A JDBC persistence framework

JdbcStore
Programmer’s Guide

[E3 CUSTOMER

Classes Attrilntes | JOBC Mappings | Inheritance | Keys | Relationships | Cataloged SQL| Caching |

Attributes

Lname Java Class 1 java.lang.String |E|
City
Phone
Javva Field Name | companyName
Icl
Address
Zip Java Getter I getCompamMame
Fname
State

Java Setter l setCompamMame

[Key attrilite [¥ Updateable | | Concurrency Field

Add | Delete] Cancel I Apphy i

Close i

(c) LPC Consulting Services, Inc.

This manual was produced using Doc-To-HeIp®, by WexTech Systems, Inc.

WEXTECH

WexTech Systems, Inc.

310 Madison Avenue, Suite 905
New York, NY 10017
1-800-WEXTECH

(212) 949-9595

Fax: (212) 949-4007

Contents

Installation S
INSEAHING JADCSLOTE.......ceeei ettt et sae e s e e be e e snee s 5
SEtting the CLASSPATH ... bbb e s see e 5
DITECLONY SITUCKUIE ... ettt ettt ettt ra e e e sab e e sabe e st e e e be e e ebeeesaneas 5

Introduction 7
JADCSEOIE OVEIVIEIVttt ettt et b et n e e b e ne e r e e ne e 7

What IS JADCSLONE. ...t e 7
SaMPIE BPPIICALTON ...t 7
FEALUMES. ...ttt 9
JdbcStore concepts and tErMINOIOGYcoveeiveririeieiie et sae e saee s 12
(O o)< o 1Y o= T RSP PPRPR 12
1Y Lol L= OSSPSR 13
ATTDULE. ... sr e sr e b sreenre e 13
RS = 10 o TR PPRPR 13
USEY Cla5S ..ottt 13
PErSIStENT EXEENSIONc.veitieiteeriee ettt 14
FFACEOTY ..t e e e e nrea s 14
ClaSS gENEIELION ...ttt ettt ettt et e e saae e sabe e nbe e sbeeeees 15
S @ I 1= 01C = (o) o USRI 15
Concurrency CONtrol attribULEcooieiiiiiii e 15
GENEIAtEA KEYS.....eeiieee ettt b et ees 16
Cataloged (0r LOadiNg) SOLS.....cciuiiiiieeiiiesiiee st siee it ees 16

Using the Workbench 17
OVEIVIEIV <.ttt ettt sttt b ettt b e b e s bt e s bt e s bt e s b e e s b e e e b e e s R e e s b e e sbeesbeesbeesbeenbeesreenreens 17
Starting the WOrkDENChoo e 17
WOrKing With SEHINGS.veiiiee ettt e be e e 19

CONNECHION SEEEINGSee ittt rbe e s sare e be e beeeees 19
DireCtONES SELLINGS. .. eeeteie ettt ettt ettt ettt e bbb et esbeeeees 20
Class generation SEHINGScoiveeiiieiiie ettt 21
SQL generation SEEHINGSeeeiveeiieeiiie ettt e et saee e sabe e sbe e see e e 22
WOrking With @mMOGEL.........cooeiiie e 23
Defining types from @ SQL SChEMA.......couiiiiieiiii et 23
Loading @ IDBC AriVENooiiiiii ettt 24
Connecting t0 @ dataase.........c.uee i 24
Closing the database CONNECLIONc.ciiiiiiiiie e 25
Retrieving SQL catalog infOrmationceeieiiiiieiiee e 25
Displaying table informationooeoo i 26
Generating ObJECE LYPIES.....ooiueee ettt ettt 27
WOTKING WIth TYES. ...ttt ettt b e sat e et e s be e ees 27

JdbcStore: a JDBC persistence framework Contents - i

Yo 0 [T To =N 1Y o< TSR 28

EditiNg A EYI8. ettt e 28

Editing class iNformationccooieiieiieieese e e 29

Editing @n atrTDULEccueoiiieieece e e 29
Defining the IDBC MEPPINGS.ccoteerrierieerieenieesre ettt 31
Handling INNETANCE.eoiieiieeee e 32
DEFINING KEYS....teeiteeie ettt e 34
Defining relationShiPs.cooieiieiiee e e 35
Defining cataloged SQL StALEMENTS........ceiieiieiieie e e 38
ChoosiNg & CaChiNg SLIAIEQYcoveerreerreerieereesieesee st e st e sttt et e e sreenreens 39
GENENALING ClASSES ...ttt 40
GENEIANG SQL ...ccteiteeitee ittt 41
Working With eXiSting ClasSES.........ccveiieiieiieeeree et 42
DefiNing atrTDULESccveiiieeiieieee e e 43
ObtaiNiNg VErsion iNfOIMELTONoieiiiiriiieere e 44
Basic Programming 46
OVEIVIEIN ...ttt h bkt h btk h ekt s et e a e e ab e e e e e an e ea bt ean e e e e an e enneenn e e 46
USING the LPCSOIDIIVE ...ttt ettt be et e sbe e snne s 46
[Ior=o ([oTo [F= Lo 41/ SO RTOURRURRTRI 46

Getting alist of loaded driVerS.... ... 46
Displaying driver infOrmationooceoiiiiiiiiiii e 47
WOrKing With MOGEIS.......coueieee ettt b e sbe e saee e saae e 47
Loading from @ file........ooeei e 47

Loading from an URLcoiiiiiii et 48

USING ALPCSHIOMD ... 48
Connecting a broker dir€CHYoooiiiiiii s 48
Connecting a broker using LPCConnectionInfo..........cccoieiiiiiiiecien e 49
DiSCONNECING @ DFOKENcoeiiiiei ettt 49
TraNSACHION COMEIONuietieieesie ettt bbb et re e re e 50
Turning autocommit ON/OFTociiiiii e 50
ComMMItiNg traNSACHIONScoiueieiiee ettt sre e sbee e saee s 50

ROIING baCK tranSaCtioNScueiiiiiiiiie e 50
WOrKing With FACTOMES. ..ot 50
Creating fACOIES.co ittt saee s 51
Creating New PersiStent INSIANCES.cociiiiiieie et 51
FELCNING ODJECES ...ttt ettt et e st e e rbe e snne s 51
FetChing all INSIANCES........oi ittt 52
FELChiNg DY KEY ... 52
Fetching using arbitrary search ValUES (=) ...ccoveviiiiiiiiiieee e 53
Ordering FESUIT SELS ... vii ittt ettt e sbe e saee s 53
Fetching using arbitrary Operators.oooeeiiiiiiieiie e 54
Fetching USING SQL QUETTESeiiiiieiiie ittt ettt sbe et esbe e be e e sbe e snneas 55
USING AGHOC SQL ...ttt ettt rbe e e sane e sane e 55

Using persistent instances (L PCPersistence protoCol)coueeieeiniienieeriee e 56
Updating and inserting NewW iNSEANCESccocueiiiiiiriieerie e 56
DEltiNG INSLANCESeeeeiee ittt ettt ettt rbe e e sane e snneeens 57
Working With relationSNiPS.coiiei i 58
Fetching related ODJECES.oiiiiiie e 58

Adding arelationship instance (0Ne t0 MaNY)cocoeeiieeriereree e 59
Removing arelationship instance (0Ne t0 Many)........cccovueerieriieeiieeerie e siee e 60
Adding/Setting a relationship instance (ONE 10 ONE)occeeeieeerieeriieeiee e 60
Removing arelationship instance (ONE t0 ONE).........ocuveieeerieiiiee e 60

Contents

JdbcStore: a JDBC persistence framework

CaCNING OVEIVIBIW ...ttt 61

Dynamic cache avail@bilityccooiiioiiiiiie e 61

Displaying Cache StaliSHCS.eeiveiiiiie et e 62

Flushing the CaCNE..........coi e 62

Beans 65
JADCSEIOrE BEANSccteiteeiteeitee sttt ettt ettt et sb e b e b e b e b e b e b e nneenne e e 65
Advanced Programming 67
Accessing JDBC connection iNfOrmMation............coiueaiierenieieiie et 67

Using model and type MELa-Aataeeeieieiieeiiee ettt 67
REITEVING TYPES. . ettt ettt ettt et et e e sae e e snbe e snbeeeees 67

Getting type iNfOrMEatioNc.coiiiiiiieie e e 68

Using attribute informationcooeeo i 68

Using attribute informationcooeeo i 68

Using relationships infOrmation.............ooueeiiiiiieeiee e 68

SaMPIE APPLICALTION ..ot 69

SWING (JFC) COMPONENTSceieiieiiieeeteeeiteeesteeesite e sbe e be e e sbee e sbeeesaeeesabeesbeeeabeeesbeeesneeesnneeans 71
CUStOMiZiNG COOE LEMPIELES.eeiieeiiie ettt b e sbe e saae e saaeean 71
Delivering JdbcStore Applications 73
JAVA APPIICELIONS. ...ttt bbb e s 73

Nz Y B o] o< TSP 73
Working with the Examples 74
EXAMPIES OVEIVIEW ...t e 74
Customizing the EXAMPIESccueeiieiieriee et sr e nree 77
Changing the example SEttiNGS..........coiiiiiiie e 77

Creating the Sample datalDaSecoieeiieiieieeeeree e 78

USING SQL @NYWHENE......c.eiiieeiieiiee ettt 78

USING ACCESS. ...eeeteeteeitee st e sttt st e st sb e s b e sb e sbe e sb e sb e e sb e e sb e e sb e e sb e e sb e e sbe e sbe e nneenneenne s 78

Other datahDaseScoieiieiieiii e 78

Using the SAMPIe MOTELco.eoi e e e 79
Recompiling the @XamPIEScoo i 79

JdbcStore: a JDBC persistence framework Contents - iii

Installation

Installing JdbcStore

To install JdbcStore, type the following:

[i ava JdbcStore

The default installation path is set to /Ipc.

Setting the CLASSPATH

After installing JdbcStore, you should include the following directories and/or files
in your classpath:

c:\Ipc\symantec\symbeans.jar

c\Ipc

If you have chosen to install JdbcStore in a directory other than c:\lpc,
substitute your installation directory instead of c:\Ipc in the above.

Directory structure

The JdbcStore directories are structured as follows:

batch command files to recompile the sample and example
classes
com.lpc the JdbcStore classes and examples directories
jdbcstore classes subdirectories

JdbcStore: a JDBC persistence framework Installation -

examples example classes

classes generated classes for the examples
models sample models for examples and sample application
run JdbcStore runtime classes
sampleApplication sample application classes
swingUlI LPC classes for JFC components
workbench JdbcStore workbench classes

Ipctempl ate\default default templates for code generation
jdbcstore source contains Java source subdirectories

examples Java source for example classes

classes Java source for generated classes
sampleApplication sample application source files
swingUlI source files for LPC’'s JFC components

6 - Installation JdbcStore: a JDBC persistence framework

Introduction

JdbcStore Overview

What is JdbcStore

JdbcStore is a Javato Relational DBMS persistence framework. It enables you to
store Java objects in arelational DBMS.

JdbcStore reduces the impedance mismatch between Java’s object orientation and
the relational representation of data used by RDBMSs.

Y ou can write an entire Java application and store your datain arelational database
without any SQL coding or calls to the JDBC API. JdbcStore transparently
interfaces to JDBC and generates the required SQL to store and retrieve your objects
from the database.

JdbcStore consists of:

aworkbench to define mappings between Java classes and relational
tables

a runtime environment to transparently store and retrieve objects
from JDBC compliant databases

JdbcStore is flexible. It does not require you to implement your persistent classes as
asubclass of a specific class. Persistent classes can be implemented as subclasses of
Object or any other classes.

JdbcStore does not modify or pre-process Java source code. Y ou can even define
persistent classes for classfiles (i.e. files for which you do not have source code).

Sample application

The following example is an extract of a small JdbcStore application that fetches
and displays all customers, their sales orders and sales order lineitems. It also
increases the quantity of items for each sales order item.

JdbcStore: a JDBC persistence framework Introduction - 7

// Create a factory ..

// its responsibility is to create and return objects
Systemout.println("Creating the factory")

cust oner Factory = new Cust ormer Fact ory()

cust oner Fact ory. br oker (br oker)

// Fetch all the customers
Systemout.println("Fetching all the rows");
try {
| pcCust oner e;
Vector v = custonerFactory.fetchAll ();
for (int i=0; i < 2; i++) {
e = (Il pcCustomer) v.elenmentAt(i);

// fetch the customer sales orders
Vector so = e.getSal esOrders();
System out. println(e. getLnanme()+", " +e. get Fnane());

for (int j=0; j < so. size() ;o)
| pcSal esOrder s (1 pcSaI esOrder) so.el ement At (j);
System out . prlntln(\t"+ s.getld() + "
s.getOrderDate());

// fetch the sales order items
Vector si = s.getSalesOrderltenss();
for (int k =0; k < si.size() ; k++) {
| pcSal esOrderltems oi =
(I pcSal esOrderltens) si.el enmentAt (k)
Systemout.println("\t\t" +
oi . get Product (). get Descri ption()

+" " + oi.getQuantity());

// update the sales order item quantity
oi . set Quantity(
new | nteger(oi.getQuantity().intValue() + k))

// store it
oi .store();

}

Systemout. println();

}
} catch (Exception e) {
e.printStackTrace()
Systemout.println("Broker fetch error - " + e.getMessage())

// commit the changes
Systemout.println("Comit transaction")
try {
broker.comit();
} catch (Exception e) {
Systemout.println("Broker commt error - " + e.getMessage())
}

// Close the connection

System out. println("Di sconnecting the broker")

try {
br oker. cl ose();

} catch (Exception e) {
System out. println("Broker disconnect error - " +
e. get Message())

Note that there is no need to code any SQL or to interface to JDBC in this
application.

8 -

Introduction

JdbcStore: a JDBC persistence framework

Features

JdbcStore supports the following main features:

Support for inheritance

Inheritance relationships can be defined and maintained in the relational DBMS. It

supports both abstract and concrete supper classes.

An inheritance hierarchy can be implemented in various ways:

single table

the table contains the attibutes of the superclass and all of its

subclasses

ClassA

ClassB ClassC

Table ABC

subclass tables

the table contains each subclass and its superclass attributes

Class A

ClassB ClassC

atable for each class in the hierarchy
each table contains its own attributes

Class A

ClassB ClassC

JdbcStore: a JDBC persistence framework

Introduction -

9

Support for composition (associations)

Complex objects can be modeled and stored using JdbcStore. One-to-one and one-
to-many associations are supported. At runtime, associated objects are fetched and
instantiated transparently.

Lazy and immediate instantiation of complex objects

When working with a large number of objects, JdbcStore enables you to instantiate
an object and its associated objects immediately (instead of using lazy instantiation).
This improves performance by reducing network traffic and the number of database
cals.

Bean support

JdbcStore public classes such as model, broker and factories were developed for
Java Beans and include Beanlnfo classes.

Generated classes not only adhere to Java Beans conventions (getX XX, setXXX)
but can also generate Beanlnfo classes.

JFC support

JdbcStore includes a generic JFC table panel that enables you to display objectsin
tabular format. It also includes a table data model customized for JdbcStore
persistent classes.

Full source code for al JFC-based Ul componentsiis provided, so that you can
implement your own component by either subclassing or implementing new
widgets.

Class and bean generation from a relational database
schema

JdbcStore can generate classes and Beanlnfo classes based on existing relational
schemas. The classes, methods and fields will be generated with names conforming
to established Java and Java Beans naming conventions.

SQL Data Definition Language (DDL) statement generation
from existing class files

Alternatively, JdbcStore can generate the SQL required to define tables in order to
store existing class instances into a database. This feature uses introspection to
discover the non-private attributes of the classes and does not require Java source
code for the classes.

10 -

Introduction

JdbcStore: a JDBC persistence framework

Instance and Object cache management

One of the difficulties of using arelational database in an object oriented
application, is to ensure that only one instance of a persistent object existsin the
running application. Multiple queries to the database may return different instances
(but not identical) of the same object.

JdbcStore can transparently ensure that only a single instance of an object ever
existsin your application. Thisis handled by an object cache.

Aswell, the cache optimizes performance by reducing the number of database calls.

The cache can use weak references when supported by the runtime Java VM to
allow unreferenced cached instances to be garbage collected by the VM.

100% Pure Java

JdbcStore is written entirely in Java with no calls to the Java Native Interface API.
Therefore, both the workbench and the runtime environments can be deployed on
any Java supported platforms.

Applet and Application Deployment

Because JdbcStore is written entirely in Java and does not use any feature that
would violate a browser’s normal security settings, it can be used to develop both
applications and applets. The JdbcStore based applets do not need to be defined as
trusted.

User friendly workbench

JdbcStore includes a workbench to define the mappings between persistent classes
and databases. The workbench includes facilities to define project settings (e.g.
directories, package names, etc.) and define and edit the mappings.

The workbench is also used for generation of Java and SQL code.

There is no need to learn a new Data Definition Language, since the persistence
model is defined entirely through the workbench.

Flexible architecture

JdbcStore does not make any assumptions about persistent classes as there is no
need to inherit from a persistent root class. The generated business classes can be
modified to add behavior.

JdbcStore implements the persistence system by subclassing your business objects.
Business objects do not contain any SQL or persistence code.

Aswell, JdbcStore implements the JDBC persistence through a broker class. This
broker class can easily be replaced in the future to provide a non-JDBC persistent
broker such as RMI or CORBA.

JdbcStore: a JDBC persistence framework Introduction - 11

Designed for performance

JdbcStore uses the reflection API heavily to transparently provide the persistent
behavior required for the generated classes. To optimize performance, dynamic
method lookups are kept to a minimum. Once a method has been looked up, it is
cached so that no dynamic method and lookup resolution is required.

Aswell the Object cache minimizes database calls and network traffic.

Meta level programming

JdbcStore stores the persistence mapping information in types. These types contain
such information as the class name, instance factory class name, attributes names
and types, contructors, accessors and getters, association attributes, table mappings,
column mappings, etc.

These types are in turn stored into a Dictionary structure called amodel. When you
save amodel in the workbench, it is serialized and stored in afile.

Loading the model is one of the first tasks you must complete when running a
JdbcStore information. The model and type metadata is available to your
application through a public protocol and this can be used to develop generic
components. JdbcStore itself includes such a component to display any persistent
object in tabular format.

JdbcStore Concepts and Terminology

Object type
LPCObjectType An ObjectType defines the mappings between a Java Class and one or more
relational tables. It includes the following definitions:
tables or tables used to store the type
attributes — those that defined the mappings between the Javafields
and table columns
fields or columns uniquely identifying the type
relationships between the object types. The relationship defines the
relationships between the Java classes and al so the database tables
caching strategy used by the object type
inheritance relationships between the object types and how these are
implemented by the database
Cataloged SQL statements for complex queries
The ObjectType can be generated from a database table, a Java class, or defined
from scratch. It can then be used to generate classes, SQL database definition
statements, or both.
Since ObjectTypes contain all of the information required to map classes to tables,
they can be used to write generic components using the mapping information
provided by the types (metalevel programming).
12 - Introduction JdbcStore: a JDBC persistence framework

LPCModel

LPCAttribute

LPCRelationship

Model

A model isjust acollection of types. It should include all of the types required by
an application.

Models are stored in serialized instances. The model can then be loaded by an
applet or an application at runtime.

Attribute

An attribute of atype defines the mappings between the Javafields and the table
columns.

It includes the following information:
table columns including name, size, type, etc.
Javafields including name and type
Java getters and setters for the Java fields

Relationship
Relationships are used to represent aggregation and composition associations.

JdbcStore support one-to-one and one-to-many relationships. 1n addition the
relationships may be implemented by uni-directional or bi-directional links.

A bi-directional implementation enables you to navigate the relationship from any
of the related objects. For example, we have a relationship where a customer has
zero or more sales orders (a one-to-many relationship):

If we implement it using a bi-directional link, we can first fetch sales
orders and then instantiate the related customer. Alternatively, we
could first fetch the customers and then obtain their sales orders. If we
choose to implement the relationship uni-directional from the
customer, then we would not be able to instantiate a customer from its
sales order.

When defining a relationship between Object types, you must also define the type
controlling the assignment of the key. For example, if we have arelationship
defined between a Sales Order I1tem and a Product, the product key should get stored
in the Sales Order Item (and not the reverse) when associating a Product to a Sales
Order Item. Therefore, the Product type controls the key of the relationship.

User class

A user class represents a business object. These classes are the main classes of your
application. In the sample provided with JdbcStore, Customer, SalesOrder, etc. are
user classes.

JdbcStore makes these classes persistent.

These classes can either be generated by JdbcStore or be defined previoudly.
JdbcStore does not require you to have source for these classes.

JdbcStore: a JDBC persistence framework Introduction - 13

When working with classes, you should keep in mind the following:

only fields with public protected (and possibly package) visibility can
be made persistent if no accessors are defined for them. Since private
fields are not visible outside the class in which they are defined,
JdbcStore cannot store them

not all fields of a class must be defined as persistent

public or protected (and possibly package) getters or setters must be
defined for the fields. When the classis generated by JdbcStore,
getters or setters are generated automatically. I1f none are defined, you
must generate them in the persistent extension (class generation
option).

you must use the setters to update the value of the fields at runtime.
JdbcStore overrides the getter to keep track of whether an object has
changed or not. Otherwise you must mark the object dirty yourself
(L PCPersistense.dirt(boolean flag).

Y ou must create new instances using the associated factory class.

You can modify a user class to add any behavior that you require. However, if
the class is generated after you have made modifications, your changes will be
lost. You should therefore backup the old version and re-apply your changes

Persistent extension

A persistent extension is a subclass of a user class. JdbcStore uses this class to
implement persistence.

The persistent extension implements the store method and overrides (or
implements) setters and getters for the Javafields.

Every persistent class has a persistent extension. These classes are always named
IpcUserClassName where UserClassName is the name of your class.

In the current version, the prefix ‘Ipc’ cannot be changed. In a future release,
you will be able to assign your own prefix.

Factory

A factory is a class generated by JdbcStore. Every persistent class must have an
associated factory. The default name of afactory is UserClassNameFactory where
UserClassName is the name of the persistent class.

The factory is used for creating new instances of the persistent class. These new
instances can either be created as the result of a query against the database or
through the use of the newlnstance method to create new objects.

Therefore the factory implements the following behavior:
creation of new instance (newlnstance method)

retrieval from the database (fetch and associated methods)

14 -

Introduction

JdbcStore: a JDBC persistence framework

Class generation

JdbcStore can generate the following classes:
User Class
persistent extension Class
Factory Class
Beaninfo class

Y ou generate a class from the workbench. However, you must always generate a
persistent extension and a factory.

You can also generate a Beaninfo class. The Beanlnfo class is generated for the
persistent extention class (since it is the class that implements the persistent
behaviour).

SQL generation

JdbcStore can generate SQL Data Definition Language statements from the Object
Types. The generated SQL is saved to afile.

Since the SQL generated is generic, you may have to edit it to implement features
specific to your chosen database.

The generated SQL can include:
Drop table statements
Create table statements
Primary Key constraints statements

Create unique index statements

Concurrency control attribute

JdbcStore handles concurrency using optimistic concurrency control. Since
applications may interface to awide variety of databases, it must use a portable
mechanism for concurrency control.

The implementation chosen is database independent. When you define a type, you
can designate one attribute (an Integer type) to represent a concurrency control
attribute. When atable row is updated or deleted, the value of the attributeis
selected to ensure it has not changed since the row was fetched. If it has changed
an exception is raised.

To detect whether a row was successfully updated or deleted, JdbcStore checks
the rowCount returned by the execute.

JdbcStore: a JDBC persistence framework Introduction - 15

Generated keys

In some cases, you may want to have keys assigned automatically to instances of
your persistent classes.

Y ou can use these assigned keys either as Object Identifiers or as regular database
keys.
JdbcStore supports two types of generated keys:

assigned by JdbcStore

assigned by the database

JdbcStore assigned keys
When akey is generated by JdbcStore, it is generated using the following technique:

JdbcStore issues a select Max(generatedAttribute) where column 1 = ?
and column 2 = ?, etc. where generatedAttribute is the name of the
generated column and column 1, column 2, etc. are the other key
attributes which are not generated.

Therefore you can use this technique on objects which have one or more key
columns. When used with a single column key, it can be used to generate Object
I dentifiers for your objects.

This technique is database independent.

Database assigned keys

Thisis only available when instances of your class or table row are identified by a
single attribute.

In this case, the database is responsible for assigning a value to the attribute. For
example, you could use this technique with Oracle sequence, Sybase identity and
Access counter datatypes.

After a successful Insert statement, JdbcStore retrieves the assigned key value by
issuing afetch using all the attributes values of instancesin its ‘where’ clause.

Cataloged (or Loading) SQLs

In some cases you may want to use complex SQL statements (e.g. correlated
subqueries, etc.) to filter the objects returned from the database or to instantiate
instances of a class and its related objects simultaneoudly (e.g. Customer with sales
orders and sales order items).

To do so, you must provide SQL statements to the factories. Y ou can either provide
SQL strings at runtime or defined statements for the Object type that will be stored
in the model. These stored statements are called Catalogued or (Loading) SQLSs.

16 -

Introduction

JdbcStore: a JDBC persistence framework

Using the Workbench

Overview

Y ou use the workbench to define the mappings between your database and your
Javaclasses. These mappings are stored in amodel. The model is storedin a
serialized class instance that is then used by the runtime environment or loaded in
the workbench to modify the mappings.

Y ou use the workbench to:
define project settings (e.g. paths, JDBC URL, etc.)
generate amodel based on arelational schema
generate amodel based on existing Java classes
define the OO to RDBM S mapping
generate Java classes
generate SQL DLL to define tables

Starting the workbench

To start the workbench, enter:

|j ava com | pc. j dbcst ore. wor kbench. LPCMai nFr ane

The workbench main window will display and open on a new and empty model.

JdbcStore: a JDBC persistence framework Using the Workbench - 17

[=3 JdbcStore Workbench [_ O]
Model JDBC Code Generstion Java Classes Help

Model Description:

I [—

" riE

Defined Typesi{Double-click to edit):

DmmeLﬂmﬂ

The directory where you installed jdbcstore must be in your CLASSPATH.
Alternatively you can also have the current directory (i.e. “.””) in your path.

Before starting the workbench, you should change the current directory to the
jdbcstore directory. JdbcStore looks for the default settings file based on the
current directory.

The main window of the workbench includes the following menus:

Model
New - creates a new model
Open - displaysfile dialog to load a previously created model
Save - saves the currently opened model
Save as - displays afile dialog to save the currently opened model
Settings - opens the settings dialog

Exit - exits the workbench

JDBC
Load Driver - loads a JDBC driver in the Java VM
Connect - connects the workbench to a JDBC URL
Disconnect - disconnects from a previously connected URL
Tables - displays the catalog dialog (only after a successful connect)

18 -

Using the Workbench

JdbcStore: a JDBC persistence framework

Code generation
Classes - opens a class generation dialog to generate classes

SQL DLL statements - opens a SQL generation dialog to generate and
create table statements

Java classes

Class Loader - opens a Class Loader dialog to load Java classesin the
VM so that you can define mappings based on these classes

Help

About - displays an about dialog with the current version information

Working with settings

When you start the workbench, the default settings from the current directory are
loaded. These settings are stored in a serialized instance in afile called:
defaultSettings.Ipc.

Y ou can modify the default settings and create settings files that can be loaded in
the workbench.

The settings establish defaults for directories, the JDBC URL, JDBC driver, code
generation options, etc.

Although the default values are read from the settings, you can always modify
the various options before performing a task.

The settings dialog is invoked by selecting Settings from the Model menu.

There are five buttons at the bottom of the dialog that will show no matter which
panel is displayed. The actions performed by the buttons are as follows:

Load from file - opens afile dialog to load a settings file

Save As Default - loads settings from the file “defaul tSettings.Ipc”.
Save As - opens afile dialog to save a settings file

Reload Defaults - loads settings from file “defaul tSettings.|pc”

Close - closes the settings dialog and any changes made will bein
effect for the current session

Connection settings

When you invoke the dialog, the first tab panel is displayed. This panel is used to
establish connection options.

JdbcStore: a JDBC persistence framework Using the Workbench - 19

E"'-f’,i'.ldhcﬁ tore Workbench Settings

Connection | Directories | Class Generation | SQL Generation

Driver Hame | symantec.itools.db.jdbc.Driver
URL ; idbc:dbaw:Mocalhost:8889 Watcom/SOL Amawhere 5.0 Samples

Connection Properties

Properties

password
user Key

Yalue

Apphy ! Remove !

Load From File ... | Save As Default | Save As .. | Reload Defaults i Close 1

Connection Panel

The selections on the panel are used as follows:

Driver Name — specify a class name for the default JDBC driver (this
should include the package name)

URL — specify the JIDBC URL of your database
Key - specify a connection properties key
Value - specify a connection properties value

Apply - after you have specified a connection properties key and
value, click on the Apply button to add them to the connection
information

Remove - select a property from the Propertieslist and click on the
Remove button to delete the property key and value

JDBC Connection properties are specific to each JDBC driver. Please consult
your JDBC driver documentation for details.

Directories settings

The Directories settings enable you to specify default directories for storing models.

20 -

Using the Workbench

JdbcStore: a JDBC persistence framework

Egﬁ.ldhcﬁ tore Workbench Settings

Connection Directories | ciass Generation SGLGeneratinn|

Model Default directory path
com’ipcijdbcstore'models

Load From File ... | Save As Default | Sawve As .. | Reload Defaults

Directories Settings

Specify the default directory where your models will be saved.

Class generation settings

The Class generation settings allow you to specify default options for generating
Java classes.

Eif’,g.ldhcﬁtnre Waorkbench Settings

Cnnnectinn| Directories Class Generation | S0l Generatinn|

Source Directory Path
| Development'icomilpcjdbcstore_sourcelexamplesiclasses

Package Hame

| com.Ipc.jdbcstore.examples.classes

Template Path
| Development'comiipcjdhcstore'workbenchilpctemplate\default

Options

4 generate persistent extensions
¥ generate user classes

¥ generate factory classes

Load From File ... | Save As Default | Save As ... | Reload Defaults | Close |

Class Generation settings

JdbcStore: a JDBC persistence framework Using the Workbench - 21

The settings are:

Source directory path - the directory where generated Javafiles will
be stored

Package name — the default package name that will be used (all
generated classes must be in a package)

Template path - the directory where code generation templates are
located

Generate persistent extension - if selected, the persistence code will
be generated

Generated user classes - if selected, business object classes will be
generated

Generate factory classes - if selected, factory classes will be
generated

SQL generation settings

The SQL generation settings specify default options for generating SQL Data
Definition Language (DDL) statements.

E%%thcﬁ tore Workbench Settings

Cnnnectinn| Directories | Class Generation $OL Generation

S0OL Data Definition statements default directory

; comiipcijdbcstoreiddl
[¥ generate DROP TABLE [¥ generate CREATE TABLE
[¥ define PRIMARY KEY [¥ define FOREIGH KEY

[define UNIQUE INDEX on primary Key

S0OL statement separator i '

S0L statement prefix i

1

‘Load From File ... | Sawve As Default | Save As.. | Reload Defaults 1 Close 1

22 - Using the Workbench JdbcStore: a JDBC persistence framework

SQL Generation settings panel
The default settings are:

SQL default directory - the directory where SQL statement files will
be stored

Generate Drop Table - if selected , Drop Table statements will be
generated

Generate Create Table - if selected, Create Table statements will be
generated

Define Primary KEY - if selected, Primary Key constraints will be
generated

Define Foreign Key - if selected, Foreign Key constraints will be
generated key

Define Unique Index - if selected, Create Unique Index statements
will be generated (on the primary key columns of the tables)

SQL statement separator - the string used to separate SQL
statements (e.g. “;” , “g0")

SQL statement prefix - the string used to prefix SQL statements (e.g.
DB2)

Working with a model

To:

load an existing model, select Open from the Model menu
to save amodel, select Save from the Model menu

to save amodd with adifferent file name, select Save Asfrom the
Model menu

Defining types from a SQL schema

One of the most common tasks faced by developersisto build an application for
which databases already exist or have been defined.

To define amodel based on a schema, you need to perform the following tasks:

load the appropriate JDBC Driver

connect to your database

retrieve the SQL Catalog

generate Object Types for the relevant tables

JdbcStore: a JDBC persistence framework

Using the Workbench - 23

Loading a JDBC driver

To load adriver, select IDBC driver from the JDBC Menu. The following dialog
will be displayed (values are retrieved from the default settings and can be
overridden here):

Eif’,g.ldhcﬁtnre Load Driver Dialog
JDBC Driver Class Hame

symantec.itools.db.jdbc.Driver loaded successiully!

Load driver dialog

Specify the name of your JDBC driver and click on the Load button. A message
will be displayed to indicate whether the driver was loaded or not. After loading a
driver, you can close the dialog.

Your CLASSPATH must include the directory in which the package for your
JDBC driver is located.

Connecting to a database

After you have loaded a driver, you can connect to a database. Select Connect from
the JDBC menu. The following dialog will be displayed:

E'-;_,% JdbcStore JDBC Connection Dialog

LURL idbc:dbaw:Mocalhost: 8889 Watcom/SOL Amywhere 5.0 Sample/SQOL

Connection Properties

Properties

1“5” Key password

Yalue sl

Remove i Apphy 1

Close]

Connected successfully to; idbc:dbhaw:Mocalhost: 8889 WWatcomiSaL nnw.rhei
|

Connection dialog

24 - Using the Workbench JdbcStore: a JDBC persistence framework

The default values are selected from the workbench settings and can be overridden.
Click on the Connect button to connect to the URL. A message will be displayed to
indicate whether the connection was successful or not.

After connecting, close the dialog.

Closing the database connection

The database connection will be closed automatically when you close the
workbench.

If you want to disconnect before exiting the session, select Disconnect from the
JDBC menu.

Retrieving SQL catalog information

After Tables has been selected, the Tables Dialog is displayed. From this dialog,
you may obtain information from the catalog and generate Object types based on
table definitions in the open model.

The catalog retrieval panel is where you specify conditions to filter the information
from the SQL catalog.

[=3 JdbcStore Tables Dialog

Catalog Retrieval | Tahle Information | Type Generation |

Retrieval Criteria

Catalog i

Schema Pattern i

< [[«

Tabhle Hame pattern 1

Tahle Type ; _:j
Execute ’
Close 1
Tables Dialog
On this dialog you may specify:

Catalog - a String specifying the database catalog. You may also
specify <null> or <empty string>

JdbcStore: a JDBC persistence framework Using the Workbench - 25

Egﬁ.ldhcﬁture T ables Dialog

Catalog Retrieval Table Information | Type Generation |

— Tahles

product

Schema Pattern String — usually the owner. Y ou may also specify
<null> or <empty string>

Table Name Pattern - a string pattern for the table name. Y ou may
also specify <null> or <empty string>

Table Type - select either Table,View or System Table

Not all values may be supported. Some databases may require <empty string>
or <null> in some specific fields. You may have to experiment until you find a
valid combination of values.

Click on the Execute button to fetch the catalog information.

Displaying table information

Select atable and a column to display the tabel and column information.

Columns

Columns Information

JDEC Type | DECIMAL

Column Remarks 37 Hutlalhie

Database Type | pDECIMAL

Column Size 115

Decimal digits | 2

Precision radix ’ 10

4

Definition

4]

mn omn

Close 1

Table information panel

26 -

Using the Workbench

JdbcStore: a JDBC persistence framework

Generating object types

The Type Generation panel generates object types and adds them to the model.

[=3 JdbcStore Tables Dialog

Catalog Retrieval | Table Information Tvpe Generation |

Tahles

LP_ARCHWED_PERSDH
LPC_CUSTOMER

Select All 1 Deselect i Generate Types

Close 1

Type Generation panel

Select one or more items from the Tables list and click on the Generate Types
button. The generated types will be added to the model.

If a type with the same name already exists in the model, it will not be
replaced. To change an Object type, first remove it from the model and then
generate it again.

Y our model should now contain the types you have generated.

Working with types

The workbench main window displays alist of the types contained in your model.

To:
delete atype - select atype and click on the Delete button
add atype - click on the Add button
edit atype - select atype and double click on the selection

There is no confirmation for deleting a type.

JdbcStore: a JDBC persistence framework Using the Workbench -

27

[=3 JdbcStore Workbench =]
Model JDBC Code Generstion Jawva Classes Help

Model Description:

A sample model __"“_‘_‘-_j

4]

Defined Typesi{Double-click to edit):

.

sales_order_items
in_code
in_data
customer
sales_order
employee
department
contact
product

Delete] ﬂ:ﬂ

Workbench Main Window

Adding a type

After clicking on the Add button, a dialog will be displayed to enable you to enter
the name of the type. After the name is specified, the type can be edited.

Egﬁhdd Mew Type.__

Mame: SampleType|

Add new type dialog

Editing a type

The type dialog enables you to specify atype's Java attributes and JDBC mappings,

associations and caching strategy.

28 -

Using the Workbench

JdbcStore: a JDBC persistence framework

After double clicking on atype from the list, the Type Dialog is displayed. If you
have generated the type from atable or a Java class, most of its data will befilled in.
Otherwise, you will have to define it yourself.

Editing class information
The first panel display is the class information panel.

[customer
Classes | attibutes | JDBC Mappings | Inheritance | Keys | [
Class Hame 1 Customer
Factory Class Hame i CustomerFactory
Persistent extension Class Name ; IpcCustomer

Close 1

Class information panel

In this panel, you can change the default class name assigned by JdbcStore. The
fields are asfollows:

Class Name - the name of the user class

Factory Class Name - the name of the factory associated with the user
class

Persistent extension Class Name - the name of the persistent
extension class (a subclass of the user class)

Editing an attribute

The next panel is the Attributes panel. It allows you to define and edit attribute
information.

JdbcStore: a JDBC persistence framework Using the Workbench - 29

[customer

Classes Attributes | JDBC Mappings | Inheritance| Keys | Relationships |][]

Attrilntes

Java Class iiava.lang.String EI

Java Field Hame i Iname

Address

Zip
{Fhame
State Java Getter i getLname

Java Setter i setlname

[~ KeyAttribwte [Updateable

im Concurrency Field

add | Delete | Chiead [t

Close 1

Attributes panel

You must click on the Apply button for changes made to the attribute to be
applied. Otherwise the changes will be ignored.

To modify or view an attribute, select it from thelist. Y ou can then specify or
change the following:

Java Class - the Java class of the attribute. Arrays, wrapper and
primitive types are supported

Unless you are using a Class for which you have no source, DO NOT USE
PRIMITIVE TYPES. Primitive Java data types cannot represent null values.
Therefore null in numeric fields will be converted to zero in primitive fields (on
a subsequent store of the object, zero will be stored as well).

Java Getter - the name of the method to retrieve the field value

Java Setter - the name of the method to set the field value

30 - Using the Workbench JdbcStore: a JDBC persistence framework

There must be a getter/setter pair for each persistent attribute. JdbcStore uses
these to keep track of whether an object has changed and set the values of
fields in your object.

Key Attribute - if selected, this attribute is use to identify the object
Updateable - if selected, this attribute can be modified

Concurrency Field - if selected, this attribute is used for concurrency
control

Only one attribute can be marked as a concurrency attribute. This attribute
must be a java.lang.Integer.

The restrictions on the concurrency attribute were designed to ensure the
portability of the concurrency control mechanism across different databases

Adding an attribute

To add an attribute, click on the Add button. The following prompt will be
displayed to enter the attribute name:

[=3 Add New Attribute. ..
Mame: i CellularPhone]|

New attribute Name Dialog
Y ou can then edit the attribute.

Deleting an attribute
To delete an attribute, click on the Delete button.

Defining the JDBC Mappings

The JDBC Mappings panel alows you to define the mappings between the Object
type and a database table.

If you have generated the type from atable, all of the information will be completed.
Otherwise, if you have generated a type from an existing class or defined one from
scratch, you will need to supply the information.

JdbcStore: a JDBC persistence framework Using the Workbench - 31

[customer

Classes | Attributes JDBC Mappings | Inhetitance | Keys | Relationships | [l e]

Table Hame ;custumer

—— Attributes Attrilnnte Mappings
Column Hame i Iname
Address
Zip JDBC Type | vaRCHAR [
{Fhame
State
Column 5ize 1 20 Decimal digits 1 0
[¥ Nullable
Apphy 1 Cancel 1

Close 1

JDBC Mappings Panel

The following information must be compl eted:
Table Name - the name of the table
Column Name - the name of the column in the table

JDBC Type - the type of the column (this is restricted based on the
Javatype of the attribute)

Column Size - the size of the column
Decimal digits - the number of decimal digits (for numeric types)

Nullable - if selected, the column will accept null values

Handling inheritance

Although inheritance is not explicitly supported by the relational model, it is
possible to represent it using Type/Subtype relationships.

JdbcStore enables you to define Type/Subtype relationships in your types and map
them to a Java hierarchy.

The Inheritance panel is where you specify the inheritance hierarchy.

32 - Using the Workbench JdbcStore: a JDBC persistence framework

[=3LPC_EMPLOYEE

Classes | Attributes | JDBC Mappings Inheritance | Keys |][]
Subtype Data
[+ has Supertype
Supertype | LPC_PERSON hd

Discriminant value IE

;:’.. Supertype attrilutes stored in same tahle
F‘w Supertype cascades deletes

Dicriminant Attribute | | E

Dicriminant Attribute (for Supertypes)

Close 1

Inheritance Panel

The following information must be specified:

has Supertype - select it if the Object type is a subtype (the generated
classfor thistype will be inherited from its parent)

Supertype - select the name of the Supertype

Discriminant value - this must be a String and is the value of the
discriminant attribute (in the parent type) that identifies the instance
as a specific subtype (e.g. “E” for employee, “C” for customer).

Supertype attributes stored in the same table - select it if the
attributes of the parent will be stored in the subtype table.

Supertype cascades deletes - select it if Cascade Deleteis
implemented by the supertype table.

Discriminant Attribute - specify the attribute, if any, that is used to
identify the subtypes of the Object type (specified in the Supertype).

JdbcStore: a JDBC persistence framework

Using the Workbench - 33

Single table implementation

If you want to implement a single table containing the attributes of the Supertype
and all of its subtypes, do the following:

define the Supertype mapped to the appropriate table. Its attributes
should only contain the Supertype attributes (if you have generated
the type from the table, you will need to remove attributes).

define the subtypes. Each subtype will be mapped to the same table as
the supertype. Add the required attributes (applicable only to the
subtype).

The Supertype should implement an attribute to discriminate between the
subtypes. Otherwise, the framework cannot recognize the different subtypes
(since they are implemented by the same table).

Defining keys
The keys panel enables you to specify the table and object type keys as well as
options for the generation of keys.

The keys defined in an object type are used to uniquely identify an instance. They
may or may not correspond to the primary keys of the table. However, the
combination of values must be unique in the database.

34 -

Using the Workbench

JdbcStore: a JDBC persistence framework

[;g sales_order_items
Classes | Attributes | JDBC Mappings | Inheritance Keys Relationships | Cataloged SGL |E||E|
Hey Attributes
Available Attrilntes —— — Key Attriluntes
ShipDate Id
Prodid Lineld
Quantity
]
(]
Key Generation
i Nokeygeneration { Broker Generated { | Database Genenated
Generated Attrilnne ; (select i double clicking on a key attribute)
Close 1
Keys Panel

The key attributes are displayed on the right. Use the arrow buttons to add or
remove attributes from the key.

The following key generation options are supported:

No key generation - your application is responsible for supplying
unique key values

Broker Generated - the framework will generate the key. Thiskey is
generated by using a MAX function on the generated attribute (double
click on a key attribute to select it). The ‘where’ clause of the select
MAX statement is the remaining key attribute.

The Database Generated button is only enabled for single attribute keys.

Defining relationships
The Relationship panel enables you to define relationships between types.

JdbcStore: a JDBC persistence framework Using the Workbench - 35

[customer

Classes | Attributes | JOBC Mappings | Inhetitance | keys Relationships |][]

Available Types Defined Relationships {Double-click to edit):

LPC_EMPLOYEE sales_order
product
LPC_PERSON
contact
department
employee

in_code

in_data
LPC_CUSTOMER
sales_order_items
LPC_ARCHNWED_PERSON

1

Add Uni rel. i Add Bi-direct Rel. 1 Remowe Uni rel. Remove Birel.

Close 1

Relationships panel

To add a uni-directional relationship, select an available type and click
on the Add Uni rel. button.

To add a bi-directional relationship, select an available type and click
on the Add Bi-direct rel. button

To remove arelationship, select arelationship and click on the
Remove Uni rel. or the Remove Bi rel. button.

If Remove Uni rel. is used against a bi-directional relationship, only the side of
the relationship from the type being edited is removed. Therefore, the other
side of the relationship is maintained. If Remove Bi rel. is selected, both sides
of the relationship are removed.

For uni-directional relationships, clicking on any of the Remove buttons will
delete the relationship.

36 -

Using the Workbench JdbcStore: a JDBC persistence framework

Editing a relationship

Y ou must also define the cardinality and the attributes participating in the
relationship. Double click on arelationship to edit it.

The Edit Relationship panel is where you further specify the relationship attributes.

[=2 E dit Relationship

Key control
From: customer To: sales_order
(s controls key i controls key
Cardinality i One-To-One s One-To-Many

Implementation [¥ bidirectional

Attriluntes
{Id -> Custid
Lhame _:j iﬁrder[)ate :_j
Add Mapping Remove Mapping 1
Done

Edit Relationship dialog

In this dialog you specify the following information:

controlling type — click on the controls key button under the type that
will control the keys of the relationship. In the sample screen, any
time a sales order is added to a customer, the sales order attribute
referring to the customer will be set from the value of the customer key
(since the customer type controls the key).

cardinality - select one-to-one or one-to-many

implementation - select the implementation box if it is a bi-directional
relationship (the value will have to be set based on whether Add Uni
rel. or Add Bi-direct rel. was selected.

attributes - to map the relationship attributes, select an attribute from
each combination box and click on the Add Mapping button. Multiple
attributes may be mapped in arelationship.

JdbcStore: a JDBC persistence framework

Using the Workbench - 37

To unmap attributes, select the mapping and click on the Remove
Mapping button.

Defining cataloged SQL statements

The Cataloged SQL statements panel is where you can specify cataloged (or
Loading) SQL statements.

[E3 CUSTOMER

Classes | Attributes | JOBC Mappings | Inheritance | Keys | Relationships Cataloged SQL |E||E|

— Cataloged Statements

AllCustomers
CustomersandOrders

Hame CustomersAndOrders

Add Delete |

select * from customer,sales order __*_f:_j
where customer.id = sales_order.custid
and OrderDate = 7

" r

Apphy 1 Cancel 1

Close 1

Cataloged SQL panel

Adding a statement

To add a statement, type in the name of the statement in the Name field and click
on the Add button.

Removing a statement

To remove a statement, select a statement in the list and click on the Delete button.

Editing a statement

To add or edit the SQL associated with a statement, type or modify the text in the
bottom text area and click on the Apply button.

To undo the changes click on the Cancel button.

38 - Using the Workbench JdbcStore: a JDBC persistence framework

You must click on the Apply button after modifying the SQL text.

You can use parameter markers in your SQL statements. You would then
supply the parameter values at runtime.

Choosing a caching strategy
Y ou can define a caching strategy for each type. Thisis done in the Caching panel.

f=3 CUSTOMER

Attributes | JDBC Mappings | Inheritance | Keys | Relationships | Cataloged QL ‘Caching | [

With this option, instances of the persistent class
are never cachei.

With this option, instances of the persistent class
are cached until the Java YM requires more
memory. This option is only availahble at run-time if
the YM supports weak references. i the Y does
not the instances will not he cached.

With this option, instances of the persistent class
are cached permanenthly and never garhage
collected. Do not use if you are going to
instantiate a large number of instances. Can bhe
useful for read-onhy ohjects.

" Mo Caching

& Dymamic Caching

i Permanent Caching

Close 1

Caching panel

Click on the appropriate button to select a caching strategy for the object type.

You can modify the caching strategy at runtime.

If the runtime Java VM is not Sun’s JVM, types using dynamic caching will not

use a cache.

JdbcStore: a JDBC persistence framework

Using the Workbench -

39

Generating classes

Once you have defined some types in your model, you can generate Java sourvce

code for your persistent classes.

To do so, select Classes from the Code Generation menu.

The following dialog will be displayed:

Egﬁ.ldhcﬁtme Waorkbench - Clazss Generation

Class Generation Settings

Directory Path

Development'comiipcjdbcstore_source'examples'classes

Package Hame

com.pc.jdbcstore.examples.classes

Available Types

JS_ARCHIVED_CUSTOMER |«
KEY_GEN_ORB

EMPLOYEE

JS_ARCHINED EMPLOYEE
JS_ARCHIVED_PERSON
SALES_ORDER

CUSTOMER

FIN_DATA

DEPARTMENT

Select All

Clear Selection

JS_CUSTOMER —
SALES_ORDER_ITEMS
JS_EMPLOYEE

FIM_CODE :j

Options

r‘; generate user classes

F generate persistent extensions

?:"" generate factory classes

;;;.r generate Bean Info

Generate Classes 1 Close ;

Class Generation dialog

The fields on the dialog should be filled as follows:

Directory Path - the directory where all the generated source files for
the classes will be stored

Package Name - the name of the package for the generated classes

generate user classes - select thisif you want to generate your business
classes (generally, the only time you will not want to generate them is
when you generate a type from an existing class)

generate persistent extensions - select thisif you want to generate
persistent extensions for the business classes (this should always be

selected)

generate factory classes - select thisif you want factories for your
classes (this should always be selected)

40 - Using the Workbench

JdbcStore: a JDBC persistence framework

generate Bean Info - select thisif you want to generate Beans for the
persistent classes

Select the types for which you want to generate classes and click on the Generate
Classes button. Check the Java console for messages.

A package name must always be specified for the generated classes. If you
have generated types from existing classes, use the package name of these
classes.

Generating SQL

If you have created types from scratch or generated them from classes, you can
generate SQL to create tables.

The SQL generation is accessed by selecting SQL DDL statements from the Code
Generation menu.

SQL DDL statements is only enabled after you connect to a JDBC data source
(it requires access to the data source to obtain information about SQL type
names, etc.)

The following dialog will be displayed.
E%%thcﬁtule Workbench - 50L DDL Generation

S0L Data Definition statements file name Save As .. }

SOL DDL Generation Settings

; ![:umﬁlncﬁjdhcstureﬁddllwurk.sql

Available Types

JS_ARCHNED_CUSTOMER
KEY_GEN_ORB
EMPLOYEE
JS_ARCHIVED_EMPLOYEE
JS_ARCHIVED_PERSON
SALES_ORDER
CUSTOMER

FIN_DATA

DEPARTMENT
JS_CUSTOMER =]

Select All | Clear Selection |

37 generate DROP TABLE ?‘7 generate CREATE TABLE
[V define PRIMARY KEY [¥ define FOREIGN KEY
[define UNIQUE INDEX on primary key

S0l statement separator ; ’

SOL staternent prefix ;

Generate DDL ! Close !

SQL DDL Generation dialog

JdbcStore: a JDBC persistence framework Using the Workbench - 41

In this dialog you can specify:

file name: the name of the file where the SQL will be stored (click on
the Save As button to display a File Dialog)

generate DROP TABLE - if selected, DROP TABLE statements will
be generated

generate CREATE TABLE - if selected, CREATE TABLE statements
will be generated

define PRIMARY KEY - if selected, PRIMARY KEY constraints will
be generated

define FOREIGN KEY - if selected, FOREIGN KEY constraints will
be generated

define UNIQUE INDEX on primary key - if selected, CREATE
UNIQUE INDEX statements will be generated (on the primary key
columns of the tables)

SQL statement separator - the string used to separate SQL statements
(e_g. “ ;” , " goﬂ)

SQL statement prefix - the string used to prefix SQL statements (e.g.
DB2)

Select the types for which you want to generate table definitions and click on the
Generate DDL button. Y ou can then review and edit the generated SQL file and
submit the SQL to your database.

Because of database peculiarities, you may have to modify the generated SQL
for your database.

Working with existing classes

JdbcStore can generate types from existing Java classes. Y ou use the Class Loader
dialog to load existing classes. It is accessible by selecting Class Loader from the
Java classes menu.

After selecting Class Loader, the following dialog will be displayed:

42 -

Using the Workbench

JdbcStore: a JDBC persistence framework

E\E’%Luad Clazses and generate atrribute information

Load Classes from Directory]i

Loaded Classes

Types Added to Model

com.ipc.jdbcstore.examples.classes.IpcProductBean
com.ipc.jdbcstore.examples.classes.IpcSalesOrder
com.ipc.jdbcstore.examples.classes.pcSalesOrderB
com.ipc.jdbcstore.examples.classes.pcSalesOrdertt
com.Ipc.jdbcstore.examples.classes.IpcSalesOrderkt
com.ipc.jdbcstore.examples.classes.ProductFactory
com.ipc.jdbcstore.examples.classes. ProductFactond
com.Ipc.jdbcstore.examples.classes.SalesOrder

com.ipc.jdbcstore.examples.classes.SalesOrderFact
com.pc.jdbcstore.examples.classes. SalesOrderitem
com.Ipc.jdbcstore.examples.classes. SalesOrderitem
com.Ipc.jdbcstore.examples.classes.Contact

com.Ipc.jdbcstore.examples.classes.SalesOrderitem

i~y Inc idhcetoro avamnloae claccoe ContactEactn
i 1

com.pc.jdbcstore.examples.classes.IpcProduct :j IProduct

[:um.ln[:.jdh[:sture.examnlEs.classes.SalesOrderFact—J

com.ipc.jdbcstore.examples.classes.ContactFactory =
» i

Remove | Edit Attrilutes

Close 1

Class Loader dialog

To load classes,

click on the Load Classes from Directory button. A file dialog

will be displayed. Select afile and click on the OK button. All of the Class

files from the di

rectory will be loaded.

You must select a f
the directory.

ile from the directory. This will load all of the classes from

To generate atype and add it to the model, select a class and click on the Add
To Moddl button

Toremove aty
Remove button

To define the fi

pe just added to the model, select the type and click on the

elds, setters and getters that the type should contain, select a

type and click on the Edit Attributes button

If a type with the name of the class already exists in the model, you must first

remove it before re

generating the type from the class.

Defining attr

ibutes

After clicking on the Edit Attributes button, the following dialog will be displayed:

JdbcStore: a JDBC persistence framework

Using the Workbench - 43

Egﬁ.ldhcﬁture Workbench - Clazs attributes Dialog

— Class information:

Public/Protected Fields Getter

getDescription
getColor

nptName

Setter

setDescription
setColor
sptName

Add Attribute to type |

RRAL

RAAL

Tyne attrilbutes

Getter

i getDescription

Setter

; setDescription

Remove Attribute |

Close]

Edit Attributes Dialog

to add an attribute to the type, select afield, a getter, a setter and click on the
Add Attribute to type button

to remove an attribute, select it and click on the Remove Attribute button

In the current version, only fields with getters and setters can be made
persistent. The next version of JdbcStore will remove the restriction to allow
all public and protected fields to be made persistent.

Obtaining version information

The About selection of the Help menu displays an information dialog. Please
report the version information when contacting L PC Consulting Services, Inc.

- Using the Workbench

JdbcStore: a JDBC persistence framework

[3 JdbcStore Workbench
JdbcStore (tm) Workbench

Version 1.0
(o] LAC Consufting Setvices, fnc 1997 1995

About Dialog

JdbcStore: a JDBC persistence framework Using the Workbench - 45

Basic Programming

Overview

To write a JdbcStore application, you need to complete the following steps:
load the appropriate JDBC driver
load the model containing the Javato JDBC mappings for your application
create and connect a broker to the JDBC URL
manipulate your persistent objects

close the connection to the broker

Using the LPCSqlDriver

The LPCSqlIDriver class encapsul ates the JDBC Driver class.

Loading a driver

Before you can connect to a database, you must load the appropriate JDBC driver
class.

The following example shows how to load adriver:

System out. println("Loadi ng dbAnywhere driver");

try {

LPCSql Dri ver. | oadDri ver ("symantec.itool s.db.jdbc.Driver”);
} catch (Exception e) {

Systemout.println("*** C ass not |oaded - " + e.getMessage());
}

Getting a list of loaded drivers

The LPCSystem static method drivers() returns a vector of loaded (i.e. registered)
java.sgl.Driver instances.

46 - Basic Programming JdbcStore: a JDBC persistence framework

To display alist of all the registered driver names, you can use:

Vector drivers = LPCSql Driver.drivers();

System out. println("Registered JDBC drivers");

for (int i =0 ; i < drivers.size() ; i++)
Systemout.println(drivers.elenentAt(i).getC ass().getNane());

}

Displaying driver information
Y ou can obtain version and JDBC compliance information from a driver.

The following is how you would display the version and JDBC compliance of the
driver you are using:

static LPCSql Driver driver ;
static String driverNane = "symantec.itools.db.jdbc.Driver";

afiver = LPCSql Driver. | oadDriver (driverName);

/1 Display the driver info

Systemout.println("Info for:" + driverNane);
Systemout.println("Major Version: " + driver.mjorVersion());
Systemout.println("Mnor Version: " + driver.mnorVersion());
Systemout. println("JDBC Conpliant?: " + driver.jdbcConpliant());

Working with models

Y our model contains all of the mapping information (including rel ationships)
between your Java classes and your database schema.

Y ou must always load your model in your JdbcStore application.

You load your model either from afile or an URL.

If you are using Java Beans, you can use the model directly as a Bean, since
models are stored as serialized instances of LPCModel .

Loading from a file

To load your model from afile use the LPCSystem static method
loadM odel FromFile(String fileName).

The following example shows how to load a model from afile:

JdbcStore: a JDBC persistence framework Basic Programming - 47

/1 Load the nodel
static String fileNane =
"\\ Devel opnent\\com\ | pc\\j dbcst or e\ \ nodel s\\ Sanpl eModel . ser";

try {
LPCSyst em | oadMbdel FronFi |l e(fil eNane) ;

System out. println("Mdel |oaded");
} catch (Exception e) {
e.printStackTrace();
Systemout.println("Error |oading nodel: " + e.getMssage());

Loading from an URL

To load your model from afile, use the LPCSystem static method
loadM odel FromURL (URL url).

The following example shows how to load a model from an URL:

try {
url = new URL

"file:///e:/Devel opment/cont | pc/jdbcst ore/ nodel s/ Sanpl eMbdel . ser");

LPCSyst em | oadvbdel FromJRL(url);
System out. println("Mdel |oaded");
} catch (Exception e) {
e.printStackTrace();
Systemout.println("Error |oading nodel: " + e.getMssage());

}

Using a LPCSqlOrb

The broker is the class that allows you to interface to a JDBC compliant data base.

To create a broker, you need to create a new instance, as in the following:

[broker = new LPCSgl Orb();

Connecting a broker directly

To connect to a JDBC compliant database, you need to supply some information
such as URL, userid and password. In addition, there may be other information
required by the JDBC driver.

In JdbcStore, all of thisinformation is encapsulated by a LPCConnectioninfo
instance. When the driver you are using requires standard information, you may
use the LPCBroker directly to specify the information.

The following example shows how to connect a broker:

48 -

Basic Programming

JdbcStore: a JDBC persistence framework

static public String url =

"j dbc: dbaw: / /1 ocal host : 8889/ WAt com SQL Anywhere 5.0 Sanpl e/ SQL
Anywhere 5.0 Sanple";

static public LPCSgl Orb broker;
System out. println("Connecting the broker");

try {

br oker = new LPCSql Orb();

broker.setUrl (url);

br oker. set User ("dba") ;

br oker. set Password("sql ") ;

br oker. connect () ;
} catch (Exception e) {

System out. println("Broker not connected - " + e.getMessage());
}

Connecting a broker using LPCConnectioninfo

If you need to supply more information than an URL, userid and password, use a
LPCConnectioninfo to supply the connection keys and values.

The following example shows how to use the L PCConnectioninfo:

static public String url =
"j dbc: dbaw: / /1 ocal host : 8889/ WAt com SQL Anywhere 5.0 Sanpl e/ SQL
Anywhere 5.0 Sanple";

static public String user = "dba";
static public String password = "sql"
static public LPCSgl Orb broker;

System out. println("Connecting the broker");
try {
LPCConnecti onl nfo connectionl nfo = new LPCConnecti onlnfo();
connectionlnfo.url (url);
connectionl nfo. property("user", user);
connecti onl nfo. property("password", password);

broker = new LPCSql Orb();
br oker . set Connecti onl nf o(connecti onl nfo);
br oker. connect () ;
} catch (Exception e) {
System out. println("Broker not connected - " + e.getMessage());
}

Disconnecting a broker

Y ou should disconnect the broker before exiting your application. The following
exampl e shows how to disconnect a broker:

/1 disconnect the broker
System out. println("Di sconnecting the broker");
try {
br oker. cl ose();
} catch (Exception e)
System out. println("Broker disconnect error - " + e.getMessage());

JdbcStore: a JDBC persistence framework Basic Programming - 49

Transaction control

In the JIDBC AP, transaction control is handled by ajava.sgl.Connection. In
JdbcStore, it is the responsibility of the LPCSglBroker.

Turning autocommit on/off

To turn autocommit on or off, use setAutoCommit:

/1 turn auto commit off
Systemout.println("turn auto conmt off");
try {
br oker. set Aut oComnmi t (f al se);
} catch (Exception e) {
Systemout.println("Broker auto commit error - " + e.getMessage());
}

Autocommit should always be turned off when updating databases through
JdbcStore.

Commiting transactions

Use commit to commit a transaction:

/1 commit work
Systemout.println("comitting transaction");
try {
broker.comit();
} catch (Exception e) {
Systemout.println("comit error - " + e.getMssage());
}

Rolling back transactions

Use rollback to rollback atransaction:

/1 commit work
Systemout.println("comritting transaction");
try {
br oker. rol | back();
} catch (Exception e) {
Systemout.println("roll back error - " + e.getMessage());
}

Working with factories

Factories are generated JdbcStore classes that allow you to create new instances of
your persistent Java classes and to fetch existing ones from your JDBC compliant
databases.

A factory is created for every object type defined in your model.

50 - Basic Programming JdbcStore: a JDBC persistence framework

Creating factories

To create afactory, create a new instance and associate the newly created factory
with a broker:

Systemout.println("Creating the factory");
cust oner Factory = new Cust oner Factory();
cust oner Fact ory. br oker (br oker);

Before attempting to store or fetch objects through a factory, it must be
associated with a broker.

Creating new persistent instances

To create a new persistent instance, you use the factory method newlinstance. This
will create an instance of the persistent extension and will mark it as new.
Therefore when the new instance executes store, a new row will be inserted in the
database.

The following example shows the creation of a new instance and its insertion in the
database:

System out.println("Creating custoner");
try {
| pcCustomer c¢ = custoner Fact ory. new nst ance(new Cbject[0]);
.set Lnane(" Charpentier");
.setCity("Don M11s");
.setld(new I nteger(9001));
set ConpanyNane("LPC Consul ting Services, Inc.");
. set Phone(" (416)510-2015");
. set Fnane(" Luc");
.setZip("MA 1IN1");
.set Address("7 Geraldine Ct");
.setState("ON");
c.store();
} catch (Exception e) {
e.printStackTrace();
ystemout.println("Factory creation error - " + e.getMessage());

O0O0OO0000O0O0

The newlnstance method takes an array of objects (Object []) as an argument. You
should supply the arguments required by your class constructor or an empty array
for a no-argument constructor.

Note that you can use your Java class (e.g. Customer) instead of its persistent
extension. In this case, you must type cast the instance back to its persistent
extension (e.g. IpcCustomer) before using any of the methods defined in the
LPCPersistent interface.

Fetching objects

Factory instances implement the fetching protocol in JdbcStore. This protocol
offersarich set of options that will meet most of your requirements for retrieving
objects from your database.

JdbcStore: a JDBC persistence framework Basic Programming - 51

In addition, you can use arbitrary SQL statements for retrieving objects. This
allows you not only to fetch using SQL features not explicitly supported by the
factory protocol (e.g. correlated subqueries, joins, etc.) but also to instantiate related
objects immediately.

All fetch methods return a vector of instances.

Fetching all instances
To fetch all instances of a class from a database, use fetchAll.

In the following example, we fetch all of the customers and display their ID, first
name and last name;

Systemout.println("Creating the factory");
cust oner Factory = new Cust oner Factory();
cust oner Fact ory. br oker (br oker);

Systemout.println("Fetching all the rows");
try {
| pcCust oner e;
Vector v = custonerFactory.fetchAll ();
for (int i=0; i < v.size(); i++) {
e = (Il pcCustomer) v.elenmentAt(i);
System out. printl n(
e.getld() +" " + e.getLname() + " " + e.getFnane());

}
} catch (Exception e) {
e.printStackTrace();
Systemout.println("Broker fetch error - " + e.getMessage());

Since the fetchAll method returns a vector of object, you must cast each object
to the appropriate persistent type.

Fetching by key

All persistent instances must be uniquely identified by akey. Thisisrequired to
guarantee the uniqueness of the stored instances in the database as well as the
maintenance of relationships.

This key can be generated automatically by the database (e.g counter, sequences or
identity), by JdbcStore or assigned by the application.

The fetchForK ey method returns an instance of a persistent object.

In the following example we fetch a customer (the key is the ID):

52 -

Basic Programming

JdbcStore: a JDBC persistence framework

Systemout.println("Fetching...");
try {

| pcCust oner e;

Obj ect[] key = new Object[1];

key[0] = new | nteger(101);

e = (I pcCustomer) custonerFactory. fetchForKey(key);

System out. printl n(

e.getld() +" " + e.getLname() + " " + e.getFnane());

} catch (Exception e) {

e.printStackTrace();

Systemout.println("Broker fetch error - " + e.getMessage());

}

The argument of the fetchForKey method is an array of objects (Object[]). Inthis
array you should store the key value(s).

Since the fetchForKey method returns an object (Object), you must cast the
object to the appropriate persistent type.

If caching is turned on for the type, fetchForKey will first check the cache. If a
matching instance is found, then it will return the cached instance.

Fetching using arbitrary search values (=)

When you want to fetch instances using equality on arbitrary fields use
fetchAllUsingAttributesValues.

This method requires two arguments:
an array of attribute names (String [])
an array of attribute values (Object [])
The instances having matching values (using equality) will be returned.

In the following example, we fetch all customers residing in California:

Systemout.println("Fetching...");
try {
| pcCust oner e;
String attribs[] = { "State" };
Obj ect val ues[] = new bject[1];
val ues[0] = "CA";
Vector v =
custonmer Factory. fetchAl | Usi ngAttri butesVal ues(attribs, val ues);

for (int i=0; i < v.size(); i++) {
e = (Il pcCustomer) v.elenmentAt(i);
System out. printl n(
e.getld() +" " + e.getLname() + " " + e.getFnane());

}
} catch (Exception e) {
e.printStackTrace();
Systemout.println("Broker fetch error - " + e.getMessage());

Ordering result sets
If you want to order the results, use fetchAllUsingAttributesV aluesOrderBy.

In addition to the array of attribute names and values, the third argument specifies
the attributes that will be used to sort the result set.

JdbcStore: a JDBC persistence framework Basic Programming - 53

Therefore, the method takes three arguments:
an array of attribute names (String [])
an array of attribute values (Object [])

an array of {attribute name, sorting order (“asc” or “desc”)} for
sorting (String [] [1)

In the following examples, the returned vector of customers will be ordered by the
attributes Fname and description:

Systemout.println("Fetching...");
try {
| pcCust oner e;
String attrlbs[] ={ "State" };
Obj ect val ues[] = new bject[1];
val ues[0] = "CA";
String orderBy[][] ={ {"Fname", "desc" } };
Vector v = custonerFactory. fetchAI | Usi ngAt tri but esVal uesOr der By(
attribs, val ues, orderBy);

for (int i=0; i < v.size(); i++) {
e = (Il pcCustomer) v.elenentAt(i);
System out. printl n(
e.getld() +" " + e.getFname() + " " + e.getLnane());

}
} catch (Exception e) {
e.printStackTrace();
Systemout.println("Broker fetch error - " + e.getMessage());

Fetching using arbitrary operators

If you need to fetch instances using an operator other than equality, use
fetchAllUsingAttributesV aluesOperatorsOrderBy.

This method requires four arguments:
an array of attribute names (String [])
an array of attribute values (Object [])
an array of operators (String [])

an array of {attribute name, sorting order (“asc” or “desc”)} for
sorting (String [] [1)

In the following example, we fetch all customers whose first name begins with A
and whose ID > 102 (the results are ordered by first name):

54 . Basic Programming JdbcStore: a JDBC persistence framework

Systemout.println("Fetching...");

try {
| pcCust oner e;

String attribs[] = { "Fnane", "1d" }

Obj ect val ues[] = new bject[2];

val ues[0] = "A%;

val ues[1] = new | nteger(102);

String operators[] ={ "like", ">" };
String orderBy[][] = { {"Fnanme", "asc" } };
Vector v =

cust oner Factory. fet chAl | Usi ngAttri but esVal uesQOper at or sOr der By(
attribs, values, operators, orderBy);

for (int i=0; i < v.size(); i++) {
e = (Il pcCustomer) v.elenmentAt(i);
System out. printl n(
e.getld() +" " + e.getFname() + " " + e.getLnane());

}
} catch (Exception e) {
e.printStackTrace();
Systemout.println("Broker fetch error - " + e.getMessage());

Fetching using SQL queries

JdbcStore includes a facility (called the row broker) to handle fetches using arbitrary
SQL queries. There are three main reasons you may want to use this facility:

using complex selection criteria not handled by the fetch methods (e.g.
correlated and nested subqueries, etc.)

immediate instantiations of object and their associations by using join
queries
performance

When you use joins in arbitrary SQL queries, JdbcStore will instantiate the main
objects of the query as well as any associated mapped objects retrieved by the query.
For example, if you need to get sales orders as well astheir sales order items (let’s
say for areport) it is much more efficient to use ajoin query. If you do not use one,
then for each sales order JdbcStore will issue a query when accessing its sales order
items. When using the join query, one call to the dabase is required to fetch both
sales orders and their associated items.

Arbitrary SQL queries can either be submitted through a string in the application or
statements can be defined at design time in the workbench (cataloged SQL).

Just like the fetch method, a factory implements the fetching using abritrary SQL
statements. In addition, JdbcStore requires you to specify three items:

the SQL query

the parameter values (use ? in the SQL statement as place holder for a
parameter)

the related types which the query should instantiate

Using AdHoc SQL
To execute an Adhoc SQL statement, use the factory method fetchUsingSql.

The following example fetches and displays sales orders and their order items:
First we create the factories

JdbcStore: a JDBC persistence framework Basic Programming - 55

Systemout.println("Creating the factory");

Sal esOrder Factory sal esOrder Factory = new Sal esOrder Factory();
sal esOr der Fact ory. br oker (br oker);

Sal esOrderltensFactory sal esOrderltensFactory = new

Sal esOrderltenmsFactory();

sal esOrderltensFactory. broker (broker);

Then we define the related object types. |In this case
the main object type is SalesOrder. W wll then

i nvoke fetch on its factory. The related object types
consi st of the Sal esOderltens.

LPCnj ect Type[] rel atedTypes = new LPCObj ect Type[1];
rel at edTypes[0] = sal esOrderltensFactory. baseType();

W then invoke fetchUsingSql. Since the query has no
paranmeters, we pass the enpty array val ues for
par anmet er val ues.

| pcSal esOrder order;

| pcSal esOrderltens item

Vector itens;

Obj ect[] values = new bject[O0];

Vector result;

result = salesOrderFactory. fetchUsi ngSqgl (sql, val ues, rel atedTypes);

System out. println("number of orders: " + result.size());

Now JdbcStore has instantiated both the Sal esOrder and
the SalesOrderltens. No further calls to the database
are required fromthis point on.

for(int i=0;i<result.size();i++) {
order = (Il pcSal esOrder)result.elementAt(i);
System out. printl n(
"id: " + order.getld() + " region: " + order.getRegion());
items = order.getSal esOrderltenss();
for(int j=0;j<itens.size();j++) {
item= (lpcSalesOrderltens)itens.elenentAt(j);
System out. printl n(
" id: " + itemgetLineld() + " product:
+ itemgetProdld());

Using persistent instances (LPCPersistence protocol)

Updating and inserting new instances

Persistent objects know whether they have been modified or created. To store an
object, you need to storeit. If the object has been modified or created, the
appropriate calls will be issued to update the database.

In the following example, we create and store a customer:

56 - Basic Programming JdbcStore: a JDBC persistence framework

| pcCustomer c¢ = custoner Fact ory. new nst ance(new Cbject[0]);

c.setLnane(" Charpentier");
c.setCity("Don MI1s");
c.setld(new | nteger(9001));

c. set ConmpanyNane("LPC Consul ting Services, Inc.");
c. set Phone("(416)510-2015");
c.set Fnane("Luc");
c.setZip("MA 1INL");

c.set Address("7 Geraldine Ct");
c.setState("ON');

/] store

c.store();

In this example we update al the sales orders.

Vector si = s.getSalesOrderltenss();
for (int k =0; k <si.size() ; k++) {
I pcSal esOrderltens oi = (|l pcSalesOrderltens) si.elenmentAt(k);

/] update quantity
oi . setQuantity(new I nteger(oi.getQuantity().intValue() + k));

/] store
oi .store();

Deleting instances

Deleting persistent instances is almost as simple as updating or inserting. Since the
framework cannot get the objects that should be deleted, first mark them for
deletion using the markDeleted method.

The following example illustrates deletions. We remove the customer and the sales
orders created in the previous example:

Systemout.println("Creating the factory");
cust oner Factory = new Cust oner Factory();
cust oner Fact ory. br oker (br oker);

| pcCust oner c;

Systemout.println("Fetching...");
try {
Obj ect[] key = new Object[1];
key[0] = new I nteger (9001);
¢ = (Il pcCustomer) custonerFactory.fetchForKey(key);
Systemout.println("to be deleted: " + c.getld() + " " +
c.getlLnane() + " " + c.getFnane());
c. mar kDel et ed();

/1 get the sales orders

Vector sal esOrders = c.getSal esOrders();

for (int i =0 ; i < salesOders.size() ; i++) {
| pcSal esOrder s = (I pcSalesOrder) salesOrders. el enent At (i);
s. mar kDel et ed() ;
s.store();

}

c.store();
} catch (Exception e) {
e.printStackTrace();
Systemout. println("Broker fetch/store error - " + e.getMessage());

JdbcStore: a JDBC persistence framework Basic Programming - 57

Working with relationships

When you define a model, you define the rel ationships between your objects. These
relationships may be defined as one-to-one or one-to-many and may be
implemented by uni-directional or bi-directional links.

In our sample database, we have customers who have one or model sales orders.
Each sales order is associated with only one customer. In turn, a sales order has
zero or more sales order items. Each sales order item is associated with one
product.

Fetching related objects

To fetch related objects, you need to use the accessor provided for the relationship.
This generated accessor is named as follows:

getClassName - for one-to-one relationships where ClassName is the
name of the class for the associated object

getClassNames - for one-to-many relationship (plural form of the one-
to-one relationship)

One-to-many relationships return a vector; one-to-one relationships return an
object.

In the following example we display all of the customers, their sales orders with
sales order items and the product description.

The relationships are accessed using:
getSalesOrders(): returns a vector of sales orders
getSalesOrderltems: returns a vector of sales order items

getProduct(): returns a product

58 -

Basic Programming

JdbcStore: a JDBC persistence framework

Systemout.println("Fetching all the rows");
try {

| pcCust oner e;

Vector v = custonerFactory.fetchAll ();

/1 for each customer

for (int i=0; i < v.size(); i++) {
e = (I pcCustomer) v.el enent At (
Vector so = e.getSal esOrders()
System out. println(e. get Lnanme(

i);
O
)+

"+e. get Fnane());

/1 for each sales order
for (int j=0; j < so.size() ; j++) {
| pcSal esOrder s = (I pcSalesOrder) so.elementAt(j);
System out. printl n(
“\t"+ s.getld() +" " + s.getOrderDate());
Vector si = s.getSal esOrderltenss;

/1 for each sales order item
for (int k =0; k < si.size() ; k++) {
| pcSal esOrderltems oi =
(I pcSal esOrderltens) si.elenmentAt(k);
System out. printl n(
"\t\t" + oi.getProduct().getDescription()
+ " " + oi.getQuantity());
}
}
Systemout. println();

}
} catch (Exception e) {
e.printStackTrace();
Systemout.println("Broker fetch error - " + e.getMessage());

}

That's all thereistoit. You need to use the relationship accessor to fetch related

objects. If the relationship has already been instantiated, the objects are returned.

Otherwise, they are fetched from the database and then returned.

Adding a relationship instance (one-to-many)

JdbcStore creates methods to add and remove new instances of a relationship.
These medhods are generated in the extension class.

To add an instance of a one-to-many relationship, use addClassName where
ClassName is the name of the class (e.g. the many side of the relationship).

In the following example, we add a sales order to our newly created customer.

| pcCust omer c

/1 c.r“eati ng sal es order
| pcSal esOrder s = sal esOrder Fact ory. newl nst ance(new Obj ect[0]);

/!l add it to the custoner
c. addSal esOrder (s);

.setCustld(c.getld());

.setld(new I nteger(1));

.set OrderDate(new j ava. sql . Date(SystemcurrentTimeMIlis()));
.set Fi nCodel d("r1");

.setRegion("Central ");

. set Sal esRep(new | nteger(195));

.store();

nunmnunnnon

JdbcStore: a JDBC persistence framework Basic Programming -

59

Removing a relationship instance (one-to-many)

The generated method to remove a relationship instance is removeClassName
where className is the name of the related class (e.g. the many side of the
relationship).

In the following example, we remove the relationship we added in the previous
example:

¢ = (Il pcCustomer) custonerFactory. fetchForKey(key);
Vector sal esOrders = c.getSal esOrders();
for (int i =0 ; i < salesOders.size() ; i++) {
| pcSal esOrder s = (I pcSalesOrder) salesOrders. el enent At (i);
if (s.getld().equals(new Integer(1))) {
/'l remove fromrelationship and del ete
c.renoveSal esOrder(s);
s. mar kDel et ed() ;
s.store();

}

}

Note that removing a relationship instance and storing the object from which
the instance was removed, DOES NOT STORE (AND DELETE) the removed
object. You must explicitly invoke store on the removed object to remove it
from the database

Adding/Setting a relationship instance (one-to-one)

To add an instance of a one-to-one relationship, use setClassName where
ClassName is the name of the other class involved in the relationship.

In the following example, we add the product to a sales order item:

| pcSal esOrderltens i = sal esOrderltensFactory. new nstance(
new Object[0]);

i.setProdl d(new I nteger(300));

Obj ect[] o = new Object[1];

o[0] = new I nteger(300);

/1 fetch and set the product

| pcProduct p = (I pcProduct) productFactory.fetchForKey(o0);

i .setProduct(p);

i.store();

Removing a relationship instance (one-to-one)

To remove an instance of a one-to-one relationship, just invoke the setter with no
arguments.

Vector salesOrderltens = s.getSal esOrderltenss();
for (int j =0 ; j < salesOderltens.size() ; j++) {
| pcSal esOrderltens soi = (I pcSal esOrderltens)

salesOrderltens. el ement At (j);
/1 remove product relationship
soi . set Product () ;
soi .setProdld(null);
soi . mar kDel et ed() ;
soi.store();

60 - Basic Programming JdbcStore: a JDBC persistence framework

Caching

Caching overview

JdbcStore allows you to cache your objectsin caches. There are two main reasons to
use the cache:

performance

retrieval by key will first check whether the object isin the cache. If
so it will be retrieved from the cache and no calls will be issued to the
database. If not the object will be fetched from the database and
cached.

managing instances

when you do not use a cache, two retrievals of the same objects will
produce two (different) instances (i.e. you will end up with two objects,
whose attribute values are equal). In this case, you are responsible for
managing these duplicate instances.

When using the cache for any retrieval, JdbcStore will check if the
object is already present in the cache (for non-key retrieval, this occurs
after the fetch). If the object is already in the cache, the cached object
is substituted in the result vector. Therefore, you will always have one
single instance of an object in your application.

JdbcStore supports both a permanent and a dynamic cache:

permanent cache

the static cache is implemented using a hash table. Therefore, after an
object is cached, it will not be garbage collected until the cacheis
flushed.

This type of cache is appropriate for small sets of non-volatile objects.

dynamic cache

the dynamic cache is implemented using Sun’s VM extensions (i.e.
sun.misc.Cache). If you have specified this cache and it isavailablein
the runtime environment of your application, then it is used.
Otherwise, no cacheis used.

When you use this cache, unreferenced cached objects will be garbage
collected as needed by the Java VM.

You can detect whether dynamic caching is supported at runtime. If it is not
supported, you may set the cache type of the objects to a static cache instead of
a dynamic cache. If you do so remember to flush the cache periodically.

Caching and cache options are defined for each object type in your model. You
could therefore create an application using a static cache for small static sets of
objects, dynamic caching for your business objects, and no caching for descriptive
objects.

Dynamic cache availability

There are three constants defined in LPCCache. These can be used to set the type
of cache used by an object type.

JdbcStore: a JDBC persistence framework Basic Programming - 61

NULL_CACHE - no caching
DYNAMIC_CACHE - cache using sun.misc.Cache
PERMANENT_CACHE - cache using a hashtable

Y ou can check whether DYNAMIC_CACHING is available by invoking
LPCSystem.sunCacheAvailabl&).

The following example checks the dynamic cache availability and sets the
appropriate caching for the Customer object type:

cust oner Factory = new Cust oner Factory();
cust oner Fact ory. br oker (br oker);

/1 check if Dynam c caching is available
if (LPCSystem sunCacheAvail able()) {
System out. println("Dynam ¢ caching is avail able");
cust oner Fact ory. baseType() . cacheType(LPCCache. DYNAM C_CACHE) ;
} else {
System out. println("Dynam ¢ caching is not available");
cust oner Fact ory. baseType() . cacheType(LPCCache. PERMANENT_CACHE) ;

Displaying cache statistics
Y ou can obtain the number of cache hits and misses from the object type.

The following example displays the cache hits and misses for the customer type.

/1 Display cache hits and m sses

Systemout.println("Before flush - Cache hits: " +
cust oner Fact ory. baseType() . cache().cacheHits());
Systemout.println("Before flush - Cache m sses: " +

cust oner Fact ory. baseType() . cache().cacheM sses());

Flushing the cache
Y ou can empty the cache by using flush().

/1 flush the cache
cust onmer Fact ory. baseType(). cache().flush();

62 - Basic Programming JdbcStore: a JDBC persistence framework

When you flush the cache, non-referenced instances will be candidates for
garbage collection. However, referenced instances will be removed from the
cache but will not be candidates for garbage collection. When using a

permanent cache, you should ensure that no references point to any persistent
cached objects in a cache before flushing it.

There is no need to flush the dynamic cache.

JdbcStore: a JDBC persistence framework Basic Programming - 63

Beans

JdbcStore Beans

JdbcStore supplies the following BeanInfo classes

L PCFactoryBeaninfo - a BeanInfo class used by all of the generated
factories

LPCSqglOrbBeaninfo: a Beaninfo class for the LPCSglOrb class.

JdbcStore also generates Beanlinfo classes for all of the generated factories (if
selected in the workbench).

Java Beans support will be refined in future versions of the product.

JdbcStore: a JDBC persistence framework Beans -

65

Advanced Programming

Accessing JDBC connection information

A java.sgl.Connection provides a number of methods to access information
regarding a JDBC connection. Information can be obtained either directly through
the java.sgl.Connection (e.g. getTransactionl solation, getCatalog, etc.) or through a
java.sgl.DatabaseM etadata obtained through getM etaData.

The LPCSqglConnection class encapsul ates the java.sgl.Connection class.

Use the accessor connection to access the instance of LPCSglConnection associated
with a broker.

Use the LPCSglConnection method getM etaData() to obtain an instance of
DatabaseM etaData (see the IDBC APl documentation for its protocal).

Using model and type meta-data

The JdbcStore model and type protocols alow you to access al of the mapping
information at runtime. Y ou can use thisinformation to develop generic code to
handle any type and its relationships.

The SampleApplication uses this information to display any type, its relationships
and handle the creation, deletion and modification of persistent objects.

Retrieving types

To retrieve the type names contained in a model, you can use the model method

typeNames().
String[] typeNames = nodel .typeNanmes();
for (int i=0; i < typeNanes.length; i++) {

typelLi st. addltem(typeNanmes[i]);

}

Once you have the name of the type, you can use the method typeNamed to obtain
the instance of the LPCObjectType.

|LPCO)j ect Type o = nodel . typeNamed(typelLi st.getSelectedltem());

JdbcStore: a JDBC persistence framework Advanced Programming - 67

Getting type information
From atype, you can obtain information about its attributes and relationships.
The following methods can be used:

allAttributes - returns all of the attributes (including inherited ones)
from the type. Instances of LPCALttribute are returned.

allRelationships - returns all of the relationships (including inherited
ones) from the type. Instances of LPCODbjectTypeRelationship are
returned.

attributes - similar to all Attributes but including only the ones defined
in the type (no inheritance).

relationships - similar to allRelationships but including only the ones
defined in the type (no inheritance).

Using attribute information
An LPCAttribute contains information about its Java and database types.
Y ou can use the following methods:

columnName - the name of the mapped column

fieldName - the name of the mapped Javafield

gettter - the method (java.lang.reflect. M ethod) used to retrieve the
field value

javaType - an instance of L PCJavaType describing the mapped Java
field

jdbcType - and instance of LPCJdbcType describing the mapped JDBC
column

setter - the method (java.lang.reflect.Method) used to set the field
value

With aLPCJavaType, you can obtain the class of the Javafield by using the
method: typeClass().

Using relationships information

When working with a LPCODbjectTypeRelationship, you can use the following
methods:

isOneToMany() - answers true if the relationship is one-to-many
isOneToOne() - answers true if the relationship is one-to-one

relatedObjectType() - the LPCObjectType participating in the
relationship

68 - Advanced Programming JdbcStore: a JDBC persistence framework

Sample application
The JdbcStore sample application alows you to edit any persistent types defined in

amodel.
23 Sample Application =]
JS_ARCHIED_CLUSTOMER |~
KEY_GEM_CORB
EMPLOYEE

J5_ARCHMNED_EMPLOYEE
J5_ARCHMNED_PERSOM
SALES_ORDER

CLUSTOMER
FIN_DATA
DEPARTMEMNT
JS_CLISTOMER
SALES_ORDER_ITEMS
JS_EMPLOYEE
FIMN_CODE
JS_PERSOMN a
CONTACT
FRODUCT

{ =il hd il 0 T rmme "t
AL T e L T

Sample Application
To load and connect the model, click on the Load Model & Connect button
To view and edit instances, select atype and click on the View Data button.

The sample application uses the example settings. See “Changing the example
settings” in the “Customizing the examples” chapter of this manual.

A typeisdisplayed using the LPCTablePand.

JdbcStore: a JDBC persistence framework Advanced Programming - 69

f=3 CUSTOMER =] E3
Lnarme City Fhaone Carmpany... Relationships

Crevlin Rutherford [20155589668 (The Power .. || %]

Reiser Mework 2125558725 |AMF Corp. SALES—DRDERi

Miedringhaus|{Faali 2155556513 |Darling Ass...

Mason krnowville F155555463 |P.5.C. |

Wl Carthy Carmel 3175558437 |Amo & Sons

Fhillips Middletowen (2035553464 |Ralstan Inc.

Calburn Raleigh 9195555152 |The Home ...

Gofarth Chattanooga (6155558926 |Raleigh Co.

Gagliardo Hull 31955549539 |MNewton Ent.

Adliori Columbus |B1455524968 [The Pep Sq...

Ricei Svracuse 3155554486 \Dynamics I...

mecDonough [Brooklyn Fark)6125555603 \MchManus Inc.

kaiser Minneapolis (6125553408 |Lakes Inc.

Chopp St Paul F125556453 Howard Co.

Fhillips St Paul B126556425 |Sterling & Co.

Gugliuzza Mamaraoneck (9145553817 |Sampson &

Maorgan Westerville [E145558985 |Sgquare Spo...

E;sinfnrd Ralaigh Q1955551452 Raleiuhﬂatti.;

id_c_i_] Modify]

Refresh 1 Print 1

Sample table display

The relationships and attributes are retrieved dynamically from the type.

Y ou can then edit the instances:

=4 Modify CUSTOMER

Lhame

City

Phone
Campanyhlarme
Address

Zip

Frame

State

I [=] E3

Gofarth

Chattanooga

6155553926

RFaleigh Co.

11801 Wayzata Bivd.

T4

M atthiew

T

_EE] Cancel]

Sample type edit dialog

From the table display, you can also print out the table entries by clicking on the

Print button.

70 -

Advanced Programming

JdbcStore: a JDBC persistence framework

The sampl e application demonstrates the power of using type meta -data to develop
generic components.

Swing (JFC) components

The current version of JdbcStore supports the JFC JTable. Other JFC components
will be supported in the future.

The following classes are implemented:

com.lpc.jdbcstore.run.LPCJTableDataModel - this extends the JFC
AbstractTableModel

com.lpc.jdbcstore.swingUI.LPCTablePanel
The table panel is used to display persistent instances.

To useit, do the following:

| pcTabl e = new LPCTabl ePanel ();

LPCJTabl eDat avbdel dat aMbdel = | pcTabl e. get Dat aMbdel () ;
dat aMbdel . set Factory(factory);

dat aMbdel . set Rows(rows) ;

First we create anew LPCTablePanel. This tablePanel will then create its own
instance of atable model.

Then we specify in the Table data model the factory class and the rows of the type to
be displayed.

That’s all thereistoit. With very few lines of code you can display persistent
instances in atabular format.

See the Java document and the sample application for more details.

Customizing code templates

JdbcStore uses templates to generate classes. These templates are located in the
directory: com\lpc\jdbcstore\workbench\lpctempl ate\default.

The code generation relies on substitution of place holders to substitute appropriate
values such as field and method names, etc.

/1 Attribute property descriptor

pd = new PropertyDescriptor (" %ATTRI BUTE_NAMEY , beanCl ass,
"UGETTER NAMEY |, "YSETTER_NAMVEY) ;

pdVect or . addEl emrent (pd) ;

PropertyDescriptorTemplate.java

To customize atemplate, create a new directory and copy the contents of this
directory into it (you can set the template directory in the workbench through the
settings dialog).

Do not modify the place holder names (%0 XXXX%) .

JdbcStore: a JDBC persistence framework Advanced Programming - 71

Delivering JdbcStore
Applications

Java applications

When you deliver a JdbcStore application, you need to provide the following:

acopy of your mode! (for applications, you can load using
loadFromFile)

the classes from com.lpc.jdbcstore.run

the classes from com.Ipc.jdbcstore.swingUl (required only if your
application uses the JdbcStore swing components)

any class required by your application

You cannot (and do not need to) release any classes from the workbench
directory.

Java Applets

When you deliver a JdbcStore application, you need to provide the following:
alink to your model (you will need to use loadFromURL)

the classes from com.lpc.jdbcstore.run and com.lpc.jdbcstore.swingUl
(required only if your application uses the JdbcStore swing
components)

any class required by your application

Y ou may want to repackage the classes into JAR files. Some browsers currently do
not support dependencies between JAR files. In this case you will need to package
all the classes into one JAR file.

You cannot (and do not need to) release any classes from the workbench
directory.

JdbcStore: a JDBC persistence framework Delivering JdbcStore Applications - 73

Working with the examples

Examples overview

JdbcStore includes a number of examplesto illustrate the use of its class libraries.
The Javafiles for the samples are located in the directory:
com\Ipc\jdbcstore_source\examples.

Thefilesincluded are:

AutoKeyGenerationDatabase

This example illustrates the use of keys generated by the database. It usesthe
sample table KEY_GEN_DB.

AutoKeyGenerationOrb

This example illustrates the use of keys generated by the broker. It uses the sample
table KEY_GEN_ORB.

BidirectionalExample

This example illustrates the use of bi-directional relationships. It uses the tables
CUTOMER and SALES ORDER.

BrokerConnectExample

This example shows how to connect a broker using the connectionlnfo class.

CacheExample
This example demonstrates setting the caching strategy at runtime.

74 .

Working with the examples

JdbcStore: a JDBC persistence framework

DeleteExample

This example shows how to remove stored instances.

You should run the InsertCustomerExample before running this example.

DirectDriverConnectExample

This example shows how to connect a broker without using the connectioninfo
class.

DriverExample

This example shows how to obtain information on registered JDBC drivers.

FetchAllExample

This example shows how to use the Factory fetchAll method.

FetchForKeyExample
This example demonstrates fetching instances by key.

FetchUsingAttributesValuesExample

This example demonstrates fetching instances using arbitrary attributes.

FetchUsingAttributesValuesOperatorsOrderByExample

This example demonstrates fetching instances using arbitrary attributes and
operators (i.e. operators other that “=").

FetchUsingAttributesValuesOrderByExample

This example demonstrates fetching instances using arbitrary attributes and sorting
the instances returned.

InsertCustomer

This example shows how to create new persistent instances.

JdbcStore: a JDBC persistence framework Working with the examples - 75

InsertJsCustomer

This example shows how to create new persistent instances that inherit from a
superclass.

InsertJsEmployee

This example shows how to create new persistent instances that inherit from a
superclass.

LoadModelFromFile

This example loads a model from alocal file.

LoadModelFromUrl

This example loads a model using an URL.

LPCTableExample

This example uses the LPCTable panel and metadata from the model to display a
type’ sinstances in a JFC table panel in a Java application.

RemoveRelationshipExample

This example demonstrates del eting persistent instances and removing them from a
relationship.

RowBroker

This example demonstrates how to use arbitrary SQL queries to fetch persistent
objects and their related objects from the database.

TableExampleApplet

This example uses the LPCTable panel and metadata from the model to display a
type’ sinstances in a JFC table panel in a Java applet.

UpdateSalesOrderitems

This example demonstrates how to update persistent instances.

76 - Working with the examples JdbcStore: a JDBC persistence framework

Customizing the examples

Except for the following examples:
BrokerConnectExample
DirectDriverConnectExample
DriverExample
LoadModel FromFile
LoadM odel FromUrl

that require individual customization (since they demonstrate connecting to a
database or loading a model), the other examples implement a framework that
enables you to customize them for your environment quickly.

Settings such as model file name, driver, URL, userid, password and other
connection properties are maintained in a serialized file. A program is provided to
serialize the settings.

Changing the example settings

To change the settings, edit the file CreateExampleSettings in the jdbcstore-
source\examples sub-directory.

The following example is extracted from this program:

static public String url = "jdbc: dbaw: //| ocal host: 8889/ Wat com SQL
Anywhere 5.0 Sanpl e/ SQL Anywhere 5.0 Sanple";

static public String user = "dba";

static public String password = "sql";

static public String driverNane = "symantec.itools.db.jdbc.Driver";

static public String nodel Fil eName =
"\\ Devel opnent\\com\ | pc\\j dbcst or e\ \ nodel s\\ Sanpl eModel . ser";

/* do not change this */
static public String settingsFileNane = "I pcExanpl esSettings. ser";

static public void main (String[] args) {
LPCConnecti onl nfo connectionl nfo = new LPCConnecti onlnfo();
connectionlnfo.url (url);

connectionl nfo. property("user", user);
connecti onl nfo. property("password", password);

Y ou can modify the URL, user, password, driverName or model FileName variables.
If you need to add new connection properties, add a line such as the following:

|connect ionl nfo.property("MProperty",” MyPropertyVal ue”);

After your changes are complete, compile and run the program. A serialized file of
your settings named |pcExampl esSettings.ser will be created.

Thisfileis used by most of the examples, since
L PCExamplesSystem.getConnectedModel () will load the model and connect to the
specified URL.

JdbcStore: a JDBC persistence framework Working with the examples - 77

try {
model = LPCExanpl esSyst em get Connect edMbdel () ;

br oker = nodel . orb();

catch (Exception e) {
e.printStackTrace();

Systemout.println("*** Error - " + e.getMessage());
try { Systemin.read(); } catch (I OException eio) { return; }
return;

Creating the sample database

The examples provided by JdbcStore rely on a database containing the required
tables.

Using SQL anywhere

A sample SQL anywhere database (jstore.db and jstore.log) is provided. Itis
located in the directory: sample_database\"sgl anywhere".

The database contains all of the tables and data to run the examples.

Using Access

A sample Access database (jstore.mdb) is provided. It islocated in the directory:
sample_database\Access.

The database contains all of the tables and data to run the examples.

Other databases

SQL is provided to define all the tables required for the examples. The SQL is
located in the directory: sample_database\ddl\demo_ddl.sql.

You may have to modify the supplied SQL for your database

Sample datais aso provided for the tables. It is provided in CSV (Comma
Separated Values) format.

The following data files are provided:
SALES ORDER: 161.dat
SALES ORDER_ITEMS: 162.dat
CONTACT: 163.dat
CUSTOMER: 164.dat
FIN_CODE: 165.dat
FIN_DATA: 166.dat

78 -

Working with the examples JdbcStore: a JDBC persistence framework

PRODUCT: 167.dat
DEPARTMENT: 168.dat
EMPLOY EE: 169.dat

Using the sample model

A model has been defined containing all of the types and relationships required by
the examples.

Recompiling the examples

Y ou can use the following command files to recompile the examples and samples:
javac_examples _classes.bat: recompile the sample classes
javac_examples.bat: recompiles the examples
javac_swingUl.bat: recompiles the LPC JFC components

javac_sampleApplication.bat: recompiles the sample application

You will need to modify the above command files to specify the directory where
JdbcStore was installed.

JdbcStore: a JDBC persistence framework - 79

	Installation
	Installing JdbcStore
	Setting the CLASSPATH
	Directory structure

	Introduction
	JdbcStore Overview
	JdbcStore Concepts and Terminology

	Using the Workbench
	Overview
	Starting the workbench
	Working with settings
	Working with a model
	Defining types from a SQL schema
	Working with types
	Generating classes
	Generating SQL
	Working with existing classes
	Obtaining version information

	Basic Programming
	Overview
	Using the LPCSqlDriver
	Working with models
	Using a LPCSqlOrb
	Transaction control
	Working with factories
	Fetching objects
	Fetching using SQL queries
	Using persistent instances
	Working with relationships
	Caching

	Beans
	JdbcStore Beans

	Advanced Programming
	Accessing JDBC connection information
	Using model and type meta-data
	Swing (JFC) components
	Customizing code templates

	Delivering JdbcStore
	Java applications
	Java Applets

	Working with the examples
	Examples overview
	Customizing the examples
	Creating the sample database
	Using the sample model
	Recompiling the examples

