
Machine Learning Explorer™ Eval Kit Specification
__

__
Copy right 1999, Learning Machines Technology Group

Machine Learning Explorer™ Eval Kit Specification

INSTALLATION

To install, unzip mle.zip with the option turned on to reserve the subdirectory
structure. Mle.h should appear in FreeMLE/Include and Mle.lib should appear in
FreeMLE/Lib. A demo application is available in FreeMLE/Demo.

The demo can be compiled with Microsoft® Visual C++ 5.0. After the project file
is loaded, the user should perform the following to set up the directories for
include and library files.

• Go to Tools->Options, select the directories tab. Select the “Include files”
under “Show directories for:”, add “FreeMLE/Include”.

• Go to Tools->Options, select the directories tab. Select the “Library files”
under “Show directories for:”, add “FreeMLE/Lib”.

Select Build->Build Demo.exe and the demo is done.

To appreciate the demo, under the menu item “Learn”, select “Explore” first, then
“Associate”, and then “Optimize”. The Boxer on the right hand side of the drawing
will learn to hit its opponent as efficiently as possible.

EVAL KIT OVERVIEW

Machine Learning Explorer™ Eval Kit includes the key component of Machine
Learning Explorer™ SDK, the MLEngine. MLEngine is a general purpose AI
engine suited for controlling simulated autonomous systems with discrete
dynamics. The sensory states of the system under MLEngine’s control should be
expressed as a linear array of discrete states ranging from 0 to dim_state – 1.
Similarly, the actuator commands should be expressed as an array of discrete
states ranging from 0 to dim_action – 1.

For the Eval Kit, the maximum number of sensory states allowed is 32. The
maximum number of action states is 8.

Machine Learning Explorer™ Eval Kit Specification
__

__
Copy right 1999, Learning Machines Technology Group

INTRODUCTION

Machine Learning Explorer™ (MLE) is a set of algorithms designed to control
simulated autonomous systems (automata, agents etc.). MLE will synthesize, in
real time, a feedback controller that will drive the system under its control
towards achieving a pre-defined goal. As a result, an integrated system with MLE
built-in will appear to learn. The autonomous system (called the system
thereafter) under the control of MLE needs to be equipped with a number of
simulate sensors and actuators. The system should also interact with a dynamic
environment through exchange of stimuli. MLE performs the control by taking
sensory feedback and issuing commands to the actuators.

MLE combines sensory encoding, system identification and optimal control into
one integrated solution. MLE is non-model based, which means it does not need
to have any prior knowledge of the system under its control. As an integral part of
the learning process, MLE will perform statistical system identification before it is
able to synthesize an optimal controller. For system identification, MLE relies on
information gathered from the sensors and records of its actuator commands.
MLE is therefore a general purpose AI engine that can be applied to a wide
variety of control applications.

To specify a goal for the integrated system, the application can take a subset of
the system sensory channels and define the goal in terms of desired sensor
values or sensory expectations. For example, if the objective of a robot is to grab
an object with its end effector, the goal can be defined as a sensory state such
that the contact sensor on the end effector signals a touch input.

The fact that a goal can only be expresses as sensory expectations implies that
in order for a goal to be achieved, the system has to be equipped with sensory
capabilities to tell whether it is in a state that corresponds the goal or not.

THE LEARNING PROCESS

Once MLE is integrated with an autonomous system, MLE carries out the
following steps to complete the learning process. During each phase, an indicator
will be available. The indicator can be used tell to what extend the process has
reached its intended objective.

Explore

During this phase, MLE will drive the system to interact freely with its
environment. MLE essentially passes out random action command and
monitors/remembers the sensory input.

Associate

Machine Learning Explorer™ Eval Kit Specification
__

__
Copy right 1999, Learning Machines Technology Group

During this phase, MLE will associate sensory and action information and build
an internal representation of the system under its control. This is essentially a
non-model based system identification process.

A parameter called association entropy can be obtained from MLE during the
association phase. This value should go down as the association phase is being
carried out. The smaller this value is, the more deterministic MLE has become
while building a representation of the system under its control.

Optimize

This is the phase where MLE will synthesize a strategy to control the system and
drive it to achieve a user-defined goal. The strategy is essentially a sensory
feedback controller that determines how the system should interact with its
environment by reacting to sensory inputs.

A parameter called optimization entropy can be returned from the MLE during the
optimization phase. This value should go down as the optimization phase is
being carried out. The smaller this value is, the more deterministic the
synthesized strategy is.

Machine Learning Explorer™ Eval Kit Specification
__

__
Copy right 1999, Learning Machines Technology Group

Machine Learning Explorer™ API

Class MLEngine

Synopsis
#include "Mle.h"

Description
This is the class that implements MLEngine - a general purpose AI Engine for
games.

MLEgnine

Synopsis
MLEngine (int dim_state, int dim_action, int order)

Description
This will create an instance of MLEngine. The calling program needs to specify
the dimension of the sensory state space, i.e. the number of states in the sensory
space through dim_state, and the dimension of action space, i.e. the number
actions through dim_action. Additionally, the caller needs to specify the order of
this instance of MLEngine. The order number will determine how far MLEngine
predicts ahead.

Synopsis
MLEngine (char *filename)

By calling this constructor, the calling program can instantiate a MLEngine with
parameters stored in a file written by MLEngine. See SaveMleState ().

~MLEngine

Synopsis
~MLEngine()

Description
This is the standard destructor for MLEngine. It deletes all the memory allocated
for MLEngine.

SaveMleState

Synopsis
int SaveMleState(char *filename)

Machine Learning Explorer™ Eval Kit Specification
__

__
Copy right 1999, Learning Machines Technology Group

Description
The user program can call this function to save all the content of the current
instance of MLEngine to a file specified by filename.

On success, SaveMleSate returns 0; otherwise, it returns -1.

Perform

Synopsis
int Perform (int s);

Description
When perform is called the application passes the sensory state s to MLEngine
and MLEngine will evaluate the sensory input and return an actuator command.
The command is an integer ranging from 0 to dim_action - 1. If the Engine has
already gone through Optimization, the feedback strategy performed by Perform
will drive the system under its control towards the maximum probability of
achieving the state defined by the SetGoal.

Explore

Synopsis
int Explore(int s);

This function should be called repeatedly when the system explores its
environment. By calling this function in each control loop, the sensory state
information needs to be passed to MLEngine. MLEngine will return an action
command to the system under its control. The result of the explore phase will be
written to a temporary file.

Associate

Synopsis
void Associate();

Description
This function should be called repeatedly during the association phase. As a
result, the Engine will perform system identification and build an internal
representation of the system under its control. The extend to which the objective
of association is accomplished can be monitored by calling
GetAssociationEntropy ().

GetAssociationEntropy

Synopsis
double GetAssociateEntropy();

Machine Learning Explorer™ Eval Kit Specification
__

__
Copy right 1999, Learning Machines Technology Group

Description
By calling this function, the engine will return the current association entropy. The
association entropy indicates to what extend the system identification process
has completed. Without any system identification, the engine returns a value
equal to 1. As the system identification is carried out, the association entropy will
approach 0. In a lot of cases however, if the control system and its environment
is not fully deterministic, the association may never get to 0. It will stabilize at
some positive value between 0 and 1 instead.

SetGoal

Synopsis
void SetGoal(int goal);

Description
The caller can choose a sensory state and assign it as the goal. An integer that
corresponds to goal states needs to be passed into the function.

Synopsis
void SetGoal(int* goal, int num_goals);

Description
The caller can choose one or more sensory states and assign them as the goal.
An array of states goal needs to be passed into the function. The caller needs to
specify the number of goals through num_goals as well.

Optimize

Synopsis
void Optimize();

Description
This function should be called repeatedly during the optimization phase. As a
result, the Engine will optimize the feedback strategy so as to maximize the
probability for the system to achieve the goal defined by SetGoal. The extend to
which the optimization phase is finished can be monitored by calling
GetOptimizationEntropy() and GetEstimatedGoalProbability().

GetOptimizeEntropy

Synopsis
double GetOptimizeEntropy();

Description

Machine Learning Explorer™ Eval Kit Specification
__

__
Copy right 1999, Learning Machines Technology Group

By calling this function, the engine will return the current optimization entropy.
The optimization entropy indicates to what extend the optimization process has
completed. Without any optimization, the engine returns a value equal to 1. As
the system identification is carried out, the optimization entropy will approach 0.
In many cases however, if the optimal control strategy is one that is not fully
deterministic, the optimization entropy may never get to 0. It will stabilize at some
positive value between 0 and 1 instead.

GetEstimatedGoalProbability

Synopsis
double GetEstimatedGoalProbability();

Description
By calling this function, the engine will return the estimated long-term probability
for the system to achieve the defined goal. As discussed earlier, MLEngine itself
cannot guarantee that the control system will perform and accomplish the user
defined the goal, it only optimizes the strategy so that the probability to achieve
the goal is the best. It is possible that certain goals are hard to achieve because
of many other constraints. MLEngine does give an estimation of the probability
that the defined the goal can be achieved under the control of a MLEngine while
it performs the optimization. As the optimization phase is carried out, the
optimization entropy will decrease while the estimated goal probability will
increase.

SetAssociationRate

Synopsis
void SetAssociationRate(double r)

Description
The parameter association rate determines the rate at which MLEngine
converges during the association phase. The default is 0.1. The bigger the
association rate, the faster MLEngine will converge initially. With big association
rate on the other hand, MLEngine will be less stable. The association entropy will
fluctuate more. When the association rate is small, MLE will be able to stabilize
better when it has built an internal representation of the system under its control.

SetOptimizationRate

Synopsis
void SetOptimizationRate(double r)

Description
The parameter optimization rate determines the rate at which MLEngine
converges during the optimization phase. The default is 0.1. The bigger the

Machine Learning Explorer™ Eval Kit Specification
__

__
Copy right 1999, Learning Machines Technology Group

optimization rate, the faster MLEngine will converge initially. With big optimization
rate on the other hand, MLEngine will be less stable. The optimization entropy
will fluctuate more. When the optimization rate is small, MLE will be able to
stabilize better when it has synthesized a feedback strategy to achieve the goal
set by SetGoal.

UnlearnAssociation

Synopsis
void UnlearnAssociation();

Description
Calling this function will erase all the information content stored in the MLEngine.
This is useful when there is a need for the MLEngine to learn a new strategy
under a new environment condition.

In a real application, after MLEngine has already learned a strategy, the way the
system behaves and interacts with its environment may change. If learning
continues as usual, MLEngine will take time to unlearn the old strategy and then
go on the learn a new strategy. By calling unlearn under this kind of condition,
the whole process becomes faster. Calling this function will also reset association
and optimization entropy, making it easier to control the transition between
phases.

To determine if there is a need to unlearn, the application can monitor the
average goal probability of and compare that to the estimated goal probability. If
the average drop far below the estimation, it is probably time to unlearn and learn
again.

void UnlearnOptimization()

Calling this function will erase the optimized feedback strategy. This is useful
when there is a new goal and therefore MLEngine needs to learn a new strategy.

Machine Learning Explorer™ Eval Kit Specification
__

__
Copy right 1999, Learning Machines Technology Group

Q&A

1. What is Machine Learning Explore, how is it different from other AI engines
such as a hierarchical finite state machine (HFSM)?

Machine Learning Explorer (MLE) is an integrated solution that combines
statistical system identification and optimal control. It is designed for controlling
autonomous systems through interface with sensors and actuators. MLE does
not assume any prior knowledge about the system under its control and
synthesis an optimal control strategy at run time.

Finite state machines need to be designed off-line. Whoever does that needs to
understand the dynamics of the system under its control. MLE can synthesize
control strategies at run-time.

2. Since MLE is adaptive and capable of self-learning, is there any relationship
between MLE and artificial neural network (NN) models?

Yes, we took many inspirations from neural net research, especially those with
recurrent architecture (e.g. Hopfield type NN model) and stochastic dynamics
(e.g. Bolzman Machine). The advantage of these architectures is such that they
are "active" and capable of generating temporal sequence of motor commands
by themselves. The output is a stochastic function of both input and time.

Our algorithm shares with neural net model at pure mathematical level. We did
not simulate the dynamics of neurons and synapses. In other words, we took the
mathematics that makes the neural net models work and optimize that for
conventional microprocessors.

3. When you say that your algorithm learn, what exactly does it learn from? Do
you have to teach it?

Once MLE is integrated with an autonomous system through sensor and actuator
interface, the user can and specify a goal. This goal has to be a combination of
desired sensor values. The learning process will synthesis a feedback strategy
from sensors to actuators so as to maximize the probability for the system to
achieve the state defined by the goal.

Although you have to let MLE know what its goal is, you do not have to "teach"
MLE specific motor sequences to achieve that goal. MLE is an unsupervised
learning machine. In fact, MLE can generate motor sequences that have never
been tried out before during the explore phase. It is required however that MLE
has tried all the basic elements of such sequences during the explore phase.

Machine Learning Explorer™ Eval Kit Specification
__

__
Copy right 1999, Learning Machines Technology Group

Because the goal or control objective has to be specified in terms of desired
sensory values, the system can only learn to accomplish a state its sensors can
discriminate. For example, a bird can never learn to catch a target if it cannot see
the target (that is, not knowing where the target is through sensors).

6. How adaptive can a learned system becomes, is this quality related to the
explore/training phase?

In order for a system that is under the control of MLE to develop an adaptive
strategy, it has to have sensors that provide real time feedback about its
interaction with its environment. It also has to be able to interact freely with its
environment when it explores its environment.

During the explore phase, if the condition of the environment undergoes changes
and the control system has the sensory capability to reflect that, an adaptive
strategy will be synthesized. The synthesized strategy will ensure that the system
adapt in real time later so as to maintain a certain level of performance in spite of
environment changes.

On the other hand, if the environment undergoes novel changes that has never
happened before, the control system performance will degrade gracefully if such
changes can be detected by existing sensors. In some case when environment
changes are both significant and unaccounted by the existing sensors, the
control system has to learn again in order to improve. The application program
can compare the average probability of achieving the goal with the estimated
probability returned from MLE engine to determine if there is a need to relearn.

