
Wing IDE Reference Manual
for version 1.1b7-2

Archaeopteryx Software, Inc.
www.archaeopteryx.com

September 17, 2001

Archaeopteryx, the dancing Archaeopteryx logo, Wing IDE, Wing IDE Professional,
Wing IDE Enterprise, and ”Take Flight!” are trademarks or registered trademarks of Ar-
chaeopteryx Software, Inc. in the United States and other countries.

Disclaimers: The information contained in this document is subject to change without
notice. Archaeopteryx Software, Inc. shall not be liable for technical or editorial errors
or omissions contained in this document; nor for incidental or consequential damages
resulting from furnishing, performance, or use of this material.

Hardware and software products mentioned herein are used for identification purposes
only and may be trademarks of their respective owners.

Copyright c©1999-2001 by Archaeopteryx Software, Inc. All rights reserved.

Archaeopteryx Software, Inc.
P.O. Box 1937
Brookline, MA 02446
United States of America

CONTENTS iii

Contents

1 Introduction 1

1.1 Licenses . 1

1.2 Installing . 2

1.2.1 Supported Platforms . 3

1.2.2 Prerequisites . 3

1.2.3 Python versions . 4

1.2.4 Linux Installation with RPM . 5

1.2.5 Linux Installation from Tar Archive 5

1.2.6 Windows Installation . 6

1.3 Adding Wing to your Path (for Linux) . 6

1.4 Running the IDE . 7

1.5 Installing a Permanent License . 8

1.6 Installing Extra Documentation . 8

1.7 Multi-user Installations (Linux only) . 9

1.8 Source Installation . 10

1.8.1 For Linux . 10

1.8.2 For Windows . 11

Wing IDE Reference Version 1.1b7-2

iv CONTENTS

1.9 Removing an Installation . 11

2 Customization 13

2.1 Preferences . 13

2.1.1 Preferences File Format . 14

2.2 Configuring the User Interface . 15

2.2.1 GUI Modes . 15

2.2.2 Editor Personalities . 16

2.2.3 Key Equivalents . 17

2.2.4 Menu Bar . 18

2.2.5 Tool Bar . 18

2.2.6 Debug output for Wing . 18

2.2.7 Other Preferences . 19

3 Project Manager 21

3.1 Creating a Project . 21

3.1.1 New Project . 22

3.1.2 Adding Files and Packages . 22

3.1.3 Setting a Main Debug File . 23

3.1.4 Removing Files and Packages . 23

3.1.5 Saving the Project . 23

3.2 Sorting the View . 24

3.3 Project Types . 24

3.3.1 Shared Project Data . 25

Version 1.1b7-2 Wing IDE Reference

CONTENTS v

3.3.2 User-specific Project Data . 25

3.4 Project-wide Properties . 26

3.5 Per-file Properties . 26

3.6 Viewing File Information . 26

3.7 Navigating to Source . 27

3.8 Preferences . 27

4 Source Code Editor 29

4.1 Syntax Colorization . 29

4.1.1 Supported file types . 30

4.1.2 Colorization Options . 31

4.2 Navigating your Source . 31

4.3 Structural Folding . 32

4.4 Brace Matching . 34

4.5 Indentation . 34

4.5.1 Auto-Indent . 35

4.5.2 The Tab Key . 35

4.5.3 Checking Indentation . 36

4.5.4 Changing Block Indentation . 36

4.5.5 Indentation Manager . 37

4.6 Auto-completion . 37

4.7 Auto-save . 38

4.8 Notes on Copy/Paste . 38

4.9 Auto-reload of Externally Changed Files . 39

Wing IDE Reference Version 1.1b7-2

vi CONTENTS

4.10 Normal Editor Personality . 40

4.10.1 Cursor Movement . 40

4.10.2 Indentation . 42

4.10.3 Commenting and Justification . 42

4.10.4 Insertion and Deletion . 43

4.10.5 Undo and Clipboard . 43

4.10.6 File and Window Control . 43

4.10.7 Search and Replace . 44

4.10.8 Macros . 44

4.11 Emacs Emulation . 44

4.11.1 Cursor Movement . 45

4.11.2 Indentation . 46

4.11.3 Commenting and Justification . 46

4.11.4 Insertion and Deletion . 47

4.11.5 Undo and Clipboard . 47

4.11.6 File and Window Control . 48

4.11.7 Search and Replace . 49

4.11.8 Macros . 50

4.11.9 Debugging . 50

4.11.10 Other . 51

4.12 Search/Replace . 51

4.13 Keyboard Macros . 52

4.13.1 Example (in Emacs mode) . 52

Version 1.1b7-2 Wing IDE Reference

CONTENTS vii

4.13.2 Repetition . 53

4.14 Preferences . 54

5 Source Code Browser 59

5.1 Display Choices . 59

5.1.1 Viewing by Module . 60

5.1.2 Class Hierarchy . 60

5.1.3 All Classes . 61

5.2 Display Filters . 61

5.2.1 Construct Scope and Source . 61

5.2.2 Construct Type . 62

5.3 Sorting . 63

5.4 Embedded Information Display . 63

5.4.1 Documentation . 63

5.4.2 Source Display . 63

5.5 Navigating to Source . 64

5.6 Python versions . 65

5.7 Limitations . 65

5.8 Disk Cache . 66

5.9 Preferences . 67

6 Debugger 69

6.1 Specifying Main Entry Point . 69

6.2 Debug Properties . 70

Wing IDE Reference Version 1.1b7-2

viii CONTENTS

6.2.1 Project-wide Properties . 71

6.2.2 Per-file Properties . 72

6.2.3 Relation to Source Analysis . 72

6.3 Setting Breakpoints . 73

6.4 Starting a Debug Session . 74

6.5 Flow Control . 75

6.6 Viewing the Stack . 76

6.7 Viewing Variables . 76

6.7.1 Tree View . 77

6.7.2 Textual View . 79

6.7.3 Tracking Individual Values . 80

6.7.4 Filtering Data Display . 81

6.7.5 Problems Handling Debug Data . 82

6.8 Evaluating Expressions . 83

6.9 Interactive Debug Probe . 84

6.10 Interactive Python Shell . 85

6.11 Managing Exceptions . 86

6.11.1 Filtering Exceptions . 86

6.12 Attaching to and Detaching from Debug Processes 87

6.12.1 Access Control . 87

6.12.2 Detaching . 88

6.12.3 Attaching . 88

6.12.4 Identifying Foreign Processes . 89

Version 1.1b7-2 Wing IDE Reference

CONTENTS ix

6.12.5 Limitations . 89

6.13 Debugging Externally Initiated Processes . 89

6.13.1 Importing the Debugger Stub . 90

6.13.2 Server-side configuration . 91

6.13.3 Remote Debugging . 92

6.13.4 Defining file location maps . 94

6.13.5 Encrypting the Debug Channel . 97

6.13.6 Full Control via Debug API . 98

6.14 Running Code Without Debug . 99

6.15 Using the debugger and Python profiler together 99

6.16 Limitations . 100

6.17 Porting or Recompiling the Debug Server . 101

6.17.1 Getting started . 102

6.17.2 Building on hosts with shared libraries 102

6.17.3 Building on hosts with no shared libraries 103

6.17.4 Using your setup . 104

6.18 Non-Python Mainloop Environments . 104

6.18.1 How it works . 105

6.18.2 Writing a Debug Server Hook . 105

6.19 Hints for Debugging Web CGIs . 109

6.20 Using Wing with Zope . 111

6.21 Preferences . 111

A Command Reference 117

Wing IDE Reference Version 1.1b7-2

x CONTENTS

A.1 Overview . 117

A.2 Top Level . 118

A.3 Project Manager . 121

A.4 Source Code Editor . 123

A.5 Debugger . 131

B Wing Tips 139

B.1 Online Resources for Wing IDE . 139

B.2 Python Language Reference . 140

B.3 Useful Tools . 140

B.3.1 Performance Profiling . 141

B.3.2 Busting Object Reference Cycles (Python 1.5.2) 141

B.3.3 Debugging C/C++ Modules (on Linux) 143

B.4 Wing IDE Source Code . 144

B.4.1 Setting up the Source . 145

B.4.2 Top-level Organization . 145

B.4.3 IDE Sub-systems . 146

B.4.4 Documentation . 147

B.4.5 Naming Convention . 147

C Software License 151

Version 1.1b7-2 Wing IDE Reference

1

Chapter 1

Introduction

Thanks for choosing Archaeopteryx Software’s Wing IDE! This manual will help you get
started and serves as a reference for the entire feature set of Wing IDE.

The manual is organized by major functional area of Wing IDE, including the project
manager, text editor, source code browser, and debugger. Several appendices document
the entire command set, provide pointers to resources and tips for Wing and Python users,
and list the full software license.

The rest of this chapter describes how to install and start using Wing IDE. If you hate
reading manuals, you should be able to get started by reading this chapter only.

F Throughout this manual, key concepts and important notes are highlighted in the same
way as this paragraph. If you are skimming only, look for these marks.

1.1 Licenses

Every copy of Wing requires either an evaluation (demo) or a paid license to run, in ad-
dition to an installation made from the download or CD media. Demo licenses can be
obtained from our web site at http://wingide.com/wingide/demo and permanent
licenses can be purchased in the online store at http://wingide.com/order . When
Wing is first started, it will ask to copy your license file into place.

Wing IDE Reference Version 1.1b7-2

2 Introduction

Evaluation licenses may be used for 30 days to evaluate Wing, and allow all features to
be used. Paid licenses may be used with any version in the 1.x series and allow access to
the source code via wingide.com . Licenses may be single user licenses, which allow one
named user to use Wing, or floating multi-user licenses, which allow up to a set number
of users to use Wing at the same time.

1.2 Installing

F Quick start on Linux:

To install Wing for individual use on an RPM-based system, obtain wingide-1.1b7-
2.rpm and a license file from wingide.com , then run rpm -i wingide-1.1b7-
2.rpm as root.

For single-user installation on systems without RPM, obtain wingide-1.1b7-
2.tar.gz and a license file from wingide.com , unpack the tar file with tar -
zxvf wingide-1.1b7-2.tar.gz , cd to the wingide-1.1b7-2 directory, type
wing-install.py , and answer the questions to specify where the program files should
go.

After installing, the command wing should start the IDE. You may have to modify your
path if you’ve installed the executables in a directory that isn’t already on your path.
You may also have to open a new shell or request that your shell rescan the disk for
executables (for example, with rehash under tcsh).

Once Wing starts, follow the instructions to locate your license file (Wing will be copy it
into place), accept the licensing agreement, and set up your initial preferences.

Version 1.1b7-2 Wing IDE Reference

1.2. INSTALLING 3

F Quick start on Windows

Ensure that Python 1.5.2, 2.0, or 2.1 is installed on your system. Obtain the wingide-
1.1b7-2.exe installer package from wingide.com and execute it on your system. Af-
ter installing, run wing by selecting Wing from the Programs:Wing IDE section of the
Start menu.

Once Wing starts, follow the instructions to locate your license file Wing will be copy it
into place), accept the licensing agreement, and set up your initial preferences.

1.2.1 Supported Platforms

This version of Wing is available for Microsoft Windows and Linux.

The Windows product has been tested on Windows 98se, NT4 SP3, and 2000 SP1.

The Linux product has been tested on RedHat 6.0, 6.1, 6.2, and 7.1; Suse 6.2, 6.4, and 7.0;
Caldera 2.4; Mandrake 6.1, 7.1, 7.2, and 8.0; and Debian 2.2. On RedHat 6.0, you must
install Python 1.5.2, 2.0, or 2.1 and use that to run your debug program and the tar file
installer (if RPM is not used), instead of the default Python 1.5.1 installation that comes
with RedHat 6.0. On Suse, you may need to install the gmp and python packages, or
install Python from source, since Python is not installed by default here.

RedHat 5.2 is known not to work and there are no plans for supporting it.

1.2.2 Prerequisites

In order to use Wing, you need to have the following third party materials installed on
your system:

For Linux

• Python 1.5.2, 2.0, or 2.1

• enscript version 1.1.6 or later (for printing only)

• Adobe Acrobat Reader version 4.0.5 or later (for printing only)

Wing IDE Reference Version 1.1b7-2

4 Introduction

Most users already have these available. The RPM distribution will check for most of
these dependencies. If you are installing from tar, you must verify manually that you
have these installed already, as there is no automatic dependency checker in the tar file
installation.

By default, Wing uses Adobe Acrobat Reader and Netscape Navigator for viewing the
manual and other items in the Help menu. Other PDF viewers and web browsers can be
used instead; see section 2.2.7 for information on configuring these.

Gnome users should note that Wing comes with its own copy of GTK 1.2.8 that has dis-
abled use of themes. As a result, Wing ignores your theme settings and always runs as if
the Default theme were selected. This avoids problems with with some versions of GTK
and some themes. You can get Wing to run against your native installed version of GTK,
and to use themes, in one of two ways: (a) specify --system-gtk as the first command
line argument for the wing startup script, or (b) rename or move WINGHOME/bin/gtk-
bin (be sure to retain a copy in case your system’s version of GTK is one of those that
causes frequent crashing in Wing).

For Windows

• Python 1.5.2, 2.0, or 2.1

If you have ordered the CD, most of the above are available in the 3rdparty
directory. They are also available in the download area of our website at
ftp://archaeopteryx.com/pub/wingide .

In order to view the PDF versions of the Wing IDE manual, you must also have a PDF
viewer such as Adobe Acrobat Reader 4.0.5 installed and configured as your default PDF
viewer. Similarly, to view website materials and HTML formatted documentation, you
must have Internet Explorer or Netscape installed and configured as your default web
browser.

1.2.3 Python versions

Wing contains its own subset of Python 1.5.2 that is used to run the IDE itself (but should
not be used for running your debug programs). The debugger, which runs in a seperate
process, can run under Python 1.5.2, 2.0, or 2.1.

Version 1.1b7-2 Wing IDE Reference

1.2. INSTALLING 5

In most cases, Wing will work out of the box, will find your default python installation,
and will use it for debugging. You can, however alter the version of Python that is used
to debug your program by using Project Properties and per-file Debug Properties dialogs.
See section 6.2 for details.

The interpreter that is used for debugging is also used to determine which version of the
Python manual is displayed from the Help menu, and it affects which Python standard
libraries are used for source code analysis. See section 5.6 for more information.

1.2.4 Linux Installation with RPM

Wing can be installed from an RPM package on RPM-based systems, such as RedHat and
Mandrake. RPM packages for Wing are available from wingide.com . After download-
ing the package file, run rpm -i wingide-1.1b7-2.rpm as root or use your favorite
RPM administration tool to install the RPM. The RPM places most files for Wing under the
/usr/lib/wingide directory and creates links for the wing and wingdb commands in
the /usr/bin directory.

RPM installation also creates a directory called floating-locks in
/usr/lib/wingide . This is set up to be world writable by default. If you are wor-
ried about the security of this location, you may change its permissions or remove it
entirely, as long as you don’t plan a multi-user installation (described in section 1.7).

In the text that follows, the installation location of Wing is referred to as WINGHOME. If
you installed from RPM, this will always be /usr/lib/wing .

1.2.5 Linux Installation from Tar Archive

Wing may also be installed from a tar archive. This can be used on systems that do not
use RPM, or if you wish to install Wing into a directory other than /usr/lib/wingide .
The tar archive is available from wingide.com . Unpacking this archive with tar -
zxvf wingide-1.1b7-2.tar.gz will create a wing-1.1b7-2 directory that contains
the wing-install.py script and a binary-package.tar file.

Running the wing-install.py script will configure Wing for use with individual
licenses (multi-user installation is described in section 1.7). The install script will
prompt for the location to install support files for Wing (WINGHOME), and the location
in which to create symbolic links to wing and wingdb . These locations default to

Wing IDE Reference Version 1.1b7-2

6 Introduction

/usr/local/lib/wingide and /usr/local/bin , respectively. The install program
must have read/write access to both of these directories, and all users running Wing must
have read access to both.

In the text the follows, the installation location of Wing is referred to as WINGHOME. If you
installed from tar, this will be the location you chose when you ran the installer.

1.2.6 Windows Installation

On Windows, Wing is installed by running the installer executable. The in-
staller relies on the Microsoft installer engine, which will be installed automati-
cally if it is not already on your system. Wing’s files are installed by default
in C:\Program Files\Wing IDE , but this location may be modified during in-
stallation. All users of Wing must have Create File and Write privileges to
C:\Program Files\Wing IDE\profiles . This is where per-user preferences and
other information is stored on Windows. Except for a shortcut in the Start menu heirar-
chy, all files are installed underC:\Program Files\Wing IDE .

In the text the follows, the installation location of Wing is referred to as WINGHOME. If you
installed to the default location, this is C:\Program Files\Wing IDE .

1.3 Adding Wing to your Path (for Linux)

In many cases, the Wing executable will already be on the user path. If it is not, you may
type in the full path to Wing, or add the location where Wing’s executable was installed
to your path. This location will be /usr/bin if the IDE was installed from RPM. When
installed from tar file, it will be the value supplied to the wing-install.py script.

Setting the path may be done system-wide or individually. How this is done will differ
according to your exact OS version, the shell you are running and, in some cases, the
preferences of your system administrator. Typically, per-user setup is in ˜/.profile ,
˜/.login , ˜/.bashrc , ˜/.cshrc , or equivalent shell configuration file, and system-
wide setup is accomplished with /etc/profile , /etc/cshrc , or /etc/csh.login .

After installing or altering a user’s path, you may need to open a new shell for that user
or request that the shell rescan the disk for executables (for example, with rehash under
tcsh).

Version 1.1b7-2 Wing IDE Reference

1.4. RUNNING THE IDE 7

If for some reason you cannot set the path, typing the full path to the wing executable,
creating a small shell script containing the full path, or setting an alias will all work as
alternatives.

1.4 Running the IDE

You are now ready to use Wing IDE!

On Windows, start Wing IDE from the Program group of the Start menu. To start it on
Linux, just type wing (or the full path to the executable as described in the previous
section).

The first time you run, Wing will create your personal settings directory, ˜/.wingide
on Linux or WINGHOME\profiles\[username] on Windows. If no user is logged in
on Windows, ”Default User” is used as the username. The personal settings directory
is used to store your license, preferences, and other files used by Wing. If the directory
cannot be created, Wing will exit.

Once the personal settings directory has been created, Wing will ask you to locate your
license file. This is the file that was emailed to you when you signed up to try the demo,
or purchased a permanent license. Once you locate the file, Wing will copy it into place
in ˜/.wingide/license.dat (on Linux) or WINGHOME\profiles\[username] on
Windows. You will then be asked to accept the license terms.

At this time, Wing will also take the opportunity to ask you to specify a few ma-
jor options, such as your preferred editor personality, print paper size (Linux only),
and whether or not to auto-save project files. You may either select values or ask
to always use the system defaults (as defined in WINGHOME/preferences). Once
this is done, Wing will place a file called ˜/.wingide/preferences (on Linux) or
WINGHOME\profiles\[username] (on Windows), with contents according to your
choices. This will include at most only a few of all the available preferences, and you can
add to or alter these values at any later time. Please refer to WINGHOME/preferences
and the rest of this manual for more information about all the supported options.

Whenever you run wing from the command line, you may specify a list of files to open.
These can be arbitrary text files and a project file. For example, the following will open
project file myproject.wpr and also the three source files mysource.py , README, and
Makefile :

wing mysource.py README Makefile myproject.wpr

Wing IDE Reference Version 1.1b7-2

8 Introduction

(on Windows, the executable is called wing.exe)

Wing determines file type by extension, so position of the project file name (if any) on the
command line is not important.

1.5 Installing a Permanent License

The Wing IDE trial license is a temporary unlimited-user license that will expire one
month from issue. If you have decided to purchase the product from the wingide.com
website, you will receive your permanent license file, called license.dat , via email.

To install a new license, make sure that no copies of Wing are running on your
old demo license (they will cease to function when the license file is changed).
Then remove or rename the demo license ˜/.wingide/license.dat (on Linux) or
WINGHOME\profiles\[username]\license.dat (on Windows). Next, run Wing
and follow instructions as it prompts you to locate your license file. The new file will
be moved into place by Wing. If your trial license has already expired, you can skip
the step of removing the old file because Wing will automatically prompt you for a new
license.

You are now ready to use the new license.

1.6 Installing Extra Documentation

The Help menu in Wing IDE provides quick access to the online versions of the Wing IDE
manual, the Python documentation collection, and some useful web resources.

The HTML and PDF A4 and US Letter versions of the Wing manual are shipped by
default with Wing’s binary distribution. Additional manual formats are available from
http://wingide.com/support/manual .

If you are using Linux, the Python manual is not included in most installations, so
you may also wish to download and install local copies of these pages. Place the
top-level of the HTML formatted Python manual (where index.html is found) into
WINGHOME/python-manual/#.# in your Wing IDE installation. Substitute for #.# the
major and minor version of the corresponding Python interpreter (for example, 1.5 or
2.0). Once this is done, Wing will use the local disk copy rather than going to the web

Version 1.1b7-2 Wing IDE Reference

1.7. MULTI-USER INSTALLATIONS (LINUX ONLY) 9

when the Python Manual item is selected from the Help menu.

1.7 Multi-user Installations (Linux only)

A multi-user installation requires that you have the ability to share a common disk area
among all the machines that will participate in the installation. This is usually done via
NFS under Linux, although other file sharing techniques (such as Samba) will also work.

The primary difference between multi-user installation and single-user installation is
the location and nature of the license file. In single-user installations, licenses are in
˜/.wingide/license.dat and license lock files are placed in /var/tmp . In multi-
user installations, licenses and license lock files are both in WINGHOME/floating-
locks .

There are two approaches to setting up a multi-user installation:

• You can share the entire Wing installation directory to multiple machines. In this
case, the floating-locks directory must be writable by all users of Wing on all
of the machines, and WINGHOMEmust either be on the users’ path , symbolic links
from a location on the users’ path must be made to WINGHOME/wing, or users must
set up aliases or type the full path to WINGHOME/wingin order to start Wing.

• You can install one Wing installation on each machine and replace the floating-locks
directory on each machine with a symbolic link to a directory accessible via NFS or
other file sharing mechanism. This must be done on each machine where Wing IDE
is installed, using commands similar to the following:

cd /var/lib/wingide
rmdir floating-locks
ln -s <path-of-shared-directory> floating-locks

If you have installed from RPM, the floating-locks directory should already exist
and be world-writable on each installation, and the IDE should be configured to use it.
You only need to alter the installation if you want to change the permissions on the lock
file directory or if you want to replace it with a symbolic link, as described above.

If you installed from tar file, you need to perform the installation in a way that indi-
cates that you want it to work in multi-user mode. This is done by running wing-
install.py --multi-user . At the end of the installation process, this will ask for

Wing IDE Reference Version 1.1b7-2

10 Introduction

the name of the directory that should contain license lock files and will create the direc-
tory if it does not exist. The script will also ask for the name of the group that all users of
the floating license must belong to. Use <everyone> to specify that all users can use the
floating license. Any group specified must exist prior to running the install script.

In either case, once installation is complete, you must copy the multi-user license file that
you have purchased into WINGHOME/floating-locks and make sure it is readable by
all users of the installation.

F If copies of Wing crash or are terminated from outside, the license lock files located in
/var/tmp (or in WINGHOME/floating-locks in multi-user installations) may be left
in place, consuming one user license each. To fix this, remove those files for which no
Wing instance is running. The file name combines the license number, host name, and
process ID of Wing so it is possible to determine whether a file is a lost file or an active
file:

BD12-A63A-690C-A517-pangolin-982

Be careful not to remove an active license lock file, as the Wing instance that is using it
will cease to function until it is restarted.

1.8 Source Installation

All non-evaluation licenses allow the source code for Wing to be obtained from
wingide.com . The source is available either as an RPM package or as a tar archive.
You should use the RPM if you used the RPM to install the binary, and the tar file if you
used the tar file to install the binary.

1.8.1 For Linux

The RPM package installs the source into /usr/lib/wingide and is installed by run-
ning rpm -i wingide-source-1.1b7-2.rpm as root or using your favorite RPM ad-
ministration tool. The tar archive contains a source-package.tar file and a copy of
the wing-install.py script.

Version 1.1b7-2 Wing IDE Reference

1.9. REMOVING AN INSTALLATION 11

To install from the tar file, obtain the wingide-source-1.1b7-2.tar.gz tar archive as avail-
able from wingide.com . Unpacking this archive with tar -zxvf wingide-source-
1.1b7-2.tar.gz will create a wing-source-1.1b7-2 directory that contains the
wing-install.py script and a source-package.tar file. Running the wing-
install.py script will ask for the location of your binary installation and then will
overlay the source files on top of it.

If you are planning to modify the Wing IDE source, it is strongly recommended that
you either install the source as a non-root user from the tar archive, or copy it from
/usr/lib/wingide as a non-root user. Otherwise only root will be able to modify the
source.

See the file src/README.LINUX for more information on getting started developing on
Linux.

1.8.2 For Windows

To install source on Windows, obtain the wingide-source-1.1b7-2.tar.gz tar archive as
available from wingide.com . Copy the contents of your Wing IDE binary installation to
your development location and then unpack the file source-package.tar (found in
the source distribution) manually into your development location.

Setting up for development on Windows is complicated and requires a number of ad-
ditional tools and downloads. See the file src/README.WIN32 for details on getting
started.

1.9 Removing an Installation

On Windows, use the Add/Remove Programs control panel, select Wing IDE and remove
it.

To remove an RPM installation on Linux, type rpm -e wingide . If you have also in-
stalled the source distribution or other support RPMs, these must be removed also. Source
must be removed before the binary rpm or at the same time as the binary rpm. Use the
rpm -e wingide wingide-source command to remove both rpm’s at the same time.

To remove a tar archive installation on Linux, invoke the wing-uninstall script in

Wing IDE Reference Version 1.1b7-2

12 Introduction

WINGHOME. This will automatically remove all binary and source files in the installation
that appear not to have been changed since installation, including source files. It will ask
whether it should remove any files that appear to be changed.

Version 1.1b7-2 Wing IDE Reference

13

Chapter 2

Customization

This chapter describes how you can customize Wing IDE according to your needs.

F Wing may be customized in the following ways:

• Through the preferences files

• Keyboard shortcuts can be defined for any Wing command

• The editor can run with different personalities, including a generic editor personality
and an emacs-like mode

• The menubar and toolbar can be altered

2.1 Preferences

Wing has a set of preferences that control the basic layout of the user interface and affect
features of the editor, debugger, source browser, and project manager. Although Wing
will prompt you to select a few options the first time you run the IDE, it is likely that you
will want to refine your preferences settings subsequently.

Default values for all preferences are set in the file WINGHOME/preferences . Individ-
ual users can override these by placing a preferences file in the .wingide subdirectory of

Wing IDE Reference Version 1.1b7-2

14 Customization

their home directory (on Linux) or WINGHOME\profiles\[username] (on Windows),
which are created the first time Wing is run. The values given in the user-specific prefer-
ences file take precedence over any values in the default WINGHOME/preferences file.

It is also possible to specify additional preferences files on the command line though the
--prefs-file option. For example:

wing --prefs-file /path/to/myprefs

The individual preferences are documented in this chapter and the chapters that follow
for each IDE subsystem.

F Note that setting a preference currently requires quitting and restarting Wing before the
preference takes effect.

2.1.1 Preferences File Format

The preferences file format consists of a sequence of lines, each of which is a name=value
pair.

The name is in domain.preference form, where domain is the IDE subsystem affected and
preference is the name of the specific preference (for example, edit.personality de-
fines the source editor’s runtime personality).

Preference values can be any Python expression that will evaluate to a number, string,
tuple, list, or dictionary. Additionally, the constants true and false are defined and
bound to 1 and 0, respectively. Long lines may be continued by placing a backslash (\\)
at the end of a line and comments may be placed anywhere on a line by starting them
with #.

For security’s sake values in a preferences file are evaluated in the context of a restricted
execution space and cannot access the disk or network. See the Python Language Man-
ual’s RExec module for more information on these restrictions.

Version 1.1b7-2 Wing IDE Reference

2.2. CONFIGURING THE USER INTERFACE 15

2.2 Configuring the User Interface

We ship Wing configured in a way we think will be most usable for the widest range of
users. However, a range of options exist to users who want to alter the user interface to
suit their needs.

2.2.1 GUI Modes

The following preference can be used to alter windowing style in the graphical user in-
terface:

❀ gui.embed-command-bar - Set to true to embed the command bar within each
source or manager window. Otherwise, a floating window containing a single shared
menu bar and toolbar is shown at the top of the allocated screen area. Default=true

You can also change the screen area that will be used by Wing and how windows will be
presented initially:

❀ gui.work-area-rect - Specifies the screen rectangle within with Wing will display
all its windows. The rectangle is in (left, top, right, bottom) format, for exam-
ple (10, 10, 1250, 930) . When set to None, the full screen size is used.
Default=None

❀ gui.initial-window-size - Defines initial window size for document windows in
(width, height) format, for example (650, 1000) . When set to None, a best guess
based on screen size is made. Default = None

❀ gui.initial-window-position - Defines (x, y) pixel offset of the first window within the
work rectangle. Default=(10, 10)

❀ gui.stagger-window-position - Set to true to stagger windows rather than bringing
up all new windows at the same location. Default=true

❀ gui.remember-window-positions - Set to true to remember window positions so
that documents and other windows are opened at using their last position and size.
Default=true

Wing IDE Reference Version 1.1b7-2

16 Customization

❀ gui.show-toolbar - Set to true to include the toolbar in windows displayed by Wing
or false to always hide the toolbar. Default=true

❀ gui.show-toolbar-in-browser - Set to true to include the toolbar in the source
browser window or false to exclude it from this window. Default=false

❀ gui.enable-tooltips - Set to true to display tooltips when the mouse cursor is above
an enabled toolbar icon, or false never to show tooltips. Caution: On Linux, tooltips
have bugs that cause the GUI to hang up under gtk versions less than 1.2.8. Do not enable this
if you’ve set Wing up to run with an older version of gtk. Default=true .

It is also possible to control which manager windows are visible at IDE startup, and
whether or not the most recently open project file is reopened automatically:

❀ main.startup-show-project - Set to true to show the project manager window at
startup. Default=true

❀ main.startup-show-browser - Set to true to show the source code browser window
at startup. Default=true

❀ main.startup-show-debugger - Set to true to show the debugger window at startup.
Default=false

❀ main.auto-reopen-last-project - Set to true to reopen the most recently open project
file at startup, if no other project file is given on the command line. Default=true

2.2.2 Editor Personalities

Wing ships with a default editor personality that acts like a simple graphical text editor.

F The first thing any emacs user will want to do is to set the editor personality to emulate
emacs! This is done with the editor’s personality preference:

❀ edit.personality - Set to ’normal’ for vanilla key bindings and actions, and ’emacs’
for emacs-like operation. Default=’normal’

Version 1.1b7-2 Wing IDE Reference

2.2. CONFIGURING THE USER INTERFACE 17

Additional information about the editor personalities can be found in sections 4.10 and
4.11 of the Source Code Editor chapter.

2.2.3 Key Equivalents

Wing ships with two key equivalency maps, both found in WINGHOME: keymap.normal
and keymap.emacs . These are used as default key maps for the corresponding editor
personalities.

However, it is possible to copy these maps and customize them. If you do this, it is best to
start with the mapping that most closely matches the editor personality you plan to use.

Key binding definitions in these files are in the form:

’key-sequence’: ’ide-command’

The command portion of the key equivalency definition may be any of the commands
listed in this manuals in appendix A. The key sequence is built from key names defined in
WINGHOME/pygtk-0.6.5/GDK.py starting at line 300; the names are matched without
regard to case. A single unmodified key is specified by its name alone (for example,
’Down’ for the down arrow key). Modified keys are specified by hyphenating the key
names (for example, ’shift-Down’ for the down arrow key pushed while shift is held
down). Multiple modifiers may also be specified, as in ’ctrl-shift-Down’ .

It is also possible to build multi-key combinations by listing multiple key names separated
by a space. For example, to define a key equivalent that consists of first pushing ctrl-x and
then pushing the a key by itself, use ’ctrl-x a’ as the key sequence.

Wing may be set to use the customized key map file through the following preference:

❀ gui.keymap - The full path to the alternate keymap to use, if any. Default=’’

Note that key bindings defined in your mapping will be shown in any menu items that
implement the same command. This makes it easier to learn key bindings while using
Wing.

Wing IDE Reference Version 1.1b7-2

18 Customization

2.2.4 Menu Bar

It is also possible to customize the menu bar, although the way in which this is done re-
quires that you have access to the source code, affects all users of a given Wing installation
and will change in future versions of Wing.

To alter your menu bar, edit the file WINGHOME/guimgr/constants.py and change the
definition of the kMenuBarDefn constant. This constant is described in a comment in the
file.

Changes take effect when you restart Wing and caution is required as inserting a syn-
tax error will prevent Wing from starting or may prevent menus from being available.
Making a copy of the original file is strongly recommended.

2.2.5 Tool Bar

The toolbar can also be altered using WINGHOME/guimgr/constants.py by editing the
kToolbarDefn constant. This also affects all users of a given Wing installation and will
change in future versions of Wing.

The toolbar icons are located in WINGHOME/guimgr/icons . Making a copy of the origi-
nal constants.py file is strongly recommended.

To enable or disable tooltips over the toolbar, set the gui.enable-tooltips preference.
The default is to disable tooltips on Linux because of problems with gtk versions less than
1.2.8. On new Windows installations, the default is to enable tooltips (because Wing is
shipped with its own copy of gtk). If you have a user preferences file on Windows from
installation of version 1.1b3-3 or earlier, you need to set this manually.

2.2.6 Debug output for Wing

It is possible to have Wing’s internal status messages appear in the terminal window
Wing was launched from by setting the main.print-wing-debug-output preference
to true. The messages include the location of Wing’s library directory and any exceptions
that may occur in Wing’s Python code. This option is useful when tracking down bugs in
Wing itself.

Version 1.1b7-2 Wing IDE Reference

2.2. CONFIGURING THE USER INTERFACE 19

2.2.7 Other Preferences

Some additional preferences are also available for controlling top-level behaviors:

❀ gui.display-font-name - Map of font names to use by default on each supported plat-
form. This affects all areas of the user interface other than the source code editor. A
value of None causes Wing to use the externally configured default for that platform.
Default={ ’linux’: None, ’win32’: None }

❀ gui.display-font-size - Map of font sizes (in int form) to use by default on each sup-
ported platform. This affects all areas of the user interface other than the source code
editor. A value of None causes Wing to use the externally configured default for that
platform. Default={ ’linux’: None, ’win32’: None }

❀ gui.open-projects-as-text - When set to true , Wing will open project files as text when
they are opened from the File menu. Otherwise, any file with .wpr or .wpu extension
is opened as a project file regardless from where it is opened. Default=false

❀ gui.max-recent-files - Maximum number of files to show in the recent files lists in the
File and Project menus. Default10

❀ gui.source-title-style - Title format used for source files: One of ”prepend-relative”,
which prepends the partial relative path from the project file location to the source
file, ”append-relative”, appends the partial relative path after the source file name,
”prepend-fullpath” to always prepend the full path, ”append-fullpath” to always ap-
pend the full path, or ”name-only” to always use only the file name without showing
any path information. Default="append-relative"

❀ gui.file-display-cmds - Linux only: The commands used to display local disk files
from the Help menu, or project files selected for external display. This is a map
from mime type to a list of display commands; each display command is tried in
order of the list until one works. The mime type "*" can be used to set a generic
viewer, such as a web browser. Use %s to place the file name on the command
lines. On Windows, the system-wide configured default viewer for the file type
is used instead so this preference is ignored. Default= { ’application/pdf’:
[’acroread %s &’, ’ghostview %s &’], ’*’: ["netscape -remote
’openFile(%s)’", "netscape %s &"], }

❀ gui.url-display-cmds - Linux only: The commands used to display URLs. This
is a map from protocol type to a list of display commands; each display com-
mand is tried in order of the list until one works. The protocol "*" can be

Wing IDE Reference Version 1.1b7-2

20 Customization

used to set a generic viewer, such as a multi-protocol web browser. Use %s to
place the URL on the command lines. On Windows, the system-wide config-
ured default web browser is used instead so this preference is ignored. Default=
{ ’http’: ["netscape -remote ’openURL(%s)’", "netscape %s &"],
’*’: ["netscape -remote ’openURL(%s)’", "netscape %s &"], }

❀ gui.auto-save-before-action - Set this to control whether or not altered source files and
the project are auto-saved before taking actions like starting a debug run, executing a
file, or running a build command. When set to false the user is instead prompted
for action. The user will be prompted for file names for untitled files in all cases, even
when this preference is set to true . Default=false

❀ main.extra-mime-types - This is a map from file extension to mime type. It can
be used to add additional mime types to those built into Wing IDE and those
found in standard system-wide configuration files. Keys should be the file exten-
sion in lower case, and values should be the mime type in lower case, for example
{ ’gif’: ’image/gif’ } . Any value defined here will override the Wing-defined
defaults and any system-wide defaults. Default={}

❀ main.extra-mime-type-names - This is a map from mime type to human readable
names for mime types. One entry should be added for each new mime type added
with extra-mime-types (but this is not needed if just adding a new extension to an
already-supported mime type). An example entry is { ’image/mpmp’: ’Multi-
pixel moon phase image’ } . Names given here can also be used to override the
Wing-defined default names for files. Default={}

❀ main.use-native-file-selector - Set this to true to use the file selector that’s native to
your platform (for example, the Windows file selector instead of the GTK selector).
Default=true

Version 1.1b7-2 Wing IDE Reference

21

Chapter 3

Project Manager

This chapter describes how to use the Wing IDE project manager.

F The project manager is designed to act as a convenient index into the files of your software
project, without tying you to Wing or requiring other developers that you work with to
use Wing.

It is possible to run Wing without using the project manager. However, doing so will
prevent the source browser and other source analysis-based capabilities from easily
discovering the extent of your source code base. For this reason, we recommend setting
up a project file for your work.

3.1 Creating a Project

Before creating a project, make sure that your project manager window is visible. If it
isn’t, choose the Project Manager item in the Windows menu to display it.

Wing IDE Reference Version 1.1b7-2

22 Project Manager

3.1.1 New Project

To create a new project, use the New Project item in the Project menu. This will prompt
you to save any changes to your currently open project and will create a new blank
project. If Wing is started without any command line arguments, a blank new project
is opened by default.

3.1.2 Adding Files and Packages

To add files to your project, use the Add File, Add Package, and Add Directory Tree menu
items in the Project menu. These can also be accessed from the popup menu that appears
when right-clicking your mouse on the surface of the project manager window.

• Add Current File will add the frontmost current open file to the project if it is not
already there.

• Add File will prompt you to select a single file to add to the project view. Note that
this also may result in adding a new directory to the project manager window, if that
file is the first to be added for a directory.

• Add Package can be used to add more than one file at once. Select a directory with
your left mouse button so that the directory name is shown in the area at the bottom
of the file selection window. Then click OK. You will be prompted with a list of files
within the selected directory. Highlight any that you wish to add, using shift-click to
highlight a contiguous range or ctrl-click to select an arbitrary set. Then click Yes to
add all those files to your project.

• Add Directory Tree can be used to add many files in a directory structure in one op-
eration. Select a directory with your left mouse button so that the directory name is
shown in the area at the bottom of the file selection window. Then click OK to add files
recursively from that directory and all its children.

Note that Add Package and Add Directory Tree operate only on files that Wing considers
likely to be relevant for adding to the project. If the list is missing files you wish to add,
you will need to change the package-file-types package-omit-types preferences
and restart the IDE. See the section 3.8 below for details.

Version 1.1b7-2 Wing IDE Reference

3.1. CREATING A PROJECT 23

3.1.3 Setting a Main Debug File

Normally, Wing will start debugging in whatever file you have as your front- most win-
dow. Depending on the nature of your project, you may wish to specify a file as the
default debug entry point.

To do this, right-click on one of your Python files in the project manager window and
choose the Set As Main Debug File option from the popup menu, or use the Set Current
as Main Debug File item in the Project menu. This file is subsequently run whenever
you start the debugger, except if you use the Debug Selected File popup menu item on a
specific file or the Debug Current File item in the Run menu.

Note that the path to the main debug file is highlighted in red in the project window. You
may clear the default debug entry point with the popup menu’s Clear Main Debug File
item or the Clear Main Debug file in the Project menu.

3.1.4 Removing Files and Packages

To remove a specific file, select it and use the Remove From Project menu item in the right-
click popup menu from the surface of the Project Manager window, or from the Remove
Selected Entry item in the Project menu. You can also remove a whole package directory
and all the files that it contains in this way.

3.1.5 Saving the Project

You can save your project at any time with the Save Project item in the Project Menu. You
will also be prompted to save if you try to close the project, open another project, or exit
Wing and you have an unsaved, altered project.

It is possible to set up automatic saving of project files, which is often convenient as they
are altered by many actions taken from the user interface. To do this, set the proj.save-
without-asking preference to true .

You can also save a copy of your project to another location or name with Save Project As
in the Project menu.

Wing IDE Reference Version 1.1b7-2

24 Project Manager

F Using Save Project As is recommended if you need to alter the location of your project
file in relation to your source files because it will update the partial relative paths that the
project manager uses to locate files in the project. Otherwise, Wing may not be able to
find all of the files in the project.

3.2 Sorting the View

The project window can be set to show your files in one of two modes:

• By Directory - This view (the default) shows files organized according to their location
on disk. The path names shown are partial relative paths based on the location of the
project file. If you alter the location of the project file with Save Project As, these paths
will be updated accordingly.

• By File Type - This view organizes your files by MIME type.

3.3 Project Types

F There are two related file formats in which you can save your project. One supports
sharing the project file via a revision control system.

The default project type is ’Normal’, which results in all project data being stored in a
single file. This file usually will end in ’.wpr’ but does not have to.

If you use a revision control system to share code with multiple developers, you should
change your project to ’Shared’ type using the Project Type item in the Project menu. After
making this change, save your project to obtain the two separate project files on disk. The
main project file (usually ending in ’.wpr’) can be checked into revision control and the
user-specific file (ending in ’.wpu’) should not be checked into revision control.

If you subsequently change from a Shared project back to Normal, the user-specific data

Version 1.1b7-2 Wing IDE Reference

3.3. PROJECT TYPES 25

file, ending in ’.wpu’ , will be removed from disk and its data will be merged back into
the main project file.

Note that both the combined ’Normal’ file and two split ’Shared’ files use the same textual
file format that is used for the preferences file. See section 2.1.1 for more information on
the format itself.

3.3.1 Shared Project Data

This section enumerates the values stored in the shared project area:

• file list - A list of all the files in the project, using partial relative path names based on
the location of the project file.

• main debug file - The file that you have selected as the main entry point for execution.

• version - The version of Wing that wrote this file.

• build cmd - A build command that is executed before debugging any file in the project.

• file type - Either ’shared’ or ’normal’, indicating the project type as described above.

• shared file attributes - Values associated with specific files in the project that are rel-
evant to all developers. This currently includes per-file debug options, such as the
PYTHONPATH to use, the Python executable to run under, arguments to pass on the
command line, the initial run directory, and a build command to execute before de-
bugging that file. Also included here are per-file positioning or view configuration
options.

3.3.2 User-specific Project Data

This section enumerates the values stored in the user-specific project area:

• version - The version of Wing that wrote this file.

• user file attributes - Values associated with specific files in the project that are specific
to an individual developer. This includes breakpoints, various debugger run options,
and window position information.

Wing IDE Reference Version 1.1b7-2

26 Project Manager

3.4 Project-wide Properties

Each project has a set of top-level properties that can be accessed and edited via the Prop-
erties item in the Project menu. Because these are all debugger-related properties, they
are described in the Debugger chapter in section 6.2.1. Note however that these values
also inform the source code analysis engine, as described in section 5.6.

3.5 Per-file Properties

Properties similar to those available for the project as a whole can also be set on a per-file
basis. This is done by right-clicking on a Python source file and selecting the Set Debug
Properties menu item in the popup. Values entered here will override any project-wide
values.

Since these all control the debugger, per-file properties are documented in the Debugger
chapter in section 6.2.2. See also section 5.6 for information on how these values affect the
source code analysis engine.

3.6 Viewing File Information

The bottom of the project manager window contains a file information area that will dis-
play file name, file type, and file-level documentation string (when available) for the cur-
rent selection in the file selection area of the project manager window.

The documentation string contains the file-level docstring for Python files only and cur-
rently does not support any other programming languages.

The size of this area can be altered by dragging the divider handle between the file infor-
mation area and the rest of the project manager window.

Version 1.1b7-2 Wing IDE Reference

3.7. NAVIGATING TO SOURCE 27

3.7 Navigating to Source

Files can be opened from the project manager window by double clicking on the file name,
middle-clicking on the file name, or right-clicking and using the Open in Wing IDE menu
item.

Files may also be opened using an external viewer or editor by right-clicking on the file
and using the Open in External Viewer item. On Windows, this opens the file as if you
had double clicked on it in Windows Explorer. On Linux, the preferences gui.file-
display-cmds and main.extra-mime-types can be used to configure how files are
opened. See section 2.2.7 for details.

It is possible to debug specific files (even if you have set a main debug file for your project)
by right-clicking on the file in the project manager window and choosing the Debug Se-
lected File item from the popup menu. A debug session for the selected file is launched,
but the definition of the main debug file is not altered.

You can also execute Makefiles, python source, and any executable files by selecting the
Execute Selected File item from the popup menu. This executes outside of the debugger
with any input/output occurring in the window from which Wing was launched.

3.8 Preferences

The following preferences affect the project manager:

❀ proj.package-file-types - The file types that will be included when you select the Add
Package or Add Directory Tree menu items from the Project menu and choose a direc-
tory for loading into the project. Default= ("*.*",)

❀ proj.package-omit-types - The file types that will be omitted when you se-
lect the Add Package or Add Directory Tree menu items, even if a wild-
card found in proj.package-file-types matches the given file. Default=
("*.o", "*.a", "*.so", "*.pyc", "*.pyo", "core", "*˜", "#*#")

❀ proj.file-panel-percent - The percentage of the total project manager window height
that will be used initially by the file area. Set this to 100 if you don’t want to see the
file information area. Default=60

Wing IDE Reference Version 1.1b7-2

28 Project Manager

❀ proj.file-type - The default file type for newly created project files, either ’normal’
or ’shared’ . Default=’normal’

❀ proj.save-without-asking - Controls whether the project files will be saved without
asking the user. Default=true

❀ proj.reopen-windows - Selects whether the list of open windows should be saved and
reopened later when a project is opened. Use false to open only the project when a
project is opened and true to open the project and also any windows that were open
the last time the project was closed. Default=true

❀ proj.close-also-windows - When true , all document windows open at time of project
close will also be closed. When false only the project will be closed and other win-
dows will remain untouched. Default=true

Changing these values requires you to restart Wing before they take effect.

Version 1.1b7-2 Wing IDE Reference

29

Chapter 4

Source Code Editor

Wing IDE’s source code editor is designed to make it easier to adopt the IDE even if you
are used to using other editors. If you are frustrated by the editor or key combinations,
please review information in this chapter and in the Customization chapter; you have a
fair amount of control over how the editor acts.

F For those in a rush, key things to know about the editor are:

• The editor has personalities, including one similar to basic editors on Windows and
another similar to emacs.

• Key mappings are configurable.

• The editor supports a wide variety of file types for syntax colorization.

• Auto-completion is supported for Python source (but can be turned off if desired).

4.1 Syntax Colorization

The editor will attempt to colorize documents according to their MIME type, which is
determined by the file extension, or content. For example, any file ending in ’.py’ will
be colorized as a Python source code document. Any file whose MIME type cannot be
determined will display all text in black normal font by default.

Wing IDE Reference Version 1.1b7-2

30 Source Code Editor

4.1.1 Supported file types

The editor supports the following file types for syntax colorization:

Mime Type Description Allowable Extensions
text/x-python Python Source py, cgi, or files starting with a #! specifier

that invokes Python
text/html HTML Source html, htm, asp, shtml
text/x-c-source C Language Source c, h
text/x-cpp-source C++ Source cc, cpp, cxx, hh, hpp, hxx
text/x-java-source Java Source java
text/x-vb-source Visual Basic Source cls, bas, ctl, frm, vbs
text/x-dos-batch DOS Batch File bat
text/x-properties DOS Style INI File properties, ini, inf, reg
text/x-makefile Makefile makefile, mak, and any file named

’makefile’ or ’Makefile’
text/x-errorlist Compilation Error List err
text/x-sql SQL Source sql
text/x-plsql PL SQL Source spec, body, sps, spb, sf, sp
text/x-xml XML Source xml, xul, glade
application/x-tex LaTeX Source tex, sty
text/x-lua-source Lua Source lua
text/x-idl CORBA IDL idl, odl
text/x-javascript Javascript js
text/x-rc DOS RC File rc, rc2, dlg
text/x-php-source PHP Source php, php3, phtml, inc
text/x-perl Perl Source pl, pm, pod
text/x-diff Diff/CDiff or Patch File diff, patch
text/x-conf Conf Files conf
text/x-pascal Pascal Source pas, inc
text/x-ave Ave document ave
text/x-ada Ada Source abs, adb
text/x-ave Eiffel Source e
text/x-ave Lisp Source lsp, lisp
text/x-ave Ruby Source rb
text/x-ave Bash File sh, bsh
text/plain Plain Text (no highlighting) all others

If you have a file that is not being recognized, you can use the Source Menu’s Syntax

Version 1.1b7-2 Wing IDE Reference

4.2. NAVIGATING YOUR SOURCE 31

Highlighting section to alter the way the file is being displayed. Your selections from this
menu are stored in your project file, so changes made here are permanent in the context
of that project.

If you have many files with an unrecognized extension, you can alter the main.extra-
mime-types preference to add your extension. See section 2.2.7 for details on setting this
value. Note however that adding a new MIME type not already in the list above will not
work without more extensive modifications to the IDE source code.

4.1.2 Colorization Options

Although the specific colors and other values associated with syntax colorization are not
yet user-configurable, you can alter the text and font that is used throughout a file or files.
To do this, select the Set Display Font/Size item from the Source menu and make your
selection from the dialog’s popup menus.

You can make changes for individual files on a per-file basis, or for all files that you open.
Either way, your selection is saved in the project file for subsequent work sessions.

Changes are shown immediately on your source, but are only permanent after the
font/size selection dialog is closed if you use the Apply and Exit button. Otherwise,
values are restored to those in use before the selector dialog was displayed.

4.2 Navigating your Source

F When you right-click on the surface of the editor, all editor windows will bring up a
popup menu with commonly used commands such as Copy, Paste, Undo, and Redo.
When the file is a Python file, this menu also includes a construct-by-construct break-
down of the source file.

In order to navigate your source, right-click on the editor surface and select one of the
constructs in the popup menu. This will scroll the source code to the position at which
that construct is defined and select its point of definition.

Python language constructs in the popup menu are colorized as follows:

Wing IDE Reference Version 1.1b7-2

32 Source Code Editor

• Classes are shown in red

• Variables, object attributes, and imported names are shown in green

• Methods and functions are shown in black

You can also use the Goto Definition menu item in the right-click popup menu to click on
a construct in your source and zoom to its point of definition.

The editor popup menu is also available from the popup button at the lower right corner
of the editor window.

4.3 Structural Folding

The editor supports optional structural folding for Python, C, C++, Java, Javascript,
HTML, files, Eiffel, Lisp, and Ruby files. This allows you to visually collapse logical
hierarchical sections of your code as you are working in other parts of the file.

Because this feature adds overhead, it is turned off by default. You can turn it on from the
Structural Folding section of the Source menu, or by setting the edit.enable-folding
preference to true (this value is used for new projects also). The preference edit.fold-
line-mode can be used to determine whether or not a horizontal line is drawn at fold
points, whether it is drawn above or below the fold point, and whether it is shown when
the fold point is collapsed or expanded. See section 4.14 for allowed values for this pref-
erence.

Once folding is turned on, an additional margin appears to the left of source files, where
fold points are by default indicated with blue minus signs. Left mouse click on one of
these signs to collapse that fold point. Once collapsed, the fold point is by default in-
dicated by a blue plus sign. Clicking again will re-expand it. Preference edit.fold-
indicator-style can be used to change the style of indicators used at fold points to
arrows, or tree style views. Details for changing this preference are in section 4.14

You can also hold down the following key modifiers while clicking to modify the folding
behavior:

• Shift - Clicking on any fold point while holding down the shift key will expand that
point and all its children recursively so that the maximum level of expansion is in-
creased by one.

Version 1.1b7-2 Wing IDE Reference

4.3. STRUCTURAL FOLDING 33

• Ctrl - Clicking on any fold point while holding down the shift key will expand that
point and all its children recursively so that the maximum level of expansion is de-
creased by one.

• Ctrl+Shift - On a currently expanded fold point, this will collapse all child fold points
recursively to maximum depth, as well as just the outer one. When the fold point is
subsequently re-expanded with a regular click, its children will appear collapsed. Ctrl-
shift-click on a collapsed fold point will force re-expansion of all children recursively
to maximum depth.

Fold commands are also available in the Structural Folding section of the Source menu
and by the indicated key equivalents:

• Toggle Current Fold - Like clicking on the fold margin, this operates on the first fold
point found in the current selection or on current line.

• Collapse Current More - Like shift-clicking, this collapses the current fold point one
more level than it is now.

• Expand Current More - Like ctrl-clicking, this expands the current fold point one more
level than it is now.

• Collapse Current Completely - Like shift-ctrl-clicking on an expanded node, this col-
lapses all children recursively to maximum depth.

• Expand Current Completely - Like shift-ctrl-clicking on a collapsed node, this ensures
that all children are expanded recursively to maximum depth.

• Collapse All - Unconditionally collapse the entire file recursively.

• Expand All - Unconditionally expand the entire file recursively.

Since only a subset of file types supported by Wing IDE also support folding, the prefer-
ence edit.fold-mime-types is used to turn on folding by mime type for only specific
file types. This will generally remain unchanged from the defaults but can be used to
turn off folding for specific file types, such as only C or only Python source, while keep-
ing folding on for other files.

Wing IDE Reference Version 1.1b7-2

34 Source Code Editor

4.4 Brace Matching

Wing will highlight matching braces in green when the cursor is adjacent to a brace. Mis-
matched braces are highlighted in red.

You can also cause Wing to select the entire contents of the innermost brace pair from the
current cursor position with the Match Braces item in the Source menu.

Parenthesis, square brackets, and curly braces are matched in all files. Angle brackets (<
and >) are matched also in HTML and XML files.

4.5 Indentation

The editor provides a range of features for managing indentation in source code. The
following preferences affect how the indentation features behave in newly created source
files and non-Python files:

1. The preference edit.tab-size defines the default size of each tab character, in
spaces.

2. The preference edit.indent-size defines the default size of each level of indent,
in spaces.

3. The preference edit.indent-style defines the default indentation style, one of
’spaces-only’ , ’tabs-only’ , or ’mixed’ . Mixed indentation replaces each
tab-size spaces with one tab character.

4. The preference edit.auto-indent controls whether or not each new line is auto-
matically indented.

5. The preference edit.show-indent-guides controls whether or not to show in-
dentation guides as light vertical lines. This value can be overridden on a file by file
basis from the Indentation section of the Source menu.

When an existing Python file is opened, it is scanned to determine what type of indenta-
tion that is used in that file. If the file contains some indentation, this may override the tab
size, indent size, and indent style values given in preferences and the file is subsequently
indented in a way that matches its existing content rather than your configured defaults.

Version 1.1b7-2 Wing IDE Reference

4.5. INDENTATION 35

For non-Python files, this check does not occur and you can change indentation styles on
the fly using the Use Spaces Only, Use Tabs Only, and Use Mixed Tabs and Spaces items
in the Indentation portion of the Source menu.

For Python files, you may convert the entire file between different forms of indenta-
tion using the Indentation Manager available from the Indentation portion of the Source
menu. This is described in section 4.5.5 below.

F Note that tab size is automatically forced to 8 characters for all Python source files
that contain some spaces in indentation, since the Python interpreter defines tabs as 8
characters in size in this case. This version of Wing does not recognize vi style tab size
comments, but it does apply the configured tab-size when a file contains only tabs in
indentation.

4.5.1 Auto-Indent

The IDE ships with auto-indent turned on. This causes leading white space to be added to
each newly created line, as return or enter are pressed. Enough white space is inserted
to match the indentation level of the previous line, possibly adding a level of indentation
if this is indicated by context in the source (such as if or while).

Note that if preference edit.auto-indent is set to false , auto-indent does not occur
until the tab key is pressed.

4.5.2 The Tab Key

By default, the tab key acts like auto-indent: the leading white space of the current line is
adjusted to achieve a reasonable indentation level for that line.

Existing leading white space is replaced with white space containing either spaces only
or tabs and spaces, as determined by the method described above. This behavior may
also decrease indent level of a line, if it is deemed to be indented too far according to its
context.

If multiple lines are selected at the time that the tab key is pushed, all those lines will be
indented or outdented as a unit according to the amount of change necessary for the first

Wing IDE Reference Version 1.1b7-2

36 Source Code Editor

line in the selected unit. This is very useful when moving around blocks of code.

To insert a real tab character regardless of the indentation mode or the position of the
cursor on a line, type ctrl-tab.

4.5.3 Checking Indentation

Wing analyses existing indentation whenever it opens a Python source file, and will indi-
cate a potentially problematic mix of indentation styles, allowing you to attempt to repair
the file. Although files are checked each time they are opened, Wing will display the in-
dentation warning dialog only once per file and will not ask twice about the same file if
you do not repair it (this information is stored in the project file). Files can be inspected
more closely or repaired at any time using the Indentation Manager described in section
4.5.5.

F In general, mixing tab/space and space-only indentation in the same file can be confus-
ing, especially if files are viewed with different editors and by different developers. We
recommend using spaces only or tabs only as the best alternatives. To convert existing
code containing a mix of tabs and spaces, use the Indentation Manager.

4.5.4 Changing Block Indentation

Wing provides Indent and Outdent commands in the Indentation portion of the Source
menu, to support increasing or decreasing the level of indentation for selected blocks of
text. All lines that are included in the current text selection are moved, even if the entire
line isn’t selected.

Indentation placed by these commands will contain either only spaces, only tabs, or a
mixture of tabs and spaces, as determined by the method described at the start of section
4.5 above.

Version 1.1b7-2 Wing IDE Reference

4.6. AUTO-COMPLETION 37

4.5.5 Indentation Manager

The indentation manager can be used to inspect and change indentation style in Python
language source. To display the indentation manager for a given file, use the Indentation
Manager item in the Indentation group of the Source menu.

The indentation manager has two parts to it: (1) The indentation report, and (2) the in-
dentation converter.

A report on the nature of existing indentation found in your Python source file is given
above the horizontal divider. This includes the number of spaces-only, tabs-only, and
mixed tabs-and-space indents found, information about whether indentation in the file
may be problematic to the Python interpreter, and the tab and indent size computed for
that file. The manager also provides information about where the computed tab and
indent size value come from (for example, an empty Python file results in use of the
defaults configured in preferences).

Conversion options for your file are given below the horizontal divider. The three tabs
are used to select the type of conversion desired, and each tab contains information about
the availability and action of that conversion, and a button to do the conversion. Most of
these conversions have no parameters that can be altered by the user. Only in the case of
conversion from tabs-only to spaces-only indentation styles, the tab size value shown in
the indentation report is made editable, so that the configured default can be overridden.

Once conversion is complete, the indentation manager updates to display the new status
of the file, and action of any subsequent conversions. Because the indentation manager
updates each time its source file is edited, typing in a source window may slow noticeably
when its indentation manager window is visible.

4.6 Auto-completion

When editing a Python file, the source editor will attempt to identify construct names as
they are typed and will display a popup list of possible matches. Pressing the tab key
while the list is displayed will complete the current word with the selected item from the
list. Up and down arrow keys or their equivalent (for example, ctrl-p and ctrl-n in the
default emacs keymap) can be used to navigate the popup list while it is visible. Auto-
completion will abort upon typing the escape, ctrl-g, right/left arrow keys, any character
that cannot be contained in an identifier (such as space), or initiation of any other com-

Wing IDE Reference Version 1.1b7-2

38 Source Code Editor

mand key sequence or after a period where nothing is typed into the editor.

F Auto-completion covers most but not all possible scenarios at this time. See the beginning
of chapter 5 and section 5.7 for more information on current capabilities.

Until Python includes support for data typing, one way to get a lot more mileage out
of the auto-completion facility is to use statements that assert variables as belonging
to a specific class. An example is assert isinstance(obj, CMyClass) . The code
analysis facility will pick up on these and present you with the correct auto-completion
values when you type obj. subsequently. An added bonus is that your code will catch
errors in expected variable types in more cases.

4.7 Auto-save

The source code editor auto-saves files to disk every few seconds. The autosave failes are
placed in a subdirectory of your Wing user directory (˜/.wingide/autosave on Linux
or WINGHOME\profiles\[username]\autosave on Windows). If Wing ever crashes
or is killed from the outside, you can use these files to recover any unsaved changes. It is
usually safe to copy the autosave files to overwrite the older unsaved files, but you may
want to do a comparison first to verify that the autosave file is what you want.

4.8 Notes on Copy/Paste

There are a number of ways to copy and paste text in the editor:

• Use the Edit menu items. This stores the copy/cut text in the system-wide clipboard
and can be pasted into or copied from other applications.

• Use key equivalents as defined in the Edit menu.

• Right-click on the editor surface and use the items in the popup menu that appears.

• On Linux, select text anywhere on the display and then click with the middle mouse
button to insert it at the point of click.

Version 1.1b7-2 Wing IDE Reference

4.9. AUTO-RELOAD OF EXTERNALLY CHANGED FILES 39

• On Windows, click with the middle mouse button to insert the current emacs kill buffer
(if in emacs mode and the buffer is non-empty) or the contents of the system-wide
clipboard (in all other cases).

• In emacs mode (described in section 4.11 below), ctrl-k (kill-line) will cut one line at
a time into the kill buffer. This is kept seperate from the system-wide clipboard and
is pasted using ctrl-y (yank-line). On Windows, ctrl-y will paste the contents of the
system-wide clipboard only if the kill buffer is empty.

• Select a range of text and drag it using the drag and drop feature.

It’s important to note which actions use the system-wide clipboard, which use the emacs
kill buffer (emacs mode only), and which use the X windows selection (X Windows only).
Otherwise, these commands are interchangeable in their effects.

4.9 Auto-reload of Externally Changed Files

Wing’s editor detects when files have been changed outside of the IDE and can reload
files automatically, or after prompting you for permission. This is useful when working
with an external editor, or when using code generation tools that rewrite files.

Wing’s default behavior is to automatically reload externally changed files that you have
not yet been changed within Wing’s source editor, and to prompt to reload files that have
also been changed in the IDE.

You can change these behaviors by setting the value of the cache.unchanged-reload-
policy and changed-reload-policy preferences, as described at the end of section
4.14.

On Windows, Wing uses the change signal capability of the OS to detect changes so no-
tification or reload is usually instant. On Linux, Wing polls the disk by default every 3
seconds; this frequency can be changed with the cache-reload-freq preference.

Wing IDE Reference Version 1.1b7-2

40 Source Code Editor

4.10 Normal Editor Personality

F Wing’s source code editor can run with different personalities, either as a normal basic
text editor, or as an emacs-like editor that is readily controlled with keyboard-driven
commands.

The default personality for Wing is ’normal’. This uses only the graphical user interface
for interacting with the editor and doesn’t make use of any complex keyboard-driven
command interaction.

The editor runs in normal mode when the edit.personality preference is set to
normal . See section 2.1 of the Customization chapter for more information on how to
alter your preferences.

In normal mode, the editor provides the following keyboard equivalents, which are de-
fined in the default normal mode key mapping in file WINGHOME/keymap.normal .

4.10.1 Cursor Movement

Key Combination Command Description
shift + arrow keys previous-line-

extend,
next-line-extend,
backward-char-
extend,
forward-char-
extend

Move cursor in indicated direction,
extending the current text selection.

shift-page-up and
shift-page-down

forward-page-
extend,
backward-page-
extend

Move forward or backward a page,
extending the current text selection.

ctrl-right-arrow and
ctrl-left-arrow

backward-word,
forward-word

Move cursor backward or forward a
word. These can be combined with shift
key for extension of selection.

Version 1.1b7-2 Wing IDE Reference

4.10. NORMAL EDITOR PERSONALITY 41

home and end beginning-of-line,
end-of-line

Move cursor to beginning or end of line.
Repeated home on an indented line will
alternate between the absolute
beginning and end of indentation. These
can be combined with shift key for
extension of selection.

ctrl-home and
ctrl-end

start-of-document,
end-of-document

Move cursor to beginning or end of
document. These can be combined with
the shift key for extension of selection.

Wing IDE Reference Version 1.1b7-2

42 Source Code Editor

4.10.2 Indentation

Key Combination Command Description
tab indent-to-match Indent the current line or selection to

match the preceding non-blank line,
adding or subtracting indentation as
appropriate. See section 4.5 above for
more information on indentation
behavior.

ctrl-tab forward-tab Insert a forward tab character.
shift-tab backward-tab Insert a backward tab character.
ctrl-shift-greater indent-region Increase indent of the current line or

selected region by one level of
indentation.

ctrl-shift-less outdent-region Decrease indent of the current line or
selected region by one level of
indentation.

4.10.3 Commenting and Justification

Key Combination Command Description
ctrl-slash comment-out-

region
Comment out the selected region of
code. This operates on whole lines,
extending the current selection as
necessary.

ctrl-shift-question uncomment-out-
region

Undo commenting out the selected
region of code. This operates on whole
lines, extending the current selection as
necessary.

ctrl-j fill-paragraph Rejustify the paragraph of text at the
current selection’s starting position. This
operates on whole lines, and is most
useful for formatting comments, long
strings, or documentation. Set the
column at which to wrap with the
edit.text-wrap-column preference.

Version 1.1b7-2 Wing IDE Reference

4.10. NORMAL EDITOR PERSONALITY 43

4.10.4 Insertion and Deletion

Key Combination Command Description
delete forward-delete-char Delete the character in front of the

cursor, or the current selection if not
empty.

ctrl-delete forward-delete-
word

Delete the word in front of the cursor.

insert toggle-overtype Alternate between overtype and insert
mode.

ctrl-backspace or
alt-backspace or
alt-delete

backward-delete-
word

Delete the word behind the cursor.

ctrl + keypad plus
and minus keys

zoom-in, zoom-out Zoom text in and out by increasing and
decreasing font sizes.

4.10.5 Undo and Clipboard

Key Combination Command Description
ctrl-z undo Undo most recent edit.
ctrl-y redo Redo most recent undone edit.
ctrl-x cut Cut the current selection to clipboard.
ctrl-c copy Copy the current selection to clipboard.
ctrl-v paste Paste from clipboard, replacing the

current selection.
ctrl-a select-all Select the entire document.

4.10.6 File and Window Control

Key Combination Command Description
ctrl-o open Open a new document from disk.
ctrl-s save Save the current document to disk.
alt-d delete-window Close the current window.

Wing IDE Reference Version 1.1b7-2

44 Source Code Editor

4.10.7 Search and Replace

Key Combination Command Description
ctrl-f search-forward Initiate search in current document.
ctrl-r query-replace Initiate search/replace in current

document.
ctrl-l goto-line Jump to a selected line number.
ctrl-e or ctrl-] brace-match Select the region between the nearest

braces or defining the inner most code
block reached from current cursor
position.

ctrl-right-click goto-selected-
symbol-defn

Jump to point of definition of the symbol
clicked on. This does not always
succeed, as described at the beginning of
chapter 5.

4.10.8 Macros

Key Combination Command Description
ctrl-shift-(start-kbd-macro Start recording a macro (will contain any

keystrokes and commands issued to the
editor).

ctrl-shift-) stop-kbd-macro Stop recording current macro and store
it.

ctrl-m execute-kbd-macro Execute most recently defined keyboard
macro relative to current cursor position.

See the section 2.2.3 for information on how to alter or replace this mapping.

4.11 Emacs Emulation

When preference edit.personality is set to ’emacs’, the editor will run in a mode
that emulates many emacs behaviors. In this mode, key strokes can be used to control
most of the editor’s functionality, using a textual interaction ’mini-buffer’ at the bottom
of the editor window where the current line number and other informational messages

Version 1.1b7-2 Wing IDE Reference

4.11. EMACS EMULATION 45

are normally displayed.

When in emacs mode, the editor supports the following key combinations for access to
commands.

4.11.1 Cursor Movement

Key Combination Command Description
shift + arrow keys previous-line-

extend,
next-line-extend,
backward-char-
extend,
forward-char-
extend

Move cursor in indicated direction,
extending the current text selection.

ctrl + space bar set-mark-command Set selection start to current position and
start automatically selecting from that
point as the cursor is moved with arrow
keys, page up/down, search commands,
or in other ways.

ctrl-g stop-mark-
command

Cancel selecting a range, as initiated by
set-mark-command, and set the cursor
position to the end of the range.

home and end or
ctrl-a and ctrl-e

beginning-of-line,
end-of-line

Move cursor to beginning or end of line.
Repeated home on an indented line will
alternate between the absolute
beginning and end of indentation. These
can be combined with shift key for
extension of selection.

ctrl-n and ctrl-p next-line and
previous-line

Move cursor to next or previous line.

ctrl-b and ctrl-f backward-char and
forward-char

Move cursor backward or forward one
character.

ctrl-v and alt-v forward-page and
backward-page

Move forward or backward one page.

Wing IDE Reference Version 1.1b7-2

46 Source Code Editor

ctrl-home and
ctrl-end

start-of-document,
end-of-document

Move cursor to beginning or end of
document. These can be combined with
the shift key for extension of selection.

ctrl-l center-cursor Center the cursor on screen.

4.11.2 Indentation

Key Combination Command Description
tab indent-to-match Indent the current line or selection to

match the preceding non-blank line,
adding or subtracting indentation as
appropriate. See section 4.5 for more
information on indentation behavior.

ctrl-c shift-> indent-region Increase indentation of the currently
selected range of lines (or current line
when selection is empty) by one
indentation level.

ctrl-c shift-< outdent-region Reduce indentation of the selected range
of lines (or current line when selection is
empty) by one indentation level.

ctrl-tab forward-tab Insert a forward tab character.
shift-tab backward-tab Insert a backward tab character.

4.11.3 Commenting and Justification

Key Combination Command Description
ctrl-c c or ctrl-c
shift-numbersign

comment-out-
region

Comment out the selected region of
code. This operates on whole lines,
extending the current selection as
necessary.

ctrl-c u uncomment-out-
region

Undo commenting out the selected
region of code. This operates on whole
lines, extending the current selection as
necessary.

Version 1.1b7-2 Wing IDE Reference

4.11. EMACS EMULATION 47

escape q or ctrl-j fill-paragraph Rejustify the paragraph of text at the
current selection’s starting position. This
operates on whole lines, and is most
useful for formatting comments, long
strings, or documentation. Set the
column at which to wrap with the
edit.text-wrap-column preference.

4.11.4 Insertion and Deletion

Key Combination Command Description
ctrl-d forward-delete-char Delete the character in front of the

cursor, or the current selection if not
empty.

ctrl-delete or alt-d forward-delete-
word

Delete the word in front of the cursor.

delete clear Delete current selection, if any.
insert toggle-overtype Alternate between overtype and insert

mode.
ctrl-backspace or
alt-backspace or
alt-delete

backward-delete-
word

Delete the word behind the cursor.

ctrl + keypad plus
and minus keys

zoom-in, zoom-out Zoom text in and out by increasing and
decreasing font sizes.

4.11.5 Undo and Clipboard

Key Combination Command Description
ctrl-/ or ctrl-x u undo Undo the most recent edit action.
ctrl-w or shift-delete cut Cut the current selection to system-wide

clipboard.
alt-w or ctrl-insert copy Copy the current selection to

system-wide clipboard.
ctrl-y or shift-insert paste Paste from system-wide clipboard,

replacing any current selection.

Wing IDE Reference Version 1.1b7-2

48 Source Code Editor

ctrl-k kill-line Remove the current line after the cursor
point and place it into the kill buffer.
Groups of lines deleted this way can be
pasted subsequently with yank-line
(ctrl-y). This is kept seperate from the
system-wide clipboard and (on X
windows) from the current selection.
This command removes the newline
only if there is no visible character on
the line after the cursor.

ctrl-y yank-line Paste the current contents of the kill
buffer, created with one or more adjacent
kill-line commands, replacing any
current selection. If the kill buffer is
empty, the contents of the system-wide
clipboard is pasted instead.

4.11.6 File and Window Control

Key Combination Command Description
ctrl-x ctrl-c quit Quit the application, first prompting to

save any unsaved documents.
ctrl-x ctrl-s save Save current file to disk.
ctrl-x k kill-buffer Close the current file, prompting to save

if necessary.
ctrl-x ctrl-f open Open a file from disk. Enter the filename

at prompt, optionally using the tab key
to auto-complete the current entry. Two
tabs in a row will display a list of
possible matches; continue typing or
click on a match as desired. You can also
use the up/down arrow keys to scroll
through recently-opened files. Hitting
enter opens the selected file. Exit
without opening with ctrl-g or esc.

ctrl-x i insert-file Insert a file at current cursor position.
Interaction is the same as for the open
command.

Version 1.1b7-2 Wing IDE Reference

4.11. EMACS EMULATION 49

ctrl-x b switch-document Switch to another document. Hit enter
to select the specified default, type file
name fragments (tab and double-tab can
be used for completion and viewing list
of matches), or use the up/down arrow
keys to scroll through a list of options.
Enter accepts and switches; escape or
ctrl-g aborts.

ctrl-x 5 0 delete-window Close the current editor window.

4.11.7 Search and Replace

Key Combination Command Description
ctrl-s search-forward Initiate interactive incremental forward

search. The search is case sensitive if you
type any capital letters; otherwise
case-insensitive. Exit search by using
arrow keys or other commands, or abort
(returning to original position) with
ctrl-g or esc.

ctrl-r search-backward Initiate interactive incremental
backward search. Acts like forward
search, only proceeds backward in
source.

alt-shift-percent or
escape shift-percent

query-replace Initiate interactive query/replace. First
type search string, then replace string
and respond to prompts with ’y’ and ’n’.
You may use the tab key to
auto-complete values you type into the
search and replace strings. End the
session with ctrl-g or escape.

alt-g or alt-l or
escape g

goto-line Go to a specific line; enter the line
number at prompt.

ctrl-b brace-match Select all text within the innermost
braces from current cursor position.

Wing IDE Reference Version 1.1b7-2

50 Source Code Editor

ctrl +
mouse-button-3

goto-selected-
symbol-defn

Jump to point of definition of the symbol
clicked on. This does not always
succeed, as described at the beginning of
chapter 5.

4.11.8 Macros

Key Combination Command Description
ctrl-x shift-(start-kbd-macro Start recording a macro (will contain any

keystrokes and commands issued to the
editor).

ctrl-x shift-) stop-kbd-macro Stop recording current macro and store
it.

ctrl-x m execute-kbd-macro Execute most recently defined keyboard
macro relative to current cursor position.

escape + numbers initiate-repeat-* Start entering a repeat value which will
cause the immediately following
command or keystroke to be executed
the specified number of times. Use esc or
ctrl-g to abort. This is particularly useful
to execute a keyboard macro multiple
times in a row.

4.11.9 Debugging

Key Combination Command Description
ctrl-c ctrl-c debug-continue Start debugging the main project debug

file, stopping at the first encountered
breakpoint.

ctrl-c ctrl-s debug-stop Stop the current debug session at current
run position, as if at a breakpoint.

ctrl-c ctrl-k debug-kill Stop and end the current debug session.
ctrl-x space break-toggle Add a regular breakpoint at current line

of code if there isn’t one already, or
remove the existing breakpoint.

Version 1.1b7-2 Wing IDE Reference

4.12. SEARCH/REPLACE 51

4.11.10 Other

Key Combination Command Description
alt-x or escape x command-by-name Enter a command by name for execution.

Use the tab key for auto-completion or
double-tab to see a list of possible
matches. Up/down arrow keys also
work for scrolling through recent
commands. Hit enter to execute the
command or esc or ctrl-g to abort.

ctrl-c ctrl-d show-debug-
window

Show the debugger window. This is not
a usual emacs editor key binding.

ctrl-c ctrl-b browse-project-
modules

Show the source code browser window.
This is not a usual emacs editor key
binding.

ctrl-c ctrl-p show-project-
window

Show the project manager window. This
is not a usual emacs editor key binding.

ctrl-c ctrl-e show-error-list Show the debugger error list window.
This is not a usual emacs editor key
binding.

Many of these commands are also available through menu items. See section 2.2.3 for
information on how to alter or replace this mapping.

4.12 Search/Replace

All editor modes include a graphical search/replace manager, which can be brought up
with the Search Manager item in the Edit menu. Commands in this window will apply to
the current (most recently at front) source view.

To use this manager, enter search and optionally replace text, set search options, and
control the search/replace process with the provided buttons.

Replace actions can always be undone, including Replace All.

Emacs mode additionally provides ctrl-s and ctrl-r incremental search, and query-replace
facilities, as described in section 4.11.7 above.

Wing IDE Reference Version 1.1b7-2

52 Source Code Editor

4.13 Keyboard Macros

F The Edit menu contains items for starting and completing definition of a keyboard or
command sequence macro, and for executing the most recently defined macro. Once
macro recording is started, any keystroke or editor command is recorded as part of that
macro. Most commands listed in sections 4.10 and 4.11 above may be included in macros,
as well as all character insertions and deletions.

The keyboard macro feature is currently most useful in emacs mode, where powerful
cursor-relative macros can be built for repetitive reformatting tasks. This is done by com-
bining incremental search with cursor movement and typing.

4.13.1 Example (in Emacs mode)

A common task when writing Python bindings for C/C++ libraries is copying lists of
#define constants and converting them into Python variable assignments.

#define SC_MARK_CIRCLE 0
#define SC_MARK_ROUNDRECT 1
#define SC_MARK_ARROW 2
#define SC_MARK_SMALLRECT 3
#define SC_MARK_SHORTARROW 4
#define SC_MARK_EMPTY 5
#define SC_MARK_ARROWDOWN 6
#define SC_MARK_MINUS 7
#define SC_MARK_PLUS 8

In emacs mode, the above can be converted by positioning the cursor before the first
#define , starting macro definition, and executing the following keystrokes:

escape 8 ctrl-d ctrl-s <space> <right arrow> = <space> ctrl-
a <down arrow>

This deletes the 8 characters ’#define ’ (with trailing space) in front of the cursor, jumps
to the space after the constant identifier, inserts ’= ’, and moves to the beginning of the
next line. When this is complete, stop macro recording and type the following to convert
the remaining lines:

Version 1.1b7-2 Wing IDE Reference

4.13. KEYBOARD MACROS 53

escape 8 ctrl-x e

This will execute the macro eight times resulting in the following reformatted source (the
first line was reformatted during the creation of the macro):

SC_MARK_CIRCLE = 0
SC_MARK_ROUNDRECT = 1
SC_MARK_ARROW = 2
SC_MARK_SMALLRECT = 3
SC_MARK_SHORTARROW = 4
SC_MARK_EMPTY = 5
SC_MARK_ARROWDOWN = 6
SC_MARK_MINUS = 7
SC_MARK_PLUS = 8

Combine this technique with ctrl-space (set-mark-command) and copy/paste to alter the
order of constructs within a line. Be creative... and don’t forget that undo can be used to
fix problems caused by incorrect macros or bad cursor position before executing a macro.

Macros will terminate if any command within the macro fails (for example, if an incre-
mental search fails). This can be used to prevent edits when a macro is executed in a
location where it doesn’t make sense.

4.13.2 Repetition

F In emacs mode, macros can be executed over and over again by using the escape +
numbers key board interaction to set up a repetition count before executing the macro.
For example, type ’escape 1 0 ctrl-x e’ in emacs mode to execute a macro ten times in a
row.

Wing IDE Reference Version 1.1b7-2

54 Source Code Editor

4.14 Preferences

The following preferences are defined for the editor:

❀ edit.new-file-extension - This defines the text, if any, to append to all newly created
untitled documents. Default=’.py’

❀ edit.new-file-eol-style - This defines the end-of-line style that is used for a newly cre-
ated file (otherwise, the style used matches existing file content). Select one value for
each platform: One of ’lf’, ’cr’, or ’crlf’ for each entry. Default{’linux’: ’lf’,
’win32’: ’crlf’}

❀ edit.personality - Selects the editor personality. Default=’normal’

❀ edit.tab-size - Sets the tab size, in spaces. This is forced to 8 for all Python files, since
the Python interpreter assumes tab size of 8. Default=8

❀ edit.indent-size - Sets size of each indentation level, in spaces. Default=2

❀ edit.indent-style - Determines the style of indentation to use by default in new Python
source files, and in all non-Python files. This can be one of ’spaces-only’ for spaces
only in indentation, ’tabs-only’ to use tabs only, or ’mixed’ to use a mix of tabs
and spaces (not recommended). Default=’spaces-only’ .

❀ edit.use-tabs-to-indent-default - This is a deprecated preference and is no longer
used. Use edit.indent-style instead.

❀ edit.auto-indent - Set to true to automatically indent each new line. Default=true

❀ edit.show-whitespace - Set to true to show tabs and spaces with visible characters
by default. This value may then be overridden on a file by file basis from the Source
menu. Default=false

❀ edit.show-indent-guides - Set to true to show light vertical lines at each indent level.
This value may then be overridden on a file by file basis from indentation section of
the Source menu. Default=false

❀ edit.show-eol - Set to true to show end of line characters with visible characters by
default. This value may then be overridden on a file by file basis from the Source
menu. Default=false

Version 1.1b7-2 Wing IDE Reference

4.14. PREFERENCES 55

❀ edit.display-font - A map that defines the font to use for source code dis-
play on each supported platform. Default={ ’linux’: ’lucidatypewriter’,
’win32’: ’Courier New’ }

❀ edit.display-size - A map that defines the font size to use for source code display on
each supported platform. Default={ ’linux’: 12, ’win32’: 11 }

❀ edit.print-font - (Linux only) Sets the font name used in printing
Python files. One of ’Courier’ , ’Helvetica’ , or ’Times-Roman’ .
Default={ ’linux’: ’Courier’, ’win32’: ’unused’ }

❀ edit.print-size - (Linux only) Sets the font size used to print Python files.
Default={ ’linux’: 12, ’win32’: ’unused’ }

❀ edit.print-paper - (Linux only) Sets the paper size used for printing.
One of ’Letter’ , ’Legal’ , ’A3’ , ’A4’ , ’A5’ , ’B5’ , ’C6’ , etc.
Default={ ’linux’: ’Letter’, ’win32’: ’unused’ }

❀ edit.print-python-as-text - (Linux only) Set this to true to print Python files faster but
without syntax highlighting. Otherwise the internal Python pretty printing facility is
used. Default={ ’linux’: false, ’win32’: ’unused’ }

❀ edit.text-print-cmd - (Linux only) Sets the default command that is issued to print
non-Python text files. The command is text with embedded %s to indicate where
the printed file’s name should be inserted. Default={ ’linux’: ’enscript --
pretty-print \%s’, ’win32’: ’unused’ }

❀ edit.print-header-format - (Windows only) Set the header format to use for printing.
This can be ’ any text with any of the following special fields mixed in: %basename%
- base file name; %prepend-fullpath% - full path file name; %prepend-relative% - rel-
ative path with from project file; %append-relative% - file name with relative path
appended; %append-fullpath% - file name with full path appended; %file-time% -
file modification time; %file-date% - file modification date; %current-time% - cur-
rent time; %current-date% - current date; %page% - current page being printed.
Default={’linux’: ’unused’, ’win32’: ’\%prepend-fullpath\%’ }

❀ edit.print-footer-format - (Windows only) Set the footer format to use for print-
ing. Same allowable values as for edit.print-header-format preference.
Default={’linux’: ’unused’, ’win32’: ’Page \%page\%, last modi-
fied \%file-date\% \%file-time\%’}

❀ edit.print-header-style - (Windows only) Text style to use in print
header, defined as comma delimited list of name:value pairs or style

Wing IDE Reference Version 1.1b7-2

56 Source Code Editor

names including: font:fontname, size:ptsize, bold, italics, underlined.
Default={’linux’: ’unused’, ’win32’: ’font:Arial,size:12,bold’}

❀ edit.print-footer-style - (Windows only) Text style to use in print footer.
Same allowable values as for edit.print-header-style preference.
Default={’linux’: ’unused’, ’win32’: ’font:Arial,size:10,italics’}

❀ edit.suspend-analysis-timeout - The number of seconds between last key press and
when the background code analysis is reenabled. Altering this value may make typing
more or less responsive. When less than or equal to zero, analysis is never suspended
during typing. Default=3

❀ edit.typing-timeout-interval - Timeout in seconds between last key press and when
user is considered not be be typing, for purposes of hiding auto-completion and call
tips popups. Default=10

❀ edit.autocomplete-names - Controls whether or not to display the auto-completion
popup while editing Python source. Default=true

❀ edit.autocomplete-attribs - Controls whether or not to autocomplete attributes (items
after ’.’ in identifiers) while editing Python source. Default=true

❀ edit.autocomplete-keywords - Controls whether or not to autocomplete Python key-
words while editing Python source. If None, the list is obtained from the keywords
module in the Wing source code. Default=None

❀ edit.autocomplete-builtin-names - Sequence of built-in names to be used in Python
autocompletion lists. If None, the list is obtained from the __builtins__ module in
the Wing source code. Default=None

❀ edit.autocomplete-names-to-always-del - Sequence of names to always delete from
initial autocompletion lists. If set to None, the list defaults to an internal value.
Default=None

❀ edit.autocomplete-names-to-del-if-line-start - Sequence of names to always delete
from initial autocompletion lists if the name is the first one on the line. If None, de-
faults to an internal value. Default=None

❀ edit.autocomplete-names-to-del-if-not-line-start - Sequence of names to always
delete from initial autocompletion lists if the name is not the first one on the line.
If None, defaults to an internal value. Default=None

Version 1.1b7-2 Wing IDE Reference

4.14. PREFERENCES 57

❀ edit.autocomplete-standard-exception-names - Sequence of names of standard (built-
in) exceptions to include in autocompletion lists. If None, defaults to an internal value.
Default=None

❀ edit.autocomplete-word-middle-action - Whether or not to auto-complete when typ-
ing in the middle of a word. Default=true

❀ edit.text-wrap-column - The column at which text is wrapped by the fill-paragraph
command. Default=70

❀ edit.lineno-column-width - The width of the line number display column, or 0 to
hide it entirely. This is the default value; any changes from the GUI are recorded in
the project file. Default=0

❀ edit.enable-folding - Set to true to enable structural folding in source editors by
default, or false to disable. This is the default value; any changes made from the
GUI are recorded in the project file and subsequently override this preference setting.
Default=true

❀ edit.fold-mime-types - Set to a list of mime types for which folding should
be enabled by default when preference enable-folding has been turned on
to enable folding as a whole. Default=[’text/x-python’, ’text/x-c-
source’, ’text/x-cpp-source’, ’text/x-java-source’, ’text/x-
javascript’, ’text/html’, ’text/x-eiffel’, ’text/x-lisp’,
text/x-ruby]

❀ edit.fold-line-mode - Set to ”expanded-above”, ”expanded-below”, ”collapsed-
above”, ”collapsed-below”, or ”none” to indicate where fold lines are shown
and whether they are above or below the line where the fold point is located.
Default="above-collapsed"

❀ edit.fold-indicator-style - Set to an integer to determine the style of fold indicators
used with structural folding: 0 for arrow indicators, 1 for plus/minus indicators, 2
for rounded tree indicators, and 3 for square tree indicators.

❀ edit.select-policy - This is a map from actions to policy for leaving a range selected
after the action takes place. Possible actions are ”indent-region”, ”outdent-region”,
”indent-to-match”, ”comment-out-region”, and ”uncomment-out-region”. Possible
policies for each are ”always-select”, which always leaves a selection, ”retain-select”
which leaves a selection only if there was one to begin with, and ”never-select” which
never leaves a selection. Default={ ’indent-region’: ’retain-select’,

Wing IDE Reference Version 1.1b7-2

58 Source Code Editor

’outdent-region’: ’retain-select’, ’indent-to-match’: ’retain-
select’, ’comment-out-region’: ’never-select’, ’uncomment-out-
region’: ’never-select’ }

The following additional preferences that control reloading of file caches are also relevant:

❀ cache.unchanged-reload-policy - Selects action to perform on files found to be exter-
nally changed but unaltered within the IDE. One of "auto-reload" to automat-
ically reload these files, "request-reload" to ask via a dialog box upon detec-
tion, "edit-reload" to ask only if the unchanged file is edited within the IDE sub-
sequently, or "never-reload" to ignore external changes (although you will still
be warned if you try to save over an externally changed file). Default="request-
reload"

❀ cache.changed-reload-policy - Selects action to perform on files found to be externally
changed and that also have been altered in the IDE. One of "request-reload" to
ask via a dialog box upon detection, "edit-reload" to ask if the file is edited further,
or "never-reload" to ignore external changes (although you will always be warned
if you try to save over an externally changed file). Default="request-reload"

❀ cache.reload-check-freq - Time in seconds indicating the frequency with which the
IDE should check the disk for currently open files that have changed externally. Set to
0 to disable entirely. Default=3.0

You need to quit and restart Wing before any changes in these preferences take effect.

Version 1.1b7-2 Wing IDE Reference

59

Chapter 5

Source Code Browser

This chapter describes the source code browser. The browser is intended to act as an index
to your source code, supporting inspection of bodies of Python source code from either a
module-oriented or class hierarchy-oriented standpoint.

The source code browser is divided into three panels: (1) a hierarchical list view, (2) a
panel of display filter options, and (3) an embedded information display area. These
panels can be resized by dragging on the seperator handles between them.

F Wing IDE’s source code browser, autocompletion, and other source navigation capabili-
ties all make use of a central source code analyzer.

Because Python does not (yet) support data type definitions, source code analysis cur-
rently does not identify the type of all constructs found in your code. This will affect how
often Wing manages to present the correct autocompletion list or correctly determines the
point of definition of a construct.

For more information, read section 5.7 below.

5.1 Display Choices

The source code browser offers three ways in which to look at your body of source code.
These are selected using the radio buttons along the top edge of the class browser window.

Wing IDE Reference Version 1.1b7-2

60 Source Code Browser

5.1.1 Viewing by Module

Viewing by module shows all files that you have placed into your project file within the
top major panel of the source code browser window. This module list is a hierarchical
expandable tree view that shows all modules, directories, and packages at the top level
in alphabetical order. These major units are defined as follows:

• Packages are directories that contain a number of files and a special file __init__.py .
This file contains a special variable __all__ that lists the file-level modules Python
should automatically import when the package as a whole is imported. See the Python
documentation for additional information on creating packages, or look at the Wing
source code for examples.

• Directories found in your project that do not contain the necessary __init__.py file
are listed as ’directory’ rather than ’package’ in the source browser window.

• Python files found at any level are denoted as ’module’.

Within each top-level package, directory, or module, the browser will display all sub-
modules, sub-directories, modules, and any Python constructs. These are all labeled by
generic type, including the following types:

• variable - a variable defined at the top-level of a Python module

• function - a function defined at the top-level of a Python module

• class - an object class found in Python source

• method - a class method

• attribute - an class or instance attribute

5.1.2 Class Hierarchy

When viewing by class hierachy, the browser replaces the hierarchical tree view with a
list of all top-level classes found in analyzed code, in alphabetical order.

In this display mode, the structure on disk of your packages, directories, and modules is
completely hidden from view. Instead, the hierarchy of your classes is displayed, starting
at base classes and working downward to derived classes.

Version 1.1b7-2 Wing IDE Reference

5.2. DISPLAY FILTERS 61

Within each class, in addition to a list of derived classes, the methods and attributes for
the class are shown.

5.1.3 All Classes

In order to find classes by name more easily, the browser can be asked to display a list
that includes all found Python classes. In this case, all classes (and not just base classes)
are displayed at the top-level of the hierarchical viewer.

This view is otherwise identical to the Class Hierarchy view.

F The source code analyzer will run in the background from the time that you open a project
until all files have been analyzed. You may notice this overhead during the first 5 to
30 seconds after you have opened your project, depending on the size of your source
base. Until analysis is complete, the class-oriented view within the browser window will
only include those classes that have been analyzed. This list is updated as more code is
analyzed.

5.2 Display Filters

A number of options are available for filtering the constructs that are presented by the
source code browser. These filters are organized into two major groups: (1) construct
scope and source, and (2) construct type.

5.2.1 Construct Scope and Source

The following distinctions are made. Constructs in each category can be shown or hidden
as a group:

• Public - Constructs for public use by any importer of a module or instantiator of an
instance. These are names that have zero leading underscores, such as Print() or

Wing IDE Reference Version 1.1b7-2

62 Source Code Browser

kMaxListLength .

• Private - Constructs intended to be private to a module or class. These are names that
have two leading underscores, such as __ConstructNameList() or __id_seed .
Python enforces local-only access to these constructs in class methods (see the Python
documentation for details).

• Semi-Private - Constructs intended for use only within related modules or from re-
lated or derived classes. These are names that have one leading underscore, such as
_NotifyError() or _gMaxCount . Python doesn’t enforce usage of these constructs,
but they are helpful in writing clean, well-structured code and are recommended in
the Python language style guide.

• Inherited - Constructs inherited from a super-class.

• Imported - Constructs imported into a module with an import statement.

5.2.2 Construct Type

Constructs in the source code browser window can also be shown or hidden on the basis
of their basic type within the language:

• Classes - Classes defined in Python source.

• Methods - Methods defined within classes.

• Attributes - Attributes (aka ’instance variables’) of a class. Note that these can be
either class-wide or per-instance, depending on whether they are defined within the
class scope or only within methods of the class.

• Functions - Non-object functions defined in Python source (usually at the top-level of
a module).

• Variables - Variables defined anywhere in a module, class, function, or method (but
not including function or method parameters).

• Derived Classes - Classes which descend from another class; this controls whether or
not a class’ derived classes are shown within its scope.

Version 1.1b7-2 Wing IDE Reference

5.3. SORTING 63

5.3 Sorting

In all the display views, the ordering of constructs within a module or class can be con-
trolled by the radio buttons labeled ’Sort’.

• Alphabetically - Displays all entries within each expanded portion of the tree in al-
phabetic order, regardless of type.

• By Type - Sorts each expanded portion of the tree first by construct type, and then
alphabetically.

Sorting doesn’t affect the top-level of the hierarchical list view, which is alphabetic in all
cases.

5.4 Embedded Information Display

The tabbed area at the bottom of the source code browser can be used to view information
about items selected in the hierarchical list view above.

5.4.1 Documentation

When the Documentation tab is selected, the source code browser will display any avail-
able Python ’doc string’ information for the construct selected in the hierarchical list view
above.

This only contains information when a doc string is defined and only works for packages,
modules, classes, functions, and methods (and never for variables or attributes).

5.4.2 Source Display

When the Source tab is selected, the source code browser will display the source at point
of definition of the selected construct.

Wing IDE Reference Version 1.1b7-2

64 Source Code Browser

The source view is a fully functional source code editor. If you make changes here, any
additional view of that source will be updated.

F You may be asked to save changes if you navigate to another source file after making an
edit, since the source files are closed if there isn’t another view to them open in another
window.

You can disable tracking of your selection in the hierarchical list area by unchecking the
’Follow Selection’ check box that is displayed under this tab. Otherwise, the source code
view will scroll to position as you change your selection above.

5.5 Navigating to Source

A number of options are available for navigating around source from the browser win-
dow:

• In order to switch to a full editor window containing the source file for any construct
in the hierachical list view, right-click on the construct in the list view and select the
Goto Source menu item.

• For classes that have inherited classes, the right-click popup obtained in this way will
also contain one item for each base class, allowing navigation within the hierarchical
list view upwards to the location at which the base class is defined.

Version 1.1b7-2 Wing IDE Reference

5.6. PYTHON VERSIONS 65

5.6 Python versions

F In analysing your source, Wing will use the Python interpreter and PYTHONPATHthat
you have specified in your debug properties. If you have indicated a main debug file
for your project, the values from that file’s per-file debug properties are used; otherwise
the project-wide values are used. Whenever any of these values changes, Wing will com-
pletely re-analyze your source code from scratch.

You can view the Python interpreter and PYTHONPATHthat are being used by the source
code analysis engine, by selecting the Show Analysis Stats item in the Source menu. The
values shown in the resulting dialog window are read-only but may be changed by push-
ing the Settings button. See section 6.2 for details on changing these values.

Be aware that if you use multiple versions of the Python interpreter or different
PYTHONPATHvalues for different source files in your project, Wing will analyse all files
in the project using the one interpreter version and PYTHONPATHit finds through the
main debug file or project-wide debug properties settings. This may lead to incorrect or
incomplete analysis of some source, so it is best to use only one version of Python with
each Wing IDE project file.

5.7 Limitations

The following are known bugs affecting source browsing generically (within the source
code browser window, or using the editor’s popup menu or auto-completion facility):

• Analysis sometimes fails to identify the type of a construct because Python code
doesn’t always provide clues to determine the data type. In these cases, you may
use assertion of isinstance to inform the analyzer, as described below.

• Types of elements in lists, tuples, and dictionaries are not identified.

• Docstrings and other analysis information may be out of date if you edit a file exter-
nally with another editor and don’t reload it in Wing. See section 4.9 for a discussion
of the reload options.

Wing IDE Reference Version 1.1b7-2

66 Source Code Browser

• Additional problems are known. Please refer to the bug list at
http://wingide.com/support/issuetrak

F One way to inform the code analysis facility of the type of a variable is to add an
isinstance call in your code. An example is assert isinstance(obj, CMyClass) .
The code analyzer will pick up on these and present more complete information for the
asserted values. This assertion may have the side-effect of catching type errors at the time
isinstance is called rather then when an invalid operation is attempted.

5.8 Disk Cache

The source code analyzer writes information about files it has recently examined under
˜/.wingide/cache (on Linux) or WINGHOME\profiles\[username]\cache (on
Windows).

Cache size may be controlled with the pysource.max-disk-cache-size preference.
However, Wing does not perform well if the space available for the cache is smaller than
the space needed for a single project’s source analysis information. If you see excessive
slowdowns, either increase the size of the cache or disable it entirely by setting its size to
0.

If the cache will be used by more than one computer, make sure the clocks of the two
computers are synchronized. The caching mechanism uses time stamps, and may become
confused if this is not done.

The analysis cache may be removed in its entirety with no ill ef-
fects (for example ’rm -rf ˜/.wingide/cache ’ on Linux or remove
WINGHOME\profiles\[username]\cache on Windows). It will be rebuilt as needed
subsequently unless it has been disabled.

Version 1.1b7-2 Wing IDE Reference

5.9. PREFERENCES 67

5.9 Preferences

The following preferences are available for control source code analysis and the source
browser:

❀ pysource.builtin-interfaces-dir - Name of the directory with interface files for built-
in modules. If a partial path is given, it will be interpreted as relative to WINGHOME.
Default=’src/pysource/builtin-pi-files’

❀ pysource.analyze-in-background - Whether or not Wing should should analyze
python source in the background. Default=true

❀ pysource.instance-attrib-scan-mode - How Wing will scan for instance attributes. The
scan either covers only the __init__ method or all methods in each class. Valid
values are ’init-only’ and ’all-methods’ . Default=’all-methods’ .

❀ pysource.max-disk-cache-size - The maximum size of the disk cache in megabytes.
This is the size of the actual data in the files, so actual disk usage will be somewhat
greater because of sector sizes and other factors. Set this to 0 to disable writing any
disk files. Default=50 .

❀ pysource.max-background-buffers - The maximum number of analysis information
buffers allowed in memory at once for files that are not being edited. This value is
ignored if the disk cache is disabled. Default=10 .

You need to quit and restart Wing before any changes in these preferences take effect.

Wing IDE Reference Version 1.1b7-2

69

Chapter 6

Debugger

This chapter describes how to use the Wing IDE debugger.

F The Wing debugger consists of two parts: (1) the debug client, represented by the debug-
ger window in Wing IDE, and (2) the debug server, which resides within another process
space, possibly on another machine, and communicates with the client via TCP/IP.

The debugger supports launching your application not just from Wing itself but also ex-
ternally, as with CGI scripts or code running in an embedded scripting facility within a
larger application.

When externally launched, your code can attach to the Wing IDE debugger at any point
in its execution, and may turn on and off debugging using a simple API.

Because the debugger core is written in optimized C, debug overhead is relatively
low; however, you should expect your programs to run about 50% slower within the
debugger.

6.1 Specifying Main Entry Point

Normally, Wing will start debugging in whatever file you have as your front- most win-
dow. Depending on the nature of your project, you may wish to specify a file as the
default debug entry point.

Wing IDE Reference Version 1.1b7-2

70 Debugger

To do this, right-click on one of your Python files in the Project Manager window and
choose the Set As Main Debug File option from the popup menu. This file is subsequently
executed whenever you start the debugger, except if you use the Debug Selection in the
Project Manager’s popup menu.

Note that the project manager will highlight the main entry point in red. You may clear
the default main debug file subsequently by using the Clear Main Debug File item in the
Project Manager window’s popup menu.

Regardless of whether a main debug file is defined, you can also start debugging any
open file with Debug Current File in the Debug menu, or by right-clicking on an entry in
the project manager and choosing the Debug Selection popup menu item.

The main entry point defined for a project is also used by the source code analysis engine
to determine the python interpreter version and python path to use for analysis. Thus,
changing this value will cause all source files in your project to be reanalysed from scratch.
See section 5.6 for details.

6.2 Debug Properties

In some cases, you will also need to set up some properties to use when debugging.
These are set either on a project-wide basis or may be specified on a per-file basis using
the main entry point file for the debug session. Project-wide debug properties apply in
all cases where a per-file value was not given; otherwise the per-file value overrides the
project-wide values.

Only per-file debug properties set on the initially invoked file are used in the debug session.
Even if other files with set properties are used in the debug session, any values set for
them will be ignored.

Debug properties may be set project-wide from the Properties item in the Project menu.
Per-file debug properties may be set from the Current File Debug Properties item in the
Run menu, or from the Set Debug Properties item in the right-click popup menu on the
project manager.

Version 1.1b7-2 Wing IDE Reference

6.2. DEBUG PROPERTIES 71

6.2.1 Project-wide Properties

The project-wide properties dialog contains the following fields:

• Python Executable - When the Custom setting radio button is checked and the entered
field is non-blank, this can be used to set the full path to the Python installation that
should be used when debugging source code in this project. This can be used to control
whether the debug program is executed under Python 1.5.2, 2.0, or 2.1. When Use
”python” is selected, Wing tries to use the default Python obtained by typing python
on the command line. If this fails, Wing will search for Python in /usr/local and
/usr (on Linux) or in the registry (on Windows).

• Python Path - The PYTHONPATHis used by Python to locate modules that are imported
at runtime with the import statement. When the Use environment checkbox in this
area is checked, the inherited PYTHONPATHenvironment variable is used for debug
sessions. Otherwise, is Custom setting is selected, the specified PYTHONPATHis used.

• Run Directory - When the Use file’s directory radio button is checked, the initial working
directory set for each debug session will be the location where the main entry point file
is located. Otherwise, when Custom setting is selected, the specified directory is used
or, when blank, the project file’s directory is used.

• Build Command - This command will be executed before starting debug on any source
in this project. This is useful to make sure that C/C++ extension modules are built, for
example in conjunction with an external Makefile , before execution is started.

• Environment - This is used to specify values that should be added, modified, or re-
moved from the environment that is inherited by debug processes started from Wing
IDE. Each entry is in var=value form and must be specified one per line in the pro-
vided entry area. An entry in the form var= (without a value) will cause the given
variable to be undefined. Note that you are operating on the environment inherited
from the IDE and not defining a blank new environment space. When the Use env ra-
dio button is checked, any entered values are ignored and the inherited environment
is used without changes.

All of these values are stored in the project file on a per-platform basis. This means that
when a project is used both on Linux and on Windows (via file sharing or source code
control), you must set values seperately for each platform. Wing shows and edits only
the values for the platform you are currently running on.

Wing IDE Reference Version 1.1b7-2

72 Debugger

If you are sharing a project file with other developers through a revision control system,
it is important to know that any full or partial relative file and directory paths specified
within the above values will be stored as a full path in the shared branch of the project
file. This means that other developers must work in an environment that supports those
paths.

6.2.2 Per-file Properties

The per-file debug properties dialog contains all the same fields as are available in the
project-wide properties described above, with the following additions:

• Run Arguments - Enter any run arguments here, including the name of the Python
source file as the first item in the list.

• Environment - This entry area contains some additional radio button options in the
per-file properties area. Use ’add to project’ to cause the values specified here to be
applied to the inherited runtime environment after the project-wide values are applied,
or ’add to env’ to bypass the project-wide values and apply the per-file values directly
to the inherited runtime environment.

• Show this dialog before each run - Check this checkbox if you want the debug options
dialog to appear each time you start a debug session.

Values entered here will override any project-wide values.

6.2.3 Relation to Source Analysis

The per-file and project-wide debug properties are also used by the source code analysis
engine in order to determine the Python interpreter version and PYTHONPATHto use in
analysis. For this reason, changing either Python Executable or Python Path in the debug
properties dialogs will cause Wing to reanalyse your entire source base from scratch. See
section 5.6 for details.

Version 1.1b7-2 Wing IDE Reference

6.3. SETTING BREAKPOINTS 73

6.3 Setting Breakpoints

A number of different styles of breakpoints are available for use with the Wing IDE de-
bugger. These can be set on source code by opening the source file, placing the cursor
on the line where a breakpoint is desired, and then either using items in the Breakpoints
menu or pushing the breakpoints tool buttons (the rightmost group in the toolbar).

F You can also set, clear, and edit breakpoints by clicking on the margin to the left of
the source editor, where breakpoints are indicated. Plain clicks will toggle to insert a
regular breakpoint or remove an existing breakpoint. You can also shift-click to insert a
temporary (one-time) breakpoint, control-click to insert a breakpoint and set an ignore
count for it, or shift-control-click to insert a conditional breakpoint. When a breakpoint
is already found on the line, shift-click will disable or enable it, control-click will set its
ignore count, and shift-control-click will set or edit the breakpoint conditional.

The following types of breakpoints are available:

• Regular - A regular breakpoint will always cause the debugger to stop on a given line
of code, whenever that code is reached.

• Temporary - A one-time breakpoint will cause the debugger to stop the first time it is
reached, but will be removed immediately thereafter.

• Conditional - A conditional breakpoint contains an expression that is evaluated each
time the breakpoint is reached. The debugger will stop only if the conditional evalu-
ates to true (any non-zero, non-empty, non-None value, as defined by Python). You
may edit the conditional of any existing breakpoint with the Edit Breakpoint Condition
item in the Breakpoints menu.

Once breakpoints have been defined, you can operate on them in a number of ways to
alter their behavior. These operations are available as menu items in the Breakpoints
menu, and toolbar icons:

• Ignore - It is possible to set an ignore count for a breakpoint. In this case, the break-
point will be ignored the given number of times, and the debugger will only stop at
the breakpoint if it is encountered more than the set number of times. The ignore count
is reset to its original value with each new debug run.

Wing IDE Reference Version 1.1b7-2

74 Debugger

• Disable/Enable - Breakpoints can be temporarily disabled and subsequently re-
enabled. Any disabled breakpoint will be ignored until the user re-enables it.

• Cleared - Individual breakpoints can be selected and removed.

• Clear All - A menu item and toolbar icon also exists to clear all defined breakpoints at
once.

6.4 Starting a Debug Session

There are several ways in which to start a debug session from within Wing:

• Choose Debug from the Run menu or push the Start debug tool bar icon. This will
run the project’s main debug file (described in section 6.1), if one has been defined, or
otherwise the file that is open in the frontmost editor window. Execution will stop on
the first line of the code.

• Choose Debug Current File from the Run menu or Debug Selection from the right-click
popup menu on the project manager to run a specific file regardless of whether a main
debug file has been specified for your project. This will stop on the first line of the
code.

• Choose Continue from the Run menu or push the Run To Breakpoint icon in the tool-
bar. This will run the main debug file if one has been defined, or otherwise the file open
in the frontmost editor window. Execution continues until a breakpoint or exception
is encountered.

• Choose Run to Cursor from the Run menu or push the Run To Cursor icon in the
toolbar. This will run the main debug file if one has been defined or otherwise the
file open in the frontmost editor window. Execution continues until it reaches the
line selected in the current source text window, or until a breakpoint or exception is
encountered.

Note that additional options exist for initiating a debug session from outside of Wing and
for attaching to an already-running process. These are described in sections 6.13 and 6.12
below.

Version 1.1b7-2 Wing IDE Reference

6.5. FLOW CONTROL 75

F If you are attempting to run your debug process against a non-standard version of
Python, for example one that has been compiled with altered values for Py_TRACE_REFS
or WITH_CYCLE_GC, or that has been altered in other ways, you may need to recompile
the debugger core module. Please refer to section 6.17 for more information.

6.5 Flow Control

Once the debugger is running, the following commands are available for controlling fur-
ther execution of the debug program from Wing. These are accessible from the middle
panel of the tool bar or from the Run menu:

• At any time, a freely running debug program can be paused with the Pause item in
the Run menu or with the pause tool bar button. This will stop at the current point of
execution of the debug program.

• Continue and Run To Cursor are also available during the debug session, whenever
the program is in paused (non-running) state. These act the same way they do if used
to initiate the debug session in the first place.

• At any time during a debug session, the Kill menu item or tool can be used to force
termination of the debug program. Note that this stops running the debug program
without executing any further lines of code, so may result in problems with code that
assumes it will get a chance to do cleanup tasks upon exit. This option is disabled if the
current process was launched outside of Wing, so that only those processes spawned
by Wing can be killed in this way.

• Attach and Detach may be used to change the debugger between different debug pro-
cesses. This is for advanced users and is described in section 6.12.

When stopped on a given line of code, execution can be stepped line-by-line by using the
Step Over, Step Into, and Step Out menu item or tool bar icons:

• Step Over will step over a single Python instruction, whether or not doing so will
proceed to a new line of code.

Wing IDE Reference Version 1.1b7-2

76 Debugger

• Step Into will attempt to step into the next executed function on the current line of
code. If there is no function or method to step into, this command acts like Step Over.

• Step Out will complete execution of the current function or method and stop on the
first instruction encountered after returning from the current function or method.

6.6 Viewing the Stack

Whenever the debug program is paused at a breakpoint or during manual stepping, the
current stack is displayed as a list in the top panel of the debugger window. This list
shows all stack frames encountered between invocation of the program and the current
run position. Outermost stack frames are higher up on the list.

Note that the stack displayed is a concatenation of all Python stack frames seen, and may
include discontinuities if your code calls C/C++ or other non-Python code, which in turn
makes calls back into Python. In this case, the C/C++ stack frames will be missing but
the overall order and flow of invocation should be apparent from those stack frames that
are visible.

When the debugger steps or stops at a breakpoint or exception, it selects the innermost
stack frame by default.

In order to visit other stack frames further up or down the stack, use the Up Stack and
Down Stack items in the Run menu or the up/down tool bar icons. You can also click
directly on the surface of the stack in the top panel of the debugger window.

When you change stack frames, the variables views will be changed accordingly, and the
current line of code at that stack frame is presented in an editor window.

6.7 Viewing Variables

The Wing IDE debugger provides two ways in which to look at variables: (1) in a hier-
archical tree view that can be expanded and collapsed, and (2) in a textual view that can
be set to show a desired number of hierarchical levels. These two views are in the sec-
ond and third debugger window panels, respectively. Note that the relative sizes of these
panels can be adjusted by dragging the resize indicators on the dividers between them.

Version 1.1b7-2 Wing IDE Reference

6.7. VIEWING VARIABLES 77

F The variables data displayed by Wing is fetched from the debug server on the fly as
you navigate. Because of this, you may experience a brief delay when a change in an
expansion or stack frame results in a large data transfer.

6.7.1 Tree View

The tree view contains two top-level entries: (1) locals, which contains all the locals
and parameters defined in the currently selected stack frame, and (2) globals, which are
scoped to be accessible from all stack frames. Note that in the top-level scope, these two
name spaces will be the same and will show the same data.

Simple values, such as strings and numbers, will be displayed in the value column of the
tree view area. Strings are always contained in "" (double quotes). Any value outside of
quotes is a number or internally defined constant such as None or Ellipsis .

Complex values, such as instances, lists, and dictionaries, will be presented with an angle-
bracketed type and memory address (for example, <dict 0x80ce388>) and can be ex-
panded by clicking on the expansion indicator in the Variable column. The memory ad-
dress uniquely identifies the construct. Thus, if you see the same address in two places,
you are looking at two object references to the same instance.

Upon expansion of complex views, the position or name of each sub-entry will be dis-
played in the Variable column, and the value of each entry (possibly also complex values)
will be displayed in the Value column. Nested complex values can be expanded indefi-
nitely, even if this results in the traversal of cycles of object references.

Once you expand an entry, the debugger will continue to present that entry expanded,
even after you step further or restart the debug session. Expansion state is saved for the
duration of your Wing IDE session.

Wing IDE Reference Version 1.1b7-2

78 Debugger

F Values that have not yet been defined in the flow of control are shown with value
<undefined> .

Some data types, such as those defined only within C/C++ code, or those containing
certain Python language internals, cannot be transferred over the network. These are
denoted with Value entries in the form <opaque 0x80ce784> and cannot be expanded
further or inspected, although you may be able to use the expression evaluator described
in section 6.8 to access them.

Values Class-scoped values seen within an instance are shown in italics.

When the debugger encounters a very long string, this is indicated in the Value column
by prepending <truncated> to the start of the value. In these cases, the full string can
be viewed by clicking on the value and using the Textual View panel at the bottom of the
debugger window (explained in section 6.7.2).

Other indicators such as <huge> , <error handling value> , and <network time-
out during evaluate> are also used. These are described in section 6.7.5.

Popup Menu Options

By right-clicking on the surface of the tree view of variables, it is possible to obtain a
popup menu that contains several commands useful in navigating data structures. Most
of the items in this popup menu act upon the specific data value that was right-clicked
upon:

• Zoom To Window - This will open the selected data value in a seperate variable view
window, using the default configured display and value tracking styles.

• Expand More - When a complex data value is clicked upon, and that value has parts
that are not yet expanded, this menu item will be enabled. It will expand one ad-
ditional level in the complex value. Note that since this expands a potentially large
number of values, you may experience a delay before the operation completes.

• Collapse More - When a complex data value is clicked upon, and that value has any
expanded parts, the value is collapsed by one additional level.

• Zoom and Track by Symbolic Path - This will open the selected data value in a seper-
ate variable view window, tracking its value by the symbolic path that was selected.

Version 1.1b7-2 Wing IDE Reference

6.7. VIEWING VARIABLES 79

• Zoom and Track by Direct Reference - This will open the selected data value a seper-
ate variable view window, tracking its value by direct object reference to the value.
This is available only if the value clicked upon is a mutable data type. Otherwise, this
item is disabled.

• Zoom and Track by Parent Slot - This will open the selected data value in a seperate
variable view window, tracking its value by a combination of object reference to the
parent value and symbolic reference to the slot within the parent.

• Default Zoom Style - This is used to change the display style for newly created
zoomed variable windows. Available styles are tree, textual (described in the next
section), and a combination view containing both as in the main debugger window.

• Default Zoom Tracking - This is used to change the way in which variables in newly
created zoomed out windows are tracked.

The variable value zooming and tracking features are described in more detail in section
6.7.3 below.

6.7.2 Textual View

The textual view is more useful in some cases than the tree view because (1) it can bet-
ter display long strings, (2) whole structures are easily accessed without as much visual
clutter, and (3) arbitrary sections of the view can be copied and pasted.

The layout textual view is very similar to the tree view, except that per-value expansion
and collapse is not available. Instead, a hierarchy of values is displayed up to some se-
lected depth of expansion for the entire set of values.

The Show More and Show Less buttons act like the Expand More and Expand Less popup
menu items on the tree view surface, and are enabled and disabled in the same circum-
stances.

F Using Expand More on the textual variable view, like use of Expand More on the tree
view, may result in significant delays on the user interface if expanding large structures
to a depth of more than 3 or 4 levels. Caution is advisable in cases where endless traversal
of bushy structures is possible.

Wing IDE Reference Version 1.1b7-2

80 Debugger

6.7.3 Tracking Individual Values

F It is possible to zoom variable values out to seperate windows by right-clicking on tree
style variable views, either in the main debugger window or in any other zoomed-out
tree style view. The resulting window presents the value using a tree, textual, or
combination display, according to the configured defaults. The value is tracked during
execution and will change on the display according to either its symbolic path, a direct
object reference to the value (only for mutable values), or according to a combination of
object reference to the parent value and symbolic name for the parent slot.

The display style is controlled with the debug.default-var-view-style preference
and can be overridden from the Default Zoom Style item in the popup menu. The selected
display styles are the same as those described above: tree, textual, or a combination view
containing both types of views, as is found in the main debugger window.

Before using this feature, it’s a good idea to understand the subtleties of tracking values
during execution. You will likely want to change how this is done during different debug
tasks. The supported methods are:

• By Symbolic Path - The debugger looks at the symbolic path off locals or globals
to the selected data value and tries to reevaluate that path whenever the value may
have changed. For example, if you define a dictionary variable called testdict
in a function and set a value testdict[1] = ’test’ , the zoomed out view for
testdict[1] would show any value for that slot of testdict , even if you delete
testdict and recreate it. In other words, value tracking is independent of the life of any
object instances in the data path.

• By Direct Object Reference - The debugger uses the object reference to the selected
value to track it. If you use this mode with testdict as a whole, it would track
the contents of that dictionary as long as it exists. If you were to reassign the variable
testdict to another value, your zoomed out display would still show the contents of
the original dictionary instance, rather than the new value of the variable testdict .
In other words, the symbolic path to the value is completely disregarded and only in-
stance identity is used to track the value. Because it’s meaningless to track immutable
types this way, this option is disabled or enabled according to the values you select to
zoom out into a seperate window.

• By Parent Reference and Slot - The debugger uses the object reference to the parent of

Version 1.1b7-2 Wing IDE Reference

6.7. VIEWING VARIABLES 81

the selected data slot and uses a symbolic representation of the slot within the parent
where the value is to determined where to look for any value updates. This means
that reassignment of the variable that points to the parent does not alter what is dis-
played in the zoomed-out view; only reassignment of the selected slot changes what
is displayed by the debugger. Note that at the top level of locals or globals , this is
the same as tracking the value by symbolic path, because the parent reference is to the
locals or globals dictionary itself.

For any of these, if the value cannot be evaluated because it does not exist at any given
point in time, the debugger displays <undefined> . This happens when the last object
reference to a reference-tracked value is discarded, or if a selected symbolic path is unde-
fined or unevaluable.

The type of tracking that is used is controlled by the debug.default-var-track-
style preference and can be overridden from the Default Zoom Tracking item in the
popup menu, or by selecting one of the specific Zoom and Track popup menu items
(Zoom to Window simply uses the configured default).

6.7.4 Filtering Data Display

There are a number of ways in which variable display can be configured:

• Wing lets you prune the variable display area by omitting all values by type, and
variables or dictionary keys by name.

Currently, this can be done only by setting the two preferences, debug.omit-types
and debug.omit-names . These are described in section 6.21.

• Wing provides control over size thresholds above which values are considered too
large to move from the debug process into the variable display area. Values found to
be too large are annotated as huge in the variable display area and cannot be expanded
further. The data size thresholds are controlled with preferences debug.huge-list-
threshold and debug.huge-string-threshold , described in section 6.21 and in
section 6.7.5.

• By default Wing will display small items on a single line in the variable display areas,
even if they are complex types like lists and maps. The size threshold used for this
is controlled with preference debug.line-threshold . If you want all values to be
shown uniformly, this preference should be set to 0.

Wing IDE Reference Version 1.1b7-2

82 Debugger

6.7.5 Problems Handling Debug Data

The Wing debugger tries to handle debug data as gently as possible to avoid entering
into lengthy computations or triggering errors in the debug process while it is packaging
debug data for transfer. Even so, not all debug data can be shown on the display. This
section describes each of the reasons why this may happen:

• Wing may time out handling a value - Large data values may hang up the debug
server process during packaging. Wing tries to avoid this by carefully probing an
object’s size before packing it up. In some cases, this does not work and Wing will wait
for the data for the duration set by the debug.network-timeout preference and
then will display the variable value as <network timeout during evaluate> .

• Wing may encounter values too large to handle - Wing will not package and
transfer large sequences, arrays or strings exceed the size limits set by prefer-
ences debug.huge-list-threshold and debug.huge-string-threshold (de-
scribed in section 6.21). On the debugger display, oversized sequences and arrays are
annotated as huge and <truncated> is prepended to large truncated strings.

To avoid this, increase the value of the threshold preferences, but be prepared for
longer data transfer times. Note that setting these values too high will cause the de-
bugger to time out if the debug.network-timeout value isn’t also increased.

An alternative for viewing large data values is to use the Expression Evaluator (de-
scribed in section 6.8) or Interactive Debug Probe (described in section 6.9) to view
sub-parts of the data rather than tranferring the whole top-level portion of the value.

• Wing may encounter errors during data handling - Because Wing makes assignments
and comparisons during packaging of debug data, and because it converts debug data
into string form, it may execute special methods such as __cmp__ and __str__ in
your code. If this code has bugs in it, the debugger may reveal those bugs at times
when you would otherwise not see them.

The rare worst case scenario is crashing of the debug process if flawed C or C++ exten-
sion module code is invoked. In this case, the debug session is ended.

Much more usual, but still rare, are cases where Wing encounters an unexpected
Python exception while handling a debug data value. When this happens, Wing
displays the value as <error handling value> . These errors are not reported
as normal program errors in the Error List dialog. However, setting the preferences
main.print-wing-debug-output and debug.-verbose-debugging to true
will cause the exception that is being raised to appear in the window from which Wing
was launched from the command line.

Version 1.1b7-2 Wing IDE Reference

6.8. EVALUATING EXPRESSIONS 83

Wing remembers errors it encounters on debug values and stores these in the project file.
These values will not be refetched during subsequent debugging, even if Wing is quit and
restarted.

To override this behavior for an individual value, use the Force Reload item in the
right-click popup menu of a tree view variable area.

To clear the list of all errors previously encountered so that all values are
reloaded after subsequent stepping or restart of the debug session, use the
Clear Stored Value Errors item in the Run menu or tree display right-click popup
menu. This operates only on the list of errors known for the current debug file, if a debug
session is active, or for the main debug file, if any, when no debug process is running.

6.8 Evaluating Expressions

Wing includes an interface for evaluating keyboard-entered expressions and viewing the
result of the evaluation within a data display tree. Expressions are evaluated in the con-
text of the current debug stack frame, so this feature is available only when a debug
session is active and the debug program has been paused or has stopped at a breakpoint
or exception. This also means that the value of the same typed expression may change as
you move up and down the call stack in the main debugger window.

The Expression Evaluator item in the Windows menu will display the expression eval-
uator window. Expressions are typed into the panel at the top of the window and the
Evaluate button is used to display the result of the evaluation below. Only expressions
that evaluate to a value may be entered. Other statements, like variable assignments, im-
port statements, and language constructs are rejected with an error. These may only be
executed using the Interactive Debug Probe described in the next section.

A history list of expressions previously evaluated is also available via popup menu. Ex-
pressions selected from this menu are copied into the entry area and optionally evaluated
immediately upon selection from the menu (only when the Evaluate Immediately check-
box is checked).

If an exception occurs during expression evaluation, this is reported with the Error List
dialog and, if possible, the source location of the error is shown.

You may select from one of three display options when evaluating expressions: A single
tree view, a textual view, or a tree/text combo view. These act exactly the same as those

Wing IDE Reference Version 1.1b7-2

84 Debugger

accessed from the main debugger window, as described in section 6.7. Once you have
changed view modes, you must push the Evaluate button again before the view is filled
with data.

In the rare cases where evaluating an expression results in changing the value of local or
global variables, your debug program will continue in that changed context. Whenever
a value is changed as a result of expression evaluation, the updated value will be prop-
agated into any visible debugger variable display areas because Wing IDE refetches all
displayed data values after the evaluation of each expression. However, since you may
not notice these changes, caution is then required to avoid creating undesired side-effects
in the running debug program. Otherwise, your program may not act as it would have
during normal, uninterrupted execution.

Note that in this version of Wing, breakpoints are never reached as a result of expression
evaluation, and any exceptions are reported only after the fact. This means that activity in
the expression evaluation window has no effect on the debug run position or stack, even
though an exception location in source code may in some cases by displayed.

6.9 Interactive Debug Probe

An interactive probe that acts like the Python shell is available for evaluating and ex-
ecuting arbitrary Python code in the context of a debug program. Like the expression
evaluator, this acts on the current debug stack frame, and thus is available only when
there is an active debug session and the debug program is paused.

This tool is displayed by selecting the Interactive Debug Probe menu item in the Windows
menu. It acts much like the Python interpreter when it is invoked from the command
line. You may use most of Wing’s source editor commands and key bindings within
the interactive debug probe window, and can use the up/down arrow keys to traverse a
history of recently typed commands.

If commands you type change any local, instance, or global data values, cause modules
to be loaded or unloaded, set environment variables, or otherwise alter the run environ-
ment, your debug program will continue within that altered state. All visible variable
display views are also updated after each line entered in the interactive shell in order
to reflect any changes caused by your commands. But since you may not notice these
changes, caution is required to avoid creating undesired side-effects in the running de-
bug program. Otherwise, your program may not act as it would have during normal,
uninterrupted execution.

Version 1.1b7-2 Wing IDE Reference

6.10. INTERACTIVE PYTHON SHELL 85

One limitation is that private instance variables prefixed by double underscore (such as
self.__my_var) cannot be directly inspected or altered within the interactive shell.
Python will report that the attribute is not defined because it internally prefixes the class
name where the private variable is found. These can easily be viewed using the main
debugger window or expression evaluator, or you can look at self.__dict__ as a
whole and then use the fully qualified self._classname__my_var to access or alter
the value.

Note that in this version of Wing, breakpoints are never reached as a result of entries
typed into the interactive shell, and any exceptions are reported only after the fact with
a textual traceback. This means that activity in the interactive shell window has no effect
on the debug run position or stack, even though an exception location in source code may
in some cases be displayed.

Preference debug.raise-from-interactive can be used to determine whether
source code windows will be raised when exceptions occur here. See section 6.21 for
details.

6.10 Interactive Python Shell

Another shell tool is provided for execution of commands and evaluation of expressions
outside of your debug program. This is the Interactive Python Shell, which may be ac-
cessed from the Windows menu.

Since this shell runs a seperate Python process that is independent of your debug pro-
cess, it is always enabled and functions without regard to the state of any running debug
process. As such, it acts very similarly to a regular command line Python shell.

The Interactive Python Shell always runs the same version of Python as is used for your
debug process. This is described in more detail in section 6.2

To clear the state of the Python shell, press the New Session button. This will kill the
external python process and restart it, thus clearing and resetting the state of the shell.

Note that in this version of Wing, breakpoints are never reached as a result of entries
typed into the interactive shell, and any exceptions are reported only after the fact with
a textual trace back. Preference debug.raise-from-interactive can be used to de-
termine whether source code windows will be raised when exceptions occur here. See
section 6.21 for details.

Wing IDE Reference Version 1.1b7-2

86 Debugger

6.11 Managing Exceptions

During debug program execution, the debugger can be asked to stop on exceptions in the
same way it would stop at breakpoints or in response to a Pause command.

A number of options for controlling when the debugger will stop on an exception are
available from the Run menu’s Exception Mode item:

• Always Stop - The debugger will stop at every single exception that is raised. Note
that in some code this will be very often, since exceptions may be used internally to
handle normal, acceptible runtime conditions.

• Never Stop - In this case, the debugger will never stop on any exceptions. Instead,
the exception backtrace is printed to stderr and the program continues to execute,
or exits, according to action taken by the Python interpreter. This behavior is the same
as if the program were running outside of the debugger. You will, however, be given
a post-mortem error and traceback by Wing to distinguish clearly from cases where a
program has exited normally.

• Stop on Unhandled - This is the default. The debugger will only stop on exceptions
for which no exception catching block is found. This check cannot take into account
exceptions that are handled within C or C++ extension module code, so Wing may
stop on more exceptions than are seen outside of the debugger. Use the ”Don’t show
me this exception location again” option in the Error List dialog that appears to filter
out these exceptions as they occur.

Whenever stopping on an exception, Wing presents an Error List window containing the
exception information and backtrace, and stops the program at the point of exception (so
that the stack frame and variables for that point are displayed in the debugger window).

Once stopped at an exception, execution can be continued in the same way as at any other
time, using the run menu or tool bar, or by selecting Close & Continue in the Error List
window.

6.11.1 Filtering Exceptions

The Error List window can be used to indicate to the debugger that the current exception
should be omitted from those at which the debugger will stop in the future. To do this,

Version 1.1b7-2 Wing IDE Reference

6.12. ATTACHING TO AND DETACHING FROM DEBUG PROCESSES 87

check the checkbox labeled ”Don’t show me this exception location again” and push the
”Close” or ”Close & Continue” button.

This causes the debugger to ignore all exceptions on that line, regardless of type.

The list of ignored exceptions may be cleared to blank subsequently with the Clear Ig-
nored Exceptions item in the Run menu.

6.12 Attaching to and Detaching from Debug Processes

Debug processes normally contact Wing IDE automatically during startup. However,
Wing IDE can also attach to debug processes that are already running but not yet in con-
tact with the IDE. There are two cases where this is useful:

• (1) When an externally launched process (one that uses wingdbstub.py , as described
in section 6.13) cannot reach the IDE at the configured host and port during initial
startup, for example because the IDE is not yet running or was not configured to accept
debug connections.

• (2) When a process attached to the IDE is disconnected using Detach from Process in
the Run menu or the detach icon in the toolbar.

In either case, the IDE can manage any number of detached processes, allowing you to
attach to any one process at a time.

6.12.1 Access Control

Wing will not allow attach/detach functionality unless it has available to it a password
that can be used to control access. This is very important because an unsecured debug
server provides the client (Wing IDE) full control of the host machine via the Interactive
Debug Probe tool. Any Python command can be executed in this way, including pro-
grams that compromise the security of your machine and network.

Because Wing sets up an access control password during installation, attach and detach
will work out of the box as long as your debug processes are launched from Wing IDE, by
you from the command line, or in the context of some service or program that is running

Wing IDE Reference Version 1.1b7-2

88 Debugger

under your user name on a machine that has access to your ˜/.wingide directory (on
Linux) or WINGHOME\profiles\[username] (on Windows).

If you plan to debug remotely, please refer to the instructions in section 6.13.3 and 6.13.5.
Setting up your remote debugging to work properly with encryption will also fullfill the
requirements of the attach/detach facility. Note, however, that you can use encryption
type none to enable attach/detach but disable channel encryption.

6.12.2 Detaching

The most common way of generating a process to which to attach is to first detach from
a debug process. This is done by selecting the Detach from Process item in the Run menu
or the detach icon in the toolbar.

Whenever a process is detached, it continues running as if outside of the debugger, with-
out stopping at any breakpoints or exceptions. Even if a process is paused within the
debugger at time of detaching from the IDE, the process will start running actively im-
mediately after the IDE disconnects.

6.12.3 Attaching

The Attach to Process or attach toolbar icon are available whenever no other debug
process is attached to the IDE. This brings up a dialog box that includes a list of avail-
able processes to attach to. The list is built from hard-wired host/port pairs given with
the debug.attach-defaults preference ((’127.0.0.1’, 50015) by default), com-
bined with known processes that were previously attached to Wing IDE.

Wing updates the list of available processes as debug sessions are killed from the IDE, as
they are seen to exit from the outside while attached to Wing, or when the process cannot
be contacted by Wing.

To attach to a process, select it from the list and push the Attach button. You may also
type in a host/port value manually if your choice is not on the list (see the next subsection
below).

Once you are attached to a process, it continues running until it reaches a breakpoint,
unhandled exception, or you push the Pause button or use the Pause item in the Run
menu.

Version 1.1b7-2 Wing IDE Reference

6.13. DEBUGGING EXTERNALLY INITIATED PROCESSES 89

6.12.4 Identifying Foreign Processes

If Wing is not running or not listening for connections because Passive Listen has been
disabled, then additional processes may be available that are not listed in the Attach dia-
log.

This is usually the case when debugging externally launched code (that uses
wingdbstub.py as described in section 6.13). You may use the kAttachPort constant
in wingdbstub.py to set the port on which such processes will listen for attach requests.
It is important to set unique values for this port for each concurrent, externally-launched
process. If the set port is in use, a random port number will be used instead and it may
be difficult to determine this number if the process cannot initially contact Wing IDE to
register.

In any case, any unregistered debug process can be reached from Wing IDE by typing the
host/port into the Attach dialog text areas. If you find yourself typing a host/port value
often, it is best to add that value to the debug.attach-defaults preference.

Note that improperly configuring wingdbstub.py can also result in failure to reach the
IDE during startup, since the configured kWingHostPort must match your Wing IDE
preferences. See section 6.13 to work through your configuration before resigning to at-
taching manually.

6.12.5 Limitations

Currently, Wing supports attaching only to a single debug process at a time. Whenever
you detach from a process, it begins free-running and will not stop at any breakpoints or
non-fatal exceptions. This limits what can be done with detach/attach from a single copy
of Wing. If you wish to actively debug two processes at once, simultaneously controlling
stepping, breakpoint activation, and execution (as in a client/server network program),
it is best to run two copies of Wing at once.

6.13 Debugging Externally Initiated Processes

This section describes how to start debugging from a process that is not launched by
Wing. Examples of debug code that is launched externally include CGI scripts running
under a web server, or embedded Python scripts running inside a larger application.

Wing IDE Reference Version 1.1b7-2

90 Debugger

6.13.1 Importing the Debugger Stub

The following step-by-step instructions can be used to start debugging in externally
launched code that is running on the same machine as Wing IDE:

1. Copy wingdbstub.py from the Wing IDE installation directory into the same di-
rectory as your debug program.

2. At the point where you want debugging to begin, insert the following source code:

import wingdbstub

3. Make sure the Wing IDE preference debug.passive-listen is set to true and
(re)launch the IDE, or use the Network Mode section of the Run menu to turn on
passive listen.

4. Set any required breakpoints in your Python source code.

5. If you are using Windows, set an environment variable called WINGHOME
that points to the location at which you installed Wing (usually
C:\Program Files\Wing IDE\). You can also edit these values in wingdb-
stub.py if setting an env is inconvenient.

6. Initiate the debug program from outside Wing IDE, for example with a CGI invoca-
tion from your web browser, if the program is a CGI script. Make sure that you are
running the Python interpreter without the -O option. The debugger cannot deter-
mine line numbers and thus cannot do anything meaningful when optimization is
turned on.

7. The debugger should stop at the first breakpoint or exception found. If no break-
point or exception is reached, the program will run to completion, or you can use
the Pause command in the Run menu.

F When an external process attaches to Wing IDE, the Kill item in the Run menu and tool-
bar icon are disabled, because Wing recognizes that it has not itself launched the debug
process. To enable Kill in these cases also, set the debug.enable-kill-external
preference to true .

Version 1.1b7-2 Wing IDE Reference

6.13. DEBUGGING EXTERNALLY INITIATED PROCESSES 91

If you have problems making this work, try setting kSilent=0 variable in
wingdbstub.py and launch the Python code from the command line where you can
see its error output. Even though CGIs and similar code may not work properly this way,
doing so can help to shed light on why a debug connection is not being initiated properly.

6.13.2 Server-side configuration

In some cases you may also need to alter other preset configuration values at the start
of wingdbstub.py . These values completely replace any values set in Wing’s project-
wide or per-file debug properties, which are relevant only when the debug program is
launched from within Wing. The following options are available:

• The debugger can be disabled entirely with kWingDebugDisabled=1 This is equiv-
alent to setting the WINGDB_DISABLEDenvironment variable before launching the
debug program.

• Set kWingHostPort to specify the network location of Wing IDE, so the debugger
can connect to it when it starts. This is equivalent to setting the WINGDB_HOSTPORT
environment variable before launching the debug program. The default value is
localhost:50005 . See section 6.13.3 below for details if you need to change this
value.

• You can control whether or not the debugger’s internal error messages are displayed
by setting kSilent . This is equivalent to setting the WINGDB_SILENTenvironment
variable before launching the debug program. When set to 1, debugger internal mes-
sages are not printed to stderr , so they will not appear (for example, in the web
server log file when running CGI scripts). However, to track down problems in launch-
ing the debugger in the first place, you may need to temporarily set this value to 0 to
see the debugger’s internal error messages (which can be quite verbose).

• Set kEmbedded to 1 when debugging embedded scripts. In this case, the debug
connection will be maintained across script invocations instead of closing the de-
bug connection when the script finishes. When this is set to 1, you must call
wingdbstub.debugger.ProgramQuit() before your program exits in order to
cleanly close the debug connection to the IDE. This is equivalent to setting the en-
vironment variable WINGDB_EMBEDDED.

• Set kAttachPort to define the default port at which the debug process will listen
for requests to attach. This is equivalent to setting the WINGDB_ATTACHPORTenvi-
ronment variable before launching the debug program. This value is used when the

Wing IDE Reference Version 1.1b7-2

92 Debugger

debug process is running without being in contact with Wing IDE, as might happen
if it initially fails to connect to the above-defined host and port, or if the IDE detaches
from the process for a period of time. This is described in more detail in section 6.12
below.

• Optionally, set the location of the Wing IDE distribution’s home directory. This is set
up during installation, but may need to be altered if you are running Wing from source.

Setting any of the above-described environment variable equivalents will override the
value given in the wingdbstub.py file.

F Whenever the debugger cannot contact Wing IDE (for example, if the IDE is not running
or is listening on a different port), the debug program will be run without any debugger.
This is useful since debug-enabled CGIs and other programs should work normally
when Wing is not present. In this case, you can attach to the process using Attach to
Process from the Run menu, as described in section 6.12.

6.13.3 Remote Debugging

The description above covers only the case where you are running Wing and the debug
code on the same machine. You can also ask the debugger to connect remotely over the
network. This section describes how this is done with two machines of the same type.
More information on working with machines of different type (e.g. Linux and Windows)
can be found in section 6.17.

In order to do this, you need to check the following settings:

1. First set up Wing IDE to successfully accept connections from another process
within the same machine, as described in section 6.13.1 above. You can use any
Python script for testing this until you have values that work.

2. Set the debug.network-server preference to the name or IP address of the net-
work interface on which the debugger listens for connections. This may be None or
"" to indicate that the debugger should listen on all the valid network interfaces on
the host.

Version 1.1b7-2 Wing IDE Reference

6.13. DEBUGGING EXTERNALLY INITIATED PROCESSES 93

3. Set the passive-hosts preference list to include the host on which the debug
process will be run.

4. Set the host and port to match the values set in Wing IDE with preferences
debug.network-server and debug.network-port .

5. Next copy the debug server code out of your primary Wing installation over
to the machine on which you wish to run your debug program. You will
need the at least the files found in bin/#.#.#/src/debug/server and
bin/#.#.#/opensource/schannel where #.#.# is your Python interpreter’s
version (for example 1.5.2). If you’re using a version of Python not found in
the primary Wing installation, you can use the nearest lower release as long as the
major.minor versions match. For example, the 2.1.0 binaries will work with
2.1.1 .

Unless you are low on disk space, the easiest way to do this is to transfer the en-
tire Wing IDE binary installation by copying over the contents of the bin directory
inside your Wing installation.

On Linux you might use this command to pack up the necessary files:

cd WINGHOME
tar cf dbgsvr.tar bin

Move those files to the machine you want to debug on and unpack them into a direc-
tory to which your debug process will have access. This directory acts as WINGHOME
on the debug server.

Once done, you should have at least the following directories under WINGHOME
on the machine where you wish to run your debug process, each filled with the
*.pyc and *.pyd (Windows) or *.so (Linux) files that are in your primary Wing
installation:

bin/1.5.2/src/debug/server
bin/1.5.2/opensource/schannel
bin/2.0.0/src/debug/server
bin/2.0.0/opensource/schannel
bin/2.1.0/src/debug/server
bin/2.1.0/opensource/schannel

If you’re only using one version of Python, you can omit the directories for the
other versions that you are not using. If you’re using a newer release of the same

Wing IDE Reference Version 1.1b7-2

94 Debugger

major.minor release of Python, for example 2.1.1 , you should copy out the
newest available version in that major.minor series, for example 2.1.0 . Noth-
ing outside of the the above directories is used, so may also be removed or omitted
from your original copy.

6. Next, transfer copies of all your debug code so that the source files are available on
the host where Wing IDE will be running and at least the *.pyc files are available
on the debug server. You must also place a copy of wingdbstub.py with these
files and import it as described in section 6.13. You will need to set at least the value
of kWingHostPort and kWingHome inside of wingdbstub.py in order to tell the
debugger where it should connect once your debug program has been started and
where it can find the debug server code that you’ve transferred over from your
primary Wing installation.

Note that during debugging, the client and server copies of the files must match or
the debugger will either fail to stop at breakpoints or stop at the wrong place, and
stepping through code may not work properly. Since there is no mechanism in this
version of Wing for transferring code, you need to use NFS, Samba, FTP or some
other file transfer mechanism to keep the remote files up to date as you edit them in
Wing.

7. If the real full path to the location of your files do not match on the client and server,
use the debug.location-map preference to define one or more mappings from
remote file location to local file location. This is described in more detail in the next
section.

Then restart Wing, set a test breakpoint in the debug file, and try running the debug
process. If you have problems, set kSilent=0 in wingdbstub.py and check whether
the debug stub reports that it could not connect to Wing IDE.

6.13.4 Defining file location maps

Wing currently requires access to debug files on disk both on the host where Wing IDE
is running and where the debug process is running. Usually, this is facilitated by set-
ting up file sharing between the two machines, using NFS, Samba, or other file sharing
mechanism. Manual or semi-automatic FTP transfers will also work.

In cases where the full path to your source is not the same on both machines, you need to
set up a mapping that tells Wing where it can find debug files. Note that making symbolic

Version 1.1b7-2 Wing IDE Reference

6.13. DEBUGGING EXTERNALLY INITIATED PROCESSES 95

links to ’fake’ file locations on the client or server does not work because file locations are
resolved to actual full path location by the debug server.

The debug file mapping is defined with the debug.location-map preference, which is
a dictionary of remote host ip address (the host where the debug process is running) and
a list of mapping entries.

In addition to standard dotted-quad IP addresses, you may specify a special ip address
entry of "*" to define a default mapping for all hosts that are not otherwise specified in
the location map.

The mapping entries themselves are arrays of tuples where each tuple is a
(remote_prefix, local_prefix) pair. The remote file name will be a full path on
the debug server’s file system. The local file name will be a URL, currently always start-
ing with file: . Note that the local file URL should not contain backslashes (\) even if
the local host is a Windows machine.

Examples

The default value for debug.location-map is {’127.0.0.1’:None} which indicates
that all files at top level on the local host should be referred to with file: URLs. This
is equivalent to the more verbose {’127.0.0.1’:[(’/’,’file:’)]} . It converts full
paths on the debug server to the client-side URLs without altering any part of the full
path.

Here is an example setting for debug.location-map that would be used if running
Wing on desktop1 and debugging some code on server1 with IP address 192.168.1.1:

debug.location-map={ \
’127.0.0.1’:None, \
’192.168.1.1’:[(’/home/apache/cgi’, ’file:/svr1/home/apache/cgi’)] \

}

In this example, the same files are located in /home/apache/cgi on server1 and
in /server1/home/apache/cgi on desktop1 , because the entire file system on
server1 is being NFS mounted on desktop1 under /svr1 .

Note that the trailing \ is required for line continuation by the preferences file format.

Wing IDE Reference Version 1.1b7-2

96 Debugger

If you are debugging between Windows and Linux, some care is needed in specifying the
conversion paths because of the different path name conventions on each platform. This
entry would be used when running Wing IDE on a Linux host and the debug process on
a Windows host with ip address 192.168.1.1:

debug.location-map={ \
’127.0.0.1’:None, \
’192.168.1.1’:[(’c:\\src\\ide’, ’file:/home/myuser/src/ide’)], \

}

Note the double backslashes in the remote path and the use of forward slashes in the local
URL specifier.

If running Wing IDE on a Windows host and the debug process on a Linux host with IP
address 192.168.10, the following might be used instead for the same file locations:

debug.location-map={
’127.0.0.1’:None,
’192.168.1.1’:[(’/home/myuser/src/ide’, ’file:c:/src/ide’)],

}

In the case where the Linux user myuser home directory is mounted via Samba to a
Windows machine as the e: drive, the following similar configuration would be used
(only the drive letter differs from the above):

debug.location-map={
’127.0.0.1’:None,
’192.168.1.1’:[(’/home/myuser/src/ide’, ’file:e:/src/ide’)],

}

If you do not have NFS, Samba, or other file sharing, FTP or an FTP mirroring tool can
be used to manually transfer files. Many FTP clients for Windows provide a mirroring
capability.

Version 1.1b7-2 Wing IDE Reference

6.13. DEBUGGING EXTERNALLY INITIATED PROCESSES 97

6.13.5 Encrypting the Debug Channel

If you plan to debug over an unsecured network, you may wish to enable Wing’s channel
encrypter. Currently, the type of encryption used for this is weak, but it is enough to
defeat casual packet sniffing and other abuses. Please don’t use it for security-critical
applications!

To turn on encryption, you need to create a file called .wingdebugpw which contains a
single line of text that is used as the password at both ends of the debug channel. The
line should be in the form [encrypt]:[password] where [encrypt] is one of none
or rotor , and [password] is your password. If you specify only a password and no
encryption type, rotor is used by default. The value none is used when a password
is specified to control debug process attach/detach, as described further in section 6.12
later.

Place a copy of this file into the .wingide directory in your home directory (on Linux) or
WINGHOME\profiles\[username] (on Windows). Whenever this file is present, Wing
will enable encryption using the password in the file. You may need to restart Wing after
placing, altering, or removing this file.

You will also need to place another copy of this file in the same directory as the remote
debug program or within the .wingide directory of the user under which the debug
program will run (or WINGHOME\profiles\[username] on Windows).

It is important that both ends of the channel match with respect to whether or not this file
is present, what type of encryption is specified, and the password that is given. Passwords
are case sensitive. If only one of the files is present or if they do not match, then the debug
session will fail to initiate properly, possibly without clear notice of error.

The password is currently stored unencrypted, so it is important to make sure that the file
is readable only by trusted users. Usually the best approach is to change the file so it is
readable only by a single user (for example with chmod 400 on Linux), and then change
ownership of the file to match the user under which Wing or the debug program will run
(for example, with chown on Linux).

Encryption will also be turned on for Wing-launched debug sessions as long as
˜/.wingide/.wingdebugpw (on Linux) or WINGHOME\profiles\[username]\.wingdebugpw
(on Windows) is present and specifies a non-none encryption type. Since an encrypted
channel is noticeably slower than an unencrypted channel, you may wish to remove,
rename, or alter this file unless you really need encryption.

Wing IDE Reference Version 1.1b7-2

98 Debugger

6.13.6 Full Control via Debug API

A simple API can be used to control debugging more closely, once you have imported
wingdbstub.py the first time, as was described in section 6.13.1 above.

This is useful in cases where you want to be able to start and stop debugging on the fly
several times during a debug run, for example to avoid debug overhead except within a
small sub-section of your code.

To use the API, take the following steps:

1. Configure and import wingdbstub.py as described in section 6.13.1.

2. Subsequently, use the instance variable wingdbstub.debugger to make any of
the following calls:

• SuspendDebug() - This will leave the connection to the debug client intact but
disables the debugger so that connection overhead is avoided during subsequent
execution.

• ResumeDebug() - This will resume debugging using an existing connection to
Wing.

• StopDebug() - Stop debugging completely and disconnect from Wing IDE. The
debug program continues executing in non-debug mode and must be restarted
to resume debugging.

• ProgramQuit() - This must be called before the debug program is exited if
kEmbedded was set to 1 in wingdbstub.py . This makes sure the debug con-
nection to the IDE is closed cleanly.

Here is a simple usage example:

import wingdbstub
a = 1 # This line is debugged
wingdbstub.debugger.SuspendDebug()
x = 1 # This is executed without debugging
wingdbstub.debugger.ResumeDebug()
y = 2 # This line is debugged again

Note that SuspendDebug() and ResumeDebug() can be called as many times as de-
sired, and nested calls will be handled so that debugging is only resumed when the num-
ber of ResumeDebug() calls matches the number of SuspendDebug() calls.

Version 1.1b7-2 Wing IDE Reference

6.14. RUNNING CODE WITHOUT DEBUG 99

6.14 Running Code Without Debug

It is possible to execute files outside of the debugger. This can be done with any Python
code, Makefiles, and any other file that is marked as executable on disk. To do this, select
the Execute Current File item in the Run menu to execute the currently at-front document,
or use the project manager’s popup menu item Execute Selected File.

Files executed in this way are run in a seperate process and any input or output occurs
within the window from which Wing was launched (or is entirely hidden if Wing was
launched from a desktop icon).

This is useful for triggering builds, executing utilities used in development, or even
to launch a program that is normally launched outside of Wing and debugged using
wingdbstub.py .

Note that files executed in this way are always invoked as if from their enclosing directory
and without any parameters. There is currently no facility for specifying parameters or
redirecting input/output.

6.15 Using the debugger and Python profiler together

F Profiling under the debugger may yield inaccurate results since the debugger adds
overhead that isn’t always uniform across your code base.

The Python profiler makes some assumptions about how it is started that conflict with
the way the Wing debugger works. Because the debugger can start debugging on the
fly in the context of already-running code, it confuses the profiler into using the wrong
top-level scope for its activities.

This means that a file like the following will not work:

import profile

def main():
a = 1

profile.run("main()", "profile_tmp")

Wing IDE Reference Version 1.1b7-2

100 Debugger

The profiler will raise an AttributeError on main because it is looking for it in the
top-level file, which is not your code when running under Wing.

The way to solve this problem is to explicitely import and run the function you wish to
profile, as follows:

import profile

def main():
a = 1

profile.run("import mymodule; mymodule.main()", "profile_tmp")

6.16 Limitations

F There are certain situations that the debugger cannot handle, because of the way the
Python programming language works. If you are having problems getting the debugger
to stop at breakpoints or to display source as you step through your code, please read
through the following limitations:

• Running without saving will lead to incorrect display of breakpoints and run posi-
tion because the IDE runs against the on-disk version of the source file.

• Filenames stored inside *.pyc files can be wrong if your move your *.pyc files
around on disk. This may cause the IDE to fail to find source for these files, or to fail
to stop at breakpoints set in source files whose *.pyc files are moved in this way.
A similar problem may result from use of compileall.py and some other utilities
that don’t record a correct filename. It can also happen if running the same code
using different paths to the same working directory, as is possible on Linux with
symbolic links. However, the latter should only be a problem if you’ve removed the
symbolic links subsequently. Hint: You can open *.pyc files in most text editors to
inspect the stored file names. Or just remove these files so they can be regenerated
with the correct file name information.

• You cannot run the debug program using the -O optimization option for the Python
interpreter. This removes information about line numbers, making it impossible to
stop at breakpoints or step through code.

Version 1.1b7-2 Wing IDE Reference

6.17. PORTING OR RECOMPILING THE DEBUG SERVER 101

• For code that spends much of its time in C/C++ without calling Python, for example
as in a GUI main loop, the debugger may not reliably stop at breakpoints added
during a run session. See section 6.18 for more information.

• You cannot use pdb in code that you are running within the Wing debugger. The
two debuggers conflict because they attempt to use the same debugger hooks in the
Python interpreter.

• If you override __import__ in your code, you will break the debugger’s abil-
ity to stop at breakpoints unless you call the original __import__ as part of
your code whenever a module is actually imported. To work around this, call
debug.server.netserver.NotifyImport() (but only if you don’t store and
call the original __import__ , which should really always be the case anyway!).

• When using the wingdbstub , if you set sys.exitfunc after debugging has been
started, the IDE will time out in certain rare cases on a broken network connection
after the debug program exits on an exception. This only happens for exceptions
that look like they will be handled because a try/except block is present that might
handle the exception, but where the exception is not in the end handled and the
debug program exits without calling StopDebug() . Work-arounds include setting
sys.exitfunc before importing wingdbstub or adding a top-level try/except
clause that always calls StopDebug() before exiting the debug program.

6.17 Porting or Recompiling the Debug Server

If you have paid for a license, you have access to the source code for Wing IDE. The debug
server is written in Python and standard C and can be recompiled and used on platforms
other than Linux and Windows. When this is done, your debug process runs on a remote
host of any type and Wing runs on either Linux or Windows. The remote host does not
have to be one that is supported for Wing IDE. For example, the debugger is known to
compile and run under Lynx OS, which is a proprietary real-time operating system.

Another reason to recompile the debug server is if you are running against an altered
or experimental version of Python. For example, if the macros Py_TRACE_REFSor
WITH_CYCLE_GCare altered from the defaults shipped with Python, the debug server
running against that version of Python will need to be recompiled.

If you run into any problems with the instructions that follow, please send email to
bugs@archaeopteryx.com . We’ll help you get things working.

Wing IDE Reference Version 1.1b7-2

102 Debugger

6.17.1 Getting started

How you port the debug server will vary slightly depending on whether or not your
operating system supports shared libraries. If it does, you will compile and build a shared
library that resides in the debug server source tree on your debug host. If it does not, you
need to rebuild Python from source on your debug host with an added module for the
debug server.

Both methods require the following two steps first:

• Follow the instructions in section 6.13.3 to set up your remote debug settings and to
move the debugger binaries from your primary Wing installation over to the host
where you plan to run your debug process.

• Obtain and install the Wing IDE source package, either from the CD if you pur-
chased one, or from http:www.wingide.com/support/downloads . In order to
gain access to the source files on our website, you must have your customer number
and access password as emailed to you with your license files.

6.17.2 Building on hosts with shared libraries

If your debug host supports shared libraries, take these steps next. If it does not, skip to
the next sub-section.

• Copy the following files out of your Wing IDE source base:

src/debug/server/dbgtracermodule.c
src/debug/server/dbgtracerhash.c
src/debug/server/dbgtracerhash.h
src/debug/server/Makefile
src/debug/server/setup.pydist

Place copies of these into the WINGHOME/.bin/#.#.# directory under on the host
where you plan to run your debug program. #.#.# is the version of Python that
you plan to use for debugging and WINGHOMEis the directory where you copied the
debug server binaries as described in section 6.13.3.

Version 1.1b7-2 Wing IDE Reference

6.17. PORTING OR RECOMPILING THE DEBUG SERVER 103

For example, if you created /usr/lib/winghome on your debug host and places
bin/1.5.2/src/debug/server and bin/1.5.2/opensource/schannel
there, you would place the source files in bin/1.5.2/src/debug/server (and
not src/debug/server).

• Next, compile the source files within bin/1.5.2/src/debug/server . There are
three ways to do this, either (a) with the Makefile, (b) with the distutils script (if you
have distutils 1.0.1 or later on your machine), or (c) with manual compilation. There
is no difference in the results of each of these; choose whichever is most convenient.

If you use the Makefile, you need to change PYPREFIX and PYINCLUDEinside the
Makefile to match your Python installation. Then type make.

If you use distutils, you just need to type python setup.pydist build_ext .

If you want to compile manually, the commands are as follows (but with the -I option
altered to match the location of your Python’s include directory):

gcc -I/usr/local/include/python1.5 -c dbgtracermodule.c -
o dbgtracermodule.o
gcc -I/usr/local/include/python1.5 -c dbgtracerhash.c -
o dbgtracerhash.o
gcc -shared -o dbgtracermodule.so dbgtracermodule.o dbgtracerhash.o

If you plan to run with more than one version of Python, the above steps must be
repeated for each of the versions, using each of bin/1.5.2/src/debug/server ,
bin/2.0.0/src/debug/server , and bin/2.1.0/src/debug/server and the
build configuration for locating the appropriate header files.

6.17.3 Building on hosts with no shared libraries

When shared libraries are unavailable, you need to rebuild Python in order to statically
link the Wing debug tracer into the executable. To do this:

• Copy the following files out of your Wing IDE source base:

src/debug/server/dbgtracermodule.c
src/debug/server/dbgtracerhash.c
src/debug/server/dbgtracerhash.h

Wing IDE Reference Version 1.1b7-2

104 Debugger

Place these into the Modules directory at the top-level of your Python source tree.

• Edit the Modules/Setup.local file and add the following line to it:

dbgtracer dbgtracerhash.c dbgtracermodule.c

• Next go to the top-level of your Python installation. If you have not already done
so in the past, type ./configure to set up the build environment.

• Then type make to build your new Python executable.

• Follow this by make install if you’re running Python from an installed location
(such as /usr/local/bin/python).

Repeat this with each version of Python that you plan to run. Once completed, the com-
mand import dbgtracer should complete successfully in a Python script or when
typed at the interactive Python prompt.

6.17.4 Using your setup

Once this is done, debugging happens in exactly the same way as any other remote de-
bugging. See section remotedebugging for details.

Please drop us a note at info@wingide.com to let us know what OS and version you’re
using with your debug server!

6.18 Non-Python Mainloop Environments

Because of the way the Python interpreter supports debugging, the debug process may
become unresponsive in environments where much time is spent running in non-Python
code, such as C or C++. Whenever the Python interpreter is not called for long periods
of time, messages from Wing IDE may be entirely ignored and the IDE may disconnect
from the debug process as if it had crashed.

Examples of environments that can spend significant amounts of time outside of the
Python interpreter include GUI kits such as Gtk, Qt, Tkinter, WXPython, and some web

Version 1.1b7-2 Wing IDE Reference

6.18. NON-PYTHON MAINLOOP ENVIRONMENTS 105

development tools like Zope. For the purposes of this section, we call these ”non-Python
mainloops”.

Wing already supports Gtk, Qt, Tkinter, WXPython, and Zope. If you are using one of
these, or you aren’t using a non-Python mainloop at all, then you do not need to read
further in this section.

6.18.1 How it works

Wing uses a network connection between the debug server (the debug process) and the
debug client (Wing IDE) to control the debug process from the IDE and to inform the IDE
when events (such as reaching a breakpoint or exception) occur in the debug process.

As long as the debug program is paused or stopped at a breakpoint or exception, the
debugger remains in charge and it can respond to requests from the IDE. Once the debug
program is running, however, the debugger itself is only called as long as Python code is
being executed by the interpreter.

This is usually not a problem because most running Python program are executing a lot
of Python code! However, in a non-Python mainloop, the program may remain entirely
in C, C++, or another language and not call the Python interpreter at all for long periods
of time. As a result, the debugger does not get a chance to service requests from the IDE.
Pause or attach requests and new breakpoints may be completely ignored in this case,
and the IDE may detach from the debug process because it is unresponsive.

Wing deals with this by installing its network sockets into each of the supported non-
Python mainloops, when they are detected as present in the debug program. Once the
sockets are registered, the non-Python mainloop will call back into Python code whenever
there are network requests pending.

6.18.2 Writing a Debug Server Hook

For those using an unsupported non-Python mainloop, Wing provides an API for adding
the hooks necessary to ensure that the debugger’s network sockets are serviced at all
times.

Wing IDE Reference Version 1.1b7-2

106 Debugger

Overview

If you wish to write support for a non-Python mainloop, you first need to check whether
there is any hope of registering the debugger’s socket in that environment. Any mainloop
that already calls UNIX/BSD sockets select() and is designed for extensible socket
registration will work and is easy to support. Gtk, Qt, and Zope all fell into this category.

In other cases, it may be necessary to write your own select() call and to trick the
mainloop into calling that periodically. This is how the Tkinter and WXPython hooks
work. Some environments may additionally require writing some non-Python glue code
if the environment is not already set up to call back into Python code.

Mainloop hooks are written as a seperate modules that are placed into
src/debug/server within WINGHOME. The module _extensions.py also found
there includes a generic class that defines the API functions required of each mod-
ule, and is the place where new modules must be registered (in the constant
kSupportedMainloops).

Writing Your Own

To add your own non-Python mainloop support, you need to:

1. Copy one of the source examples (such as _gtkhooks.py) found in
src/debug/server , as a framework for writing your hooks. Name your mod-
ule something like _xxxxhooks.py where xxxx is the name of your non-Python
mainloop environment.

2. Implement the _Setup() , RegisterSocket() , and UnregisterSocket()
methods. Do not alter any code from the examples except the code with in the
methods. The name of the classes and constants at the top level of the file must
remain the same.

3. Add the name of your module, minus the ’.py’ to the list
kSupportedMainloops in _extensions.py

Version 1.1b7-2 Wing IDE Reference

6.18. NON-PYTHON MAINLOOP ENVIRONMENTS 107

Example

The following is a copy of the Python code that supports socket registration in Gtk.
This file is also distributed as source with all copies of Wing, and can be foundin
src/debug/server within WINGHOME.

###
""" _gtkhooks.py -- Gtk socket management hooks for the Wing IDE debugger

Copyright (c) 1999-2001, Archaeopteryx Software, Inc. All rights reserved.

Written by Stephan R.A. Deibel and John P. Ehresman

"""
###

import _extensions

The name of the module to watch for that indicates presence of this
supported mainloop environment
kIndicatorModuleName = ’gtk’

###
GTK-specific support for managing the debug server sockets
###
class _SocketHook(_extensions._SocketHook):

""" Class for managing the debug server sockets: This is used only
when gtk is detected as being present in the debuggee’s code. """

#--
def __init__(self, err):

""" Constructor """
_extensions._SocketHook.__init__(self, err)
self.__fGtkHandlers = {}
self.__fGtkModule = None

#---
def _Setup(self, mod, s, cb_fct):

""" Attempt to set up socket registration with the given module
reference : This should be a reference to the indicator module
for the supported environment. The first socket is registered
with given action callback via _RegisterSocket(). Returns the
socket if succeeded or None if fails (for example, because the module is
not yet fully loaded and we cannot yet use it to start registering
sockets. Note that the returned socket may be different than the
socket passed in because some environments require a wrapper: The

Wing IDE Reference Version 1.1b7-2

108 Debugger

returned socket is then used in place of the original in the
debug server code. """

Check if module is fully loaded as far as the constructs we will need
if mod.__name__ != ’gtk’ or not hasattr(mod, ’GDK’) \

or not hasattr(mod, ’input_add’) \
or not hasattr(mod, ’input_remove’) \
or not hasattr(mod.GDK, ’INPUT_READ’) \
or not hasattr(mod.GDK, ’INPUT_EXCEPTION’):

return None

Try to register the first socket
self.__fGtkModule = mod
new_sock = self._RegisterSocket(s, cb_fct)
if new_sock == None:

self.__fGtkModule = None
return None

Success
return new_sock

#--
def _RegisterSocket(self, s, cb_fct):

""" Function to register a socket with a mainloop: Subsequently the given
callback function is called whenever there is data to be read on the
socket. Returns the socket if succeeded; None if fails. As in _Setup(),
the returned socket may differ from the one passed in, in which case
the debug server will substitute the socket that is used in its code."""

Try to use given module to register the socket: This may still fail
if module is in the process of being imported
try:

Register with GTK
cond = self.__fGtkModule.GDK.INPUT_READ | self.__fGtkModule.GDK.INPUT_EXCEPTION
handler_id = self.__fGtkModule.input_add(s, cond, cb_fct)
self.__fGtkHandlers[s] = handler_id

Done
self.fErr.out("################## Socket registered with gtk: ", s)
return s

Failed but will keep checking
except:

self.fErr.out("################## ’gtk’ module not fully loaded")
return None

#--

Version 1.1b7-2 Wing IDE Reference

6.19. HINTS FOR DEBUGGING WEB CGIS 109

def _UnregisterSocket(self, s):
""" Function to unregister a socket with the supported environment.
The socket passed in should be the one returned from _Setup() or
_RegisterSocket(). """

self.fErr.out("################ Deregistered socket with gtk: ", s)
self.__fGtkModule.input_remove(self.__fGtkHandlers[s])
del self.__fGtkHandlers[s]

Getting Help

If you are having difficulties writing your non-Python mainloop hooks, please contact
our Technical Support group via our website at http://archaeopteryx.com/support. We
will be happy to assist you, and welcome the contribution of any hooks you may write.

6.19 Hints for Debugging Web CGIs

Debugging CGI scripts can be annoying since any output from your program that is not
understood by the web server will cause the server to write an error to its log files rather
than displaying anything useful back to the browser.

Here are a few simple suggestions that may help you configure the debugger and verify
that things are working correctly:

1. At the very start of your code, before importing wingdbstub or calling the debug
API, insert the following temporary line of code:

print "Content-type: text/html\n\n\n<html>\n"

This will cause all subsequent data to be included in the browser window, even if
your normal Content-type specifier code is not being reached.

2. Place a catch-all exception handler at the top level of your CGI code and print ex-
ception information to the browser. The following function is useful for inspecting
the state of the CGI environment when an exception occurs:

import sys
import cgi
import traceback

Wing IDE Reference Version 1.1b7-2

110 Debugger

import string

#---
def DisplayError():

""" Output an error page with traceback, etc """

print "<H2>An Internal Error Occurred!</H2>"
print "<I>Runtime Failure Details:</I><P>"

t, val, tb = sys.exc_info()
print "<P>Exception = ", t, "
"
print "Value = ", val, "\n", "<p>"

print "<I>Traceback:</I><P>"
tbf = traceback.format_tb(tb)
print "<pre>"
for item in tbf:

outstr = string.replace(item, ’<’, ’<’)
outstr = string.replace(outstr, ’>’, ’>’)
print string.replace(outstr, ’\n’, ’\n’), "
"

print "</pre>"
print "<P>"

cgi.print_environ()
print "

"

3. If you are using wingdbstub.py , you can set kSilent=0 to receive extra in-
formation from the debug server, in order to debug problems connecting back to
Wing IDE. This information is written to stderr and thus will be found in the web
server’s error log file.

4. If you are using the full debugger API, you can set your CErrStream object to send
output either to stdout , stderr , or any other file stream. Use this to send errors
to the browser, web server error log, or to a file, respectively.

5. If you are unable to see script output that may be relevant to trouble-shooting, try
invoking your CGI script from the command line. The script may fail but you will
be able to see messages from the debug server, when those are enabled.

6. If all else fails, read your web browser documentation to locate and read its error log
file. On Linux with Apache, this is often in /var/log/httpd/error_log . Any
errors not seen on the browser are appended there.

7. Once you have the debugger working for one CGI script, you will have to set up
the wingdbstub import in each and every other top-level CGI in the same way.

Version 1.1b7-2 Wing IDE Reference

6.20. USING WING WITH ZOPE 111

Because this can be somewhat tedious, and because the import needs to happen at
the start of each file (in the __main__ scope), it makes sense to develop your code so
that all page loads for a site are through a single entry point CGI and page-specific
behavior is obtained via dispatch within that CGI to other modules. With Python’s
flexible import and invocation features, this is relatively easy to do.

6.20 Using Wing with Zope

The easiest way to get started with Zope plus Wing is to install the combined
Wing/Zope distribution provided on the CD in the zope directory or from our ftp site at
ftp://wingide.com/wingide/support/zope/ .

The zope directory on the CD also contains an HTML document called zope-wing-
howto.html that describes how to use the combined distribution, and how to use Wing
with an existing Zope installation. This document is also available on the web through
our support library at http://wingide.com/support/library .

6.21 Preferences

The following preferences exist for controlling Wing IDE’s debug facility:

❀ debug.raise-window-on-break - Controls when the window with the source file con-
taining the current line is brought to front when the program being debugged reaches
a breakpoint or is otherwise paused. One of ’raise-always’ to always raise the
window, ’raise-never’ to never raise the window (except when explicitely opened
from the debugger’s stack view), or ’raise-new’ to raise the window only when
stepping into a new file that isn’t the same as the file in which the previous known
run location was found. Default=’raise-always’

❀ debug.raise-from-interactive - Controls whether to raise windows showing exception
location when working in the Interactive Debug Probe or Interactive Python Shell and
a meaningful exception location is found. Set to one of ’raise-always’ or ’raise-
never’ . Default=’raise-always’

❀ debug.raise-from-evaluator - Controls whether to raise windows showing excep-
tion location when working in the expression evaluator and a meaningful ex-

Wing IDE Reference Version 1.1b7-2

112 Debugger

ception location is found. Set to one of ’raise-always’ or ’raise-never’ .
Default=’raise-always’

❀ debug.passive-listen - Controls whether or not the debugger listens passively for con-
nections from an externally launched program (false to disable; true to enable).
This must be on when the debug program is not launched by Wing IDE (for example,
as with a CGI script). This is the startup default and may be altered with the Network
Mode section of the Run menu. Default=false

❀ debug.passive-hosts - Sets which hosts are allowed to connect to the debugger when it
is listening passively for externally launched programs. This value is a tuple contain-
ing at least one host name, as a quote-delimited string. Default=(’127.0.0.1’,)

❀ debug.attach-defaults - A list of tuples containing (host, port). These are values that
are automatically included in the Attach dialog box. Use it to avoid repeatedly typing
manually entered host/port values. Default=((’127.0.0.1’, ’50015’),)

❀ debug.location-map - Defines mappings between the debug server file locations
and local file locations on disk. Each mapping key is the ip address of the remote
location, or "*" to define a default that matches all otherwise unmatched hosts.
The mapping values are arrays of tuples where each tuple is a (remote_prefix,
local_prefix) pair. The remote file name will be a full path name on the debug
server file system and the local file name will be a URL, currently always starting with
file: . This should be used when files on the remote host are updated via ftp, NFS,
Samba, or other method from master copies on the local host, but the full path file
system locations on the local and remote hosts do not match. See section 6.13.3 for
examples and details. Default= { ’127.0.0.1’:[(’/’,’file:/’),]}

❀ debug.enable-kill-external - Set this to true to allow Wing to terminate processes
that it did not launch but that connected to its debugger from another locally running
process. Whenever this is set to false , the Kill menu item and command are disabled
when attached to a debug process launched outside of Wing. Default=false

❀ debug.python-exec - Set this to indicate the default Python executable used with the
debug server. A None value uses /usr/bin/env python on Linux and the config-
ured default on NT. Otherwise, give the full path of the Python executable, for ex-
ample /usr/local/bin/python or C:\dev\python . This preference only affects
programs that are launched from Wing and is overridden by any values specified in
Wing’s Project Properties or per-file Debug Properties. Default=None

❀ debug.exception-mode - Controls default behavior for stopping on excep-
tions in your debug program: ’never’ to never stop, ’always’ to al-
ways stop, or \verb ’unhandled’! to stop only on unhandled exceptions. This

Version 1.1b7-2 Wing IDE Reference

6.21. PREFERENCES 113

is just the initial value that Wing will use; it can be changed after starting Wing using
the Exception Mode item in the Run menu. Default=’unhandled’

❀ debug.network-server - Determines the network interface on which the debugger lis-
tens for connections. This can be a symbolic name, an IP address, or None to indicate
that the debugger should listen on all valid network interfaces on the machine. Note
that when a debug session is launched from within Wing IDE (with the Run button),
it always connects from the loopback interface (127.0.0.1). Default=None

❀ debug.network-port - Determines the TCP/IP port on which the debug client will
listen for the back-connection from the server. This needs to be unique for each devel-
oper using wingdbstub for debugging on a given host. The debug server needs to
be told the value specified here (as described in sections 6.13.1 and 6.13.6). Note that
this value is ignored if the debug program is launched from the application, in which
case an available random port number is used instead. Default=’50005’

❀ debug.network-timeout - Controls the amount of time in seconds that the debug
client will wait for the debug server to respond before it gives up. This protects Wing
from freezing up if your program running within the debug server crashes (or if the
server itself becomes unavailable). This can be a relatively low number unless you
are debugging over a slow network or sending large data values (see the huge-list-
threshold and huge-string-threshold preferences). Default=5.0

❀ debug.stop-timeout - The number of seconds the debugger will wait before stopping
within its own code after a pause request is seen and no other Python code has been
reached. Even when stopping within the debugger, the user is presented with the call
stack to the host application’s main loop only and step operations perform as if from
there. Default=3.0

❀ debug.use-xterm - Controls default behavior for whether or not an extra terminal
window is opened when a debug program is started: If true then all debug pro-
gram input/output happens in a seperate new terminal window, if false then in-
put/output happens in the window from which Wing was launched (if any; when
Wing is launched from icon, the debug processes output may be invisible). On Win-
dows systems, this value is currently always forced to true , and a dos shell is used.
Important: On Linux systems where xterm runs with setuid, your environment vari-
ables are not propagated to the debug program unless explicitely listed in the wingdb
script found in WINGHOME. The values of LD_LIBRARY_PATHand PYTHONPATHare
propagated by the script that ships with Wing, but you may need to add any addi-
tional environment variables that your program depends on. Default=false (but
always forced to true on Windows)

Wing IDE Reference Version 1.1b7-2

114 Debugger

❀ debug.persist-xterm - Controls whether or not the debug terminal window, when it
is enabled, will exit immediately after the debug run or only after enter or return are
typed. Use true to allow inspection of debug output after exit of the debug program.
This is only relevant when debug.use-xterm is set to true . Default=true

❀ debug.omit-types - Defines types for which values are never shown by
the debugger. Default=(’function’, ’builtin_function_or_method’,
’class’, ’instance method’, ’type’, ’module’, ’ufunc’)

❀ debug.omit-names - Defines variable/key names for which values are never shown
by the debugger. Default=()

❀ debug.line-threshold - Defines the character length threshold under which a value
will always be shown on a single line, even if the value is a complex type like a list or
map. Default=55

❀ debug.huge-list-threshold - Defines the length threshold over which a list, map, or
other complex type will be considered too large to show in the normal debugger.
If this is set too large, the debugger will time out (see network-timeout preference).
Default=2000

❀ debug.huge-string-threshold - Defines the length over which a string is considered
too large to fetch for display in the debugger. If this is set too large, the debugger will
time out (see network-timeout preference). Default=64000

❀ debug.use-members-attrib - Set this to true in order to ask the debug server to use
the __members__ attribute on values that are otherwise opaque. This is useful in
interpreting some values defined and set in C extension modules. However, there are
sometimes bugs in these modules that cause crashing when this is used (for example,
in pygtk-0.6.5). Default=false

❀ debug.default-var-view-style - This sets the default view style that is used when
zooming variable data out into seperate windows. Choices are ’tree’ for a dy-
namic tree display, ’text’ for a textual display, and ’combo’ for a combination
view like that found in the main debugger window. These values can be overridden
from the right-click popup that appears over any tree formatted debugger variable
display. Default=’combo’

❀ debug.default-var-track-style - This selects the default style of value tracking for vari-
ables that are zoomed out into seperate display windows. Choices are ’symbolic’ ,
’parent-ref’ , and ’ref’ . These values can be overridden from the right-click
popup that appears over any tree formatted debugger variable display. See section
6.7.3 for more information on these choices. Default=’symbolic’

Version 1.1b7-2 Wing IDE Reference

6.21. PREFERENCES 115

❀ debug.show-debug-data-warnings - This controls whether or not Wing will display
details about failure to evaluate a debug data value because of an error handling the
value, network timeout, or oversized value error. When true, errors explaining each
of these will be shown the first time they occur in each run of Wing; when false, they
are never shown. Default=true

❀ debug.run-marker-bg-color - This is a tuple in the form (red, green, blue), with each
value from 0 to 255 , that defines the color used behind the current run line during
debugging. Default=(255, 163, 163)

❀ debug.run-marker-fg-color - This is a tuple in the form (red, green, blue), with each
value from 0 to 255 , that defines the color used around the margin marker for the
current run position during debugging. Default=(255, 0, 0)

❀ debug.-verbose-debugging - This is normally only used when developing the IDE
itself, but can be set to true to obtain more detailed information about problems that
come up with the Wing debugger itself (such as failure to start a debug session or
unexpected termination of a debug session). Default=false

Note that currently Wing must be restarted before any altered values take effect.

Wing IDE Reference Version 1.1b7-2

117

Appendix A

Command Reference

This appendix enumerates the entire top-level Wing command set.

A.1 Overview

Any of the commands listed here may be used in custom menus, tools, or key equivalents
that can be set up as described in chapter 2. In emacs emulation mode, commands may
also be entered by name within the command entry area that is displayed with alt-x or
esc-x.

Although many commands accept no parameters, some commands are defined to ac-
cept optional typed parameters. The type of a parameter can be any of those defined in
Python’s types module, or a file name string.

Some parameters defined have special meaning to Wing, according to the name of the
parameter:

• active view - This is either a given text or source document, or defaults to the active
text or source document.

• active window - This is either a given window reference, or defaults to the currently
active window.

All other parameters on commands are considered to be user-entered values, such as the

Wing IDE Reference Version 1.1b7-2

118 Command Reference

search and replace strings given to the query-replace command. Such parameters are
collected from the user if they are missing when the command is invoked (as they would
be when commands are used in menus, tools, or key equivalents).

Command parameters will also be used in future versions of Wing to support scripting
the IDE. This reference will be expanded at that time to describe how commands are
defined within Wing and how scripts can access command definition information.

Since commands act as the formal public API into the Wing source base, they will be
maintained for compatibility in all future releases of Wing IDE. Note that more of the
commands will take parameters in the future, but should continue to behave as they
currently do when invoked without parameters.

A.2 Top Level

The following commands are defined by the guimgr subsystem in the class
guimanager.CTopLevelCommands .

Command Name Description Parameters
quit Quit Wing IDE, prompting to save any

unsaved documents.
about-application Display the application about box.
open Prompt to open a document from disk.

This may either prompt graphically or
using the emacs mode interaction
manager.

open-gui Prompt to open a document from disk.
This always uses a graphical file open
box.

new-file Create a new blank document.
close Close the current or given document. active view: The

view reference
close-all Close all the open document windows

(but not non-document windows).
save Save the current or given document. active view: The

view reference
save-as Save the current or given document to

another location.
active view: The
view reference

Version 1.1b7-2 Wing IDE Reference

A.2. TOP LEVEL 119

save-all Save all unsaved altered documents to
disk. This will prompt only for names of
items that have not yet been assigned a
name.

print-view Print the current or given view. active view: The
view reference

switch-document Switch to display one of the selected
open documents

document name: The
name of document
to open; either full
path or last path
component only

command-by-name Prompt user to enter a command for
execution by name

delete-window Delete current window, closing any
views not found in any other window;
only available in
multi-view-per-window mode.

search-manager Display the graphical search manager
window.

show-font-size-
dialog

Display the font/size selection dialog for
altering the font and size used in a single
text file or in all text files in the project.

show-analysis-env Display informational dialog that
contains the current interpreter and
python path information being used for
source code analysis throughout the
project.

initiate-repeat-0 Start emacs-mode interaction for
entering a repeat value for command or
keystroke repetition; starts value entry
with ’0’

initiate-repeat-1 Start emacs-mode interaction for
entering a repeat value for command or
keystroke repetition; starts value entry
with ’1’

Wing IDE Reference Version 1.1b7-2

120 Command Reference

initiate-repeat-2 Start emacs-mode interaction for
entering a repeat value for command or
keystroke repetition; starts value entry
with ’2’

initiate-repeat-3 Start emacs-mode interaction for
entering a repeat value for command or
keystroke repetition; starts value entry
with ’3’

initiate-repeat-4 Start emacs-mode interaction for
entering a repeat value for command or
keystroke repetition; starts value entry
with ’4’

initiate-repeat-5 Start emacs-mode interaction for
entering a repeat value for command or
keystroke repetition; starts value entry
with ’5’

initiate-repeat-6 Start emacs-mode interaction for
entering a repeat value for command or
keystroke repetition; starts value entry
with ’6’

initiate-repeat-7 Start emacs-mode interaction for
entering a repeat value for command or
keystroke repetition; starts value entry
with ’7’

initiate-repeat-8 Start emacs-mode interaction for
entering a repeat value for command or
keystroke repetition; starts value entry
with ’8’

initiate-repeat-9 Start emacs-mode interaction for
entering a repeat value for command or
keystroke repetition; starts value entry
with ’9’

Version 1.1b7-2 Wing IDE Reference

A.3. PROJECT MANAGER 121

A.3 Project Manager

The following commands are defined in the proj subsystem in the class
managergui.CProjectCommands .

Command Name Description Parameters
show-project-
window

Bring the project manager window to
front.

new-project Create a new project file; this causes the
current open project file to be closed,
and user is prompted to save the project
if altered.

open-project Open a project file; the current project
file is closed, and user is prompted to
save the project if altered.

close-project Close the project file, prompting user to
save if altered.

save-project Save the project file to disk.
save-project-as Save the project file to another location

on disk; prompts user to enter the
location.

add-file-to-project Prompt user to select a file to add to the
open project.

add-package-to-
project

Prompt user to select a directory to add
to the open project. All enclosed files of
types configured with the
proj.package-file-types and
proj.package-omit-types
preference will be presented to the user
for optional individual selection.

add-tree-to-project Prompt user to select a directory to add
to the open project. All enclosed files of
types configured with the
proj.package-file-types and
proj.package-omit-types
preference will be added in one
operation.

add-current-file-to-
project

Add the file associated with the
frontmost view to the project manager.

Wing IDE Reference Version 1.1b7-2

122 Command Reference

remove-selection-
from-project

Remove the currently selected file or
package from the project.

browse-project-
modules

Switch to the source code browser,
showing all modules and files in the
currently open project.

set-project-main-
debug-file

Set the main debug file for open project.
This is the file that is executed by default
by the debugger.

set-current-as-main-
debug-file

Set the file associated with the current
frontmost view as the main debug file
for open project. This is the file that is
executed by default by the debugger.

clear-project-main-
debug-file

Clear the main debug file for open
project. The debugger will execute the
frontmost window when this is cleared.

open-selected-from-
project

Open the currently selected item in the
project manager window.

browse-selected-
from-project

Switch to the source code browser,
showing the module view for the item
currently selected in the project manager
window.

debug-selected-
from-project

Launch a debug session for the item
currently selected in the project manager
window.

execute-selected-
from-project

Execute the item currently selected in
the project manager window. Makefiles,
Python code, and any executable file
may be executed in this way outside of
the debugger.

choose-file-debug-
args

Display the debug properties dialog box
for the file currently selected in the
project manager window.

sort-project-by-
directory

Group items in the project manager
window by directory, sorting the
top-level directory list alphabetically.

sort-project-by-file-
type

Group items in the project manager
window by file type, soring the top-level
mime type list alphabetically.

Version 1.1b7-2 Wing IDE Reference

A.4. SOURCE CODE EDITOR 123

use-normal-project Switch the project disk storage format to
a single file containing all project data.

use-shared-project Switch the project disk storage format to
use two files, one containing
user-specific data, and the other
containing data that can be shared by all
developers on a project.

view-project-
properties

Display the project-wide properties
dialog.

A.4 Source Code Editor

The following commands are defined in edit subsystem in the class
editor.CEditorCommands .

Command Name Description Parameters
cut Cut the current text selection to

system-wide clipboard.
copy Copy the current text selection to

system-wide clipboard.
clear Clear (delete) the current text selection.
paste Paste the current contents of the

system-wide clipboard to replace the
current text selection.

undo Undo the most recent command or
typing action.

redo Redo the most recently undone action.
kill-line Remove text from the cursor to the end

of the current line and place it into the
kill buffer with any other contiguously
removed lines. End-of-line is removed
only if there is nothing between the
cursor and the end of the line.

yank-line Paste the contents of the kill buffer into
current position in the editor. This will
paste the system-wide clipboard instead
if the kill buffer is empty.

Wing IDE Reference Version 1.1b7-2

124 Command Reference

beginning-of-line Move the cursor to the beginning of the
current line. Issuing this repeatedly will
alternate between the very beginning of
the line and the first non-blank character.

beginning-of-line-
extend

Move the cursor to the beginning of the
current line and extend the current
selection to that point.

end-of-line Move to the cursor to the end of the
current line.

end-of-line-extend Move the cursor to the end of the current
line and extend the current selection to
that point.

next-line Move cursor to the next line.
next-line-extend Move cursor to the next line, extending

the current selection to that point.
previous-line Move cursor to the previous line.
previous-line-
extend

Move cursor to the previous line,
extending the current selection to that
point.

forward-char Move the cursor forward one character.
forward-char-
extend

Move the cursor forward one character,
extending the current selection to that
point.

backward-char Move the cursor backward one
character.

backward-char-
extend

Move the cursor backward one
character, extending the current
selection to that point.

forward-word Move the cursor forward one word.
forward-word-
extend

Move the cursor forward one word,
extending the current selection to that
point.

backward-word Move the cursor backward one word.
backward-word-
extend

Move the cursor backward one word,
extending the current selection to that
point.

forward-page Move the cursor forward one page.

Version 1.1b7-2 Wing IDE Reference

A.4. SOURCE CODE EDITOR 125

forward-page-
extend

Move the cursor forward one page,
extending the current selection to that
point.

backward-page Move the cursor backward one page.
backward-page-
extend

Move the cursor backward one page,
extending the current selection to that
point.

start-of-document Move cursor to start of document.
start-of-document-
extend

Move cursor to start of document,
extending the current selection to that
point.

end-of-document Move cursor to end of document.
end-of-document-
extend

Move cursor to end of document,
extending the current selection to that
point.

brace-match Match brace at current cursor position,
selecting all text between the two and
highlighting the braces.

set-mark-command Set start of text marking for selection at
current cursor position. Subsequently,
all cursor move operations will
automatically extend the text selection
until stop-mark-command is issued.

stop-mark-
command

Stop text marking for selection at current
cursor position, leaving the selection set
as is. Subsequent cursor move
operations will deselect the range and
set selection to cursor position.

forward-delete-char Delete one character in front of the
cursor.

backward-delete-
char

Delete one character behind the cursor.

forward-delete-
word

Delete one word in front of the cursor.

backward-delete-
word

Delete one word behind the cursor.

select-all Select the entire document.

Wing IDE Reference Version 1.1b7-2

126 Command Reference

forward-tab Place a forward tab at the current cursor
position.

backward-tab Place a backward tab at the current
cursor position.

new-line Insert a new line at the current cursor
position.

form-feed Insert a form feed character at the cursor
position.

search-forward Initiate interactive forward search from
the cursor position.

search-backward Initiate interactive backward search
from the cursor position.

query-replace Initiate interactive (prompted)
query/replace from the cursor position.

replace-string Replace all occurrences of a string after
current cursor position to the end of the
file.

zoom-in Increase font sizes in display by one unit.
zoom-out Decrease font sizes in display by one

unit.
toggle-overtype Toggle between overtype and insert

mode.
show-all-
whitespace

Show all white space with visible
whitespace characters, including spaces,
tabs and end-of-line characters.

hide-all-whitespace Show white space without any visible
whitespace characters.

show-whitespace Show white space with visible space and
tab characters.

hide-whitespace Show white space without visible space
and tab characters.

show-eol Show end of line characters with a
visible character.

hide-eol Hide visible end of line characters.
scroll-to-cursor Scroll as necessary to make sure that the

cursor is visible on screen.
center-cursor Center the cursor on the display.

Version 1.1b7-2 Wing IDE Reference

A.4. SOURCE CODE EDITOR 127

show-selection Turn on display of the current text
selection.

hide-selection Turn off display of the current text
selection.

save-buffer Save the current text file to disk.
kill-buffer Close the current text file.
cancel Cancel current editor command.
insert-file Insert a file at given cursor position. filename: The file to

insert.
goto-line Go to a selected line by number. lineno: The line

number.
start-kbd-macro Start recording a keyboard and

command macro.
stop-kbd-macro Stop recording a keyboard and

command macro.
execute-kbd-macro Execute the most recently recorded

keyboard macro.
indent-region Increase indentation of selected region

by one level.
outdent-region Outdent indentation of selected region

by one level.
comment-out-
region

Comment out the selected region. This
operates on whole lines, extending the
current selection if necessary.

uncomment-out-
region

Remove comments around lines in the
selected region. This operates on whole
lines, extending the current selection if
necessary. Does nothing if commenting
is not present.

fill-paragraph Rejustify the paragraph of text
surrounding the current start of
selection. This operates on whole lines,
and is most useful in reformatting
comments, long strings, or
documentation.

Wing IDE Reference Version 1.1b7-2

128 Command Reference

indent-to-match Indent the current line or selection to
match indentation of the preceding
non-blank line, adding or subtracting
indentation as needed for the current
context.

complete-
autocompletion

Complete the current autocompletion,
inserting text as appropriate at insertion
point.

show-popup-menu Display the editor’s popup menu.
goto-selected-
symbol-defn

Display the point of definition of the
most recently clicked-upon symbol in
the source.

show-indent-
manager

Display the indentation manager dialog
for the current source window.

convert-indents-to-
spaces-only

Convert all indentation in the text file to
use only spaces. Tabs are converted
according to configured
edit.tab-size and
edit.indent-size preferences. Tab
size is forced to 8 for all Python files
unless the file previously contained only
tabs in indents, in which case
edit.tab-size is used in the
conversion.

convert-indents-to-
tabs-only

Convert all indentation in a text file to
use tabs only. Units of
edit.indent-size spaces are
converted into one tab each, and any
remainder of space is converted into one
tab. After conversion, the file is shown
with tabs set to size edit.tab-size
even for Python files (where tab size is
otherwise forced to 8).

Version 1.1b7-2 Wing IDE Reference

A.4. SOURCE CODE EDITOR 129

convert-indents-to-
mixed

Convert all indentation in a text file to
use a mixture of tabs and spaces, using
tab size as configured with preference
edit.tab-size and indent size as
configured with preference
edit.indent-size (one tab is placed
instead of each group of
edit.tab-size spaces. Tab size is
forced to 8 for Python files, since the
Python interpreter expects this in mixed
indentation.

force-indent-style-
to-spaces-only

Force future indentation in the text file
to use spaces only in indentation,
regardless of the current contents of the
file. This is not available for Python files
that don’t already have inconsistent
indentation.

force-indent-style-
to-tabs-only

Force future indentation in the text file to
use tabs only in indentation, regardless
of the current contents of the file. This is
not available for Python files that don’t
already have inconsistent indentation.

force-indent-style-
to-mixed

Force future indentation in the text file
to use mixed tab and space indentation,
regardless of the current contents of the
file. This is not available for Python files
that don’t already have inconsistent
indentation.

check-indent-
consistency

Check current file for indentation
consistency with respect to the use of
tabs and spaces. If some areas are
indented with tabs and others with
spaces, then the user is prompted to
convert to all spaces, convert to all
tab/space indentation, or to leave the
file as is.

Wing IDE Reference Version 1.1b7-2

130 Command Reference

fold-toggle Toggle the fold state of the first fold
point found in the current selection or
on the current line.

fold-collapse-all-
current

Collapse recursively the current fold
point, folding up all children as well.

fold-expand-all-
current

Expand recursively the current fold
point, ensuring that all children are
visible as well.

fold-collapse-all Collapse the entire source file
recursively.

fold-expand-all Expand the entire source file recursively.
use-lexer-by-
doctype

Determine syntax colorizing for the text
file according to the probable mime type
of the file, based on the file extension.

use-lexer-none Turn of syntax colorizing for the text file.
use-lexer-python Use the Python lexer to colorize the text

file.
use-lexer-cpp Use the C++ lexer to colorize the text file.
use-lexer-java Use the Java lexer to colorize the text file.
use-lexer-makefile Use the Makefile lexer to colorize the

text file.
use-lexer-dos-batch Use the DOS datch file lexer to colorize

the text file.
use-lexer-vb Use the Visual Basic lexer to colorize the

text file.
use-lexer-html Use the HTML lexer to colorize the text

file.
use-lexer-properties Use the properties file lexer to colorize

the text file.
use-lexer-errlist Use the error list lexer to colorize the text

file.
use-lexer-msidl Use the MS IDL lexer to colorize the text

file.
use-lexer-sql Use the SQL lexer to colorize the text file.
use-lexer-xml Use the XML lexer to colorize the text

file.
use-lexer-xcode Use the xcode lexer to colorize the text

file.

Version 1.1b7-2 Wing IDE Reference

A.5. DEBUGGER 131

use-lexer-latex Use the LaTeX lexer to colorize the text
file.

use-lexer-lua Use the Lua to colorize the text file.
use-lexer-idl Use the CORBA IDL lexer to colorize the

text file.
use-lexer-javascript Use the Javascript lexer to colorize the

text file.
use-lexer-rc Use the RC lexer to colorize the text file.
use-lexer-plsql Use the PLSQL lexer to colorize the text

file.
use-lexer-php Use the PHP lexer to colorize the text

file.
use-lexer-perl Use the Perl lexer to colorize the text file.
use-lexer-diff Use the diff/patch file lexer to colorize

the text file.
use-lexer-pascal Use the Pascal lexer to colorize the text

file.
use-lexer-apache-
conf

Use the Apache web server
configuration lexer to colorize the text
file.

use-lexer-ave Use the Ave lexer to colorize the text file.
show-line-numbers Show the line number display column

on all source files. The width of the
column is set with the
edit.lineno-column-width
preference.

hide-line-numbers Hide the line number display column on
all source files.

A.5 Debugger

The following commands are defined in debug.client subsystem in the class
cmdmanager.CDebuggerCommands .

Command Name Description Parameters

Wing IDE Reference Version 1.1b7-2

132 Command Reference

show-debug-
window

Bring the debugger window to front.

show-error-list Bring the runtime error window to front.
enable-passive-
listen

Enable passive listening on the debugger
network port.

disable-passive-
listen

Disable passive listening on the
debugger network port.

exception-always-
stop

Always stop on exceptions, even if they
are handled by the debug program’s
code.

debug-start or run Start debug program execution,
stopping on first line of code. This
executes the main debug file as specified
by the project manager, if it has been
defined, or otherwise the current
frontmost editor window.

debug-file Start debugging the current file
(regardless of whether a main debug file
has been defined in the project
manager).

execute-file Execute the current file outside of the
debugger. Makefiles, python code, and
any executable file may be executed in
this way.

debug-continue Continue the current debug session, or
start a new one using the main debug
file if one has been specified in the
project manager, or otherwise the
frontmost editor window. This will stop
on the next breakpoint or exception (and
not on the first line of code when debug
is initiated).

debug-attach Display the attach dialog box, which
allows attaching Wing IDE to debug
processes that are already running.

Version 1.1b7-2 Wing IDE Reference

A.5. DEBUGGER 133

debug-detach Detach from the current debug process.
The process starts free-running right
away and will not stop at breakpoints or
exceptions as long as it is detached from
Wing IDE.

show-expression-
evaluator

Display the expression evaluator
window, bringing it to front if not
already there.

run-to-cursor Start or continue running the debug
program (either the main debug file, if
specified, or otherwise the frontmost
editor window) until the current cursor
position is reached (or until an
intervening breakpoint or exception is
found).

debug-kill End the current debug session, exiting
the debug program and terminating the
debug server connecton.

debug-stop Stop (aka pause) the current debug
session at current run location.

choose-args Display the debug argument dialog for
the frontmost editor window.

exception-never-
stop

Never stop on execptions.

exception-
unhandled-stop

Only stop on exceptions that are not
handled by the debug program’s code.

clear-exception-
ignores-list

Clear all exception points previously
designated as ignored during execution.

step-over Step over the current execution point.
step-into Step into function or method at current

execution point.
step-out Step out of the current function.
frame-up Move up the current debug stack one

frame.
frame-down Move down the current debug stack one

frame.
break-set Set a new regular breakpoint at the

cursor position.

Wing IDE Reference Version 1.1b7-2

134 Command Reference

break-toggle Set or clear a breakpoint at the cursor
position.

break-set-temp Set a new temporary breakpoint at the
cursor position.

break-set-cond Set a new conditional breakpoint at the
cursor position, prompting the user to
enter the conditional to use.

break-ignore Ignore the breakpoint at current cursor
position for a given number of
iterations, prompting user to enter the
ignore value.

break-edit-cond Prompt user to edit the conditional for
the conditional breakpoint at the current
cursor position.

break-enable Enable the breakpoint at current cursor
position.

break-disable Disable the breakpoint at current cursor
position.

break-clear Clear the breakpoint at current cursor
position.

break-clear-all Clear all set breakpoints of all types.
show-var-defaults Zoom the selected variable value into a

seperate window, using the default
configured view and value tracking
styles.

show-var-parent-
ref-defaults

Zoom the selected variable value into a
seperate window, tracking the value by
object reference to the parent value and
symbolic reference to the data slot. The
display style is the default configured
style.

show-var-parent-
ref-combo

Zoom the selected variable value into a
seperate window, tracking the value by
object reference to the parent value and
symbolic reference to the data slot. The
display style is a combo view containing
both tree and textual areas.

Version 1.1b7-2 Wing IDE Reference

A.5. DEBUGGER 135

show-var-parent-
ref-tree

Zoom the selected variable value into a
seperate window, tracking the value by
object reference to the parent value and
symbolic reference to the data slot. The
tree display style is used.

show-var-parent-
ref-text

Zoom the selected variable value into a
seperate window, tracking the value by
object reference to the parent value and
symbolic reference to the data slot. The
textual display style is used.

show-var-value-ref-
defaults

Zoom the selected variable value into a
seperate window, tracking the value by
direct object reference. The display style
is the default configured style.

show-var-value-ref-
combo

Zoom the selected variable value into a
seperate window, tracking the value by
direct object reference. The display style
is a combo view containing both tree
and textual areas.

show-var-value-ref-
tree

Zoom the selected variable value into a
seperate window, tracking the value by
direct object reference. The tree display
style is used.

show-var-value-ref-
text

Zoom the selected variable value into a
seperate window, tracking the value by
direct object reference. The textual
display style is used.

show-var-symbolic-
defaults

Zoom the selected variable value into a
seperate window, tracking the value by
direct object reference. The display style
is the default configured style.

show-var-symbolic-
combo

Zoom the selected variable value into a
seperate window, tracking the value by
its symbolic path. The display style is a
combo view containing both tree and
textual areas.

Wing IDE Reference Version 1.1b7-2

136 Command Reference

show-var-symbolic-
tree

Zoom the selected variable value into a
seperate window, tracking the value by
its symbolic path. The tree display style
is used.

show-var-symbolic-
text

Zoom the selected variable value into a
seperate window, tracking the value by
its symbolic path. The textual display
style is used.

set-default-var-
view-combo

Set the default zoom view style to
combination view, containing both a tree
and textual display area. This overrides
the value set by the
debug.default-var-view-style
preference.

set-default-var-
view-tree

Set the default zoom view style to
dynamic tree. This overrides the value
set by the
debug.default-var-view-style
preference.

set-default-var-
view-text

Set the default zoom view style to
textual. This overrides the value set by
the
debug.default-var-view-style
preference.

set-default-var-
track-symbolic

Set the default zoom value tracking style
to use the symbolic path to the data
value. This overrides the value set by the
debug.default-var-track-style
preference.

set-default-var-
track-parent-ref

Set the default zoom value tracking style
to use the object reference of the parent
value and the symbolic name for the
data slot. This overrides the value set by
the
debug.default-var-track-style
preference.

Version 1.1b7-2 Wing IDE Reference

A.5. DEBUGGER 137

set-default-var-
track-value-ref

Set the default zoom value tracking style
to use a direct object reference to the
value. This overrides the value set by the
debug.default-var-track-style
preference.

expand-tree-more Expand the currently selected variable in
the tree formatted variable display by
one additional level of depth.

collapse-tree-more Collapse the currently selected variable
in the tree formatted variable display by
one additional level of depth.

force-var-reload Force reload of the variable currently
selected on the active tree variable view.
This overrides previously stored errors
causing the debugger to attempt to
reevaluate the value.

clear-var-errors Clear the list of stored variables for
which fatal errors were encountered
during previous debug sessions. Values
for these variables are not normally
reloaded during subsequent debugging.

Wing IDE Reference Version 1.1b7-2

139

Appendix B

Wing Tips

This appendix provides tips for usage and pointers to useful online resources for devel-
opers using Wing IDE.

B.1 Online Resources for Wing IDE

Archaeopteryx Software provides a number of support resources free of charge. All of
these are available on the web at http://wingide.com/support .

• FAQ - A list of frequently asked questions is maintained on the support site.

• Manual - An online copy of the reference manual for the latest version of Wing IDE is
available.

• Updates - Updated software versions and the product source code are made available
to licensed users of Wing IDE.

• Forum - A Wing IDE user group mailing list acts as a forum for discussion among
Wing users and a place to post questions you may have about Wing. Archaeopteryx
staff respond to queries made here, and the list is archived and searchable.

• IssueTrak - This facility provides information about known bugs and requested fea-
tures.

Wing IDE Reference Version 1.1b7-2

140 Wing Tips

• Product Announcements List - This archived and searchable mailing list is used
to announce new products and new product versions as they are released. See
http://wingide.com/announcelist .

B.2 Python Language Reference

The Python Language Reference, maintained by the developers of Python, is available
online at www.python.org . A copy is also included with each distribution of Wing IDE,
in WINGHOME/python/doc .

This reference manual contains the following parts:

• Tutorial - Start here if you are new to Python

• Library Reference - This documents most of Python’s functionality and all of the in-
cluded support libraries; everything from the built-in types and string operations, to
support for data serializing, encryption, sockets programming, and numerous internet
protocols.

• Language Reference - This documents the language core only, which is relatively small
since even basic services are provided in libraries described in the Library Reference.
The Data Model chapter is the most useful for reference once you are up to speed with
Python.

• Extending and Embedding - A tutorial to get you started writing a Python extension
module in C or C++, or if you want to use Python as an embedded scripting language
for an application.

• Python/C API - This documents the Python C language API, for use when writing
Python extension modules, or to make use of Python as an embedded scripting lan-
guage.

B.3 Useful Tools

This section describes some useful tools that are available to Python programmers but
that have not yet been integrated into the Wing’s graphical user interface.

Version 1.1b7-2 Wing IDE Reference

B.3. USEFUL TOOLS 141

B.3.1 Performance Profiling

Performance profiling is supported by the Python profile and pstats modules.

To create a profile file named profile.tmp for invocation of a function main() you
would include the following code in your application:

import profile
profile.run(’import mymodule; mymodule.main()’, ’profile.tmp’)

This will accumulate profile data while running the function main() in module
mymodule . Note that importing and fully specifying the module scope is im-
portant if you plan to run the profiler under the Wing debugger. The profiler
makes assumptions about scope that are violated by the debugger so just specifying
profile.run(’main()’, ’profile.tmp’) will not work.

Subsequently, the pstats module is used to inspect the contents of the profiler’s output
file. For example, the following command would sort the file by cumulative time spent
in each function, and then print out the top 10 compute-intensive calls:

import pstats
p = pstats.Stats(’profile.tmp’)
p.sort_stats(’cumulative’).print_stats(10)

Detailed documentation for profiling is available in the Python Library Reference under
The Python Profiler.

B.3.2 Busting Object Reference Cycles (Python 1.5.2)

Because Python versions 2.0 and later contain code to detect and break object reference cycles, you
may not need to worry about cyclical references unless you are using Python 1.5.2.

A common problem in reference counted garbage-collected languages like Python is
memory leakage due to cyclical object references. This occurs in cases where an object
A has a reference to another object B that has a reference back to object A. The interpreter
fails to discard memory held by these objects even if they become unused by the program
because a non-zero reference count exists as a result of the cycle.

Cycles may be much longer than just two objects, for example A -> B -> C -> D -
> A would result in failure to discard objects A through D.

Wing IDE Reference Version 1.1b7-2

142 Wing Tips

In these cases, a long-running program will eventually run out of memory as more and
more objects are left intact because of their participation in object reference cycles.

Cyclops

A Python module called Cyclops is available for monitoring your program as it runs, to
determine when cyclical memory references are preventing the Python interpreter from
discarding unused objects.

This module can be used to print information on existing cycles at any time, including at
time of program exit.

The following function might be used to invoke a function called main and then output
cycle information for modules and functions upon exit:

\#---
def RunWithCyclops():

"""Run the main program under Cyclops. Require Cyclops.py found at
http://www.python.org/ftp/python/contrib/System/Cyclops.py."""

from cyclops import Cyclops
import types

def mod_refs(x):
return x.__dict__.values()

def mod_tag(x, i):
return "." + x.__dict__.keys()[i]

def func_refs(x):
return x.func_globals, x.func_defaults

def func_tag(x, i):
return (".func_globals", ".func_defaults")[i]

def instance_filter(cycle):
for obj, index in cycle:

if type(obj) is types.InstanceType:
return 1

return 0

z = Cyclops.CycleFinder()
z.chase_type(types.ModuleType, mod_refs, mod_tag)
z.chase_type(types.FunctionType, func_refs, func_tag)

Version 1.1b7-2 Wing IDE Reference

B.3. USEFUL TOOLS 143

z.run(main)
z.find_cycles()
z.show_stats()
z.show_cycles()

Once cycles are found, the most effective method for fixing the resulting memory leaks
is to introduce a destroy function that manually clears references that are causing a
cycle (for example, by setting them to None or by calling the clear() method on Python
dictionaries or sequences.

If a cycle is broken at a single point in this way, all objects in the cycle will subsequently
be freed. For this reason, busting cycles tends to be relatively easy.

For more information on using Cyclops, please refer to documentation within the copy
located in WINGHOME/cyclops .

B.3.3 Debugging C/C++ Modules (on Linux)

Gdb can be used as a tool to aid in debugging C/C++ extension modules written for
Python, although doing so can be a bit tricky and prone to problems. The following text
contains hints to make this easier.

Note that this section assumes you are already familiar with gdb; for more information
on gdb commands, please refer to the gdb documentation.

The first step in debugging C/C++ modules with gdb is to make sure that you are using a
version of Python that was compiled with debug symbols. To do this, you need a source
distribution of Python and you need to configure the distribution as described in the
accompanying READMEfile.

In most cases, this can be done as follows: (1) Type ./configure , (2) type make OPT=-
g or edit the Makefile so OPT=-g, (3) type make, and (4) once the build is complete,
install it with make install (but see the README first if you don’t want to install into
/usr/local/lib/python).

If you are building an extension module that you are compiling into the Python inter-
preter, you can now just run Python within gdb, set a breakpoint at the desired location
in your extension module, and execute your Python test program.

In most cases, however, the extension module is not compiled into Python but is instead

Wing IDE Reference Version 1.1b7-2

144 Wing Tips

loaded dynamically at runtime. In order to get your extension module to load, it must be
on the PYTHONPATHor within the same directory where the module is import -ed into
Python source.

Gdb additionally requires setting LD_LIBRARY_PATHto include the directory where the
dynamically loaded module is located. A common problem in doing this is that gdb will
reread .cshrc each time that it runs, so setting LD_LIBRARY_PATHbefore invoking gdb
has no effect if you also set LD_LIBRARY_PATHin .cshrc . To work around this, set
LD_LIBRARY_PATHin .profile instead. This file is read only once at login time.

Then start Python as follows:

myhost> gdb
(gdb) file python
(gdb) run yourprogram.py yourargs

Note that breakpoints in a shared library cannot be set until after the shared library is
loaded. If running your program triggers loading of your extension module library, you
can use ˆCˆC to interrupt the debug program, set breakpoints, and then continue.

Otherwise, you must continue running your program until the extension module is
loaded. When in doubt, add a print statement at point of import, or you can set a break-
point at PyImport_AddModule (this can be set after file python and before running
since this call is not in a shared library).

Unfortunately, even if you take all of the above steps, gdb will often get confused if you
load and unload shared libraries repeatedly during a single debug session. You can usu-
ally re-run Python 5-10 times but subsequently may see crashing, failure to stop at break-
points, or other odd behaviors. When this occurs, there is no alternative but to exit and
restart gdb.

Finally a hint for viewing Python data from the C/C++ side when using gdb. The follow-
ing gdb command will print out the contents of a PyObject * called obj as if you had
issued the command print obj from within the Python language:

(gdb) p PyObject_Print (obj, stderr, 0)

B.4 Wing IDE Source Code

Please note: This section was written for the Linux edition and still needs to be updated
for Windows users.

Version 1.1b7-2 Wing IDE Reference

B.4. WING IDE SOURCE CODE 145

The source code for Wing IDE is available to all users that have a permanent (non-
evaluation) license to the product. This section contains information that may be useful
to those wanting to delve into the source code to make changes or add custom features.

B.4.1 Setting up the Source

Before getting started, you should download and install the binary and source distribu-
tions, as described in sections 1.2 and 1.8, respectively. You may wish to install these
somewhere other than the location of your main Wing installation, so that you can con-
tinue to run a working copy of the IDE regardless of what you do to the source code (but
this is not a requirement).

Once the source is installed, go to the installation location and type ’make’ to build the
IDE modules from source (this is required because some of the modules are written in C
or C++).

Whenever you wish to run the development version of Wing IDE, you must define an
environment variable DEVEL_WINGHOMEand set this to the full path of the location where
you installed the Wing IDE source. You may also want to add the Wing development
directory to your path so you can easily run the version of Wing that resides there.

Once this is done you can start Wing and open the ide.wpr project file, which is the
project file that allows us to use Wing to develop itself. You may run either the copy
of Wing that you just built (the development copy) or another copy installed from the
binary distribution. Which you run depends on your path and the presence of the
DEVEL_WINGHOMEenvironment variable.

An alternative to this is to type make run from the development directory. This will first
rebuild any altered C/C++ modules and then run the development copy of the IDE. Note
that this requires that DEVEL_WINGHOMEis already set.

B.4.2 Top-level Organization

The source code, relative to the top level of the Wing IDE installation, is organized into
three major groups of functionality, according to its origin and the distribution licenses
that apply to the code:

• Most Wing source code is in the src directory. This is the proprietary code to which

Wing IDE Reference Version 1.1b7-2

146 Wing Tips

you have certain rights if you own a license, but which you may not redistribute.

• The directory opensource contains the portions of the IDE that were written at Ar-
chaeopteryx Software and have been released under an open source license.

• The external directory contains additional open source items used within the IDE
but written and maintained outside of Archaeopteryx Software Inc.

B.4.3 IDE Sub-systems

Distributed among the above directories are the following major sub-systems of the IDE:

• src.browser - The source code browser module, which implements the source browser
window’s functionality (but not the code analysis itself, which is in src.pysource
and opensource.parsetools).

• src.cache - The central text file cache through which source files are read and managed.
This also acts as the point of access to shared source analysis information, used by the
browser, editor, and other parts of the IDE.

• src.debug.client - The debug client, which implements the debugger window and sub-
windows.

• src.debug.server - The debug server and associated network protocol implementation.

• src.edit - The source code editor, which uses several other modules including
opensource.pyscintilla and external.scintilla to do most of its work.

• src.guimgr - The top-level GUI manager for Wing IDE. This manages windows and
views within windows, implements the command framework and keyboard equiva-
lency support, and defines and manages the menubar and toolbar.

• src.license - Wing’s license verification facility.

• src.pref - A generic properties file manager used for Wing’s preferences files, the
project files, and by the license manager.

• src.proj - The project manager, which implements the project window.

• src.pysource - The Python source code analyzer. Most of its work is delegated to
opensource.parsetools .

Version 1.1b7-2 Wing IDE Reference

B.4. WING IDE SOURCE CODE 147

• src.util - Miscellaneous modules and utilities used throughout Wing’s source code.

• opensource.parsetools - The core of Wing’s Python language source code analysis ca-
pabilities.

• opensource.pyscintilla - A Python language wrapper for the external.scintilla
source code editor module.

• opensource.schannel - A semi-secure TCP/IP channel used by the debugger.

• external.cyclops - A tool for detecting cyclical object references in Python code, as
described in section B.3.2.

• external.py2pdf - A tool for converting Python source files into PDF. This is used by
Wing’s printing facility.

• external.pygtk-0.6.5-wing - A modified version of pygtk-0.6.5 , which is a Python
language wrapper for the gtk GUI development library.

• external.scintilla - A powerful source code editing widget used by Wing for its editor
windows.

B.4.4 Documentation

Throughout the source, Python documentation strings and comments are used to describe
the code. As a result, most documentation is located within the code itself.

Each IDE module also has a READMEfile containing at least some text identifying the
module. This may also contain high level documentation for the module’s source, so it’s
a good place to start when inspecting the code.

The top-level docstring (at start of each Python file) contains a CVS logging area, which
lists all recent revision comments for that file.

B.4.5 Naming Convention

Three techniques are used to build names for language constructs in the Wing IDE source
code: (1) leading underscores indicate the public, semi-private, and private nature of the
construct, (2) prefix letters are used to indicate the type of some constructs, and (3) capital-
ization is used to indicate the type of some constructs. This naming style is used with all

Wing IDE Reference Version 1.1b7-2

148 Wing Tips

Python language constructs, including classes, functions, methods, variables, attributes,
and in some cases module names.

Underscoring

The presence and number of underscores before construct names is used to indicate the
scope of access intended for that construct.

• No leading underscores (as in CallMe()) are used for publically accessible classes,
methods, functions, or attributes. These may be accessed from anywhere.

• A single underscore (as in _DoSomething()) is used to indicate that a construct is
semi-private, for access only from within the construct’s scope and related scopes (such
as in sub-classes, or other classes that are part of a logical sub-system).

• A double underscore (as in __MyMethod()) indicates that a construct is private. For
object attributes, Python will enforce local-only access of these values by making them
invisible from subclasses or outside of the body of the class.

Prefixing

A prefix-based naming convention is also applied to some language constructs, as fol-
lows:

• Names starting with ’g’ are globals

• Names starting with ’f’ are class instance attributes

• Names starting with ’k’ are constants

• Names starting with ’C’ are classes.

Capitalization

Capitalization of letters within construct names is also standardized:

Version 1.1b7-2 Wing IDE Reference

B.4. WING IDE SOURCE CODE 149

• Names in the form XxxXxxx are used for classes, methods, instance attributes, func-
tions, and constants.

• Names like xxx_xxx are used for parameters, locals, module names, and disk direc-
tories.

Underscoring, prefixing, and capitalization are combined as appropriate for all con-
structs, to build names like _CMyClass (a semi-private class), kAValue (a public con-
stant), and __fCount (a private instance attribute).

Wing IDE Reference Version 1.1b7-2

151

Appendix C

Software License

This End User License Agreement (EULA) is a CONTRACT between you (either
an individual or a single entity) and Archaeopteryx Software,
Inc. (Archaeopteryx), which covers your use of either "Wing IDE for Linux"
or "Wing IDE for Windows" and related software components. All such
software is referred to herein as the "Software Product." A software
license and a license key or serial number ("Software Product License"),
issued to a designated user only by Archaeopteryx or its authorized
agents, is required for each concurrent user of the Software Product. If
you do not agree to the terms of this EULA, then do not install or use
the Software Product or the Software Product License. By explicitly
accepting this EULA you are acknowledging and agreeing to be bound
by the following terms:

1. EVALUATION LICENSE WARNING

This Software Product can be used in conjunction with a free evaluation
Software Product License. If you are using such an evaluation Software
Product License, you may use the Software Product only to evaluate its
suitability for purchase. Evaluation Software Product Licenses have an
expiration date and most of the features of the software will be disabled
after that date. ARCHAEOPTERYX BEARS NO LIABILITY FOR ANY DAMAGES
RESULTING FROM USE (OR ATTEMPTED USE AFTER THE EXPIRATION DATE) OF THE
SOFTWARE PRODUCT, AND HAS NO DUTY TO PROVIDE ANY SUPPORT BEFORE OR AFTER
THE EXPIRATION DATE OF AN EVALUATION LICENSE.

2. GRANT OF NON-EXCLUSIVE LICENSE

Archaeopteryx grants the non-exclusive, non-transferable right for
a single user to use this Software Product. Each additional concurrent user

Wing IDE Reference Version 1.1b7-2

152 Software License

of the Software Product requires an additional Software Product License.

Archaeopteryx grants you the right to modify, alter, improve, or
enhance the Software Product without limitation, except as described
in this EULA.

Although rights to modification of the Software Product are granted by
this EULA, you may not tamper with, alter, or use the Software Product in
a way that disables, circumvents, or otherwise defeats its built-in
licensing verification and enforcement capabilities. The right to
modification of the Software Product also does not include the right to
remove or alter any trademark, logo, copyright or other proprietary
notice, legend, symbol or label in the Software Product.

You may at your discretion distribute patch files containing any
modifications or improvements made to the Software Product, other than
those that are aimed at disabling or circumventing its built-in license
verification capabilities, that result in the removal or alteration
of any trademark, logo, copyright, or other proprietary notice, legend,
symbol or label in the Software Product. This right does not include
the right to distribute substantial portions of the original source, where
distribution rights are limited to contextual information normally
existing in software patch files.

You may at your discretion designate license terms, open source or
otherwise, for all modifications or improvements made by you.
Archaeopteryx has no special rights to any such modifications or
improvements.

You may make copies of the Software Product as reasonably necessary for
its use. Each copy must reproduce all copyright and other proprietary
rights notices on or in the Software Product.

You may install each Software Product License on a single computer system.
A second installation of the same Software Product License may be made
on one other computer system, so long as both copies of the same Software
Product License never come into concurrent use. You may also make copies of
the Software Product License as necessary for backup and/or archival
purposes. Backup and archival copies may not come into active use,
together with the Software Product, for any purpose. No other copies
may be made. Each copy must reproduce all copyright and other proprietary
rights notices on or in the Software Product License. You may not modify
or create derivative copies of the Software Product License.

All rights not expressly granted to you are retained by Archaeopteryx.

3. INTELLECTUAL PROPERTY RIGHTS RESERVED BY ARCHAEOPTERYX

Version 1.1b7-2 Wing IDE Reference

153

The Software Product is owned by Archaeopteryx and is protected by United
States and international copyright laws and treaties, as well as other
intellectual property laws and treaties. You must not remove or alter any
copyright notices on any copies of the Software Product. This Software
Product copy is licensed, not sold. You may not use, copy, or distribute
the Software Product, except as granted by this EULA, without written
authorization from Archaeopteryx or its designated agents. Furthermore,
this EULA does not grant you any rights in connection with any trademarks
or service marks of Archaeopteryx. Archaeopteryx reserves all
intellectual property rights, including copyrights, and trademark rights.

4. NO RIGHT TO TRANSFER

You may not rent, lease, lend, or in any way distribute or transfer any
rights in this EULA or the Software Product to third parties without
Archaeopteryx’s written approval, and subject to written agreement by the
recipient of the terms of this EULA.

5. INDEMNIFICATION

You hereby agree to indemnify Archaeopteryx against and hold harmless
Archaeopteryx from any claims, lawsuits or other losses that arise out of
your breach of any provision of this EULA.

6. THIRD PARTY RIGHTS

Any software provided along with the Software Product that is associated
with a separate license agreement is licensed to you under the terms of
that license agreement. This license does not apply to those portions
of the Software Product. Copies of these third party licenses are included
in all copies of the Software Product.

7. SUPPORT SERVICES

Archaeopteryx may provide you with support services related to the
Software Product. Use of any such support services is governed by
Archaeopteryx policies and programs described in online documentation
and/or other Archaeopteryx-provided materials.

As part of these support services, Archaeopteryx may make available bug
lists, planned feature lists, and other supplemental informational
materials. ARCHAEOPTERYX MAKES NO WARRANTY OF ANY KIND FOR THESE
MATERIALS AND ASSUMES NO LIABILITY WHATSOEVER FOR DAMAGES RESULTING FROM
ANY USE OF THESE MATERIALS. FURTHERMORE, YOU MAY NOT USE ANY MATERIALS
PROVIDED IN THIS WAY TO SUPPORT ANY CLAIM MADE AGAINST ARCHAEOPTERYX.

Any supplemental software code or related materials that Archaeopteryx
provides to you as part of the support services, in periodic updates to

Wing IDE Reference Version 1.1b7-2

154 Software License

the Software Product or otherwise, is to be considered part of the
Software Product and is subject to the terms and conditions of this
EULA.

With respect to any technical information you provide to Archaeopteryx as
part of the support services, Archaeopteryx may use such information for
its business purposes without restriction, including for product support
and development. Archaeopteryx will not use such technical information in
a form that personally identifies you without first obtaining your permission.

9. TERMINATION WITHOUT PREJUDICE TO ANY OTHER RIGHTS

Archaeopteryx may terminate this EULA if you fail to comply with any term
or condition of this EULA. In such event, you must destroy all copies of
the Software Product and Software Product Licenses.

10. U.S. GOVERNMENT USE

If the Software Product is licensed under a U.S. Government contract, you
acknowledge that the software and related documentation are "commercial
items," as defined in 48 C.F.R 2.01, consisting of "commercial computer
software" and "commercial computer software documentation," as such
terms are used in 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1. You also
acknowledge that the software is "commercial computer software" as
defined in 48 C.F.R. 252.227-7014(a)(1). U.S. Government agencies and
entities and others acquiring under a U.S. Government contract shall
have only those rights, and shall be subject to all restrictions,
set forth in this EULA. Contractor/manufacturer is Archaeopteryx
Software, Inc., P.O. Box 1937, Brookline MA 02446-0016, USA.

11. EXPORT RESTRICTIONS

You will not download, export, or re-export the Software Product, any part
thereof, or any software, tool, process, or service that is the direct
product of the Software Product, to any country, person, or entity -- even
to foreign units of your own company -- if such a transfer is in violation
of U.S. export restrictions.

12. NO WARRANTIES

YOU ACCEPT THE SOFTWARE PRODUCT AND SOFTWARE PRODUCT LICENSE "AS IS," AND
ARCHAEOPTERYX AND ITS THIRD PARTY SUPPLIERS AND LICENSORS MAKE NO WARRANTY
AS TO ITS USE, PERFORMANCE, OR OTHERWISE. TO THE MAXIMUM EXTENT PERMITTED
BY APPLICABLE LAW, ARCHAEOPTERYX AND ITS THIRD PARTY SUPPLIERS AND
LICENSORS DISCLAIM ALL OTHER REPRESENTATIONS, WARRANTIES, AND CONDITIONS,
EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING, BUT NOT LIMITED TO,
IMPLIED WARRANTIES OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND NON-INFRINGEMENT. THE ENTIRE

Version 1.1b7-2 Wing IDE Reference

155

RISK ARISING OUT OF USE OR PERFORMANCE OF THE SOFTWARE PRODUCT REMAINS
WITH YOU.

13. LIMITATION OF LIABILITY

THIS LIMITATION OF LIABILITY IS TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW. IN NO EVENT SHALL ARCHAEOPTERYX OR ITS THIRD PARTY
SUPPLIERS AND LICENSORS BE LIABLE FOR ANY COSTS OF SUBSTITUTE PRODUCTS OR
SERVICES, OR FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL
DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF
BUSINESS PROFITS, BUSINESS INTERRUPTION, OR LOSS OF BUSINESS INFORMATION)
ARISING OUT OF THIS EULA OR THE USE OF OR INABILITY TO USE THE SOFTWARE
PRODUCT OR THE FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF ARCHAEOPTERYX
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN ANY CASE,
ARCHAEOPTERYX’S, AND ITS THIRD PARTY SUPPLIERS’ AND LICENSORS’, ENTIRE
LIABILITY ARISING OUT OF THIS EULA SHALL BE LIMITED TO THE LESSER OF THE
AMOUNT ACTUALLY PAID BY YOU FOR THE SOFTWARE PRODUCT OR THE PRODUCT LIST
PRICE; PROVIDED, HOWEVER, THAT IF YOU HAVE ENTERED INTO AN ARCHAEOPTERYX
SUPPORT SERVICES AGREEMENT, ARCHAEOPTERYX’S ENTIRE LIABILITY REGARDING
SUPPORT SERVICES SHALL BE GOVERNED BY THE TERMS OF THAT AGREEMENT.

14. HIGH RISK ACTIVITIES

The Software Product is not fault-tolerant and is not designed,
manufactured or intended for use or resale as on-line control equipment in
hazardous environments requiring fail-safe performance, such as in the
operation of nuclear facilities, aircraft navigation or communication
systems, air traffic control, direct life support machines, or weapons
systems, in which the failure of the Software Product, or any software,
tool, process, or service that was developed using the Software Product,
could lead directly to death, personal injury, or severe physical or
environmental damage ("High Risk Activities"). Accordingly, Archaeopteryx
and its suppliers and licensors specifically disclaim any express or
implied warranty of fitness for High Risk Activities. You agree that
Archaeopteryx and its suppliers and licensors will not be liable for any
claims or damages arising from the use of the Software Product, or any
software, tool, process, or service that was developed using the Software
Product, in such applications.

15. GOVERNING LAW; ENTIRE AGREEMENT ; DISPUTE RESOLUTION

This EULA is governed by the laws of the Commonwealth of Massachusetts,
U.S.A., excluding the application of any conflict of law rules. The
United Nations Convention on Contracts for the International Sale of
Goods shall not apply.

This EULA is the entire agreement between Archaeopteryx and you, and
supersedes any other communications or advertising with respect to the

Wing IDE Reference Version 1.1b7-2

156 Software License

Software Product; this EULA may be modified only by written agreement
signed by authorized representatives of you and Archaeopteryx.

Unless otherwise agreed in writing, all disputes relating to this
EULA (excepting any dispute relating to intellectual property rights)
shall be subject to final and binding arbitration in the State of
Massachusetts, in accordance with the Licensing Agreement Arbitration
Rules of the American Arbitration Association, with the losing party
paying all costs of arbitration. Arbitration must be by a member
of the American Arbitration Association. If any dispute arises
under this EULA, the prevailing party shall be reimbursed by the
other party for any and all legal fees and costs associated therewith.

16. GENERAL

If any provision of this EULA is held invalid, the remainder of this
EULA shall continue in full force and effect.

A waiver by either party of any term or condition of this EULA
or any breach thereof, in any one instance, shall not waive such term or
condition or any subsequent breach thereof.

17. OUTSIDE THE U.S.

If you are located outside the U.S., then the provisions of this Section
shall apply. Les parties aux prsentes confirment leur volont que cette
convention de mme que tous les documents y compris tout avis qui s’y
rattache, soient redigs en langue anglaise. (translation: "The parties
confirm that this EULA and all related documentation is and will be
in the English language.") You are responsible for complying with any
local laws in your jurisdiction which might impact your right to import,
export or use the Software Product, and you represent that you have
complied with any regulations or registration procedures required by
applicable law to make this license enforceable.

18. TRADEMARKS

The following are trademarks or registered trademarks of Archaeopteryx:

Archaeopteryx, Wing IDE, Wing IDE Professional, Wing IDE Enterprise,
Wing Debugger, and "Take Flight!".

19. CONTACT INFORMATION

If you have any questions about this EULA, or if you want to contact
Archaeopteryx for any reason, please direct all correspondence to:
Archaeopteryx Software, Inc., P.O. Box 1937, Brookline, MA 02446-0016,
United States of America or send email to info@archaeopteryx.com.

Version 1.1b7-2 Wing IDE Reference

157

Wing IDE Reference Version 1.1b7-2

