commands 167

Advanced Bash-Scripting Guide

e complete
® compress
® coproc
*cp

® cpio

® cron

® crypt

e csplit
®cu

e cut

* date

e dc

e dd

e debugfs
e declare
e depmod
o df

e dialo

o diff

o diff3

e diffstat
o di

e dirname
® dirs

enable
enscript

® 6 6 o o o o o o ©o ©°o o o o o o o
(]
l
=
]

exit (Related topic: exit status)
e expand
® export
o EXpr
* factor
e false
e fdformat
e fdisk
of
e fore
e file

Part 4. Commands 168

Advanced Bash-Scripting Guide

® find

e finger

® flex

® flock

* fmt

e fold

® free

® fsck

o ft

* fuser

e getfacl

® getopt

® getopts

® gettext

® oeft

® gnome-mount
® gre

e oroff

¢ groupmod
e groups (Related topic: the SGROUPS variable)
*gs

L VA

® halt

® hash

e hdparm

® head

® hel

® hexdum
® host

® hostid

e hostname (Related topic: the SHOSTNAME variable)
® hwclock
® iconv

¢ id (Related topic: the $UID variable)
e ifconfi

¢ info

e infocm

® init

e insmod

e install
°ip

e ipcalc

e iwconfi

® jobs

® join

® jot

° kill

® killall

® last

e Jastcomm
e Jastlo

Part 4. Commands 169

Advanced Bash-Scripting Guide

—
(=N
(oW

—
o3
4
&

-
il
=

[] [] [] [] []
= &
Q|><

[]
—
=

e Jocate

e Jockfile
e Jogger

e Jogname
¢ Jogout

e Jogrotate
® look

e Josetu
o]

ols

e [sdev

e [smod

® Isof
® [spci
e [susb
e [trace

[]
I§
[><

® ¢ o 0 0 0 0 0 0 o o
o
=
=
]

e mdSsum

® merge

® mes

® mimencode
e mkbootdisk
e mkdir

e mke2fs

¢ mkfifo

e mkisofs

e mknod

® mkswa

e mktem

* mmencode
¢ modinfo

e modprobe
® more

e mount

Part 4. Commands 170

Advanced Bash-Scripting Guide

* msgfmt
* mv

®nc

® netconfi
® pnetstat
® new

® nice
*nl

¢ nm

® Nma;

® nohu

¢ nslooku
® objdum;
*od

® openssl
® passwd
® paste

e patch (Related topic: diff)
e pathchk
® pax

¢ pgrep

° Im’

® pin

® pkill

* popd

¢ pr

® printenv
e printf

¢ procinfo
®ps

® pstree

® ptx

¢ pushd

¢ pwd (Related topic: the $PWD variable)
® quota

Part 4. Commands 171

Advanced Bash-Scripting Guide

® rpm2cpio
® rsh

® rsync

¢ runlevel
® run-parts
®Ix

1z

® sar

® scp

® script

o sdiff
®sed

¢ seq

® service

® set

e setfacl

® setquota
e setserial
® setterm
e shalsum
® shar

® shopt

® shred

¢ shutdown
® size

® skill

e slee

® slocate

® snice

72)
]
=
=

v

ource

| |2 |
EE

2
2
=

72}
=
o

=3

72}
=
=

C S
()
(¢

e 6 o o o
(I)I(I)(I)(I)(I)
ckelgiEE
(= =
o =

2

¢ sum

® suspend
e swapoff
® swapon
® sX

2

Part 4. Commands 172

Advanced Bash-Scripting Guide

® telinit

® telnet

e Tex

® fexexec

® time

® times

e tmpwatch
* top

® touch

* tput

e tr

e traceroute
® true

e tset

® tsort

o ity

e tune2fs

* type

® typeset

e ulimit

® umask

® umount

® uname

® unarc

® unarj

® uncompress
¢ unexpand
® uni

® units

® unlzma

® unrar

® unset

® uns

® unzi

® uptime

¢ usbmodules
e useradd

e userdel

e usermod
® users

® uslee

® uuc

¢ yudecode

Part 4. Commands 173

Advanced Bash-Scripting Guide

® yuencode
® uux

® vacation
* vdir

e vmstat

o vrf’

® wait

* wall

e watch
* we

* wget
e whatis
e whereis
e which
* who

e whoami
e whois
® write
® xargs
® yacc

¢ yes

® zcat

o zdiff

e zdum
® zegre
o zfore
® zore

® zip

Table of Contents
15. Internal Commands and Builtins
15.1. Job Control Commands

16. External Filters. Programs and Commands
16.1. Basic Commands

16.2. Complex Commands
16.3. Time / Date Commands
16.4. Text Processing Commands

16.5. File and Archiving Commands
16.6. Communications Commands

16.7. Terminal Control Commands
16.8. Math Commands
16.9. Miscellaneous Commands

17. System and Administrative Commands
17.1. Analyzing a System Script

Part 4. Commands

174

Chapter 15. Internal Commands and Builtins

A builtin is a command contained within the Bash tool set, literally built in. This is either for performance
reasons -- builtins execute faster than external commands, which usually require forking off [52] a separate
process -- or because a particular builtin needs direct access to the shell internals.

When a command or the shell itself initiates (or spawns) a new subprocess to carry out a task, this is called
forking. This new process is the child, and the process that forked it off is the parent. While the child
process is doing its work, the parent process is still executing.

Note that while a parent process gets the process ID of the child process, and can thus pass arguments to it,
the reverse is not true. This can create problems that are subtle and hard to track down.
Example 15-1. A script that spawns multiple instances of itself

#!/bin/bash
spawn.sh

PIDS=$ (pidof sh $0) # Process IDs of the various instances of this script.
P_array=(SPIDS) # Put them in an array (why?).

echo $PIDS # Show process IDs of parent and child processes.

let "instances = S${#P_array[*]} - 1" # Count elements, less 1.

Why subtract 1?2
echo "S$instances instance(s) of this script running."

echo "[Hit Ctl-C to exit.]"; echo

sleep 1 # Wait.

sh $0 # Play it again, Sam.

exit O # Not necessary; script will never get to here.
Why not?

After exiting with a Ctl-C,
#+ do all the spawned instances of the script die?
If so, why?

Be careful not to run this script too long.
It will eventually eat up too many system resources.

.

Is having a script spawn multiple instances of itself
#+ an advisable scripting technique.
Why or why not?

Generally, a Bash builtin does not fork a subprocess when it executes within a script. An external system
command or filter in a script usually will fork a subprocess.

A builtin may be a synonym to a system command of the same name, but Bash reimplements it internally. For
example, the Bash echo command is not the same as /bin/echo, although their behavior is almost
identical.

Chapter 15. Internal Commands and Builtins 175

Advanced Bash-Scripting Guide
#!/bin/bash

echo "This line uses the \"echo\" builtin."
/bin/echo "This line uses the /bin/echo system command."

A keyword is a reserved word, token or operator. Keywords have a special meaning to the shell, and indeed
are the building blocks of the shell's syntax. As examples, for, while, do, and ! are keywords. Similar to a
builtin, a keyword is hard-coded into Bash, but unlike a builtin, a keyword is not in itself a command, but a
subunit of a command construct. [53]

/0

echo
prints (to stdout) an expression or variable (see Example 4-1).

echo Hello
echo $a

An echo requires the —e option to print escaped characters. See Example 5-2.

Normally, each echo command prints a terminal newline, but the —n option suppresses this.

<) An echo can be used to feed a sequence of commands down a pipe.

if echo "SVAR" | grep —-g txt # if [[SVAR = *txt*]]
then

echo "S$VAR contains the substring sequence \"txt\""
fi

&) An echo, in combination with command substitution can set a variable.
a="echo "HELLO" | tr A-Z a-z

See also Example 16-22, Example 16-3, Example 16-47, and Example 16-48.
Be aware that echo “command” deletes any linefeeds that the output of command generates.

The $IES (internal field separator) variable normally contains \n (linefeed) as one of its set of
whitespace characters. Bash therefore splits the output of command at linefeeds into arguments to
echo. Then echo outputs these arguments, separated by spaces.

bash$ 1s -1 /usr/share/apps/kjezz/sounds
—YwW—r——r—-— 1 root root 1407 Nov 7 2000 reflect.au
—rW—r——r—— 1 root root 362 Nov 7 2000 seconds.au

bash$ echo “1ls -1 /usr/share/apps/kjezz/sounds’
total 40 -rw-r—--r——- 1 root root 716 Nov 7 2000 reflect.au -rw-r—--r—-—- 1 root root

So, how can we embed a linefeed within an echoed character string?

Embedding a linefeed?
echo "Why doesn't this string \n split on two lines?"
Doesn't split.

Chapter 15. Internal Commands and Builtins 176

printf

Advanced Bash-Scripting Guide

Let's try something else.
echo

echo $"A line of text containing

a linefeed."

Prints as two distinct lines (embedded linefeed) .
But, is the "$" variable prefix really necessary?

echo

echo "This string splits
on two lines."
No, the "S$" is not needed.

echo
echo w___ "
echo

echo -n $"Another line of text containing

a linefeed."

Prints as two distinct lines (embedded linefeed) .

Even the -n option fails to suppress the linefeed here.

echo
echo
eehe Vos=cscmso=o=o== "
echo
echo

However, the following doesn't work as expected.
Why not? Hint: Assignment to a variable.
stringl=$"Yet another line of text containing

a linefeed (maybe) ."

echo $stringl

Yet another line of text containing a linefeed (maybe).
+ ~

Linefeed becomes a space.

Thanks, Steve Parker, for pointing this out.

=) This command is a shell builtin, and not the same as /bin/echo, although its
behavior is similar.

bash$ type —-a echo
echo is a shell builtin
echo is /bin/echo

The printf, formatted print, command is an enhanced echo. It is a limited variant of the C language
printf () library function, and its syntax is somewhat different.

printf format-string... parameter...

This is the Bash builtin version of the /bin/printf or /usr/bin/printf command. See the
printf manpage (of the system command) for in-depth coverage.

Chapter 15. Internal Commands and Builtins 177

Advanced Bash-Scripting Guide

<1 Older versions of Bash may not support printf.

Example 15-2. printf in action

#!/bin/bash
printf demo

declare -r PI=3.14159265358979 # Read-only variable, i.e., a constant.
declare —-r DecimalConstant=31373

Messagel="Greetings, "
Message2="Earthling."

echo
printf "Pi to 2 decimal places = $1.2f" SPI
echo

printf "Pi to 9 decimal places = $1.9f" $SPI # It even rounds off correctly.

printf "\n" # Prints a line feed,
Equivalent to 'echo'

printf "Constant = \t%d\n" S$DecimalConstant # Inserts tab (\t).
printf "%s %s \n" $Messagel S$Message?

echo

#

Simulation of C function, sprintf().
Loading a variable with a formatted string.

echo

Pil2=$ (printf "$1.12f" $PI)
echo "Pi to 12 decimal places = $Pil2" # Roundoff error!

Msg="printf "%s %s \n" $Messagel S$Message2’
echo $Msg; echo $Msg

As it happens, the 'sprintf' function can now be accessed
#+ as a loadable module to Bash,
#+ but this is not portable.

exit O

Formatting error messages is a useful application of printf

E_BADDIR=85
var=nonexistent_directory

error ()
{
printf "$@" >g&2
Formats positional params passed, and sends them to stderr.
echo
exit $E_BADDIR

cd Svar || error $"Can't cd to %s." "Svar"

Chapter 15. Internal Commands and Builtins 178

read

Advanced Bash-Scripting Guide

Thanks, S.C.
See also Example 35-15.

"Reads" the value of a variable from stdin, that is, interactively fetches input from the keyboard.

The —a option lets read get array variables (see Example 27-6).

Example 15-3. Variable assignment, using read

#!/bin/bash
"Reading" variables.

echo —-n "Enter the value of variable 'varl': "
The -n option to echo suppresses newline.

read varl
Note no '$' in front of varl, since it is being set.

echo "varl = Svarl"

echo

A single 'read' statement can set multiple variables.
echo —-n "Enter the values of variables 'var2' and 'var3' "

echo =n " (separated by a space or tab): "
read var2 var3
echo "var2 = $var?2 var3 = $var3"

If you input only one value,
#+ the other variable(s) will remain unset (null).

exit O

A read without an associated variable assigns its input to the dedicated variable SREPLY.

Example 15-4. What happens when read has no variable

#!/bin/bash
read-novar.sh

echo

echo -n "Enter a value:
read var

echo ll\llvar\ll = "$Va]’_‘" A\l

Everything as expected here.

i Se—oseeeeeeseesoeee e e ees #

echo

i e e e e e e e e e e e e e e e e e S #
echo —-n "Enter another value: "

read # No variable supplied for 'read', therefore...

#+ Input to 'read' assigned to default variable, S$REPLY.
var="SREPLY"
echo ll\llvar\" = "$Va]’.‘" "
This is equivalent to the first code block.

Chapter 15. Internal Commands and Builtins

179

Advanced Bash-Scripting Guide

echo
echo " "
echo

This example is similar to the "reply.sh" script.
However, this one shows that S$SREPLY is available
#+ even after a 'read' to a variable in the conventional way.

In some instances, you might wish to discard the first value read.
In such cases, simply ignore the $REPLY variable.

{ # Code block.

read # Line 1, to be discarded.
read line2 # Line 2, saved in variable.
} <S0
echo "Line 2 of this script is:"
echo "$line2" # # read-novar.sh
echo # #!/bin/bash line discarded.

See also the soundcard-on.sh script.

exit O
Normally, inputting a \ suppresses a newline during input to a read. The —r option causes an
inputted \ to be interpreted literally.

Example 15-5. Multi-line input to read

#!/bin/bash
echo

echo "Enter a string terminated by a \\, then press <ENTER>."
echo "Then, enter a second string (no \\ this time), and again press <ENTER>."

read varl # The "\" suppresses the newline, when reading $varl.
first line \
second line

echo "varl = S$varl"

varl first line second line

For each line terminated by a "\"
#+ you get a prompt on the next line to continue feeding characters into varl.

echo; echo
echo "Enter another string terminated by a \\ , then press <ENTER>."
read -r var2 # The -r option causes the "\" to be read literally.

first line \

echo "var2 = $var2"
var?2 first line \

Chapter 15. Internal Commands and Builtins 180

Advanced Bash-Scripting Guide
Data entry terminates with the first <ENTER>.
echo

exit O

The read command has some interesting options that permit echoing a prompt and even reading
keystrokes without hitting ENTER.

Read a keypress without hitting ENTER.

read -s —nl -p "Hit a key " keypress
echo; echo "Keypress was "\"S$keypress\""."

—-s option means do not echo input.
—n N option means accept only N characters of input.
—-p option means echo the following prompt before reading input.

Using these options is tricky, since they need to be in the correct order.

The —n option to read also allows detection of the arrow keys and certain of the other unusual keys.

Example 15-6. Detecting the arrow keys

#!/bin/bash
arrow-detect.sh: Detects the arrow keys, and a few more.
Thank you, Sandro Magi, for showing me how.

Character codes generated by the keypresses.
arrowup="\[A"

arrowdown="\ [B'

arrowrt="\[C"

arrowleft="'\[D'

insert="\[2"

delete="\[3"

SUCCESS=0
OTHER=65

echo -n "Press a key... "
May need to also press ENTER if a key not listed above pressed.

read —-n3 key # Read 3 characters.

echo -n "S$key" | grep "Sarrowup" #Check if character code detected.
if ["$?" -eq S$SUCCESS]

then

echo "Up-arrow key pressed."
exit $SUCCESS

fi

echo -n "S$key" | grep "S$Sarrowdown"
if ["$?" —eq S$SUCCESS]

then

echo "Down—-arrow key pressed."
exit $SUCCESS
fi

Chapter 15. Internal Commands and Builtins 181

Advanced Bash-Scripting Guide

echo -n "S$key" | grep "Sarrowrt"
if ["$?" -eqg S$SUCCESS |
then

echo "Right-arrow key pressed."
exit S$SUCCESS

fi

echo -n "S$key" | grep "Sarrowleft"
if ["$?" -eg $SUCCESS]

then

echo "Left-arrow key pressed."
exit S$SUCCESS

fi

echo -n "S$key" | grep "Sinsert"
if ["$?" -eqg S$SUCCESS |

then

echo "\"Insert\" key pressed."
exit $SUCCESS

fi

echo -n "Skey" | grep "Sdelete"
if ["$?" -—-eqg S$SSUCCESS]

then

echo "\"Delete\" key pressed."
exit S$SUCCESS

fi

echo " Some other key pressed."

exit S$SOTHER

#

Mark Alexander came up with a simplified
#+ version of the above script (Thank you!).
It eliminates the need for grep.

#!/bin/bash

uparrow=$"'\x1b[A"
downarrow=$"'\x1b[B"'
leftarrow=$'\x1b[D"'
rightarrow=$'\x1b[C'

read -s —n3 -p "Hit an arrow key: " x

case "$x" in

Suparrow)
echo "You pressed up-arrow"
I

Sdownarrow)
echo "You pressed down-arrow"
I

Sleftarrow)
echo "You pressed left-arrow"
I

Srightarrow)
echo "You pressed right-arrow"

rr

Chapter 15. Internal Commands and Builtins

182

Advanced Bash-Scripting Guide
esac

exit $°7?

#

Antonio Macchi has a simpler alternative.
#!/bin/bash

while true

do
read -snl a
test "$Sa" == ‘echo -en "\e"' || continue
read -snl a
test "$a" == "[" || continue

read -snl
case "$a" in
A) echo "up";;
B) echo "down";;
C) echo "right";;
D) echo "left";;
esac
done

Q

#

Exercise:

1) Add detection of the "Home," "End," "PgUp," and "PgDn" keys.

&) The —n option to read will not detect the ENTER (newline) key.

The -t option to read permits timed input (see Example 9-4 and Example A-41).

The —u option takes the file descriptor of the target file.

The read command may also "read" its variable value from a file redirected to stdin. If the file
contains more than one line, only the first line is assigned to the variable. If read has more than one
parameter, then each of these variables gets assigned a successive whitespace-delineated string.
Caution!

Example 15-7. Using read with file redirection

#!/bin/bash

read varl <data-file
echo "varl = S$varl"
varl set to the entire first line of the input file "data-file"

read var2 var3 <data-file

echo "var2 = $var2 var3 = Svar3"

Note non-intuitive behavior of "read" here.

1) Rewinds back to the beginning of input file.

2) Each variable is now set to a corresponding string,

separated by whitespace, rather than to an entire line of text.

Chapter 15. Internal Commands and Builtins 183

Advanced Bash-Scripting Guide

3) The final variable gets the remainder of the line.

4) If there are more variables to be set than whitespace-terminated strings
on the first line of the file, then the excess variables remain empty.
echo o "

How to resolve the above problem with a loop:
while read line
do
echo "$line"
done <data-file
Thanks, Heiner Steven for pointing this out.

Use SIFS (Internal Field Separator variable) to split a line of input to
"read", if you do not want the default to be whitespace.

echo "List of all users:"

OIFS=$IFS; IFS=: # /etc/passwd uses ":" for field separator.
while read name passwd uid gid fullname ignore
do

echo "$name (S$fullname)"
done </etc/passwd # I/0 redirection.
IFS=SOIFS # Restore original S$IFS.
This code snippet also by Heiner Steven.

Setting the $IFS variable within the loop itself

#+ eliminates the need for storing the original S$IFS

#+ in a temporary variable.

Thanks, Dim Segebart, for pointing this out.

echo "--———-"—"+"—>"—"7"-—H—>""-"—"""—-"—"—""""———— "
echo "List of all users:"

while IFS=: read name passwd uid gid fullname ignore
do

echo "$name ($fullname)"
done </etc/passwd # I/0 redirection.

echo
echo "\SIFS still S$IFS"

exit O

B
~ Piping output to a read, using echo to set variables will fail.

Yet, piping the output of cat seems to work.

cat filel file2 |
while read line
do

echo $line

done

However, as Bjon Eriksson shows:

Chapter 15. Internal Commands and Builtins 184

Filesystem

cd

Advanced Bash-Scripting Guide

Example 15-8. Problems reading from a pipe

#!/bin/sh
readpipe.sh
This example contributed by Bjon Eriksson.

last=" (null)"
cat $0 |
while read line
do
echo "{$line}"
last=$1line
done

echo
echo "++++++++++++++++++++++"
printf "\nAll done, last: $last\n"

exit 0 # End of code.
(Partial) output of script follows.
The 'echo' supplies extra brackets.
o

./readpipe.sh

{#!/bin/sh}
{last="(null)"}

{cat SO [}
{while read line}
{do}

{echo "{S$line}"}

{last=$1line}

{done}

{printf "nAll done, last: S$lastn"}

All done, last: (null)

The variable (last) is set within the loop/subshell
but its value does not persist outside the loop.

The gendiff script, usually found in /usr/bin on many Linux distros, pipes the
output of find to a while read construct.

find $1 \(—name "*$2" -0 —name ".*$2" \) -print |

while read f; do

It is possible to paste text into the input field of a read (but not multiple lines!). See
Example A-38.

The familiar c¢d change directory command finds use in scripts where execution of a command
requires being in a specified directory.

Chapter 15. Internal Commands and Builtins 185

Advanced Bash-Scripting Guide

(cd /source/directory && tar cf — .) | (cd /dest/directory && tar xpvf -)
[from the previously cited example by Alan Cox]

The —P (physical) option to cd causes it to ignore symbolic links.
cd - changes to $OLDPWD, the previous working directory.

<1> The ed command does not function as expected when presented with two forward
slashes.

bash$ ed //
bash$ pwd
//

The output should, of course, be /. This is a problem both from the command-line and
in a script.
pwd
Print Working Directory. This gives the user's (or script's) current directory (see Example 15-9). The
effect is identical to reading the value of the builtin variable $PWD.
pushd, popd, dirs
This command set is a mechanism for bookmarking working directories, a means of moving back and
forth through directories in an orderly manner. A pushdown stack is used to keep track of directory
names. Options allow various manipulations of the directory stack.

pushd dir-name pushes the path dir—name onto the directory stack and simultaneously
changes the current working directory to di r—name

popd removes (pops) the top directory path name off the directory stack and simultaneously changes
the current working directory to that directory popped from the stack.

dirs lists the contents of the directory stack (compare this with the $DIRSTACK variable). A
successful pushd or popd will automatically invoke dirs.

Scripts that require various changes to the current working directory without hard-coding the
directory name changes can make good use of these commands. Note that the implicit $DIRSTACK
array variable, accessible from within a script, holds the contents of the directory stack.

Example 15-9. Changing the current working directory

#!/bin/bash

dirl=/usr/local
dir2=/var/spool

pushd $dirl
Will do an automatic 'dirs' (list directory stack to stdout).
echo "Now in directory “pwd ." # Uses back-quoted 'pwd'.

Now, do some stuff in directory 'dirl'.

pushd $dir2
echo "Now in directory “pwd ."

Chapter 15. Internal Commands and Builtins 186

Now, do some stuff in directory
echo "The top entry in the DIRSTACK array is $DIRSTACK."

popd

Advanced Bash-Scripting Guide

echo "Now back in directory “pwd ."

Now, do some more stuff in directory

popd

'dir2'.

'dirl'.

echo "Now back in original working directory "pwd ."

exit O

What happens if you don't 'popd' -- then exit the script?

Which directory do you end up in? Why?

Variables

let

The let command carries out arithmetic operations on variables. [54] In many cases, it functions as a
less complex version of expr.

Example 15-10. Letting let do arithmetic.

#!/bin/bash
echo

let a=11
let a=a+5

echo "11 + 5 = Sa"

let "a <<= 3"

echo "\"\$a\" (=16)
let "a /= 4"

echo "128 / 4 = $Sa"

let "a -= 5"
echo "32 - 5 = $Sa"

let "a *= 10"
echo "27 * 10 = sa"

let "a %= 8"
echo "270 modulo 8

make it more readable.

3n

an

gn

10"

an

Same as 'a=11"

Equivalent to let "a = a + 5"

(Double quotes and spaces

16

Equivalent to let "a = a <<

left-shifted 3 places = $a"

128

Equivalent to let "a = a /

32

Equivalent to let "a = a -

27

Equivalent to let "a = a *

270

Equivalent to let "a = a %
Sa (270 / 8 = 33, remainder

#

6

Does "let" permit C-style operators?

Yes, just as the

let a++
echo "6++ = Sa"
let a——
echo "7-—- = S$Sa"

Of course, ++a, etc.,

echo

((

#
#
#
#

)) double-parentheses construct does.

C-style (post)
6++ = 7

increment.

C-style decrement.
7,,

= 6

Chapter 15. Internal Commands and Builtins

also allowed

$a) n

187

Advanced Bash-Scripting Guide

Trinary operator.

Note that $a is 6, see above.
let "t = a<7?27:11" # True
echo st # 7

let a++
let "t = a<7?27:11" # False
echo St # 11
exit
eval
eval argl [arg2] ... [argN]

Combines the arguments in an expression or list of expressions and evaluates them. Any variables

within the expression are expanded. The net result is to convert a string into a command.

i) The eval command can be used for code generation from the command-line or within
a script.

bash$ command string="ps ax"
bash$ process="ps ax"

bash$ eval "$command string" | grep "$process"
26973 pts/3 R+ 0:00 grep —--color ps ax
26974 pts/3 R+ 0:00 ps ax

Each invocation of eval forces a re-evaluation of its arguments.

a='Sb'
b="Sc"
c=d
echo $a # Sb

First level.
eval echo $Sa # Sc

Second level.
eval eval echo $a # d

Third level.

Thank you, E. Choroba.

Example 15-11. Showing the effect of eval

#!/bin/bash
Exercising "eval"

y="eval 1ls -1° # Similar to y="1ls -1°

echo $y #+ but linefeeds removed because "echoed" variable is unquoted.
echo
echo "Sy" # Linefeeds preserved when variable is quoted.

echo; echo

Chapter 15. Internal Commands and Builtins

188

Advanced Bash-Scripting Guide

y="eval df"’ # Similar to y="df°’
echo Sy #+ but linefeeds removed.

When LF's not preserved, it may make it easier to parse output,
#+ using utilities such as "awk".

echo
echo " "
echo

eval "'seq 3 | sed -e 's/.*/echo var&=ABCDEFGHIJ/'""
varl=ABCDEFGHIJ
var2=ABCDEFGHIJ
var3=ABCDEFGHIJ

echo
echo " "
echo

Now, showing how to do something useful with "eval"
(Thank you, E. Choroba!)

version=3.4 # Can we split the version into major and minor
#+ part in one command?
echo "version = $version"
eval major=${version/./;minor=} # Replaces '.' in version by ';minor="'

The substitution yields '3; minor=4'
#+ so eval does minor=4, major=3
echo Major: S$major, minor: Sminor # Major: 3, minor: 4

Example 15-12. Using eval to select among variables

#!/bin/bash
arr—-choice.sh

Passing arguments to a function to select
#+ one particular variable out of a group.

arrO=(10 11 12 13 14 15)
arrl=(20 21 22 23 24 25)
arr2=(30 31 32 33 34 35)
0O 1 2 3 4 5 Element number (zero—indexed)

choose_array ()

{

eval array_member=\${arr${array_number} [element_number] }

A AAAAAAAAAAAA

Using eval to construct the name of a variable,
#+ in this particular case, an array name.

echo "Element S$element_number of array $array_number is S$array_member"
} # Function can be rewritten to take parameters.

array_number=0 # First array.
element_number=3

choose_array # 13
array_number=2 # Third array.

Chapter 15. Internal Commands and Builtins 189

Advanced Bash-Scripting Guide

element_number=4

choose_array #+ 34

array_number=3 # Null array (arr3 not allocated).
element_number=4

choose_array # (null)

Thank you, Antonio Macchi, for pointing this out.
Example 15-13. Echoing the command-line parameters

#!/bin/bash
echo—params.sh

Call this script with a few command-line parameters.
For example:

sh echo-params.sh first second third fourth fifth
params=S$# # Number of command-line parameters.
param=1 # Start at first command-line param.
while ["Sparam" -le "S$Sparams"]

do

echo —n "Command-line parameter "

echo -n \$$param # Gives only the *name* of variable.
ANA # $1, $2, $3, etc.
Why?
\$ escapes the first "$"
#+ so it echoes literally,
#+ and S$param dereferences "S$param"
#+ . . . as expected.
echo -n " ="
eval echo \$$param # Gives the *value* of variable.
ann # The "eval" forces the *evaluation*
#+ of \$$
#+ as an indirect variable reference.
((param ++)) # On to the next.
done
exit $°?
#
$ sh echo-params.sh first second third fourth fifth
Command-line parameter $1 = first
Command-line parameter $2 = second
Command-line parameter $3 = third
Command-line parameter $4 = fourth
Command-line parameter $5 = fifth

Example 15-14. Forcing a log-off

#!/bin/bash
Killing ppp to force a log-off.
For dialup connection, of course.

Script should be run as root user.

SERPORT=ttyS3

Chapter 15. Internal Commands and Builtins 190

Advanced Bash-Scripting Guide

Depending on the hardware and even the kernel version,
#+ the modem port on your machine may be different —--
#+ /dev/ttySl or /dev/ttyS2.

killppp="eval kill -9 ‘ps ax | awk '/ppp/ { print $1 }'""
£ == process ID of ppp ——————-

Skillppp # This variable is now a command.

The following operations must be done as root user.

chmod 666 /dev/$SERPORT # Restore r+w permissions, or else what?
Since doing a SIGKILL on ppp changed the permissions on the serial port,
#+ we restore permissions to previous state.

rm /var/lock/LCK..S$SSERPORT # Remove the serial port lock file. Why?
exit $7
Exercises:

1) Have script check whether root user is invoking it.

2) Do a check on whether the process to be killed

#+ is actually running before attempting to kill it.

3) Write an alternate version of this script based on 'fuser':
#+ if [fuser -s /dev/modem]; then

Example 15-15. A version of rot13

#!/bin/bash
A version of "rotl3" using 'eval'.
Compare to "rotl3.sh" example.

setvar_rot_13() # "rotl3" scrambling

{

local varname=$1 varvalue=$2

eval Svarname='S$ (echo "Svarvalue" | tr a-z n-za-m)'
}
setvar_rot_13 var "foobar" # Run "foobar" through rotl3.
echo S$var # sbbone
setvar_rot_13 var "Svar" # Run "sbbone" through rotl3.
Back to original variable.
echo S$var # foobar

This example by Stephane Chazelas.
Modified by document author.

exit O

The eval command occurs in the older version of indirect referencing.

eval var=\Svar

<1> The eval command can be risky, and normally should be avoided when there exists a
reasonable alternative. An eval $COMMANDS executes the contents of COMMANDS,

Chapter 15. Internal Commands and Builtins 191

Advanced Bash-Scripting Guide

which may contain such unpleasant surprises as rm -rf *. Running an eval on
unfamiliar code written by persons unknown is living dangerously.
set
The set command changes the value of internal script variables/options. One use for this is to toggle
option flags which help determine the behavior of the script. Another application for it is to reset the
positional parameters that a script sees as the result of a command (set "~ command’). The script
can then parse the fields of the command output.

Example 15-16. Using set with positional parameters

#!/bin/bash
ex34.sh
Script "set-test"

Invoke this script with three command-line parameters,
for example, "sh ex34.sh one two three".

echo

echo "Positional parameters before set \ uname -a\’ :"
echo "Command-line argument #1 = $1"

echo "Command-line argument #2 = $2"

echo "Command-line argument #3 = $3"

set ‘uname -a° # Sets the positional parameters to the output
of the command "~ uname -a’

echo

echo +++++

echo S_ # +++++

Flags set in script.

echo $- # hB

Anomalous behavior?
echo

echo "Positional parameters after set \ uname -a\’ :"
$1, $2, $3, etc. reinitialized to result of ‘uname -a’

echo "Field #1 of 'uname -a' = S$1"
echo "Field #2 of 'uname -a' = $2"
echo "Field #3 of 'uname -a' = $3"
echo \#\#\#

echo $_ # #44

echo

exit O

More fun with positional parameters.

Example 15-17. Reversing the positional parameters

#!/bin/bash
revposparams.sh: Reverse positional parameters.
Script by Dan Jacobson, with stylistic revisions by document author.

set a\ b c d\ e;
" A Spaces escaped

Chapter 15. Internal Commands and Builtins 192

Advanced Bash-Scripting Guide

~on Spaces not escaped

OIFS=S$IFS; IFS=:;

A Saving old IFS and setting new one.
echo

until [$# -eq 0]

do # Step through positional parameters.
echo "### k0O = "Sk"" # Before
k=$1:8k; # Append each pos param to loop variable.
A
echo "### k = "Sk"" # After
echo
shift;
done

set Sk # Set new positional parameters.

echo -
echo $# # Count of positional parameters.
echo -
echo
for i # Omitting the "in list" sets the variable —- i ——
#+ to the positional parameters.
do
echo $1 # Display new positional parameters.
done

IFS=SOIFS # Restore IFS.

Question:

Is it necessary to set an new IFS, internal field separator,

#+ in order for this script to work properly?

What happens if you don't? Try it.

And, why use the new IFS -- a colon —-- in line 17,
#+ to append to the loop variable?

What is the purpose of this?

exit O
$./revposparams.sh

k
k
k0 = a b
k

#H4
#H4

d e
©
a b

Invoking set without any options or arguments simply lists all the environmental and other variables

that have been initialized.

Chapter 15. Internal Commands and Builtins

193

Advanced Bash-Scripting Guide

bash$ set

AUTHORCOPY=/home/bozo/posts
BASH=/bin/bash
BASH_VERSION=$'2.05.8(1)-release'

XAUTHORITY=/home/bozo/.Xauthority
_=/etc/bashrc

variable22=abc

variable23=xzy

Using set with the —— option explicitly assigns the contents of a variable to the positional parameters.
If no variable follows the —— it unsets the positional parameters.

Example 15-18. Reassigning the positional parameters

#!/bin/bash
variable="one two three four five"

set —— S$variable
Sets positional parameters to the contents of "S$variable".

first_param=51

second_param=5$2

shift; shift # Shift past first two positional params.
shift 2 also works.

remaining_params="$*"

echo

echo "first parameter = S$first_param" # one
echo "second parameter = $second_param" # two
echo "remaining parameters = $Sremaining_params" # three four five
echo; echo

Again.

set -- S$Svariable

first_param=51

second_param=5$2

echo "first parameter = S$first_param" # one
echo "second parameter = S$second_param" # two
#

set ——

Unsets positional parameters if no variable specified.

first_param=51
second_param=5$2

echo "first parameter = $first_param" # (null value)
echo "second parameter = S$second_param" # (null value)
exit O

See also Example 11-2 and Example 16-56.
unset

The unset command deletes a shell variable, effectively setting it to null. Note that this command
does not affect positional parameters.

Chapter 15. Internal Commands and Builtins 194

Advanced Bash-Scripting Guide

bash$ unset PATH

bash$ echo $PATH

bash$

Example 15-19. "Unsetting'' a variable

#!/bin/bash
unset.sh: Unsetting a variable.

variable=hello # Initialized.

echo "variable = S$variable"

unset variable # Unset.
In this particular context,
#+ same effect as: variable=

echo " (unset) variable = S$variable" # S$Svariable is null.

if [-z "Svariable"] # Try a string-length test.

then

echo "\S$variable has zero length."
fi
exit O

=& In most contexts, an undeclared variable and one that has been unset are equivalent.
However, the _${parameter:-default} parameter substitution construct can distinguish
between the two.
export

The export [55] command makes available variables to all child processes of the running script or
shell. One important use of the export command is in startup files, to initialize and make accessible
environmental variables to subsequent user processes.

<1 Unfortunately, _there is no way to export variables back to the parent process, to the
process that called or invoked the script or shell.

Example 15-20. Using export to pass a variable to an embedded awk script

#!/bin/bash

Yet another version of the "column totaler" script (col-totaler.sh)
#+ that adds up a specified column (of numbers) in the target file.

This uses the environment to pass a script variable to 'awk'

#+ and places the awk script in a variable.

ARGS=2
E_WRONGARGS=85

if [$# -ne "SARGS"] # Check for proper number of command-line args.
then

echo "Usage: “basename $0° filename column-number"

exit S$E_WRONGARGS
fi

Chapter 15. Internal Commands and Builtins 195

Advanced Bash-Scripting Guide
filename=S$1
column_number=$2
#===== Same as original script, up to this point =====#

export column_number
Export column number to environment, so it's available for retrieval.

awkscript='{ total += SENVIRON["column_number"] }
END { print total }'
Yes, a variable can hold an awk script.

Now, run the awk script.
awk "Sawkscript" "S$filename"
Thanks, Stephane Chazelas.

exit O

i) It is possible to initialize and export variables in the same operation, as in export
varl=xxx.

However, as Greg Keraunen points out, in certain situations this may have a different
effect than setting a variable, then exporting it.

bash$ export var=(a b); echo ${var[0]}
(a b)

bash$ var=(a b); export var; echo ${var[0]}
a

declare, typeset
The declare and typeset commands specify and/or restrict properties of variables.
readonly
Same as declare -1, sets a variable as read-only, or, in effect, as a constant. Attempts to change the
variable fail with an error message. This is the shell analog of the C language const type qualifier.
getopts
This powerful tool parses command-line arguments passed to the script. This is the Bash analog of the
getopt external command and the geropt library function familiar to C programmers. It permits
passing and concatenating multiple options [56] and associated arguments to a script (for example
scriptname -abc -e /usr/local).

The getopts construct uses two implicit variables. SOPTIND is the argument pointer (OPTion INDex)
and SOPTARG (OPTion ARGument) the (optional) argument attached to an option. A colon following
the option name in the declaration tags that option as having an associated argument.

A getopts construct usually comes packaged in a while loop, which processes the options and
arguments one at a time, then increments the implicit SOP T IND variable to point to the next.

Chapter 15. Internal Commands and Builtins 196

Advanced Bash-Scripting Guide

F 1. The arguments passed from the command-line to the script must be preceded
by a dash (-). It is the prefixed — that lets getopts recognize command-line
arguments as options. In fact, getopts will not process arguments without the
prefixed —, and will terminate option processing at the first argument
encountered lacking them.

2. The getopts template differs slightly from the standard while loop, in that it
lacks condition brackets.

3. The getopts construct is a highly functional replacement for the traditional
getopt external command.

while getopts ":abcde:fg" Option
Initial declaration.
a, b, ¢, d, e, £, and g are the options (flags) expected.

The : after option 'e' shows it will have an argument passed with it.
do
case $Option in
a) # Do something with variable 'a'.

b) # Do something with variable 'b'.

e) # Do something with 'e', and also with S$SOPTARG,
which is the associated argument passed with option 'e'.

g) # Do something with variable 'g'.
esac
done
shift $((SOPTIND - 1))
Move argument pointer to next.

All this is not nearly as complicated as it looks <grin>.

Example 15-21. Using gefopts to read the options/arguments passed to a script

#!/bin/bash
ex33.sh: Exercising getopts and OPTIND
Script modified 10/09/03 at the suggestion of Bill Gradwohl.

Here we observe how 'getopts' processes command-line arguments to script.

The arguments are parsed as "options" (flags) and associated arguments.
Try invoking this script with:

'scriptname -mn'

'scriptname -og gOption' (gOption can be some arbitrary string.)
'scriptname —-gXXX -r'

#

'scriptname —qgr'

#+ — Unexpected result, takes "r" as the argument to option "g"
'scriptname -q -r'

#+ — Unexpected result, same as above

'scriptname -mnop -mnop' - Unexpected result

(OPTIND is unreliable at stating where an option came from.)

#

If an option expects an argument ("flag:"), then it will grab

#+ whatever is next on the command-line.

NO_ARGS=0
E_OPTERROR=85

if [$# —eqg "S$NO_ARGS"] # Script invoked with no command-line args?

Chapter 15. Internal Commands and Builtins 197

Advanced Bash-Scripting Guide

then
echo "Usage: "basename $0° options (-mnopgrs)"
exit S$E_OPTERROR # Exit and explain usage.
Usage: scriptname -options
Note: dash (-) necessary
fi

while getopts ":mnopg:rs" Option

do
case $Option in
m) echo "Scenario #1: option -m- [OPTIND=S${OPTIND}]";;
n | o) echo "Scenario #2: option -$Option- [OPTIND=S${OPTIND}]";;
o)) echo "Scenario #3: option -p- [OPTIND=S${OPTIND}]";;
a) echo "Scenario #4: option —g-\
with argument \"SOPTARG\" [OPTIND=S${OPTIND}]"; ;
Note that option 'g' must have an associated argument,
#+ otherwise it falls through to the default.
r | s) echo "Scenario #5: option -$Option-";;
w3) echo "Unimplemented option chosen.";; # Default.
esac
done

shift $((SOPTIND - 1))

Decrements the argument pointer so it points to next argument.

S$1 now references the first non-option item supplied on the command-line
#+ if one exists.

exit $°?

As Bill Gradwohl states,

"The getopts mechanism allows one to specify: scriptname -mnop -mnop
#+ Dbut there is no reliable way to differentiate what came

#+ from where by using OPTIND."
There are, however, workarounds.

Script Behavior

source, . (dot command)
This command, when invoked from the command-line, executes a script. Within a script, a source
file—name loads the file £ile—-name. Sourcing a file (dot-command) imports code into the script,
appending to the script (same effect as the #include directive in a C program). The net result is the
same as if the "sourced" lines of code were physically present in the body of the script. This is useful
in situations when multiple scripts use a common data file or function library.

Example 15-22. "Including' a data file

#!/bin/bash

data-file # Load a data file.
Same effect as "source data-file", but more portable.

The file "data-file" must be present in current working directory,
#+ since it is referred to by its 'basename'.

Now, reference some data from that file.

echo "variablel (from data—-file) = $variablel"

Chapter 15. Internal Commands and Builtins 198

Advanced Bash-Scripting Guide
echo "variable3 (from data-file) = Svariable3"

let "sum = S$variable2 + Svariabled"

echo "Sum of variable2 + variable4 (from data-file) = S$sum"
echo "messagel (from data-file) is \"S$messagel\""
Note: escaped quotes

print_message This is the message-print function in the data-file.

exit O

File data—-file for Example 15-22, above. Must be present in same directory.

This is a data file loaded by a script.
Files of this type may contain variables, functions, etc.
It may be loaded with a 'source' or '.' command by a shell script.

Let's initialize some variables.

variablel=22
variable2=474
variable3=5
variabled4=97

messagel="Hello, how are you?"
message2="Enough for now. Goodbye."

print_message ()
{

Echoes any message passed to it.

if [-z "S$1"]
then

return 1

Error, if argument missing.
fi

echo

until [-z "S$1"]
do
Step through arguments passed to function.
echo —n "$1"
Echo args one at a time, suppressing line feeds.
echo -n " "
Insert spaces between words.
shift
Next one.
done

echo

return 0

}
If the sourced file is itself an executable script, then it will run, then return control to the script that
called it. A sourced executable script may use a return for this purpose.

Arguments may be (optionally) passed to the sourced file as positional parameters.

Chapter 15. Internal Commands and Builtins 199

exit

Advanced Bash-Scripting Guide

source S$filename $argl arg2
It is even possible for a script to source itself, though this does not seem to have any practical
applications.

Example 15-23. A (useless) script that sources itself

#!/bin/bash
self-source.sh: a script sourcing itself "recursively."
From "Stupid Script Tricks," Volume II.

MAXPASSCNT=100 # Maximum number of execution passes.

echo -n "S$pass_count "
At first execution pass, this just echoes two blank spaces,
#+ since S$pass_count still uninitialized.

let "pass_count += 1"

Assumes the uninitialized variable $pass_count

#+ can be incremented the first time around.

This works with Bash and pdksh, but

#+ it relies on non-portable (and possibly dangerous) behavior.

Better would be to initialize $pass_count to 0 before incrementing.

while ["S$pass_count" -le $SMAXPASSCNT]
do
50 # Script "sources" itself, rather than calling itself.
./$0 (which would be true recursion) doesn't work here. Why?
done

What occurs here is not actually recursion,

#+ since the script effectively "expands" itself, i.e.,

#+ generates a new section of code

#+ with each pass through the 'while' loop',

with each 'source' in line 20.

#

Of course, the script interprets each newly 'sourced' "#!" line
#+ as a comment, and not as the start of a new script.

echo

exit O # The net effect is counting from 1 to 100.
Very impressive.

Exercise:

Write a script that uses this trick to actually do something useful.

Unconditionally terminates a script. [S7] The exit command may optionally take an integer argument,

which is returned to the shell as the exit status of the script. It is good practice to end all but the

simplest scripts with an exit O, indicating a successful run.

=& If a script terminates with an exit lacking an argument, the exit status of the script is
the exit status of the last command executed in the script, not counting the exit. This is
equivalent to an exit $?.

<& An exit command may also be used to terminate a subshell.

Chapter 15. Internal Commands and Builtins

200

exec

shopt

Advanced Bash-Scripting Guide

This shell builtin replaces the current process with a specified command. Normally, when the shell
encounters a command, it forks off a child process to actually execute the command. Using the exec
builtin, the shell does not fork, and the command exec'ed replaces the shell. When used in a script,
therefore, it forces an exit from the script when the exec'ed command terminates. [S8]

Example 15-24. Effects of exec

#!/bin/bash

exec echo "Exiting \"S$O0\"." # Exit from script here.

The following lines never execute.
echo "This echo will never echo."
exit 99 # This script will not exit here.
Check exit value after script terminates

#+ with an 'echo $?2'.
It will *not* be 99.

Example 15-25. A script that exec's itself

#!/bin/bash
self-exec.sh

Note: Set permissions on this script to 555 or 755,
then call it with ./self-exec.sh or sh ./self-exec.sh.

echo

echo "This line appears ONCE in the script, yet it keeps echoing."
echo "The PID of this instance of the script is still S."

Demonstrates that a subshell is not forked off.

echo " Hit Ctl-C to exit "
sleep 1

exec $0 # Spawns another instance of this same script

#+ that replaces the previous one.
echo "This line will never echo!" # Why not?

exit 99 # Will not exit here!
Exit code will not be 99!

An exec also serves to reassign file descriptors. For example, exec <zzz-file replaces stdin
with the file zzz-file.

& The —exec option to find is not the same as the exec shell builtin.

This command permits changing shell options on the fly (see Example 25-1 and Example 25-2). It
often appears in the Bash startup files, but also has its uses in scripts. Needs version 2 or later of Bash.

Chapter 15. Internal Commands and Builtins 201

Advanced Bash-Scripting Guide

shopt -s cdspell
Allows minor misspelling of directory names with 'cd'

cd /hpme # Oops! Mistyped '/home'.
pwd # /home
The shell corrected the misspelling.

caller
Putting a caller command inside a function echoes to st dout information about the caller of that
function.
#!/bin/bash
functionl ()
{
Inside functionl ().
caller O # Tell me about it.
}
functionl # Line 9 of script.
9 main test.sh
7 Line number that the function was called from.
AAAA Invoked from "main" part of script.
ANNAANN Name of calling script.
caller O # Has no effect because it's not inside a function.
A caller command can also return caller information from a script sourced within another script.
Analogous to a function, this is a "subroutine call."
You may find this command useful in debugging.
Commands
true
A command that returns a successful (zero) exit status, but does nothing else.
bash$ true
bash$ echo $?
0
Endless loop
while true # alias for ":"
do
operation-1
operation-2
operation-n
Need a way to break out of loop or script will hang.
done
false

A command that returns an unsuccessful exit status, but does nothing else.

bash$ false
bash$ echo $?
1

Chapter 15. Internal Commands and Builtins

202

Advanced Bash-Scripting Guide

Testing "false"

if false
then

echo "false evaluates \"true\""
else

echo "false evaluates \"false\""
fi

false evaluates "false"

Looping while "false" (null loop)

while false

do
The following code will not execute.
operation-1
operation-2

operation—-n
Nothing happens!
done

type [cmd]

Similar to the which external command, type cmd identifies "cmd." Unlike which, type is a Bash
builtin. The useful —a option to type identifies keywords and builtins, and also locates system
commands with identical names.

bash$ type '['

[is a shell builtin

bash$ type -a '['

[is a shell builtin
[is /usr/bin/|

bash$ type type
type is a shell builtin

The type command can be useful for testing whether a certain command exists.

hash [cmds]

bind

help

Records the path name of specified commands -- in the shell hash table [S9] -- so the shell or script
will not need to search the SPATH on subsequent calls to those commands. When hash is called with
no arguments, it simply lists the commands that have been hashed. The —r option resets the hash
table.

The bind builtin displays or modifies readline [60] key bindings.

Gets a short usage summary of a shell builtin. This is the counterpart to whatis, but for builtins. The
display of help information got a much-needed update in the version 4 release of Bash.

bash$ help exit

exit: exit [n]
Exit the shell with a status of N. If N is omitted, the exit status
is that of the last command executed.

Chapter 15. Internal Commands and Builtins 203

Advanced Bash-Scripting Guide
15.1. Job Control Commands

Certain of the following job control commands take a job identifier as an argument. See the table at end of the
chapter.

jobs
Lists the jobs running in the background, giving the job number. Not as useful as ps.
&) It is all too easy to confuse jobs and processes. Certain builtins, such as kill, disown,
and wait accept either a job number or a process number as an argument. The fg, bg
and jobs commands accept only a job number.
bash$ sleep 100 &
[1] 1384
bash $ jobs
[1]+ Running sleep 100 &
"1" is the job number (jobs are maintained by the current shell). "1384" is the PID or
process ID number (processes are maintained by the system). To kill this job/process,
either a kill %1 or a kill 1384 works.
Thanks, S.C.
disown
Remove job(s) from the shell's table of active jobs.
fg, bg
The fg command switches a job running in the background into the foreground. The bg command
restarts a suspended job, and runs it in the background. If no job number is specified, then the fg or bg
command acts upon the currently running job.
wait

Suspend script execution until all jobs running in background have terminated, or until the job number
or process ID specified as an option terminates. Returns the exit status of waited-for command.

You may use the wait command to prevent a script from exiting before a background job finishes
executing (this would create a dreaded orphan process).

Example 15-26. Waiting for a process to finish before proceeding

#!/bin/bash

ROOT_UID=0 # Only users with $UID 0 have root privileges.
E_NOTROOT=65
E_NOPARAMS=66

if ["SUID" -ne "SROOT_UID"]

then
echo "Must be root to run this script."
"Run along kid, it's past your bedtime."
exit $E_NOTROOT

fi

if [-z "$1"]
then

Chapter 15. Internal Commands and Builtins 204

Advanced Bash-Scripting Guide

echo "Usage: "basename $0° find-string"
exit S$E_NOPARAMS
fi

echo "Updating 'locate' database..."
echo "This may take a while."
updatedb /usr & # Must be run as root.

wait
Don't run the rest of the script until 'updatedb' finished.
You want the the database updated before looking up the file name.

locate $1
Without the 'wait' command, in the worse case scenario,

#+ the script would exit while 'updatedb' was still running,
#+ leaving it as an orphan process.

exit O
Optionally, wait can take a job identifier as an argument, for example, wait $1 or wait SPPID.
See the job id table.

i) Within a script, running a command in the background with an ampersand (&) may cause the script to har
~ ENTER is hit. This seems to occur with commands that write to st dout. It can be a major annoyance.

#!/bin/bash
test.sh

1ls -1 &
echo "Done."

bash$./test.sh

Done.
[bozo@localhost test-scripts]$ total 1
—YWXr—XIr—X 1 bozo bozo 34 Oct 11 15:09 test.sh

As Walter Brameld IV explains it:

As far as I can tell, such scripts don't actually hang. It ju
seems that they do because the background command writes text
the console after the prompt. The user gets the impression th
the prompt was never displayed. Here's the sequence of events

1. Script launches background command.

2. Script exits.

3. Shell displays the prompt.

4. Background command continues running and writing text to t
console.

5. Background command finishes.

6. User doesn't see a prompt at the bottom of the output, thi
is hanging.

Chapter 15. Internal Commands and Builtins 205

Advanced Bash-Scripting Guide

Placing a wait after the background command seems to remedy this.

#!/bin/bash

test.sh
1ls -1 &
echo "Done."
wait
bash$./test.sh
Done.
[bozo@localhost test-scripts]$ total 1
—YWXYr—Xr—X 1 bozo bozo 34 Oct 11 15:09 test.sh

Redirecting the output of the command to a file or even to /dev/null also takes care of this problem.

suspend

This has a similar effect to Control-Z, but it suspends the shell (the shell's parent process should

resume it at an appropriate time).
logout

Exit a login shell, optionally specifying an exit status.
times

Gives statistics on the system time elapsed when executing commands, in the following form:

|Om0.0205 0m0.020s |

This capability is of relatively limited value, since it is not common to profile and benchmark shell
scripts.

kill
Forcibly terminate a process by sending it an appropriate terminate signal (see Example 17-6).

Example 15-27. A script that kills itself

#!/bin/bash
self-destruct.sh

kill $$ # Script kills its own process here.
Recall that "$$" is the script's PID.

echo "This line will not echo."
Instead, the shell sends a "Terminated" message to stdout.

exit O # Normal exit? No!

After this script terminates prematurely,
#+ what exit status does it return?

#

sh self-destruct.sh

echo $?

143

143 = 128 + 15
TERM signal

H o H S S

&) kill -1 lists all the signals (as does the file /usr/include/asm/signal.h).
A kill -9is asure kill, which will usually terminate a process that stubbornly
refuses to die with a plain kill. Sometimes, a kill -15 works. A zombie process,

Chapter 15. Internal Commands and Builtins 206

Advanced Bash-Scripting Guide

that is, a child process that has terminated, but that the parent process has not (yet)
killed, cannot be killed by a logged-on user -- you can't kill something that is already
dead -- but init will generally clean it up sooner or later.

killall

The killall command kills a running process by name, rather than by process ID. If there are multiple

instances of a particular command running, then doing a killall on that command will terminate them
all.

&) This refers to the killall command in /usr/bin, not the killall script in
/etc/rc.d/init.d.
command

The command directive disables aliases and functions for the command immediately following it.

bash$ command 1ls

&) This is one of three shell directives that effect script command processing. The others
are builtin and enable.

builtin
Invoking builtin BUILTIN_COMMAND runs the command BUILTIN_COMMAND as a shell
builtin, temporarily disabling both functions and external system commands with the same name.
enable
This either enables or disables a shell builtin command. As an example, enable -n kill disables

the shell builtin kill, so that when Bash subsequently encounters kill, it invokes the external command
/bin/kill.

The —a option to enable lists all the shell builtins, indicating whether or not they are enabled. The — £
filename option lets enable load a builtin as a shared library (DLL) module from a properly
compiled object file. [61].

autoload
This is a port to Bash of the ksh autoloader. With autoload in place, a function with an autoload
declaration will load from an external file at its first invocation. [62] This saves system resources.

Note that autoload is not a part of the core Bash installation. It needs to be loaded in with enable
—f (see above).

Table 15-1. Job identifiers

Notation [Meaning

$N Job number [N]

%S Invocation (command-line) of job begins with string S

%$?S Invocation (command-line) of job contains within it string S

%% "current” job (last job stopped in foreground or started in background)
%+ "current” job (last job stopped in foreground or started in background)
%— Last job

S Last background process

Chapter 15. Internal Commands and Builtins 207

Advanced Bash-Scripting Guide

Chapter 15. Internal Commands and Builtins 208

Chapter 16. External Filters, Programs and
Commands

Standard UNIX commands make shell scripts more versatile. The power of scripts comes from coupling
system commands and shell directives with simple programming constructs.

16.1. Basic Commands
The first commands a novice learns

Is
The basic file "list" command. It is all too easy to underestimate the power of this humble command.
For example, using the —R, recursive option, Is provides a tree-like listing of a directory structure.
Other useful options are -3, sort listing by file size, —t, sort by file modification time, —b, show
escape characters, and —1, show file inodes (see Example 16-4).
i) The Is command returns a non-zero exit status when attempting to list a non-existent
file.

bash$ 1ls abc
ls: abc: No such file or directory

bash$ echo $?
2

Example 16-1. Using Is to create a table of contents for burning a CDR disk

#!/bin/bash
ex40.sh (burn-cd.sh)
Script to automate burning a CDR.

SPEED=10 # May use higher speed if your hardware supports it.

IMAGEFILE=cdimage.iso

CONTENTSFILE=contents

DEVICE=/dev/cdrom For older versions of cdrecord

DEVICE="1,0,0"

DEFAULTDIR=/opt # This is the directory containing the data to be burned.
Make sure it exists.
Exercise: Add a test for this.

Uses Joerg Schilling's "cdrecord" package:
http://www.fokus.fhg.de/usr/schilling/cdrecord.html

If this script invoked as an ordinary user, may need to suid cdrecord
#+ chmod u+s /usr/bin/cdrecord, as root.
Of course, this creates a security hole, though a relatively minor one.

if [-z "Ss1")
then
IMAGE_DIRECTORY=$DEFAULTDIR
Default directory, if not specified on command-line.

Chapter 16. External Filters, Programs and Commands 209

cat, tac

rev

Advanced Bash-Scripting Guide

else
IMAGE_DIRECTORY=S1
fi

Create a "table of contents" file.

ls -1RF SIMAGE_DIRECTORY > S$IMAGE_DIRECTORY/SCONTENTSFILE

The "1" option gives a "long" file listing.

The "R" option makes the listing recursive.

The "F" option marks the file types (directories get a trailing /).
echo "Creating table of contents."

Create an image file preparatory to burning it onto the CDR.
mkisofs -r -o $SIMAGEFILE S$SIMAGE_DIRECTORY
echo "Creating IS09660 file system image (S$SIMAGEFILE)."

Burn the CDR.

echo "Burning the disk."

echo "Please be patient, this will take a while."

wodim -v -isosize dev=S$DEVICE S$IMAGEFILE

In newer Linux distros, the "wodim" utility assumes the
#+ functionality of "cdrecord."

exitcode=$?

echo "Exit code = S$Sexitcode"

exit S$Sexitcode

cat, an acronym for concatenate, lists a file to st dout. When combined with redirection (> or >>), it
is commonly used to concatenate files.

Uses of 'cat'
cat filename # Lists the file.

cat file.l file.2 file.3 > file.123 # Combines three files into one.

The —n option to cat inserts consecutive numbers before all lines of the target file(s). The —b option
numbers only the non-blank lines. The —v option echoes nonprintable characters, using " notation.
The —s option squeezes multiple consecutive blank lines into a single blank line.

See also Example 16-28 and Example 16-24.

&) In a pipe, it may be more efficient to redirect the st din to a file, rather than to cat
the file.

cat filename | tr a-z A-Z

tr a-z A-Z < filename # Same effect, but starts one less process,
#+ and also dispenses with the pipe.

tac, is the inverse of cat, listing a file backwards from its end.

reverses each line of a file, and outputs to st dout. This does not have the same effect as tac, as it
preserves the order of the lines, but flips each one around (mirror image).

bash$ cat filel.txt
This is line 1.
This is line 2.

bash$ tac filel.txt

Chapter 16. External Filters, Programs and Commands 210

Advanced Bash-Scripting Guide

This is line 2.
This is line 1.

bash$ rev filel.txt
.1 enil si sihT
.2 enil si sihT

cp
This is the file copy command. cp f£ilel file2 copies filel to file2, overwriting file?2 if
it already exists (see Example 16-6).
j) Particularly useful are the —a archive flag (for copying an entire directory tree), the
—u update flag (which prevents overwriting identically-named newer files), and the
—-r and —R recursive flags.
cp —u source_dir/* dest_dir
"Synchronize" dest_dir to source_dir
#+ by copying over all newer and not previously existing files.
mv
This is the file move command. It is equivalent to a combination of ¢p and rm. It may be used to
move multiple files to a directory, or even to rename a directory. For some examples of using mv in a
script, see Example 10-11 and Example A-2.
=) When used in a non-interactive script, mv takes the —f (force) option to bypass user
input.
When a directory is moved to a preexisting directory, it becomes a subdirectory of the
destination directory.
bash$ mv source_directory target_directory
bash$ 1ls —-1F target_directory
total 1
drwxrwxr—x 2 bozo bozo 1024 May 28 19:20 source_directory/
rm

Delete (remove) a file or files. The —f option forces removal of even readonly files, and is useful for
bypassing user input in a script.

F
The rm command will, by itself, fail to remove filenames beginning with a dash.
Why? Because rm sees a dash-prefixed filename as an option.

bash$ rm -badname
rm: invalid option —-- b

Try "rm —-help' for more information.

One clever workaround is to precede the filename with a " -- " (the end-of-options
flag).

|bash$ rm —— -badname |
Another method to is to preface the filename to be removed with a dot-slash.

Chapter 16. External Filters, Programs and Commands 211

Advanced Bash-Scripting Guide

|bash$ rm ./-badname |

When used with the recursive flag —r, this command removes files all the way down
the directory tree from the current directory. A careless rm -rf * can wipe out a big
chunk of a directory structure.
rmdir
Remove directory. The directory must be empty of all files -- including "invisible" dotfiles [63] -- for
this command to succeed.
mkdir
Make directory, creates a new directory. For example, mkdir -p
project/programs/December creates the named directory. The —p option automatically
creates any necessary parent directories.
chmod
Changes the attributes of an existing file or directory (see Example 15-14).

chmod +x filename
Makes "filename" executable for all users.

chmod ut+s filename

Sets "suid" bit on "filename" permissions.

An ordinary user may execute "filename" with same privileges as the file's owner.
(This does not apply to shell scripts.)

chmod 644 filename
Makes "filename" readable/writable to owner, readable to others
(octal mode) .

chmod 444 filename

Makes "filename" read-only for all.

Modifying the file (for example, with a text editor)

#+ not allowed for a user who does not own the file (except for root),
#+ and even the file owner must force a file-save

#+ 1f she modifies the file.

Same restrictions apply for deleting the file.

chmod 1777 directory-name

Gives everyone read, write, and execute permission in directory,
#+ however also sets the "sticky bit".

This means that only the owner of the directory,

#+ owner of the file, and, of course, root

#+ can delete any particular file in that directory.

chmod 111 directory-name

Gives everyone execute-only permission in a directory.

This means that you can execute and READ the files in that directory

#+ (execute permission necessarily includes read permission

#+ because you can't execute a file without being able to read it).

But you can't list the files or search for them with the "find" command.
These restrictions do not apply to root.

chmod 000 directory-name

No permissions at all for that directory.

Can't read, write, or execute files in it.

Can't even list files in it or "cd" to it.

But, you can rename (mv) the directory

#+ or delete it (rmdir) if it is empty.

You can even symlink to files in the directory,

Chapter 16. External Filters, Programs and Commands 212

Advanced Bash-Scripting Guide

#+ but you can't read, write, or execute the symlinks.
These restrictions do not apply to root.

chattr
Change file attributes. This is analogous to chmod above, but with different options and a different
invocation syntax, and it works only on ext2/ext3 filesystems.

One particularly interesting chattr option is i. A chattr +i £ilename marks the file as immutable.
The file cannot be modified, linked to, or deleted, not even by root. This file attribute can be set or
removed only by root. In a similar fashion, the a option marks the file as append only.

root# chattr +i filel.txt

root# rm filel.txt

rm: remove write-protected regular file "filel.txt'? y
rm: cannot remove "~ filel.txt': Operation not permitted

If a file has the s (secure) attribute set, then when it is deleted its block is overwritten with binary
zeroes. [64

If a file has the u (undelete) attribute set, then when it is deleted, its contents can still be retrieved
(undeleted).

If a file has the ¢ (compress) attribute set, then it will automatically be compressed on writes to disk,
and uncompressed on reads.

&) The file attributes set with chattr do not show in a file listing (Is -1).

In
Creates links to pre-existings files. A "link" is a reference to a file, an alternate name for it. The In
command permits referencing the linked file by more than one name and is a superior alternative to

aliasing (see Example 4-6).

The In creates only a reference, a pointer to the file only a few bytes in size.
The In command is most often used with the —s, symbolic or "soft" link flag. Advantages of using the
—s flag are that it permits linking across file systems or to directories.

The syntax of the command is a bit tricky. For example: 1n —s oldfile newfile links the
previously existing o1dfile to the newly created link, newfile.

<1> If a file named newfile has previously existed, an error message will result.

Which type of link to use?
As John Macdonald explains it:

Both of these [types of links] provide a certain measure of dual reference -- if you edit the contents
of the file using any name, your changes will affect both the original name and either a hard or soft

Chapter 16. External Filters, Programs and Commands 213

Advanced Bash-Scripting Guide

new name. The differences between them occurs when you work at a higher level. The advantage of
a hard link is that the new name is totally independent of the old name -- if you remove or rename
the old name, that does not affect the hard link, which continues to point to the data while it would
leave a soft link hanging pointing to the old name which is no longer there. The advantage of a soft
link is that it can refer to a different file system (since it is just a reference to a file name, not to
actual data). And, unlike a hard link, a symbolic link can refer to a directory.

Links give the ability to invoke a script (or any other type of executable) with multiple names, and
having that script behave according to how it was invoked.

Example 16-2. Hello or Good-bye

#!/bin/bash
hello.sh: Saying "hello" or "goodbye"
#+ depending on how script is invoked.

Make a link in current working directory ($PWD) to this script:
In -s hello.sh goodbye

Now, try invoking this script both ways:

./hello.sh

./goodbye

HELLO_CALL=65
GOODBYE_CALL=66

if [$0 = "./goodbye" 1]

then
echo "Good-bye!"
Some other goodbye-type commands, as appropriate.
exit $GOODBYE_CALL

fi

echo "Hello!"
Some other hello-type commands, as appropriate.
exit S$HELLO_CALL

man, info

These commands access the manual and information pages on system commands and installed
utilities. When available, the info pages usually contain more detailed descriptions than do the man
pages.

There have been various attempts at "automating" the writing of man pages. For a script that makes a
tentative first step in that direction, see Example A-39.

16.2. Complex Commands

Commands for more advanced users

find

-exec COMMAND \;

Chapter 16. External Filters, Programs and Commands 214

Advanced Bash-Scripting Guide

Carries out COMMAND on each file that find matches. The command sequence terminates with ; (the

non

character).

bash$ find ~/ -name '*.txt'
/home/bozo/.kde/share/apps/karm/karmdata.txt
/home/bozo/misc/irmeyc.txt
/home/bozo/test-scripts/1l.txt

If COMMAND contains { }, then find substitutes the full path name of the selected file for "{}".

find ~/ —-name 'core*' -exec rm {} \;

Removes all core dump files from user's home directory.

find /home/bozo/projects —-mtime -1

A Note minus sign!
Lists all files in /home/bozo/projects directory tree
#+ that were modified within the last day (current_day - 1).

#
find /home/bozo/projects -mtime 1

Same as above, but modified *exactly* one day ago.

ctime = last status change time (via 'chmod'
atime = last access time

R

DIR=/home/bozo/junk_files
find "$DIR" -type f -atime +5 —-exec rm {} \;

A AA

Curly brackets are placeholder for the path name output by "find."

Deletes all files in "/home/bozo/junk_files"

+ that have not been accessed in *at least* 5 days

#

#

#

#

"-type filetype", where
£ = regular file

d = directory

1
#

#

symbolic link, etc.

(The 'find' manpage and info page have complete option listings.)

find /etc —exec grep '[0-9][0-9]1*[.][0-9]1[0-9]1*[.][0-9]1[0-9]1*[.][0-9]([0-9]*"

Finds all IP addresses (XxXX.XXX.XXX.Xxx) 1in /etc directory files.

mtime = last modification time of the target file

or otherwise)

There a few extraneous hits. Can they be filtered out?

Possibly by:

find /etc -type f -exec cat '"{}' \; | tr —-c '.[:digit:]"' '\n'
| gz "PIPe] [P\ [Pl 1™\ [Pl [P\ o [Pl [P 1%8T

#

[:digit:] is one of the character classes

#+ introduced with the POSIX 1003.2 standard.

Thanks, Stéphane Chazelas.

& The —exec option to find should not be confused with the exec shell builtin.

Chapter 16. External Filters, Programs and Commands

(plus sign

\

;" is escaped to make certain the shell passes it to find literally, without interpreting it as a special

{r \;

215

Advanced Bash-Scripting Guide

Example 16-3. Badname, eliminate file names in current directory containing bad characters
and whitespace.

#!/bin/bash
badname.sh
Delete filenames in current directory containing bad characters.

for filename in *

do
badname="echo "S$filename" | sed —n /I\+\{\; \"\\\=\2~\ (\) \<\>\&*\|\$]/p"
badname="echo "Sfilename" | sed -n "/[+{;"\=2~()<>&*|$]/p'" also works.
Deletes files containing these nasties: + {; "\ =2~ () <>6&* | S
#
rm Sbadname 2>/dev/null
ANNNAAAAAAN FError messages deep-sixed.
done

Now, take care of files containing all manner of whitespace.

find . —-name "* *" —exec rm -f {} \;

The path name of the file that _find_ finds replaces the "{}".

The '\' ensures that the ';' is interpreted literally, as end of command.

exit O

Commands below this line will not execute because of _exit_ command.

An alternative to the above script:

find . —name '"*[+{;"\\=2~()<>&*|$]*' -maxdepth 0 \

-exec rm —-f "{}' \;

The "-maxdepth 0" option ensures that _find will not search
#+ subdirectories below S$PWD.

(Thanks, S.C.)

Example 16-4. Deleting a file by its inode number

#!/bin/bash
idelete.sh: Deleting a file by its inode number.

This is useful when a filename starts with an illegal character,
#+ such as ? or -.

ARGCOUNT=1 # Filename arg must be passed to script.
E_WRONGARGS=70

E_FILE_NOT_EXIST=71

E_CHANGED_MIND=72

if [$# —-ne "SARGCOUNT"]

then
echo "Usage: "basename $0° filename"
exit S$E_WRONGARGS

fi

if [! o—e "S1M]

then
echo "File \""$1"\" does not exist."
exit SE_FILE_NOT_EXIST

Chapter 16. External Filters, Programs and Commands 216

xargs

Advanced Bash-Scripting Guide

inum="1s —-i | grep "$1" | awk '{print $1}'"
inum = inode (index node) number of file

Every file has an inode, a record that holds its physical address info.

echo; echo -n "Are you absolutely sure you want to delete \"$1\" (y/n)?2 "
The '-v' option to 'rm' also asks this.
read answer
case "Sanswer" in
[nN]) echo "Changed your mind, huh?"
exit S$SE_CHANGED_MIND

rr

) echo "Deleting file \"S$1\".";;
esac

find . —-inum $inum -exec rm {} \;

AN

Curly brackets are placeholder
#+ for text output by "find."

echo "File "\"$1"\" deleted!"

exit O

The find command also works without the —exec option.

#!/bin/bash

Find suid root files.

A strange suid file might indicate a security hole,
#+ or even a system intrusion.

directory="/usr/sbin"
Might also try /sbin, /bin, /usr/bin, /usr/local/bin, etc.
permissions="+4000" # suid root (dangerous!)

for file in $(find "S$directory" -perm "Spermissions")
do

ls -1tF —-—author "S$file"
done

See Example 16-30, Example 3-4, and Example 11-9 for scripts using find. Its manpage provides
more detail on this complex and powerful command.

A filter for feeding arguments to a command, and also a tool for assembling the commands
themselves. It breaks a data stream into small enough chunks for filters and commands to process.
Consider it as a powerful replacement for backquotes. In situations where command substitution fails
with a too many arguments error, substituting xargs often works. [65] Normally, xargs reads from
stdin or from a pipe, but it can also be given the output of a file.

The default command for xargs is echo. This means that input piped to xargs may have linefeeds and
other whitespace characters stripped out.

bash$ 1s -1

total O
—ITW—YW—Yr—— 1 bozo Dbozo 0 Jan 29 23:58 filel
—ITW—YW—Yr—— 1 bozo Dbozo 0 Jan 29 23:58 file2

Chapter 16. External Filters, Programs and Commands 217

Advanced Bash-Scripting Guide

bash$ 1s -1 | xargs
total 0 —-rw-rw-r—-—- 1 bozo bozo 0 Jan 29 23:58 filel -rw-rw-r-- 1 bozo bozo 0 Jan...

bash$ find ~/mail -type £ | xargs grep "Linux"

./misc:User—-Agent: slrn/0.9.8.1 (Linux)
./sent-mail-jul-2005: hosted by the Linux Documentation Project.
./sent-mail-jul-2005: (Linux Documentation Project Site, rtf version)
./sent-mail-jul-2005: Subject: Criticism of Bozo's Windows/Linux article
./sent-mail-jul-2005: while mentioning that the Linux ext2/ext3 filesystem

1ls | xargs —-p -1 gzip gzips every file in current directory, one at a time, prompting before
each operation.

=) Note that xargs processes the arguments passed to it sequentially, one at a time.

bash$ find /usr/bin | xargs file
/usr/bin: directory
/usr/bin/foomatic-ppd-options: perl script text executable

i) An interesting xargs option is —n NN, which limits to NN the number of arguments
passed.

1s | xargs —n 8 echo lists the files in the current directory in 8 columns.

i) Another useful option is -0, in combination with find —printO0 or grep -12Z.
This allows handling arguments containing whitespace or quotes.

find / -type £ -print0 | xargs -0 grep -liwZ GUI | xargs
-0 rm -f

grep -rliwZ GUI / | xargs -0 rm -f

Either of the above will remove any file containing "GUI". (Thanks, S.C.)

Or:
cat /proc/"$pid"/"SOPTION" | xargs -0 echo

From Han Holl's fixup of "get-commandline.sh"
#+ script in "/dev and /proc" chapter.

Example 16-5. Logfile: Using xargs to monitor system log

#!/bin/bash

Generates a log file in current directory
from the tail end of /var/log/messages.

Chapter 16. External Filters, Programs and Commands 218

Advanced Bash-Scripting Guide

Note: /var/log/messages must be world readable
1f this script invoked by an ordinary user.
#root chmod 644 /var/log/messages

LINES=5

(date; uname -a) >>logfile

Time and machine name

B D S e S e e e e >>logfile
tail -n SLINES /var/log/messages | xargs | fmt -s >>logfile

echo >>logfile

echo >>logfile

]
X
-
o
o

Note:

As Frank Wang points out,

unmatched quotes (either single or double quotes) in the source file
may give xargs indigestion.

B

He suggests the following substitution for line 15:
tail -n SLINES /var/log/messages | tr -d "\"'" | xargs | fmt -s >>logfile

S o S 3 o o o

Exercise:
Modify this script to track changes in /var/log/messages at intervals

#+ of 20 minutes.
Hint: Use the "watch" command.

As in find, a curly bracket pair serves as a placeholder for replacement text.

Example 16-6. Copying files in current directory to another

#!/bin/bash
copydir.sh

Copy (verbose) all files in current directory ($SPWD)
#+ to directory specified on command-line.

E_NOARGS=85

if [-z "S$1"] # Exit if no argument given.

then
echo "Usage: "basename $0° directory-to—-copy-to"
exit SE_NOARGS

fi

1s | xargs -i -t cp ./{} $1

AN AN AN

-t is "verbose" (output command-line to stderr) option.

-1 is "replace strings" option.

{} is a placeholder for output text.

This is similar to the use of a curly-bracket pair in "find."

#

List the files in current directory (ls .),

#+ pass the output of "l1ls" as arguments to "xargs" (-1 -t options),

Chapter 16. External Filters, Programs and Commands 219

Advanced Bash-Scripting Guide

#+ then copy (cp) these arguments ({}) to new directory (S1).

#

The net result is the exact equivalent of

#+ ee = S

#+ unless any of the filenames has embedded "whitespace" characters.

exit O
Example 16-7. Killing processes by name

#!/bin/bash
kill-byname.sh: Killing processes by name.
Compare this script with kill-process.sh.

For instance,
#+ try "./kill-byname.sh xterm" —-
#+ and watch all the xterms on your desktop disappear.

Warning:

This is a fairly dangerous script.
Running it carelessly (especially as root)
#+ can cause data loss and other undesirable effects.

E_BADARGS=66

if test -z "$1" # No command-line arg supplied?
then
echo "Usage: "basename $0° Process(es)_to_kill"
exit S$E_BADARGS
fi

PROCESS_NAME="S$1"

ps ax | grep "SPROCESS_NAME" | awk '{print $1}' | xargs —-i kill {} 2&>/dev/null
AN AN
,,,
Notes:

-1 is the "replace strings" option to xargs.

The curly brackets are the placeholder for the replacement.

2&>/dev/null suppresses unwanted error messages.

#

Can grep "SPROCESS_NAME" be replaced by pidof "SPROCESS_NAME"?
,,,
exit $°?

The "killall" command has the same effect as this script,
#+ but using it is not quite as educational.

Example 16-8. Word frequency analysis using xargs

#!/bin/bash
wf2.sh: Crude word frequency analysis on a text file.

Uses 'xargs' to decompose lines of text into single words.
Compare this example to the "wf.sh" script later on.

Chapter 16. External Filters, Programs and Commands 220

expr

Advanced Bash-Scripting Guide

Check for input file on command-line.
ARGS=1

E_BADARGS=85

E_NOFILE=86

if [$# —-ne "SARGS"]
Correct number of arguments passed to script?
then
echo "Usage: “basename $0° filename"
exit S$E_BADARGS
fi

if [! -f£ "S1"] # Check if file exists.
then

echo "File \"$1\" does not exist."

exit SE_NOFILE
fi

FHAFEHSF AR A
cat "$1" | xargs -nl | \

List the file, one word per line.

tr A-Z2 a-z | \

Shift characters to lowercase.

sed -e 's/\.//g' -e 's/\,//g' -e 's/ /\

/g |\

Filter out periods and commas, and

#+ change space between words to linefeed,

sort | unig -c | sort -nr

Finally remove duplicates, prefix occurrence count
#+ and sort numerically.

FHAFEHSF AR

This does the same job as the "wf.sh" example,
#+ but a bit more ponderously, and it runs more slowly (why?).

exit $7?

All-purpose expression evaluator: Concatenates and evaluates the arguments according to the
operation given (arguments must be separated by spaces). Operations may be arithmetic, comparison,
string, or logical.

expr 3 + 5
returns 8
expr 5 % 3
returns 2
expr 1 / O
returns the error message, expr: division by zero

Illegal arithmetic operations not allowed.
expr 5 * 3
returns 15

The multiplication operator must be escaped when used in an arithmetic expression with
expr.
y="expr Sy + 1°

Chapter 16. External Filters, Programs and Commands 221

Advanced Bash-Scripting Guide

Increment a variable, with the same effect as let y=y+1 and y=$ (($y+1)). This is an

example of arithmetic expansion.
z="expr substr $string $position $length’
Extract substring of $length characters, starting at $position.

Example 16-9. Using expr

#!/bin/bash

Demonstrating some of the uses of 'expr'
#

echo
Arithmetic Operators
echo "Arithmetic Operators"

echo
a="expr 5 + 3°

echo "5 + 3 Sa"

a="expr $a + 1°

echo

echo "a + 1 = sa"

echo " (incrementing a variable)"

)

a="expr 5 % 3°

modulo

echo

echo "5 mod 3 = $a"

echo
echo

Logical Operators

Returns 1 if true, 0 if false,
#+ opposite of normal Bash convention.

echo "Logical Operators"”
echo

x=24

y=25

b="expr $x = Sy’ # Test equality.
echo "b = S$b" # 0 ($x -ne Sy)
echo

a=3

b="expr $a \> 10°

echo 'b="expr $a \> 10°, therefore...'

echo "If a > 10, b = 0 (false)"

echo "b = S$Sb" #0 (3! —gt 10)
echo

b="expr $a \< 10°
echo "If a < 10, b 1 (true)"
echo "b = S$b" # 1 (3 -1t 10)

Chapter 16. External Filters, Programs and Commands 222

Advanced Bash-Scripting Guide

echo
Note escaping of operators.

b="expr $a \<= 3°
echo "If a <= 3, b =1 (true)"

echo "b = S$b" # 1 (3 -le 3)

There is also a "\>=" operator (greater than or equal to).
echo

echo

String Operators

echo "String Operators"
echo

a=1234zipper43231
echo "The string being operated upon is \"S$a\"."

length: length of string
b="expr length S$a°
echo "Length of \"$a\" is $b."

index: position of first character in substring

that matches a character in string

b="expr index S$a 23°

echo "Numerical position of first \"2\" in \"S$a\" is \"Sb\"."

substr: extract substring, starting position & length specified
b="expr substr $a 2 6°

echo "Substring of \"$a\", starting at position 2,\

and 6 chars long is \"Sb\"."

The default behavior of the 'match' operations is to
#+ search for the specified match at the BEGINNING of the string.

#

Using Regular Expressions

b="expr match "$a" '[0-9]*'" # Numerical count.

echo Number of digits at the beginning of \"$a\" is $b.

b="expr match "$a" '\ ([0-9]*\)"" # Note that escaped parentheses
== == #+ trigger substring match.

echo "The digits at the beginning of \"$a\" are \"Sb\"."
echo
exit O

!) The :_(null) operator can substitute for match. For example, b="expr $a : [0-9]* is
the exact equivalent of b="expr match $a [0-9]*" in the above listing.

#!/bin/bash

echo

echo "String operations using \"expr \S$string : \" construct"
echo " "
echo

Chapter 16. External Filters, Programs and Commands 223

Advanced Bash-Scripting Guide

a=1234zipper5FLIPPER43231

echo "The string being operated upon is \" expr "S$a" : '\ (.*\)'"\"."

Escaped parentheses grouping operator. = ==

Ak khkkhkhkkhkhkhkhkrkhkhkhkhkhhkkhhkhhkkkk

#+ Escaped parentheses

#+ match a substring

ok khkkhkhkkhkhkhkhkrkhkhhkhkhhkkhhkhkkkkk

If no escaped parentheses...

#+ then 'expr' converts the string operand to an integer.

echo "Length of \"$a\" is “expr "S$a" : '.*'"." # Length of string

echo "Number of digits at the beginning of \"$a\" is “expr "$a" : '[0-9]*'" ."
O e e e e e #
echo

echo "The digits at the beginning of \"$a\" are “expr "$a" : "\ ([0-9]*\)' ."
== =
echo "The first 7 characters of \"$a\" are ‘expr "S$a" : "\ (....... Wy v w

——— == ==

Again, escaped parentheses force a substring match.

#

echo "The last 7 characters of \"$a\" are “expr "$a" : '".*\(....... \) 7S LW

==== end of string operator "%

(actually means skip over one or more of any characters until specified

#+ substring)
echo
exit O

The above script illustrates how expr uses the escaped parentheses -- \(... \) -- grouping operator in tandem
with regular expression parsing to match a substring. Here is a another example, this time from "real life."

Strip the whitespace from the beginning and end.
LRFDATE="expr "SLRFDATE" : '[[:space:]]*\(.*\)[[:space:]]*S$""

From Peter Knowles' "booklistgen.sh" script

#+ for converting files to Sony Librie/PRS-50X format.

(http://booklistgensh.peterknowles.com)

Perl, sed, and awk have far superior string parsing facilities. A short sed or awk "subroutine" within a script
(see Section 35.2) is an attractive alternative to expr.

See Section 10.1 for more on using expr in string operations.

16.3. Time / Date Commands

Time/date and timing

date

Chapter 16. External Filters, Programs and Commands 224

Advanced Bash-Scripting Guide

Simply invoked, date prints the date and time to stdout. Where this command gets interesting is in
its formatting and parsing options.

Example 16-10. Using date

#!/bin/bash
Exercising the 'date' command

echo "The number of days since the year's beginning is “date +%j ."
Needs a leading '+' to invoke formatting.
%3 gives day of year.

echo "The number of seconds elapsed since 01/01/1970 is “date +%s ."
%s yields number of seconds since "UNIX epoch" began,
#+ but how is this useful?

prefix=temp

suffix=$ (date +%s) # The "+%s" option to 'date' is GNU-specific.
filename=S$prefix.S$suffix

echo "Temporary filename = $filename"

It's great for creating "unique and random" temp filenames,

#+ even better than using $$.

Read the 'date' man page for more formatting options.

exit O

The —u option gives the UTC (Universal Coordinated Time).

bash$ date
Fri Mar 29 21:07:39 MST 2002

bash$ date -u
Sat Mar 30 04:07:42 UTC 2002

This option facilitates calculating the time between different dates.

Example 16-11. Date calculations

#!/bin/bash

date-calc.sh

Author: Nathan Coulter

Used in ABS Guide with permission (thanks!).

MPHR=60 # Minutes per hour.
HPD=24 # Hours per day.
diff () |

printf '$s' $(($(date -u -d"STARGET" +%s)
S (date -u —-d"SCURRENT" +%s)))
%$d = day of month.

o\°

CURRENT=$ (date -u -d '2007-09-01 17:30:24' '+%F $T.%N %Z')
TARGET=$ (date -u -d'2007-12-25 12:30:00"' '+%F S$T.S%N %Z')

Chapter 16. External Filters, Programs and Commands 225

zdump

Advanced Bash-Scripting Guide
SF = full date, %T = %H:%M:%S, %N = nanoseconds, %Z = time zone.

printf '\nIn 2007, %s ' \

"$S (date —-d"SCURRENT +

S(($(diff) /SMPHR /SMPHR /SHPD / 2)) days" '4+%d %B'")"
%$B = name of month ~ halfway
printf 'was halfway between %$s ' "S$(date —-d"$SCURRENT" '+%d %B')"
printf 'and %$s\n' "$(date -d"S$TARGET" '+%d %B')"

printf '\nOn %s at %s, there were\n' \

S (date —-u —-d"SCURRENT" +3%F) $(date —-u —-d"SCURRENT" +5%T)
DAYS=S$ (($(diff) / SMPHR / SMPHR / SHPD))
CURRENT=S (date —-d"SCURRENT +$DAYS days" '+%F $T.%N %Z')
HOURS=$ (($(diff) / SMPHR / SMPHR))
CURRENT=S (date —-d"SCURRENT +SHOURS hours" '+%F $T.%N %Z')
MINUTES=S$ (($(diff) / SMPHR))
CURRENT=S$ (date —-d"S$SCURRENT +S$SMINUTES minutes" '+%F %T.%N %7')
printf '%s days, %s hours, ' "SDAYS" "SHOURS"
printf '%$s minutes, and %s seconds ' "SMINUTES" "S$S(diff)"
printf 'until Christmas Dinner!\n\n'

Exercise:

Rewrite the diff () function to accept passed parameters,
#+ rather than using global variables.

The date command has quite a number of output options. For example $N gives the nanosecond
portion of the current time. One interesting use for this is to generate random integers.

date +%N | sed -e 's/000S$//' -e 's/"0//'

AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Strip off leading and trailing zeroes, if present.
Length of generated integer depends on
#+ how many zeroes stripped off.

115281032
63408725
394504284

There are many more options (try man date).

date +%3j
Echoes day of the year (days elapsed since January 1).

date +%k%M

Echoes hour and minute in 24-hour format, as a single digit string.

The 'TZ' parameter permits overriding the default time zone.
date # Mon Mar 28 21:42:16 MST 2005

TZ=EST date # Mon Mar 28 23:42:16 EST 2005

Thanks, Frank Kannemann and Pete Sjoberg, for the tip.

SixDaysAgo=$ (date —-date='6 days ago')

OneMonthAgo=$ (date —--date='1l month ago') # Four weeks back (not a month!)

OneYearAgo=$ (date —--date='1l year ago')
See also Example 3-4 and Example A-43.

Chapter 16. External Filters, Programs and Commands

226

time

touch

at

batch

Advanced Bash-Scripting Guide

Time zone dump: echoes the time in a specified time zone.

bash$ zdump EST
EST Tue Sep 18 22:09:22 2001 EST

Outputs verbose timing statistics for executing a command.

time 1ls -1 / gives something like this:

real Om0.067s
user Om0.004s
sys Om0.005s

See also the very similar times command in the previous section.

&) As of yversion 2.0 of Bash, time became a shell reserved word, with slightly altered
behavior in a pipeline.

Utility for updating access/modification times of a file to current system time or other specified time,
but also useful for creating a new file. The command touch zzz will create a new file of zero
length, named zz z, assuming that zz z did not previously exist. Time-stamping empty files in this
way is useful for storing date information, for example in keeping track of modification times on a
project.

& The touch command is equivalent to : >> newfile or >> newfile (for
ordinary files).

i) Before doing a cp -u (copy/update), use touch to update the time stamp of files you
don't wish overwritten.

As an example, if the directory /home /bozo/tax_audit contains the files
spreadsheet-051606.data, spreadsheet-051706.data, and
spreadsheet-051806.data, then doing a touch spreadsheet*.data will protect
these files from being overwritten by files with the same names during a cp -u
/home/bozo/financial_info/spreadsheet*data /home/bozo/tax_audit.

The at job control command executes a given set of commands at a specified time. Superficially, it
resembles cron, however, at is chiefly useful for one-time execution of a command set.

at 2pm January 15 prompts for a set of commands to execute at that time. These commands
should be shell-script compatible, since, for all practical purposes, the user is typing in an executable
shell script a line at a time. Input terminates with a Ctl-D.

Using either the — £ option or input redirection (<), at reads a command list from a file. This file is an
executable shell script, though it should, of course, be non-interactive. Particularly clever is including
the run-parts command in the file to execute a different set of scripts.

bash$ at 2:30 am Friday < at-jobs.list
job 2 at 2000-10-27 02:30

Chapter 16. External Filters, Programs and Commands 227

Advanced Bash-Scripting Guide

The batch job control command is similar to at, but it runs a command list when the system load
drops below . 8. Like at, it can read commands from a file with the —f option.

The concept of batch processing dates back to the era of mainframe computers. It means running a
set of commands without user intervention.

cal
Prints a neatly formatted monthly calendar to st dout. Will do current year or a large range of past
and future years.
sleep
This is the shell equivalent of a wait loop. It pauses for a specified number of seconds, doing nothing.
It can be useful for timing or in processes running in the background, checking for a specific event
every so often (polling), as in Example 31-6.
sleep 3 # Pauses 3 seconds.
&) The sleep command defaults to seconds, but minute, hours, or days may also be
specified.
sleep 3 h # Pauses 3 hours!
=) The watch command may be a better choice than sleep for running commands at
timed intervals.
usleep

Microsleep (the u may be read as the Greek mu, or micro- prefix). This is the same as sleep, above,
but "sleeps" in microsecond intervals. It can be used for fine-grained timing, or for polling an ongoing
process at very frequent intervals.

usleep 30 # Pauses 30 microseconds.

This command is part of the Red Hat initscripts / rc-scripts package.

<1> The usleep command does not provide particularly accurate timing, and is therefore
unsuitable for critical timing loops.
hweclock, clock
The hwelock command accesses or adjusts the machine's hardware clock. Some options require root
privileges. The /etc/rc.d/rc.sysinit startup file uses hwclock to set the system time from
the hardware clock at bootup.

The clock command is a synonym for hwelock.

16.4. Text Processing Commands

Commands affecting text and text files

sort
File sort utility, often used as a filter in a pipe. This command sorts a text stream or file forwards or
backwards, or according to various keys or character positions. Using the —m option, it merges
presorted input files. The info page lists its many capabilities and options. See Example 11-9,

Chapter 16. External Filters, Programs and Commands 228

Advanced Bash-Scripting Guide

Example 11-10, and Example A-8.

tsort
Topological sort, reading in pairs of whitespace-separated strings and sorting according to input
patterns. The original purpose of tsort was to sort a list of dependencies for an obsolete version of the
Id linker in an "ancient" version of UNIX.
The results of a tsort will usually differ markedly from those of the standard sort command, above.
uniq

This filter removes duplicate lines from a sorted file. It is often seen in a pipe coupled with sort.

cat list-1 1list-2 1list-3 | sort | unig > final.list
Concatenates the list files,

sorts them,

removes duplicate lines,

and finally writes the result to an output file.

The useful —c option prefixes each line of the input file with its number of occurrences.

bash$ cat testfile

This line occurs only once.
This line occurs twice.

This line occurs twice.

This line occurs three times.
This line occurs three times.
This line occurs three times.

bash$ uniq -c testfile
1 This line occurs only once.
2 This line occurs twice.
3 This line occurs three times.

bash$ sort testfile | uniq -c | sort -nr
3 This line occurs three times.
2 This line occurs twice.
1 This line occurs only once.

The sort INPUTFILE | uniq -c | sort -nr command string produces a frequency of
occurrence listing on the INPUTF ILE file (the —nr options to sort cause a reverse numerical sort).
This template finds use in analysis of log files and dictionary lists, and wherever the lexical structure
of a document needs to be examined.

Example 16-12. Word Frequency Analysis

#!/bin/bash
wf.sh: Crude word frequency analysis on a text file.
This is a more efficient version of the "wf2.sh" script.

Check for input file on command-line.
ARGS=1

E_BADARGS=85

E_NOFILE=86

if [$# -ne "SARGS"] # Correct number of arguments passed to script?
then

Chapter 16. External Filters, Programs and Commands 229

echo
exit

if [!

then
echo
exit

B o i

main
sed -e
/g' "8
#
#

"Us

=it

Advanced Bash-Scripting Guide

age: "basename $0° filename"
SE_BADARGS

llslll]

"File \"$1\" doe
SE_NOFILE

()
's/
1" I

\.//g"'

-e 's

tr 'A-Z' 'a-

Check if file exists.

s not exist."

/\,//g' —e 's/ /\

z' | sort | unig -c | sort -nr

Frequency of occurrence

Filter out periods and commas, and
#+ change space between words to linefeed,
#+ then shift characters to lowercase, and

#+ finally prefix occurrence count and sort numerically.

Arun Giridhar suggests modifying the above to:

+ equ
As
"Th
#+ lea
#+ (wo

#+ and last on the most significant column

As Frank Wang explains,
sort |

#+

sort |

uniqg

-c | sort +1 [-f] | sort +0 -nr

al occurrence are sorted alphabetically.
he explains it:
is is effectively a radix sort, first on the
st significant column

rd or string, opt

#
#
This adds a secondary sort key, so instances of
#
#

ionally case-insensitive)

unig -c | sort +0 -nr

#+ and the following also works:

#+

exit O

Exercises:

sed' commands to filter out other punctuation,

5 o sort |
[T LTSI EE TS LTS EE TS EEEEEEEEEEEEEEEEEEEEEEE

unig -c | sort —-klnr -k

1) Add '
#+ such as semicolons.

2) Modify the script to also filter out multiple spaces and

#+ other whitespace.

(frequency) ."

the above is equivalent to

This
This
This
This
This

bash$

line
line
line
line
line

bash$ cat testfile
This line occurs only once.

occurs
occurs
occurs
occurs
occurs

twice.
twice.

three
three
three

./wf.sh testfile
6 this

6 occurs
6 line

times.
times.
times.

Chapter 16. External Filters, Programs and Commands

230

Advanced Bash-Scripting Guide

times
three
twice
only
once

RN WwWw

expand, unexpand
The expand filter converts tabs to spaces. It is often used in a pipe.

The unexpand filter converts spaces to tabs. This reverses the effect of expand.

cut
A tool for extracting fields from files. It is similar to the print $N command set in awk, but more
limited. It may be simpler to use cut in a script than awk. Particularly important are the —d (delimiter)
and - £ (field specifier) options.

Using cut to obtain a listing of the mounted filesystems:

cut -d ' ' —-f1,2 /etc/mtab
Using cut to list the OS and kernel version:

uname -a | cut -d" " -f1,3,11,12
Using cut to extract message headers from an e-mail folder:

bash$ grep '“Subject:' read-messages | cut —-cl0-80
Re: Linux suitable for mission-critical apps?

MAKE MILLIONS WORKING AT HOME!!!

Spam complaint

Re: Spam complaint

Using cut to parse a file:

List all the users in /etc/passwd.
FILENAME=/etc/passwd

for user in $(cut -d: -fl1 SFILENAME)
do

echo S$user
done

Thanks, Oleg Philon for suggesting this.

cut -d ' ' -f2,3 filenameisequivalenttoawk -F'[]' '{ print $2, $3 }'
filename

& It is even possible to specify a linefeed as a delimiter. The trick is to actually embed a
linefeed (RETURN) in the command sequence.

bash$ cut -d4d'
' —£3,7,19 testfile

This is line 3 of testfile.
This is line 7 of testfile.
This is line 19 of testfile.

Thank you, Jaka Kranjc, for pointing this out.
See also Example 16-48.

Chapter 16. External Filters, Programs and Commands 231

Advanced Bash-Scripting Guide

paste
Tool for merging together different files into a single, multi-column file. In combination with cut,
useful for creating system log files.

join
Consider this a special-purpose cousin of paste. This powerful utility allows merging two files in a
meaningful fashion, which essentially creates a simple version of a relational database.

The join command operates on exactly two files, but pastes together only those lines with a common
tagged field (usually a numerical label), and writes the result to st dout. The files to be joined
should be sorted according to the tagged field for the matchups to work properly.

File: 1.data

100 Shoes
200 Laces
300 Socks

File: 2.data

100 $40.00
200 $1.00
300 $2.00

bash$ join 1.data 2.data
File: 1l.data 2.data

100 Shoes $40.00
200 Laces $1.00
300 Socks $2.00

=& The tagged field appears only once in the output.

head

lists the beginning of a file to stdout. The default is 10 lines, but a different number can be
specified. The command has a number of interesting options.

Example 16-13. Which files are scripts?

#!/bin/bash
script-detector.sh: Detects scripts within a directory.

TESTCHARS=2 # Test first 2 characters.
SHABANG="#!" # Scripts begin with a "sha-bang."

for file in * # Traverse all the files in current directory.
do

if [["head -cSTESTCHARS "$file" = "S$SSHABANG" 1]

head -c2 #!

The '-c' option to "head" outputs a specified

#+ number of characters, rather than lines (the default).

then
echo "File \"$file\" is a script."
else
echo "File \"$file\" is *not* a script."
fi
done

Chapter 16. External Filters, Programs and Commands 232

Advanced Bash-Scripting Guide

exit O

Exercises:

1) Modify this script to take as an optional argument
#+ the directory to scan for scripts

#+ (rather than just the current working directory).
#

2) As it stands, this script gives "false positives"
#+ Perl, awk, and other scripting language scripts.

Correct this.

Example 16-14. Generating 10-digit random numbers

#!/bin/bash
rnd.sh: Outputs a 10-digit random number

Script by Stephane Chazelas.

head —-c4 /dev/urandom | od -N4 —-tu4 | sed -ne 'ls/.* //p'

Analysis
head:
—c4 option takes first 4 bytes.

od:
—-N4 option limits output to 4 bytes.

—-tu4d option selects unsigned decimal format for output.

sed:

-n option, in combination with "p" flag to the "s" command,

outputs only matched lines.

The author of this script explains the action of 'sed',

head -c4 /dev/urandom | od —-N4 -tud4 | sed -ne 'ls/.* //p'

Assume output up to "sed" -——————- > |
is 0000000 1198195154\n

sed begins reading characters: 0000000 1198195154\n.
Here it finds a newline character,

#+ so it is ready to process the first line (0000000 1198195154).
It looks at its <range><action>s. The first and only one is

range action
1 s/.* //p

The line number is in the range, so it executes the action:

#+ tries to substitute the longest string ending with a space in the line
("0000000 ") with nothing (//), and if it succeeds, prints the result
("p" is a flag to the "s" command here, this is different

Chapter 16. External Filters, Programs and Commands

233

Advanced Bash-Scripting Guide
#+ from the "p" command) .

sed is now ready to continue reading its input. (Note that before
#+ continuing, if -n option had not been passed, sed would have printed
#+ the line once again).

Now, sed reads the remainder of the characters, and finds the

#+ end of the file.

It is now ready to process its 2nd line (which is also numbered 'S$' as
#+ it's the last one).

It sees it 1s not matched by any <range>, so its job is done.

In few word this sed commmand means:
"On the first line only, remove any character up to the right-most space,

#+ then print it."

A better way to do this would have been:
sed —e 's/.* //;q'

Here, two <range><action>s (could have been written

sed —e 's/.* //' -e q):
range action
nothing (matches line) s/.* //
nothing (matches line) q (quit)

Here, sed only reads its first line of input.
It performs both actions, and prints the line (substituted) before
#+ quitting (because of the "g" action) since the "-n" option is not passed.

#
An even simpler altenative to the above one-line script would be:

head -c4 /dev/urandom| od —-An -tu4

exit

See also Example 16-39.

tail
lists the (tail) end of a file to st dout. The default is 10 lines, but this can be changed with the —n
option. Commonly used to keep track of changes to a system logfile, using the —f option, which
outputs lines appended to the file.

Example 16-15. Using tail to monitor the system log

#!/bin/bash

filename=sys.log

cat /dev/null > S$filename; echo "Creating / cleaning out file."
Creates file if it does not already exist,

#+ and truncates it to zero length if it does.

: > filename and > filename also work.

tail /var/log/messages > S$filename
/var/log/messages must have world read permission for this to work.

echo "$filename contains tail end of system log."

exit O

Chapter 16. External Filters, Programs and Commands 234

Advanced Bash-Scripting Guide

i) To list a specific line of a text file, pipe the output of head to tail -n 1. For example
head —n 8 database.txt | tail -n 1 lists the 8th line of the file
database.txt.

To set a variable to a given block of a text file:

var=$ (head —n Sm S$filename | tail —-n $n)

filename = name of file
m = from beginning of file, number of lines to end of block
n = number of lines to set variable to (trim from end of block)

&) Newer implementations of tail deprecate the older tail -S$LINES filename usage. The
standard tail -n $LINES filename is correct.
See also Example 16-5, Example 16-39 and Example 31-6.
grep
A multi-purpose file search tool that uses Regular Expressions. It was originally a command/filter in
the venerable ed line editor: g/re/p -- global - regular expression - print.

grep pattern|[file..]

Search the target file(s) for occurrences of pattern, where pattern may be literal text or a
Regular Expression.

bash$ grep '[rst]ystem.$' osinfo.txt
The GPL governs the distribution of the Linux operating system.

If no target file(s) specified, grep works as a filter on stdout, as in a pipe.

bash$ ps ax | grep clock
765 ttyl S 0:00 xclock
901 pts/1 S 0:00 grep clock

The —1 option causes a case-insensitive search.
The —w option matches only whole words.
The —1 option lists only the files in which matches were found, but not the matching lines.

The —r (recursive) option searches files in the current working directory and all subdirectories below
it.

The —n option lists the matching lines, together with line numbers.

bash$ grep -n Linux osinfo.txt
2:This is a file containing information about Linux.
6:The GPL governs the distribution of the Linux operating system.

The —v (or ——invert-match) option filters out matches.

grep patternl *.txt | grep -v pattern2

Matches all lines in "*.txt" files containing "patternl",

Chapter 16. External Filters, Programs and Commands 235

Advanced Bash-Scripting Guide

but ***not*** "pattern2".

The —c (-—count) option gives a numerical count of matches, rather than actually listing the

matches.

grep -c txt *.sgml # (number of occurrences of "txt" in "*.sgml"
grep -cz

A dot

means count (-c) zero-separated (-z) items matching "."

that is, non-empty ones (containing at least 1 character).

#

printf 'a b\nc d\n\n\n\n\n\000\n\000e\000\000\nf"' | grep -cz
printf 'a b\nc d\n\n\n\n\n\000\n\000e\000\000\nf"' | grep -cz
printf 'a b\nc d\n\n\n\n\n\000\n\000e\000\000\nf"' | grep -cz

printf 'a b\nc d\n\n\n\n\n\000\n\000e\000\000\nf' | grep -c 'S$'

By default, newline chars (\n) separate items to match.

Note that the -z option is GNU "grep" specific.

Thanks, S.C.

The ——color (or ——colour) option marks the matching string in color (on the console or in an

S

files)

(€)]

xterm window). Since grep prints out each entire line containing the matching pattern, this lets you
see exactly what is being matched. See also the —o option, which shows only the matching portion of

the line(s).

Example 16-16. Printing out the From lines in stored e-mail messages

#!/bin/bash
from.sh

Emulates the useful "from" utility in Solaris, BSD, etc.
Echoes the "From" header line in all messages
#+ in your e-mail directory.

MAILDIR=~/mail/* # No quoting of variable. Why?

GREP_OPTS="-H -A 5 —--color" # Show file, plus extra context lines
#+ and display "From" in color.

TARGETSTR=""From" # "From" at beginning of line.

for file in $MAILDIR # No quoting of variable.

do

grep $GREP_OPTS "S$STARGETSTR" "S$file"

AAAAAAAAAA

echo
done

exit $°?

Might wish to pipe the output of this script to 'more' or
#+ redirect it to a file

When invoked with more than one target file given, grep specifies which file contains matches.

Again, do not quote this wvariable.

bash$ grep Linux osinfo.txt misc.txt

Chapter 16. External Filters, Programs and Commands

236

Advanced Bash-Scripting Guide

osinfo.txt:This is a file containing information about Linux.
osinfo.txt:The GPL governs the distribution of the Linux operating system.
misc.txt:The Linux operating system is steadily gaining in popularity.

j) To force grep to show the filename when searching only one target file, simply give
/dev/null as the second file.

bash$ grep Linux osinfo.txt /dev/null
osinfo.txt:This is a file containing information about Linux.
osinfo.txt:The GPL governs the distribution of the Linux operating system.

If there is a successful match, grep returns an exit status of 0, which makes it useful in a condition test
in a script, especially in combination with the —q option to suppress output.

SUCCESS=0 # if grep lookup succeeds
word=Linux

filename=data.file

grep —q "S$word" "$filename" # The "-g" option
#+ causes nothing to echo to stdout.
if [$? -eg $SUCCESS]

if grep —g "Sword" "S$filename" can replace lines 5 - 7.
then
echo "S$word found in $filename"
else
echo "S$Sword not found in $filename"
fi

Example 31-6 demonstrates how to use grep to search for a word pattern in a system logfile.

Example 16-17. Emulating grep in a script

#!/bin/bash
grp.sh: Rudimentary reimplementation of grep.

E_BADARGS=85

if [-z "s1"] # Check for argument to script.
then

echo "Usage: “basename $0° pattern"

exit S$E_BADARGS
fi

echo

for file in * # Traverse all files in $PWD.
do

output=S$(sed -n /"$1"/p $file) # Command substitution.

if [! -z "Soutput"] # What happens if "Soutput" is not quoted?
then

echo —-n "S$file: "
echo "Soutput"
i # sed -ne "/S$1/s|”|${file}: |p" is equivalent to above.

echo
done

Chapter 16. External Filters, Programs and Commands 237

Advanced Bash-Scripting Guide

echo
exit O
Exercises:

1) Add newlines to output, if more than one match in any given file.
2) Add features.

How can grep search for two (or more) separate patterns? What if you want grep to display all lines
in a file or files that contain both "pattern1" and "pattern2"?

One method is to pipe the result of grep patternl to grep pattern2.
For example, given the following file:

Filename: tstfile

This is a sample file.

This is an ordinary text file.

This file does not contain any unusual text.
This file is not unusual.

Here is some text.

Now, let's search this file for lines containing both "file" and "text" . . .

bash$ grep file tstfile
Filename: tstfile
This is a sample file.
This is an ordinary text file.
This file does not contain any unusual text.
This file is not unusual.

bash$ grep file tstfile | grep text
This is an ordinary text file.
This file does not contain any unusual text.

Now, for an interesting recreational use of grep . ..

Example 16-18. Crossword puzzle solver

#!/bin/bash
cw-solver.sh
This is actually a wrapper around a one-liner (line 46).

Crossword puzzle and anagramming word game solver.

You know *some* of the letters in the word you're looking for,

#+ so you need a list of all valid words

#+ with the known letters in given positions.

For example: w...i....n

122252227210

w in position 1, 3 unknowns, i in the 5th, 4 unknowns, n at the end.
(See comments at end of script.)

E_NOPATT=71

DICT=/usr/share/dict/word.lst

ANNNANAN Looks for word list here.
ASCII word list, one word per line.

Chapter 16. External Filters, Programs and Commands 238

Advanced Bash-Scripting Guide

If you happen to need an appropriate list,
#+ download the author's "yawl" word list package.
http://ibiblio.org/pub/Linux/libs/yawl-0.3.2.tar.gz
or
http://bash.neuralshortcircuit.com/yawl-0.3.2.tar.gz
if [-z "S1"] # If no word pattern specified
then #+ as a command-line argument
echo #+ . . . then
echo "Usage:" #+ Usage message.
echo
echo ""$0" \"pattern,\""
echo "where \"pattern\" is in the form"
echo "xxx..x.x..."
echo
echo "The x's represent known letters,"
echo "and the periods are unknown letters (blanks)."
echo "Letters and periods can be in any position."
echo "For example, try: sh cw-solver.sh w...i....n"
echo
exit SE_NOPATT
fi
echo
#
This is where all the work gets done.
grep ""S$1"$ "SDICT" # Yes, only one line!
| |

~ is start-of-word regex anchor.
$ is end-of-word regex anchor.

From _Stupid Grep Tricks_, vol. 1,
#+ a book the ABS Guide author may yet get around
#+ to writing . . . one of these days
#
echo

exit $? # Script terminates here.
If there are too many words generated,
#+ redirect the output to a file.

$ sh cw-solver.sh w...i....n

wellington
workingman
workingmen

egrep -- extended grep -- is the same as grep -E. This uses a somewhat different, extended set of
Regular Expressions, which can make the search a bit more flexible. It also allows the boolean | (or)
operator.

bash $ egrep 'matches|Matches' file.txt
Line 1 matches.

Line 3 Matches.

Line 4 contains matches, but also Matches

fgrep -- fast grep -- is the same as grep -F. It does a literal string search (no Regular Expressions),
which generally speeds things up a bit.

Chapter 16. External Filters, Programs and Commands 239

Advanced Bash-Scripting Guide

=) On some Linux distros, egrep and fgrep are symbolic links to, or aliases for

grep, but invoked with the —E and —F options, respectively.

Example 16-19. Looking up definitions in Webster's 1913 Dictionary

#!
#

/bin/bash
dict-lookup.sh

This script looks up definitions in the 1913 Webster's Dictionary.

This Public Domain dictionary is available for download
from various sites, including
Project Gutenberg (http://www.gutenberg.org/etext/247) .

Convert it from DOS to UNIX format (with only LF at end of line)
before using it with this script.

Store the file in plain, uncompressed ASCII text.

Set DEFAULT_DICTFILE variable below to path/filename.

E_BADARGS=85

MAXCONTEXTLINES=50

DE

if
#

#+
th

if

th

el

De
#
#
#

Chapter 1

FAULT_DICTFILE="/usr/share/dict/webster1913-dict.txt"

Default dictionary file pathname.
Change this as necessary.

This particular edition of the 1913 Webster's

begins each entry with an uppercase letter

(lowercase for the remaining characters).

Only the *very first line* of an entry begins this way,
and that's why the search algorithm below works.

[[-z $(echo "$1" | sed -n '"/~[A-Z]/p") 1]

Must at least specify word to look up, and

it must start with an uppercase letter.
en
echo "Usage: "basename $0° Word-to-define [dictionary-file]"
echo
echo "Note: Word to look up must start with capital letter,"
echo "with the rest of the word in lowercase."
e O iy "
echo "Examples: Abandon, Dictionary, Marking, etc."
exit S$E_BADARGS

[-z "S2"] # May specify different dictionary
#+ as an argument to this script.
en
dictfile=$SDEFAULT_DICTFILE
se

dictfile="s2"

finition=$ (fgrep —-A $SMAXCONTEXTLINES "$1 \\" "Sdictfile")
Definitions in form "Word \..."

And, yes, "fgrep" is fast enough

6. External Filters, Programs and Commands

Maximum number of lines to show.

240

look

Advanced Bash-Scripting Guide

#+ to search even a very large text file.

Now, snip out just the definition block.

echo "$Definition" |

sed -n 'l,/"[A-Z]/p" |

Print from first line of output

#+ to the first line of the next entry.

sed '$d' | sed 'S$d'

Delete last two lines of output

#+ (blank line and first line of next entry).

exit $7?

Exercises:

B

1) Modify the script to accept any type of alphabetic input
+ (uppercase, lowercase, mixed case), and convert it
+ to an acceptable format for processing.

2) Convert the script to a GUI application,

using something like 'gdialog' or 'zenity'

The script will then no longer take its argument (s)
+ from the command-line.

w

Modify the script to parse one of the other available
+ Public Domain Dictionaries, such as the U.S. Census Bureau Gazetteer.

S S S e o o o e 3 o o
+

&) See also Example A-41 for an example of speedy fgrep lookup on a large text file.

agrep (approximate grep) extends the capabilities of grep to approximate matching. The search string
may differ by a specified number of characters from the resulting matches. This utility is not part of
the core Linux distribution.

i | To search compressed files, use zgrep, zegrep, or zfgrep. These also work on
non-compressed files, though slower than plain grep, egrep, fgrep. They are handy
for searching through a mixed set of files, some compressed, some not.

To search bzipped files, use bzgrep.

The command look works like grep, but does a lookup on a "dictionary," a sorted word list. By
default, look searches for a match in /usr/dict/words, but a different dictionary file may be
specified.

Example 16-20. Checking words in a list for validity

#!/bin/bash
lookup: Does a dictionary lookup on each word in a data file.

file=words.data # Data file from which to read words to test.

Chapter 16. External Filters, Programs and Commands 241

Advanced Bash-Scripting Guide

echo
while ["Sword" != end] # Last word in data file.
read word # From data file, because of redirection at end of loop.
look S$word > /dev/null # Don't want to display lines in dictionary file.
lookup=$"? # Exit status of 'look' command.
if ["Slookup" -eg 0]
then
echo "\"S$word\" is valid."
else
echo "\"$word\" is invalid."
fi
done <"S$file" # Redirects stdin to $file, so "reads" come from there.
echo
exit O

Code below line will not execute because of "exit" command above.

Stephane Chazelas proposes the following, more concise alternative:

while read word && [[Sword != end 1]

do if look "Sword" > /dev/null
then echo "\"$word\" is valid."
else echo "\"Sword\" is invalid."
fi

done <"$file"

exit O

sed, awk
Scripting languages especially suited for parsing text files and command output. May be embedded

sed

(Y]
=~

wC

singly or in combination in pipes and shell scripts.

Non-interactive "stream editor”, permits using many ex commands in batch mode. It finds many uses

in shell scripts.

Programmable file extractor and formatter, good for manipulating and/or extracting fields (columns)

in structured text files. Its syntax is similar to C.

wc gives a "word count” on a file or I/O stream:

bash $ we /usr/share/doc/sed-4.1.2/README
13 70 447 README
[13 1lines 70 words 447 characters]

wc —w gives only the word count.
wc -1 gives only the line count.
wc —c gives only the byte count.

wc —-m gives only the character count.

Chapter 16. External Filters, Programs and Commands

242

tr

Advanced Bash-Scripting Guide

we -L gives only the length of the longest line.
Using we to count how many . t xt files are in current working directory:

S 1s *.txt | wec -1
Will work as long as none of the "*.txt" files
#+ have a linefeed embedded in their name.

Alternative ways of doing this are:
find . -maxdepth 1 -name *.txt -printO | grep -cz
(shopt -s nullglob; set —— *.txt; echo $#)

Thanks, S.C.
Using we to total up the size of all the files whose names begin with letters in the range d - h

bash$ we [d-h]* | grep total | awk '{print $3}'
71832

Using wc to count the instances of the word "Linux" in the main source file for this book.

bash$ grep Linux abs-book.sgml | wc -1
50

See also Example 16-39 and Example 20-8.

Certain commands include some of the functionality of we as options.

| grep foo | wc -1
This frequently used construct can be more concisely rendered.

| grep -c foo
Just use the "-c¢" (or "--count") option of grep.

Thanks, S.C.
character translation filter.

<1 Must use quoting and/or brackets, as appropriate. Quotes prevent the shell from

reinterpreting the special characters in tr command sequences. Brackets should be

quoted to prevent expansion by the shell.
Either tr "A-z" "*" <filename ortr A-Z * <filename changes all the uppercase
letters in £1 lename to asterisks (writes to stdout). On some systems this may not work, but tr
A-Z '[**]" will

The —d option deletes a range of characters.

echo "abcdef" # abcdef
echo "abcdef" | tr -d b-d # aef

tr -d 0-9 <filename
Deletes all digits from the file "filename".

The -—squeeze-repeats (or —s) option deletes all but the first instance of a string of
consecutive characters. This option is useful for removing excess whitespace.

Chapter 16. External Filters, Programs and Commands 243

Advanced Bash-Scripting Guide

bash$ echo "XXXXX" | tr —--squeeze-repeats 'X'
X

The —c "complement” option inverts the character set to match. With this option, tr acts only upon
those characters not matching the specified set.

bash$ echo "acfdebl23" | tr -c b-d +
+ct+d+b++++

Note that tr recognizes POSIX character classes. [66

bash$ echo "abcd2efl" | tr '[:alpha:]' -
———-2--1

Example 16-21. toupper: Transforms a file to all uppercase.

#!/bin/bash
Changes a file to all uppercase.

E_BADARGS=85

if [-z "$1"] # Standard check for command-line arg.
then

echo "Usage: "basename $0° filename"

exit S$E_BADARGS
fi

tr a-z A-Z <"$1"

Same effect as above, but using POSIX character set notation:
tr '[:lower:]' '[:upper:]' <"$1"
Thanks, S.C.

exit O

Exercise:
Rewrite this script to give the option of changing a file
#+ to *either* upper or lowercase.

Example 16-22. lowercase: Changes all filenames in working directory to lowercase.

#!/bin/bash

#

Changes every filename in working directory to all lowercase.
#

Inspired by a script of John Dubois,

#+ which was translated into Bash by Chet Ramey,

#+ and considerably simplified by the author of the ABS Guide.

for filename in * # Traverse all files in directory.
do
fname="basename $filename’
n="echo $fname | tr A-Z a-z° # Change name to lowercase.
if ["S$Sfname" != "Sn"] # Rename only files not already lowercase.
then
mv S$fname $n
fi
done

Chapter 16. External Filters, Programs and Commands 244

Advanced Bash-Scripting Guide

exit $7?

Code below this line will not execute because of "exit".
To run it, delete script above line.

The above script will not work on filenames containing blanks or newlines.
Stephane Chazelas therefore suggests the following alternative:

for filename in * # Not necessary to use basename,
since "*" won't return any file containing "/".
do n="echo "$filename/" | tr '[:upper:]' '[:lower:]"’
POSIX char set notation.
Slash added so that trailing newlines are not
removed by command substitution.
Variable substitution:
n=${n%/} # Removes trailing slash, added above, from filename.
[[$filename == $n]] || mv "$filename" "Sn"
Checks if filename already lowercase.
done
exit $7

Example 16-23. du: DOS to UNIX text file conversion.

#!/bin/bash
Du.sh: DOS to UNIX text file converter.

E_WRONGARGS=65

if [-z "S$1"]

then
echo "Usage: "basename $0° filename-to-convert"
exit S$E_WRONGARGS

fi

NEWFILENAME=S$1.unx

CR="'\015" Carriage return.

015 is octal ASCII code for CR.
Lines in a DOS text file end in CR-LF.
Lines in a UNIX text file end in LF only.

tr -d SCR < $1 > SNEWFILENAME
Delete CR's and write to new file.

echo "Original DOS text file is \"S$1I\"."
echo "Converted UNIX text file is \"SNEWFILENAME\"."

exit O
Exercise:

Change the above script to convert from UNIX to DOS.

Example 16-24. rot13: ultra-weak encryption.

Chapter 16. External Filters, Programs and Commands 245

Advanced Bash-Scripting Guide

#!/bin/bash
rotl3.sh: Classic rotl3 algorithm,

encryption that migh
Usage: ./rotl3.sh filename

or ./rotl3.sh <filename

or ./rotl3.sh and supply k
cat "$Q" | tr 'a-zA-Z' 'n-za-mN-
The 'cat "$@"' construction

t fool a 3-year old.

eyboard input (stdin)

7ZA-M" # ngn goes to "n", "H" to "O",

#+ permits getting input either from stdin or from files.

exit O

Example 16-25. Generating ''Crypto-Quote'' Puzzles

#!/bin/bash
crypto-—quote.sh: Encrypt quotes

Will encrypt famous quotes in a simple monoalphabetic substitution.

#

The result is similar to the

"Crypto Quote" puzzles

#+ seen in the Op Ed pages of the Sunday paper.

key=ETAOINSHRDLUBCFGJMQPVWZYXK

#
#

#
#
#

The "key" is nothing more than
Changing the "key" changes the

The 'cat "$Q"' construction gets input either from stdin or from files.

If using stdin, terminate inpu
Otherwise, specify filename as

a scrambled alphabet.
encryption.

t with a Control-D.
command-line parameter.

cat ll$@ll I tr "a—-z" "pA-7z" | tr "A-7" vl$keyll

#
#
#

e S o S e o o

B

#

| to uppercase |
Will work on lowercase, upperc
Passes non-alphabetic characte

Try this script with something
"Nothing so needs reforming as
——Mark Twain

Output is:

"CFPHRCS QF CIIOQ MINFMBRCS EQ
——BEML PZERC

To reverse the encryption:

cat ll$@ll I tr "$key" "p—_7"

This simple-minded cipher can

#+ using only pencil and paper.

exit O
Exercise:
,,,,,,,,

encrypt
ase, or mixed-case quotes.
rs through unchanged.

like:

other people's habits."

FPHIM GIFGUI'Q HETRPQ."

be broken by an average 1l2-year old

Modify the script so that it will either encrypt or decrypt,
#+ depending on command-line argument (s) .

Chapter 16. External Filters, Programs and Commands

246

Advanced Bash-Scripting Guide

tr variants

The tr utility has two historic variants. The BSD version does not use brackets (txr a—z A-Z), but
the SysV one does (tr ' [a-z]' '[A-2Z]'). The GNU version of tr resembles the BSD one.

fold
A filter that wraps lines of input to a specified width. This is especially useful with the —s option,

which breaks lines at word spaces (see Example 16-26 and Example A-1).
fmt

Simple-minded file formatter, used as a filter in a pipe to "wrap" long lines of text output.

Example 16-26. Formatted file listing.

#!/bin/bash

WIDTH=40 # 40 columns wide.
b="1ls /usr/local/bin’ # Get a file listing...
echo $b | fmt -w SWIDTH

Could also have been done by
echo $b | fold - -s -w SWIDTH

exit O

See also Example 16-5.

i) A powerful alternative to fmt is Kamil Toman's par utility, available from
http://www.cs.berkeley.edu/~amc/Par/.

col
This deceptively named filter removes reverse line feeds from an input stream. It also attempts to
replace whitespace with equivalent tabs. The chief use of col is in filtering the output from certain text
processing utilities, such as groff and tbl.

column
Column formatter. This filter transforms list-type text output into a "pretty-printed" table by inserting
tabs at appropriate places.

Example 16-27. Using column to format a directory listing

#!/bin/bash
colms.sh
A minor modification of the example file in the "column" man page.

(printf "PERMISSIONS LINKS OWNER GROUP SIZE MONTH DAY HH:MM PROG-NAME\n" \
; 1s -1 | sed 1d) | column -t

AAAAAA AN

The "sed 1d" in the pipe deletes the first line of output,
#+ which would be "total N",
#+ where "N" is the total number of files found by "ls -1".

The -t option to "column" pretty-prints a table.

Chapter 16. External Filters, Programs and Commands 247

http://www.cs.berkeley.edu/~amc/Par/

colrm

nl

pr

gettext

Advanced Bash-Scripting Guide

exit O

Column removal filter. This removes columns (characters) from a file and writes the file, lacking the
range of specified columns, back to stdout. colrm 2 4 <filename removes the second
through fourth characters from each line of the text file filename.

<1 If the file contains tabs or nonprintable characters, this may cause unpredictable
behavior. In such cases, consider using expand and unexpand in a pipe preceding
colrm.

Line numbering filter: n1 filename lists filename to stdout, but inserts consecutive numbers
at the beginning of each non-blank line. If £i1lename omitted, operates on stdin.

The output of nl is very similar to cat -b, since, by default nl does not list blank lines.

Example 16-28. nl: A self-numbering script.

#!/bin/bash
line—-number.sh

This script echoes itself twice to stdout with its lines numbered.

'nl' sees this as line 4 since it does not number blank lines.
'cat -n' sees the above line as number 6.

nl ‘basename $0°
echo; echo # Now, let's try it with 'cat -n'
cat -n ‘basename $0°

The difference is that 'cat -n' numbers the blank lines.
Note that 'nl -ba' will also do so.

Print formatting filter. This will paginate files (or stdout) into sections suitable for hard copy
printing or viewing on screen. Various options permit row and column manipulation, joining lines,
setting margins, numbering lines, adding page headers, and merging files, among other things. The pr
command combines much of the functionality of nl, paste, fold, column, and expand.

pr —o 5 ——width=65 fileZZZ | more gives a nice paginated listing to screen of
fileZzZ with margins set at 5 and 65.

A particularly useful option is —d, forcing double-spacing (same effect as sed -G).
The GNU gettext package is a set of utilities for localizing and translating the text output of programs
into foreign languages. While originally intended for C programs, it now supports quite a number of

programming and scripting languages.

The gettext program works on shell scripts. See the info page.

msgfmt

Chapter 16. External Filters, Programs and Commands 248

Advanced Bash-Scripting Guide

A program for generating binary message catalogs. It is used for localization.

iconv
A utility for converting file(s) to a different encoding (character set). Its chief use is for localization.
Convert a string from UTF-8 to UTF-16 and print to the BookList
function write_utf8_string {
STRING=S1
BOOKLIST=S$2
echo —n "S$STRING" | iconv —-f UTF8 -t UTFl6 | \
cut -b 3- | tr -d \\n >> "SBOOKLIST"
}
From Peter Knowles' "booklistgen.sh" script
#+ for converting files to Sony Librie/PRS-50X format.
(http://booklistgensh.peterknowles.com)
recode

Consider this a fancier version of iconv, above. This very versatile utility for converting a file to a
different encoding scheme. Note that recode is not part of the standard Linux installation.
TeX, gs

TeX and Postscript are text markup languages used for preparing copy for printing or formatted
video display.

TeX is Donald Knuth's elaborate typsetting system. It is often convenient to write a shell script
encapsulating all the options and arguments passed to one of these markup languages.

Ghostscript (gs) is a GPL-ed Postscript interpreter.
texexec

Utility for processing TeX and pdf files. Found in /usr/bin on many Linux distros, it is actually a
shell wrapper that calls Perl to invoke Tex.

texexec —--pdfarrange —--result=Concatenated.pdf *pdf

Concatenates all the pdf files in the current working directory

#+ into the merged file, Concatenated.pdf .

(The —--pdfarrange option repaginates a pdf file. See also ——-pdfcombine.)

The above command-line could be parameterized and put into a shell script.
enscript

Utility for converting plain text file to PostScript

For example, enscript filename.txt -p filename.ps produces the PostScript output file
filename.ps.

groff, tbl, eqn

Yet another text markup and display formatting language is groff. This is the enhanced GNU version
of the venerable UNIX roff/troff display and typesetting package. Manpages use groff.

The tbl table processing utility is considered part of groff, as its function is to convert table markup
into groff commands.

The eqn equation processing utility is likewise part of groff, and its function is to convert equation
markup into groff commands.

Example 16-29. manview: Viewing formatted manpages

Chapter 16. External Filters, Programs and Commands 249

Advanced Bash-Scripting Guide

#!/bin/bash
manview.sh: Formats the source of a man page for viewing.

This script is useful when writing man page source.
It lets you look at the intermediate results on the fly
#+ while working on it.

E_WRONGARGS=85

if [-z "s1"]

then
echo "Usage: “basename $0° filename"
exit S$SE_WRONGARGS

fi

groff -Tascii -man $1 | less

From the man page for groff.

If the man page includes tables and/or equations,
#+ then the above code will barf.
The following line can handle such cases.

#

gtbl < "$1" | gegn -Tlatinl | groff -Tlatinl -mtty-char -man
#

Thanks, S.C.

exit $°? # See also the "maned.sh" script.

See also Example A-39.

lex, yacc

The lex lexical analyzer produces programs for pattern matching. This has been replaced by the
nonproprietary flex on Linux systems.

The yacc utility creates a parser based on a set of specifications. This has been replaced by the
nonproprietary bison on Linux systems.

16.5. File and Archiving Commands

Archiving

tar

The standard UNIX archiving utility. [67] Originally a Tape ARchiving program, it has developed into
a general purpose package that can handle all manner of archiving with all types of destination
devices, ranging from tape drives to regular files to even stdout (see Example 3-4). GNU tar has
been patched to accept various compression filters, for example: tar czvf archive_name.tar.gz *,
which recursively archives and gzips all files in a directory tree except dotfiles in the current working

directory ($PWD). [68]
Some useful tar options:

1. —c create (a new archive)
2. —x extract (files from existing archive)

Chapter 16. External Filters, Programs and Commands 250

shar

ar

rpm

Advanced Bash-Scripting Guide

3. ——delete delete (files from existing archive)

<1 This option will not work on magnetic tape devices.

. —r append (files to existing archive)

. —A append (tar files to existing archive)

. —t list (contents of existing archive)

. —u update archive

. —d compare archive with specified filesystem

.——after—-date only process files with a date stamp after specified date
. —z gzip the archive

O O 03N L A~

(compress or uncompress, depending on whether combined with the —c or —x) option
11. —j bzip2 the archive

<1> It may be difficult to recover data from a corrupted gzipped tar archive. When
archiving important files, make multiple backups.

Shell archiving utility. The text files in a shell archive are concatenated without compression, and the
resultant archive is essentially a shell script, complete with #!/bin/sh header, containing all the
necessary unarchiving commands, as well as the files themselves. Shar archives still show up in
Usenet newsgroups, but otherwise shar has been replaced by tar/gzip. The unshar command
unpacks shar archives.

The mailshar command is a Bash script that uses shar to concatenate multiple files into a single one
for e-mailing. This script supports compression and uuencoding.

Creation and manipulation utility for archives, mainly used for binary object file libraries.

The Red Hat Package Manager, or rpm utility provides a wrapper for source or binary archives. It
includes commands for installing and checking the integrity of packages, among other things.

A simple rpm -i package_name.rpm usually suffices to install a package, though there are many
more options available.

i) rpm —gf identifies which package a file originates from.

bash$ rpm —-gf /bin/ls
coreutils-5.2.1-31

i) rpm —ga gives a complete list of all installed rpm packages on a given system. An
rpm —ga package_name lists only the package(s) corresponding to
package_name.

bash$ rpm —-qga
redhat-logos-1.1.3-1
glibc-2.2.4-13
cracklib-2.7-12
dosfstools-2.7-1
gdbm-1.8.0-10
ksymoops—-2.4.1-1

Chapter 16. External Filters, Programs and Commands 251

Advanced Bash-Scripting Guide

mktemp-1.5-11
perl-5.6.0-17
reiserfs-utils-3.x.0j-2

bash$ rpm —ga docbook-utils
docbook-utils-0.6.9-2

bash$ rpm —ga docbook | grep docbook
docbook-dtd31-sgml-1.0-10
docbook-style-dsssl-1.64-3
docbook-dtd30-sgml-1.0-10
docbook-dtd40-sgml-1.0-11
docbook-utils-pdf-0.6.9-2
docbook-dtd4l-sgml-1.0-10
docbook-utils-0.6.9-2

cpio
This specialized archiving copy command (copy input and output) is rarely seen any more, having
been supplanted by tar/gzip. It still has its uses, such as moving a directory tree. With an appropriate
block size (for copying) specified, it can be appreciably faster than tar.

Example 16-30. Using cpio to move a directory tree

#!/bin/bash
Copying a directory tree using cpio.

Advantages of using 'cpio':

Speed of copying. It's faster than 'tar' with pipes.

Well suited for copying special files (named pipes, etc.)
#+ that 'cp' may choke on.

ARGS=2
E_BADARGS=65

if [$# -ne "SARGS"]

then
echo "Usage: "basename $0° source destination"
exit S$E_BADARGS

fi

source="$1"
destination="$2"

FHEHHFH AR A AR AR AR AR A AR AR A A A AR A R R
find "$source" -depth | cpio —admvp "S$destination"

AAAAA AAAAA

Read the 'find' and 'cpio' info pages to decipher these options.
The above works only relative to $PWD (current directory)

#+ full pathnames are specified.
i

Exercise:

Chapter 16. External Filters, Programs and Commands 252

Advanced Bash-Scripting Guide

Add code to check the exit status ($?) of the 'find | cpio' pipe
#+ and output appropriate error messages if anything went wrong.

exit $7?

rpm2cpio

This command extracts a cpio archive from an rpm one.

Example 16-31. Unpacking an rpm archive

#!/bin/bash
de-rpm.sh: Unpack an 'rpm' archive

${1?"Usage: "basename $0° target-file"}
Must specify 'rpm' archive name as an argument.

TEMPFILE=SS.cpio # Tempfile with "unique" name.
$$ is process ID of script.

rpm2cpio < $1 > STEMPFILE # Converts rpm archive into
#+ cpio archive.

cpio ——make-directories -F $TEMPFILE -i # Unpacks cpio archive.

rm —-f S$STEMPFILE # Deletes cpio archive.

exit O

Exercise:
Add check for whether 1) "target-file" exists and

#+ 2) it is an rpm archive.
Hint: Parse output of 'file' command.
pax
The pax portable archive exchange toolkit facilitates periodic file backups and is designed to be
cross-compatible between various flavors of UNIX. It was ported from BSD to Linux.
pax —-wf daily_ backup.pax ~/linux-server/files
Creates a tar archive of all files in the target directory.
Note that the options to pax must be in the correct order —-—
#+ pax —fw has an entirely different effect.
pax —f daily_backup.pax
Lists the files in the archive.
pax —-rf daily backup.pax ~/bsd-server/files
Restores the backed-up files from the Linux machine
#+ onto a BSD one.
Note that pax handles many of the standard archiving and compression commands.
Compression
gzip

The standard GNU/UNIX compression utility, replacing the inferior and proprietary compress. The
corresponding decompression command is gunzip, which is the equivalent of gzip -d.

&) The —c option sends the output of gzip to stdout. This is useful when piping to
other commands.

Chapter 16. External Filters, Programs and Commands 253

Advanced Bash-Scripting Guide

The zcat filter decompresses a gzipped file to st dout, as possible input to a pipe or redirection. This
is, in effect, a cat command that works on compressed files (including files processed with the older
compress utility). The zcat command is equivalent to gzip -dc.

<1 On some commercial UNIX systems, zcat is a synonym for uncompress -c, and will
not work on gzipped files.
See also Example 7-7.
bzip2
An alternate compression utility, usually more efficient (but slower) than gzip, especially on large
files. The corresponding decompression command is bunzip2.

Similar to the zcat command, bzcat decompresses a bzipped2-ed file to stdout.

=) Newer versions of tar have been patched with bzip2 support.

compress, Uncompress
This is an older, proprietary compression utility found in commercial UNIX distributions. The more
efficient gzip has largely replaced it. Linux distributions generally include a compress workalike for
compatibility, although gunzip can unarchive files treated with compress.

i) The znew command transforms compressed files into gzipped ones.

sq
Yet another compression (squeeze) utility, a filter that works only on sorted ASCII word lists. It uses
the standard invocation syntax for a filter, sq < input-file > output-file. Fast, but not nearly as
efficient as gzip. The corresponding uncompression filter is unsq, invoked like sq.
i) The output of sq may be piped to gzip for further compression.
zip, unzip

Cross-platform file archiving and compression utility compatible with DOS pkzip.exe. "Zipped"
archives seem to be a more common medium of file exchange on the Internet than "tarballs."

unarc, unarj, unrar
These Linux utilities permit unpacking archives compressed with the DOS arc.exe, arj.exe, and
rar.exe programs.

Izma, unlzma, 1zcat
Highly efficient Lempel-Ziv-Markov compression. The syntax of /zma is similar to that of gzip. The
7-zip Website has more information.

File Information

file
A utility for identifying file types. The command file file-name will return a file specification
for file—-name, such as ascii text or data. It references the magic numbers found in
/usr/share/magic, /etc/magic, or /usr/lib/magic, depending on the Linux/UNIX
distribution.

The - £ option causes file to run in batch mode, to read from a designated file a list of filenames to
analyze. The —z option, when used on a compressed target file, forces an attempt to analyze the
uncompressed file type.

bash$ file test.tar.gz

Chapter 16. External Filters, Programs and Commands 254

http://www.7-zip.org/sdk.html

Advanced Bash-Scripting Guide

test.tar.gz: gzip compressed data, deflated,
last modified: Sun Sep 16 13:34:51 2001, os: Unix

bash file -z test.tar.gz
test.tar.gz: GNU tar archive (gzip compressed data, deflated,
last modified: Sun Sep 16 13:34:51 2001, os: Unix)

Find sh and Bash scripts in a given directory:
DIRECTORY=/usr/local/bin
KEYWORD=Bourne

Bourne and Bourne—-Again shell scripts

file $SDIRECTORY/* | fgrep SKEYWORD

Output:

/usr/local/bin/burn-cd: Bourne-Again shell script text executable
/usr/local/bin/burnit: Bourne-Again shell script text executable
/usr/local/bin/cassette.sh: Bourne shell script text executable

/usr/local/bin/copy-cd: Bourne-Again shell script text executable
#

Example 16-32. Stripping comments from C program files

#!/bin/bash
strip-comment.sh: Strips out the comments (/* COMMENT */) in a C program.

E_NOARGS=0
E_ARGERROR=66
E_WRONG_FILE TYPE=67

if [$# —-eqg "SE_NOARGS"]

then
echo "Usage: "basename $0° C-program-file" >&2 # Error message to stderr.
exit S$E_ARGERROR

fi

Test for correct file type.

type="file $1 | awk '{ print $2, $3, $4, $5 }'°

"file $1" echoes file type . . .

Then awk removes the first field, the filename

Then the result is fed into the variable "type."
correct_type="ASCII C program text"

if ["$type" != "Scorrect_type"]
then
echo
echo "This script works on C program files only."
echo
exit $E_WRONG_FILE_TYPE
fi

Rather cryptic sed script:

sed '
/N\/*/d
/o **\/ /el
'Sl

Chapter 16. External Filters, Programs and Commands

255

which

Advanced Bash-Scripting Guide

Easy to understand if you take several hours to learn sed fundamentals.

Need to add one more line to the sed script to deal with
#+ case where line of code has a comment following it on same line.
This is left as a non-trivial exercise.

Also, the above code deletes non-comment lines with a "*/"
#+ not a desirable result.

exit O

Code below this line will not execute because of 'exit 0' above.
Stephane Chazelas suggests the following alternative:

usage () {
echo "Usage: "basename $0° C-program—-file" >&2

exit 1
}
WEIRD="echo -n -e '\377"" # or WEIRD=S$'\377'
[[$# —eg 1]] || usage
case " file "$1"® in

"C program text") sed -e "s%/*$${WEIRD}%g;s%*/$S{WEIRD}%g" "S$S1" \
| tr '\377\n' '\n\377'" \
| sed —ne 'p;n' \
| tr =d "\n' | tr '\377' '\n';;
*) usage;;
esac

This is still fooled by things like:
printf ("/*");

or

/* /* buggy embedded comment */

4 o o o3 o

To handle all special cases (comments in strings, comments in string
#+ where there is a \", \\" ...),
#+ the only way is to write a C parser (using lex or yacc perhaps?).

exit O

which command gives the full path to "command." This is useful for finding out whether a particular
command or utility is installed on the system.

$bash which rm

|/usr/bin/rm |

For an interesting use of this command, see Example 35-14.

whereis

Similar to which, above, whereis command gives the full path to "command," but also to its
manpage.

$bash whereis rm

Chapter 16. External Filters, Programs and Commands 256

whatis

vdir

Advanced Bash-Scripting Guide

|rm: /bin/rm /usr/share/man/manl/rm.1.bz2 |

whatis command looks up "command" in the what i s database. This is useful for identifying system
commands and important configuration files. Consider it a simplified man command.

$bash whatis whatis

|whatis (1) - search the whatis database for complete words

Example 16-33. Exploring /usr/X11R6/bin

#!/bin/bash
What are all those mysterious binaries in /usr/X11R6/bin?

DIRECTORY="/usr/X11R6/bin"
Try also "/bin", "/usr/bin", "/usr/local/bin", etc.

for file in $DIRECTORY/*
do

whatis "basename $file’ # Echoes info about the binary.
done

exit O

You may wish to redirect output of this script, like so:
./what.sh >>whatis.db

or view it a page at a time on stdout,

./what.sh | less

See also Example 11-3.

Show a detailed directory listing. The effect is similar to ls -1b.

This is one of the GNU fileutils.

bash$ vdir

total 10
—rwW—r——r—— 1 bozo bozo 4034 Jul 18 22:04 datal.xrolo
—rwW—r——r—— 1 bozo bozo 4602 May 25 13:58 datal.xrolo.bak
—rwW—r——r—— 1 bozo bozo 877 Dec 17 2000 employment.xrolo

bash 1s -1

total 10
—rwW—r——r—— 1 bozo bozo 4034 Jul 18 22:04 datal.xrolo
—rwW—r——r—— 1 bozo bozo 4602 May 25 13:58 datal.xrolo.bak
—rwW—r——r—— 1 bozo bozo 877 Dec 17 2000 employment.xrolo

locate, slocate

The locate command searches for files using a database stored for just that purpose. The slocate
command is the secure version of locate (which may be aliased to slocate).

$bash locate hickson

|/usr/lib/xephem/catalogs/hickson.edb |

getfacl, setfacl

These commands retrieve or set the file access control list -- the owner, group, and file permissions.

Chapter 16. External Filters, Programs and Commands 257

Advanced Bash-Scripting Guide

bash$ getfacl *

file: testl.txt
owner: bozo

group: bozgrp
user::rw-—
group: : rw—
other::r——

file: test2.txt
owner: bozo

group: bozgrp
user::rw-—
group: : rw—
other::r——

bash$ getfacl yearly budget.csv
file: yearly_budget.csv

owner: accountant

group: budgetgrp

user: :rw-—

user:bozo:rw-—
user:accountant:rw-

group: : rw—

mask: :rw—

other::r——

bash$ setfacl -m u:bozo:rw yearly budget.csv

readlink

strings

Chapter 16. External Filters, Programs and Commands

Disclose the file that a symbolic link points to.

bashS$ readlink /usr/bin/awk
../../bin/gawk

Use the strings command to find printable strings in a binary or data file. It will list sequences of

printable characters found in the target file. This might be handy for a quick 'n dirty examination of a

core dump or for looking at an unknown graphic image file (strings image—-file | more
might show something like JFIF, which would identify the file as a jpeg graphic). In a script, you

would probably parse the output of strings with grep or sed. See Example 11-7 and Example 11-9.

Example 16-34. An "improved" strings command

#!/bin/bash

wstrings.sh: "word-strings" (enhanced "strings"

#

This script filters the output of "strings" by checking it

#+ against a standard word list file.

This effectively eliminates gibberish and noise,

#+ and outputs only recognized words.

#

Standard Check for Script Argument (s)

ARGS=1
E_BADARGS=85
E_NOFILE=86

258

Advanced Bash-Scripting Guide

if [S# -ne SARGS]

then
echo "Usage: “basename $0° filename"
exit S$E_BADARGS

fi
if [! —f "$S1"] # Check i1f file exists.
then
echo "File \"$1\" does not exist."
exit SE_NOFILE
fi
#
MINSTRLEN=3 # Minimum string length.

WORDFILE=/usr/share/dict/linux.words # Dictionary file.
May specify a different word list file

#+ of one-word-per—line format.

For example, the "yawl" word-list package,

http://bash.neuralshortcircuit.com/yawl-0.3.2.tar.gz

wlist="strings "$1" | tr A-Z a-z | tr '[:space:]'" Z | \
tr -cs '[:alpha:]' Z | tr -s '"\173-\377' z | tr 2 ' '

Translate output of 'strings' command with multiple passes of 'tr'.

"tr A-Z a-z" converts to lowercase.
"tr '[:space:]'" converts whitespace characters to Z's.
"tr -cs '[:alpha:]' Z" converts non-alphabetic characters to Z's,

#+ and squeezes multiple consecutive Z's.

"tr -s '\173-\377' Z" converts all characters past 'z' to Z's
#+ and squeezes multiple consecutive Z's,

#+ which gets rid of all the weird characters that the previous
#+ translation failed to deal with.

Finally, "tr Z ' '" converts all those Z's to whitespace,

#+ which will be seen as word separators in the loop below.

dhkhkhkhkhhkhhhkhhhAhkhhhhkhhhkhhhkhhkdhhkrhhkrhhkrhkhkhhkdhhkrhhkrhhkrhkhkhkhkdhkxhkxkkxx*x

Note the technique of feeding the output of 'tr' back to itself,

#+ but with different arguments and/or options on each pass.
Ak hkhkkhkhkhkhkhkhhkhkhhhkhhkhhhhhbhh kb hkrhkhkr kb r kb kbbb r kb hkhkhkhkrhkhkhkhkhkhxkx

for word in S$wlist # Important:
Swlist must not be quoted here.
"Swlist" does not work.
Why not?
do
strlen=${#word} # String length.
if ["S$strlen" -1t "SMINSTRLEN"] # Skip over short strings.
then
continue
fi
grep -Fw $word "SWORDFILE" # Match whole words only.
AN # "Fixed strings" and
#+ "whole words" options.
done

Chapter 16. External Filters, Programs and Commands 259

Advanced Bash-Scripting Guide

exit $°?
Comparison

diff, patch
diff: flexible file comparison utility. It compares the target files line-by-line sequentially. In some
applications, such as comparing word dictionaries, it may be helpful to filter the files through sort and
uniq before piping them to diff. diff file-1 £file-2 outputs the lines in the files that differ,
with carets showing which file each particular line belongs to.

The ——side-by-side option to diff outputs each compared file, line by line, in separate columns,
with non-matching lines marked. The —c and —u options likewise make the output of the command
easier to interpret.

There are available various fancy frontends for diff, such as sdiff, wdiff, xdiff, and mgdiff.

i) The diff command returns an exit status of 0 if the compared files are identical, and 1
if they differ. This permits use of diff in a test construct within a shell script (see
below).

A common use for diff is generating difference files to be used with patch The —e option outputs
files suitable for ed or ex scripts.

patch: flexible versioning utility. Given a difference file generated by diff, patch can upgrade a
previous version of a package to a newer version. It is much more convenient to distribute a relatively
small "diff" file than the entire body of a newly revised package. Kernel "patches" have become the
preferred method of distributing the frequent releases of the Linux kernel.

patch -pl <patch-file

Takes all the changes listed in 'patch-file'

and applies them to the files referenced therein.
This upgrades to a newer version of the package.

Patching the kernel:

cd /usr/src

gzip —-cd patchXX.gz | patch -pO0

Upgrading kernel source using 'patch'.
From the Linux kernel docs "README",

by anonymous author (Alan Cox?) .

&) The diff command can also recursively compare directories (for the filenames
present).

bash$S diff -r ~/notesl ~/notes2

Only in /home/bozo/notesl: file02
Only in /home/bozo/notesl: file03
Only in /home/bozo/notes2: file04

Use zdiff to compare gzipped files.

Chapter 16. External Filters, Programs and Commands 260

Advanced Bash-Scripting Guide

i) Use diffstat to create a histogram (point-distribution graph) of output from diff.

diff3, merge
An extended version of diff that compares three files at a time. This command returns an exit value of
0 upon successful execution, but unfortunately this gives no information about the results of the
comparison.

bash$ diff3 file-1 file-2 file-3

l:1c

This is line 1 of "file-1".
231le

This is line 1 of "file-2".
Jsle

This is line 1 of "file-3"

The merge (3-way file merge) command is an interesting adjunct to diff3. Its syntax is merge
Mergefile filel file2. The resultis to output to Mergefile the changes that lead from
filel to £ile2. Consider this command a stripped-down version of patch.

sdiff
Compare and/or edit two files in order to merge them into an output file. Because of its interactive
nature, this command would find little use in a script.

cmp
The emp command is a simpler version of diff, above. Whereas diff reports the differences between
two files, cmp merely shows at what point they differ.

&) Like diff, cmp returns an exit status of 0 if the compared files are identical, and 1 if
they differ. This permits use in a test construct within a shell script.

Example 16-35. Using cmp to compare two files within a script.

#!/bin/bash

ARGS=2 # Two args to script expected.
E_BADARGS=65
E_UNREADABLE=66

if [$# -ne "S$ARGS"]

then
echo "Usage: “basename $0° filel file2"
exit S$E_BADARGS

fi

if [[! —x "s$1" || ! -r "S2"]]

then
echo "Both files to be compared must exist and be readable."
exit $E_UNREADABLE

fi

cmp $1 $2 &> /dev/null # /dev/null buries the output of the "cmp" command.

cmp -s $1 $2 has same result ("-s" silent flag to "cmp")
Thank you Anders Gustavsson for pointing this out.

#

Also works with 'diff', i.e., diff $1 $2 &> /dev/null

if [$? -eq 0] # Test exit status of "cmp" command.
then

Chapter 16. External Filters, Programs and Commands 261

Advanced Bash-Scripting Guide

echo "File \"$1\" is identical to file \"S$2\"."
else

echo "File \"$1\" differs from file \"$2\"."
fi

exit O

i) Use zemp on gzipped files.

comm
Versatile file comparison utility. The files must be sorted for this to be useful.

comm —options first—-file second-file
comm file-1 file-2 outputs three columns:

¢ column 1 = lines unique to file-1
¢ column 2 = lines unique to file-2
¢ column 3 = lines common to both.
The options allow suppressing output of one or more columns.

¢ —1 suppresses column 1

¢ -2 suppresses column 2

0 -3 suppresses column 3

¢ —12 suppresses both columns 1 and 2, etc.
This command is useful for comparing "dictionaries" or word lists -- sorted text files with one word
per line.

Utilities

basename
Strips the path information from a file name, printing only the file name. The construction
basename $0 lets the script know its name, that is, the name it was invoked by. This can be used
for "usage" messages if, for example a script is called with missing arguments:

echo "Usage: “basename $0° argl arg2 ... argn"
dirname
Strips the basename from a filename, printing only the path information.

& basename and dirname can operate on any arbitrary string. The argument does not
need to refer to an existing file, or even be a filename for that matter (see Example
A-T).

Example 16-36. basename and dirname

#!/bin/bash

a=/home/bozo/daily—journal.txt

echo "Basename of /home/bozo/daily-journal.txt = "basename $a’ "

echo "Dirname of /home/bozo/daily-journal.txt = ‘dirname $a’ "

echo

echo "My own home is “basename ~/ ." # “basename ~ also works.

Chapter 16. External Filters, Programs and Commands 262

Advanced Bash-Scripting Guide
echo "The home of my home is ‘dirname ~/ ." # “dirname ~° also works.

exit O

split, csplit
These are utilities for splitting a file into smaller chunks. Their usual use is for splitting up large files
in order to back them up on floppies or preparatory to e-mailing or uploading them.

The csplit command splits a file according to context, the split occuring where patterns are matched.

Example 16-37. A script that copies itself in sections

#!/bin/bash
splitcopy.sh

A script that splits itself into chunks,
#+ then reassembles the chunks into an exact copy
#+ of the original script.

CHUNKSIZE=4 # Size of first chunk of split files.
OUTPREF IX=xXx # ©csplit prefixes, by default,
#+ files with "xx"

csplit "$O" "SCHUNKSIZE"

Some comment lines for padding .
Line 15
Line 16
Line 17
Line 18
Line 19
Line 20

e S o HE e o o

cat "SOUTPREFIX"* > "$S0.copy" # Concatenate the chunks.
rm "SOUTPREFIX"* # Get rid of the chunks.

exit $°?
Encoding and Encryption

sum, cksum, mdSsum, shalsum
These are utilities for generating checksums. A checksum is a number [69] mathematically calculated
from the contents of a file, for the purpose of checking its integrity. A script might refer to a list of
checksums for security purposes, such as ensuring that the contents of key system files have not been
altered or corrupted. For security applications, use the mdSsum (message digest 5 checksum)
command, or better yet, the newer shalsum (Secure Hash Algorithm). [70]

bashS$ cksum /boot/vmlinuz
1670054224 804083 /boot/vmlinuz

bash$ echo -n "Top Secret" | cksum
3391003827 10

bash$ md5sum /boot/vmlinuz
0f43eccea8f09e0alb2b5cfldcf333ba /boot/vmlinuz

Chapter 16. External Filters, Programs and Commands 263

Advanced Bash-Scripting Guide

bash$ echo —-n "Top Secret" | mdS5sum
8babc97a6£62a4649716£4d£8d61728f -

=) The cksum command shows the size, in bytes, of its target, whether file or stdout.

The mdSsum and shalsum commands display a dash when they receive their input
from stdout.

Example 16-38. Checking file integrity

#!/bin/bash
file-integrity.sh: Checking whether files in a given directory
have been tampered with.

E_DIR NOMATCH=70
E_BAD DBFILE=71

dbfile=File_record.md5
Filename for storing records (database file).

set_up_database ()
{
echo ""Sdirectory"" > "S$dbfile"
Write directory name to first line of file.
md5sum "S$directory"/* >> "Sdbfile"
Append md5 checksums and filenames.

check_database ()
{
local n=0
local filename
local checksum

This file check should be unnecessary,
#+ but better safe than sorry.

if [! —-r "Sdbfile"]

then
echo "Unable to read checksum database file!™"
exit $E_BAD_DBFILE

while read record[n]
do

directory_checked="${record[0]}"

if ["Sdirectory_checked" != "S$directory"]

then
echo "Directories do not match up!"
Tried to use file for a different directory.
exit $E_DIR_NOMATCH

fi

if ["$n" -gt 0] # Not directory name.

Chapter 16. External Filters, Programs and Commands 264

Advanced Bash-Scripting Guide

then
filename[n]=$(echo ${record[$n]} | awk '{ print $2 }')
md5sum writes records backwards,
#+ checksum first, then filename.
checksum[n]=$(mdSsum "${filename[n]}")

if ["$S{record[n]}" = "${checksum[n]}"]
then
echo "${filename[n]} unchanged."

elif [" basename ${filename[n]} " != "Sdbfile"]
Skip over checksum database file,
#+ as it will change with each invocation of script.
_
This unfortunately means that when running
#+ this script on $PWD, tampering with the
#+ checksum database file will not be detected.
Exercise: Fix this.
then
echo "${filename[n]} : CHECKSUM ERROR!"
File has been changed since last checked.

fi
fi
let "n+=1"
done <"S$dbfile" # Read from checksum database file.
}
#

main ()

if [-z "S1"]

then
directory="SPWD" # If not specified,

else #+ use current working directory.
directory="S$1"

fi

clear # Clear screen.

echo " Running file integrity check on $directory"

echo

__
if [! —-r "Sdbfile"] # Need to create database file?
then

echo "Setting up database file, \""Sdirectory"/"$dbfile"\"."; echo

set_up_database

check_database # Do the actual work.
echo

You may wish to redirect the stdout of this script to a file,
#+ especially if the directory checked has many files in it.

Chapter 16. External Filters, Programs and Commands

265

Advanced Bash-Scripting Guide
exit O

For a much more thorough file integrity check,
#+ consider the "Tripwire" package,
#+ http://sourceforge.net/projects/tripwire/.

Also see Example A-19, Example 35-14, and Example 10-2 for creative uses of the mdSsum
command.

<& There have been reports that the 128-bit mdSsum can be cracked, so the more secure
160-bit shalsum is a welcome new addition to the checksum toolkit.

bash$ md5sum testfile
el181e2c8720c60522c4c4c981108e367 testfile

bash$ shalsum testfile
5d7425a9c08a66c3177f1e31286£fa40986£ffc996 testfile

Security consultants have demonstrated that even shalsum can be compromised. Fortunately, newer

Linux distros include longer bit-length sha224sum, sha256sum, sha384sum, and sha512sum
commands.
uuencode

This utility encodes binary files (images, sound files, compressed files, etc.) into ASCII characters,
making them suitable for transmission in the body of an e-mail message or in a newsgroup posting.

This is especially useful where MIME (multimedia) encoding is not available.
uudecode
This reverses the encoding, decoding uuencoded files back into the original binaries.

Example 16-39. Uudecoding encoded files

#!/bin/bash
Uudecodes all uuencoded files in current working directory.

lines=35 # Allow 35 lines for the header (very generous) .

for File in * # Test all the files in S$PWD.
do
searchl="head -n $lines $File | grep begin | wc -w’
search2="tail -n $lines $File | grep end | wc -w’
Uuencoded files have a "begin" near the beginning,
#+ and an "end" near the end.
if ["S$searchl" -gt 0]
then
if ["S$search2" -gt 0]
then
echo "uudecoding - $File —-"
uudecode S$File
fi
fi
done
Note that running this script upon itself fools it
#+ into thinking it is a uuencoded file,

#+ because it contains both "begin" and "end".

Exercise:

Chapter 16. External Filters, Programs and Commands

266

Advanced Bash-Scripting Guide

Modify this script to check each file for a newsgroup header,
#+ and skip to next if not found.

exit O

i) The fold -s command may be useful (possibly in a pipe) to process long uudecoded
text messages downloaded from Usenet newsgroups.

mimencode, mmencode

crypt

openssl

shred

The mimencode and mmencode commands process multimedia-encoded e-mail attachments.
Although mail user agents (such as pine or kmail) normally handle this automatically, these particular
utilities permit manipulating such attachments manually from the command-line or in batch
processing mode by means of a shell script.

At one time, this was the standard UNIX file encryption utility. [71] Politically-motivated government
regulations prohibiting the export of encryption software resulted in the disappearance of crypt from
much of the UNIX world, and it is still missing from most Linux distributions. Fortunately,
programmers have come up with a number of decent alternatives to it, among them the author's very
own cruft (see Example A-4).

This is an Open Source implementation of Secure Sockets Layer encryption.

To encrypt a file:

openssl aes-128-ecb -salt -in file.txt -out file.encrypted \
-pass pass:my_password

NANAAANNAAN User-selected password.

aes—128-ecb is the encryption method chosen.

To decrypt an openssl-encrypted file:

openssl aes-128-ecb -d -salt -in file.encrypted -out file.txt \
-pass pass:my_password

AANAAANNAAN User-selected password.

Piping openssl to/from tar makes it possible to encrypt an entire directory tree.

To encrypt a directory:

sourcedir="/home/bozo/testfiles"
encrfile="encr-dir.tar.gz"
password=my_secret_password

tar czvf - "Ssourcedir"
openssl des3 -salt -out "Sencrfile" -pass pass:"S$password"
AANN Uses des3 encryption.

Writes encrypted file "encr-dir.tar.gz" in current working directory.

To decrypt the resulting tarball:

openssl des3 -d -salt —-in "S$Sencrfile" -pass pass:"Spassword" |
tar —-xzv

Decrypts and unpacks into current working directory.

Of course, openssl has many other uses, such as obtaining signed certificates for Web sites. See the
info page.

Securely erase a file by overwriting it multiple times with random bit patterns before deleting it. This
command has the same effect as Example 16-60, but does it in a more thorough and elegant manner.

Chapter 16. External Filters, Programs and Commands 267

ftp://metalab.unc.edu/pub/Linux/utils/file/cruft-0.2.tar.gz

Advanced Bash-Scripting Guide
This is one of the GNU fileutils.

<1 Advanced forensic technology may still be able to recover the contents of a file, even
after application of shred.

Miscellaneous

mktemp

make

install

Create a temporary file [712] with a "unique" filename. When invoked from the command-line without
additional arguments, it creates a zero-length file in the /tmp directory.

bash$ mktemp
/tmp/tmp.zzsvgl3154

PREFIX=filename

tempfile="mktemp S$PREFIX.XXXXXX"

rnnnnn Need at least 6 placeholders
#+ in the filename template.

If no filename template supplied,

#+ "tmp.XXXXXXXXXX" is the default.

echo "tempfile name = Stempfile"
tempfile name = filename.QA2ZpY
or something similar...

Creates a file of that name in the current working directory
#+ with 600 file permissions.

A "umask 177" is therefore unnecessary,

#+ but it's good programming practice anyhow.

Utility for building and compiling binary packages. This can also be used for any set of operations
triggered by incremental changes in source files.
The make command checks a Makefile, a list of file dependencies and operations to be carried out.

The make utility is, in effect, a powerful scripting language similar in many ways to Bash, but with
the capability of recognizing dependencies. For in-depth coverage of this useful tool set, see the GNU

software documentation site.

Special purpose file copying command, similar to ¢p, but capable of setting permissions and attributes
of the copied files. This command seems tailormade for installing software packages, and as such it
shows up frequently in Makefiles (inthe make install : section). It could likewise prove
useful in installation scripts.

dos2unix

ptx

This utility, written by Benjamin Lin and collaborators, converts DOS-formatted text files (lines
terminated by CR-LF) to UNIX format (lines terminated by LF only), and vice-versa.

The ptx [targetfile] command outputs a permuted index (cross-reference list) of the targetfile. This
may be further filtered and formatted in a pipe, if necessary.

more, less

Pagers that display a text file or stream to st dout, one screenful at a time. These may be used to

Chapter 16. External Filters, Programs and Commands 268

http://www.gnu.org/manual/manual.html
http://www.gnu.org/manual/manual.html

Advanced Bash-Scripting Guide

filter the output of stdout ... or of a script.

An interesting application of more is to "test drive" a command sequence, to forestall potentially
unpleasant consequences.

1ls /home/bozo | awk '{print "rm -rf " $1}' | more

AAAA

Testing the effect of the following (disastrous) command-line:

1ls /home/bozo | awk '{print "rm -rf " $1}' | sh

Hand off to the shell to execute . . . N

The less pager has the interesting property of doing a formatted display of man page source. See
Example A-39.

16.6. Communications Commands

Certain of the following commands find use in network data transfer and analysis, as well as in chasing
spammers.

Information and Statistics

host
Searches for information about an Internet host by name or IP address, using DNS.

bash$ host surfacemail.com
surfacemail.com. has address 202.92.42.236

ipcalc

Displays IP information for a host. With the —h option, ipcalc does a reverse DNS lookup, finding the
name of the host (server) from the IP address.

bash$ ipcalc -h 202.92.42.236
HOSTNAME=surfacemail.com

nslookup
Do an Internet "name server lookup" on a host by IP address. This is essentially equivalent to ipcalc

-h or dig -x . The command may be run either interactively or noninteractively, i.e., from within a
script.

The nslookup command has allegedly been "deprecated," but it is still useful.

bash$ nslookup —-sil 66.97.104.180

nslookup kuhleersparnis.ch
Server: 135.116.137.2
Address: 135.116.137.2#53

Non-authoritative answer:
Name : kuhleersparnis.ch

dig
Domain Information Groper. Similar to nslookup, dig does an Internet name server lookup on a host.
May be run from the command-line or from within a script.

Chapter 16. External Filters, Programs and Commands 269

Advanced Bash-Scripting Guide

Some interesting options to dig are +t ime=N for setting a query timeout to N seconds, +nofail for

continuing to query servers until a reply is received, and —x for doing a reverse address lookup.

Compare the output of dig -x with ipcalc -h and nslookup.

bash$ dig -x 81.9.6.2
;; Got answer:
;7 —>>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 11649
;; flags: gr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: O

;7 QUESTION SECTION:
;72.6.9.81l.in-addr.arpa. IN PTR

; ; AUTHORITY SECTION:
6.9.81.in-addr.arpa. 3600 IN SOA ns.eltel.net. noc.eltel.net.
2002031705 900 600 86400 3600

;7 Query time: 537 msec

;; SERVER: 135.116.137.2#53(135.116.137.2)
;; WHEN: Wed Jun 26 08:35:24 2002

;; MSG SIZE «rcvd: 91

Example 16-40. Finding out where to report a spammer

#!/bin/bash
spam-lookup.sh: Look up abuse contact to report a spammer.
Thanks, Michael Zick.

Check for command-line arg.

ARGCOUNT=1

E_WRONGARGS=65

if [$# -—-ne "SARGCOUNT"]

then
echo "Usage: "basename $0° domain-name"
exit S$E_WRONGARGS

fi

dig +short $1.contacts.abuse.net -c in -t txt

Also try:

dig +nssearch $1

Tries to find "authoritative name servers" and display SOA records.

The following also works:
whois -h whois.abuse.net $1
Can even lookup multiple spammers with this, i.e."
whois -h whois.abuse.net $spamdomainl $spamdomain?2

4 o 3 o

Exercise:

,,,,,,,,

Expand the functionality of this script

#+ so that it automatically e-mails a notification
#+ to the responsible ISP's contact address(es).

Hint: use the "mail" command.

exit $°?

Chapter 16. External Filters, Programs and Commands

270

Advanced Bash-Scripting Guide

spam-lookup.sh chinatietong.com
A known spam domain.

"crnet_mgr@chinatietong.com"
"crnet_tec@chinatietong.com"
"postmaster@chinatietong.com"

4

For a more elaborate version of this script,
#+ see the SpamViz home page, http://www.spamviz.net/index.html.

Example 16-41. Analyzing a spam domain

#! /bin/bash
is-spammer.sh: Identifying spam domains

$Id: is-spammer, v 1.4 2004/09/01 19:37:52 mszick Exp $
Above line is RCS ID info.

#

This is a simplified version of the "is_spammer.bash
#+ script in the Contributed Scripts appendix.

is-spammer <domain.name>

Uses an external program: 'dig'
Tested with version: 9.2.4rcb

S

Uses functions.
Uses IFS to parse strings by assignment into arrays.
And even does something useful: checks e-mail blacklists.

Erages

Use the domain.name (s) from the text body:
http://www.good_stuff.spammer.biz/just_ignore_everything else
Or the domain.name(s) from any e-mail address:
Really_Good_Offer@spammer.biz

as the only argument to this script.
(PS: have your Inet connection running)

So, to invoke this script in the above two instances:
is—spammer.sh spammer.biz

S o S S o o o e e o o

Whitespace == :Space:Tab:Line Feed:Carriage Return:
WSP_IFS=$'\x20"'$"\x09'S$"'"\x0A"'S$"\x0D"'

No Whitespace == Line Feed:Carriage Return
No_WSP=$'"\x0A'$'\x0D'

Field separator for dotted decimal ip addresses
ADR_IFS=${No_WSP}"'.'

Get the dns text resource record.
get_txt <error_code> <list_query>

get_txt () {

Parse $1 by assignment at the dots.
local —-a dns

Chapter 16. External Filters, Programs and Commands 271

Advanced Bash-Scripting Guide

IFS=SADR_IFS

dns=($1)

IFS=$WSP_IFS

if ["${dns[0]}" == '127"']
then

See if there is a reason.
echo $(dig +short $2 -t txt)
fi

Get the dns address resource record.
chk_adr <rev_dns> <list_server>
chk_adr () {

local reply

local server

local reason

server=${1}${2}
reply=$(dig +short ${server})

If reply might be an error code

if [S{#reply} -gt 6]

then
reason=S$ (get_txt S${reply} ${server})
reason=${reason:-S${reply}}

fi

echo ${reason:-' not blacklisted.'}

Need to get the IP address from the name.
echo 'Get address of: 'Sl

ip_adr=$ (dig +short $1)
dns_reply=${ip_adr:-' no answer '}

echo ' Found address: '${dns_reply}

A valid reply is at least 4 digits plus 3 dots.
if [S{#ip_adr} -gt 6 1
then

echo

declare query

Parse by assignment at the dots.
declare -a dns

IFS=S$ADR_TIFS

dns=(${ip_adr})

IFS=SWSP_TIFS

Reorder octets into dns query order.
rev_dns="${dns[3]}""'."'""${dns[2]}""'.""S{dns[1]}""'.""${dns[O]}""."

See: http://www.spamhaus.org (Conservative, well maintained)
echo -n 'spamhaus.org says: '
echo $(chk_adr ${rev_dns} 'sbl-xbl.spamhaus.org')

See: http://ordb.org (Open mail relays)
echo -n ' ordb.org says: '
echo $(chk_adr ${rev_dns} 'relays.ordb.org')

See: http://www.spamcop.net/ (You can report spammers here)

echo -n ' spamcop.net says: '
echo $(chk_adr ${rev_dns} 'bl.spamcop.net')

Chapter 16. External Filters, Programs and Commands 272

Advanced Bash-Scripting Guide
other blacklist operations # #

See: http://cbl.abuseat.org.
echo -n ' abuseat.org says: '

echo $(chk_adr S${rev_dns}

See: http://dsbl.org/usage

'cbl.abuseat.org')

(Various mail relays)

echo

echo 'Distributed Server Listings'

echo -n ' list.dsbl.org says: '

echo $(chk_adr ${rev_dns} 'list.dsbl.org')
echo -n ' multihop.dsbl.org says: '

echo $(chk_adr ${rev_dns} 'multihop.dsbl.org')
echo -n 'unconfirmed.dsbl.org says: '

echo $(chk_adr ${rev_dns} 'unconfirmed.dsbl.org')
else

echo

echo 'Could not use that address.'
fi

exit O

Exercises:

1) Check arguments to script,

and exit with appropriate error message 1f necessary.

2) Check if on-line at invocation of script,

and exit with appropriate error message 1f necessary.

3) Substitute generic variables for "hard-coded" BHL domains.

4) Set a time-out for the script using the

"+time=" option

to the 'dig' command.
For a much more elaborate version of the above script, see Example A-28.
traceroute

Trace the route taken by packets sent to a remote host. This command works within a LAN, WAN, or
over the Internet. The remote host may be specified by an IP address. The output of this command

may be filtered by grep or sed in a pipe.

bash$ traceroute 81.9.6.2
traceroute to 81.9.6.2 (81.9.6.2), 30 hops max, 38 byte packets

3 192.168.11.101 (192.168.11.101) 189.471 ms 189.556 ms *

1 tc43.xjbnnbrb.com (136.30.178.8) 191.303 ms 179.400 ms 179.767 ms
2 or0.xjbnnbrb.com (136.30.178.1) 179.536 ms 179.534 ms 169.685 ms

ping

Broadcast an TCMP ECHO_REQUEST packet to another machine, either on a local or remote

network. This is a diagnostic tool for testing network connections, and it should be used with caution.

bash$ ping localhost
PING localhost.localdomain (127.0.0.1) from 127.0.0.1 : 56(84)

bytes of data.

64 bytes from localhost.localdomain (127.0.0.1): icmp_seqg=0 ttl=255 time=709 usec
64 bytes from localhost.localdomain (127.0.0.1): icmp_seqg=1 ttl=255 time=286 usec

Chapter 16. External Filters, Programs and Commands

273

Advanced Bash-Scripting Guide

—-—— localhost.localdomain ping statistics —--—-
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/mdev = 0.286/0.497/0.709/0.212 ms

A successful ping returns an exit status of 0. This can be tested for in a script.

HNAME=nastyspammer.com
HNAME=SHOST # Debug: test for localhost.
count=2 # Send only two pings.

if [[“ping -c $count "SHNAME" S]]
then
echo ""SHNAME" still up and broadcasting spam your way."
else
echo ""SHNAME" seems to be down. Pity."
fi
whois
Perform a DNS (Domain Name System) lookup. The —h option permits specifying which particular
whois server to query. See Example 4-6 and Example 16-40.
finger
Retrieve information about users on a network. Optionally, this command can display a user's
~/.plan, ~/.project, and ~/ . forward files, if present.
bash$ finger
Login Name Tty Idle Login Time Office Office Phone
bozo Bozo Bozeman ttyl 8 Jun 25 16:59 (:0)
bozo Bozo Bozeman ttypO Jun 25 16:59 (:0.0)
bozo Bozo Bozeman ttypl Jun 25 17:07 (:0.0)
bash$ finger bozo
Login: bozo Name: Bozo Bozeman
Directory: /home/bozo Shell: /bin/bash
Office: 2355 Clown St., 543-1234
On since Fri Aug 31 20:13 (MST) on ttyl 1 hour 38 minutes idle
On since Fri Aug 31 20:13 (MST) on pts/0 12 seconds idle
On since Fri Aug 31 20:13 (MST) on pts/1
On since Fri Aug 31 20:31 (MST) on pts/2 1 hour 16 minutes idle
Mail last read Tue Jul 3 10:08 2007 (MST)
No Plan.
Out of security considerations, many networks disable finger and its associated daemon. [73
chfn
Change information disclosed by the finger command.
vrfy

Verify an Internet e-mail address.

This command seems to be missing from newer Linux distros.
Remote Host Access
SX, X

The sx and rx command set serves to transfer files to and from a remote host using the xmodem
protocol. These are generally part of a communications package, such as minicom.

Chapter 16. External Filters, Programs and Commands 274

Advanced Bash-Scripting Guide

SZ, Iz
The sz and rz command set serves to transfer files to and from a remote host using the zmodem
protocol. Zmodem has certain advantages over xmodem, such as faster transmission rate and
resumption of interrupted file transfers. Like sx and rx, these are generally part of a communications
package.

ftp

Utility and protocol for uploading / downloading files to or from a remote host. An ftp session can be
automated in a script (see Example 19-6 and Example A-4).

uucp, uux, cu
uucp: UNIX to UNIX copy. This is a communications package for transferring files between UNIX
servers. A shell script is an effective way to handle a uucp command sequence.

Since the advent of the Internet and e-mail, uucp seems to have faded into obscurity, but it still exists
and remains perfectly workable in situations where an Internet connection is not available or
appropriate. The advantage of uucp is that it is fault-tolerant, so even if there is a service interruption
the copy operation will resume where it left off when the connection is restored.

uux: UNIX to UNIX execute. Execute a command on a remote system. This command is part of the
uucp package.

cu: Call Up a remote system and connect as a simple terminal. It is a sort of dumbed-down version of
telnet. This command is part of the uucp package.

telnet
Utility and protocol for connecting to a remote host.

<1> The telnet protocol contains security holes and should therefore probably be avoided.
~ Its use within a shell script is nof recommended.
wget
The wget utility noninteractively retrieves or downloads files from a Web or ftp site. It works well in
a script.

wget —-p http://www.xyz23.com/file0l.html
The -p or —--page-requisite option causes wget to fetch all files
#+ required to display the specified page.

wget —-r ftp://ftp.xyz24.net/~bozo/project_files/ -0 S$SSAVEFILE
The —-r option recursively follows and retrieves all links
#+ on the specified site.

wget —-c ftp://ftp.xyz25.net/bozofiles/filename.tar.bz2

The —-c option lets wget resume an interrupted download.
This works with ftp servers and many HTTP sites.

Example 16-42. Getting a stock quote

#!/bin/bash
quote—fetch.sh: Download a stock quote.

Chapter 16. External Filters, Programs and Commands 275

lynx

rlogin

rsh

rep

rsync

Advanced Bash-Scripting Guide
E_NOPARAMS=86
if [-z "$1"] # Must specify a stock (symbol) to fetch.
then echo "Usage: “basename $0° stock-symbol"
exit S$SE_NOPARAMS
fi
stock_symbol=5$1
file_suffix=.html
Fetches an HTML file, so name it appropriately.

URL='"http://finance.yahoo.com/g?s="
Yahoo finance board, with stock query suffix.

wget -0 ${stock_symbol}S${file_suffix} "S$S{URL}S${stock_symbol}"

URL="http://search.yahoo.com/search?fr=ush-news&p=${query}"
wget -0 "S$savefilename" "S{URL}"

Saves a list of relevant URLs.
exit $7?

Exercises:

#

1) Add a test to ensure the user running the script is on-line.
(Hint: parse the output of 'ps -ax' for "ppp" or "connect."
#

2) Modify this script to fetch the local weather report,

#+ taking the user's zip code as an argument.

See also Example A-30 and Example A-31.

The lynx Web and file browser can be used inside a script (with the —dump option) to retrieve a file
from a Web or ftp site noninteractively.

lynx —-dump http://www.xyz23.com/fileOl.html >$SAVEFILE
With the ~traversal option, lynx starts at the HTTP URL specified as an argument, then "crawls"
through all links located on that particular server. Used together with the —crawl option, outputs

page text to a log file.

Remote login, initates a session on a remote host. This command has security issues, so use ssh
instead.

Remote shell, executes command(s) on a remote host. This has security issues, so use ssh
instead.

Remote copy, copies files between two different networked machines.

Remote synchronize, updates (synchronizes) files between two different networked machines.

bash$ rsync —a ~/sourcedir/*txt /nodel/subdirectory/

Chapter 16. External Filters, Programs and Commands 276

Advanced Bash-Scripting Guide

Example 16-43. Updating FC4

#!/bin/bash
fcdupd.sh

Script author: Frank Wang.
Slight stylistic modifications by ABS Guide author.
Used in ABS Guide with permission.

Download Fedora Core 4 update from mirror site using rsync.
Should also work for newer Fedora Cores -- 5, 6,
Only download latest package if multiple versions exist,

+ to save space.

R

URL=rsync://distro.ibiblio.org/fedora-linux-core/updates/
URL=rsync://ftp.kddilabs. jp/fedora/core/updates/
URL=rsync://rsync.planetmirror.com/fedora-linux—-core/updates/

DEST=${1:-/var/www/html/fedora/updates/}
LOG=/tmp/repo-update-$ (/bin/date +%$Y-%m-%d) .txt
PID_FILE=/var/run/S${0##*/}.pid

E_RETURN=85 # Something unexpected happened.

General rsync options
-r: recursive download
-t: reserve time

-v: verbose

R

OPTS="-rtv —--delete-excluded —--delete-after —--partial"

rsync include pattern
Leading slash causes absolute path name match.
INCLUDE= (
"/4/i386/kde—118n-Chinese*"
A A
Quoting is necessary to prevent globbing.

)

rsync exclude pattern
Temporarily comment out unwanted pkgs using "#"
EXCLUDE= (
/1
/2
/3
/testing
/4/SRPMS
/4/ppc
/4/%86_64
/4/1386/debug
"/4/1386/kde-118n—*"
"/4/i1386/openoffice.org-langpack—*"
"/4/1386/*1586.rpm"
"/4/1386/GFS—*"
"/4/1386/cman-*"
"/4/1386/d1lm—*"

Chapter 16. External Filters, Programs and Commands 277

Advanced Bash-Scripting Guide

"/4/1386/gnbd—*"

"/4/1386/kernel-smp*"
"/4/i386/kernel-xen*"
"/4/1386/xen—*"

init () {
Let pipe command return possible rsync
set -o pipefail # Newly

TMP=${TMPDIR:—/tmp}/${0##*/}.S$$ # Store
trap "{

rm —-f STMP 2>/dev/null
}" EXIT # Clear

check_pid () {
Check if process exists.
if [-s "S$PID_FILE"]; then
echo "PID file exists. Checking ..."

error, e.g., stalled network.
introduced in Bash, version 3.

refined download list.

temporary file on exit.

PID=$ (/bin/egrep -o "~ [[:digit:]]+" $PID_FILE)
if /bin/ps —--pid $PID &>/dev/null; then
echo "Process $PID found. ${0##*/} seems to be running!"

/usr/bin/logger -t S${0##*/} \

"Process S$PID found. ${0##*/} seems to be running!"

exit $E_RETURN
fi

echo "Process $PID not found. Start new process . . ."

Set overall file update range starting from root or S$URL,

#+ according to above patterns.
set_range () {
include=
exclude=
for p in "${INCLUDE[Q]}"; do
include="$include —--include \"S$p\""
done

for p in "${EXCLUDE[Q]}"; do
exclude="$exclude --exclude \"Sp\""
done

Retrieve and refine rsync update list.
get_list () {
echo $$ > SPID_FILE || {

echo "Can't write to pid file $PID_FILE"

exit $E_RETURN

echo -n "Retrieving and refining update list

Retrieve list -- 'eval' is needed to run rsync as a single command.

$3 and $4 is the date and time of file
$5 is the full package name.
previous=

Chapter 16. External Filters, Programs and Commands

creation.

278

Advanced Bash-Scripting Guide

pre_file=

pre_date=0

eval /bin/nice /usr/bin/rsync \
—-r $include S$exclude SURL | \
egrep '~dr.x|*-r' | \
awk '{print $3, $4, $5}' | \
sort -k3 | \
{ while read line; do

Get seconds since epoch, to filter out obsolete pkgs.

cur_date=$ (date -d "$(echo $line | awk '{print $1, $2}')" +%s)
echo Scur_date
Get file name.
cur_file=$(echo $line | awk '{print $3}')
echo $cur_file
Get rpm pkg name from file name, if possible.
if [[Scur_file == *rpm]]; then
pkg_name=S (echo Scur_file | sed -r —-e \
's/ (N (M =1+ 1)) [[:digit]]+\..*[_=-]1.*%$/\1/")
else
pkg_name=
fi
echo $pkg_name
if [-z "Spkg_name"]; then # If not a rpm file,
echo S$cur_file >> STMP #+ then append to download list.
elif ["$pkg_name" != "Sprevious"]; then # A new pkg found.
echo S$Spre_file >> STMP # Output latest file.
previous=$pkg_name # Save current.

pre_date=S$cur_date
pre_file=$Scur_file
elif ["Scur_date" -gt "Spre_date"]; then
If same pkg,

pre_date=S$cur_date #+ then update latest pointer.
pre_file=$Scur_file

fi

done

echo S$Spre_file >> STMP # TMP contains ALL

but newer,

#+ of refined list now.

echo "subshell=$BASH_SUBSHELL"

} # Bracket required here to let final "echo S$pre_file >> STMP"
Remained in the same subshell (1) with the entire loop.

RET=$? # Get return code of the pipe command.

["SRET" -ne 0] && {
echo "List retrieving failed with code SRET"
exit SE_RETURN

echo "done"; echo

Real rsync download part.
get_file () {

echo "Downloading..."
/bin/nice /usr/bin/rsync \
SOPTS \
——filter "merge,+/ $TMP" \

Chapter 16. External Filters, Programs and Commands

279

ssh

Advanced Bash-Scripting Guide

—-—exclude '*' \
SURL SDEST \
| /usr/bin/tee S$LOG

RET=$7?

——filter merge,+/ is crucial for the intention.
+ modifier means include and / means absolute path.
Then sorted list in $TMP will contain ascending dir name and

#
#
#
#+ prevent the following —--exclude '*' from "shortcutting the circuit."

echo "Done"
rm —f S$SPID_FILE 2>/dev/null

return SRET

check_pid
set_range
get_1list
get_file
RET=S$7

if ["SRET" -eq 0]; then

/usr/bin/logger -t ${0##*/} "Fedora update mirrored successfully."
else

/usr/bin/logger -t S{0##*/} \

"Fedora update mirrored with failure code: S$SRET"
fi

exit SRET
See also Example A-32.

&) Using rcp, rsync, and similar utilities with security implications in a shell script may
not be advisable. Consider, instead, using ssh, scp, or an expect script.

Secure shell,logs onto a remote host and executes commands there. This secure replacement for
telnet, rlogin, rcp, and rsh uses identity authentication and encryption. See its manpage for details.

Example 16-44. Using ssh

#!/bin/bash
remote.bash: Using ssh.

This example by Michael Zick.
Used with permission.

Presumptions:

,,,,,,,,,,,,

fd-2 isn't being captured ('2>/dev/null').

ssh/sshd presumes stderr ('2') will display to user.
#

Chapter 16. External Filters, Programs and Commands 280

Advanced Bash-Scripting Guide

sshd is running on your machine.
For any 'standard' distribution, it probably is,
#+ and without any funky ssh-keygen having been done.

Try ssh to your machine from the command-line:

#

$ ssh SHOSTNAME

Without extra set-up you'll be asked for your password.
enter password

when done, $ exit

#

Did that work? If so, you're ready for more fun.

Try ssh to your machine as 'root':

#

$ ssh -1 root S$HOSTNAME

When asked for password, enter root's, not yours.

Last login: Tue Aug 10 20:25:49 2004 from localhost.localdomain
Enter 'exit' when done.

The above gives you an interactive shell.

It is possible for sshd to be set up in a 'single command' mode,
#+ but that is beyond the scope of this example.

The only thing to note is that the following will work in

#+ 'single command' mode.

A basic, write stdout (local) command.
1ls -1

Now the same basic command on a remote machine.

Pass a different 'USERNAME' 'HOSTNAME' if desired:
USER=${USERNAME : -$ (whoami) }

HOST=S$ {HOSTNAME : -$ (hostname) }

Now excute the above command-line on the remote host,
#+ with all transmissions encrypted.

ssh -1 ${USER} ${HOST} " 1ls -1 "

The expected result is a listing of your username's home
#+ directory on the remote machine.

To see any difference, run this script from somewhere

#+ other than your home directory.

In other words, the Bash command is passed as a quoted line
#+ to the remote shell, which executes it on the remote machine.
In this case, sshd does ' bash -c "1ls -1" ' on your behalf.

For information on topics such as not having to enter a
#+ password/passphrase for every command-line, see

#+ man ssh

#+ man ssh-keygen
#+ man sshd_config.
exit O

<1 Within a loop, ssh may cause unexpected behavior. According to a_Usenet post in the
comp.unix shell archives, ssh inherits the loop's st din. To remedy this, pass ssh
either the —n or —f option.

Chapter 16. External Filters, Programs and Commands 281

http://groups-beta.google.com/group/comp.unix.shell/msg/dcb446b5fff7d230

Advanced Bash-Scripting Guide

Thanks, Jason Bechtel, for pointing this out.

scp
Secure copy, similar in function to rep, copies files between two different networked machines,
but does so using authentication, and with a security level similar to ssh.

Local Network

write

This is a utility for terminal-to-terminal communication. It allows sending lines from your terminal
(console or xterm) to that of another user. The mesg command may, of course, be used to disable
write access to a terminal

Since write is interactive, it would not normally find use in a script.

netconfig
A command-line utility for configuring a network adapter (using DHCP). This command is native to
Red Hat centric Linux distros.

Mail

mail
Send or read e-mail messages.

This stripped-down command-line mail client works fine as a command embedded in a script.

Example 16-45. A script that mails itself

#!/bin/sh
self-mailer.sh: Self-mailing script

adr=${1:- whoami" } # Default to current user, if not specified.

Typing 'self-mailer.sh wiseguy@superdupergenius.com'

#+ sends this script to that addressee.

Just 'self-mailer.sh' (no argument) sends the script

#+ to the person invoking it, for example, bozo@localhost.localdomain.
#

For more on the ${parameter:-default} construct,

#+ see the "Parameter Substitution" section

#+ of the "Variables Revisited" chapter.

#

cat $0 | mail —-s "Script \" 'basename $0°\" has mailed itself to you." "S$Sadr"

Greetings from the self-mailing script.

A mischievous person has run this script,
#+ which has caused it to mail itself to you.
Apparently, some people have nothing better
#+ to do with their time.

echo "At ‘date’, script \" basename $0°\" mailed to "S$adr"."

exit O

Chapter 16. External Filters, Programs and Commands 282

Advanced Bash-Scripting Guide

Note that the "mailx" command (in "send" mode) may be substituted
#+ for "mail" ... but with somewhat different options.

mailto

Similar to the mail command, mailto sends e-mail messages from the command-line or in a script.
However, mailto also permits sending MIME (multimedia) messages.

mailstats

Show mail statistics. This command may be invoked only by root.

root# mailstats
Statistics from Tue Jan 1 20:32:08 2008

M msgsfr Dbytes_from msgsto bytes_to msgsrej msgsdis msgsqur
4 1682 24118K 0 0K 0 0 0
9 212 640K 1894 25131K 0 0 0
T 1894 24758K 1894 25131K 0 0 0
C 414 0

Mailer
esmtp
local

vacation

This utility automatically replies to e-mails that the intended recipient is on vacation and temporarily
unavailable. It runs on a network, in conjunction with sendmail, and is not applicable to a dial-up
POPmail account.

16.7. Terminal Control Commands

Command affecting the console or terminal

tput

Initialize terminal and/or fetch information about it from terminfo data. Various options permit certain

terminal operations: tput clear is the equivalent of clear; tput reset is the equivalent of

reset.

bash$ tput longname
xterm terminal emulator (X Window System)

Issuing a tput cup X Y moves the cursor to the (X,Y) coordinates in the current terminal. A clear to
erase the terminal screen would normally precede this.

Some interesting options to tput are:

0 bo1ld, for high-intensity text

Q0 smul, to underline text in the terminal

{0 smso, to render text in reverse

0 sgr0, to reset the terminal parameters (to normal), without clearing the screen

Example scripts using fput:

1. Example 35-13
2. Example 35-11
3. Example A-44
4. Example A-42
5. Example 27-2

Note that stty offers a more powerful command set for controlling a terminal.

infocmp

Chapter 16. External Filters, Programs and Commands

283

Advanced Bash-Scripting Guide

This command prints out extensive information about the current terminal. It references the terminfo

database.

bash$ infocmp
Reconstructed via infocmp from file:
/usr/share/terminfo/r/rxvt
rxvt |rxvt terminal emulator (X Window System),
am, bce, eo, km, mir, msgr, xenl, xon,
colors#8, cols#80, it#8, lines#24, pairs#64,
acsc=""aaffggjjkkllmmnnooppggrrssttuuvvwwxxyyzz{{||[}}~~,
bel="G, blink=\E[5m, bold=\E[1lm,
civis=\E[?251,
clear=\E[H\E[2J, cnorm=\E[?25h, cr="M,

reset

Reset terminal parameters and clear text screen. As with clear, the cursor and prompt reappear in the

upper lefthand corner of the terminal.
clear

The clear command simply clears the text screen at the console or in an xterm. The prompt and cursor

reappear at the upper lefthand corner of the screen or xterm window. This command may be used

either at the command line or in a script. See Example 11-25.
resize

Echoes commands necessary to set $STERM and STERMCAP to duplicate the size (dimensions) of the

current terminal.

bash$ resize
set noglob;
setenv COLUMNS '80';
setenv LINES '24';
unset noglob;

script

This utility records (saves to a file) all the user keystrokes at the command-line in a console or an

xterm window. This, in effect, creates a record of a session.

16.8. Math Commands

""Doing the numbers''

factor
Decompose an integer into prime factors.

bash$ factor 27417
27417: 3 13 19 37

Example 16-46. Generating prime numbers

#!/bin/bash
primes2.sh

Generating prime numbers the gquick-and-easy way,
#+ without resorting to fancy algorithms.

Chapter 16. External Filters, Programs and Commands

284

bc

Advanced Bash-Scripting Guide

CEILING=10000 # 1 to 10000
PRIME=0
E_NOTPRIME=

is_prime ()
{
local factors
factors=($(factor $1)) # Load output of "~ factor' into array.

if [-z "${factors[2]}"]

Third element of "factors" array:

#+ S${factors[2]} is 2nd factor of argument.

If it is blank, then there is no 2nd factor,
#+ and the argument is therefore prime.

then

return S$PRIME # 0
else

return S$SE_NOTPRIME # null
fi
}
echo
for n in $(seq S$SCEILING)
do

if is_prime $n

then

printf %5d $n

fi # ~ Five positions per number suffices.
done # For a higher S$CEILING, adjust upward, as necessary.
echo
exit

Bash can't handle floating point calculations, and it lacks operators for certain important mathematical
functions. Fortunately, be comes to the rescue.

Not just a versatile, arbitrary precision calculation utility, be offers many of the facilities of a
programming language.

bc has a syntax vaguely resembling C.
Since it is a fairly well-behaved UNIX utility, and may therefore be used in a pipe, bc comes in handy

in scripts.

Here is a simple template for using be to calculate a script variable. This uses command substitution.

variable=$ (echo "OPTIONS; OPERATIONS" | bc)

Example 16-47. Monthly Payment on a Mortgage

#!/bin/bash
monthlypmt.sh: Calculates monthly payment on a mortgage.

Chapter 16. External Filters, Programs and Commands 285

Advanced Bash-Scripting Guide

This is a modification of code in the

#+ "mcalc" (mortgage calculator) package,

#+ by Jeff Schmidt

#+ and

#+ Mendel Cooper (yours truly, the author of the ABS Guide) .

http://www.ibiblio.org/pub/Linux/apps/financial/mcalc-1.6.tar.gz [15k]

echo
echo "Given the principal, interest rate, and term of a mortgage,"
echo "calculate the monthly payment."

bottom=1.0

echo

echo -n "Enter principal (no commas) "

read principal

echo -n "Enter interest rate (percent) " # If 12%, enter "12", not ".12".
read interest_r

echo -n "Enter term (months) "

read term

interest_r=$ (echo "scale=9; S$interest_r/100.0" | bc) # Convert to decimal.

"scale" determines how many decimal places.

interest_rate=S$ (echo "scale=9; S$interest_r/12 + 1.0" | bc)
top=$ (echo "scale=9; S$principal*$interest_rate”$Sterm" | bc)
AANAAANAAANAAANAAANAAAAANAANAANAAANAAANAANAANAAAAAANAAN
Standard formula for figuring interest.

echo; echo "Please be patient. This may take a while."

let "months = S$term - 1"

#
for ((x=Smonths; x > 0; x——))
do
bot=$ (echo "scale=9; $interest_rate”$x" | bc)
bottom=$ (echo "scale=9; Sbottom+S$Sbot" | bc)
bottom = $((Sbottom + Sbot"))
done

Rick Boivie pointed out a more efficient implementation
#+ of the above loop, which decreases computation time by 2/3.

for ((x=1; x <= Smonths; =x++))

do

bottom=$ (echo "scale=9; S$bottom * $interest_rate + 1" | bc)
done

And then he came up with an even more efficient alternative,
#+ one that cuts down the run time by about 95%!

bottom=" {
echo "scale=9; bottom=Sbottom; interest_rate=$interest_rate"

Chapter 16. External Filters, Programs and Commands 286

Advanced Bash-Scripting Guide

for ((x=1; x <= Smonths; x++))

do

echo 'bottom = bottom * interest_rate + 1'

done

echo 'bottom'

} | bc® # Embeds a 'for loop' within command substitution.

__
On the other hand, Frank Wang suggests:

Dbottom=$ (echo "scale=9; ($interest_rate”S$Sterm-1)/ (Sinterest_rate-1)" | bc)

Because .

The algorithm behind the loop

#+ 1s actually a sum of geometric proportion series.
The sum formula is e0(l1-g”n)/(1-q9),

#+ where e0 is the first element and g=e (n+l) /e (n)
#+ and n is the number of elements.

let "payment = Stop/Sbottom"
payment=$ (echo "scale=2; Stop/S$bottom" | bc)
Use two decimal places for dollars and cents.

echo
echo "monthly payment = \Spayment" # Echo a dollar sign in front of amount.
echo

exit O

Exercises:

1) Filter input to permit commas in principal amount.

2) Filter input to permit interest to be entered as percent or decimal.
3) If you are really ambitious,

#+ expand this script to print complete amortization tables.

Example 16-48. Base Conversion

#!/bin/bash
FHH A R S
Shellscript: Dbase.sh - print number to different bases (Bourne Shell)

Author : Heiner Steven (heiner.stevenlodn.de)
Date : 07-03-95
Category : Desktop

$Id: base.sh,v 1.2 2000/02/06 19:55:35 heiner Exp $

==> Above line is RCS ID info.

FHAFE A R
Description

#

Changes

21-03-95 stv fixed error occuring with Oxb as input (0.2)

FHA A A S

4 o 3 o

==> Used in ABS Guide with the script author's permission.
==> Comments added by ABS Guide author.

NOARGS=85
PN="basename "$0"° # Program name
VER="echo '$Revision: 1.2 $' | cut -d' ' —-f2° # ==> VER=1.2

Chapter 16. External Filters, Programs and Commands 287

Advanced Bash-Scripting Guide

Usage () {
echo "$PN - print number to different bases, $VER (stv '95)
usage: SPN [number ...]

If no number is given, the numbers are read from standard input.
A number may be

binary (base 2) starting with Ob (i.e. 0b1100)
octal (base 8) starting with 0 (i.e. 014)
hexadecimal (base 16) starting with 0x (i.e. 0Oxc)
decimal otherwise (i.e. 12)" >&2
exit S$SNOARGS

} ==> Prints usage message.

Msg () {
for i # ==> in [list] missing. Why?
do echo "S$PN: $i" >&2
done

}

Fatal () { Msg "$S@"; exit 66; }

PrintBases () {
Determine base of the number

for i # ==> in [list] missing...
do # ==> so operates on command-line arg(s).
case "$i" in
0b*) ibase=2;; # binary
Ox*| [a—f]*| [A-F]*) 1base=16;; # hexadecimal
0%*) ibase=38; ; # octal
[1-9]%*) ibase=10; ; # decimal
*)
Msg "illegal number $i - ignored"
continue;;
esac

Remove prefix, convert hex digits to uppercase (bc needs this).
number="echo "$i" | sed -e 's:”0[bBxX]::' | tr '[a-f]' '[A-F]'"
==> Uses ":" as sed separator, rather than "/".

Convert number to decimal

dec="echo "ibase=$ibase; S$number" | bc’ # ==> 'bc' 1s calculator utility.
case "S$dec" in

[0-9]%*) 88 # number ok

*) continue;; # error: ignore
esac

Print all conversions in one line.
==> 'here document' feeds command list to 'bc'.
echo “bc <<!

obase=16; "hex="; S$dec

obase=10; "dec="; S$dec

obase=8; "oct="; S$dec
obase=2; "bin="; S$dec
i
| sed -e 's: : :g'

done

while [$# -gt 0]
==> Is a "while loop" really necessary here,

Chapter 16. External Filters, Programs and Commands 288

Advanced Bash-Scripting Guide

==>+ since all the cases either break out of the loop

==>+ or terminate the script.

==> (Above comment by Paulo Marcel Coelho Aragao.)

do

case "$1" in

==)) shift; break;;
-h) Usage; ; # ==> Help message.
-*) Usagej ;

) break; ; # First number
esac # ==> Error checking for illegal input might be appropriate.
shift

done

if [S$S# —-gt 0]
then
PrintBases "$@"
else # Read from stdin.
while read line
do
PrintBases $line
done
fi

exit

An alternate method of invoking be involves using a here document embedded within a command
substitution block. This is especially appropriate when a script needs to pass a list of options and
commands to bc.

variable="bc << LIMIT_STRING
options

statements

operations

LIMIT_STRING

variable=$ (bc << LIMIT_STRING
options

statements

operations

LIMIT_STRING

)

Example 16-49. Invoking bc using a here document

#!/bin/bash
Invoking 'bc' using command substitution
in combination with a 'here document'.

varl="bc << EOF
18.33 * 19.78
EOF

echo $varl # 362.56

Chapter 16. External Filters, Programs and Commands 289

Advanced Bash-Scripting Guide

$(...) notation also works.
v1=23.53
v2=17.881
v3=83.501
v4=171.63

var2=$ (bc << EOF

scale 4

a = (Svl + S$v2)

b = ($v3 * $vd)

a * b+ 15.35

EOF

)

echo $var2 # 593487.8452

var3=$ (bc -1 << EOF
scale = 9

s (1.7)

EOF

)

Returns the sine of 1.7 radians.

The "-1" option calls the 'bc' math library.
echo $var3 # .991664810

Now, try it in a function...

hypotenuse () # Calculate hypotenuse of a right triangle.
{ # ¢ = sqrt(a®2 + b"2)

hyp=$ (bc -1 << EOF

scale = 9

Sepee (b = Sl 5§20 w52)

EOF

)

Can't directly return floating point values from a Bash function.
But, can echo-and-capture:

echo "Shyp"

}

hyp=$ (hypotenuse 3.68 7.31)
echo "hypotenuse = Shyp" # 8.184039344

exit O

Example 16-50. Calculating PI

#!/bin/bash
cannon.sh: Approximating PI by firing cannonballs.

Author: Mendel Cooper

License: Public Domain

Version 2.2, reldate 13o0ct08.

This is a very simple instance of a "Monte Carlo" simulation:
#+ a mathematical model of a real-life event,

#+ using pseudorandom numbers to emulate random chance.

Consider a perfectly square plot of land, 10000 units on a side.

Chapter 16. External Filters, Programs and Commands 290

Advanced Bash-Scripting Guide

This land has a perfectly circular lake in its center,

#+ with a diameter of 10000 units.

The plot is actually mostly water, except for land in the four corners.
(Think of it as a square with an inscribed circle.)

#

We will fire iron cannonballs from an old-style cannon

#+ at the square.

All the shots impact somewhere on the square,

#+ either in the lake or on the dry corners.

Since the lake takes up most of the area,

#+ most of the shots will SPLASH! into the water.

Just a few shots will THUD! into solid ground

#+ in the four corners of the square.

#

If we take enough random, unaimed shots at the square,

#+ Then the ratio of SPLASHES to total shots will approximate
#+ the value of PI/A4.

#

The reason for this is that the cannon is actually shooting

#+ only at the upper right-hand gquadrant of the square,
#+ i.e., Quadrant I of the Cartesian coordinate plane.
(The previous explanation was a simplification.)

Theoretically, the more shots taken, the better the fit.

However, a shell script, as opposed to a compiled language

#+ with floating-point math built in, requires a few compromises.
This tends to lower the accuracy of the simulation.

DIMENSION=10000 # Length of each side of the plot.
Also sets ceiling for random integers generated.

MAXSHOTS=1000 # Fire this many shots.
10000 or more would be better, but would take too long.
PMULTIPLIER=4.0 # Scaling factor to approximate PI.

4=

declare —-r M_PI=3.141592654
Actual 9-place value of PI, for comparison purposes.

get_random ()

{
SEED=$ (head —n 1 /dev/urandom | od -N 1 | awk '{ print $2 }')

RANDOM=S$SEED # From "seeding-random.sh"
#+ example script.
let "rnum = S$RANDOM % SDIMENSION" # Range less than 10000.

echo S$rnum

}

distance= # Declare global variable.

hypotenuse () # Calculate hypotenuse of a right triangle.
{ # From "alt-bc.sh" example.

distance=$ (bc -1 << EOF

scale = 0

Sepee (b = SIl 5§20 w52)

EOF

)

Setting "scale" to zero rounds down result to integer value,
#+ a necessary compromise in this script.

This decreases the accuracy of the simulation.

}

Chapter 16. External Filters, Programs and Commands 291

Advanced Bash-Scripting Guide

#
main () {
"Main" code block, mimmicking a C-language main () function.

Initialize variables.

shots=0

splashes=0

thuds=0

Pi=0

error=0

while ["S$shots" -1t "SMAXSHOTS"] # Main loop.

do
xCoord=$ (get_random) # Get random X and Y coords.
yCoord=$ (get_random)
hypotenuse $xCoord S$yCoord # Hypotenuse of

#+ right-triangle = distance.
((shots++))

printf "#%4d " Sshots
printf "Xc = %$4d " $xCoord
printf "Yc = %4d " $yCoord
printf "Distance = %5d " S$distance # Distance from
#+ center of lake
#+ —- the "origin" —-
#+ coordinate (0,0).
if ["Sdistance" -le "S$SDIMENSION"]
then
echo -n "SPLASH! "
((splashes++))
else
echo -n "THUD! "
((thuds++))
fi
Pi=$ (echo "scale=9; $PMULTIPLIER*S$splashes/$shots" | bc)

Multiply ratio by 4.0.
echo -n "PI ~ S$SPi"
echo

done

echo

echo "After $shots shots, PI looks like approximately Spi"

Tends to run a bit high,

#+ probably due to round-off error and imperfect randomness of $SRANDOM.
But still usually within plus-or-minus 5%

#+ a pretty good rough approximation.

error=$ (echo "scale=9; $Pi - $M_PI" | bc)

pct_error=$ (echo "scale=2; 100.0 * Serror / SM_PI" | bc)

echo -n "Deviation from mathematical value of PI = Serror"
echo " (Spct_error$% error)"

echo

End of "main" code block.
1}
#

exit

Chapter 16. External Filters, Programs and Commands 292

dc

Chapter 16. External Filters, Programs and Commands

Advanced Bash-Scripting Guide

One might well wonder whether a shell script is appropriate for
+ an application as complex and computation-intensive as a simulation.

There are at least two justifications.

1) As a proof of concept: to show it can be done.

2) To prototype and test the algorithms before rewriting
+ it in a compiled high-level language.

See also Example A-37.

4 S o % e S o

The dc (desk calculator) utility is stack-oriented and uses RPN ("Reverse Polish Notation"). Like be,
it has much of the power of a programming language.

echo "7 8 * p" | dc # 56
Pushes 7, then 8 onto the stack,
#+ multiplies ("*" operator), then prints the result ("p" operator).

Most persons avoid de, because of its non-intuitive input and rather cryptic operators. Yet, it has its
uses.

Example 16-51. Converting a decimal number to hexadecimal

#!/bin/bash
hexconvert.sh: Convert a decimal number to hexadecimal.

E_NOARGS=85 # Command-line arg missing.
BASE=16 # Hexadecimal.

if [-z "s$1"]
then # Need a command-line argument.
echo "Usage: $0 number"
exit S$E_NOARGS
fi # Exercise: add argument validity checking.

hexcvt ()

{
if [-z ngqm]

then
echo 0
return # "Return" 0 if no arg passed to function.
fi
echo ""$1" "SBASE" o p" | dc
o sets radix (numerical base) of output.
P prints the top of stack.
For other options: 'man dc'
return
}
hexcvt "$1"
exit

Studying the info page for dc is a painful path to understanding its intricacies. There seems to be a
small, select group of dc wizards who delight in showing off their mastery of this powerful, but
arcane utility.

bash$ echo "16i[gq]sa[ln0=alnl100%P1nl100/snlbx]sbA0D68736142snlbxq" | dc
Bash

293

awk

Advanced Bash-Scripting Guide

dc <<< 10k5v1+2/p # 1.6180339887
ann Feed operations to dc using a Here String.

AAA

AN

Pushes 5 and takes its square root (5v, v
Pushes 1 and adds it to the running total

AN

AN

~ Pops and prints the result (p)
The result is 1.6180339887
which happens to be the Pythagorean Golden Ratio, to

S S S 3 o o o

Example 16-52. Factoring

#!/bin/bash
factr.sh: Factor a number

MIN=2 # Will not work for number smaller than this.
E_NOARGS=85
E_TOOSMALL=86

if [-z $1 1

then
echo "Usage: $0 number"
exit S$E_NOARGS

fi

if ["$1" -1t "SMIN"]

then
echo "Number to factor must be $SMIN or greater."
exit $E_TOOSMALL

fi

Exercise: Add type checking (to reject non-integer arg).

echo "Factors of $1:"

,,,
echo "$1[p]s2[lip/dli%0=1dvsr]sl2sid2%0=13sidvsr[dli%0=\
1lrli2+dsi!>.]ds.xd1l<2" | dc

,,,

Pushes 10 and sets that as the precision (10k).
square root) .

(L) o

Pushes 2 and divides the running total by that (2/).

10 places.

Above code written by Michel Charpentier <charpov@cs.unh.edu>
(as a one-liner, here broken into two lines for display purposes) .

Used in ABS Guide with permission (thanks!).
exit

$ sh factr.sh 270138
2

3

11

4093

Yet another way of doing floating point math in a script is using awk's built-in math functions in a

shell wrapper.

Example 16-53. Calculating the hypotenuse of a triangle

Chapter 16. External Filters, Programs and Commands

294

Advanced Bash-Scripting Guide

#!/bin/bash

hypotenuse.sh: Returns the "hypotenuse" of a right triangle.

(square root of sum of squares of the "legs")
ARGS=2 # Script needs sides of triangle passed.
E_BADARGS=85 # Wrong number of arguments.

if [S# -ne "SARGS"] # Test number of arguments to script.
then

echo "Usage: “basename $0° side_1 side_2"
exit SE_BADARGS
fi

AWKSCRIPT=' { printf("%3.7f\n", sqrt($1*$1 + $2*$2)) } '
command (s) / parameters passed to awk

Now, pipe the parameters to awk.
echo -n "Hypotenuse of $1 and $2 = "
echo $1 $2 | awk "SAWKSCRIPT"

AAAAAAAAAAAA

An echo-and-pipe is an easy way of passing shell parameters to awk.

exit

Exercise: Rewrite this script using 'bc' rather than awk.
Which method is more intuitive?

16.9. Miscellaneous Commands

Command that fit in no special category

jot, seq
These utilities emit a sequence of integers, with a user-selectable increment.

The default separator character between each integer is a newline, but this can be changed with the —s

option.

bash$ seq 5
1

s w N

bash$ seq -s : 5
1:2:3:4:5

Both jot and seq come in handy in a for loop.

Example 16-54. Using seq to generate loop arguments

#!/bin/bash

Chapter 16. External Filters, Programs and Commands

295

Advanced Bash-Scripting Guide

Using "seq"

echo
for a in “seq 80° # or for a in $(seqg 80)
Same as for a in 1 2 3 45 ... 80 (saves much typing!).
May also use 'jot' (if present on system).
do
echo -n "$a "
done #1 2345 ... 80

Example of using the output of a command to generate
the [list] in a "for" loop.

echo; echo

COUNT=80 # Yes, 'seqg' also accepts a replaceable parameter.

for a in "seq S$SCOUNT' # or for a in $(seg S$COUNT)
do

echo -n "$a "
done #1 2 345 ... 80

echo; echo

BEGIN=75
END=80

for a in "seq S$BEGIN SEND®
Giving "seq" two arguments starts the count at the first one,
#+ and continues until it reaches the second.
do
echo -n "$a "
done # 75 76 77 78 79 80

echo; echo

BEGIN=45
INTERVAL=5
END=80

for a in "seqg S$BEGIN $INTERVAL SEND®
Giving "seq" three arguments starts the count at the first one,
#+ uses the second for a step interval,
#+ and continues until it reaches the third.
do
echo -n "$a "
done # 45 50 55 60 65 70 75 80

echo; echo

exit O

A simpler example:

Create a set of 10 files,

#+ named file.l, file.2 . . . file.1O0.
COUNT=10

PREFIX=file

for filename in "seqg S$COUNT®
do

Chapter 16. External Filters, Programs and Commands 296

Advanced Bash-Scripting Guide

touch S$PREFIX.S$filename
Or, can do other operations,
#+ such as rm, grep, etc.

done

Example 16-55. Letter Count"

#!/bin/bash

letter—-count.sh: Counting letter occurrences in a text file.
Written by Stefano Palmeri.

Used in ABS Guide with permission.

Slightly modified by document author.

MINARGS=2 # Script requires at least two arguments.
E_BADARGS=65
FILE=S$1

let LETTERS=S$#-1 # How many letters specified (as command-line args).
(Subtract 1 from number of command-line args.)

show_help () {
echo
echo Usage: "basename $0° file letters
echo Note: “basename $0° arguments are case sensitive.
echo Example: “basename $0° foobar.txt G n U L i N U x.
echo

Checks number of arguments.
if [$# -1t SMINARGS]; then

echo

echo "Not enough arguments."
echo

show_help

exit S$E_BADARGS

Checks if file exists.

if [! —=f SFILE]; then
echo "File \"SFILE\" does not exist."
exit SE_BADARGS

fi

Counts letter occurrences
for n in “seqg $LETTERS ; do

shift
if [[“echo -n "$1" | wc -¢° -egq 1]]; then # Checks arg.
echo "$1" —-\> ‘cat SFILE | tr -cd "$1" | wc -c' # Counting.
else
echo "$1 is not a single char."
fi
done
exit $°?

This script has exactly the same functionality as letter-count2.sh,
#+ but executes faster.

Chapter 16. External Filters, Programs and Commands 297

Advanced Bash-Scripting Guide

Why?

=) Somewhat more capable than seq, jot is a classic UNIX utility that is not normally
included in a standard Linux distro. However, the source rpm is available for
download from the MIT repository.

Unlike segq, jot can generate a sequence of random numbers, using the —r option.

bash$ jot —-r 3 999
1069

1272

1428

getopt
The getopt command parses command-line options preceded by a dash. This external command
corresponds to the getopts Bash builtin. Using getopt permits handling long options by means of the
-1 flag, and this also allows parameter reshuffling.

Example 16-56. Using gefopt to parse command-line options

#!/bin/bash
Using getopt

Try the following when invoking this script:
sh ex33a.sh -a

sh ex33a.sh -abc

sh ex33a.sh -a -b -c

sh ex33a.sh -d

sh ex33a.sh -dXYZ

sh ex33a.sh -d XYZ

sh ex33a.sh —abcd

sh ex33a.sh -abcdZ

sh ex33a.sh -z

sh ex33a.sh a

Explain the results of each of the above.

E_OPTERR=65

if ["S$#" -eq 0 1

then # Script needs at least one command-line argument.
echo "Usage $0 —[options a,b,c]"
exit $E_OPTERR

fi

set —— “getopt "abcd:" "s$@"®
Sets positional parameters to command-line arguments.
What happens if you use "$*" instead of "$@"?

while [! -z "S$1"]
do
case "$1" in
-a) echo "Option \"a\"";;
-b) echo "Option \"b\"";;
—-c) echo "Option \"c\"";;
-d) echo "Option \"d\" s2";;
*) break;;
esac

Chapter 16. External Filters, Programs and Commands 298

http://www.mit.edu/afs/athena/system/rhlinux/athena-9.0/free/SRPMS/athena-jot-9.0-3.src.rpm

Advanced Bash-Scripting Guide

shift
done

It is usually better to use the 'getopts' builtin in a script.
See "ex33.sh."

exit O

& As Peggy Russell points out:
It is often necessary to include an gval to correctly process whitespace and guotes.

args=$ (getopt -o a:bc:d —- "$@")
eval set —- "Sargs"
See Example 10-5 for a simplified emulation of getopt.
run-parts
The run-parts command [74] executes all the scripts in a target directory, sequentially in
ASClI-sorted filename order. Of course, the scripts need to have execute permission.

The cron daemon invokes run-parts to run the scripts in the /etc/cron. * directories.

yes
In its default behavior the yes command feeds a continuous string of the character y followed by a
line feed to stdout. A control-C terminates the run. A different output string may be specified, as
inyes different string, which would continually output different stringto
stdout.

One might well ask the purpose of this. From the command-line or in a script, the output of yes can be
redirected or piped into a program expecting user input. In effect, this becomes a sort of poor man's
version of expect.

yes | fsck /dev/hdal runs fsck non-interactively (careful!).

yes | rm —-r dirname has same effect as rm —rf dirname (careful!).

Caution advised when piping yes to a potentially dangerous system command, such as
fsck or fdisk. It might have unintended consequences.

- The yes command parses variables, or more accurately, it echoes parsed variables. For
example:

bash$ yes $BASH VERSION
3.1.17(1)-release
.1.17(1)-release
.1.17(1)-release
.1.17(1)-release

(

3
3
3
3.1.17(1)-release

This particular "feature" may be used to create a very large ASCII file on the fly:

bash$ yes $PATH > huge_file.txt
Cctl-C

Chapter 16. External Filters, Programs and Commands 299

banner

Advanced Bash-Scripting Guide

Hit Ct1-C very quickly, or you just might get more than you bargained for. . . .

The yes command may be emulated in a very simple script function.

ves ()
{ # Trivial emulation of "yes"
local DEFAULT_TEXT="y"

while [true] # Endless loop.
do
if [-z "$1"]
then
echo "SDEFAULT_ TEXT"
else # If argument ...
echo "$1" # ... expand and echo it.
fi
done # The only things missing are the
} #+ —-help and --version options.

Prints arguments as a large vertical banner to stdout, using an ASCII character (default '#'). This
may be redirected to a printer for hardcopy.

Note that banner has been dropped from many Linux distros.

printenv

Ip

tee

Show all the environmental variables set for a particular user.

bash$ printenv | grep HOME
HOME=/home/bozo

The Ip and lpr commands send file(s) to the print queue, to be printed as hard copy. [75] These
commands trace the origin of their names to the line printers of another era.

bash$ 1p filel.txt orbashlp <filel.txt

It is often useful to pipe the formatted output from pr to Ip.

bash$ pr —options filel.txt | 1p

Formatting packages, such as groff and Ghostscript may send their output directly to Ip.
bash$ groff -Tascii file.tr | 1lp

bash$ gs —options | 1lp file.ps

Related commands are Ipq, for viewing the print queue, and Iprm, for removing jobs from the print
queue.

[UNIX borrows an idea from the plumbing trade.]

This is a redirection operator, but with a difference. Like the plumber's tee, it permits "siphoning off"
to a file the output of a command or commands within a pipe, but without affecting the result. This is
useful for printing an ongoing process to a file or paper, perhaps to keep track of it for debugging
purposes.

Chapter 16. External Filters, Programs and Commands 300

Advanced Bash-Scripting Guide

(redirection)
|-——=> to file
|
|

command —---> command ---> |tee ---> command —---> —---> output of pipe

cat listfile* | sort | tee check.file | unig > result.file

AAAAAAAAAAAAAA AAAA

The file "check.file" contains the concatenated sorted "listfiles,"
#+ before the duplicate lines are removed by 'unig.'

mkfifo
This obscure command creates a named pipe, a temporary first-in-first-out buffer for transferring data
between processes. [76] Typically, one process writes to the FIFO, and the other reads from it. See

Example A-14.

#!/bin/bash
This short script by Omair Eshkenazi.
Used in ABS Guide with permission (thanks!).

mkfifo pipel # Yes, pipes can be given names.
mkfifo pipe2 # Hence the designation "named pipe."
(cut -d' ' —-f1 | tr "a-z" "A-Z") >pipe2 <pipel &

ls -1 | tr -s " ' | cut -d' ' -£3,9- | tee pipel |
cut -d' ' —-f2 | paste - pipe2

rm —-f pipel
rm —-f pipe2

No need to kill background processes when script terminates (why not?).
exit $°?

Now, invoke the script and explain the output:
sh mkfifo-example.sh

4830.tar.gz BOZO
pipel BOzO
pipe2 BOzO

mkfifo-example.sh BOZO
Mixed.msg BOZO
pathchk

This command checks the validity of a filename. If the filename exceeds the maximum allowable
length (255 characters) or one or more of the directories in its path is not searchable, then an error
message results.

Unfortunately, pathchk does not return a recognizable error code, and it is therefore pretty much
useless in a script. Consider instead the file test operators.

dd
This is the somewhat obscure and much feared data duplicator command. Originally a utility for
exchanging data on magnetic tapes between UNIX minicomputers and IBM mainframes, this
command still has its uses. The dd command simply copies a file (or stdin/stdout), but with
conversions. Possible conversions are ASCII/EBCDIC, [77] upper/lower case, swapping of byte pairs
between input and output, and skipping and/or truncating the head or tail of the input file.

Chapter 16. External Filters, Programs and Commands 301

Advanced Bash-Scripting Guide
Converting a file to all uppercase:

dd if=$filename conv=ucase > $filename.uppercase
lcase # For lower case conversion

Some basic options to dd are:
¢ if=INFILE

INFILE is the source file.
¢ of=OUTFILE

OUTFILE is the farget file, the file that will have the data written to it.
0 bs=BLOCKSIZE

This is the size of each block of data being read and written, usually a power of 2.
0 skip=BLOCKS

How many blocks of data to skip in INFILE before starting to copy. This is useful when the
INFILE has "garbage" or garbled data in its header or when it is desirable to copy only a
portion of the INFILE.

0 seek=BLOCKS

How many blocks of data to skip in OUTFILE before starting to copy, leaving blank data at
beginning of OUTFILE.
¢ count=BLOCKS

Copy only this many blocks of data, rather than the entire INFILE.
¢ conv=CONVERSION

Type of conversion to be applied to INFILE data before copying operation.
A dd —--help lists all the options this powerful utility takes.

Example 16-57. A script that copies itself

#!/bin/bash
self-copy.sh

This script copies itself.
file_subscript=copy

dd if=$0 of=$0.S$file_subscript 2>/dev/null
Supp]’_‘ess messages from dd: AAAAAAAAAAN

exit $°?
A program whose only output is its own source code

#+ is called a "quine" per Willard Quine.
Does this script qualify as a quine?

Example 16-58. Exercising dd

Chapter 16. External Filters, Programs and Commands 302

Advanced Bash-Scripting Guide

#!/bin/bash
exercising-dd.sh

Script by Stephane Chazelas.
Somewhat modified by ABS Guide author.

infile=$0 # This script.
outfile=log.txt # Output file left behind.
n=3

P=5

dd if=$infile of=$outfile bs=1 skip=$((n-1)) count=$((p-n+l))

Extracts characters n to p (3 to 5) from this script.

echo —n "hello world" | dd cbs=1 conv=unblock 2> /dev/null
Echoes "hello world" vertically.
Why? A newline follows each character dd emits.

exit O

To demonstrate just how versatile dd is, let's use it to capture keystrokes.

Example 16-59. Capturing Keystrokes

#!/bin/bash

dd-keypress.sh: Capture keystrokes without needing to press ENTER.

keypresses=4 # Number of keypresses to capture.

old_tty_setting=$ (stty -g) # Save old terminal settings.

echo "Press Skeypresses keys."

stty —-icanon -echo # Disable canonical mode.
Disable local echo.

keys=$ (dd bs=1 count=$keypresses 2> /dev/null)

'dd' uses stdin, if "if" (input file) not specified.

stty "$old_tty_setting" # Restore old terminal settings.

echo "You pressed the \"S$keys\" keys."

Thanks, Stephane Chazelas, for showing the way.
exit O

The dd command can do random access on a data stream.

echo -n . | dd bs=1 seek=4 of=file conv=notrunc
The "conv=notrunc" option means that the output file
#+ will not be truncated.

Thanks, S.C.

2> /dev/null

The dd command can copy raw data and disk images to and from devices, such as floppies and tape

drives (Example A-5). A common use is creating boot floppies.

Chapter 16. External Filters, Programs and Commands

303

Advanced Bash-Scripting Guide

dd if=kernel-image of=/dev/£fd0H1440

Similarly, dd can copy the entire contents of a floppy, even one formatted with a "foreign" OS, to the
hard drive as an image file.

dd if=/dev/£fd0 of=/home/bozo/projects/floppy.img

Other applications of dd include initializing temporary swap files (Example 30-2) and ramdisks
(Example 30-3). It can even do a low-level copy of an entire hard drive partition, although this is not
necessarily recommended.

People (with presumably nothing better to do with their time) are constantly thinking of interesting
applications of dd.

Example 16-60. Securely deleting a file

#!/bin/bash
blot-out.sh: Erase "all" traces of a file.

This script overwrites a target file alternately

#+ with random bytes, then zeros before finally deleting it.

After that, even examining the raw disk sectors by conventional methods
#+ will not reveal the original file data.

PASSES=7 # Number of file-shredding passes.
Increasing this slows script execution,
#+ especially on large target files.

BLOCKSIZE=1 # I/0 with /dev/urandom requires unit block size,
#+ otherwise you get weird results.
E_BADARGS=70 # Various error exit codes.

E_NOT_FOUND=71
E_CHANGED_MIND=72

if [-z "S1"] # No filename specified.
then
echo "Usage: “basename $0° filename"
exit S$E_BADARGS
fi

file=$51

if [! —e "Sfile"]

then
echo "File \"$file\" not found."
exit S$SE_NOT_FOUND

fi

echo; echo —-n "Are you absolutely sure you want to blot out \"$file\" (y/n)? "
read answer
case "Sanswer" in
[nN]) echo "Changed your mind, huh?"
exit S$SE_CHANGED_MIND
i
%) echo "Blotting out file \"S$file\".";;
esac

Chapter 16. External Filters, Programs and Commands 304

Advanced Bash-Scripting Guide

flength=$(1ls -1 "S$file" | awk '{print $5}"'") # Field 5 is file length.
pass_count=1

chmod utw "$file" # Allow overwriting/deleting the file.
echo

while ["S$pass_count" -le "SPASSES"]
do
echo "Pass #$pass_count"
sync # Flush buffers.
dd if=/dev/urandom of=$file bs=$BLOCKSIZE count=$flength
Fill with random bytes.
sync # Flush buffers again.
dd if=/dev/zero of=$file bs=$BLOCKSIZE count=S$flength
Fill with zeros.

sync # Flush buffers yet again.

let "pass_count += 1"

echo
done
rm —-f S$file # Finally, delete scrambled and shredded file.
sync # Flush buffers a final time.

echo "File \"$file\" blotted out and deleted."; echo

exit O

This is a fairly secure, if inefficient and slow method
#+ of thoroughly "shredding" a file.

The "shred" command, part of the GNU "fileutils" package,
#+ does the same thing, although more efficiently.

The file cannot not be "undeleted" or retrieved by normal methods.
However .

#+ this simple method would *not* likely withstand

#+ sophisticated forensic analysis.

This script may not play well with a journaled file system.
Exercise (difficult): Fix it so it does.

Tom Vier's "wipe" file-deletion package does a much more thorough job
#+ of file shredding than this simple script.
http://www.ibiblio.org/pub/Linux/utils/file/wipe-2.0.0.tar.bz2

For an in-depth analysis on the topic of file deletion and security,
#+ see Peter Gutmann's paper,

#+ "Secure Deletion of Data From Magnetic and Solid-State Memory".
http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html

See also the dd thread entry in the bibliography.
od

The od, or octal dump filter converts input (or files) to octal (base-8) or other bases. This is useful for

viewing or processing binary data files or otherwise unreadable system device files, such as
/dev/urandom, and as a filter for binary data.

Chapter 16. External Filters, Programs and Commands

305

Advanced Bash-Scripting Guide

head -c4 /dev/urandom | od -N4 —-tu4 | sed -ne 'ls/.* //p'
Sample output: 1324725719, 3918166450, 2989231420, etc.

From rnd.sh example script, by Stéphane Chazelas

See also Example 9-16 and Example A-36.

hexdump

Performs a hexadecimal, octal, decimal, or ASCII dump of a binary file. This command is the rough
equivalent of od, above, but not nearly as useful. May be used to view the contents of a binary file, in
combination with dd and less.

dd if=/bin/ls | hexdump -C | less
The -C option nicely formats the output in tabular form.

objdump

Displays information about an object file or binary executable in either hexadecimal form or as a
disassembled listing (with the —d option).

bash$ objdump -d /bin/ls
/bin/ls: file format el1f32-1386

Disassembly of section .init:
080490bc <.init>:

80490bc: 55 push %ebp
80490bd: 89 eb mov %esp, sebp

mcookie

This command generates a "magic cookie," a 128-bit (32-character) pseudorandom hexadecimal
number, normally used as an authorization "signature" by the X server. This also available for use in a
script as a "quick 'n dirty" random number.

random000=$ (mcookie)

Of course, a script could use mdSsum for the same purpose.

Generate md5 checksum on the script itself.
random001="md5sum $0 | awk '{print $1}'"
Uses 'awk' to strip off the filename.

The mcookie command gives yet another way to generate a "unique" filename.

Example 16-61. Filename generator

#!/bin/bash

tempfile-name.sh: temp filename generator
BASE_STR="mcookie" # 32-character magic cookie.
POS=11 # Arbitrary position in magic cookie string.
LEN=5 # Get SLEN consecutive characters.
prefix=temp # This is, after all, a "temp" file.

For more "uniqueness," generate the

#+ filename prefix using the same method
#+ as the suffix, below.

suffix=${BASE_STR:POS:LEN}
Extract a 5-character string,

Chapter 16. External Filters, Programs and Commands 306

units

m4

Advanced Bash-Scripting Guide
#+ starting at position 11.

temp_filename=$prefix.S$suffix
Construct the filename.

echo "Temp filename = "S$temp_ filename""

sh tempfile—name.sh
Temp filename = temp.el9ea

Compare this method of generating "unique" filenames
#+ with the 'date' method in ex51.sh.

exit O

This utility converts between different units of measure. While normally invoked in interactive mode,
units may find use in a script.

Example 16-62. Converting meters to miles

#!/bin/bash
unit-conversion.sh

convert_units () # Takes as arguments the units to convert.

{
cf=$ (units "S$1" "S$2" | sed --silent -e 'lp' | awk '{print $2}"')
Strip off everything except the actual conversion factor.
echo "Scf"

Unitl=miles

Unit2=meters

cfactor="convert_units $Unitl $Unit2"

quantity=3.73

result=$ (echo Squantity*S$cfactor | bc)

echo "There are S$result $Unit2 in S$Squantity S$Unitl."

What happens if you pass incompatible units,
#+ such as "acres" and "miles" to the function?

exit O

A hidden treasure, m4 is a powerful macro [78] processing filter, virtually a complete language.
Although originally written as a pre-processor for RatFor, m4 turned out to be useful as a stand-alone
utility. In fact, m4 combines some of the functionality of eval, tr, and awk, in addition to its extensive

macro expansion facilities.

The April, 2002 issue of Linux Journal has a very nice article on m4 and its uses.

Example 16-63. Using m4

#!/bin/bash

Chapter 16. External Filters, Programs and Commands 307

http://www.linuxjournal.com

Advanced Bash-Scripting Guide

m4.sh: Using the m4 macro processor

Strings
string=abcdA01l
echo "len ($string)" | m4 # 7
echo "substr ($string,4)" | m4 # AO01
echo "regexp ($string, [0-1][0-1],\&Z)" | m4 # 0127
Arithmetic
echo "incr(22)" | m4 +# 23
echo "eval (99 / 3)" | m4 +# 33
exit

xXmessage

This X-based variant of echo pops up a message/query window on the desktop.

xmessage Left click to continue -button okay
Zenity
The zenity utility is adept at displaying GTK+ dialog widgets and very suitable for scripting purposes.
doexec
The doexec command enables passing an arbitrary list of arguments to a binary executable. In
particular, passing argv [0] (which corresponds to $0 in a script) lets the executable be invoked by
various names, and it can then carry out different sets of actions, according to the name by which it
was called. What this amounts to is roundabout way of passing options to an executable.

For example, the /usr/local/bin directory might contain a binary called "aaa". Invoking doexec

/usr/local/bin/aaa list would /ist all those files in the current working directory beginning with an "a",
while invoking (the same executable with) doexec /usr/local/bin/aaa delete would delete those files.

-5~ The various behaviors of the executable must be defined within the code of the
executable itself, analogous to something like the following in a shell script:

case “basename $0° in

"namel") do_something;;

"name2") do_something else;;
"name3") do_yet_another_thing;;
*) bail_out;;

esac

dialog
The dialog family of tools provide a method of calling interactive "dialog" boxes from a script. The
more elaborate variations of dialog -- gdialog, Xdialog, and kdialog -- actually invoke X-Windows

widgets.
SOX

The sox, or "sound exchange" command plays and performs transformations on sound files. In fact,
the /usr/bin/play executable (now deprecated) is nothing but a shell wrapper for sox.

For example, sox soundfile.wav soundfile.au changes a WAV sound file into a (Sun audio format)
AU sound file.

Shell scripts are ideally suited for batch-processing sox operations on sound files. For examples, see
the Linux Radio Timeshift HOWTO and the MP3do Project.

Chapter 16. External Filters, Programs and Commands 308

http://freshmeat.net/projects/zenity
http://osl.iu.edu/~tveldhui/radio/
http://savannah.nongnu.org/projects/audiodo

Chapter 17. System and Administrative Commands

The startup and shutdown scripts in /et c/rc.d illustrate the uses (and usefulness) of many of these
comands. These are usually invoked by root and used for system maintenance or emergency filesystem
repairs. Use with caution, as some of these commands may damage your system if misused.

Users and Groups

users
Show all logged on users. This is the approximate equivalent of who -q.

groups
Lists the current user and the groups she belongs to. This corresponds to the SGROUPS internal
variable, but gives the group names, rather than the numbers.

bash$ groups
bozita cdrom cdwriter audio xgrp

bash$S echo $GROUPS
501

chown, chgrp
The chown command changes the ownership of a file or files. This command is a useful method that
root can use to shift file ownership from one user to another. An ordinary user may not change the
ownership of files, not even her own files. [79]

root# chown bozo *.txt

The chgrp command changes the group ownership of a file or files. You must be owner of the
file(s) as well as a member of the destination group (or roor) to use this operation.

chgrp —--recursive dunderheads *.data
The "dunderheads" group will now own all the "*.data" files
#+ all the way down the $PWD directory tree (that's what "recursive" means) .

useradd, userdel
The useradd administrative command adds a user account to the system and creates a home directory
for that particular user, if so specified. The corresponding userdel command removes a user account
from the system [80] and deletes associated files.

& The adduser command is a synonym for useradd and is usually a symbolic link to it.

usermod
Modify a user account. Changes may be made to the password, group membership, expiration date,
and other attributes of a given user's account. With this command, a user's password may be locked,
which has the effect of disabling the account.

groupmod
Modify a given group. The group name and/or ID number may be changed using this command.

id
The id command lists the real and effective user IDs and the group IDs of the user associated with the
current process. This is the counterpart to the $UID, $EUID, and $GROUPS internal Bash variables.

bash$ id
uid=501 (bozo) gid=501 (bozo) groups=501 (bozo), 22 (cdrom), 80 (cdwriter), 81 (audio)

Chapter 17. System and Administrative Commands 309

Advanced Bash-Scripting Guide

bash$ echo $UID
501

=) The id command shows the effective IDs only when they differ from the real ones.

Also see Example 9-5.

lid
The lid (list ID) command shows the group(s) that a given user belongs to, or alternately, the users
belonging to a given group. May be invoked only by root.
root# 1lid bozo
bozo (gid=500)
root# 1lid daemon
bin (gid=1)
daemon (gid=2)
adm (gid=4)
1p (gid=7)
who
Show all users logged on to the system.
bash$ who
bozo ttyl Apr 27 17:45
bozo pts/0 Apr 27 17:46
bozo pts/1 Apr 27 17:47
bozo pts/2 Apr 27 17:49
The —m gives detailed information about only the current user. Passing any two arguments to who is
the equivalent of who -m, as in who am i or who The Man.
bash$ who -m
localhost.localdomain!bozo pts/2 Apr 27 17:49
whoami is similar to who -m, but only lists the user name.
bash$ whoami
bozo
w
Show all logged on users and the processes belonging to them. This is an extended version of who.
The output of w may be piped to grep to find a specific user and/or process.
bash$ w | grep startx
bozo ttyl = 4:22pm 6:41 4.47s 0.45s startx
logname

Show current user's login name (as found in /var/run/utmp). This is a near-equivalent to
whoami, above.

bash$ logname
bozo

bash$ whoami
bozo

Chapter 17. System and Administrative Commands 310

Advanced Bash-Scripting Guide

However . ..

bash$ su
Password:

bash# whoami
root
bash# logname
bozo

=) While logname prints the name of the logged in user, whoami gives the name of the
user attached to the current process. As we have just seen, sometimes these are not the

same.

su
Runs a program or script as a substitute user. su rjones starts a shell as user rjones. A naked su
defaults to root. See Example A-14.

sudo

Runs a command as root (or another user). This may be used in a script, thus permitting a regular
user to run the script.

#!/bin/bash

Some commands.
sudo cp /root/secretfile /home/bozo/secret
Some more commands.

The file /et c/sudoers holds the names of users permitted to invoke sudo.
passwd

Sets, changes, or manages a user's password.

The passwd command can be used in a script, but probably should not be.

Example 17-1. Setting a new password

#!/bin/bash
setnew-password.sh: For demonstration purposes only.

Not a good idea to actually run this script.
This script must be run as root.

ROOT_UID=0 # Root has S$SUID 0.
E_WRONG_USER=65 # Not root?

E_NOSUCHUSER=70

SUCCESS=0

if ["SUID" -ne "S$SROOT_UID"]

then
echo; echo "Only root can run this script."; echo
exit $E_WRONG_USER

else
echo

echo "You should know better than to run this script, root."
echo "Even root users get the blues... "
echo

fi

Chapter 17. System and Administrative Commands 311

Advanced Bash-Scripting Guide

username=bozo
NEWPASSWORD=security_violation

Check if bozo lives here.

grep —q "Susername" /etc/passwd

if [$? —-ne S$SUCCESS]

then
echo "User Susername does not exist."
echo "No password changed."
exit S$SE_NOSUCHUSER

fi
echo "SNEWPASSWORD" | passwd —-stdin "Susername"
The '—--stdin' option to 'passwd' permits

#+ getting a new password from stdin (or a pipe).

echo; echo "User S$username's password changed!"

Using the 'passwd' command in a script is dangerous.

exit O

The passwd command's —1, —u, and —d options permit locking, unlocking, and deleting a user's

password. Only root may use these options.

ac
Show users' logged in time, as read from /var/log/wtmp. This is one of the GNU accounting
utilities.
bash$ ac
total 68.08
last
List /ast logged in users, as read from /var/log/wtmp. This command can also show remote
logins.
For example, to show the last few times the system rebooted:
bash$ last reboot
reboot system boot 2.6.9-1.667 Fri Feb 4 18:18 (00:02)
reboot system boot 2.6.9-1.667 Fri Feb 4 15:20 (01:27)
reboot system boot 2.6.9-1.667 Fri Feb 4 12:56 (00:49)
reboot system boot 2.6.9-1.667 Thu Feb 3 21:08 (02:17)
wtmp begins Tue Feb 1 12:50:09 2005
newgrp
Change user's group ID without logging out. This permits access to the new group's files. Since users
may be members of multiple groups simultaneously, this command finds only limited use.
=) Kurt Glaesemann points out that the newgrp command could prove helpful in setting
the default group permissions for files a user writes. However, the chgrp command
might be more convenient for this purpose.
Terminals
tty

Chapter 17. System and Administrative Commands

312

Advanced Bash-Scripting Guide

Echoes the name (filename) of the current user's terminal. Note that each separate xterm window
counts as a different terminal.

bash$ tty
/dev/pts/1

stty
Shows and/or changes terminal settings. This complex command, used in a script, can control
terminal behavior and the way output displays. See the info page, and study it carefully.

Example 17-2. Setting an erase character

#!/bin/bash
erase.sh: Using "stty" to set an erase character when reading input.

echo -n "What is your name? "

read name # Try to backspace
#+ to erase characters of input.
Problems?

echo "Your name is Sname."

stty erase '#' # Set "hashmark" (#) as erase character.
echo -n "What is your name? "
read name # Use # to erase last character typed.

echo "Your name is S$name."
exit O

Even after the script exits, the new key value remains set.
Exercise: How would you reset the erase character to the default value?

Example 17-3. secret password: Turning off terminal echoing

#!/bin/bash
secret-pw.sh: secret password

echo

echo —-n "Enter password "

read passwd

echo "password is $passwd"

echo —n "If someone had been looking over your shoulder, "
echo "your password would have been compromised."

echo && echo # Two line-feeds in an "and list."

stty —echo # Turns off screen echo.

echo —-n "Enter password again "
read passwd

echo

echo "password is $passwd"

echo

stty echo # Restores screen echo.
exit O

Do an 'info stty' for more on this useful-but-tricky command.

Chapter 17. System and Administrative Commands 313

Advanced Bash-Scripting Guide

A creative use of stty is detecting a user keypress (without hitting ENTER).

Example 17-4. Keypress detection

#!/bin/bash
keypress.sh: Detect a user keypress ("hot keys").

echo

old_tty_settings=$ (stty -g) # Save old settings (why?).

stty —icanon

Keypress=$ (head -cl) # or $(dd bs=1 count=1 2> /dev/null)
on non-GNU systems

echo

echo "Key pressed was \""SKeypress"\"."

echo

stty "S$Sold_tty_settings" # Restore old settings.

Thanks, Stephane Chazelas.

exit O

Also see Example 9-3 and Example A-43.

terminals and modes

Normally, a terminal works in the canonical mode. When a user hits a key, the resulting character does
not immediately go to the program actually running in this terminal. A buffer local to the terminal stores
keystrokes. When the user hits the ENTER key, this sends all the stored keystrokes to the program
running. There is even a basic line editor inside the terminal.

bash$ stty -a

speed 9600 baud; rows 36; columns 96; line = 0;
intr = ~C; quit = 7~\; erase = "H; kill = ~U; eof = "D; eol = <undef>; eol2 = <undef>;
start = "Q; stop = "°S; susp = "Z; rprnt = "R; werase = "W; lnext = "V; flush = 70;

isig icanon iexten echo echoe echok —-echonl -noflsh -xcase -tostop —echoprt

Using canonical mode, it is possible to redefine the special keys for the local terminal line editor.

bash$ cat > filexxx

wha<ctl-W>I<ctl-H>foo bar<ctl-U>hello world<ENTER>
<ctl-D>

bashS$ cat filexxx

hello world

bash$ we -c¢ < filexxx

12

The process controlling the terminal receives only 12 characters (11 alphabetic ones, plus a newline),
although the user hit 26 keys.

Chapter 17. System and Administrative Commands 314

Advanced Bash-Scripting Guide

In non-canonical ("raw") mode, every key hit (including special editing keys such as ctl-H) sends a
character immediately to the controlling process.

The Bash prompt disables both i canon and echo, since it replaces the basic terminal line editor with its
own more elaborate one. For example, when you hit ctl-A at the Bash prompt, there's no *A echoed by
the terminal, but Bash gets a \1 character, interprets it, and moves the cursor to the begining of the line.

Stéphane Chazelas

setterm

Set certain terminal attributes. This command writes to its terminal's stdout a string that changes
the behavior of that terminal.

bash$ setterm —cursor off
bashs$

The setterm command can be used within a script to change the appearance of text written to
stdout, although there are certainly better tools available for this purpose.

setterm —-bold on
echo bold hello

setterm -bold off
echo normal hello

tset
Show or initialize terminal settings. This is a less capable version of stty.
bash$ tset -r
Terminal type is xterm-xfree86.
Kill is control-U (”~U).
Interrupt is control-C (”C).
setserial

Set or display serial port parameters. This command must be run by root and is usually found in a
system setup script.

From /etc/pcmcia/serial script:

IRQ="setserial /dev/S$SDEVICE | sed -e 's/.*IRQ: //'
setserial /dev/S$DEVICE irg 0 ; setserial /dev/S$DEVICE irg $IRQ

getty, agetty

mesg

wall

The initialization process for a terminal uses getty or agetty to set it up for login by a user. These
commands are not used within user shell scripts. Their scripting counterpart is stty.

Enables or disables write access to the current user's terminal. Disabling access would prevent another
user on the network to write to the terminal.

i) It can be quite annoying to have a message about ordering pizza suddenly appear in
the middle of the text file you are editing. On a multi-user network, you might
therefore wish to disable write access to your terminal when you need to avoid
interruptions.

Chapter 17. System and Administrative Commands 315

Advanced Bash-Scripting Guide

This is an acronym for "write all," i.e., sending a message to all users at every terminal logged into the
network. It is primarily a system administrator's tool, useful, for example, when warning everyone
that the system will shortly go down due to a problem (see Example 19-1).

bash$ wall System going down for maintenance in 5 minutes!
Broadcast message from bozo (pts/1) Sun Jul 8 13:53:27 2001...

System going down for maintenance in 5 minutes!

<& If write access to a particular terminal has been disabled with mesg, then wall cannot
send a message to that terminal.

Information and Statistics

uname

Output system specifications (OS, kernel version, etc.) to stdout. Invoked with the —a option, gives
verbose system info (see Example 16-5). The —s option shows only the OS type.

bash$ uname
Linux

bashS$ uname -s
Linux

bash$ uname -a

Linux iron.bozo 2.6.15-1.2054_FC5 #1 Tue Mar 14 15:48:33 EST 2006
1686 1686 1386 GNU/Linux

arch
Show system architecture. Equivalent to uname -m. See Example 11-26.

bash$ arch
1686

bash$ uname -m
1686
lastcomm

Gives information about previous commands, as stored in the /var/account/pacct file.

Command name and user name can be specified by options. This is one of the GNU accounting
utilities.

lastlog
List the last login time of all system users. This references the /var/log/lastlog file.

bash$ lastlog

root ttyl Fri Dec 7 18:43:21 -0700 2001
bin **Never logged in**
daemon **Never logged in**
bozo ttyl Sat Dec 8 21:14:29 -0700 2001

bash$ lastlog | grep root
root ttyl Fri Dec 7 18:43:21 -0700 2001

Chapter 17. System and Administrative Commands 316

Advanced Bash-Scripting Guide

<1 This command will fail if the user invoking it does not have read permission for the
/var/log/lastlog file.

Isof
List open files. This command outputs a detailed table of all currently open files and gives
information about their owner, size, the processes associated with them, and more. Of course, Isof
may be piped to grep and/or awk to parse and analyze its results.
bash$ lsof
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
init 1 root mem REG 3,5 30748 30303 /sbin/init
init 1 root mem REG 3,5 73120 8069 /1ib/1d-2.1.3.s0
init 1 root mem REG 3,5 931668 8075 /1lib/libc-2.1.3.s0
cardmgr 213 root mem REG 3,5 36956 30357 /sbin/cardmgr
The Isof command is a useful, if complex administrative tool. If you are unable to dismount a
filesystem and get an error message that it is still in use, then running Isof helps determine which files
are still open on that filesystem. The —i option lists open network socket files, and this can help trace
intrusion or hack attempts.
bash$ 1lsof —-an -i tcp
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
firefox 2330 bozo 32u IPv4 9956 TCP 66.0.118.137:57596->67.112.7.104:http
firefox 2330 bozo 38u IPv4 10535 TCP 66.0.118.137:57708->216.79.48.24:http
strace
System trace: diagnostic and debugging tool for tracing system calls and signals. This command and
Itrace, following, are useful for diagnosing why a given program or package fails to run . . . perhaps
due to missing libraries or related causes.
bash$ strace df
execve ("/bin/df", ["df"], [/* 45 vars */]) = 0
uname ({sys="Linux", node="bozo.localdomain", ...}) =0
brk (0) = 0x804f5e4
This is the Linux equivalent of the Solaris truss command.
Itrace
Library trace: diagnostic and debugging tool that traces library calls invoked by a given command.
bash$ ltrace df
_ libc_start_main(0x804a910, 1, 0xbfb589%a4, 0x804fb70, 0x804fb68 <unfinished ...>:
setlocale (6, "") = "en_US.UTF-8"
bindtextdomain ("coreutils", "/usr/share/locale") = "/usr/share/locale"
textdomain ("coreutils") = "coreutils"
|__cxa_atexit (0x804b650, 0, 0, 0x8052bf0, 0xbfb58908) = 0
getenv ("DF_BLOCK_SIZE") = NULL
nmap

Network mapper and port scanner. This command scans a server to locate open ports and the services
associated with those ports. It can also report information about packet filters and firewalls. This is an
important security tool for locking down a network against hacking attempts.

Chapter 17. System and Administrative Commands 317

nc

Advanced Bash-Scripting Guide
#!/bin/bash

SERVER=S$SHOST # localhost.localdomain (127.0.0.1).
PORT_NUMBER=25 # SMTP port.

nmap $SERVER | grep —-w "$PORT_NUMBER" # Is that particular port open?

grep -w matches whole words only,

#+ so this wouldn't match port 1025, for example.
exit O

25/tcp open smtp

The nc (nefcat) utility is a complete toolkit for connecting to and listening to TCP and UDP ports. It is
useful as a diagnostic and testing tool and as a component in simple script-based HTTP clients and
servers.

bash$ nc localhost.localdomain 25
220 localhost.localdomain ESMTP Sendmail 8.13.1/8.13.1;
Thu, 31 Mar 2005 15:41:35 -0700

Example 17-5. Checking a remote server for identd

#! /bin/sh

Duplicate DaveG's ident-scan thingie using netcat. Oooh, he'll be p*ssed.
Args: target port [port port port ...]

Hose stdout _and_ stderr together.

##

Advantages: runs slower than ident-scan, giving remote inetd less cause
##+ for alarm, and only hits the few known daemon ports you specify.

Disadvantages: requires numeric-only port args, the output sleazitude,
##+ and won't work for r-services when coming from high source ports.

Script author: Hobbit <hobbit@avian.org>

Used in ABS Guide with permission.

E_BADARGS=65 # Need at least two args.
TWO_WINKS=2 # How long to sleep.

THREE_WINKS=3

IDPORT=113 # Authentication "tap ident" port.
RAND1=999

RAND2=31337

TIMEOUTO0=9

TIMEOUT1=8

TIMEOUT2=4

case "S${2}" in
"") echo "Need HOST and at least one PORT." ; exit $E_BADARGS ;;
esac

Ping 'em once and see if they *are* running identd.

nc -z -w S$TIMEOUTO "$1" S$SIDPORT || \

{ echo "Oops, $1 isn't running identd." ; exit 0 ; }
-z scans for listening daemons.

-w $TIMEOUT = How long to try to connect.

Generate a randomish base port.
RP="expr $$ % SRAND1 + SRAND2®

Chapter 17. System and Administrative Commands 318

Advanced Bash-Scripting Guide

TRG="S1"
shift

while test "$1" ; do
nc -v -w STIMEOUT1 -p ${RP} "STRG" ${1} < /dev/null > /dev/null &
PROC=$!
sleep S$THREE_WINKS
echo "${1},${RP}" | nc —-w S$TIMEOUT2 -r "STRG" SIDPORT 2>&1
sleep $TWO_WINKS

Does this look like a lamer script or what . . . ?
ABS Guide author comments: "Ain't really all that bad
#+ kinda clever, actually."

kill —-HUP S$SPROC
RP="expr S${RP} + 1°
shift

done

exit $7

Notes:

Try commenting out line 30 and running this script
#+ with "localhost.localdomain 25" as arguments.

For more of Hobbit's 'nc' example scripts,

#+ look in the documentation:
#+ the /usr/share/doc/nc-X.XX/scripts directory.

And, of course, there's Dr. Andrew Tridgell's notorious one-line script in the BitKeeper Affair:

echo clone | nc thunk.org 5000 > e2fsprogs.dat

free
Shows memory and cache usage in tabular form. The output of this command lends itself to parsing,
using grep, awk or Perl. The procinfo command shows all the information that free does, and much
more.
bash$ free
total used free shared buffers cached
Mem: 30504 28624 1880 15820 1608 16376
-/+ buffers/cache: 10640 19864
Swap: 68540 3128 65412
To show unused RAM memory:
bash$ free | grep Mem | awk '{ print $4 }'
1880
procinfo
Extract and list information and statistics from the /proc pseudo-filesystem. This gives a very
extensive and detailed listing.
bash$ procinfo | grep Bootup
Bootup: Wed Mar 21 15:15:50 2001 Load average: 0.04 0.21 0.34 3/47 6829
Isdev

List devices, that is, show installed hardware.

bash$ lsdev

Chapter 17. System and Administrative Commands 319

Advanced Bash-Scripting Guide

Device DMA IRQ I/O Ports

cascade 4 2

dma 0080-008f

dmal 0000-001f

dma?2 00c0-00df

fpu 00f0-00ff

ideO 14 01f0-01f7 03f6-03f6

du
Show (disk) file usage, recursively. Defaults to current working directory, unless otherwise specified.
bash$ du —-ach
1.0k ./wi.sh
1.0k ./tst.sh
1.0k ./random.file
6.0k .
6.0k total
df
Shows filesystem usage in tabular form.
bash$ df
Filesystem lk-blocks Used Available Use% Mounted on
/dev/hda5 273262 92607 166547 36% /
/dev/hda8 222525 123951 87085 59% /home
/dev/hda’ 1408796 1075744 261488 80% /usr
dmesg
Lists all system bootup messages to st dout. Handy for debugging and ascertaining which device
drivers were installed and which system interrupts in use. The output of dmesg may, of course, be
parsed with grep, sed, or awk from within a script.
bash$ dmesg | grep hda
Kernel command line: ro root=/dev/hda2
hda: IBM-DLGA-23080, ATA DISK drive
hda: 6015744 sectors (3080 MB) w/96KiB Cache, CHS=746/128/63
hda: hdal hda2 hda3 < hda5 hda6é hda7 > hda4
stat

Gives detailed and verbose statistics on a given file (even a directory or device file) or set of files.

bash$ stat test.cru
File: "test.cru"

Size: 49970 Allocated Blocks: 100 Filetype: Regular File
Mode: (0664/-rw—rw—-r—-—) Uid: (501/ bozo) Gid: (501/ bozo)
Device: 3,38 Inode: 18185 Links: 1

Access: Sat Jun 2 16:40:24 2001
Modify: Sat Jun 2 16:40:24 2001
Change: Sat Jun 2 16:40:24 2001

If the target file does not exist, stat returns an error message.

bash$ stat nonexistent-file
nonexistent-file: No such file or directory

In a script, you can use stat to extract information about files (and filesystems) and set variables
accordingly.

Chapter 17. System and Administrative Commands 320

Advanced Bash-Scripting Guide

#!/bin/bash
fileinfo2.sh

Per suggestion of Jo&€l Bourquard and 5
http://www.linuxquestions.org/questions/showthread.php?t=410766

FILENAME=testfile.txt

file_name=$ (stat -c%n "SFILENAME") # Same as "SFILENAME" of course.
file_owner=$ (stat -c%U "SFILENAME")
file_size=$(stat —-c%s "SFILENAME")
Certainly easier than using "ls -1 SFILENAME"
#+ and then parsing with sed.
file_inode=$ (stat -c%i "SFILENAME")
file_type=$(stat —-c%F "SFILENAME")
file_access_rights=$(stat -c%A "SFILENAME")
echo "File name: S$file_name"
echo "File owner: Sfile_owner"
echo "File size: Sfile_size"
echo "File inode: Sfile_inode"
echo "File type: Sfile_type"
echo "File access rights: $file_access_rights"
exit O
sh fileinfo2.sh
File name: testfile.txt
File owner: bozo
File size: 418
File inode: 1730378
File type: regular file
File access rights: —-rw-rw-r—-
vmstat
Display virtual memory statistics.
bash$ vmstat
procs memory swap io system cpu
r b w swpd free buff cache si so bi bo in cs us sy id
0 0 O 0 11040 2636 38952 0 0 33 7 271 88 8 3 89

netstat

Show current network statistics and information, such as routing tables and active connections. This

utility accesses information in /proc/net (Chapter 29). See Example 29-4.

netstat -r is equivalent to route.

bash$ netstat
Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address

Active UNIX domain sockets

(w/o servers)

Foreign Address

Proto RefCnt Flags Type State I-Node Path
unix 11 [] DGRAM 906 /dev/log
unix 3 [1] STREAM CONNECTED 4514

unix 3 [] STREAM CONNECTED 4513

State

/tmp/.X11-unix/X0

Chapter 17. System and Administrative Commands

321

Advanced Bash-Scripting Guide

&) A netstat -lptu shows gockets that are listening to ports, and the associated processes.
This can be useful for determining whether a computer has been hacked or
compromised.

uptime

Shows how long the system has been running, along with associated statistics.

bash$ uptime
10:28pm up 1:57, 3 users, load average: 0.17, 0.34, 0.27

) A load average of 1 or less indicates that the system handles processes immediately. A
load average greater than 1 means that processes are being queued. When the load
average gets above 3, then system performance is significantly degraded.

hostname

hostid

sar

Lists the system's host name. This command sets the host name in an /etc/rc.d setup script

(/etc/rc.d/rc.sysinit or similar). It is equivalent to uname -n, and a counterpart to the
$HOSTNAME internal variable.

bash$ hostname
localhost.localdomain

bash$ echo $HOSTNAME
localhost.localdomain
Similar to the hostname command are the domainname, dnsdomainname, nisdomainname, and
ypdomainname commands. Use these to display or set the system DNS or NIS/YP domain name.
Various options to hostname also perform these functions.

Echo a 32-bit hexadecimal numerical identifier for the host machine.

bash$ hostid
7£0100

=) This command allegedly fetches a "unique" serial number for a particular system.
Certain product registration procedures use this number to brand a particular user
license. Unfortunately, hostid only returns the machine network address in
hexadecimal, with pairs of bytes transposed.

The network address of a typical non-networked Linux machine, is found in
/etc/hosts.

bash$S cat /etc/hosts

127.0.0.1 localhost.localdomain localhost
As it happens, transposing the bytes of 127.0.0.1, we get 0.127.1.0, which
translates in hex to 007£0100, the exact equivalent of what hostid returns, above.
There exist only a few million other Linux machines with this identical hostid.

Invoking sar (System Activity Reporter) gives a very detailed rundown on system statistics. The
Santa Cruz Operation ("Old" SCO) released sar as Open Source in June, 1999.

This command is not part of the base Linux distribution, but may be obtained as part of the_sysstat

utilities package, written by Sebastien Godard.

Chapter 17. System and Administrative Commands 322

http://perso.wanadoo.fr/sebastien.godard/
http://perso.wanadoo.fr/sebastien.godard/
mailto:sebastien.godard@wanadoo.fr

Advanced Bash-Scripting Guide

bash$ sar

Linux 2.4.9 (brooks.seringas.fr) 09/26/03

10:30:00 CPU %user %nice $system %$iowait %$idle
10:40:00 all 2.21 10.90 65.48 0.00 21.41
10:50:00 all 3.36 0.00 72.36 0.00 24.28
11:00:00 all 1.12 0.00 80.77 0.00 18.11
Average: all 2.23 3.63 72.87 0.00 21.27
14:32:30 LINUX RESTART

15:00:00 CPU %user %nice $system %$iowait %$idle
15:10:00 all 8.59 2.40 17.47 0.00 71.54
15:20:00 all 4.07 1.00 11.95 0.00 82.98
15:30:00 all 0.79 2.94 7.56 0.00 88.71
Average: all 6.33 1.70 14.71 0.00 77.26

readelf
Show information and statistics about a designated elf binary. This is part of the binutils package.

bash$ readelf -h /bin/bash
ELF Header:
Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
Class: ELF32
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
size
The size [/path/to/binary] command gives the segment sizes of a binary executable or archive file.
This is mainly of use to programmers.
bash$ size /bin/bash
text data bss dec hex filename
495971 22496 17392 535859 82d33 /bin/bash
System Logs
logger

Appends a user-generated message to the system log (/var/log/messages). You do not have to
be root to invoke logger.

logger Experiencing instability in network connection at 23:10, 05/21.
Now, do a 'tail /var/log/messages’.

By embedding a logger command in a script, it is possible to write debugging information to
/var/log/messages.

logger -t $0 -i Logging at line "SLINENO".
The "-t" option specifies the tag for the logger entry.
The "-1i" option records the process ID.

tail /var/log/message

=

Jul 7 20:48:58 localhost ./test.sh[1712]: Logging at line 3.

Chapter 17. System and Administrative Commands 323

Advanced Bash-Scripting Guide

logrotate
This utility manages the system log files, rotating, compressing, deleting, and/or e-mailing them, as
appropriate. This keeps the /var/log from getting cluttered with old log files. Usually cron runs
logrotate on a daily basis.

Adding an appropriate entry to /etc/logrotate.conf makes it possible to manage personal log
files, as well as system-wide ones.

&) Stefano Falsetto has created rottlog, which he considers to be an improved version of
logrotate.

Job Control

ps
Process Statistics: lists currently executing processes by owner and PID (process ID). This is usually
invoked with ax or aux options, and may be piped to grep or sed to search for a specific process (see

Example 15-14 and Example 29-3).

bash$S ps ax | grep sendmail
295 7 S 0:00 sendmail: accepting connections on port 25

To display system processes in graphical "tree" format: ps afjx or ps ax --forest.

pgrep, pkill
Combining the ps command with grep or kill.

bash$ ps a | grep mingetty
2212 tty2 Ss+ 0:00 /sbin/mingetty tty2

2213 tty3 Ss+ 0:00 /sbin/mingetty tty3
2214 tty4 Ss+ 0:00 /sbin/mingetty tty4
2215 ttyb Ss+ 0:00 /sbin/mingetty tty5
2216 tty6 Ss+ 0:00 /sbin/mingetty tty6
4849 pts/2 S+ 0:00 grep mingetty

bash$ pgrep mingetty
2212 mingetty

2213 mingetty

2214 mingetty

2215 mingetty

2216 mingetty

Compare the action of pkill with killall.

pstree
Lists currently executing processes in "tree" format. The —p option shows the PIDs, as well as the
process names.

top
Continuously updated display of most cpu-intensive processes. The —b option displays in text mode,
so that the output may be parsed or accessed from a script.

bash$ top -b
8:30pm up 3 min, 3 users, load average: 0.49, 0.32, 0.13
45 processes: 44 sleeping, 1 running, 0 zombie, 0 stopped
CPU states: 13.6% user, 7.3% system, 0.0% nice, 78.9% idle
Mem: 78396K av, 65468K used, 12928K free, OK shrd, 2352K buff
Swap: 157208K av, OK used, 157208K free 37244K cached

Chapter 17. System and Administrative Commands 324

http://www.gnu.org/software/rottlog/

Advanced Bash-Scripting Guide

PID USER PRI NI SIZE RSS SHARE STAT %CPU $%MEM TIME COMMAND
848 bozo 17 0 996 996 800 R 5.6 1.2 0:00 top

1 root 8 0 512 512 444 S 0.0 0.6 0:04 init

2 root 9 0 0 0 0 Sw 0.0 0.0 0:00 keventd

nice

Run a background job with an altered priority. Priorities run from 19 (lowest) to -20 (highest). Only
root may set the negative (higher) priorities. Related commands are renice and snice, which change
the priority of a running process or processes, and skill, which sends a kill signal to a process or
processes.

nohup
Keeps a command running even after user logs off. The command will run as a foreground process
unless followed by &. If you use nohup within a script, consider coupling it with a wait to avoid
creating an orphan or zombie process.

pidof
Identifies process ID (PID) of a running job. Since job control commands, such as kill and renice act
on the PID of a process (not its name), it is sometimes necessary to identify that PID. The pidof
command is the approximate counterpart to the $PPID internal variable.

bash$ pidof xclock
880

Example 17-6. pidof helps Kkill a process

#!/bin/bash
kill-process.sh

NOPROCESS=2

process=xxxyyyzzz # Use nonexistent process.
For demo purposes only...

... don't want to actually kill any actual process with this script.

#

If, for example, you wanted to use this script to logoff the Internet,
process=pppd

t="pidof S$process’ # Find pid (process id) of S$process.
The pid is needed by 'kill' (can't 'kill' by program name) .

if [-z "S$t"] # If process not present, 'pidof' returns null.
then

echo "Process $process was not running."

echo "Nothing killed."

exit SNOPROCESS
fi

kill st # May need 'kill -9' for stubborn process.

Need a check here to see if process allowed itself to be killed.
Perhaps another " t="pidof S$process’ " or

This entire script could be replaced by
kill $(pidof -x process_name)

Chapter 17. System and Administrative Commands 325

Advanced Bash-Scripting Guide

or
killall process_name
but it would not be as instructive.

exit O

fuser
Identifies the processes (by PID) that are accessing a given file, set of files, or directory. May also be
invoked with the —k option, which kills those processes. This has interesting implications for system
security, especially in scripts preventing unauthorized users from accessing system services.

bash$ fuser -u /usr/bin/vim
/usr/bin/vim: 3207e (bozo)

bash$ fuser -u /dev/null
/dev/null: 3009 (bozo) 3010 (bozo) 3197 (bozo) 3199 (bozo)

One important application for fuser is when physically inserting or removing storage media, such as
CD ROM disks or USB flash drives. Sometimes trying a umount fails with a device is busy error
message. This means that some user(s) and/or process(es) are accessing the device. An fuser -um
/dev/device_name will clear up the mystery, so you can kill any relevant processes.

bash$ umount /mnt/usbdrive
umount: /mnt/usbdrive: device is busy

bash$ fuser -um /dev/usbdrive
/mnt /usbdrive: 1772c (bozo)

bash$ kill -9 1772
bash$ umount /mnt/usbdrive

The fuser command, invoked with the —n option identifies the processes accessing a port. This is
especially useful in combination with nmap.

root# nmap localhost.localdomain
PORT STATE SERVICE
25/tcp open smtp

root# fuser —-un tcp 25
25/tcp: 2095 (root)

root# ps ax | grep 2095 | grep -v grep
2095 2 Ss 0:00 sendmail: accepting connections

cron
Administrative program scheduler, performing such duties as cleaning up and deleting system log
files and updating the slocate database. This is the superuser version of at (although each user may
have their own crontab file which can be changed with the crontab command). It runs as a daemon
and executes scheduled entries from /etc/crontab.

& Some flavors of Linux run crond, Matthew Dillon's version of cron.

Chapter 17. System and Administrative Commands 326

Advanced Bash-Scripting Guide

Process Control and Booting

init
The init command is the parent of all processes. Called in the final step of a bootup, init determines
the runlevel of the system from /etc/inittab. Invoked by its alias telinit, and by roof only.
telinit
Symlinked to init, this is a means of changing the system runlevel, usually done for system
maintenance or emergency filesystem repairs. Invoked only by root. This command can be dangerous
-- be certain you understand it well before using!
runlevel

Shows the current and last runlevel, that is, whether the system is halted (runlevel 0), in single-user

mode (1), in multi-user mode (2 or 3), in X Windows (5), or rebooting (6). This command accesses
the /var/run/utmp file.
halt, shutdown, reboot

Command set to shut the system down, usually just prior to a power down.

. On some Linux distros, the halt command has 755 permissions, so it can be invoked
by a non-root user. A careless halt in a terminal or a script may shut down the system!
service

Starts or stops a system service. The startup scripts in /etc/init.d and /etc/rc.d use this
command to start services at bootup.

root# /sbin/service iptables stop

Flushing firewall rules: [OK]

Setting chains to policy ACCEPT: filter [OK]

Unloading iptables modules: [OK]
Network

ifconfig
Network interface configuration and tuning utility.

bash$ ifconfig -a

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:10 errors:0 dropped:0 overruns:0 frame:0
TX packets:10 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:700 (700.0 b) TX bytes:700 (700.0 b)

The ifconfig command is most often used at bootup to set up the interfaces, or to shut them down
when rebooting.

Code snippets from /etc/rc.d/init.d/network

#

Check that networking is up.
[${NETWORKING} = "no"] && exit 0

[—x /sbin/ifconfig] || exit O

Chapter 17. System and Administrative Commands 327

Advanced Bash-Scripting Guide
#

for i in S$interfaces ; do
if ifconfig $i 2>/dev/null | grep -g "UP" >/dev/null 2>&1 ; then
action "Shutting down interface $i: " ./ifdown $i boot
fi
The GNU-specific "-g" option to "grep" means "quiet", i.e
#+ producing no output.
Redirecting output to /dev/null is therefore not strictly necessary.

.7

#

echo "Currently active devices:"
echo " /sbin/ifconfig | grep "[a-z] | awk '{print $1}'"

raarnr s should be quoted to prevent globbing.
The following also work.

echo $(/sbin/ifconfig | awk '/~[a-z]/ { print $1 })'

echo $(/sbin/ifconfig | sed -e 's/ .*//'")

Thanks, S.C., for additional comments.

See also Example 31-6.

iwconfig

Chapter 17. System and Administrative Commands

This is the command set for configuring a wireless network. It is the wireless equivalent of ifconfig,
above.

General purpose utility for setting up, changing, and analyzing IP (Internet Protocol) networks and
attached devices. This command is part of the iproute2 package.

bash$ ip link show
1: lo: <LOOPBACK,UP> mtu 16436 gdisc noqueue
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
2: eth0: <BROADCAST,MULTICAST> mtu 1500 gdisc pfifo_fast glen 1000
link/ether 00:d0:59:ce:af:da brd ff:ff:ff:ff:ff:£ff
3: sit0: <NOARP> mtu 1480 gdisc noop
link/sit 0.0.0.0 brd 0.0.0.0

bash$ ip route list
169.254.0.0/16 dev lo scope link

Or, in a script:

#!/bin/bash
Script by Juan Nicolas Ruiz
Used with his kind permission.

Setting up (and stopping) a GRE tunnel.

—-—— start-tunnel.sh —-—-

LOCAL_IP="192.168.1.17"
REMOTE_IP="10.0.5.33"
OTHER_IFACE="192.168.0.100"
REMOTE_NET="192.168.3.0/24"

/sbin/ip tunnel add netb mode gre remote SREMOTE_IP \
local S$SLOCAIL_IP ttl 255

/sbin/ip addr add $OTHER_IFACE dev netb

/sbin/ip link set netb up

328

route

Advanced Bash-Scripting Guide
/sbin/ip route add S$REMOTE_NET dev netb
exit 0 ######444HHHH4EHEHHAHEHSSHHHSESRHAHFESSSRAHES
——— stop-tunnel.sh —-—-
REMOTE_NET="192.168.3.0/24"
/sbin/ip route del SREMOTE_NET dev netb
/sbin/ip link set netb down

/sbin/ip tunnel del netb

exit O

Show info about or make changes to the kernel routing table.

bash$ route
Destination Gateway Genmask Flags MSS Window 1irtt Iface
pm3-67.bozosisp * 255.255.255.255 UH 40 0O 0 pppro
127.0.0.0 o 255.0.0.0 U 40 0 0 lo
default pm3-67.bozosisp 0.0.0.0 UG 40 O 0 pppro
chkconfig

Check network and system configuration. This command lists and manages the network and system
services started at bootup in the /etc/rc?.d directory.

Originally a port from IRIX to Red Hat Linux, chkconfig may not be part of the core installation of
some Linux flavors.

bash$ chkconfig --list
atd O:0ff l:0ff 2:0ff 3:on 4:0on 5:on 6:0ff
rwhod O:o0ff l:o0ff 2:0ff 3:0ff 4:0ff S5:0ff 6:0ff
tcpdump

Network packet "sniffer." This is a tool for analyzing and troubleshooting traffic on a network by
dumping packet headers that match specified criteria.

Dump ip packet traffic between hosts bozoville and caduceus:

bash$ tcpdump ip host bozoville and caduceus

Of course, the output of tcpdump can be parsed with certain of the previously discussed text
processing utilities.

Filesystem

mount

Chapter 17. System and Administrative Commands

Mount a filesystem, usually on an external device, such as a floppy or CDROM. The file
/etc/fstab provides a handy listing of available filesystems, partitions, and devices, including
options, that may be automatically or manually mounted. The file /et c/mtab shows the currently
mounted filesystems and partitions (including the virtual ones, such as /proc).

mount -a mounts all filesystems and partitions listed in /et c/fstab, except those with a noauto
option. At bootup, a startup scriptin /etc/rc.d (rc.sysinit or something similar) invokes this

329

Advanced Bash-Scripting Guide

to get everything mounted.

mount -t 1509660 /dev/cdrom /mnt/cdrom
Mounts CD ROM. ISO 9660 is a standard CD ROM filesystem.
mount /mnt/cdrom

Shortcut, if /mnt/cdrom listed in /etc/fstab

The versatile mount command can even mount an ordinary file on a block device, and the file will act
as if it were a filesystem. Mount accomplishes that by associating the file with a loopback device. One

application of this is to mount and examine an ISO9660 filesystem image before burning it onto a
CDR. [81]

Example 17-7. Checking a CD image

As root...

mkdir /mnt/cdtest # Prepare a mount point, if not already there.

mount —-r -t 1s09660 -o loop cd-image.iso /mnt/cdtest # Mount the image.
"-o loop" option equivalent to "losetup /dev/loopO"
cd /mnt/cdtest # Now, check the image.

ls —-alR # List the files in the directory tree there.

And so forth.
umount
Unmount a currently mounted filesystem. Before physically removing a previously mounted floppy or
CDROM disk, the device must be umounted, else filesystem corruption may result.

umount /mnt/cdrom
You may now press the eject button and safely remove the disk.

=) The automount utility, if properly installed, can mount and unmount floppies or
CDROM disks as they are accessed or removed. On "multispindle” laptops with
swappable floppy and optical drives, this can cause problems, however.
gnome-mount
The newer Linux distros have deprecated mount and umount. The successor, for command-line

mounting of removable storage devices, is gnome-mount. It can take the —d option to mount a device
file by its listing in /dewv.

For example, to mount a USB flash drive:

bash$ gnome-mount -d /dev/sdal
gnome-mount 0.4

bash$ df

/dev/sdal 63584 12034 51550 19% /media/disk

sync
Forces an immediate write of all updated data from buffers to hard drive (synchronize drive with
buffers). While not strictly necessary, a sync assures the sys admin or user that the data just changed
will survive a sudden power failure. In the olden days, a sync; sync (twice, just to make
absolutely sure) was a useful precautionary measure before a system reboot.

Chapter 17. System and Administrative Commands 330

losetup

Advanced Bash-Scripting Guide

At times, you may wish to force an immediate buffer flush, as when securely deleting a file (see

Example 16-60) or when the lights begin to flicker.

Sets up and configures loopback devices.

Example 17-8. Creating a filesystem in a file

SIZE=1000000 # 1 meg

head -c $SIZE < /dev/zero > file # Set up file of designated size.

losetup /dev/loopO file # Set it up as loopback device.
mke2fs /dev/loopO0 # Create filesystem.
mount -o loop /dev/loopO /mnt # Mount it.

Thanks, S.C.

mkswap

Creates a swap partition or file. The swap area must subsequently be enabled with swapon.

swapon, swapoff
Enable / disable swap partitition or file. These commands usually take effect at bootup and shutdown.

mke2fs

Create a Linux ext2 filesystem. This command must be invoked as root.

Example 17-9. Adding a new hard drive

#!/bin/bash

Adding a second hard drive to system.

Software configuration. Assumes hardware already mounted.

From an article by the author of the ABS Guide.

In issue #38 of _Linux Gazette_, http://www.linuxgazette.com.

ROOT_UID=0 # This script must be run as root.
E_NOTROOT=67 # Non-root exit error.

if ["SUID" —-ne "SROOT_UID"]

then
echo "Must be root to run this script."
exit S$E_NOTROOT

fi

Use with extreme caution!

If something goes wrong, you may wipe out your current filesystem.

NEWDISK=/dev/hdb # Assumes /dev/hdb vacant. Check!
MOUNTPOINT=/mnt /newdisk # Or choose another mount point.

fdisk SNEWDISK

mke2fs —cv SNEWDISKI1 # Check for bad blocks (verbose output) .

Note: A /dev/hdbl, *not* /dev/hdb!

mkdir SMOUNTPOINT

chmod 777 $MOUNTPOINT # Makes new drive accessible to all users.

Now, test

Chapter 17. System and Administrative Commands

331

Advanced Bash-Scripting Guide

mount -t ext2 /dev/hdbl /mnt/newdisk
Try creating a directory.
If it works, umount it, and proceed.

4

Final step:
Add the following line to /etc/fstab.
/dev/hdbl /mnt/newdisk ext2 defaults 1 1

exit

See also Example 17-8 and Example 30-3.

tune2fs
Tune ext2 filesystem. May be used to change filesystem parameters, such as maximum mount count.
This must be invoked as root.
This is an extremely dangerous command. Use it at your own risk, as you may
inadvertently destroy your filesystem.
dumpe2fs
Dump (list to stdout) very verbose filesystem info. This must be invoked as root.
root# dumpe2fs /dev/hda7 | grep 'ount count'
dumpe2fs 1.19, 13-Jul-2000 for EXT2 FS 0.5b, 95/08/09
Mount count: 6
Maximum mount count: 20
hdparm
List or change hard disk parameters. This command must be invoked as root, and it may be dangerous
if misused.
fdisk

Create or change a partition table on a storage device, usually a hard drive. This command must be
invoked as root.

Use this command with extreme caution. If something goes wrong, you may destroy
an existing filesystem.
fsck, e2fsck, debugfs
Filesystem check, repair, and debug command set.

fsck: a front end for checking a UNIX filesystem (may invoke other utilities). The actual filesystem
type generally defaults to exz2.

e2fsck: ext2 filesystem checker.

debugfs: ext2 filesystem debugger. One of the uses of this versatile, but dangerous command is to
(attempt to) recover deleted files. For advanced users only!

<1> All of these should be invoked as root, and they can damage or destroy a filesystem if
misused.
badblocks
Checks for bad blocks (physical media flaws) on a storage device. This command finds use when
formatting a newly installed hard drive or testing the integrity of backup media. [82] As an example,
badblocks /dev/fd0 tests a floppy disk.

The badblocks command may be invoked destructively (overwrite all data) or in non-destructive
read-only mode. If root user owns the device to be tested, as is generally the case, then root must

Chapter 17. System and Administrative Commands 332

Advanced Bash-Scripting Guide

invoke this command.

Isusb, usbmodules

The Isusb command lists all USB (Universal Serial Bus) buses and the devices hooked up to them.

The usbmodules command outputs information about the driver modules for connected USB devices.

bash$ 1lsusb
Bus 001 Device 001: ID 0000:0000
Device Descriptor:

bLength 18
bDescriptorType 1
bcdUSB 1.00
bDeviceClass 9 Hub
bDeviceSubClass 0
bDeviceProtocol 0
bMaxPacketSizel 8
idVendor 0x0000
idProduct 0x0000

Ispci
Lists pci busses present.
bash$ lspci
00:00.0 Host bridge: Intel Corporation 82845 845
(Brookdale) Chipset Host Bridge (rev 04)
00:01.0 PCI bridge: Intel Corporation 82845 845
(Brookdale) Chipset AGP Bridge (rev 04)
00:1d.0 USB Controller: Intel Corporation 82801CA/CAM USB (Hub #1) (rev 02)
00:1d.1 USB Controller: Intel Corporation 82801CA/CAM USB (Hub #2) (rev 02)
00:1d.2 USB Controller: Intel Corporation 82801CA/CAM USB (Hub #3) (rev 02)
00:1e.0 PCI bridge: Intel Corporation 82801 Mobile PCI Bridge (rev 42)
mkbootdisk
Creates a boot floppy which can be used to bring up the system if, for example, the MBR (master boot
record) becomes corrupted. Of special interest is the ——1 so option, which uses mkisofs to create a
bootable ISO9660 filesystem image suitable for burning a bootable CDR.
The mkbootdisk command is actually a Bash script, written by Erik Troan, in the /sbin directory.
mKisofs
Creates an ISO9660 filesystem suitable for a CDR image.
chroot

CHange ROOT directory. Normally commands are fetched from $PATH, relative to /, the default
root directory. This changes the root directory to a different one (and also changes the working
directory to there). This is useful for security purposes, for instance when the system administrator
wishes to restrict certain users, such as those telnetting in, to a secured portion of the filesystem (this
is sometimes referred to as confining a guest user to a "chroot jail"). Note that after a chroot, the
execution path for system binaries is no longer valid.

A chroot /opt would cause references to /usr/bin to be translated to /opt /usr/bin.
Likewise, chroot /aaa/bbb /bin/ls would redirect future instances of Is to /aaa /bbb as
the base directory, rather than / as is normally the case. An alias XX 'chroot /aaa/bbb Is' in a user's

Chapter 17. System and Administrative Commands 333

Advanced Bash-Scripting Guide

~/ .bashrc effectively restricts which portion of the filesystem she may run command "XX" on.

The chroot command is also handy when running from an emergency boot floppy (chroot to
/dev/£d0), or as an option to lilo when recovering from a system crash. Other uses include
installation from a different filesystem (an rpm option) or running a readonly filesystem from a CD
ROM. Invoke only as root, and use with care.

<1 It might be necessary to copy certain system files to a chrooted directory, since the
normal $PATH can no longer be relied upon.
lockfile
This utility is part of the procmail package (www.procmail.org). It creates a lock file, a semaphore
that controls access to a file, device, or resource.

Definition: A semaphore is a flag or signal. (The usage originated in railroading, where a
colored flag, lantern, or striped movable arm semaphore indicated whether a particular track was in
use and therefore unavailable for another train.) A UNIX process can check the appropriate
semaphore to determine whether a particular resource is available/accessible.

The lock file serves as a flag that this particular file, device, or resource is in use by a process (and is
therefore "busy"). The presence of a lock file permits only restricted access (or no access) to other
processes.

lockfile /home/bozo/lockfiles/$0.lock
Creates a write-protected lockfile prefixed with the name of the script.

lockfile /home/bozo/lockfiles/${0##*/}.lock
A safer version of the above, as pointed out by E. Choroba.

Lock files are used in such applications as protecting system mail folders from simultaneously being
changed by multiple users, indicating that a modem port is being accessed, and showing that an
instance of Firefox is using its cache. Scripts may check for the existence of a lock file created by a
certain process to check if that process is running. Note that if a script attempts to create a lock file
that already exists, the script will likely hang.

Normally, applications create and check for lock files in the /var/lock directory. [83] A script can
test for the presence of a lock file by something like the following.

appname=xyzip
Application "xyzip" created lock file "/var/lock/xyzip.lock".

if [—e "/var/lock/S$appname.lock"]
then #+ Prevent other programs & scripts
from accessing files/resources used by xyzip.

flock
Much less useful than the lockfile command is flock. It sets an "advisory" lock on a file and then
executes a command while the lock is on. This is to prevent any other process from setting a lock on
that file until completion of the specified command.

flock $0 cat $0 > lockfile__ SO
Set a lock on the script the above line appears in,
#+ while listing the script to stdout.

Chapter 17. System and Administrative Commands 334

http://www.procmail.org

Advanced Bash-Scripting Guide

=) Unlike lockfile, flock does not automatically create a lock file.

mknod
Creates block or character device files (may be necessary when installing new hardware on the
system). The MAKEDEYV utility has virtually all of the functionality of mknod, and is easier to use.
MAKEDEV
Utility for creating device files. It must be run as root, and in the /dev directory. It is a sort of
advanced version of mknod.
tmpwatch
Automatically deletes files which have not been accessed within a specified period of time. Usually
invoked by cron to remove stale log files.

Backup

dump, restore
The dump command is an elaborate filesystem backup utility, generally used on larger installations
and networks. [84] It reads raw disk partitions and writes a backup file in a binary format. Files to be
backed up may be saved to a variety of storage media, including disks and tape drives. The restore
command restores backups made with dump.

fdformat
Perform a low-level format on a floppy disk (/dev/£d0*).

System Resources

ulimit
Sets an upper limit on use of system resources. Usually invoked with the —f option, which sets a limit
on file size (ulimit -f 1000 limits files to 1 meg maximum). [85] The —t option limits the coredump
size (ulimit -¢ 0 eliminates coredumps). Normally, the value of ulimit would be set in
/etc/profile and/or ~/ .bash_profile (see Appendix G).

!) Judicious use of ulimit can protect a system against the dreaded fork bomb.

#!/bin/bash
This script is for illustrative purposes only.
Run it at your own peril —-- it WILL freeze your system.

while true # Endless loop.
do
S0 & # This script invokes itself .
#+ forks an infinite number of times .
#+ until the system freezes up because all resources exhausted.
done # This is the notorious "sorcerer's appentice" scenario.

exit O # Will not exit here, because this script will never terminate.
A ulimit -Hu XX (where XX is the user process limit) in /etc/profile would abort this
script when it exceeded the preset limit.
quota
Display user or group disk quotas.
setquota
Set user or group disk quotas from the command-line.
umask
User file creation permissions mask. Limit the default file attributes for a particular user. All files
created by that user take on the attributes specified by umask. The (octal) value passed to umask

Chapter 17. System and Administrative Commands 335

Advanced Bash-Scripting Guide

defines the file permissions disabled. For example, umask 022 ensures that new files will have at
most 755 permissions (777 NAND 022). [86] Of course, the user may later change the attributes of
particular files with chmod. The usual practice is to set the value of umask in /etc/profile
and/or ~/ .bash_profile (see Appendix G).

Example 17-10. Using umask to hide an output file from prying eyes

#!/bin/bash

rotl3a.sh: Same as "rotl3.sh" script, but writes output to "secure" file.
Usage: ./rotl3a.sh filename
or ./rotl3a.sh <filename
or ./rotl3a.sh and supply keyboard input (stdin)
umask 177 # File creation mask.
Files created by this script
#+ will have 600 permissions.

OUTFILE=decrypted. Results output to file "decrypted.txt"

#+ which can only be read/written
by invoker of script (or root).
cat "$Q@" | tr 'a-zA-Z' 'n—-za-mN-ZA-M' > SOUTFILE
A Input from stdin or a file. ANAAAAAAAn Qutput redirected to file.
exit O
rdev
Get info about or make changes to root device, swap space, or video mode. The functionality of rdev
has generally been taken over by lilo, but rdev remains useful for setting up a ram disk. This is a
dangerous command, if misused.
Modules
Ismod
List installed kernel modules.
bash$ 1lsmod
Module Size Used by
autofs 9456 2 (autoclean)
opl3 11376 0
serial_cs 5456 0 (unused)
sb 34752 0
uart401l 6384 0 [sb]
sound 58368 0 [opl3 sb uart401l]
soundlow 464 0 [sound]
soundcore 2800 6 [sb sound]
ds 6448 2 [serial_cs]
182365 22928 2
pcmcia_core 45984 0 [serial_cs ds 182365]
=) Doing a cat /proc/modules gives the same information.
insmod
Force installation of a kernel module (use modprobe instead, when possible). Must be invoked as
root.

Chapter 17. System and Administrative Commands 336

Advanced Bash-Scripting Guide

rmmod

Force unloading of a kernel module. Must be invoked as root.
modprobe

Module loader that is normally invoked automatically in a startup script. Must be invoked as root.

depmod

Creates module dependency file. Usually invoked from a startup script.
modinfo

Output information about a loadable module.

bash$ modinfo hid
filename: /lib/modules/2.4.20-6/kernel/drivers/usb/hid.o
description: "USB HID support drivers"
author: "Andreas Gal, Vojtech Pavlik <vojtech@suse.cz>"
license: "GPL"
Miscellaneous
env
Runs a program or script with certain gnvironmental variables set or changed (without changing the
overall system environment). The [varname=xxx] permits changing the environmental variable
varname for the duration of the script. With no options specified, this command lists all the
environmental variable settings. [87]
=& The first line of a script (the "sha-bang" line) may use env when the path to the shell
or interpreter is unknown.
#! /usr/bin/env perl
print "This Perl script will run,\n";
print "even when I don't know where to find Perl.\n";
Good for portable cross-platform scripts,
where the Perl binaries may not be in the expected place.
Thanks, S.C.
Oreven ...
#!/bin/env bash
Queries the S$PATH enviromental variable for the location of bash.
Therefore
This script will run where Bash is not in its usual place, in /bin.
1dd
Show shared lib dependencies for an executable file.
bash$ 1dd /bin/ls
libc.so.6 => /lib/libc.so.6 (0x4000c000)
/1lib/1d-1linux.so0.2 => /lib/ld-linux.so.2 (0x80000000)
watch

Run a command repeatedly, at specified time intervals.

The default is two-second intervals, but this may be changed with the —n option.

Chapter 17. System and Administrative Commands

337

Advanced Bash-Scripting Guide

watch -n 5 tail /var/log/messages
Shows tail end of system log, /var/log/messages, every five seconds.

- Unfortunately, piping the output of watch command to grep does not work.

strip
Remove the debugging symbolic references from an executable binary. This decreases its size, but
makes debugging it impossible.
This command often occurs in a Makefile, but rarely in a shell script.
nm
List symbols in an unstripped compiled binary.
rdist

Remote distribution client: synchronizes, clones, or backs up a file system on a remote server.

17.1. Analyzing a System Script

Using our knowledge of administrative commands, let us examine a system script. One of the shortest and
simplest to understand scripts is "killall," [88] used to suspend running processes at system shutdown.
Example 17-11. killall, from /etc/rc.d/init.d

#!/bin/sh

——> Comments added by the author of this document marked by "# —--—>".

——> This is part of the 'rc' script package

——> by Miquel van Smoorenburg, <miquels@drinkel.nl.mugnet.org>.
——> This particular script seems to be Red Hat / FC specific

——> (may not be present in other distributions) .

Bring down all unneeded services that are still running
#+ (there shouldn't be any, so this is just a sanity check)

for 1 in /var/lock/subsys/*; do

——> Standard for/in loop, but since "do" is on same line,
——> it 1is necessary to add ";".

Check if the script is there.

[! —f $1] && continue

——> This is a clever use of an "and list", equivalent to:
——> 4if [! —-f "S$i"]; then continue

Get the subsystem name.
subsys=${i#/var/lock/subsys/}

——> Match variable name, which, in this case, is the file name.
——> This is the exact equivalent of subsys= basename $i’ .

——> It gets it from the lock file name

——>+ (if there is a lock file,

——>+ that's proof the process has been running).

——> See the "lockfile" entry, above.

Bring the subsystem down.

Chapter 17. System and Administrative Commands 338

done

Advanced Bash-Scripting Guide

if [-f /etc/rc.d/init.d/S$Ssubsys.init]; then
/etc/rc.d/init.d/$subsys.init stop

else
/etc/rc.d/init.d/$subsys stop

——> Suspend running Jjobs and daemons.

——> Note that "stop" is a positional parameter,

——>+ not a shell builtin.

fi

That wasn't so bad. Aside from a little fancy footwork with variable matching, there is no new material there.

Exercise 1. In /etc/rc.d/init.d, analyze the halt script. It is a bit longer than killall, but similar in

concept. Make a copy of this script somewhere in your home directory and experiment with it (do not run it as
root). Do a simulated run with the —vn flags (sh —vn scriptname). Add extensive comments. Change
the "action" commands to "echos".

Exercise 2. Look at some of the more complex scripts in /etc/rc.d/init.d. See if you can understand

parts of them. Follow the above procedure to analyze them. For some additional insight, you might also

examine the file sysvinitfilesin /usr/share/doc/initscripts—7?.?7?, which is part of the
"initscripts" documentation.

Chapter 17. System and Administrative Commands

339

Part 5. Advanced Topics

At this point, we are ready to delve into certain of the difficult and unusual aspects of scripting. Along the
way, we will attempt to "push the envelope" in various ways and examine boundary conditions (what happens
when we move into uncharted territory?).

Table of Contents

18. Regular Expressions
18.1. A Brief Introduction to Regular Expressions
18.2. Globbing

19. Here Documents

19.1. Here Strings
20. I/O Redirection
20.1. Using exec
20.2. Redirecting Code Blocks

20.3. Applications
21. Subshells

22. Restricted Shells

23. Process Substitution

24. Functions
24.1. Complex Functions and Function Complexities
24.2. Local Variables
24.3. Recursion Without [Local Variables

25. Aliases

26. List Constructs

27. Arrays

28. Indirect References

29. /dev and /proc

29.1. /dev
29.2. /proc
30. Of Zeros and Nulls
31. Debugging
32. Options
33. Gotchas

34. Scripting With Style
34.1. Unofficial Shell Scripting Stylesheet
35. Miscellany
35.1. Interactive and non-interactive shells and scripts
35.2. Shell Wrappers
35.3. Tests and Comparisons: Alternatives
35.4.