

Productivity! 1.0
for Borland JBuilder

User Manual

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com 2

Copyright 2000-2001 AMIS Software. All rights reserved.

JBuilder is registered trademark of Borland Software Corporation.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc in the
United States and other countries.

Other brand and product names are trademarks or registered trademarks of their respective owners.

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com 3

Contents

PRODUCTIVITY! OVERVIEW ..8

INSTALLATION INSTRUCTIONS...9
PRODUCTIVITY! KEY INSTALLATION ...9

How to Obtain Key File ..9
How to Install Key File ...9

PRODUCTIVITY! HELP INSTALLATION ..9
UNINSTALLING PRODUCTIVITY! ..9

PRODUCTIVITY! TOOLS ...10

COMMON INSIGHTS FEATURES ... 12
Context Switching ... 12
Help Support .. 12

CLASS.INSIGHT .. 13
Class.Insight Actions ... 13
Showing Navigation Pane... 14
Options Dependency.. 14

BROWSE.INSIGHT.. 15
Browse.Insight Actions .. 15
Options Dependency.. 16

BROWSE.MEMBERS .. 16
HELP.INSIGHT .. 17

Navigation Pane.. 17
Hyperlink.Help.. 17
Integration with Other Insights ... 18
Options Dependency.. 18

IMPLEMENT.INSIGHT... 19
Code Changes Synchronization ... 20
Options Dependency.. 20

OVERRIDE.INSIGHT AND CONSTRUCTOR.INSIGHT... 20
Code Changes Synchronization ... 21
Options Dependency.. 21

CONTEXT.INSIGHT ... 21
Options Dependency.. 22

EASY.JAVADOC AND EASY.JAVADOC.INSIGHT... 22
Easy.JavaDoc ... 22
Easy.JavaDoc.Insight... 23
Options Dependency.. 23

IMPORTS.BEAUTIFY .. 24
Options Dependency.. 25

SMART.INSTANTIATE .. 25
Showing Navigation Pane... 26
Options Dependency.. 27

HYPERLINK.NAVIGATE ... 27
Options Dependency.. 27

HYPERLINK.HELP ... 28
Options Dependency.. 28

GETSET.CREATOR ... 28
SMART.BRACES .. 29

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

4

Options Dependency.. 30
PRODUCTIVITY! OPTIONS ...31

PROJECT PROPERTIES DIALOG ... 32
General Page.. 32
Code Style Page.. 34
JavaDoc Page ... 36
Cache Page .. 38

EDITOR OPTIONS DIALOG .. 41
General Page.. 41
Usage Page .. 45
Delays Page ... 47
Smart.Braces Options (Editor Options) .. 49

IDE OPTIONS DIALOG .. 52
Productivity! Page ... 52

PRODUCTIVITY! KEY BINDINGS ..54

KEY BINDINGS FOR CUA, BRIEF AND VISUAL STUDIO KEYMAPS .. 55
KEY BINDINGS FOR EMACS, MACINTOSH AND MACINTOSH CODE WARRIOR KEYMAPS........................... 56

PRODUCTIVITY! ICONS ...57

KNOWN ISSUES AND LIMITATIONS...59

PRODUCTIVITY! FEEDBACK ...61

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

5

Tables

Table 1 Productivity! Tools .. 10

Table 2 Productivity! Key Bindings for CUA, Brief and Visual Studio keymaps..................... 55

Table 3 Productivity! Key Key Bindings for Emacs, Macintosh and Macintosh Code Warrior
keymaps.. 56

Table 4. Productivity! Icons ... 57

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

6

Figures

Figure 1 Class.Insight popup window .. 13

Figure 2 Browse.Insight popup window ... 15

Figure 3 Browse.Members popup window .. 16

Figure 4 Help.Insight popup window ... 17

Figure 5 Help.Insight popup invoked via Hyperlink.Help .. 18

Figure 6 JBuilder Member Insight with Help.Insight invoked .. 18

Figure 7 Implement.Insight popup window .. 19

Figure 8 Code generated by Implement.Insight.. 19

Figure 9 Override.Insight popup window ... 20

Figure 10 Context.Insight popup window... 22

Figure 11 Easy.JavaDoc.Insight popup window .. 23

Figure 12 Import statements before Imports.Beautify invocation 24

Figure 13 Import statements after Imports.Beautify invocation.. 25

Figure 14 Smart.Instantiate popup window ... 26

Figure 15 Code before invocation of Smart.Instantiate.. 26

Figure 16 Code after invocation of Smart.Instantiate .. 26

Figure 17 Hyperlink.Navigate with hint that describes identifier under cursor..................... 27

Figure 18 Hyperlink.Help popup window with help for identifier.. 28

Figure 19 GetSet.Creator popup window ... 29

Figure 20 Imports.Beautify options... 32

Figure 21 Package Exclusion options... 33

Figure 22 Methods Parameters Naming options.. 34

Figure 23 Fields Naming options .. 34

Figure 24 Generate throwing of UnsupportedOperationException options 35

Figure 25 General Code Style options ... 35

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

7

Figure 26 If JavaDoc exists options .. 36

Figure 27 Methods JavaDoc Generation options.. 37

Figure 28 Classes JavaDoc Generation options... 37

Figure 29 JavaDoc Auto Generation options... 38

Figure 30 Cache Auto Refresh options... 39

Figure 31 Refresh Groups options... 39

Figure 32 New/Edit Refresh Group Dialog.. 40

Figure 33 Refresh Now options .. 40

Figure 34 Import statements generation options .. 42

Figure 35 Search options .. 43

Figure 36 Sort Classes By options .. 44

Figure 37 Autocomplete options ... 44

Figure 38 Productivity! Insights Usage options... 45

Figure 39 Invoke popups during debugging options .. 46

Figure 40 Help.Insight options ... 46

Figure 41 Highlight.Navigate options .. 47

Figure 42 Superclass Changing Policy options .. 47

Figure 43 Hyperlinks options ... 48

Figure 44 Help.Insight options ... 48

Figure 45 Context Discovering options .. 49

Figure 46 Smart.Braces options ... 49

Figure 47 Smart.Braces options (expanded) .. 50

Figure 48 Metal theme options... 52

Figure 49 Default Steel Metal Theme sample ... 52

Figure 50 Plain Steel Theme sample ... 52

Productivity! Overview

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

8

Productivity! Overview

Productivity! is a genuine and rich set of tools intended to greatly simplify routine
coding and navigation operations. As a result, it allows significantly greater
development productivity. All Productivity! tools are carefully designed and tuned
to minimize efforts to invoke and use them so you can enjoy the friendly
environment Productivity! offers.

With Productivity! tools:

• Forget about typing your imports!

• Forget about annoying dialogs and Wizards while you are coding!

• Discover context and navigate through it!

• Use hyperlinks to surf and to get informed!

• Navigate freely through your classes, methods and fields!

• Obtain quick help on classes and methods exactly where and when you
need!

• Add super interfaces, change super classes in several simple steps!

• Override methods and constructors in a couple of clicks!

• Add access methods for you fields instantly!

• Use your own unique naming standards!

• And finally, forget that you are using Productivity! - just enjoy your
favorite IDE, interesting work and your superior performance!

Use Productivity! to add unleashed power to your JBuilder environment!

Installation instructions

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com 9

Installation instructions

To install Productivity! you should unpack the archive you've downloaded and
copy productivity.jar to the lib/ext directory under your JBuilder installation.

If you already have Class.Insight installed in your system, please remove it, as
Productivity! has it already included. Also, you should remove the previous
version of Productivity! (if any).

Productivity! Key Installation

Productivity! requires a key file, which enables the Productivity! functionality.

How to Obtain Key File

In some cases, the evaluation key file productivity.key can be found in the
downloaded archive. Otherwise, please visit www.softamis.com or contact
sales@softamis.com to obtain an evaluation or commercial key.

How to Install Key File

The key file should be located in the same directory as used by JBuilder for
storing its preferences and license. The location of this directory depends on the
operating system installed on your computer.

Browse your HOME directory (you can find it using the Home button in the
JBuilder Open File dialog). In the home directory you'll find the .jbuilder4 (or
.jbuilder5, depending on your version of JBuilder) subdirectory, where the key
file should be placed.

Another way to find the location where the Productivity! key file should be placed
is starting up JBuilder with Productivity! installed. If there is no key file,
Productivity! will inform you of the fact with the appropriate message dialog;
from this dialog, you can conclude about the location of the key file.

To install the key file, just copy productivity.key to the location as specified
above.

Productivity! Help Installation

To install documentation for Productivity! please copy productivity_docs.jar to
the doc directory under your JBuilder installation.

Uninstalling Productivity!

To uninstall Productivity! please remove copied jars and the key file.

NOTE:

Productivity! Tools

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com 10

Productivity! Tools

Productivity! offers a powerful set of tools intended to reduce routine coding
tasks. These tools are carefully designed to allow solving such tasks with
minimum efforts and in minimal time.

The following tools are available after installing Productivity!

Table 1 Productivity! Tools

Tool Description

Class.Insight Class.Insight allows quick finding Java classes with short names
matching the word at the cursor position, and inserting the class
name found into the cursor position as well as inserting import
statement.

Browse.Insight Browse.Insight allows quick finding Java classes with short names
matching the word at the cursor position and browsing them or
the appropriate help topics.

Browse.Members Browse.Members allows quick finding members belonging to the
current discovered context and browsing them.

Help.Insight Help.Insight allows easy viewing help topics, if any, for the
identifier at the cursor position. Also, it provides quick help for
items shown in JBuilder built-in Member Insight and Productivity!
insights.

Implement.Insight Implement.Insight allows quick finding Java classes with short
names matching the word at the cursor position and using them
either as a super interface or as a super class.

Override.Insight Override.Insight allows quick finding methods to override with
names matching the word at the cursor position or a typed word,
and overriding them into the class at the cursor position.

Constructor.Insight Constructor.Insight allows quick overriding class constructors.

Context.Insight Context.Insight is a tool that allows you to check context of the
current cursor position. Context.Insight collects information about
all classes and methods and shows it using the insight popup
window.

Easy.JavaDoc Easy.JavaDoc allows easy and convenient generating templates
for JavaDoc comments for a particular method or class.

Imports.Beautify

Imports.Beautify is intended to arrange import statements into a
clear and easy-readable form. It allows consolidating, alphabetical
sorting and optional grouping all import statements for the
current Java file.

Productivity! Tools

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

11

Smart.Instantiate Smart.Instantiate is an additional Class.Insight functionality that
allows adding instantiation of a particular class or interface.

Hyperlink.Navigate Hyperlink.Navigate is a tool that allows easy and convenient
navigation through symbols definitions basing on the concept of
hyperlinks.

Hyperlink.Help Hyperlink.Help allows easy and convenient viewing help topics for
particular symbols.

GetSet.Creator GetSet.Creator is a tool that allows easy creation of accessors
and/or mutators for selected fields of a class.

Smart.Braces Smart.Braces is a tool that allows easy creation of matching
braces right while you are typing.

Productivity! Tools

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

12

Common Insights Features

Most of Productivity! Insights share the following approaches.

Context Switching

During invocation, any context dependent Insight analyses context structure and
selects the target for modification: the deepest class or method found for the
cursor position.

The Context label shows the full-qualified name of this class or method. If there
are several classes or methods found in the context path you can choose a
different class as a target. Use Switch Context up to and Switch Context down to
buttons or keyboard shortcuts Alt+Up or Alt+Down, respectively, to select a
class or methods as the target; the Context label will reflect the changes. This
functionality is useful when cursor is placed within an inner class while you need
to execute appropriate actions to the outer one.

Help Support

To view help press the appropriate key mapped to the help action in the current
keymap (typically, this is F1).

If an Insight shows the list of members and there is a member (either class,
method or field) selected in the list, the Help Viewer will show the appropriate
documentation page for this member (if any). If the members list is empty or
there is no member selected, the help on the Insight will be shown. You can use
the Help button in the Navigation Pane to invoke help on the Insight directly.

Help.Insight is an Alternative way of getting help on a selected member. To allow
Help.Insight invocation when using the Insight you should turn on the Editor
Options | Productivity! | Usage | Integrate Help.Insight with Productivity!
Insights checkbox. With this option turned on, just select a member and wait
until Help.Insight popup will show the appropriate JavaDoc help page (if any).

You can also force Help.Insight invocation using the shortcut Shift+F1 (CUA).
You can specify Help.Insight invocation delay using the Editor Options |
Productivity! | Delays | Help.Insight Invocation Delay slider.

Productivity! Tools

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

13

Class.Insight

Class.Insight - Forget about typing your import statements!

Class.Insight allows quick finding Java classes with short names matching the
word at the cursor position, and inserting there the class name found and its
import statement. To choose a class from several possible variants, it employs a
popup window similar to other JavaInsight popups (MemberInsight,
ParameterInsight etc.). You don't need to type import statements manually - just
use Class.Insight to find and insert the required class and let it make all other
job for you!

Figure 1 Class.Insight popup window

The Class.Insight backend caches all the required information about classes
containing in project, JDK and project required libraries to speedup usage. The
cache build is initiated only on the first Class.Insight invocation so it doesn't
affect JBuilder startup and a project opening time. The Class.Insight saves the
cache in the project directory while project closing and loads the cache from disk
when the project is opened next time. The cache file is named <Project
Name>.cache and it can be easily removed when unneeded us Productivity! will
automatically recreate it before the next Class.Insight use.

When editing a file, place the cursor over the word you want to expand as a class
name (or at a blank space) and press Ctrl+Alt+Space (Ctrl+Alt+H) (CUA) to
invoke Class.Insight. The Class.Insight popup will be shown with the list of
classes matching the word at the cursor position. You can select a class
navigating through the list with the help of the usual keyboard. An Alternative
way to do it is to continue typing the word; the list selection will be changed to
produce the closest match possible.

Class.Insight Actions

On selecting a class, you may choose from several options with the help of the
following shortcuts:

Enter: - Class.Insight replaces the word at the cursor position with a class name
and adds the appropriate import statement;

Productivity! Tools

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

14

Ctrl+Enter: - Class.Insight replaces the word at the cursor position with a full-
qualified class name;

Alt+Enter: - Class.Insight switches between importing a particular class and the
whole package.

Shift+Enter: - Class.Insight produces a code for instantiation of the selected
class variable.

If there are no matches found, Java.Insight - Select Class dialog is shown. Select
a class in this dialog and press OK. The Class.Insight will replace (or just insert)
the word at the cursor position with a selected class name adding the appropriate
import statement.

Showing Navigation Pane

You can switch Class.Insight popup to show the Navigation Pane by turning off
the Editor Options | Productivity! | Usage | Show Class.Insight popup as list
checkbox. With this option turned off, Class.Insight popup will be shown with the
Navigation Pane, that allows using Class.Insight popup even if there is no word
at the cursor position or if there are no matching classes found. To find matches,
type a word in the Use Class edit box and Class.Insight will dynamically
rearrange the classes' list to show the matching ones.

Options Dependency

Please note that the set of classes shown in the Class.Insight list depends on
Packages Exclusion settings on the Project Properties | Productivity! | General
property page.

Import statements are generated basing on Imports Generation settings on the
Editor Options | Productivity! | General property page. There you can also
customize other Class.Insight options, such as Search Options, Sort Classes By,
Autocomplete and Productivity! Insights Usage

Productivity! Tools

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

15

Browse.Insight

Browse.Insight allows quick finding Java classes with short names corresponding
to the word at the cursor position, browsing them or opening the appropriate
help topic for them.

Figure 2 Browse.Insight popup window

To invoke Browse.Insight press Ctrl+Minus (CUA). The Browse.Insight popup will
be shown with the list of classes matching the word at the cursor position. The
list may be empty if there are no matching classes though. To find matches, type
a word in the Browse Class edit box and Browse.Insight will dynamically
rearrange the classes' list to show the matching ones.

You can select a class navigating through the list with the help of the usual
keyboard. An Alternative to do it is to continue typing the word; the list selection
will be changed to produce the closest match possible.

Browse.Insight Actions

Press Enter when you find the required class and Browse.Insight will open this
class in the browser.

Press Ctrl + Enter when you find the required class and Browse.Insight will open
the appropriate help topic for it.

Also, there is a possibility of employing the Browse Classes dialog, which shows
packages structure and allows choosing a class by specifying its full path. You
can use the appropriate button in the top left corner of the popup to invoke it.

Productivity! Tools

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

16

Options Dependency

Please note that the set of classes shown in Browse.Insight depends on Packages
Exclusion settings on the Project Properties | Productivity! | General property
page.

You can adjust the way of classes sorting as well as the algorithm used for
classes search using the Editor Options | Productivity! | General property page.
There, using the Productivity! Insights Usage option, you can specify whether
Productivity! Browse.Insight tool or JBuilder built-in Browse classes should be
invoked.

Browse.Members

Browse.Members allows quick finding members belonging to the current
discovered context and browsing them.

Figure 3 Browse.Members popup window

Press Alt+Minus (CUA) when editing a file to invoke Browse.Members Insight.
The Browse.Members popup will be shown with the list of members (either
classes, methods or fields) matching the word at the cursor position. The list may
be empty if there are no matching methods though. To find matches, type the
word in the Browse Member edit box and Browse.Members will dynamically
rearrange the members' list to show the matching ones. You can also leave the
Browse.Members edit box blank to view all the members for navigation purposes.

Browse.Members highlights the members with names exactly matching the typed
word using bold font and abstract methods using italic font.

You can select a member by navigating through the list with the help of the usual
keyboard. An Alternative way to do it is to continue typing the word; the list
selection will be changed to produce the closest match possible.

Press Enter when selecting a member and Browse.Members will browse it.

Productivity! Tools

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

17

Help.Insight

Help.Insight is a tool allowing you to easily view help topics, if any, for an
identifier or a member within the current context in the cursor position. Help is
shown in a convenient popup window. Help.Insight extracts and displays
information relating to a particular code only - for example, for a particular
method, not for all classes.

Figure 4 Help.Insight popup window

To invoke Help.Insight for a symbol at the cursor position, place the cursor over
the identifier for which you need help and press Shift+F1(CUA).

To invoke Help.Insight for a member within the current context, place the cursor
in the bounds of a method or class for which you need help and press the Alt+F1
(CUA) shortcut. Help.Insight shows the appropriate JavaDoc help topic, if any, or
tries to find and show the appropriate one for a super class or method in other
case.

Navigation Pane

The Navigation Pane at the top of the popup shows different gadgets intended to
control the popup. You can use the Back and Forward buttons (or Alt+Left and
Alt+Right keys, respectively) to navigate through the help topics history or you
can use the Open the Whole Topic button to open the complete help topic in the
Help Viewer window. The Context label shows the context or an HTML file name
depending on the ability to resolve any.

Hyperlink.Help

An Alternative way to invoke Help.Insight is to use Hyperlink.Help by placing the
mouse cursor over an identifier for which you need help while holding the Alt
button.

Productivity! Tools

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

18

Figure 5 Help.Insight popup invoked via Hyperlink.Help

In this case, for space-saving purposes, the Help.Insight popup doesn't show the
Navigation Panel. It will only be shown after activating any hyperlink within the
popup window.

Integration with Other Insights

Another feature of Help.Insight is integration with JBuilder built-in
MemberInsight and other Productivity! Insights. If such integration is enabled,
the popup window of Help.Insight will be automatically shown for a currently
selected item in Member Insight or Productivity! Insight popup. You can also
force showing Help.Insight for a selected item using Shift+F1 shortcut (CUA).

Figure 6 JBuilder Member Insight with Help.Insight invoked

Options Dependency

You may enable integration of Help.Insight with other Insights using Help.Insight
options on the Editor Options | Productivity! | Usage property page. To specify
delays of Help.Insight invocation you can use the Editor Options | Productivity! |
Delays property page.

Productivity! Tools

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

19

Implement.Insight

Implement.Insight allows quick finding of Java classes with short names
matching the word at the cursor position and using them either as a super
interface or super class for the class at the cursor position.

Figure 7 Implement.Insight popup window

When editing a file, place the cursor within the bounds of the class you want to
add a super interface or set a super class to, and press Ctrl+Alt+I (CUA) to
invoke Implement.Insight. The Implement.Insight popup will be shown with the
list of classes matching the word at the cursor position. The list may be empty if
there are no matching classes though. To find matches, type the word in the
Implement Interface edit box and Implement.Insight will dynamically rearrange
the classes' list to show the matching ones.

You can select a class navigating through the list with the help of the usual
keyboard. An Alternative way to do it is to continue typing the word; the list
selection will be changed to produce the closest match possible.

Press the Enter key when you find the required class and Implement.Insight will
add this class to the list of super interfaces or set it as the super class for the
target one. Implement.Insight will also write all the methods defined in the
interface or all the abstract methods defined in the class (if you have selected an
interface and a class, respectively).

Figure 8 Code generated by Implement.Insight

Productivity! Tools

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

20

If you have selected a class (not an interface) and the target one already has a
super class you will be prompted to confirm modifications.

Also, there is a possibility of invoking the built-in Implement Interface Wizard.
You can use the appropriate button in the top left corner of the popup.

Code Changes Synchronization

Implement.Insight analyses changes in all dependant source files and correctly
reflects them during generation of abstract methods implementations. But for
most of the cases you need to compile all dependant classes before invocation of
Implement.Insight. If the required class is not compiled yet or the required
methods are not found in the compiled class, these errors will be shown in the
Status View.

Options Dependency

Please note that the set of classes shown in Implement.Insight list depends on
Packages Exclusion settings on the Project Properties | Productivity! | General
property page. Also there you can customize Code Generation Options, which
allow you to adjust the code style for the generated methods code.

Import statements will be generated basing on Imports Generation settings on
the Editor Options | Productivity! | General property page. There you can also
customize other Implement.Insight options, such as Search Options and Sort
Classes By.

Override.Insight and Constructor.Insight

Override.Insight allows quick finding of methods and constructors to override
with names matching a word at the cursor position or a typed word and
overriding them in the class at the cursor position.

Figure 9 Override.Insight popup window

When editing a file, place the cursor within the bounds of the class you want to
override methods for, and press Ctrl+M (CUA) to invoke Override.Insight. The
Override.Insight popup will be shown with the list of methods those match the

Productivity! Tools

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

21

word at the cursor position. The list may be empty if there are no matching
methods though. To find matches, type a word in the Override Methods edit box
and Override.Insight will dynamically rearrange the methods' list to show the
matching ones. You can also leave the Override Methods edit box blank to view
all the methods to override. Override.Insight highlights the methods with names
exactly matching the typed word with bold font and the abstract methods with
italic font.

In addition to the methods inherited from the super class, Override.Insight shows
the methods defined in the interfaces but not implemented directly by the target
class.

You can select a method, either one or any, navigating through the list with the
help of the usual keyboard. An Alternative way to do it is to continue typing the
word; the list selection will be changed to produce the closest match possible.

Press the Enter key when you select the required methods and Override.Insight
will override them and add calls to the appropriate methods of the super class, if
needed.

You can call Override.Insight with constructors only using the shortcut
Ctrl+Shift+M (CUA).

Also, there is a possibility of invoking the built-in Override Methods Wizard. You
can use the appropriate button in the left top corner of the popup to invoke it.

Code Changes Synchronization

Override.Insight analyses changes in all dependant source files and correctly
reflects them in the methods list. But in most cases you need to compile all
dependant classes before invocating Override.Insight. If the required class is not
compiled yet or the required methods are not found in the compiled class, these
errors will be shown in the Status View.

Options Dependency

Using the Project Properties | Productivity! | General property page you can
customize Code Generation Options, which allow you to adjust the code style for
the generated methods code.

Import statements are generated basing on Imports Generation settings on the
Editor Options | Productivity! | General property page. There you also can
customize other Override.Insight options, such as Search Options and Sort
Classes By.

Context.Insight

Context.Insight is a tool that allows you to check context of the current cursor
position. Context.Insight collects information about all classes and methods and
shows it using the Insight popup window.

To invoke Context.Insight please use the Ctrl+Q (CUA) shortcut.

Productivity! Tools

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

22

Figure 10 Context.Insight popup window

Another feature supported by Context.Insight is navigation. If you place the
mouse cursor over an identifier within the Context.Insight popup window, the
hyperlink appears and activation of hyperlink leads to navigation to the identifier.

In some cases (particularly, within classes with significant amount of inner
classes), the Context.Insight may display only upper class information. Such
behavior is explained by definite limitations of the JBuilder JOT subsystem that
requires significant amount of time (up to tens of seconds) to retrieve
information about the inner classes. To avoid hang-up of JBuilder, the time
required for context information gathering may be limited in Editor Options |
Productivity! | Delays page. So, if JOT provides no data within this interval, only
upper class information is provided. The same reason may cause relatively slow
performance of Context.Insight if the cursor is on the white space between class
methods. The same limitations may affect other tools using the same
functionality (Override.Insight, Implement.Insight).

Options Dependency

You can specify Context Discovering Timeout using the Editor Options |
Productivity! | Delays property page.

Easy.JavaDoc and Easy.JavaDoc.Insight

Easy.JavaDoc is a tool that allows easy and convenient generating of templates
for JavaDoc comments on particular methods or classes (except for the
anonymous ones).

Easy.JavaDoc

To invoke Easy.JavaDoc, place the cursor within a method or class for which you
want to generate JavaDoc and press Ctrl+D (CUA). JavaDoc comment will be
automatically inserted just before the method. Since the method comments
contain tags for all declared fields, exceptions can be thrown by the method.
That's really easy!

Productivity! Tools

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

23

Easy.JavaDoc.Insight

Easy.JavaDoc.Insight allows choosing of several methods or classes for JavaDoc
generation.

Figure 11 Easy.JavaDoc.Insight popup window

Press Ctrl+Shift+D (CUA) to invoke Easy.JavaDoc.Insight. The
Easy.JavaDoc.Insight popup will be shown with the list of members (methods
and/or classes) matching the word typed in the Members edit box. The list may
be empty if there are no matching members though. To find matches, type a
word in the Members edit box and Easy.JavaDoc.Insight will dynamically
rearrange the members' list to show the matching ones. If you leave the
Members edit box blank, all members within the current context are shown.

Unlike other Insights, Easy.JavaDoc.Insight doesn't merely employ the word at
the cursor position; it rather uses the name for the method or class at the cursor
position. This approach allows easy generation of JavaDoc comments for the
method or class at the cursor position.

You can select a member navigating through the list with the help of the usual
keyboard. An Alternative way to do it is to continue typing the word; the list
selection will be changed to produce the closest match possible.

On selecting the members press Enter to generate JavaDoc covering all of them.

Options Dependency

You may adjust content of JavaDoc generated by Easy.JavaDoc using Project
Options | Productivity! | Easy.JavaDoc. By default, Easy.JavaDoc generates
@return, @param and @throws tags. You may also specify that it should
generate @author, @see and @since tags. To enable or disable their generation,
please open the Project Options | Productivity! | Easy.JavaDoc property page and
select the appropriate check boxes. Please note that if you select generation of
the @author tag, the Easy.JavaDoc inserts the tag's value as it is specified on the
Project Properties | General property page.

In addition, on the same page you can specify the policy to be used by
Easy.JavaDoc if JavaDoc comment already exists for a method or class. Based on
your selection, Easy.JavaDoc can overwrite old comments, skip generation or ask

NOTE:

Productivity! Tools

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

24

your confirmation on comments rewriting. Note that these options may affect the
members' list content in Easy.JavaDoc.Insight popup - if the option to skip
members with existing JavaDoc is specified, all such members will be excluded
from the members' list.

Imports.Beautify

Imports.Beautify is intended to arrange import statements into a clear and easy-
readable form. It allows consolidating, alphabetical sorting and optional grouping
of all import statements in the current Java file.

Press Ctrl + Alt + B (CUA) to invoke it. In the following shots you can see imports
before and after Imports.Beautify invocation.

Figure 12 Import statements before Imports.Beautify invocation

Productivity! Tools

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

25

Figure 13 Import statements after Imports.Beautify invocation

Options Dependency

Imports.Beautify optionally allows grouping imports by specified root packages
so you can group your imports exactly as you want. To maintain grouping
behavior you can use the Imports.Beautify option on the Project Properties
|Productivity! | General and Import Statements Generation option the Editor
Options |Productivity! | General property pages.

Smart.Instantiate

Smart.Instantiate is an additional functionality of Class.Insight that allows adding
instantiation of a particular class by invoking Class.Insight, selecting the class
and pressing Shift+Enter.

Smart.Instantiate recognizes the need to define a variable or just to create a new
object. For example, when you type List fList = new List(100); and use
Smart.Instantiate to create an ArrayList instance, Class.Insight replaces only the
appropriate class name and preserves the variable definition and constructor
parameters. You will get the following List fList = new ArrayList(100); The same
behavior is exhibited when using Smart.Instantiate to create a new instance and
as a parameter to a method call. In other cases, Smart.Instantiate inserts
definition and initialization of the variable with a new instance of the selected
class.

Productivity! Tools

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

26

Figure 14 Smart.Instantiate popup window

When an interface is selected to be instantiated, Smart.Instantiate automatically
inserts implementation of the interface as an anonymous inner class. You can
control this behavior using the Project Properties | Class.Insight | General
property page.

A couple of samples of illustrating what Smart.Instantiate can do for you!

Figure 15 Code before invocation of Smart.Instantiate

Figure 16 Code after invocation of Smart.Instantiate

An Alternative way to get Smart.Instantiate executed is using the shortcut Alt+I
(CUA) that invokes a particular Smart.Instantiate popup. This popup is similar to
the Class.Insight one but it doesn't require holding the Shift key to activate
Smart.Instantiate - you just need to select a class and press the Enter key to
instantiate it.

Showing Navigation Pane

You can switch the Smart.Instantiate popup to show the Navigation Pane by
turning off the Editor Options | Productivity! | Usage | Show Class.Insight popup
as list checkbox. With this option turned off, Smart.Instantiate popup will be
shown with the Navigation Pane, that allow to use Smart.Instantiate even if
there is no word at the cursor position or if there are no classes matching it. To
find matches, type a word in the Instantiate Class edit box and Smart.Instantiate
will dynamically rearrange the classes' list to show the matching ones.

Productivity! Tools

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

27

Options Dependency

Please note that the set of classes shown in the Smart.Instantiate list depends on
Packages Exclusion settings on the Project Properties | Productivity! | General
property page.

Import statements are generated basing on Imports Generation settings on the
Editor Options | Productivity! | General property page. There you can also
customize other options of Smart.Instantiate, such as Search Options, Sort
Classes By, Autocomplete and Productivity! Insights Usage.

Using the Project Properties | Productivity! | General property page you can
customize Code Generation Options, which allow you to adjust the code style for
the generated methods code.

Hyperlink.Navigate

Hyperlink.Navigate is a tool allowing easy and convenient navigation with a
method similar to that of the JBuilder built-in Symbol Insight tool.

Figure 17 Hyperlink.Navigate with hint that describes identifier under cursor

To invoke Hyperlink.Navigate, press and hold the Ctrl key pointing the mouse
over the identifier you are going to navigate to. A hyperlink will appear, and if
you press the left mouse button, JBuilder will navigate to it (in the same manner
as Symbol Insight does).

If you place the mouse over the identifier with the Ctrl key pressed, after some
delay the Hyperlink.Navigate popup appears that contains information about the
symbol under the cursor.

Options Dependency

You can customize delays used for invocation and closing of the
Hyperlink.Navigate popup window using the Hyperlink.Navigate Delays options
on the Editor Option | Productivity | Delays property page. Also, you can specify
whether Hyperlink.Navigate should be invoked during a debug session using the
Invoke insights during debugging option on the Editor Option | Productivity |
Usage property page.

Productivity! Tools

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

28

Hyperlink.Help

Hyperlink.Help is a tool that allows easy and convenient viewing help topics for
particular symbols.

Figure 18 Hyperlink.Help popup window with help for identifier

To invoke Hyperlink.Help, press and hold the Alt key and point the mouse over
the identifier, which you need help with. The identifier becomes a hyperlink, and
if you press the left mouse button, the built-in JBuilder help is shown for it.

If you place the mouse over the identifier with the Alt key pressed, after some
delay the Help.Insight popup appears that contains exact help about the symbol
under the cursor.

Options Dependency

You can customize delays on invocation and closing of the Hyperlink.Help popup
window using the Help.Insight options on the Editor Option | Productivity! |
Delays property page. Also, you can specify whether Hyperlink.Help should be
invoked during a debug session using the Invoke insights during debugging
option on the Editor Option | Productivity | Usage property page.

GetSet.Creator

GetSet.Creator is a tool that allows easy creation of accessors and/or mutators
for selected fields of a class.

When editing a file, press Alt+Shift+A (CUA) to invoke GetSet.Creator Insight.
The GetSet.Creator popup will be shown with the list of fields matching a word at
the cursor position. The list may be empty if there are no matching fields though.
To find matches, type a word in the Fields edit box and GetSet.Creator will
dynamically rearrange the list of fields to show the matching ones. You can also
leave the Fields edit box blank to view all fields.

Productivity! Tools

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

29

Figure 19 GetSet.Creator popup window

GetSet.Creator highlights the fields with names exactly matching the typed word
using bold font.

GetSet.Creator analyses all the fields and all the methods those may be
considered as accessor or mutator ones and removes certain fields from the list if
appropriate methods are already exist.

You can select a field, either one or any, navigating through the list with the help
of the usual keyboard. An Alternative way to do it is to continue typing the word;
the list selection will be changed to produce the closest match possible.

Press the Enter key when you select the required fields(s) and GetSet.Creator
will generate applicable accessors and (or) mutators to it (you can select all
items in the list using the Ctrl+A shortcut). When generating a method,
GetSet.Creator analyses the current class as well as all its super classes and
super interfaces, so it can call the appropriate method of the super class or skip
particular method generation in case of any contradictions.

There is an ability to invoke GetSet.Creator in the mode that allow generating
either accessors or mutators methods only using the Alt+Shift+G or Alt+Shift+S
(CUA) shortcuts, respectively.

In general, GetSet.Creator uses Java Beans convention for naming the accessor
and mutator methods. But if your code style assumes using prefixes or (and)
suffixes for fields naming, GetSet.Creator allows you to use them without
distortion of method names - you just need to specify correct prefixes and
suffixes in the Project Properties | Productivity! | Code Style | Fields Naming
options group. For example, if you specify prefix m_ and name your field as
m_count , GetSet.Creator generates methods as getCount() and setCount(...).

GetSet.Creator can generate JavaDoc comments during methods generation. To
control this, please use the options on the Project Properties | Productivity! |
JavaDoc property page.

Smart.Braces

Smart.Braces is a tool that allows easy creation of matching braces right while
you are typing. Just type an opening brace and Smart.Braces will automatically
add the closing one. In addition to braces completion, Smart.Braces supports
completion of string and character enclosing symbols - " and ' , respectively.

Productivity! Tools

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

30

Smart.Braces adds closing characters after the opening ones for all characters
except curly braces; the closing curly brace is inserted into the next line and may
require an additional line, for the cursor with the appropriate indent to be placed
(according to the Complete curly brace and indent option).

Options Dependency

You can control the behavior of Smart.Braces using the Editor Options | Editor |
Editor Options tree view - expand the Smart.Braces options node and turn on or
off options you need.

With a non-standard JBuilder keymap used (such as Vi/VIM), Smart.Braces may
conflict with keymap settings. Apparently, for the VI keymap, ' and " symbols
may be overridden by Smart.Braces. The reason of such behavior lies in the
features of the vi implementation (not absolutely correct implementation of the
Keymap default action).

However, you can disable the part of the Smart.Braces functionality, which leads
to the conflict. To do this, please add the following lines to your JBuilder.config
file (located in the JBuilder/bin directory):

vmparam –DProductivity.Smart.Braces.CompleteCharacters=no

vmparam –DProductivity.Smart.Braces.CompleteStrings=no

NOTE:

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

31

Productivity! Options

Productivity! offers rich abilities for customizing its functionality and tuning it
exactly for your own unique code style and your particular needs.

You can manage Productivity! settings in convenient and customary ways using
standard JBuilder approaches for configuration.

Most of Productivity! settings are concentrated in two JBuilder dialogs: the
Project Properties and Editor Options dialogs.

The Project Properties dialog contains the following property pages added by
Productivity!:

• General where you can specify options for Imports.Beautify and Packages
Exclusion

• Code Style where you can specify options for Code Generation

• JavaDoc where you can specify options for JavaDoc generation

• Cache where you can specify options for managing Productivity! classes
cache

The Editor Options dialog includes the following property pages added by
Productivity!:

• General where you can specify options for Import Statements Generation,
Search Options, Sorting options, Autocomplete, Insight Usage and
Invocation insights during debugging.

• Usage where you can specify how to use (or not use) the appropriate
tools

• Delays where you can specify options for Hyperlink.Help and
Hyperlink.Navigate invocation and closing delays, Help.Insight delay used
for integration with JBuilder Member Insight, and Context Discovering
timeout.

In addition, with the help of Editor Options Dialog you are able to customize
options for the Smart.Braces tool. These options can be found on the Editor
property page in the Editor Options tree view.

Also, the IDE Options dialog includes a property page added by Productivity!,
which allows user to select the Metal theme to be used by JBuilder.

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

32

Project Properties Dialog

The Project Properties dialog contains the following property pages added by
Productivity!:

• General where you can specify options for Imports.Beautify and Packages
Exclusion

• Code Style where you can specify options for Code Generation

• JavaDoc where you can specify options for JavaDoc generation

• Cache where you can specify options for managing Productivity! classes
cache

General Page

The Options page of the Productivity! Project Properties pages allows to specify
the following options:

1. Imports.Beautify

2. Packages Exclusion

To set these options for all new projects, choose Project | Default Project
Properties.

The Imports.Beautify tool provides the ability to beautify imports by grouping
import statements and sorting them within every group. This option allows you to
customize Imports.Beautify functioning.

Figure 20 Imports.Beautify options

Group import statements

Please select this checkbox if you want to let the Imports.Beautify group import
statements during imports beautifying. If you disable grouping, Imports.Beautify

Imports…

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

33

will only consolidate import statements according to options specified in Editor
Options | Productivity! | General | Import statements generation and sort them.

Import groups

With the help of this panel, you can specify how to group import statements
during import beautifying. Either type the root package of the group manually
(only valid Java symbols are allowed, ';' separates packages), or add them using
the Select Package dialog, invoked by the Add... button. Import statements will
be grouped in the order specified by this option.

Productivity! uses cache of classes included into particular project. By default,
this cache includes all classes found according to JBuilder paths settings. In
general, this includes: classes from JDK, classes in project libraries and project
classes themselves. It is obvious that in large projects the amount of such
classes may achieve several thousands. The Productivity! popup windows allow
reducing the excessive amount of classes by eliminating those not used (such as
sun.* and sunw.*, which are included into JDK but hardly used in your project
directly) - with the help of this option you can exclude unnecessary packages.

Figure 21 Package Exclusion options

Enable packages exclusion

Select this checkbox if you wish to exclude classes belonging to particular
packages from showing them in the Productivity! insights. With this checkbox
disabled, all classes from Productivity! cache are shown.

Exclude packages

Using this panel, you can specify packages to be excluded. Either type the
package name to exclude it manually (only valid Java symbols are allowed, ';'
separates packages) or add the package using the Select Package dialog invoked
by the Add... button. The sequence order of packages being specified is
inessential.

Packages
Exclusion

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

34

Code Style Page

The Options page of the Productivity! Project Properties allows user to specify the
following options:

1. Methods Parameters Naming

2. Fields Naming

3. Generate Throwing java.lang.UnsupportedOperation Exception

4. General Options

To set these options for all new projects, choose Project | Default Project
Properties.

This property page allows customizing the code generated with Productivity!
tools and adjust it to your personal coding style.

This option allows customizing names of parameters used in methods generated
by Productivity! tools. Any parameter name has a customizable prefix and suffix.
With the appropriate checkbox enabled, you'll be able to specify the respective
part of a parameter name in the edit box. In other words, you can specify the
value to be used when naming parameters.

Figure 22 Methods Parameters Naming options

Productivity! tools generate names of parameters if their actual names are
unknown (when source code of a class is unavailable). By default, it utilizes usual
Java convention for parameters naming, but you can force it to use prefixes
and/or suffixes according to your own requirements.

This option allows customizing names of fields according to the coding style you
prefer.

Figure 23 Fields Naming options

You can customize a prefix and suffix of a field name. With appropriate checkbox
enabled, you'll be able to specify the respective part of a field name in the edit
box.

Methods
Parameters
Naming

Fields Naming

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

35

The current version of Productivity! uses this option in GetSet.Creator.
Depending on values specified, GetSet.Creator can define the appropriate name
of the get/set method (by removing a prefix and suffix) and the appropriate
parameter names.

Using these radiobuttons you can exactly specify the rules of code generating in
the method body. If you enable Generate always radiobutton, Productivity!
always generates method body with TODO comment and the code that throws
java.lang.UnsupportedOperation exception.

Figure 24 Generate throwing of UnsupportedOperationException options

If you enable Generate only when needed radiobutton, Productivity! generates
the code that throws exception only for the method with non-void return type.

These options provide more opportunities for you to fine-tune the code generated
by Productivity!

Figure 25 General Code Style options

Generate method body near the current cursor position

This option allows you to specify the anchor position where the generated code
will be inserted. If the appropriate checkbox is selected, the whole code will be
generated in the position close to cursor (if the cursor is within a method, the
code will be generated near this method). If this option is disabled, all the
methods will be inserted in the end of a class definition and the constructors will
be inserted after the last defined constructor. The only exception is the
generation of get/set methods - if this option is disabled, a get/set method will
be inserted after the appropriate set/get method.

Generate JavaDoc during methods generation

This checkbox is used to specify whether the JavaDoc comment templates will be
generated during the methods generation. If you enable it, all the methods

Generate
Throwing …

General

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

36

generated by the Productivity! tools will include the JavaDoc comment templates
(the same as those produced by Easy.JavaDoc). The only exception is the
generation of anonymous inner classes - JavaDoc will never be generated during
the anonymous inner class generation.

JavaDoc Page

The Easy.JavaDoc page of the Productivity! Project Properties pages provides the
following options:

1. Policy for handling the existing JavaDoc comments

2. Methods JavaDoc Generation

3. Classes JavaDoc Generation

4. Auto Generation

To set these options for all the new projects, select Project | Default from the
Project Properties.

All the options on this page are applicable to JavaDoc generation by both manual
invocation of Easy.JavaDoc (default shortcut is CTRL+D) and by invoking
Easy.JavaDoc during method generation (in Override.Insight,
Constructor.Insight, Implement.Insight and Smart.Instantiate tools).

Please note that all these options are not applicable to the code generated for
anonymous classes, since JavaDoc is never generated for them.

This option allows you to specify the processing policy for the existing JavaDoc
comments.

Figure 26 If JavaDoc exists options

You may define how Easy.JavaDoc will handle the existing JavaDoc comments. If
JavaDoc already exists for a method or class, Easy.JavaDoc may either skip the
generation of JavaDoc template and override the existing block by its own one,
or prompt your confirmation for overriding of the existing comment.

These options allow you to specify the tags that will be included into the generated
JavaDoc template for the method.

If JavaDoc
Already
Exists

Methods
JavaDoc
Generation

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

37

Figure 27 Methods JavaDoc Generation options

By default, Easy.JavaDoc always generates @param, @throw and @return
(except void methods and constructors) tags based on the method definition.
However, you may expand the content of generated template using Methods
JavaDoc Generation option. You may select the appropriate checkbox to enable
generation of the corresponding tag. Please note that if you select the "Generate
@author" check box, Easy.JavaDoc will use the name of the Author as specified
on the Project Properties | General property page.

This option allows specifying the tags that will be included into the generated
JavaDoc template for the method.

Figure 28 Classes JavaDoc Generation options

By default, Easy.JavaDoc always generates a description only. However, you may
expand the content of generated template via the Methods JavaDoc Generation
option. You may select the appropriate checkbox to enable generation of the
corresponding tag. Please note that if you select the Generate @author
checkbox, the Easy.JavaDoc will use the name of the Author as specified on the
Project Properties | General property page. The same happens with the Generate
@version checkbox.

You may specify whether default comments should be generated for the get/set
methods using Automatically generate text of comments for get/set methods.
Please note that this option is applicable only to GetSet.Creator tool.

Classes
JavaDoc
Generation

Auto
Generation

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

38

Figure 29 JavaDoc Auto Generation options

If you enable this checkbox together with the automatic generation of JavaDoc
during methods generation (Project Properties | Productivity! | Code Style |
General), then the GetSet.Creator tool will insert default description for the
method, default description for the method return value (getter) and default
description for the method parameters (setter).

Cache Page

The Cache page of the Productivity! Project Properties pages provides the
following options:

1. Autorefresh option

2. Refresh groups

3. Refresh Now

To set these options for all the new projects, select Project | Default from the
Project Properties.

The main goal of Productivity! is to increase the developers' productivity to its
maximum. Since, presumably the application will be frequently used, it should
work as quickly as possible. The project may contain several thousands of
classes (including the classes directly included into the project, JDKs and
required libraries classes) and constant search through them would be highly
inconvenient. Thus, Productivity! builds classes cache right after the first
invocation and then stores it to hard drive providing for future re-use. After
cache build or load, Productivity! uses it for quick access to the classes according
to the specified criteria.

Options grouped on this page allow you to control the process of class cache
building and refreshing.

This option allows you to specify whether cache will be refreshed automatically.

The most frequently changed classes from all the classes used by the project are
those included into the project itself, in other words, the classes developed by you
within a project. Whereas changing JDK and adding or removing libraries are very
rare operations, new classes within a project appear, change their location or
become renamed every day.

Autorefresh
Options

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

39

Figure 30 Cache Auto Refresh options

The Auto refresh options are designed to make the cache content as up-to-date
as possible, offering convenient usage of such Productivity! tools as Class.Insight
and Browse.Insight with your classes, and also to reduce the necessity of manual
refresh of Productivity! classes cache.

This option enables your class cache to be refreshed after every successful
project build or make. Refresh of classes included in the project is normally a
short operation that requires much less time compared to project build, so we
recommend that these options be always enabled.

Please note that the class cache refresh will be performed only under the
condition that the whole project build or make is successfully completed (not just
some of its files), and that there were no compiler errors during the build
process.

You may tune the cache refresh process by using the refresh groups. Refresh
group is a set of packages that may be refreshed independently. Thus you may
specify a set of refresh groups that would include the most frequently changing
classes, and refresh their cache individually.

Figure 31 Refresh Groups options

You may specify your refresh groups using the table shown above. Use Add
new… button to create a new group, Edit button to edit the existing group, and
Remove button to delete a group.

Refresh button allows you to refresh the selected group.

Refresh
groups

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

40

Please note that double-clicking a group row brings you up to group editing
(similar to pressing the Edit... button).

Creating new groups as well as editing the existing ones is performed via the
New/Edit Refresh Group Dialog.

Figure 32 New/Edit Refresh Group Dialog

Please use the Group Name field to specify the name of the group to be
refreshed, and the Packages to refresh field to specify the packages to be
included into the group. You may specify the packages for inclusion by either
manual typing (only valid Java symbols are allowed, separator for packages is ;),
or by adding them via the Select Package dialog, invoked by the Add... button.
The order of specified packages is not essential.

These options enable immediate start of the refresh operation for the
Productivity! classes cache.

Figure 33 Refresh Now options

You may choose from the following refresh types: of the classes included into the
project only; of the project libraries (which is crucial to do after adding or
removing libraries); or of the whole cache (including the classes from JDK).

Refresh Now

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

41

Editor Options Dialog

The Editor Options dialog includes the following property pages added by
Productivity!:

• General where you can specify options for Import Statements Generation,
Search Options, Sorting options, Autocomplete, Insight Usage and
Invocation insights during debugging.

• Usage where you can specify how to use (or not use) the appropriate
tools

• Delays where you can specify options for Hyperlink.Help and
Hyperlink.Navigate invocation and closing delays, Help.Insight delay used
for integration with JBuilder Member Insight, and Context Discovering
timeout.

In addition, with the help of Editor Options Dialog you are able to customize
options for the Smart.Braces tool. These options can be found on the Editor
property page in the Editor Options tree view.

General Page

The General page of the Productivity! Editor Options page provides the following
options:

• Import statement generation

• Search options

• Sort classes by

• Autocomplete

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

42

Productivity! contains a number of tools designed for imports modification -
Class.Insight, Implement.Insight, Override.Insight, Constructor.Insight,
Imports.Beautify and Smart.Instantiate.

All these tools share common settings for the import statements modification so
modification of these options will affect all tools mentioned above.

Figure 34 Import statements generation options

The following options are available for management of import statement
modifications:

Import particular class

If this option is turned on, the import statement for the required class will be
inserted, however imports consolidation will not be applied.

Import all (*) classes from package

If this option is turned on, all (*) classes from all the packages will be imported
and particular imports from the same package will be removed. This option is
useful when a large amount of classes from the same package are used.

Import particular class and consolidate packages

If this option is turned on, a particular class will be imported if the number of
imports from the same package does not exceed the maximum allowed. The
maximum amount of classes to be imported without import statements
consolidation is controlled by the "Import maximum N classes from the same
package field.

If the number of imports from the same packages exceeds the specified limit, all
the imports of a particular class from the required package will be removed and
import statement for the whole (*) package will be inserted instead.

Import
statements
generation

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

43

These options allow you to tune the algorithm used for search of items within the
Productivity! popup lists.

Figure 35 Search options

The following options are available for search control:

Use "startsWith" method

If this option is turned on, all the search operations will be performed for the
string with the value of the word at cursor. Otherwise, the search will include the
strings that contain the required substring (usually a word at cursor).

Case sensitive

If this option is turned on, the case sensitive search algorithm will be used.

Stop on exact match

If this option is turned on, only classes with the names that exactly match the
word at cursor will be shown.

Show additional classes

If the Stop on exact match option is disabled, you may specify the amount of
classes you would like to see in the popup list. Since the overall amount of
classes may be quite important, you may make the list of classes less extended.

This option is common for the following Insights: Class.Insight, Browse.Insight,
Implement.Insight and Smart.Instantiate

Search
options

NOTE:

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

44

These options allow controlling the sorting of classes for the following Insights:
Class.Insight, Browse.Insight, Implement.Insight and Smart.Instantiate.

Figure 36 Sort Classes By options

The following options are available for classes sorting control:

Class name then by package name

If you select this option, the classes will be sorted according to the class name
and then class package;

 Full-qualified class name

If you select this option, the classes will be sorted according to their full-qualified
names.

Productivity! allows automatic execution of the Insight primary action when there
is only one possible variant found. In this case the action will be performed
without the Insight popup window being shown.

Figure 37 Autocomplete options

Use autocomplete

If this checkbox is enabled, the autocomplete option will be turned on, and
Productivity! will automatically complete the actions if possible.

Sort classes
by

Autocomplete

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

45

Usage Page

The General page of the Productivity! Editor Options page provides the following
options:

1. Productivity! Insights usage

2. Invoke insights during debugging

3. Help.Insight

4. Highlight.Navigate popup hiding mode

5. Superclass Changing Policy

Two tools included into Productivity! - Class.Insight and Browse.Insight - use the
same default shortcuts (Ctrl+Alt+Space and Ctrl+Minus, respectively (CUA)) as
JBuilder built-in tools. If you want to continue using the JBuilder built-in tools you
may disable the Productivity! insights startup using this option.

Figure 38 Productivity! Insights Usage options

Use Class.Insight

If this checkbox is not selected, the original JBuilder tools will be invoked instead
of Productivity! Class.Insight by pressing the appropriate shortcut.

Show Class.Insight and Smart.Instantiate popup as list

If this checkbox is selected, the popup window used by Class.Insight and
Smart.Instantiate will not include the Navigation Pane and will be similar to
JBuilder built-in Member Insight.

Use Browse.Insight

If this checkbox is not selected, the original JBuilder tool will be invoked instead
of Productivity! Browse.Insight by pressing the appropriate shortcut.

Productivity!
Insights
Usage

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

46

During debugging, JBuilder provides ability to inspect the symbol under cursor
using the appropriate popup window. Since both JBuilder and Productivity!
Hyperlink.Navigate windows are invoked by placing mouse over the symbol with
the CTRL key pressed down, in some cases these windows may overlap.

Figure 39 Invoke popups during debugging options

To eliminate this, you may disable Hyperlink.Help and Hyperlink.Navigate popup
windows if there is an active debugging session.

You may specify whether Help.Insight should be integrated with another insights.

Figure 40 Help.Insight options

Integrate Help.Insight with JBuilder Member Insight

If this checkbox is selected, Help.Insight will be integrated with JBuilder Member
Insight. In such mode, as soon as you change the selection within the Member
Insight popup window list, Help.Insight with the help for a selected item will
appear near the Member Insight popup window.

Integrate Help.Insight with Productivity! Insights

If this checkbox is selected, Help.Insight is integrated with all the insights
included into Productivity!. Please note that even if you disable this integration,
you will still be able to invoke Help.Insight for a selected item in the insight
popup list. To do this, you just need to press the shortcut key normally used for
Help.Insight invocation (the default shortcut is CTRL+F1 under CUA) when
Productivity! insight is being used.

Invoke
popups
during
debugging

Help.Insight

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

47

This option allows you to hide the Hyperlink.Navigate popup window.

Figure 41 Highlight.Navigate options

If selected, the popup window will be hidden together with the hyperlink. If not,
the popup window will be closed in accordance with the delay specified on the
Delays page.

This option allows you to specify how the Productivity! Implement.Insight tool
will handle the situation when an extra super class is assigned to a class.

Figure 42 Superclass Changing Policy options

In such case Implement.Insight will perform the following actions depending on
the currently selected value:

Never change - Implement.Insight will not change the super class and will not
implement methods from the proposed super class.

Always change - Implement.Insight will change the super class to the selected
one and will override all abstract methods.

Show prompt - Implement.Insight will show a prompt dialog allowing you to
specify what should be done.

Delays Page

The Delays page of the Productivity! Editor Options page provides the following
options:

1. Hyperlink.Help Delays

2. Hyperlink.Navigate Delays

3. Help.Insight Delay

4. Context Discovering Timeout

Hyperlink
popup hiding
mode

Super Class
Changing
Policy

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

48

With these options you may specify the delays used for invocation and closing of
popup windows displayed by the Hyperlink.Help and Hyperlink.Navigate tools.

Figure 43 Hyperlinks options

With this option you may specify the Help.Insight delay for JBuilder built-in
Member Insight as well as for Productivity! insights.

Figure 44 Help.Insight options

You may also indicate whether Help.Insight will be integrated with the JBuilder
built-in insights using the Enable Help for built-in JBuilder insights checkbox.
From the Enable Help for Productivity! Insights option you can specify whether or
not Help.Insight will be integrated with the insights included into Productivity!.

Invocation delay

With this slider you may define the timeout between the time when a member in
Member Insight (or Productivity! Insights) is selected and when the Help.Insight
popup window is displayed.

Hyperlinks
Delays

Help.Insight
Delay

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

49

In certain cases, (particularly, for the classes with a large number of inner
classes), Context.Insight may display only the upper class information.

Figure 45 Context Discovering options

The reason for this is the limitation of JBuilder JOT subsystem that requires
significant amount of time (up to tens of seconds) to retrieve information about
the inner classes. To avoid hang-up of JBuilder, the time required for collection of
context information was limited to 2 seconds. Thus, if JOT fails to provide the
data within this interval, only the upper class information is selected. Relatively
slow performance of Context.Insight when cursor is placed on the white space
between class methods can also be justified by these reasons. The same
limitations may affect other tools that use the same functionality
(Override.Insight, Implement.Insight).

From this option you can specify the maximum time required to discover the
context.

Smart.Braces Options (Editor Options)

The Smart.Braces tool can be customized via the Editor Options dialog box.

As soon as Productivity! is installed, additional node appears in the Editor
Options tree view (Editor Options | Editor property page)

Figure 46 Smart.Braces options

This node contains the Smart.Braces customization options. You may fully
customize all the features of Smart.Braces to satisfy your needs and goals.

Context
Discovering

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

50

Figure 47 Smart.Braces options (expanded)

The following options are available:

Complete curly brace

Allows you to specify whether Smart.Braces should complete the curly brace ({)

Complete curly brace and indent

Allows you to specify whether Smart.Braces should complete the curly brace ({)
and make the indent in accordance with the currently set size

Complete brace

Allows you to specify whether Smart.Braces should complete the brace (()

Complete square brace

Allows you to specify whether Smart.Braces should complete the brace ([)

Complete Strings

Allows you to specify whether Smart.Braces should complete the string constants
(")

Complete characters

Allows you to specify whether Smart.Braces should complete the character
constants (')

Use ALT key to override the current options

With this option enabled, the current options can be overridden provided the ALT
key is pressed when typing. For example, if Complete curly brace option is
enabled, pressing { with the ALT key will only insert the opening curly brace
without the corresponding closing one.

If a non-standard JBuilder keymap is used (such as Vi/VIM), the Smart.Braces
may conflict with the keymap settings. Apparently, for keymap VI the ' and "

NOTE:

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

51

symbols may be overridden by Smart.Braces. It is justified by the features of the
vi implementation (improper implementation of the Keymap default action).

However the part of Smart.Braces functionality that causes the conflict can be
disabled. To do this, you should add the following lines into your JBuilder.config
file (placed in JBuilder/bin directory):

vmparam –DProductivity.Smart.Braces.CompleteCharacters=no

vmparam –DProductivity.Smart.Braces.CompleteStrings=no

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

52

IDE Options Dialog

The IDE Options dialog includes a property page added by Productivity!, which
allows user to select the Metal theme to be used by JBuilder

Productivity! Page

The Options page of the Productivity! IDE Options pages provides the themes to
select from for the Metal look and feel.

Productivity! allows you to customize the current theme of Swing Metal LF. There
are two additional themes added - Plain Steel and Plain Steel (W2K).

Figure 48 Metal theme options

Below you can see the samples of UI under different themes.

Figure 49 Default Steel Metal Theme sample

Figure 50 Plain Steel Theme sample

If you are using Metal LF, you may select one of the themes provided. Plain
themes are similar to the the standard one as they are derived from it, however
the bold attributes of fonts were removed and the font size was slightly

Productivity! Options

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

53

decreased. Plain Steel (W2K), in addition, sets fonts to the mimic ones used in
Windows 2000 (Tahoma) and therefore requires this font to be installed.

Productivity! Key Bindings

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

54

Productivity! Key Bindings

Productivity! supports all JBuilder built-in keymaps, such as:

1. Brief

2. CUA

3. Emacs

4. Macintosh (Mac)

5. Macintosh Code Warrior (Mac CW)

6. Visual Studio (VS)

If you use Professional or Enterprise edition of JBuilder, you are able to customize
these shortcuts by using either Editor Options | Editor | Keymap | Customize... or
IDE Options | Browser | Keymap | Customize... dialogs. All the Productivity!
shortcuts are placed in the Productivity! group.

NOTE:

Productivity! Key Bindings

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

55

Key Bindings for CUA, Brief and Visual Studio keymaps

The following table outlines the shortcuts to Productivity! features. For a detailed
description of these features please see Productivity! Tools.

Table 2 Productivity! Key Bindings for CUA, Brief and Visual Studio keymaps

Tool CUA Brief VS

Class.Insight Ctrl+Alt+Space Ctrl+Alt+Space Ctrl+Alt+Space

Class.Insight Ctrl+Alt+H Ctrl+Alt+H Ctrl+Alt+H

Browse.Insight Ctrl+Minus Ctrl+Shift+Minus Ctrl+Minus

Browse.Members Alt+Minus Ctrl+Alt+Minus Alt+Minus

Help.Insight Shift+F1 Shift+F1 Shift+F1

Help.Insight.OnMembers Alt+F1 Alt+F1 Alt+F1

Implement.Insight Ctrl+Alt+I Ctrl+Alt+I Ctrl+Alt+I

Override.Insight Ctrl+M Ctrl+M Ctrl+M

Constructor.Insight Ctrl+Shift+M Ctrl+Shift+M Ctrl+Shift+M

Context.Insight Ctrl+Q Ctrl+Q Ctrl+Q

Imports.Beautify Ctrl+Alt+B Ctrl+Alt+B Ctrl+Alt+B

Smart.Instantiate Alt+I Ctrl+Shift +I Alt+I

Hyperlink.Navigate Ctrl+MOUSE Ctrl+MOUSE Ctrl+MOUSE

Hyperlink.Help Alt+MOUSE Alt+MOUSE Alt+MOUSE

Easy.JavaDoc Ctrl+D Ctrl+Alt+D Ctrl+Alt+D

Easy.JavaDoc.Insight Ctrl+Shift+D Ctrl+Shift+D Ctrl+Shift+D

GetSet.Creator Alt+Shift+A Ctrl+Shift+A Alt+Shift+A

Get.Creator Alt+Shift+G Ctrl+Shift+G Ctrl+Shift+G

Set.Creator Alt+Shift+S Ctrl+Shift+S Ctrl+Shift+S

Productivity! Key Bindings

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

56

Key Bindings for Emacs, Macintosh and Macintosh Code Warrior keymaps

The following table outlines the shortcuts to Productivity! features. For a detailed
description of these features please see Productivity! Tools.

Table 3 Productivity! Key Key Bindings for Emacs, Macintosh and Macintosh Code Warrior keymaps

Tool Emacs Mac Mac CW

Class.Insight Ctrl+Alt+Space Ctrl+Alt+Space Ctrl+Alt+Space

Class.Insight Ctrl+Alt+H Ctrl+Alt+H Ctrl+Alt+H

Browse.Insight Ctrl+Minus Ctrl+Minus Ctrl+Minus

Browse.Members Alt+Minus Alt+Minus Alt+Minus

Help.Insight Shift+F1 Shift+F1 Shift+F1

Help.Insight.OnMembers Alt+F1 Alt+F1 Alt+F1

Implement.Insight Ctrl+Alt+I Ctrl+Alt+I Ctrl+Alt+I

Override.Insight Ctrl+Alt+M Ctrl+M Ctrl+M

Constructor.Insight Ctrl+Shift+M Ctrl+Shift+M Ctrl+Shift+M

Context.Insight Ctrl+Q Ctrl+Q Ctrl+Q

Imports.Beautify Ctrl+Shift+B Ctrl+Alt+B Ctrl+Alt+B

Smart.Instantiate Alt+I Alt+I Alt+I

Hyperlink.Navigate Ctrl+MOUSE Ctrl+MOUSE Ctrl+MOUSE

Hyperlink.Help Alt+MOUSE Alt+MOUSE Alt+MOUSE

Easy.JavaDoc Ctrl+Alt+D Ctrl+D Ctrl+D

Easy.JavaDoc.Insight Ctrl+Shift+D Ctrl+Shift+D Ctrl+Shift+D

GetSet.Creator Alt+Shift+A Alt+Shift+A Alt+Shift+A

Get.Creator Alt+Shift+G Alt+Shift+G Alt+Shift+G

Set.Creator Alt+Shift+S Alt+Shift+S Alt+Shift+S

Productivity! Icons

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

57

Productivity! Icons

The following table shows icons used by tools included into Productivity!

Table 4. Productivity! Icons

Icon Description

 Browse.Insight used for fast browsing classes using short class names

 Browse.Members used for fast browsing declared members of a class

 Class.Insight allows finding and inserting a class using a short class name

 Easy.JavaDoc provides easy generation of JavaDoc for selected members

 Easy.JavaDoc.Insight provides easy generation of JavaDoc for selected
members

 Get.Creator easy creation of getters

 GetSet.Creator easy creation of getters and setters for selected fields

 Set.Creator easy creation of setter methods

 Implement.Insight used for fast interface implementing

 Smart.Instantiate allows you to instantiate a class variable or even implement
an anonymous class in seconds

 Constructor.Insight allows you to quickly create constructors

 Override.Insight allows you to easily override methods

 Context.Insight allows you to check the current context and navigate from
there

 Help.Insight allows easy viewing of help topics (if any) for an identifier within
the current context in the cursor position

 Help.Insight.OnMembers allows easy viewing of help topics for a
member within the current context in the cursor position

 Imports.Beautify action allows you to consolidate, group and sort your import
statements

 Smart.Braces options icon

 Cache Refresh Actions Group

 Full refresh of Productivity! classes cache

Productivity! Icons

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

58

 Refresh cache for classes included into selected Refresh Groups

 Refresh cache for classes included into project libraries

 Refresh cache for classes included into project only

Known Issues and Limitations

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

59

Known Issues and Limitations

1. Productivity! Classes Cache

• Since only public classes may be cached, the tools that depend on the
cache allow working with the public classes only.

• Cache may not be automatically refreshed during adding and/or removing
classes, packages, and libraries, as well as upon changes to the project
class and source paths. In such cases you should refresh the class cache
manually or schedule the refresh at the project make or build.

• To avoid using the already cached classes that belong to the previously
removed packages, you should refresh the cache for all classes.

2. The tools that operate with the words under cursor may sometimes improperly
handle the words with underscores.

3. Productivity! shortcuts are designed and tested to eliminate any possible
conflicts with the JBuilder shortcuts in any standard JBuilder keymap. However
there remains a possibility of conflicts with some of JBuilder plug-ins, other
applications and those functionality of the operational system that use the same
shortcuts for other purposes.

4. Several different Insights may be shown simultaneously.

5. Smart.Instantiate always allows instantiation of classes that have constructors
with the package access only, without checking the actual package.

6. Working with Inner Classes.

• Override.Insight and GetSet.Creator are unable to place caret at the
methods generated for anonymous inner classes or for inner classes
defined in the methods. The caret position in this case will be unchanged.

• Override.Insight and GetSet.Creator are unable to resolve the inner
classes stated as super classes or super interfaces for any other inner
class. Thus it is not possible to override methods or to generate access
methods for the fields defined in such inner classes.

7. Help.Insight.

• Shortcuts to non-local HTML pages may not work for external browsers
under Microsoft Windows 2000.

• JTextPane used in Help.Insight may hang JBuilder when displaying huge
HTML pages and/or jumping to non-existing anchors.

Known Issues and Limitations

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

60

• Help.Insight may find classes members if the documentation was
generated in compliance with standard JavaDoc doclet only.

• Help.Insight may show improper documentation page for java.io package.

8. External browser invocation works under Win32 platform only.

9. Resizing of the Insight popups may not work properly in some cases.

10. The Help button in the Insight popups may remain highlighted after
invocation of JBuilder help viewer.

Productivity! Feedback

Productivity! User Manual

Copyright © 2000-2001 AMIS Software http://www.softamis.com

61

Productivity! Feedback

As part of continuing efforts to improve our product, we welcome your
comments, suggestions and general feedback on the project.

If you have questions about Productivity!, please feel free to contact us for
further information at productivity@softamis.com or visit our site using the
following URL: http://www.softamis.som.

If you discover any issues or defects in Productivity!, please send the description of them
to productivity@softamis.com. We’d appreciate if you could provide us additional
information that may definitely help us to fix these problems:

1. JBuilder version.

2. Operational system version and vendor.

3. List of third-party open tools installed in your JBuilder.

4. Exceptions stack trace and any error output. You can see it if you run
JBuilder along with console.

5. Running threads dump (it makes sense if JBuilder is not responding). You
can see it if you run JBuilder along with console and press Ctrl+Break
shortcut in the focused console

