
A JDBC persistence framework

JdbcStore
Programmer’s Guide

(c) LPC Consulting Services, Inc.

This manual was produced using Doc-To-Help®, by WexTech Systems, Inc.

WexTech Systems, Inc.
310 Madison Avenue, Suite 905

New York, NY 10017
1-800-WEXTECH

(212) 949-9595
Fax: (212) 949-4007

JdbcStore: a JDBC persistence framework Contents •• i

Contents

Installation 5

Installing JdbcStore.. 5
Setting the CLASSPATH... 5
Directory structure ... 5

Introduction 7

JdbcStore overview... 7
What is JdbcStore... 7
Sample application ... 7
Features.. 9

JdbcStore concepts and terminology ... 12
Object type ... 12
Model... 13
Attribute... 13
Relationship ... 13
User class ... 13
Persistent extension .. 14
Factory ... 14
Class generation ... 15
SQL generation .. 15
Concurrency control attribute ... 15
Generated keys ... 16
Cataloged (or Loading) SQLs ... 16

Using the Workbench 17

Overview ... 17
Starting the workbench .. 17
Working with settings .. 19

Connection settings .. 19
Directories settings... 20
Class generation settings .. 21
SQL generation settings ... 22

Working with a model.. 23
Defining types from a SQL schema .. 23

Loading a JDBC driver... 24
Connecting to a database .. 24
Closing the database connection ... 25
Retrieving SQL catalog information ... 25
Displaying table information .. 26
Generating object types... 27

Working with types.. 27

ii •• Contents JdbcStore: a JDBC persistence framework

Adding a type... 28
Editing a type... 28
Editing class information ... 29
Editing an attribute .. 29
Defining the JDBC mappings... 31
Handling inheritance.. 32
Defining keys... 34
Defining relationships .. 35
Defining cataloged SQL statements .. 38
Choosing a caching strategy ... 39

Generating classes ... 40
Generating SQL... 41
Working with existing classes.. 42

Defining attributes ... 43
Obtaining version information ... 44

Basic Programming 46

Overview ... 46
Using the LPCSqlDriver .. 46

Loading a driver... 46
Getting a list of loaded drivers.. 46
Displaying driver information .. 47

Working with models... 47
Loading from a file... 47
Loading from an URL .. 48

Using a LPCSqlOrb ... 48
Connecting a broker directly .. 48
Connecting a broker using LPCConnectionInfo.. 49
Disconnecting a broker... 49

Transaction control .. 50
Turning autocommit on/off .. 50
Commiting transactions ... 50
Rolling back transactions ... 50

Working with factories... 50
Creating factories ... 51
Creating new persistent instances... 51

Fetching objects ... 51
Fetching all instances... 52
Fetching by key .. 52
Fetching using arbitrary search values (=) .. 53
Ordering result sets .. 53
Fetching using arbitrary operators .. 54

Fetching using SQL queries ... 55
Using AdHoc SQL ... 55

Using persistent instances (LPCPersistence protocol) ... 56
Updating and inserting new instances .. 56
Deleting instances .. 57

Working with relationships.. 58
Fetching related objects .. 58
Adding a relationship instance (one to many)... 59
Removing a relationship instance (one to many)... 60
Adding/Setting a relationship instance (one to one).. 60
Removing a relationship instance (one to one).. 60

JdbcStore: a JDBC persistence framework Contents •• iii

Caching ... 61
Caching overview... 61
Dynamic cache availability... 61
Displaying cache statistics .. 62
Flushing the cache.. 62

Beans 65

JdbcStore Beans ... 65

Advanced Programming 67

Accessing JDBC connection information.. 67
Using model and type meta-data .. 67

Retrieving types.. 67
Getting type information ... 68
Using attribute information .. 68
Using attribute information .. 68
Using relationships information.. 68
Sample application ... 69

Swing (JFC) components ... 71
Customizing code templates... 71

Delivering JdbcStore Applications 73

Java applications.. 73
Java Applets... 73

Working with the Examples 74

Examples overview .. 74
Customizing the examples ... 77

Changing the example settings ... 77
Creating the sample database ... 78

Using SQL anywhere.. 78
Using Access.. 78
Other databases .. 78

Using the sample model ... 79
Recompiling the examples ... 79

JdbcStore: a JDBC persistence framework Installation •• 5

Installation

Installing JdbcStore

To install JdbcStore, type the following:

java JdbcStore

The default installation path is set to /lpc.

Setting the CLASSPATH
After installing JdbcStore, you should include the following directories and/or files
in your classpath:

• c:\lpc\symantec\symbeans.jar

• c:\lpc

 If you have chosen to install JdbcStore in a directory other than c:\lpc,
substitute your installation directory instead of c:\lpc in the above.

 Directory structure
 The JdbcStore directories are structured as follows:

 batch command files to recompile the sample and example
classes

 com.lpc the JdbcStore classes and examples directories

 jdbcstore classes subdirectories

6 •• Installation JdbcStore: a JDBC persistence framework

 examples example classes

 classes generated classes for the examples

 models sample models for examples and sample application

 run JdbcStore runtime classes

 sampleApplication sample application classes

 swingUI LPC classes for JFC components

 workbench JdbcStore workbench classes

 lpctemplate\default default templates for code generation

 jdbcstore_source contains Java source subdirectories

 examples Java source for example classes

 classes Java source for generated classes

 sampleApplication sample application source files

 swingUI source files for LPC’s JFC components

JdbcStore: a JDBC persistence framework Introduction •• 7

 Introduction

 JdbcStore Overview

 What is JdbcStore
 JdbcStore is a Java to Relational DBMS persistence framework. It enables you to
store Java objects in a relational DBMS .

 JdbcStore reduces the impedance mismatch between Java’s object orientation and
the relational representation of data used by RDBMSs.

 You can write an entire Java application and store your data in a relational database
without any SQL coding or calls to the JDBC API. JdbcStore transparently
interfaces to JDBC and generates the required SQL to store and retrieve your objects
from the database.

 JdbcStore consists of:

• a workbench to define mappings between Java classes and relational
tables

• a runtime environment to transparently store and retrieve objects
from JDBC compliant databases

 JdbcStore is flexible. It does not require you to implement your persistent classes as
a subclass of a specific class. Persistent classes can be implemented as subclasses of
Object or any other classes.

 JdbcStore does not modify or pre-process Java source code. You can even define
persistent classes for class files (i.e. files for which you do not have source code).

 Sample application
 The following example is an extract of a small JdbcStore application that fetches
and displays all customers, their sales orders and sales order line items. It also
increases the quantity of items for each sales order item.

8 •• Introduction JdbcStore: a JDBC persistence framework

 // Create a factory …
 // its responsibility is to create and return objects
 System.out.println("Creating the factory");
 customerFactory = new CustomerFactory();
 customerFactory.broker(broker);

 // Fetch all the customers
 System.out.println("Fetching all the rows");
 try {
 lpcCustomer e;
 Vector v = customerFactory.fetchAll();
 for (int i=0; i < 2; i++) {
 e = (lpcCustomer) v.elementAt(i);

 // fetch the customer sales orders
 Vector so = e.getSalesOrders();
 System.out.println(e.getLname()+","+e.getFname());

 for (int j=0; j < so.size() ; j++) {
 lpcSalesOrder s = (lpcSalesOrder) so.elementAt(j);
 System.out.println("\t"+ s.getId() + " " +

s.getOrderDate());

 // fetch the sales order items
 Vector si = s.getSalesOrderItemss();
 for (int k = 0; k < si.size() ; k++) {
 lpcSalesOrderItems oi =
 (lpcSalesOrderItems) si.elementAt(k);
 System.out.println("\t\t" +

oi.getProduct().getDescription()
 + " " + oi.getQuantity());

 // update the sales order item quantity
 oi.setQuantity(
 new Integer(oi.getQuantity().intValue() + k));

 // store it
 oi.store();
 }
 }
 System.out.println();
 }
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("Broker fetch error - " + e.getMessage());
 }

 // commit the changes
 System.out.println("Commit transaction");
 try {
 broker.commit();
 } catch (Exception e) {
 System.out.println("Broker commit error - " + e.getMessage());
 }

 // Close the connection
 System.out.println("Disconnecting the broker");
 try {
 broker.close();
 } catch (Exception e) {
 System.out.println("Broker disconnect error - " +

e.getMessage());
 }

 }
 }

 Note that there is no need to code any SQL or to interface to JDBC in this
application.

JdbcStore: a JDBC persistence framework Introduction •• 9

 Features
 JdbcStore supports the following main features:

 Support for inheritance

 Inheritance relationships can be defined and maintained in the relational DBMS. It
supports both abstract and concrete supper classes.

 An inheritance hierarchy can be implemented in various ways:

• single table
the table contains the attibutes of the superclass and all of its
subclasses

• subclass tables
the table contains each subclass and its superclass attributes

• a table for each class in the hierarchy
each table contains its own attributes

 Class A

 Class A

 Class B

 Class B

 Class C

 Class C

Class A

Class B Class C

Table ABC

10 •• Introduction JdbcStore: a JDBC persistence framework

 Support for composition (associations)

 Complex objects can be modeled and stored using JdbcStore. One-to-one and one-
to-many associations are supported. At runtime, associated objects are fetched and
instantiated transparently.

 Lazy and immediate instantiation of complex objects

 When working with a large number of objects, JdbcStore enables you to instantiate
an object and its associated objects immediately (instead of using lazy instantiation).
This improves performance by reducing network traffic and the number of database
calls.

 Bean support

 JdbcStore public classes such as model, broker and factories were developed for
Java Beans and include BeanInfo classes.

 Generated classes not only adhere to Java Beans conventions (getXXX, setXXX)
but can also generate BeanInfo classes.

 JFC support

 JdbcStore includes a generic JFC table panel that enables you to display objects in
tabular format. It also includes a table data model customized for JdbcStore
persistent classes.

 Full source code for all JFC-based UI components is provided, so that you can
implement your own component by either subclassing or implementing new
widgets.

 Class and bean generation from a relational database
schema

 JdbcStore can generate classes and BeanInfo classes based on existing relational
schemas. The classes, methods and fields will be generated with names conforming
to established Java and Java Beans naming conventions.

 SQL Data Definition Language (DDL) statement generation
from existing class files

 Alternatively, JdbcStore can generate the SQL required to define tables in order to
store existing class instances into a database. This feature uses introspection to
discover the non-private attributes of the classes and does not require Java source
code for the classes.

JdbcStore: a JDBC persistence framework Introduction •• 11

 Instance and Object cache management

 One of the difficulties of using a relational database in an object oriented
application, is to ensure that only one instance of a persistent object exists in the
running application. Multiple queries to the database may return different instances
(but not identical) of the same object.

 JdbcStore can transparently ensure that only a single instance of an object ever
exists in your application. This is handled by an object cache.

 As well, the cache optimizes performance by reducing the number of database calls.

 The cache can use weak references when supported by the runtime Java VM to
allow unreferenced cached instances to be garbage collected by the VM.

 100% Pure Java

 JdbcStore is written entirely in Java with no calls to the Java Native Interface API.
Therefore, both the workbench and the runtime environments can be deployed on
any Java supported platforms.

 Applet and Application Deployment

 Because JdbcStore is written entirely in Java and does not use any feature that
would violate a browser’s normal security settings, it can be used to develop both
applications and applets. The JdbcStore based applets do not need to be defined as
trusted.

 User friendly workbench

 JdbcStore includes a workbench to define the mappings between persistent classes
and databases. The workbench includes facilities to define project settings (e.g.
directories, package names, etc.) and define and edit the mappings.

 The workbench is also used for generation of Java and SQL code.

 There is no need to learn a new Data Definition Language, since the persistence
model is defined entirely through the workbench.

 Flexible architecture

 JdbcStore does not make any assumptions about persistent classes as there is no
need to inherit from a persistent root class. The generated business classes can be
modified to add behavior.

 JdbcStore implements the persistence system by subclassing your business objects.
Business objects do not contain any SQL or persistence code.

 As well, JdbcStore implements the JDBC persistence through a broker class. This
broker class can easily be replaced in the future to provide a non-JDBC persistent
broker such as RMI or CORBA.

12 •• Introduction JdbcStore: a JDBC persistence framework

 Designed for performance

 JdbcStore uses the reflection API heavily to transparently provide the persistent
behavior required for the generated classes. To optimize performance, dynamic
method lookups are kept to a minimum. Once a method has been looked up, it is
cached so that no dynamic method and lookup resolution is required.

 As well the Object cache minimizes database calls and network traffic.

 Meta level programming

 JdbcStore stores the persistence mapping information in types. These types contain
such information as the class name, instance factory class name, attributes names
and types, contructors, accessors and getters, association attributes, table mappings,
column mappings, etc.

 These types are in turn stored into a Dictionary structure called a model. When you
save a model in the workbench, it is serialized and stored in a file.

 Loading the model is one of the first tasks you must complete when running a
JdbcStore information. The model and type metadata is available to your
application through a public protocol and this can be used to develop generic
components. JdbcStore itself includes such a component to display any persistent
object in tabular format.

 JdbcStore Concepts and Terminology

 Object type
 LPCObjectType An ObjectType defines the mappings between a Java Class and one or more

relational tables. It includes the following definitions:

• tables or tables used to store the type

• attributes – those that defined the mappings between the Java fields
and table columns

• fields or columns uniquely identifying the type

• relationships between the object types. The relationship defines the
relationships between the Java classes and also the database tables

• caching strategy used by the object type

• inheritance relationships between the object types and how these are
implemented by the database

• Cataloged SQL statements for complex queries

 The ObjectType can be generated from a database table, a Java class, or defined
from scratch. It can then be used to generate classes, SQL database definition
statements, or both.

 Since ObjectTypes contain all of the information required to map classes to tables,
they can be used to write generic components using the mapping information
provided by the types (meta level programming).

JdbcStore: a JDBC persistence framework Introduction •• 13

 Model
 LPCModel A model is just a collection of types. It should include all of the types required by

an application.

 Models are stored in serialized instances. The model can then be loaded by an
applet or an application at runtime.

 Attribute
 LPCAttribute An attribute of a type defines the mappings between the Java fields and the table

columns.

 It includes the following information:

• table columns including name, size, type, etc.

• Java fields including name and type

• Java getters and setters for the Java fields

 Relationship
 LPCRelationship Relationships are used to represent aggregation and composition associations.

 JdbcStore support one-to-one and one-to-many relationships. In addition the
relationships may be implemented by uni-directional or bi-directional links.

 A bi-directional implementation enables you to navigate the relationship from any
of the related objects. For example, we have a relationship where a customer has
zero or more sales orders (a one-to-many relationship):

• If we implement it using a bi-directional link, we can first fetch sales
orders and then instantiate the related customer. Alternatively, we
could first fetch the customers and then obtain their sales orders. If we
choose to implement the relationship uni-directional from the
customer, then we would not be able to instantiate a customer from its
sales order.

 When defining a relationship between Object types, you must also define the type
controlling the assignment of the key. For example, if we have a relationship
defined between a Sales Order Item and a Product, the product key should get stored
in the Sales Order Item (and not the reverse) when associating a Product to a Sales
Order Item. Therefore, the Product type controls the key of the relationship.

 User class
 A user class represents a business object. These classes are the main classes of your
application. In the sample provided with JdbcStore, Customer, SalesOrder, etc. are
user classes.

 JdbcStore makes these classes persistent.

 These classes can either be generated by JdbcStore or be defined previously.
JdbcStore does not require you to have source for these classes.

14 •• Introduction JdbcStore: a JDBC persistence framework

 When working with classes, you should keep in mind the following:

• only fields with public protected (and possibly package) visibility can
be made persistent if no accessors are defined for them. Since private
fields are not visible outside the class in which they are defined,
JdbcStore cannot store them

• not all fields of a class must be defined as persistent

• public or protected (and possibly package) getters or setters must be
defined for the fields. When the class is generated by JdbcStore,
getters or setters are generated automatically. If none are defined, you
must generate them in the persistent extension (class generation
option).

• you must use the setters to update the value of the fields at runtime.
JdbcStore overrides the getter to keep track of whether an object has
changed or not. Otherwise you must mark the object dirty yourself
(LPCPersistense.dirt(boolean flag).

• You must create new instances using the associated factory class.

 You can modify a user class to add any behavior that you require. However, if
the class is generated after you have made modifications, your changes will be
lost. You should therefore backup the old version and re-apply your changes

 Persistent extension
 A persistent extension is a subclass of a user class. JdbcStore uses this class to
implement persistence.

 The persistent extension implements the store method and overrides (or
implements) setters and getters for the Java fields.

 Every persistent class has a persistent extension. These classes are always named
lpcUserClassName where UserClassName is the name of your class.

 In the current version, the prefix ‘lpc’ cannot be changed. In a future release,
you will be able to assign your own prefix.

 Factory
 A factory is a class generated by JdbcStore. Every persistent class must have an
associated factory. The default name of a factory is UserClassNameFactory where
UserClassName is the name of the persistent class.

 The factory is used for creating new instances of the persistent class. These new
instances can either be created as the result of a query against the database or
through the use of the newInstance method to create new objects.

 Therefore the factory implements the following behavior:

• creation of new instance (newInstance method)

• retrieval from the database (fetch and associated methods)

JdbcStore: a JDBC persistence framework Introduction •• 15

 Class generation
 JdbcStore can generate the following classes:

• User Class

• persistent extension Class

• Factory Class

• BeanInfo class

 You generate a class from the workbench. However, you must always generate a
persistent extension and a factory.

 You can also generate a BeanInfo class. The BeanInfo class is generated for the
persistent extention class (since it is the class that implements the persistent
behaviour).

 SQL generation
 JdbcStore can generate SQL Data Definition Language statements from the Object
Types. The generated SQL is saved to a file.

 Since the SQL generated is generic, you may have to edit it to implement features
specific to your chosen database.

 The generated SQL can include:

• Drop table statements

• Create table statements

• Primary Key constraints statements

• Create unique index statements

 Concurrency control attribute
 JdbcStore handles concurrency using optimistic concurrency control. Since
applications may interface to a wide variety of databases, it must use a portable
mechanism for concurrency control.

 The implementation chosen is database independent. When you define a type, you
can designate one attribute (an Integer type) to represent a concurrency control
attribute. When a table row is updated or deleted, the value of the attribute is
selected to ensure it has not changed since the row was fetched. If it has changed
an exception is raised.

 To detect whether a row was successfully updated or deleted, JdbcStore checks
the rowCount returned by the execute.

16 •• Introduction JdbcStore: a JDBC persistence framework

 Generated keys
 In some cases, you may want to have keys assigned automatically to instances of
your persistent classes.

 You can use these assigned keys either as Object Identifiers or as regular database
keys.

 JdbcStore supports two types of generated keys:

• assigned by JdbcStore

• assigned by the database

 JdbcStore assigned keys

 When a key is generated by JdbcStore, it is generated using the following technique:

• JdbcStore issues a select Max(generatedAttribute) where column 1 = ?
and column 2 = ?, etc. where generatedAttribute is the name of the
generated column and column 1, column 2, etc. are the other key
attributes which are not generated.

 Therefore you can use this technique on objects which have one or more key
columns. When used with a single column key, it can be used to generate Object
Identifiers for your objects.

 This technique is database independent.

 Database assigned keys

 This is only available when instances of your class or table row are identified by a
single attribute.

 In this case, the database is responsible for assigning a value to the attribute. For
example, you could use this technique with Oracle sequence, Sybase identity and
Access counter datatypes.

 After a successful Insert statement, JdbcStore retrieves the assigned key value by
issuing a fetch using all the attributes values of instances in its ‘where’ clause.

 Cataloged (or Loading) SQLs
 In some cases you may want to use complex SQL statements (e.g. correlated
subqueries, etc.) to filter the objects returned from the database or to instantiate
instances of a class and its related objects simultaneously (e.g. Customer with sales
orders and sales order items).

 To do so, you must provide SQL statements to the factories. You can either provide
SQL strings at runtime or defined statements for the Object type that will be stored
in the model. These stored statements are called Catalogued or (Loading) SQLs.

JdbcStore: a JDBC persistence framework Using the Workbench •• 17

 Using the Workbench

 Overview
 You use the workbench to define the mappings between your database and your
Java classes. These mappings are stored in a model. The model is stored in a
serialized class instance that is then used by the runtime environment or loaded in
the workbench to modify the mappings.

 You use the workbench to:

• define project settings (e.g. paths, JDBC URL, etc.)

• generate a model based on a relational schema

• generate a model based on existing Java classes

• define the OO to RDBMS mapping

• generate Java classes

• generate SQL DLL to define tables

 Starting the workbench
 To start the workbench, enter:

 java com.lpc.jdbcstore.workbench.LPCMainFrame

The workbench main window will display and open on a new and empty model.

18 •• Using the Workbench JdbcStore: a JDBC persistence framework

 The directory where you installed jdbcstore must be in your CLASSPATH.
Alternatively you can also have the current directory (i.e. “.”) in your path.

 Before starting the workbench, you should change the current directory to the
jdbcstore directory. JdbcStore looks for the default settings file based on the
current directory.

 The main window of the workbench includes the following menus:

 Model

• New - creates a new model

• Open - displays file dialog to load a previously created model

• Save - saves the currently opened model

• Save as - displays a file dialog to save the currently opened model

• Settings - opens the settings dialog

• Exit - exits the workbench

 JDBC

• Load Driver - loads a JDBC driver in the Java VM

• Connect - connects the workbench to a JDBC URL

• Disconnect - disconnects from a previously connected URL

• Tables - displays the catalog dialog (only after a successful connect)

JdbcStore: a JDBC persistence framework Using the Workbench •• 19

 Code generation

• Classes - opens a class generation dialog to generate classes

• SQL DLL statements - opens a SQL generation dialog to generate and
create table statements

 Java classes

• Class Loader - opens a Class Loader dialog to load Java classes in the
VM so that you can define mappings based on these classes

 Help

• About - displays an about dialog with the current version information

 Working with settings
 When you start the workbench, the default settings from the current directory are
loaded. These settings are stored in a serialized instance in a file called:
defaultSettings.lpc.

 You can modify the default settings and create settings files that can be loaded in
the workbench.

 The settings establish defaults for directories, the JDBC URL, JDBC driver, code
generation options, etc.

 Although the default values are read from the settings, you can always modify
the various options before performing a task.

 The settings dialog is invoked by selecting Settings from the Model menu.

 There are five buttons at the bottom of the dialog that will show no matter which
panel is displayed. The actions performed by the buttons are as follows:

• Load from file - opens a file dialog to load a settings file

• Save As Default - loads settings from the file “defaultSettings.lpc”.

• Save As - opens a file dialog to save a settings file

• Reload Defaults - loads settings from file “defaultSettings.lpc”

• Close - closes the settings dialog and any changes made will be in
effect for the current session

 Connection settings
 When you invoke the dialog, the first tab panel is displayed. This panel is used to
establish connection options.

20 •• Using the Workbench JdbcStore: a JDBC persistence framework

 Connection Panel

 The selections on the panel are used as follows:

• Driver Name – specify a class name for the default JDBC driver (this
should include the package name)

• URL – specify the JDBC URL of your database

• Key - specify a connection properties key

• Value - specify a connection properties value

• Apply - after you have specified a connection properties key and
value, click on the Apply button to add them to the connection
information

• Remove - select a property from the Properties list and click on the
Remove button to delete the property key and value

 JDBC Connection properties are specific to each JDBC driver. Please consult
your JDBC driver documentation for details.

 Directories settings
 The Directories settings enable you to specify default directories for storing models.

JdbcStore: a JDBC persistence framework Using the Workbench •• 21

 Directories Settings

 Specify the default directory where your models will be saved.

 Class generation settings
 The Class generation settings allow you to specify default options for generating
Java classes.

 Class Generation settings

22 •• Using the Workbench JdbcStore: a JDBC persistence framework

 The settings are:

• Source directory path - the directory where generated Java files will
be stored

• Package name – the default package name that will be used (all
generated classes must be in a package)

• Template path - the directory where code generation templates are
located

• Generate persistent extension - if selected, the persistence code will
be generated

• Generated user classes - if selected, business object classes will be
generated

• Generate factory classes - if selected, factory classes will be
generated

 SQL generation settings
 The SQL generation settings specify default options for generating SQL Data
Definition Language (DDL) statements.

JdbcStore: a JDBC persistence framework Using the Workbench •• 23

 SQL Generation settings panel

 The default settings are:

• SQL default directory - the directory where SQL statement files will
be stored

• Generate Drop Table - if selected , Drop Table statements will be
generated

• Generate Create Table - if selected, Create Table statements will be
generated

• Define Primary KEY - if selected, Primary Key constraints will be
generated

• Define Foreign Key - if selected, Foreign Key constraints will be
generated key

• Define Unique Index - if selected, Create Unique Index statements
will be generated (on the primary key columns of the tables)

• SQL statement separator - the string used to separate SQL
statements (e.g. “;” , “go”)

• SQL statement prefix - the string used to prefix SQL statements (e.g.
DB2)

 Working with a model
 To:

• load an existing model, select Open from the Model menu

• to save a model, select Save from the Model menu

• to save a model with a different file name, select Save As from the
Model menu

 Defining types from a SQL schema
 One of the most common tasks faced by developers is to build an application for
which databases already exist or have been defined.

 To define a model based on a schema, you need to perform the following tasks:

• load the appropriate JDBC Driver

• connect to your database

• retrieve the SQL Catalog

• generate Object Types for the relevant tables

24 •• Using the Workbench JdbcStore: a JDBC persistence framework

 Loading a JDBC driver

 To load a driver, select JDBC driver from the JDBC Menu. The following dialog
will be displayed (values are retrieved from the default settings and can be
overridden here):

 Load driver dialog

 Specify the name of your JDBC driver and click on the Load button. A message
will be displayed to indicate whether the driver was loaded or not. After loading a
driver, you can close the dialog.

 Your CLASSPATH must include the directory in which the package for your
JDBC driver is located.

 Connecting to a database
 After you have loaded a driver, you can connect to a database. Select Connect from
the JDBC menu. The following dialog will be displayed:

 Connection dialog

JdbcStore: a JDBC persistence framework Using the Workbench •• 25

 The default values are selected from the workbench settings and can be overridden.
Click on the Connect button to connect to the URL. A message will be displayed to
indicate whether the connection was successful or not.

 After connecting, close the dialog.

 Closing the database connection
 The database connection will be closed automatically when you close the
workbench.

 If you want to disconnect before exiting the session, select Disconnect from the
JDBC menu.

 Retrieving SQL catalog information
 After Tables has been selected, the Tables Dialog is displayed. From this dialog,
you may obtain information from the catalog and generate Object types based on
table definitions in the open model.

 The catalog retrieval panel is where you specify conditions to filter the information
from the SQL catalog.

 Tables Dialog

 On this dialog you may specify:

• Catalog - a String specifying the database catalog. You may also
specify <null> or <empty string>

26 •• Using the Workbench JdbcStore: a JDBC persistence framework

• Schema Pattern String – usually the owner. You may also specify
<null> or <empty string>

• Table Name Pattern - a string pattern for the table name. You may
also specify <null> or <empty string>

• Table Type - select either Table,View or System Table

 Not all values may be supported. Some databases may require <empty string>
or <null> in some specific fields. You may have to experiment until you find a
valid combination of values.

 Click on the Execute button to fetch the catalog information.

 Displaying table information

 Select a table and a column to display the tabel and column information.

 Table information panel

JdbcStore: a JDBC persistence framework Using the Workbench •• 27

 Generating object types

 The Type Generation panel generates object types and adds them to the model.

 Type Generation panel

 Select one or more items from the Tables list and click on the Generate Types
button. The generated types will be added to the model.

 If a type with the same name already exists in the model, it will not be
replaced. To change an Object type, first remove it from the model and then
generate it again.

 Your model should now contain the types you have generated.

 Working with types
 The workbench main window displays a list of the types contained in your model.

 To:

• delete a type - select a type and click on the Delete button

• add a type - click on the Add button

• edit a type - select a type and double click on the selection

 There is no confirmation for deleting a type.

28 •• Using the Workbench JdbcStore: a JDBC persistence framework

 Workbench Main Window

 Adding a type
 After clicking on the Add button, a dialog will be displayed to enable you to enter
the name of the type. After the name is specified, the type can be edited.

 Add new type dialog

 Editing a type
 The type dialog enables you to specify a type’s Java attributes and JDBC mappings,
associations and caching strategy.

JdbcStore: a JDBC persistence framework Using the Workbench •• 29

 After double clicking on a type from the list, the Type Dialog is displayed. If you
have generated the type from a table or a Java class, most of its data will be filled in.
Otherwise, you will have to define it yourself.

 Editing class information
 The first panel display is the class information panel.

 Class information panel

 In this panel, you can change the default class name assigned by JdbcStore. The
fields are as follows:

• Class Name - the name of the user class

• Factory Class Name - the name of the factory associated with the user
class

• Persistent extension Class Name - the name of the persistent
extension class (a subclass of the user class)

 Editing an attribute
 The next panel is the Attributes panel. It allows you to define and edit attribute
information.

30 •• Using the Workbench JdbcStore: a JDBC persistence framework

 Attributes panel

 You must click on the Apply button for changes made to the attribute to be
applied. Otherwise the changes will be ignored.

 To modify or view an attribute, select it from the list. You can then specify or
change the following:

• Java Class - the Java class of the attribute. Arrays, wrapper and
primitive types are supported

 Unless you are using a Class for which you have no source, DO NOT USE
PRIMITIVE TYPES. Primitive Java data types cannot represent null values.
Therefore null in numeric fields will be converted to zero in primitive fields (on
a subsequent store of the object, zero will be stored as well).

• Java Getter - the name of the method to retrieve the field value

• Java Setter - the name of the method to set the field value

JdbcStore: a JDBC persistence framework Using the Workbench •• 31

 There must be a getter/setter pair for each persistent attribute. JdbcStore uses
these to keep track of whether an object has changed and set the values of
fields in your object.

• Key Attribute - if selected, this attribute is use to identify the object

• Updateable - if selected, this attribute can be modified

• Concurrency Field - if selected, this attribute is used for concurrency
control

 Only one attribute can be marked as a concurrency attribute. This attribute
must be a java.lang.Integer.

 The restrictions on the concurrency attribute were designed to ensure the
portability of the concurrency control mechanism across different databases

 Adding an attribute

 To add an attribute, click on the Add button. The following prompt will be
displayed to enter the attribute name:

 New attribute Name Dialog

 You can then edit the attribute.

 Deleting an attribute

 To delete an attribute, click on the Delete button.

 Defining the JDBC Mappings

 The JDBC Mappings panel allows you to define the mappings between the Object
type and a database table.

 If you have generated the type from a table, all of the information will be completed.
Otherwise, if you have generated a type from an existing class or defined one from
scratch, you will need to supply the information.

32 •• Using the Workbench JdbcStore: a JDBC persistence framework

 JDBC Mappings Panel

 The following information must be completed:

• Table Name - the name of the table

• Column Name - the name of the column in the table

• JDBC Type - the type of the column (this is restricted based on the
Java type of the attribute)

• Column Size - the size of the column

• Decimal digits - the number of decimal digits (for numeric types)

• Nullable - if selected, the column will accept null values

 Handling inheritance
 Although inheritance is not explicitly supported by the relational model, it is
possible to represent it using Type/Subtype relationships.

 JdbcStore enables you to define Type/Subtype relationships in your types and map
them to a Java hierarchy.

 The Inheritance panel is where you specify the inheritance hierarchy.

JdbcStore: a JDBC persistence framework Using the Workbench •• 33

 Inheritance Panel

 The following information must be specified:

• has Supertype - select it if the Object type is a subtype (the generated
class for this type will be inherited from its parent)

• Supertype - select the name of the Supertype

• Discriminant value - this must be a String and is the value of the
discriminant attribute (in the parent type) that identifies the instance
as a specific subtype (e.g. “E” for employee, “C” for customer).

• Supertype attributes stored in the same table - select it if the
attributes of the parent will be stored in the subtype table.

• Supertype cascades deletes - select it if Cascade Delete is
implemented by the supertype table.

• Discriminant Attribute - specify the attribute, if any, that is used to
identify the subtypes of the Object type (specified in the Supertype).

34 •• Using the Workbench JdbcStore: a JDBC persistence framework

 Single table implementation

 If you want to implement a single table containing the attributes of the Supertype
and all of its subtypes, do the following:

• define the Supertype mapped to the appropriate table. Its attributes
should only contain the Supertype attributes (if you have generated
the type from the table, you will need to remove attributes).

• define the subtypes. Each subtype will be mapped to the same table as
the supertype. Add the required attributes (applicable only to the
subtype).

 The Supertype should implement an attribute to discriminate between the
subtypes. Otherwise, the framework cannot recognize the different subtypes
(since they are implemented by the same table).

 Defining keys
 The keys panel enables you to specify the table and object type keys as well as
options for the generation of keys.

 The keys defined in an object type are used to uniquely identify an instance. They
may or may not correspond to the primary keys of the table. However, the
combination of values must be unique in the database.

JdbcStore: a JDBC persistence framework Using the Workbench •• 35

 Keys Panel

 The key attributes are displayed on the right. Use the arrow buttons to add or
remove attributes from the key.

 The following key generation options are supported:

• No key generation - your application is responsible for supplying
unique key values

• Broker Generated - the framework will generate the key. This key is
generated by using a MAX function on the generated attribute (double
click on a key attribute to select it). The ‘where’ clause of the select
MAX statement is the remaining key attribute.

 The Database Generated button is only enabled for single attribute keys.

 Defining relationships
 The Relationship panel enables you to define relationships between types.

36 •• Using the Workbench JdbcStore: a JDBC persistence framework

 Relationships panel

• To add a uni-directional relationship, select an available type and click
on the Add Uni rel. button.

• To add a bi-directional relationship, select an available type and click
on the Add Bi-direct rel. button

• To remove a relationship, select a relationship and click on the
Remove Uni rel. or the Remove Bi rel. button.

 If Remove Uni rel. is used against a bi-directional relationship, only the side of
the relationship from the type being edited is removed. Therefore, the other
side of the relationship is maintained. If Remove Bi rel. is selected, both sides
of the relationship are removed.

 For uni-directional relationships, clicking on any of the Remove buttons will
delete the relationship.

JdbcStore: a JDBC persistence framework Using the Workbench •• 37

 Editing a relationship

 You must also define the cardinality and the attributes participating in the
relationship. Double click on a relationship to edit it.

 The Edit Relationship panel is where you further specify the relationship attributes.

 Edit Relationship dialog

 In this dialog you specify the following information:

• controlling type – click on the controls key button under the type that
will control the keys of the relationship. In the sample screen, any
time a sales order is added to a customer, the sales order attribute
referring to the customer will be set from the value of the customer key
(since the customer type controls the key).

• cardinality - select one-to-one or one-to-many

• implementation - select the implementation box if it is a bi-directional
relationship (the value will have to be set based on whether Add Uni
rel. or Add Bi-direct rel. was selected.

• attributes - to map the relationship attributes, select an attribute from
each combination box and click on the Add Mapping button. Multiple
attributes may be mapped in a relationship.

38 •• Using the Workbench JdbcStore: a JDBC persistence framework

• To unmap attributes, select the mapping and click on the Remove
Mapping button.

 Defining cataloged SQL statements
 The Cataloged SQL statements panel is where you can specify cataloged (or
Loading) SQL statements.

 Cataloged SQL panel

 Adding a statement

 To add a statement, type in the name of the statement in the Name field and click
on the Add button.

 Removing a statement

 To remove a statement, select a statement in the list and click on the Delete button.

 Editing a statement

 To add or edit the SQL associated with a statement, type or modify the text in the
bottom text area and click on the Apply button.

 To undo the changes click on the Cancel button.

JdbcStore: a JDBC persistence framework Using the Workbench •• 39

 You must click on the Apply button after modifying the SQL text.

 You can use parameter markers in your SQL statements. You would then
supply the parameter values at runtime.

 Choosing a caching strategy
 You can define a caching strategy for each type. This is done in the Caching panel.

 Caching panel

 Click on the appropriate button to select a caching strategy for the object type.

 You can modify the caching strategy at runtime.

 If the runtime Java VM is not Sun’s JVM, types using dynamic caching will not
use a cache.

40 •• Using the Workbench JdbcStore: a JDBC persistence framework

 Generating classes
 Once you have defined some types in your model, you can generate Java sourvce
code for your persistent classes.

 To do so, select Classes from the Code Generation menu.

 The following dialog will be displayed:

 Class Generation dialog

 The fields on the dialog should be filled as follows:

• Directory Path - the directory where all the generated source files for
the classes will be stored

• Package Name - the name of the package for the generated classes

• generate user classes - select this if you want to generate your business
classes (generally, the only time you will not want to generate them is
when you generate a type from an existing class)

• generate persistent extensions - select this if you want to generate
persistent extensions for the business classes (this should always be
selected)

• generate factory classes - select this if you want factories for your
classes (this should always be selected)

JdbcStore: a JDBC persistence framework Using the Workbench •• 41

• generate Bean Info - select this if you want to generate Beans for the
persistent classes

 Select the types for which you want to generate classes and click on the Generate
Classes button. Check the Java console for messages.

 A package name must always be specified for the generated classes. If you
have generated types from existing classes, use the package name of these
classes.

 Generating SQL
 If you have created types from scratch or generated them from classes, you can
generate SQL to create tables.

 The SQL generation is accessed by selecting SQL DDL statements from the Code
Generation menu.

 SQL DDL statements is only enabled after you connect to a JDBC data source
(it requires access to the data source to obtain information about SQL type
names, etc.)

 The following dialog will be displayed.

 SQL DDL Generation dialog

42 •• Using the Workbench JdbcStore: a JDBC persistence framework

 In this dialog you can specify:

• file name: the name of the file where the SQL will be stored (click on
the Save As button to display a File Dialog)

• generate DROP TABLE - if selected, DROP TABLE statements will
be generated

• generate CREATE TABLE - if selected, CREATE TABLE statements
will be generated

• define PRIMARY KEY - if selected, PRIMARY KEY constraints will
be generated

• define FOREIGN KEY - if selected, FOREIGN KEY constraints will
be generated

• define UNIQUE INDEX on primary key - if selected, CREATE
UNIQUE INDEX statements will be generated (on the primary key
columns of the tables)

• SQL statement separator - the string used to separate SQL statements
(e.g. “;” , “go”)

• SQL statement prefix - the string used to prefix SQL statements (e.g.
DB2)

 Select the types for which you want to generate table definitions and click on the
Generate DDL button. You can then review and edit the generated SQL file and
submit the SQL to your database.

 Because of database peculiarities, you may have to modify the generated SQL
for your database.

 Working with existing classes
 JdbcStore can generate types from existing Java classes. You use the Class Loader
dialog to load existing classes. It is accessible by selecting Class Loader from the
Java classes menu.

 After selecting Class Loader, the following dialog will be displayed:

JdbcStore: a JDBC persistence framework Using the Workbench •• 43

 Class Loader dialog

• To load classes, click on the Load Classes from Directory button. A file dialog
will be displayed. Select a file and click on the OK button. All of the Class
files from the directory will be loaded.

 You must select a file from the directory. This will load all of the classes from
the directory.

• To generate a type and add it to the model, select a class and click on the Add
To Model button

• To remove a type just added to the model, select the type and click on the
Remove button

• To define the fields, setters and getters that the type should contain, select a
type and click on the Edit Attributes button

 If a type with the name of the class already exists in the model, you must first
remove it before regenerating the type from the class.

 Defining attributes
 After clicking on the Edit Attributes button, the following dialog will be displayed:

44 •• Using the Workbench JdbcStore: a JDBC persistence framework

 Edit Attributes Dialog

• to add an attribute to the type, select a field, a getter, a setter and click on the
Add Attribute to type button

• to remove an attribute, select it and click on the Remove Attribute button

In the current version, only fields with getters and setters can be made
persistent. The next version of JdbcStore will remove the restriction to allow
all public and protected fields to be made persistent.

Obtaining version information
The About selection of the Help menu displays an information dialog. Please
report the version information when contacting LPC Consulting Services, Inc.

JdbcStore: a JDBC persistence framework Using the Workbench •• 45

About Dialog

46 •• Basic Programming JdbcStore: a JDBC persistence framework

Basic Programming

Overview
To write a JdbcStore application, you need to complete the following steps:

• load the appropriate JDBC driver

• load the model containing the Java to JDBC mappings for your application

• create and connect a broker to the JDBC URL

• manipulate your persistent objects

• close the connection to the broker

Using the LPCSqlDriver
The LPCSqlDriver class encapsulates the JDBC Driver class.

Loading a driver
Before you can connect to a database, you must load the appropriate JDBC driver
class.

The following example shows how to load a driver:

System.out.println("Loading dbAnywhere driver");
try {

LPCSqlDriver.loadDriver("symantec.itools.db.jdbc.Driver”);
} catch (Exception e) {

System.out.println("*** Class not loaded - " + e.getMessage());
}

Getting a list of loaded drivers
The LPCSystem static method drivers() returns a vector of loaded (i.e. registered)
java.sql.Driver instances.

JdbcStore: a JDBC persistence framework Basic Programming •• 47

To display a list of all the registered driver names, you can use:

Vector drivers = LPCSqlDriver.drivers();
System.out.println("Registered JDBC drivers");
for (int i = 0 ; i < drivers.size() ; i++) {

 System.out.println(drivers.elementAt(i).getClass().getName());
}

Displaying driver information
You can obtain version and JDBC compliance information from a driver.

The following is how you would display the version and JDBC compliance of the
driver you are using:

static LPCSqlDriver driver ;
static String driverName = "symantec.itools.db.jdbc.Driver";
…
driver = LPCSqlDriver.loadDriver(driverName);

// Display the driver info
System.out.println("Info for:" + driverName);
System.out.println("Major Version: " + driver.majorVersion());
System.out.println("Minor Version: " + driver.minorVersion());
System.out.println("JDBC Compliant?: " + driver.jdbcCompliant());

Working with models
Your model contains all of the mapping information (including relationships)
between your Java classes and your database schema.

You must always load your model in your JdbcStore application.

You load your model either from a file or an URL.

If you are using Java Beans, you can use the model directly as a Bean, since
models are stored as serialized instances of LPCModel .

Loading from a file
To load your model from a file use the LPCSystem static method
loadModelFromFile(String fileName).

The following example shows how to load a model from a file:

48 •• Basic Programming JdbcStore: a JDBC persistence framework

 // Load the model
 static String fileName =

"\\Development\\com\\lpc\\jdbcstore\\models\\SampleModel.ser";

try {
 LPCSystem.loadModelFromFile(fileName);
 System.out.println("Model loaded");
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("Error loading model: " + e.getMessage());
 }

Loading from an URL
To load your model from a file, use the LPCSystem static method
loadModelFromURL(URL url).

The following example shows how to load a model from an URL:

try {
 url = new URL (

"file:///e:/Development/com/lpc/jdbcstore/models/SampleModel.ser");

 LPCSystem.loadModelFromURL(url);
 System.out.println("Model loaded");
} catch (Exception e) {
 e.printStackTrace();
 System.out.println("Error loading model: " + e.getMessage());
}

Using a LPCSqlOrb
The broker is the class that allows you to interface to a JDBC compliant data base.

To create a broker, you need to create a new instance, as in the following:

 broker = new LPCSqlOrb();

Connecting a broker directly
To connect to a JDBC compliant database, you need to supply some information
such as URL, userid and password. In addition, there may be other information
required by the JDBC driver.

In JdbcStore, all of this information is encapsulated by a LPCConnectionInfo
instance. When the driver you are using requires standard information, you may
use the LPCBroker directly to specify the information.

The following example shows how to connect a broker:

JdbcStore: a JDBC persistence framework Basic Programming •• 49

static public String url =

"jdbc:dbaw://localhost:8889/Watcom/SQL Anywhere 5.0 Sample/SQL
Anywhere 5.0 Sample";

static public LPCSqlOrb broker;
System.out.println("Connecting the broker");

try {
broker = new LPCSqlOrb();
broker.setUrl(url);
broker.setUser("dba");
broker.setPassword("sql");
broker.connect();

} catch (Exception e) {
 System.out.println("Broker not connected - " + e.getMessage());
}

Connecting a broker using LPCConnectionInfo
If you need to supply more information than an URL, userid and password, use a
LPCConnectionInfo to supply the connection keys and values.

The following example shows how to use the LPCConnectionInfo:

static public String url =
"jdbc:dbaw://localhost:8889/Watcom/SQL Anywhere 5.0 Sample/SQL

Anywhere 5.0 Sample";

static public String user = "dba";
static public String password = "sql";
static public LPCSqlOrb broker;

System.out.println("Connecting the broker");
try {

 LPCConnectionInfo connectionInfo = new LPCConnectionInfo();
 connectionInfo.url(url);
 connectionInfo.property("user",user);

 connectionInfo.property("password",password);

 broker = new LPCSqlOrb();
 broker.setConnectionInfo(connectionInfo);
 broker.connect();

} catch (Exception e) {
 System.out.println("Broker not connected - " + e.getMessage());
}

Disconnecting a broker
You should disconnect the broker before exiting your application. The following
example shows how to disconnect a broker:

// disconnect the broker
System.out.println("Disconnecting the broker");
try {
 broker.close();
} catch (Exception e) {
 System.out.println("Broker disconnect error - " + e.getMessage());
}

50 •• Basic Programming JdbcStore: a JDBC persistence framework

Transaction control
In the JDBC API, transaction control is handled by a java.sql.Connection. In
JdbcStore, it is the responsibility of the LPCSqlBroker.

Turning autocommit on/off
To turn autocommit on or off, use setAutoCommit:

// turn auto commit off
System.out.println("turn auto commit off");
try {
 broker.setAutoCommit(false);
} catch (Exception e) {
 System.out.println("Broker auto commit error - " + e.getMessage());
}

Autocommit should always be turned off when updating databases through
JdbcStore.

Commiting transactions
Use commit to commit a transaction:

// commit work
System.out.println("committing transaction");
try {
 broker.commit();
} catch (Exception e) {
 System.out.println("commit error - " + e.getMessage());
}

Rolling back transactions
Use rollback to rollback a transaction:

// commit work
System.out.println("committing transaction");
try {
 broker.rollback();
} catch (Exception e) {
 System.out.println("rollback error - " + e.getMessage());
}

Working with factories
Factories are generated JdbcStore classes that allow you to create new instances of
your persistent Java classes and to fetch existing ones from your JDBC compliant
databases.

A factory is created for every object type defined in your model.

JdbcStore: a JDBC persistence framework Basic Programming •• 51

Creating factories
To create a factory, create a new instance and associate the newly created factory
with a broker:

System.out.println("Creating the factory");
customerFactory = new CustomerFactory();
customerFactory.broker(broker);

Before attempting to store or fetch objects through a factory, it must be
associated with a broker.

Creating new persistent instances
To create a new persistent instance, you use the factory method newInstance. This
will create an instance of the persistent extension and will mark it as new.
Therefore when the new instance executes store, a new row will be inserted in the
database.

The following example shows the creation of a new instance and its insertion in the
database:

System.out.println("Creating customer");
try {

lpcCustomer c = customerFactory.newInstance(new Object[0]);
 c.setLname("Charpentier");
 c.setCity("Don Mills");
 c.setId(new Integer(9001));
 c.setCompanyName("LPC Consulting Services, Inc.");
 c.setPhone("(416)510-2015");
 c.setFname("Luc");
 c.setZip("M3A 1N1");
 c.setAddress("7 Geraldine Ct");
 c.setState("ON");
 c.store();
} catch (Exception e) {
 e.printStackTrace();

ystem.out.println("Factory creation error - " + e.getMessage());
}

The newInstance method takes an array of objects (Object []) as an argument. You
should supply the arguments required by your class constructor or an empty array
for a no-argument constructor.

Note that you can use your Java class (e.g. Customer) instead of its persistent
extension. In this case, you must type cast the instance back to its persistent
extension (e.g. lpcCustomer) before using any of the methods defined in the
LPCPersistent interface.

Fetching objects
Factory instances implement the fetching protocol in JdbcStore. This protocol
offers a rich set of options that will meet most of your requirements for retrieving
objects from your database.

52 •• Basic Programming JdbcStore: a JDBC persistence framework

In addition, you can use arbitrary SQL statements for retrieving objects. This
allows you not only to fetch using SQL features not explicitly supported by the
factory protocol (e.g. correlated subqueries, joins, etc.) but also to instantiate related
objects immediately.

All fetch methods return a vector of instances.

Fetching all instances
To fetch all instances of a class from a database, use fetchAll.

In the following example, we fetch all of the customers and display their ID, first
name and last name:

System.out.println("Creating the factory");
customerFactory = new CustomerFactory();
customerFactory.broker(broker);

System.out.println("Fetching all the rows");
try {
 lpcCustomer e;
 Vector v = customerFactory.fetchAll();
 for (int i=0; i < v.size(); i++) {
 e = (lpcCustomer) v.elementAt(i);
 System.out.println(

e.getId() + " " + e.getLname() + " " + e.getFname());
 }
} catch (Exception e) {
 e.printStackTrace();

System.out.println("Broker fetch error - " + e.getMessage());
}

Since the fetchAll method returns a vector of object, you must cast each object
to the appropriate persistent type.

Fetching by key
All persistent instances must be uniquely identified by a key. This is required to
guarantee the uniqueness of the stored instances in the database as well as the
maintenance of relationships.

This key can be generated automatically by the database (e.g counter, sequences or
identity), by JdbcStore or assigned by the application.

The fetchForKey method returns an instance of a persistent object.

In the following example we fetch a customer (the key is the ID):

JdbcStore: a JDBC persistence framework Basic Programming •• 53

System.out.println("Fetching...");
try {

lpcCustomer e;
Object[] key = new Object[1];
key[0] = new Integer(101);

 e = (lpcCustomer) customerFactory.fetchForKey(key);
 System.out.println(

e.getId() + " " + e.getLname() + " " + e.getFname());
} catch (Exception e) {
 e.printStackTrace();

System.out.println("Broker fetch error - " + e.getMessage());
}

The argument of the fetchForKey method is an array of objects (Object[]). In this
array you should store the key value(s).

Since the fetchForKey method returns an object (Object), you must cast the
object to the appropriate persistent type.

If caching is turned on for the type, fetchForKey will first check the cache. If a
matching instance is found, then it will return the cached instance.

Fetching using arbitrary search values (=)
When you want to fetch instances using equality on arbitrary fields use
fetchAllUsingAttributesValues.

This method requires two arguments:

• an array of attribute names (String [])

• an array of attribute values (Object [])

 The instances having matching values (using equality) will be returned.

 In the following example, we fetch all customers residing in California:

 System.out.println("Fetching...");
 try {
 lpcCustomer e;
 String attribs[] = { "State" };
 Object values[] = new Object[1];
 values[0] = "CA";
 Vector v =
 customerFactory.fetchAllUsingAttributesValues(attribs, values);

 for (int i=0; i < v.size(); i++) {
 e = (lpcCustomer) v.elementAt(i);
 System.out.println(
 e.getId() + " " + e.getLname() + " " + e.getFname());
 }
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("Broker fetch error - " + e.getMessage());
 }

 Ordering result sets
 If you want to order the results, use fetchAllUsingAttributesValuesOrderBy.

 In addition to the array of attribute names and values, the third argument specifies
the attributes that will be used to sort the result set.

54 •• Basic Programming JdbcStore: a JDBC persistence framework

 Therefore, the method takes three arguments:

• an array of attribute names (String [])

• an array of attribute values (Object [])

• an array of {attribute name, sorting order (“asc” or “desc”)} for
sorting (String [] [])

 In the following examples, the returned vector of customers will be ordered by the
attributes Fname and description:

 System.out.println("Fetching...");
 try {
 lpcCustomer e;
 String attribs[] = { "State" };
 Object values[] = new Object[1];
 values[0] = "CA";
 String orderBy[][] = { {"Fname", "desc" } };
 Vector v = customerFactory.fetchAllUsingAttributesValuesOrderBy(
 attribs, values,orderBy);

 for (int i=0; i < v.size(); i++) {
 e = (lpcCustomer) v.elementAt(i);
 System.out.println(
 e.getId() + " " + e.getFname() + " " + e.getLname());
 }
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("Broker fetch error - " + e.getMessage());
 }

 Fetching using arbitrary operators
 If you need to fetch instances using an operator other than equality, use
fetchAllUsingAttributesValuesOperatorsOrderBy.

 This method requires four arguments:

• an array of attribute names (String [])

• an array of attribute values (Object [])

• an array of operators (String [])

• an array of {attribute name, sorting order (“asc” or “desc”)} for
sorting (String [] [])

 In the following example, we fetch all customers whose first name begins with A
and whose ID > 102 (the results are ordered by first name):

JdbcStore: a JDBC persistence framework Basic Programming •• 55

 System.out.println("Fetching...");
 try {
 lpcCustomer e;
 String attribs[] = { "Fname", "Id" };
 Object values[] = new Object[2];
 values[0] = "A%";
 values[1] = new Integer(102);
 String operators[] = { "like", ">" };
 String orderBy[][] = { {"Fname", "asc" } };
 Vector v =

customerFactory.fetchAllUsingAttributesValuesOperatorsOrderBy(
 attribs, values, operators, orderBy);

 for (int i=0; i < v.size(); i++) {
 e = (lpcCustomer) v.elementAt(i);
 System.out.println(
 e.getId() + " " + e.getFname() + " " + e.getLname());
 }
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("Broker fetch error - " + e.getMessage());
 }

 Fetching using SQL queries
 JdbcStore includes a facility (called the row broker) to handle fetches using arbitrary
SQL queries. There are three main reasons you may want to use this facility:

• using complex selection criteria not handled by the fetch methods (e.g.
correlated and nested subqueries, etc.)

• immediate instantiations of object and their associations by using join
queries

• performance

 When you use joins in arbitrary SQL queries, JdbcStore will instantiate the main
objects of the query as well as any associated mapped objects retrieved by the query.
For example, if you need to get sales orders as well as their sales order items (let’s
say for a report) it is much more efficient to use a join query. If you do not use one,
then for each sales order JdbcStore will issue a query when accessing its sales order
items. When using the join query, one call to the dabase is required to fetch both
sales orders and their associated items.

 Arbitrary SQL queries can either be submitted through a string in the application or
statements can be defined at design time in the workbench (cataloged SQL).

 Just like the fetch method, a factory implements the fetching using abritrary SQL
statements. In addition, JdbcStore requires you to specify three items:

• the SQL query

• the parameter values (use ? in the SQL statement as place holder for a
parameter)

• the related types which the query should instantiate

 Using AdHoc SQL
 To execute an Adhoc SQL statement, use the factory method fetchUsingSql.

 The following example fetches and displays sales orders and their order items:

 First we create the factories

56 •• Basic Programming JdbcStore: a JDBC persistence framework

 System.out.println("Creating the factory");
 SalesOrderFactory salesOrderFactory = new SalesOrderFactory();
 salesOrderFactory.broker(broker);
 SalesOrderItemsFactory salesOrderItemsFactory = new
SalesOrderItemsFactory();
 salesOrderItemsFactory.broker(broker);

 Then we define the related object types. In this case
the main object type is SalesOrder. We will then
invoke fetch on its factory. The related object types
consist of the SalesOrderItems.

 LPCObjectType[] relatedTypes = new LPCObjectType[1];
 relatedTypes[0] = salesOrderItemsFactory.baseType();

 We then invoke fetchUsingSql. Since the query has no
parameters, we pass the empty array values for
parameter values.

 lpcSalesOrder order;
 lpcSalesOrderItems item;
 Vector items;
 Object[] values = new Object[0];
 Vector result;
 result = salesOrderFactory.fetchUsingSql(sql, values, relatedTypes);

 System.out.println("number of orders: " + result.size());

 Now JdbcStore has instantiated both the SalesOrder and
the SalesOrderItems. No further calls to the database
are required from this point on.

 for(int i=0;i<result.size();i++) {
 order = (lpcSalesOrder)result.elementAt(i);
 System.out.println(
 "id: " + order.getId() + " region: " + order.getRegion());
 items = order.getSalesOrderItemss();
 for(int j=0;j<items.size();j++) {
 item = (lpcSalesOrderItems)items.elementAt(j);
 System.out.println(
 " id: " + item.getLineId() + " product: "
 + item.getProdId());
 }
 }

 Using persistent instances (LPCPersistence protocol)

 Updating and inserting new instances
 Persistent objects know whether they have been modified or created. To store an
object, you need to store it. If the object has been modified or created, the
appropriate calls will be issued to update the database.

 In the following example, we create and store a customer:

JdbcStore: a JDBC persistence framework Basic Programming •• 57

 lpcCustomer c = customerFactory.newInstance(new Object[0]);
 c.setLname("Charpentier");
 c.setCity("Don Mills");
 c.setId(new Integer(9001));
 c.setCompanyName("LPC Consulting Services, Inc.");
 c.setPhone("(416)510-2015");
 c.setFname("Luc");
 c.setZip("M3A 1N1");
 c.setAddress("7 Geraldine Ct");
 c.setState("ON");

 // store
 c.store();

 In this example we update all the sales orders.
 Vector si = s.getSalesOrderItemss();
 for (int k = 0; k < si.size() ; k++) {
 lpcSalesOrderItems oi = (lpcSalesOrderItems) si.elementAt(k);

 // update quantity
 oi.setQuantity(new Integer(oi.getQuantity().intValue() + k));

 // store
 oi.store();
 }

 Deleting instances
 Deleting persistent instances is almost as simple as updating or inserting. Since the
framework cannot get the objects that should be deleted, first mark them for
deletion using the markDeleted method.

 The following example illustrates deletions. We remove the customer and the sales
orders created in the previous example:

 System.out.println("Creating the factory");
 customerFactory = new CustomerFactory();
 customerFactory.broker(broker);
 lpcCustomer c;

 System.out.println("Fetching...");
 try {
 Object[] key = new Object[1];
 key[0] = new Integer(9001);
 c = (lpcCustomer) customerFactory.fetchForKey(key);
 System.out.println("to be deleted: " + c.getId() + " " +

c.getLname() + " " + c.getFname());
 c.markDeleted();

 // get the sales orders
 Vector salesOrders = c.getSalesOrders();
 for (int i = 0 ; i < salesOrders.size() ; i++) {
 lpcSalesOrder s = (lpcSalesOrder) salesOrders.elementAt(i);
 s.markDeleted();
 s.store();
 }

 c.store();
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("Broker fetch/store error - " + e.getMessage());
 }

58 •• Basic Programming JdbcStore: a JDBC persistence framework

 Working with relationships
 When you define a model, you define the relationships between your objects. These
relationships may be defined as one-to-one or one-to-many and may be
implemented by uni-directional or bi-directional links.

 In our sample database, we have customers who have one or model sales orders.
Each sales order is associated with only one customer. In turn, a sales order has
zero or more sales order items. Each sales order item is associated with one
product.

 Fetching related objects
 To fetch related objects, you need to use the accessor provided for the relationship.
This generated accessor is named as follows:

• getClassName - for one-to-one relationships where ClassName is the
name of the class for the associated object

• getClassNames - for one-to-many relationship (plural form of the one-
to-one relationship)

 One-to-many relationships return a vector; one-to-one relationships return an
object.

 In the following example we display all of the customers, their sales orders with
sales order items and the product description.

 The relationships are accessed using:

• getSalesOrders(): returns a vector of sales orders

• getSalesOrderItems: returns a vector of sales order items

• getProduct(): returns a product

JdbcStore: a JDBC persistence framework Basic Programming •• 59

 System.out.println("Fetching all the rows");
 try {
 lpcCustomer e;
 Vector v = customerFactory.fetchAll();

 // for each customer
 for (int i=0; i < v.size(); i++) {
 e = (lpcCustomer) v.elementAt(i);
 Vector so = e.getSalesOrders()();
 System.out.println(e.getLname()+","+e.getFname());

 // for each sales order
 for (int j=0; j < so.size() ; j++) {
 lpcSalesOrder s = (lpcSalesOrder) so.elementAt(j);
 System.out.println(
 “\t"+ s.getId() + " " + s.getOrderDate());
 Vector si = s.getSalesOrderItemss;

 // for each sales order item
 for (int k = 0; k < si.size() ; k++) {
 lpcSalesOrderItems oi =
 (lpcSalesOrderItems) si.elementAt(k);

 System.out.println(
 "\t\t" + oi.getProduct().getDescription()
 + " " + oi.getQuantity());
 }
 }
 System.out.println();
 }
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("Broker fetch error - " + e.getMessage());
 }

 That’s all there is to it. You need to use the relationship accessor to fetch related
objects. If the relationship has already been instantiated, the objects are returned.
Otherwise, they are fetched from the database and then returned.

 Adding a relationship instance (one-to-many)
 JdbcStore creates methods to add and remove new instances of a relationship.
These medhods are generated in the extension class.

 To add an instance of a one-to-many relationship, use addClassName where
ClassName is the name of the class (e.g. the many side of the relationship).

 In the following example, we add a sales order to our newly created customer.

 lpcCustomer c
 …
 …
 // creating sales order
 lpcSalesOrder s = salesOrderFactory.newInstance(new Object[0]);

 // add it to the customer
 c.addSalesOrder(s);

 s.setCustId(c.getId());
 s.setId(new Integer(1));
 s.setOrderDate(new java.sql.Date(System.currentTimeMillis()));
 s.setFinCodeId("r1");
 s.setRegion("Central");
 s.setSalesRep(new Integer(195));
 s.store();

60 •• Basic Programming JdbcStore: a JDBC persistence framework

 Removing a relationship instance (one-to-many)
 The generated method to remove a relationship instance is removeClassName
where className is the name of the related class (e.g. the many side of the
relationship).

 In the following example, we remove the relationship we added in the previous
example:

 c = (lpcCustomer) customerFactory.fetchForKey(key);
 Vector salesOrders = c.getSalesOrders();
 for (int i = 0 ; i < salesOrders.size() ; i++) {
 lpcSalesOrder s = (lpcSalesOrder) salesOrders.elementAt(i);
 if (s.getId().equals(new Integer(1))) {
 // remove from relationship and delete
 c.removeSalesOrder(s);
 s.markDeleted();
 s.store();
 }
 }

 Note that removing a relationship instance and storing the object from which
the instance was removed, DOES NOT STORE (AND DELETE) the removed
object. You must explicitly invoke store on the removed object to remove it
from the database

 Adding/Setting a relationship instance (one-to-one)
 To add an instance of a one-to-one relationship, use setClassName where
ClassName is the name of the other class involved in the relationship.

 In the following example, we add the product to a sales order item:

 lpcSalesOrderItems i = salesOrderItemsFactory.newInstance(
new Object[0]);

 i.setProdId(new Integer(300));
 Object[] o = new Object[1];
 o[0] = new Integer(300);
 // fetch and set the product
 lpcProduct p = (lpcProduct) productFactory.fetchForKey(o);
 i.setProduct(p);
 i.store();

 Removing a relationship instance (one-to-one)
 To remove an instance of a one-to-one relationship, just invoke the setter with no
arguments.

 Vector salesOrderItems = s.getSalesOrderItemss();
 for (int j = 0 ; j < salesOrderItems.size() ; j++) {
 lpcSalesOrderItems soi = (lpcSalesOrderItems)

salesOrderItems.elementAt(j);
 // remove product relationship
 soi.setProduct();
 soi.setProdId(null);
 soi.markDeleted();
 soi.store();
 }

JdbcStore: a JDBC persistence framework Basic Programming •• 61

 Caching

 Caching overview
 JdbcStore allows you to cache your objects in caches. There are two main reasons to
use the cache:

• performance
retrieval by key will first check whether the object is in the cache. If
so it will be retrieved from the cache and no calls will be issued to the
database. If not the object will be fetched from the database and
cached.

• managing instances
when you do not use a cache, two retrievals of the same objects will
produce two (different) instances (i.e. you will end up with two objects,
whose attribute values are equal). In this case, you are responsible for
managing these duplicate instances.
When using the cache for any retrieval, JdbcStore will check if the
object is already present in the cache (for non-key retrieval, this occurs
after the fetch). If the object is already in the cache, the cached object
is substituted in the result vector. Therefore, you will always have one
single instance of an object in your application.

 JdbcStore supports both a permanent and a dynamic cache:

• permanent cache
the static cache is implemented using a hash table. Therefore, after an
object is cached, it will not be garbage collected until the cache is
flushed.
This type of cache is appropriate for small sets of non-volatile objects.

• dynamic cache
the dynamic cache is implemented using Sun’s VM extensions (i.e.
sun.misc.Cache). If you have specified this cache and it is available in
the runtime environment of your application, then it is used.
Otherwise, no cache is used.
When you use this cache, unreferenced cached objects will be garbage
collected as needed by the Java VM.

 You can detect whether dynamic caching is supported at runtime. If it is not
supported, you may set the cache type of the objects to a static cache instead of
a dynamic cache. If you do so remember to flush the cache periodically.

 Caching and cache options are defined for each object type in your model. You
could therefore create an application using a static cache for small static sets of
objects, dynamic caching for your business objects, and no caching for descriptive
objects.

 Dynamic cache availability
 There are three constants defined in LPCCache. These can be used to set the type
of cache used by an object type.

62 •• Basic Programming JdbcStore: a JDBC persistence framework

• NULL_CACHE - no caching

• DYNAMIC_CACHE - cache using sun.misc.Cache

• PERMANENT_CACHE - cache using a hashtable

 You can check whether DYNAMIC_CACHING is available by invoking
LPCSystem.sunCacheAvailable().

 The following example checks the dynamic cache availability and sets the
appropriate caching for the Customer object type:

 customerFactory = new CustomerFactory();
 customerFactory.broker(broker);

 // check if Dynamic caching is available
 if (LPCSystem.sunCacheAvailable()) {
 System.out.println("Dynamic caching is available");

customerFactory.baseType().cacheType(LPCCache.DYNAMIC_CACHE);
 } else {
 System.out.println("Dynamic caching is not available");

customerFactory.baseType().cacheType(LPCCache.PERMANENT_CACHE);
 }

 Displaying cache statistics
 You can obtain the number of cache hits and misses from the object type.

 The following example displays the cache hits and misses for the customer type.

 // Display cache hits and misses
 System.out.println("Before flush - Cache hits: " +

customerFactory.baseType().cache().cacheHits());
 System.out.println("Before flush - Cache misses: " +

customerFactory.baseType().cache().cacheMisses());

 Flushing the cache
 You can empty the cache by using flush().

 // flush the cache
 customerFactory.baseType().cache().flush();

JdbcStore: a JDBC persistence framework Basic Programming •• 63

 When you flush the cache, non-referenced instances will be candidates for
garbage collection. However, referenced instances will be removed from the
cache but will not be candidates for garbage collection. When using a
permanent cache, you should ensure that no references point to any persistent
cached objects in a cache before flushing it.

 There is no need to flush the dynamic cache.

JdbcStore: a JDBC persistence framework Beans •• 65

 Beans

 JdbcStore Beans
 JdbcStore supplies the following BeanInfo classes

• LPCFactoryBeanInfo - a BeanInfo class used by all of the generated
factories

• LPCSqlOrbBeanInfo: a BeanInfo class for the LPCSqlOrb class.

 JdbcStore also generates BeanInfo classes for all of the generated factories (if
selected in the workbench).

 Java Beans support will be refined in future versions of the product.

JdbcStore: a JDBC persistence framework Advanced Programming •• 67

 Advanced Programming

 Accessing JDBC connection information
 A java.sql.Connection provides a number of methods to access information
regarding a JDBC connection. Information can be obtained either directly through
the java.sql.Connection (e.g. getTransactionIsolation, getCatalog, etc.) or through a
java.sql.DatabaseMetadata obtained through getMetaData.

 The LPCSqlConnection class encapsulates the java.sql.Connection class.

 Use the accessor connection to access the instance of LPCSqlConnection associated
with a broker.

 Use the LPCSqlConnection method getMetaData() to obtain an instance of
DatabaseMetaData (see the JDBC API documentation for its protocol).

 Using model and type meta-data
 The JdbcStore model and type protocols allow you to access all of the mapping
information at runtime. You can use this information to develop generic code to
handle any type and its relationships.

 The SampleApplication uses this information to display any type, its relationships
and handle the creation, deletion and modification of persistent objects.

 Retrieving types
 To retrieve the type names contained in a model, you can use the model method
typeNames().

 String[] typeNames = model.typeNames();
 for (int i= 0 ; i < typeNames.length; i++) {
 typeList.addItem(typeNames[i]);
 }

 Once you have the name of the type, you can use the method typeNamed to obtain
the instance of the LPCObjectType.

 LPCObjectType o = model.typeNamed(typeList.getSelectedItem());

68 •• Advanced Programming JdbcStore: a JDBC persistence framework

 Getting type information
 From a type, you can obtain information about its attributes and relationships.

 The following methods can be used:

• allAttributes - returns all of the attributes (including inherited ones)
from the type. Instances of LPCAttribute are returned.

• allRelationships - returns all of the relationships (including inherited
ones) from the type. Instances of LPCObjectTypeRelationship are
returned.

• attributes - similar to allAttributes but including only the ones defined
in the type (no inheritance).

• relationships - similar to allRelationships but including only the ones
defined in the type (no inheritance).

 Using attribute information
 An LPCAttribute contains information about its Java and database types.

 You can use the following methods:

• columnName - the name of the mapped column

• fieldName - the name of the mapped Java field

• gettter - the method (java.lang.reflect.Method) used to retrieve the
field value

• javaType - an instance of LPCJavaType describing the mapped Java
field

• jdbcType - and instance of LPCJdbcType describing the mapped JDBC
column

• setter - the method (java.lang.reflect.Method) used to set the field
value

 With a LPCJavaType, you can obtain the class of the Java field by using the
method: typeClass().

 Using relationships information
 When working with a LPCObjectTypeRelationship, you can use the following
methods:

• isOneToMany() - answers true if the relationship is one-to-many

• isOneToOne() - answers true if the relationship is one-to-one

• relatedObjectType() - the LPCObjectType participating in the
relationship

JdbcStore: a JDBC persistence framework Advanced Programming •• 69

 Sample application
 The JdbcStore sample application allows you to edit any persistent types defined in
a model.

 Sample Application

 To load and connect the model, click on the Load Model & Connect button

 To view and edit instances, select a type and click on the View Data button.

 The sample application uses the example settings. See “Changing the example
settings” in the “Customizing the examples” chapter of this manual.

 A type is displayed using the LPCTablePanel.

70 •• Advanced Programming JdbcStore: a JDBC persistence framework

 Sample table display

 The relationships and attributes are retrieved dynamically from the type.

 You can then edit the instances:

 Sample type edit dialog

 From the table display, you can also print out the table entries by clicking on the
Print button.

JdbcStore: a JDBC persistence framework Advanced Programming •• 71

 The sample application demonstrates the power of using type meta -data to develop
generic components.

 Swing (JFC) components
 The current version of JdbcStore supports the JFC JTable. Other JFC components
will be supported in the future.

 The following classes are implemented:

• com.lpc.jdbcstore.run.LPCJTableDataModel - this extends the JFC
AbstractTableModel

• com.lpc.jdbcstore.swingUI.LPCTablePanel

 The table panel is used to display persistent instances.

 To use it, do the following:

 lpcTable = new LPCTablePanel();
 LPCJTableDataModel dataModel = lpcTable.getDataModel();
 dataModel.setFactory(factory);
 dataModel.setRows(rows);

 First we create a new LPCTablePanel. This tablePanel will then create its own
instance of a table model.

 Then we specify in the Table data model the factory class and the rows of the type to
be displayed.

 That’s all there is to it. With very few lines of code you can display persistent
instances in a tabular format.

 See the Java document and the sample application for more details.

 Customizing code templates
 JdbcStore uses templates to generate classes. These templates are located in the
directory: com\lpc\jdbcstore\workbench\lpctemplate\default.

 The code generation relies on substitution of place holders to substitute appropriate
values such as field and method names, etc.

 // Attribute property descriptor
 pd = new PropertyDescriptor("%ATTRIBUTE_NAME%", beanClass,
"%GETTER_NAME%" , "%SETTER_NAME%");
 pdVector.addElement(pd);

 PropertyDescriptorTemplate.java

 To customize a template, create a new directory and copy the contents of this
directory into it (you can set the template directory in the workbench through the
settings dialog).

 Do not modify the place holder names (%XXXX%) .

JdbcStore: a JDBC persistence framework Delivering JdbcStore Applications •• 73

 Delivering JdbcStore
Applications

 Java applications
 When you deliver a JdbcStore application, you need to provide the following:

• a copy of your model (for applications, you can load using
loadFromFile)

• the classes from com.lpc.jdbcstore.run

• the classes from com.lpc.jdbcstore.swingUI (required only if your
application uses the JdbcStore swing components)

• any class required by your application

 You cannot (and do not need to) release any classes from the workbench
directory.

 Java Applets
 When you deliver a JdbcStore application, you need to provide the following:

• a link to your model (you will need to use loadFromURL)

• the classes from com.lpc.jdbcstore.run and com.lpc.jdbcstore.swingUI
(required only if your application uses the JdbcStore swing
components)

• any class required by your application

 You may want to repackage the classes into JAR files. Some browsers currently do
not support dependencies between JAR files. In this case you will need to package
all the classes into one JAR file.

 You cannot (and do not need to) release any classes from the workbench
directory.

74 •• Working with the examples JdbcStore: a JDBC persistence framework

 Working with the examples

 Examples overview
 JdbcStore includes a number of examples to illustrate the use of its class libraries.
The Java files for the samples are located in the directory:
com\lpc\jdbcstore_source\examples.

 The files included are:

 AutoKeyGenerationDatabase

 This example illustrates the use of keys generated by the database. It uses the
sample table KEY_GEN_DB.

 AutoKeyGenerationOrb

 This example illustrates the use of keys generated by the broker. It uses the sample
table KEY_GEN_ORB.

 BidirectionalExample

 This example illustrates the use of bi-directional relationships. It uses the tables
CUTOMER and SALES_ORDER.

 BrokerConnectExample

 This example shows how to connect a broker using the connectionInfo class.

 CacheExample

 This example demonstrates setting the caching strategy at runtime.

 JdbcStore: a JDBC persistence framework Working with the examples •• 75

 DeleteExample

 This example shows how to remove stored instances.

 You should run the InsertCustomerExample before running this example.

 DirectDriverConnectExample

 This example shows how to connect a broker without using the connectionInfo
class.

 DriverExample

 This example shows how to obtain information on registered JDBC drivers.

 FetchAllExample

 This example shows how to use the Factory fetchAll method.

 FetchForKeyExample

 This example demonstrates fetching instances by key.

 FetchUsingAttributesValuesExample

 This example demonstrates fetching instances using arbitrary attributes.

 FetchUsingAttributesValuesOperatorsOrderByExample

 This example demonstrates fetching instances using arbitrary attributes and
operators (i.e. operators other that “=”).

 FetchUsingAttributesValuesOrderByExample

 This example demonstrates fetching instances using arbitrary attributes and sorting
the instances returned.

 InsertCustomer

 This example shows how to create new persistent instances.

76 •• Working with the examples JdbcStore: a JDBC persistence framework

 InsertJsCustomer

 This example shows how to create new persistent instances that inherit from a
superclass.

 InsertJsEmployee

 This example shows how to create new persistent instances that inherit from a
superclass.

 LoadModelFromFile

 This example loads a model from a local file.

 LoadModelFromUrl

 This example loads a model using an URL.

 LPCTableExample

 This example uses the LPCTable panel and metadata from the model to display a
type’s instances in a JFC table panel in a Java application.

 RemoveRelationshipExample

 This example demonstrates deleting persistent instances and removing them from a
relationship.

 RowBroker

 This example demonstrates how to use arbitrary SQL queries to fetch persistent
objects and their related objects from the database.

 TableExampleApplet

 This example uses the LPCTable panel and metadata from the model to display a
type’s instances in a JFC table panel in a Java applet.

 UpdateSalesOrderItems

 This example demonstrates how to update persistent instances.

 JdbcStore: a JDBC persistence framework Working with the examples •• 77

 Customizing the examples
 Except for the following examples:

• BrokerConnectExample

• DirectDriverConnectExample

• DriverExample

• LoadModelFromFile

• LoadModelFromUrl

 that require individual customization (since they demonstrate connecting to a
database or loading a model), the other examples implement a framework that
enables you to customize them for your environment quickly.

 Settings such as model file name, driver, URL, userid, password and other
connection properties are maintained in a serialized file. A program is provided to
serialize the settings.

 Changing the example settings
 To change the settings, edit the file CreateExampleSettings in the jdbcstore-
source\examples sub-directory.

 The following example is extracted from this program:

 static public String url = "jdbc:dbaw://localhost:8889/Watcom/SQL
Anywhere 5.0 Sample/SQL Anywhere 5.0 Sample";
 static public String user = "dba";
 static public String password = "sql";
 static public String driverName = "symantec.itools.db.jdbc.Driver";
 static public String modelFileName =
"\\Development\\com\\lpc\\jdbcstore\\models\\SampleModel.ser";

 /* do not change this */
 static public String settingsFileName = "lpcExamplesSettings.ser";

 static public void main (String[] args) {

 LPCConnectionInfo connectionInfo = new LPCConnectionInfo();

 connectionInfo.url(url);
 connectionInfo.property("user",user);
 connectionInfo.property("password",password);

 You can modify the URL, user, password, driverName or modelFileName variables.
If you need to add new connection properties, add a line such as the following:

 connectionInfo.property("MyProperty",”MyPropertyValue”);

 After your changes are complete, compile and run the program. A serialized file of
your settings named lpcExamplesSettings.ser will be created.

 This file is used by most of the examples, since
LPCExamplesSystem.getConnectedModel() will load the model and connect to the
specified URL.

78 •• Working with the examples JdbcStore: a JDBC persistence framework

 try {
 model = LPCExamplesSystem.getConnectedModel();
 broker = model.orb();
 }
 catch (Exception e) {
 e.printStackTrace();
 System.out.println("*** Error - " + e.getMessage());
 try { System.in.read(); } catch (IOException eio) { return; }
 return;
 }

 Creating the sample database
 The examples provided by JdbcStore rely on a database containing the required
tables.

 Using SQL anywhere
 A sample SQL anywhere database (jstore.db and jstore.log) is provided. It is
located in the directory: sample_database\"sql anywhere".

 The database contains all of the tables and data to run the examples.

 Using Access
 A sample Access database (jstore.mdb) is provided. It is located in the directory:
sample_database\Access.

 The database contains all of the tables and data to run the examples.

 Other databases
 SQL is provided to define all the tables required for the examples. The SQL is
located in the directory: sample_database\ddl\demo_ddl.sql.

 You may have to modify the supplied SQL for your database

 Sample data is also provided for the tables. It is provided in CSV (Comma
Separated Values) format.

 The following data files are provided:

• SALES_ORDER: 161.dat

• SALES_ORDER_ITEMS: 162.dat

• CONTACT: 163.dat

• CUSTOMER: 164.dat

• FIN_CODE: 165.dat

• FIN_DATA: 166.dat

 JdbcStore: a JDBC persistence framework •• 79

• PRODUCT: 167.dat

• DEPARTMENT: 168.dat

• EMPLOYEE: 169.dat

 Using the sample model
 A model has been defined containing all of the types and relationships required by
the examples.

 Recompiling the examples
 You can use the following command files to recompile the examples and samples:

• javac_examples_classes.bat: recompile the sample classes

• javac_examples.bat: recompiles the examples

• javac_swingUI.bat: recompiles the LPC JFC components

• javac_sampleApplication.bat: recompiles the sample application

You will need to modify the above command files to specify the directory where
JdbcStore was installed.

	Installation
	Installing JdbcStore
	Setting the CLASSPATH
	Directory structure

	Introduction
	JdbcStore Overview
	JdbcStore Concepts and Terminology

	Using the Workbench
	Overview
	Starting the workbench
	Working with settings
	Working with a model
	Defining types from a SQL schema
	Working with types
	Generating classes
	Generating SQL
	Working with existing classes
	Obtaining version information

	Basic Programming
	Overview
	Using the LPCSqlDriver
	Working with models
	Using a LPCSqlOrb
	Transaction control
	Working with factories
	Fetching objects
	Fetching using SQL queries
	Using persistent instances
	Working with relationships
	Caching

	Beans
	JdbcStore Beans

	Advanced Programming
	Accessing JDBC connection information
	Using model and type meta-data
	Swing (JFC) components
	Customizing code templates

	Delivering JdbcStore
	Java applications
	Java Applets

	Working with the examples
	Examples overview
	Customizing the examples
	Creating the sample database
	Using the sample model
	Recompiling the examples

