
qflog - The Manual

Version 0.95.1

Gregor Schmid
Quality First Software

Copyright c© 2000 Quality First Software, Gregor Schmid

July 10, 2000

1

Copyright

The contents of this manual are subject to the Mozilla Public License Version 1.1 (the
”License”); you may not use this manual except in compliance with the License. You
may obtain a copy of the License at http://www.mozilla.org/MPL/.

Software distributed under the License is distributed on an ”AS IS” basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. See the License for the specific
language governing rights and limitations under the License.

The Original Code is qfs.de code.

The Initial Developer of the Original Code is Gregor Schmid. Portions created by Gre-
gor Schmid are Copyright (C) 1999 Quality First Software, Gregor Schmid. All Rights
Reserved.

Contributor(s):

2

Preamble

When we set out to develop our products for Quality First Software1, we knew one thing
for sure: we were going to need a good logging system. The Java debuggers available
at the time were impractical and very slow, so we wanted log messages of a quality that
make debugging unnecessary. The trouble is, once you can get valuable information
out of logging, you start to use it a lot, which can lead to useless noise, cluttering the
important messages and to serious drawbacks in terms of CPU and memory usage.
To get this under control we created the de.qfs.lib.log package of our free library
qflib2, which takes care of log message creation and dispatch, and the log server qflog
which serves as the user interface to the logging system.

As a tribute to the free software community, which has produced so much great software
over the years and without which Quality First Software would not exist, we decided to
place qflib and qflog under an Open Source license and make them freely available.

We hope that qflog is of as much use to you as it is to us and that this manual provides
all the information you need to get the best out of it. If you have any problems, questions
or suggestions, please let us know at qflog@qfs.de.

One more thing: as you may already have noticed we are not native English speak-
ers. So please, bear with us and if you feel like it, let us know about our spelling and
grammatical mistakes, so that in time this manual may become a good read even for the
English audience.

Gregor Schmid3, Munich, May 8 2000

1http://www.qfs.de
2http://www.qfs.de/de/projects/qflib/index.html
3email: gs@qfs.de

3

Contents

1 Introduction 6

1.1 Functionality . 6

1.2 Application . 6

2 Installation 8

2.1 Requirements . 8

2.2 Installation . 8

2.3 RMI registry . 9

3 Invocation 10

3.1 Invocation syntax . 10

3.2 Options . 10

4 Operation of the main window 13

4.1 Loading and saving log files . 13

4.2 Opening a log window . 14

4.3 Removing clients . 14

4.4 Settings . 14

4.4.1 General settings . 14

5 Operation of the log window 16

5.1 General . 16

5.1.1 Structure of a log window . 16

5.1.2 Saving to a log file . 18

5.1.3 Loading and saving the configuration 18

CONTENTS 4

5.2 The table . 18

5.2.1 Copying messages . 19

5.2.2 Deleting messages . 19

5.2.3 Extra filters in the table . 20

5.2.4 Setting and jumping to marks . 20

5.2.5 Incremental search . 20

5.2.6 Options . 21

5.3 The detail view . 21

5.4 The filter tree . 21

5.4.1 The structure of the tree . 23

5.4.2 Setting the filter levels . 24

5.4.3 Displaying defined levels . 24

5.4.4 Additional filter mechanism . 24

5.5 The client’s log levels . 25

5.5.1 The structure of the tree . 26

5.5.2 Setting the levels . 26

5.5.3 Displaying defined levels . 26

5.5.4 Options . 26

6 A sample application 27

6.1 Invocation . 27

6.2 Options . 27

6.3 Example uses . 28

A qflog and applets 30

A.1 Internet Explorer . 30

A.2 Netscape . 30

A.3 Plugin . 31

A.4 Example applet . 31

5

List of Figures

4.1 The main window . 14

5.1 A log window . 17

5.2 The table displaying the log messages . 18

5.3 The detail view . 22

5.4 The filter tree . 22

5.5 The level tree . 25

6

Chapter 1

Introduction

The log server qflog is a valuable aid in browsing log messages. By sorting messages
and applying various kinds of filters one can easily locate the information one is looking
for. qflog also helps to keep control over the amount of logging being done. This manual
explains what functionality qflog offers, how it is installed and how to use it.

1.1 Functionality

qflog is coupled tightly with the de.qfs.lib.log package of qflib, but it is possible to
view log files created by other programs, even non-Java ones, as long as the messages
are correctly formatted. At the moment, only the format used by qflib is supported, but
it would be easy to create import filters for other formats.

At the heart of qflog is the log window, which contains components for the two central
functions of qflog:

• The message display with sorting, multiple filters, incremental search and markers.

• The interface for the parameters that are used to control the creation of log mes-
sages.

Operation of the log window is explained in chapter 4.4.1.

1.2 Application

There are three basic methods by which log messages can find their way into the log
window:

1.2. Application 7

• A program saves its messages to a log file, which is then read with qflog.

• A client/server connection is opened between qflog and a program.

• The log window is embedded directly into a program.

Control over log message generation may only be gained in the last two cases, since
nothing is known about the source of messages read from a log file.

At the moment RMI is the only protocol supported for client/server communication. If
there is a demand, CORBA or direct socket communication might be implemented as
well, which would make qflog accessible by non-Java clients.

8

Chapter 2

Installation

2.1 Requirements

qflog comes in two flavours, one for JDK 1.1 with Swing 1.1 and one for JDK 1.2 and
above. Both versions are essentially the same, the only difference being the location of
the collection classes.

The collection framework is a part of the Java Foundation Classes (JFC). With the
release of JDK 1.2 the JFC were integrated into the standard Java class library.

Since the collection classes are far superior to their predecessors Vector
and Hashtable , use of them is widespread throughout qflog. SUN has
released a JDK 1.1 compatible version of the collection classes under
http://java.sun.com/beans/infobus/#DOWNLOAD_COLLECTIONS. To use qflog with
JDK 1.1, the collections.jar archive from the above release must be present on
your CLASSPATH.

Since qflog is built on top of our free Java library qflib1, you will have to get that as well.
The current release is available from our download2 page.

2.2 Installation

Once you have the current versions of qflog and qflib, unpack both archives wherever
you like. Please read and follow the installation instructions for qflib. In a typical envi-
ronment the following should suffice:

JDK 1.1
1http://www.qfs.de/en/projects/qflib/index.html
2http://www.qfs.de/en/download.html

2.3. RMI registry 9

Ensure that the archives qflog_11.jar and qflib_11.jar are on your
CLASSPATH, as well as Swing (swingall.jar) and the collection classes
(collections-1.1.jar).

JDK 1.2
Either add the archives qflog_12.jar and qflib_12.jar to your CLASSPATH,
or copy them directly into the jre/lib/ext directory of your JDK /JRE installa-
tion.

There is a start script for qflog, named qflog for Unix and qflog.bat for Windows, in
the bin directory of the qflog distribution, which you should copy to a directory on your
PATH.

To save its configuration, qflog needs write access to a directory somewhere. Unless
you start it with a different option (see section 3.1) qflog writes its files into the directory
.qflog located in your home directory on Unix or Personal Files on Windows.

2.3 RMI registry

To use the client/server functionality of qflog you should have an RMI registry running in
the background. This can be achieved with the help of the rmiregistry program that
comes with every JDK or JRE.

Both qflog and its clients can create an RMI registry if necessary. The disadvantage
of this approach is that other programs that register themselves with this registry will
become unreachable once qflog or the client are terminated.

To make the use of RMI as simple as possible, all the classes involved (the so called
stubs and skeletons) are included with qflib, so no web server is needed. As a conse-
quence qflib must be on your CLASSPATHor in the jre/lib/ext directory of your JDK
at the time that rmiregistry is executed.

10

Chapter 3

Invocation

During startup of qflog the following steps are executed, which may be modified or
suppressed through options passed on the command line:

• If no RMI registry is running on the machine, qflog creates its own (see section 2.2
and section 3.1).

• Afterwards qflog registers itself as a log server in the RMI registry.

• Then the registry on the localhost or on remote hosts is searched for clients waiting
for a log server to contact them.

• Finally the log files passed on the command line are read.

3.1 Invocation syntax

The syntax for invoking qflog is

java [java-options...] de.qfs.apps.logserver.Start
[qflog-options...] [file...]

or, using the qflog or the qflog.bat script,

qflog [qflog-options...] [file...]

The files given as arguments will be read and displayed in the main window.

3.2 Options

qflog knows about the following options:

3.2. Options 11

-configfile <filename>
Specifies the file where qflog saves its configuration, which includes locations
and dimensions of its windows as well as filter informations for different clients.
The default value is /.qflog/config for Unix and Personal
Files \.qflog \config for Windows. The directory in which this config file
resides is also used as default location for saving and restoring the configuration
of a log window (see section 5.1.2).

-nocreateregistry
This option prevents qflog from creating its own RMI registry if it can’t find one. If
this option is given and no RMI registry is available, qflog can not be used as a log
server.

-noquery
Suppresses the search for clients, both as the default behaviour or initiated with
the -query Option.

-noserver
Prevents qflog from registering itself with the RMI registry. The options -port and
-servername are ignored in this case. The -query option is not affected.

-optionfile <filename>
This option names a file or URL that contains further qflog options. It must use
the standard property file format, i.e. contain lines of the form name = value .
Options given on the command line override options read from the option file.

-port <port number>
Defines the port number for the RMI registry to search or to create if none already
exists. The default value is 1099, the ”well known port” of the RMI registry.

-query <[host][:port]>
If neither -query nor -noquery are specified, qflog queries the RMI registry of
the host it is running on under the standard registry port 1099 for clients awaiting
contact. With -query , which can be specified multiple times, the hosts and ports
to query are given as arguments. An empty argument is equivalent to localhost .

-servername <name>
The name under which qflog registers itself in the RMI registry. Default is
”qflog” .

-serverhost <host>
This option determines the name of the host qflog is running on. It is usually not
necessary, but can be helpful if you experience problems with name resolution,
causing trouble when clients try to connect to qflog.

3.2. Options 12

-version
If -version is specified, all qflog does is print its version number and terminate
immediately.

13

Chapter 4

Operation of the main window

After qflog starts up, the main window (figure 4.1) is displayed. It contains a list of the
log files read and of the clients that are connected to the log server. A running number
is used to disambiguate multiple instances of identically named clients. Beyond that, the
number of messages, the time the client connected at or the file was read and the state
of the client are shown. The state is one of file, connected client or disconnected client,
represented by an icon.

From the main window, log windows for the clients and the log files can be opened, new
log files can be read, stale files and clients can be removed and a few general settings
can be changed.

Upon termination of qflog, active connections to clients are closed and the current con-
figurations are saved, including those of the log windows (see section 3.1 on how to
define the config file).

4.1 Loading and saving log files

With the File→Open... menu, a log file can be read via a standard file selection dia-
log. If the file was created with qflog, the client’s name will be retrieved from the file,
otherwise the client name ”unknown” is used.

To save the log messages of the currently selected client, use the File→Save as...
menu. The file selection dialog is used to determine the file in which all messages
from the client that are available at the moment are saved. Saving only a part of the
messages can be done from the log window (see section 5.1.1).

4.2. Opening a log window 14

Figure 4.1: The main window

4.2 Opening a log window

The log window for the selected client can be opened either by pressing the
�� ��Return

key, or through the Edit→Show... menu.

4.3 Removing clients

While true clients are removed automatically from the main window, depending on
qflog’s configuration, log files must be removed by hand. To get rid of the selected
client’s or log file’s messages, either press

�� ��Delete or use the Edit→Remove client
menu.

4.4 Settings

The dialog through which qflog’s settings are changed is available via the
Edit→Options... menu.

4.4.1 General settings

The following settings are used to limit the number of clients handled simultaneously, in
order to keep memory usage in check. All values apply to clients only, not to log files.

4.4. Settings 15

If one of the values is exceeded, clients are removed, where disconnected clients are
removed before connected clients and older clients before younger ones.

Maximum number of clients
Maximum for the total number of clients allowed, either connected or discon-
nected.

Maximum number of clients per name
Limits the number of clients connected under the same name, independent of the
state of the connection.

Maximum number of disconnected clients
A limit for disconnected clients, independent of their name.

Maximum number of disconnected clients per name
This value limits the number of clients that connected under the same name and
are now disconnected.

16

Chapter 5

Operation of the log window

5.1 General

5.1.1 Structure of a log window

A log window (figure 5.1) holds up to five components, four of which can be turned on
or off at will.

Messages are displayed in the table. Additionally the message that was selected last is
shown in the detail view. Which of the messages are visible is determined with the filter
component.

The log levels component is available only for clients, not for log files. When a client
disconnects, the level component stays active but is no longer useful except to display
the setting of the client’s log levels before the connection was terminated.

The menus for the operation of the three main components Messages, Filter and Level,
are named accordingly Messages , Filter and Level . Each of the components has a
context menu as well, that is identical to the corresponding main menu.

There is not much to say about the status line except for the three numbers in the right
corner. From left to right they stand for

• The number of messages currently visible in the table.

• The total number of messages currently available to the log view, i.e. the visible
messages plus those suppressed by a filter.

• The total number of messages for this window including those that were deleted.

Except for the messages table, all components can be turned on or off via the View
menu.

5.1. General 17

Figure 5.1: A log window

5.2. The table 18

Figure 5.2: The table displaying the log messages

5.1.2 Saving to a log file

In the File menu are two menu items that will save messages from the log window
into a log file. In both cases the file is selected with the standard dialog. As the names
suggest, using Save all messages as... will save all messages, including invisible ones,
in the order they were created. To save only the messages currently visible in the order
imposed by the table, use Save visible messages as... .

5.1.3 Loading and saving the configuration

All settings for the log window and its components are saved by qflog in its config file
when it shuts down (see chapter 3.2). Though a separate configuration is used for ev-
ery distinct client name, this is often not enough, since different sets of filter settings
for the same client may be useful at different times. To that end, a log window’s config-
uration can additionally be saved via File→Save configuration as... and restored with

File→Restore configuration... .

5.2 The table

The main part of a log window is the table displaying the messages (figure 5.2). It is
always visible and cannot be turned off.

The columns of the table correspond to the elements of a log message.

Level

5.2. The table 19

The level of a message is shown as an icon. How icons and levels correlate is
best seen by looking at the Filter or the Level menu.

Time
The time at which the message was generated, accurate to the millisecond.

Thread
The name of the thread in which the message was generated.

Class
The class of the object or the static method that generated the message.

Method
The method from which the message originated.

Message
The content of the message.

The order and width of the columns can be adjusted. These settings are saved sepa-
rately for each client.

The sort order of the table rows is depicted by a small blue arrow in the header of a
column. One single mouse click on a column header sets the sort order according to
that column, another click in the same column reverts the direction. The same effect
can be achieved for the selected column by pressing

�� ��Ctrl-S or via Set sort column .

5.2.1 Copying messages

Using the menu items Copy selected messages , Copy visible messages and

Copy all messages , you can copy messages into the system clipboard. Care should
be taken to avoid overextending certain operating systems by copying too many
messages.

The format of the copies is the same as that used for a log file.

Unfortunately the system clipboard is not implemented correctly in some JDK versions,
JDK 1.1 for Linux among them, so that this functionality is not available everywhere.

5.2.2 Deleting messages

Sometimes it can be useful to delete some or even all of the current messages to get a
better overview or to emphasize new input from a client. The menu items
Delete all messages , Delete invisible messages and Delete visible messages will

do just that.

5.2. The table 20

5.2.3 Extra filters in the table

Which messages are visible in the table is determined mainly by the filter component. An
additional filter mechanism inside the table can be used to further restrict this selection.

This extra filter can be activated for the columns Level, Thread, Class and Method. It
reduces the visible messages to those which have in that column a value identical to the
currently selected message. As an example, if you turn on the extra filter for the Level
column while the selected message has a level of ERR, only messages with this level
will be displayed.

The extra filters for different columns can be combined. This way it only takes a few
keystrokes to e.g. restrict the view to messages belonging to the Thread named AWT-
EventQueue-0 and originating from the class de.qfs.lib.gui.SwingUtil .

Toggling an extra filter is either done through the menu item Toggle column filter or the�� ��Ctrl-F key. To turn off all extra filters at once, use
�� ��Ctrl-K or Clear all column filters .

5.2.4 Setting and jumping to marks

Up to 10 different marks can be set on the rows of the table in order to simplify naviga-
tion. Unfortunately there is no visual feedback yet about which marks are set on which
messages.

To set a mark, use the Set mark sub-menu, or the key combinations
�� ��Alt-0 through�� ��Alt-9 . Similarly, jumping to a mark is done via the Goto mark sub-menu or the key

combinations
�� ��Ctrl-0 through

�� ��Ctrl-9 .

It is possible, depending on the filter settings, that the message on which a mark was
set is not visible when you try to jump to it. In that case the entry closest to the marked
one with respect to the current sort order is used. If a marked message is removed,
either explicitly or due to message numbers exceeding the limit, the mark is unset and
not moved on to the next message available, since that might be confusing.

5.2.5 Incremental search

The incremental search in the message table is a vital function that is constantly active.
To start a search, simply type some text on the keyboard.

Searching is always done in the current column. Of course in the Level column you can
only search for the level. In this case, use the keys

�� ��0 through
�� ��9 , where
�� ��1 searches for

level ERR,
�� ��9 for DBGand

�� ��0 for DBGDETAIL.

In all other columns, arbitrary text can be searched, where case is not significant. The

5.3. The detail view 21

current search pattern is displayed in the title of the table component. The
�� ��Backspace

key will remove the last character from the pattern,
�� ��Escape clears it.

The following keys are working in all columns, including the Level column:
�� ��Ctrl-R re-

verses the direction of the search,
�� ��F2 copies the selected message’s value for the

current column into the search pattern and
�� ��F3 repeats the search.

Searching always moves you to the next message, depending on search direction, that
contains the search pattern anywhere in the current column, not necessarily at the be-
ginning. When the end of the table is reached, the search is continued from the other
end. This is signaled through the string wrapped displayed next to the search pattern,
which is also where a failed search is reported.

5.2.6 Options

There are only two options that can be set for the table: whether to display lines or not
and how many messages it can hold. When the limit is exceeded, the oldest messages
are dropped. A value of 0 means no limit.

The Options... menu item will open a dialog in which these options can be edited.

5.3 The detail view

The most recently selected message is displayed in the detail view (figure 5.3), where
the level is represented by its icon and thread, time, class and method are shown as
labels. The message itself, which can be of arbitrary length, is shown in a multi line text
area to which you can navigate with the

�� ��Tab key or the mouse in order to scroll it by
means of the arrow keys.

The detail view can be removed or displayed at will with the help of the
View→Show detail view menu.

5.4 The filter tree

The filter tree (figure 5.4) is a vital aid in controlling a flood of log messages. With it you
can define for each package, class or method up to which level messages originating
from it will be displayed.

Multi selection is enabled for the filter tree. All actions operate on all selected nodes,
no matter whether they are initiated through the Filter menu, the context menu or the
keyboard.

5.4. The filter tree 22

Figure 5.3: The detail view

Figure 5.4: The filter tree

5.4. The filter tree 23

Every change of the filter settings causes a redisplay of the messages in the table. Every
effort is made to keep the row selection in the table intact at least for those messages
that are still visible under the new setting. Also an implicit mark is set on the most
recently selected message, which the display jumps to after the change.

5.4.1 The structure of the tree

The classes and methods of all messages in the log table are arranged into a tree
structure, where the methods are nested inside their classes, while classes are col-
lected inside their package. All packages are placed directly below the root node
and not according to the directory structure they represent, i.e. the package nodes
de.qfs.lib.config and de.qfs.lib.gui are not child nodes of the node for the
package de.qfs.lib but of the root node.

A level can be assigned to every node in the tree. Messages belonging to that node
will be displayed in the table only if their level is less than or equal to the one set on the
node. ”Belonging to a node” means, that the message originated from a method that is
represented by the node, or whose node is a descendant of the node. When deciding
whether a message is displayed, the method node is checked first, then the class node,
if no level is defined on the method node, then the package node and finally the default
level of the root node.

As an example the settings shown in figure 5.4 would have the following effect:

• The default value is WRNDETAIL. All messages for which nothing else has been
defined will be displayed up to that level.

• Messages originating from classes belonging to the
de.qfs.apps.qftest.edit package are displayed up to the level
DBGDETAIL, the highest level available.

• This does not hold for messages coming from the class
de.qfs.apps.qftest.edit.Edit , for which the level MSGDETAILhas been
set.

• Also excluded are messages from the method requestInitialFocus() in the
class de.qfs.apps.qftest.edit.AbstractStepEdit , since the level MTD
is defined for these.

This level hierarchy makes it easy to narrow the table view down to the problem area.
If, on closer inspection, you find that you need more information, simply ease the filter
setting a little. You have to keep in mind though, that only messages that have been
generated in the first place can actually be displayed. Controlling the generation of the
messages is very similar to using the filter tree and is described in section 5.4.4.

5.4. The filter tree 24

From experience there are always some trouble spots in a program that are especially
delicate and cause recurring problems. By saving the configuration of the log window
(see section 5.1.1) you will also save the filter settings, enabling you to work on the
same problem area again should the need arise.

5.4.2 Setting the filter levels

The easiest way to change the filter settings is through the keys
�� ��0 through
�� ��9 . Again

the key
�� ��1 stands for the level ERR,

�� ��9 for DBGand
�� ��0 for DBGDETAIL.

Additionally there’s a menu item for every level in the Filter menu and the context menu
of the tree.

There are two variants for clearing filter levels. The simple variant only clears the levels
of the selected nodes and is available via Remove level or the

�� ��Delete key. The recur-
sive version, accessible via Remove recursive or

�� ��Ctrl-Delete , additionally clears the
levels on all direct or indirect descendants of the selected nodes.

5.4.3 Displaying defined levels

To find out which levels are set in the filter tree, use the Display set levels menu item.
It causes the nodes of the tree to collapse or expand as necessary, so that all explicitly
set levels are visible. This is also the initial display when the log window is opened or
the configuration is restored.

5.4.4 Additional filter mechanism

There is an additional filter mechanism available for the filter tree that is similar in a way
to the extra filter in the table (see section 5.2.2), but with a different character.

The whole mechanism can be toggled on or off via the
�� ��Ctrl-F key or the

Toggle extra filters menu item.

Each node in the tree can be declared an extra filter with the
�� ��Ctrl-A key or the

Add extra filter menu item. An extra filter node is displayed in a red font, whenever the
extra filter mechanism is turned on.

This designation can be removed for the selected nodes with
�� ��Ctrl-R and

Remove extra filter , or for all nodes with
�� ��Ctrl-K and Clear extra filters .

Activating the extra filters causes a further reduction of the messages in the table. In
addition to the normal filter function of the tree, only those messages are displayed that

5.5. The client’s log levels 25

Figure 5.5: The level tree

belong to a node marked as an extra filter. Again, ”belong” is interpreted recursively,
i.e. an extra filter for a class will enable the messages for all methods of that class,
assuming that they are not suppressed by the filter level settings.

This extra filter mechanism is intended as a simple means to achieve a short term in-
crease of the filter effect, without having to modify the levels. For example, by activating
two method nodes as extra filters you can study the interaction just between those meth-
ods, putting it back into context after deactivating the extras.

Due to the short term character of the extra filters they are not saved in the configuration
like the filter levels.

5.5 The client’s log levels

This component is available only when the log window is either embedded directly in a
program or belongs to an RMI client. It gives access to all the settings of the client that
determine which log messages are generated. Its operation is similar in many respects
to that of the filter tree (see section 5.3).

5.5. The client’s log levels 26

5.5.1 The structure of the tree

As figure 5.5 shows, the structure of the level tree is similar to that of the filter tree (see
section 5.4), except for two differences: the hierarchy ends at the class level, i.e. there
are no method nodes, and packages do nest according to the directory structure they
represent. Thus the package de.qfs.apps.qftest is nested four levels deep under
the root node and the nodes de , de.qfs and de.qfs.apps .

Both differences arise from the need for the level tree to represent the structure of the
levels of the Logger objects in the client.

5.5.2 Setting the levels

The levels of the classes and packages of the level tree are set and cleared similarly
to the levels in the filter tree (see section 5.4.1), i.e. through the keys

�� ��0 through
�� ��9 ,�� ��Delete and

�� ��Ctrl-Delete , the Level menu or the context menu.

5.5.3 Displaying defined levels

Also similar is the method to get an overview over which levels are set. Use the
Level→Show set levels menu like in section 5.4.2.

5.5.4 Options

There are quite a few Options that can be set in the dialog accessible through the
Options... menu item. Except for the last, these values correspond to the parame-

ters used by the logging system in the client. Please read the documentation of the
de.qfs.lib.log.Log class to learn what their use is.

The check button named ”Override client’s configuration on connect” is different. It de-
termines the behaviour of qflog the next time a client with the same name connects. If
the option is not checked, the client’s settings will be read, otherwise the parameters for
the logging system of the client and the levels from the level tree override the settings
inside the client. This option will be more useful, once an option to reset the client to its
original values on disconnect is also available.

27

Chapter 6

A sample application

qflog comes with a test client that can be used to test and demonstrate the various
ways of interaction between a client and qflog. It generates random messages from a
number threads and can redirect those to a log file, bring up an internal log window or
communicate with qflog via RMI

6.1 Invocation

The test client can be invoked either directly with

java [java-options...] de.qfs.apps.qflog.TestClient
[options...]

or with the startscripts provided in the bin directory of the qflog distribution:

testclient [options...]

After the launch a trivial window with a button that exits the client appears and logging
starts depending on the arguments given.

6.2 Options

The following options are defined for the test client:

-allownonlocal
Allows a qflog server from a host other than localhost to access the client.

-clientname <name>
Sets the name under which the client registers itself with qflog. The default is
”testclient” .

6.3. Example uses 28

-configfile <file>
Determines the file used for saving and loading the configuration.

-createregistry
Enables creation of an RMI registry, if none is available during the start of the
client.

-internal
Creates an internal log window that is opened when the client starts.

-logfile <file>
Causes log messages to be written to a file.

-logserver <servername>
Tells the test client to connect to a log server. The name to use is ”qflog” , unless
qflog has been started with a different -servername option.

-numloggers <number>
Determines the number of threads that create log messages. Default is 3. The
first thread will create one message per second, the second thread one every
other second, the third every 3 seconds and so on.

-outputlevel <level>
Sets the level up to which log messages will be printed on System.err . The
value 0 suppresses all messages, 10 lets all messages pass. Default is 2.

-port <portnumber>
Sets the port number for the registry with which the client should register to wait
for a log server.

-waitforserver
Tells the client to register with the RMI registry, so a log server is able to connect
to it at a later time.

Additionally options of the form -log-<name> <level> may be used to set the levels
of the Loggers. Please see the example section in the qflib documentation for details.

6.3 Example uses

Simply try out a few examples to get a feel for how qflog works:

• testclient -internal shows what the log window for the test client looks
like. Play with the settings in the filter and level trees and watch the result.

6.3. Example uses 29

• First bring up qflog then launch testclient -logserver qflog . You should
see an entry named ”testclient” in the qflog main window. Bring up the log
window for the client, it is similar to the internal one.

• You can combine these examples with testclient -internal -logserver
qflog , bringing up the internal log view as well as connecting to the log server.
Notice how changes to the level tree in one window are immediately reflected in
the level tree in the other window.

• Start the test client first with testclient -waitforserver
-createregistry and then run qflog. Again you should find a ”testclient”
entry in its main window.

30

Appendix A

qflog and applets

The communication between an applet and qflog is not without problems. One reason is
the missing RMI support in most versions of Microsoft’s Internet Exploer. Another is the
sandbox which restricts an applet’s capabilities for security reasons, causing difficulties
with RMI callbacks.

In any case, unless an applet is signed, the sandbox will prevent it from connecting to
qflog on any host other than the one from which the applet was loaded.

Nevertheless, logging through qflog can already help a great deal when developing
applets and it may get a little easier in the future, if other communication protocols than
RMI are implemented.

A.1 Internet Explorer

The main problem when logging from applets running in Internet Explorer is the
missing RMI support in older versions (probably before 5.0). At least for
development this is not a big deal, since Microsoft is providing a jar archive under
http://www.microsoft.com/Java/resource/misc.htm, which can be installed to get the
necessary classes. With these in place, even RMI callbacks work, so the applet’s log
levels can be controlled at runtime.

A.2 Netscape

All Netscape versions starting around 4.02 support the full JDK 1.1, though only at
version 1.1.4. Applets can connect to qflog without problems, but callbacks don’t work,
making runtime control over the log levels impossible for now. Signing an applet should
help, which we coldn’t test yet.

A.3. Plugin 31

A.3 Plugin

We didn’t have time yet to test applet logging with the Java plugin from SUN. We’d
appreciate any feedback on this, be it for plugin version 1.1 or 1.2.

A.4 Example applet

An applet can be written in such a way that it can be deployed with only the
de.qfs.lib.log package of qflib, while still using the full logging capabilities during
development. The qflib examples1 page has some example code for that.

1http://www.qfs.de/en/projects/qflib/examples.html

