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Abstract

This document describes the Mandala/RAMI subpackage, a library for Reflective Asyn-
chronous Method Invocation. It is entirely based on the reflexion mechanism which is
provided in the Java™ ! language.

This document deals also with exception handling usually neglected in asynchronous
method invocation ; with the event driven programming scheme provided ; with the
chained asynchronism mechanism ; with the asynchronism semantic and with trans-
parency where the complexity involved in asynchronous method invocation is entirely
masked (total transparency) or partially masked semi transparency to the end user.

keywords: reflective asynchronous method invocation, asynchronism semantic,
total-transparency, semi-transparency

1Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. The author isindependent of Sun Microsystems, Inc.
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Chapter 1

Introduction

Java [3] is no more a tool for applets programmer but is a language widely used in
every domain of computer science : smartcards [15], personnal digital assistant [13],
workstations [14], enterprise server [12], supercomputers [2].

Java is an objects oriented language [10] and uses the model of method invocation
— sometimes abstracted to message passing. Its development kit [16] contains a thread
API (j ava. | ang. Thr ead) and its virtual machine specification [11] defines threads
behaviour?,

We propose a new package to extend dynamically method invocation to asyn-
chronous method invocation. Related works are described in the section 2. Dynamism
is our main objective and means that objects have not to be designed specifically to be
used in an asynchronous way ensuring legacy code and separation of concerns. This
property is achieved by the use of the reflection provided in Java and will be discussed
in the section 3. Different models used to provide asynchronous method invocation
are discussed in the section 4. The package we propose called RAMI for reflective
asynchronous method invocation is based on the concept of asynchronous references
— inspired on standard synchronous Java reference — and is described in the section 5.
Our implementation of this concept is then described and analysed in the section 6.
Whereas reflection provides dynamism, it raises the problem of weak type checking
where type checking is done at runtime instead of compile time which is a real draw-
backs for programmers. Our solution to this problem is provided by the transparency
mechanism described in the section 7. Conclusion and perspectives are given in the
section 8.

IWhich is not followed by implementation of the Java Virtual Machine which uses native threads such as
HotSpot™ [18].



Chapter 2

Related Works

Several works focuses on asynchronous method invocation but they are all dedicated
to the remote case. For example, K.Falkner and al. [6] extends the language with
the keyword asynch to declare methods of the remote object that are called in an
asynchronous way. A re-implementation of the RMI stubs and skeletons and the use of
Futures [23] allow developers to deal with asynchronous calls.

Research is also carried out around dynamism. HORB [8] for instance, is a Java
ORB (Object Request Broker) which does not need a declarative interface to create re-
mote objects. Any object can be compiled by a dedicated compiler to become remote.
Asynchronous remote method invocation is based on a method naming convention.
For example, a method f oo() of a remote object must be renamed f oo_Asynch()
and clients must use f oo_Request () and f oo_Recei ve() to achieve the asyn-
chronous call to f oo() . Reflective Remote Method Invocation [19] focuses on the
same concern using the same reflection technique, i.e. dynamic remote method invoca-
tion, and provide also asynchronism but is also dedicated to remote objects.



Chapter 3

Reflection provides dynamism

As defined in the API documentation of the j ava. | ang. ref | ect package: " Re-
flection allows programmatic access to information about the fields, methods and con-
structors of loaded classes, and the use reflected fields, methods, and constructors to

operate on their underlying counterparts on objects, within security restrictions."

This allows the programmer to access some language caracteristics of an object at
runtime. For example, given an instance of the j ava. | ang. Stri ng class contain-
ing "foo", and an instance a of the class A defines below:

public class A {
public StringBuffer foo(StringBuffer sb) {
return sb. append(sb.reverse()); // do sonmething very usefull !
}

}
An invocation of the f oo method of the object a can be done in two different way:

/1 Natural way
StringBuffer sb = a.foo(new StringBuffer("Dummy"));

/1 Reflective way
StringBuffer sb = (StringBuffer)
Cl ass. f or Narme("A") /1 Returns a Cl ass object reflecting 'A
. get Met hod("foo", // Returns a Method object reflecting ’'foo
new C ass[]{StringBuffer.class})
.invoke(a, /1 1 nvokes the nmethod ’foo’
new Obj ect[]{new StringBuffer("Dumy")});

As shown above, reflective method invocation is not really adapted to the develop-
ment of applications. Many problems arise with reflection. The first and probably the
most important of all is the lack of type checking. In the *natural way’, the compiler
tells if the parameter given to the method does conform or not to the one specified in
the signature. The same check is made on the result returned by the method. The com-
piler do verify also that the variable refers to an instance of the specified class (or one
of its subclass) so the method called *foo” can safely be invoked. All of this checks
are not done in reflective method invocation. Moreover, reflective method invocation
is less efficient that natural method invocation. Some works has to be done to discover
the class of the object, discover the name of one of its method, and invoking it. All of
this is done at runtime while it is done at compile time in the natural way.



So why focusing on the reflective approach ? Basically, the best advantage of re-
flection is also its best drawback : reflection provides dynamic programming. Although
the discovering an object at runtime is mainly used in object inspectors, debuggers or
class browser, it can actually provide extensibility and pluggability[20]. The dynamic
feature provided by reflection is the focus of RAMI i.e. any method of any objects
must be asynchronously invokable even if the object was not designed in this way.
This ensure separation of concerns.



Chapter 4

Asynchronous method
Invocation

4.1 The message passing abstraction

Obiject oriented programming is sometime abstracted to message passing program-
ming: invoking a. f oo(t) may be abstract to "sending the message f oo(t) to the
object a". The returned result is the reply of the message. If we extend the abtraction,
then we may consider two phases:

1. sending the message,
2. getting the reply.

In method invocation, when a message has been sent, the caller must wait the answer
before continuing. Sometime, it is preferable to send a message, to do something
during the time the object constructs its reply (i.e. during the execution of the specified
method), and to get the reply a bit later. This leads to asynchronous message passing
i.e. asynchronous method invocation.

4.2 Modes

Method invocation is not very adapted to asynchronous communication since a method
call often returns a result. The caller thread has to wait for the availability of this re-
sult. Therefore, many frameworks modify the method invocation paradigm to suite
asynchronism. For example, some provide asynchronism with a send/receive mod-
el [8], others propose a publish/subscribe model [17]. Although these models are more
adapted to asynchronous communication, any existing code has to be rewritten - when
possible. For example, if a synchronous communication is changed for efficiency rea-
sons to an asynchronous one, the programmer has to introduce the send/ r ecei ve

11t must be noticed that this description may be enlarged to the remote case where the sender and the
receiver of the message do not reside on the same host.



instructions on both client and server sides?. Such a change may have a really bad

impact on the design of the application and is prone to the introduction of new bugs.
The use of an inner anonymous inlined thread such as

new Thread() {
public void run() {
/1 invoke the desired
/1 method asynchronously
StringBuffer sb = a.foo(new StringBuffer("Dumy"));

}
}.start();

is not a good design solution: a thread object must be instantiated and result polling
must be implemented. Moreover, using an explicit thread to deal with asynchronous
method invocation breaks the model of the message passing paradigm. It may be
preferable to deal with synchronous/asynchronous method invocation (message pass-
ing) instead of using threads as described by [9].

Hence, several projects focus on an asynchronous method invocation schema in a
more or less transparent way, using so called future objects. Most of them are static and
dedicated to asynchronous remote method invocation. For example, the asynchronous
remote method invocation mechanism described by K.Falkner and Al. [6] needs a com-
pilation phase to generate stubs dedicated to the asynchronous paradigm.

This document describes the architecture of the RAMI package which provides
reflective asynchonous method invocation.

2Since objects use message passing for their communication, the name client is used for the object that
invokes the method of another object named the server. This defi nition extends naturally to remote objects.



Chapter 5

Asynchronous references

Whereas Java defines reflection of references (j ava. | ang. r ef ) for garbage col-
lecting purposes, RAMI defines the notion of asynchronous reference for concurrency
purposes. An asynchronous reference is a reference on another object which provides
asynchronous method invocation. If Ois an object, AR( O) is an asynchronous ref-
erence on O (figure 5.1). As with standard, synchronous reference, there is only one
asynchronous reference on any object in a given Java Virtual Machine. RAMI contains
the Asynchr onousRef er ence interface which declares the following method:

Futuredient call (Method nmethod, Object[] args);

For any Java objects, invoking one of its method asynchronously requires three
steps:

1. getting an asynchronous reference on the object;
2. getting the reflection of the method to invoke;
3. and perfoming the asynchronous method invocation.

Hence, the asynchronous invocation of

Standard Java
Synchronous referencey

Standard Java
Synchronous reference

Object Object
Standard Java | RAMI obj;
RAMI Synchronous reference o Awnch?ojri;::ts reference|
Asynchronous referencq
(a) Asynchronous reference abstrac- (b) Asynchronous reference in the VM

tion

Figure 5.1: RAMI asynchronous reference and Java synchronous reference.
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a.foo(new StringBuffer("Dunmy"));
is done by the following code:

/1 Gets an asynchronous reference on 'a’
Asynchr onousRef erence asynchronousReference = // Depends on inplenmentation !
/] Gets the reflection of the "foo()" nethod
Met hod fooMet hod = a. getd ass().get Met hod("foo0",
new C ass[]{StringBuffer.class});

/1 performthe asynchronous invocation of 'a.foo(new StringBuffer("Dummy"));’
asynchr onousRef erence. cal | (f ooMet hod,
new Obj ect[]{new StringBuffer("Dumy")});

As the reader may noticed, using reflection leads to a really unatural and nearly
impractical syntax. Solutions to this problem will be discussed in section 7. Moreover,
the above code needs more explanations:

o the reader may have noticed that it will not compile since it doesn’t catch the
NoSuchMet hodExcept i on the get Met hod() method may throw, hence
atry/ cat ch block must be added for this code to compile. This is the main
problem of the reflection: errors which are usually checked at compile time are
discovered atruntime. Developpers are encouraged in this case to declare their
fooMet hod inastatic final field, and initialized in a st ati c bloc.
Hence, performance penalty of t r y/ cat ch block is minimized and errors are
discovered when the class is loaded.

¢ Since RAMI is Java-interface based?, getting an Asynchr onousRef er ence
variable depends on the implementation of the interface. Hence, it is not shown
here.

e The method t oSt ri ng() returns a result which is not used in the preceding
code. The next section describes mechanism RAMI provides to handle the result
of an asynchronous method invocation.

5.1 Futures: handling the result

The last line of the preceding code does not use the result returned by the method
f oo(). Moreover, it does not illustrate the use of the asynchronism provided by the
cal | () method of the asynchronous reference. Hence, consider the following line of
code:

/] Gets an asynchronous reference on 'a’
Asynchr onousRef erence asynchronousReference = // Depends on inplenmentation !
/1 Gets the reflection of the "foo()" method
Met hod fooMet hod = a. getd ass().get Method("foo",
new C ass[]{StringBuffer.class});

/1 performthe asynchronous invocation of 'a.foo(new StringBuffer("Dummy"));’
asynchronousRef er ence. cal | (f ooMet hod,
new Obj ect[]{new StringBuffer("Dumy")});

doSorret hi ng();

1RAMI aso provides different implementations of every interfaces it defi nes. Some implementations of
the Asynchr onousRef er ence interface will be discussed in the performance section 6.5

11



callerThread
@
(2) future = ar.cal(method, args);

77777777 ) 7””7”,7””””””””””””” object.method(args);
future.isResultAvailable();
“) (5)
calleeThread
(6) @
(€] future.setResult(res, exception);
(8) |future| < --- - -mocmsmeoomoooocfoooooo o oo oT
© Asynchronous
result = future.getResult(); Y
Reference

(10)

Figure 5.2: The cal I () asynchronous mechanism.

Here, the method doSorret hi ng() is executed in concurrency? with the f oo()
method. This is why asynchronous method invocation is usefull for: the invocation of
amethod - the sending of a message - does not require waiting for the reply: getting the
reply is just done when needed. This requires some practice to get used to: invoking
methods at the earliest and getting their result at the latest.

Then, how the result of an asynchronous method invocation can be get ? The
idea comes with the notion of future [23]. When a method is invoked asynchronously
thanks to cal | (), a future object is returned that handles everything related to asyn-
chronism. The Figure 5.2 illustrates the Asynchr onousRef erence’s cal | ()
mechanism and one use of the Fut ureC i ent instance returned. (1) A thread
(cal | er Thr ead) is running, preparing a reflective asynchronous method invocation.
Itdoesthe cal | () invocation (2) whichreturnsa Fut ur e i ent object (f ut ur e)
(3). The asynchronous reference implementation performs the actual asynchronous
method invocation in the cal | eeThr ead) (4) the other client thread continues its
execution (4’). Periodically, the cal | er Thr ead may test the availability of the re-
sult (5 and 6). When the called method terminates, the asynchronous reference im-
plementation updates the f ut ur e object (7). The next run by the cal | er Thr ead
is a positive availability test (8). It then gets the returned result (9) and continues its
execution (10).

The Fut ur ed i ent object is a future object which provides result polling, result
blocking and callee thread control.

Methods of a future object can be unrelated or related to the result returned by the
asychronous method invocation. Unrelated methods can be used as any usual methods
since their invocation does not depend on the asynchronous method invocation such as
toString(),equal s() orhashCode() . Related methods can be either safe or

2In padlel if the computer contains more than one CPU. To be realy rigorous, it de-
pends on the implementation : an implementor may provide a synchronous implementation of the
Asynchr onousRef er ence interfacel RAMI provides such an implementation used for testing (see 6.2)

12



unsafe regarding the validity of their returned value which depends on the availability
of the result. The result returned by an unsafe related method is undefined, hence
unusable, if the result of the asychronous method invocation is not available. On the
opposite, the result returned by a safe related method is always valid. Unsafe related
method are provided to allow efficient (non-blocking) programming scheme.

Unrelated methods will not be shown in this document, but the RAMI API specifies
which methods are unrelated and which are related.

In the following, each method that returns an information on the asynchronous
method invocation is specified safe or unsafe. If a method is specified unsafe, you must
wait the availibility of the result before considering the value returned by the method
as valid.

5.1.1 I nvocati onl nf o : getting information

Basic informations on an asynchronous method invocation such as "which method was
invoked ?" or "which arguments where specified ?", are provided by the | nvocat i onl
interface. Every method of this interface is safe related meaning the result they return
is always valid.

This interface provides methods to get informations that are available as soon as
the asynchronous method invocation is made (when the cal | () is invoked). Thus
informations are static regarding the life of the asynchronous method invocation: they
do not change over time. Moreover, each methods this interface declares is safe related.

512 InvocationQoserver : polling

When an asynchronous method invocation has been made, some information may be
usefull to gather. The | nvocat i onCbser ver interface provides methods for this
purpose. For example, a method is provided to know if the result is available. The "re-
sult" is either the returned value of the method or the exception it throws. It is available
if the method invocation has terminated. Hence, a method invocation is considered
terminated when either the method as returned normally (with a r et ur n statement
or when the last statement of a voi d method has been reached) or when the method
throws an exception (either a checked exception, a runtime exception or an error).
Polling the availability of the result of an asynchronous method invocation is provided
by the method i sResul t Avai | abl e().

During an asynchronous method invocation, it may be usefull to have a reference
on the thread which is really executing the code of the method you’ve specified - the
callee thread. This thread may not be available if the invocation has not yet started.
Hence, polling its availability is provided by the method i sCal | eeAvai | abl e().
Once this method returns t r ue, the get Cal | eeThr ead() can be used to get a
reference on the callee thread making possible its interruption thanks to the method
i nterrupt () for example. Developpers must be aware that the thread may have
died if the method is already terminated.

This interface provides methods to get informations that are available during the
asynchronous method invocation. Thus informations are dynamic regarding the life of
the asynchronous method invocation: they change over time. Moreover, each methods

13
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this interface declares is safe related except for the method get Cal | eeThr ead()
which is unsafe related and returns an undefined value whilei sCal | eeAvai | abl e()
returns f al se.

5.1.3 Met hodResul t : getting the result

When the execution of an asynchronous method invocation is considered terminated,
the result is available and some informations such as "did an exception occur during
the invocation of the method ?" or "What is the result of the asynchronous method
invocation ?"* may be get. This is the aim of the Met hodResul t interface. It provides
informations on a terminated asynchronous method invocation. This is the reason why
each of its method is unsafe related meaning they return an undefined value if the result
is not yet available i.e. if the method is not considered terminated yet.

For example, the result of an asynchronous method invocation is provided by get Ret ur nedResul t ().
Developpers must be aware that this method returns an Cbj ect and may throw the
exception thrown by the invocation of the method. If the programmer is sure that
no exception has been thrown (excepti onQccur ed() must return f al se), you
can use get Ret ur nedResul t Tr ust ed() instead which eliminates the need of a
try/ cat ch block and its performance penalty. Otherwise, get Excepti on() re-
turns the exception that have been thrown during the asynchronous method invocation.

This interface provides methods to get informations that are available after the
asynchronous method invocation i.e. when it is considered as terminated. Thus infor-
mations are static regarding the life of the asynchronous method invocation: they do
not change over time. Moreover, each methods this interface declares is unsafe related:
they return an undefined value while i sResul t Avai | abl e() returnsf al se.

5.1.4 |Invocati onEvent sWai t er : waiting for events

Developpers may be interested in events occuring during an asynchronous method in-
vocation. For example, the availability of the result, the availability of the callee are
such events. Instead of polling for such events, programmers may wait until this event
occurs. The I nvocat i onEvent s\Wai t er provides methods to wait fo such events.
For example, waiting for the availability of the result of an asynchronous method invo-
cation and getting it in the same time is provided by the wai t For Resul t () method.
Again, the result may be an exception; in such a case, this exception is rethrown by this
method. Symetrically, waiting until the callee thread has been set by the underlying
implementation is provided by the wai t Unt i | Cal | eeAvai | abl e().
Each method this interface declares is safe related.

5.1.5 Futured i ent : the all-in-one interface

Instead of dealing with many interfaces, RAMI provides for ease of use, the Fut ur e i ent

interface which extends the four interfaces seen above : | nvocat i onl nf 0,1 nvocat i onCbser ver,
Met hodResul t and | nvocat i onEvent sWai t er. This interface is the one re-

turned by the method cal | () of the Asynchr onousRef er ence interface which

defines the behavior of any asynchronous reference.

14



5.2 Exception handling

One of the bad thing in asynchronous method invocation is how to handle exceptions
properly ? When the method is really invoked, the caller thread is probably not in
the t r y/ cat ch statement corresponding to the one that must be used when a usual
method which declares exception is invoked. Consider the following code :

public class A {
public StringBuffer foo(StringBuffer sb) {
return sb. append(sb.reverse()); // do sonmething very usefull !
}

public static void nmain(String args[]) {
A a = new A();

Met hod fooMet hod = A. cl ass. get Met hod("foo", new O ass[0]);
Asynchr onousRef erence reference = // depends on inpl enmentation

Futuredient future = reference.call (fooMethod,
new Object[]{null});

doSonet hi ngEl se();

The invocation of f oo( nul | ) throwsa Nul | Poi nt er Except i onas expected.
Where should the t r y/ cat ch statements be placed to ensure correct handling of the
exception ?

RAMI provides two techniques to deal with exceptions in asynchronous method
invocation.

5.2.1 On result recovery

The first and easiest technique is to deal with exceptions when recovering the re-

sult. This means that until the caller checks exceptions, it is not notified that the
asynchronous method invocation has thrown an exception. The Met hodResul t in-

terface provides the method excepti onOccur ed() to know if an exception has

been thrown and the get Excepti on() to get the thrown exception. The method

wai t For Resul t () of the | nvocat i onEvent sWai t er may throw the excep-

tion that has been thrown during the asynchronous method invocation. Since wai t For Resul t ()
declares Thr owabl e to be thrown, it must be enclosed by a t r y/ cat ch statement

ensuring the proper handling of the thrown exception.

The program 5.2.1 is an example of polling using the | nvocat i onCbhser ver
interface and of handling result and exceptions "by hand" while the program 5.2.2
shows the use of the | nvocat i onEvent s\Wi t er interface. The use of the callee
thread is shown by the program 5.2.3.

5.2.2 Earliest notification

The second technique to deal with exception in asynchronous method invocation is to
use an event driven programming scheme. Hence, the next section will describes this
scheme, and the earliest notification technique used to deal with exception in asyn-
chronous method invocation will be described in section 5.3.5.

15



Program 5.2.1 Using the | nvocat i onObser ver interface.

1 // Gets the reflection of the "foo()" method
Met hod fooMet hod =
A. cl ass. get Met hod("f oo",
new Cl ass[]{StringBuffer.class});

Futuredient future =
asynchronousRef erence. cal | (f ooMet hod,
new Object[]{new StringBuffer("Hello")});

10 // Polling the result
whil e(!future.isResultAvailable()) {
/1 This method is running concurrently to "foo"
doSonet hi ng() ;
}
15

/1 The result is available : the nethod invocation is considered term nated

if (future.exceptionCccured()) {
/1 An exception occured

20 Throwabl e t = future. get Exception();
handl eException(t);
}el se{

/1 No exception occured
StringBuffer result = future. getReturnedResul t Trusted();
25 handl eResul t (resul t);

5.3 Cal | back : event driven programming

Whereas future provides result polling and result waiting, it may be more convenient to
use event driven programming scheme. This means invoking a method asynchronously
and doing something else without refering in the following code in the previously made
asynchronous method invocation. Another object will be notified of the termination of
the asynchronous method invocation and will use the result (or the exception thrown).
The Cal | back interface provides the event driven programming scheme. It defines
the method done() method which is invoked once an asynchronous method is con-
sidered terminated. Each reflective asynchronous method invocation has an associated
Cal | back accessible with the method Cal | back() ofthel nvocati onl nf o in-
terface.

You have three different ways to specify the Cal | back to use once your asyn-
chronous method invocation terminates.

5.3.1 Global Object Scope : the default one

Each Asynchr onousRef er ence containsa Cal | back instance with a global ob-

jectscope. This means thatthe Cal | back instance is related to its Asynchr onousRef er ence

instance. If a thread modify the global object scope Cal | back instance, then any
other thread will see the same Cal | back instance. This global object scope instance
is the default one meaning that in absence of any other type of Cal | back scope (see
below), it is used when an asynchronous method invocation terminates.

16



Program 5.2.2 Using the | nvocat i onEvent s\Wi t er interface.

1 // Gets the reflection of the "foo" nethod
Met hod fooMet hod =
MyObj ect . cl ass. get Met hod( " f oo",
new Cl ass[]{StringBuffer.class});

Futuredient future =
asynchr onousRef erence. cal | (f ooMet hod,
new Object[]{new StringBuffer("Hello")});

10 // This method is running concurrently to "foo"
doSonet hi ng() ;

try{
StringBuffer result = future. waitForResult();
15 handl eResul t (resul t);
}catch(Throwable t) {
handl eException(t);
}

Program 5.2.3 using the callee thread.

5.3.2 Local Thread Scope : the thread specific one

Each Asynchr onousRef er ence contains many Cal | back instances with a local
thread scope. This means that each Cal | back instance is not only related to its asyn-
chronous reference instance but also to the thread which makes asynchronous method
invocation (via the cal | () method). Hence, if a thread modify its local thread scope
Cal | back instance, then other threads are not affected by this modification and will
continue to see their own local thread scope Cal | back instance if they have one or
the global object scope one otherwise. When a thread has an associated local thread
scope Cal | back instance, it is used instead of the global object one.

5.3.3 Local Method Scope : the method specific one

You may specify a Cal | back to use instead of the global object scope default or
the local thread scope ones. Hence, when doing an asynchronous method invocation,
you use the overloaded cal | () method which takes a supplementary parameter : a
Cal | back which is used instead of the default and the thread specific one.

5.3.4 Cal | backManager : the handler of Cal | back

Handling global object scope and local thread scope requires pair of Get / Set meth-
ods - accessors which are defined in the Cal | backManager interface. Hence, the
Asynchr onousRef er ence interface containsthe get Cal | backManager () which
returns the instance used to manage Cal | back.
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5.3.5 Illustration of event driven programming scheme

This section presents three implementations of the Cal | back interface to illustrate
the benefits of the event driven programming scheme.

Cal | backLi st ener s: separate normal from abnormal termination

This implementation separates the real result of an asynchronous method invocation
and the exception it may have thrown. It takes Cal | back has events listeners and
when the result arrives, dispatches it to exception event listeners if an exception oc-
curred or to result listeners otherwise.

I nt errupt er Cal | back : the interrupter one

As describes in the section 5.2.2, waiting for the caller to check for exception is not

always acceptable. It may be preferable to be notified as soon as possible to prevent

a thread for computing something unused if the asynchronous method invocation as

thrown an exception. Hence, as soon as the asynchronous method invocation is consid-

ered terminated, a notification event must be handled. The | nt er r upt er Cal | back

implementation of the Cal | back interface interrupts the caller thread when the method
is terminated. So, the caller thread may test its interrupt flag providing a mechanism

called the earliest notification. The program 5.3.1 shows such a mechanism.

5.4 Chained asynchronism

What is the benefits and the signification of having an asynchronous reference on an-
other asynchronous reference on an object ? Even if this idea seems really strange,
it may be considered that the RAMI package can be used by framework designed to
distributed computing as the JACOb framework. In such a situation, where objects are
remotely accessible, an asynchronous method invocation may be implemented in two
distincts way :

o the asynchronism may be implemented by the proxy of the remote objects ;
e the asynchronism may be implemented by the remote objects themselves.

In this last situation, invoking a remote method is semi asynchronous since the
server side of the remote object must be contacted first - which is a synchronous oper-
ation. Then asynchronism may be added on the proxy of the remote object to provide
a client-side asynchronism leading to full-asynchronism. Moreover, chained asynchro-
nism provides a way to add services to some methods of an object. This is why having
chained asynchronous reference is considered.

5.4.1 Mechanism
In a chain of asynchronous references, the following notation is adopted:
(AR(AR(AR(Q)))
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Program 5.3.1 The earliest notification mechanism.

1 // Gets the reflection of the "foo" nethod
Met hod fooMet hod =
MyQoj ect . cl ass. get Met hod( " f 00",
new C ass[]{StringBuffer.class});

5
Futuredient future =
asynchr onousRef er ence. cal | (f ooMet hod,
new Obj ect[]{new StringBuffer("Coucou")},
new | nt errupterTerm nat edCal | Handl er ());

10
/1 Polling with exception handling
whi |l e(!future.isResul tAvailable()){
doSoneLittl eWrk();
if (Thread.islnterrupted() &&
15 resul t.isResul t Avail abl e()){
/1 The interrupter has
/1 interrupted us. The renote
/1 method invocation has thrown
/1 an exception.
20 br eak;
}el se{
/1 Maybe soneone el se
/1 has interrupted us ?

}
25 endWor k() ;

try{

/] Get the result. If an exception

/1 has been thrown by the asynchronous nethod
30 /1 invocation, it is thrown here.

M/Resul t Obj ect nyResult =

(MyResul t Obj ect) future. get ReturnedResul t () ;

}catch(Throwabl e t){

/1 The asynchronous nethod invocation has thrown an exception,
35 /1 handles it.
handl eException(t);

which means the last (left-sided) asychronous reference is on another asychronous ref-
erence on another asychronous reference on the object O. Thus, invoking the method
f 0o of the object Oneeds a chain of cal | () invocations such as :

MyC ass object = new MyC ass();

/1 Gets an AsynchronousReference on an AsynchronousReference on an
/1 AsynchronousRef erence on MyCl ass
Asynchr onousRef erence reference = //depends on inpl enentation

/1 Gets the reflection of the "foo()" method
Met hod f ooMet hod =
M/C ass. cl ass. get Met hod("f 00",
new C ass[]{StringBuffer.class});

/1l Gets the reflection of the "call" nethod
Met hod cal | Met hod =
Asynchr onousRef er ence. cl ass. get Met hod("cal | ",
new C ass[]{ Met hod. cl ass,
bj ect[].class});

/1 Paraneter of the the "foo" nethod
oj ect[] fooParam = new Cbject[] {new StringBuffer("Dumy")};
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/1 Paraneter of the last call
Obj ect[] lastCallParam = new Object[] {fooMethod, fooParant;

/1 Paranmeter of the md call
Obj ect[] midCall Param = new Cbject[] {call Method, |astCall Parant;

Futuredient future = asynchronousReference.call(call Method, mi dCall Paran;

This is practically unusable ! So RAMI provides an elegant way to solve this
problem.

5.4.2 AsynchronousRef erencePair : pair of asynchronous
references

The Asynchr onousRef er encePai r takes two asynchronous references called

the head and the tail where the head is referencing the tail and makes a new Asynchr onousRef er ence
which simulates an asynchronous reference on the object referenced by the tail. So, if

AR(AR( O)) is a chain of asynchronous reference on the object O, you can make an

Asynchr onousRef er encePai r referencing Owhich is also a standard Asynchr onousRef er ence
(it implements the same interface) : ARP( O) . Then invoking a method f co() on O

do not require a chained invocation of the cal | () method but only one - as with any

Asynchr onousRef er ence. The Asynchr onousRef er encePai r implemen-

tation must provides the same semanticonthe cal | () invocationasthe Asynchr onousRef er ence.

5.4.3 List of asynchronous references

Now that we have pairs of asynchronous references that can be considered as stan-

dard Asynchr onousRef er ence, making list of Asynchr onousRef er ence is

fairly simple : AR(AR(AR(O))) can be arranged into AR( ARP( O) ) and since an
Asynchr onousRef er encePai r canbe consideredasan Asynchr onousRef er ence
(i.e. ARP=AR), we have AR( AR( O) ) which can be transformed into ARP( O) which

gives AR( O) . Hence, writing it shorter:

AR(AR(AR(0))) = AR(ARP(0)) = AR(AR(0)) = ARP(0) = AR(O)

So doing an asynchronous method invocation on the object O do not depends on
the number of asynchronous references chained to it. The last example which is really
unusable can be written - thanks to Asynchr onousRef er encePai r :

My Qoj ect nmyCbj ect = new MyObj ect ();

/1 Constructs an AsynchronousReference with the hel p of

/'l AsynchronousRef erencePair wich constructs a chained of AsynchronousReference
/1 on MyQbj ect

AsynchronousRef erence reference = //depends on inplenentation

/] Gets the reflection of the "foo" nethod
Met hod fooMet hod =
MyQbj ect . cl ass. get Met hod("f 00",
new Cl ass[]{StringBuffer.class});

/'l Usual asynchronous nethod invocation while it does a chained invocations of
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/1 call () nethods.
Futuredient future =
asynchronousRef erence. cal | (f ooMet hod,
new Object[] {new StringBuffer("Blah")});
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Chapter 6

RAMI implementation
description

This section focus on the RAMI own implementation of its specification.

6.1 Animplementation of theAsynchr onousRef er ence
interface : the Asynchr onousRef er encel npl
class

This class implements the Asynchr onousRef er ence interface in a highly config-
urable way :

e logging is provided by a Sysl og class instance® which provides debugging
facilities such as thread trace;

e the class implements a variant of the singleton design pattern [7]: only one in-
stance of this class referencing a given object can exists in any Java Virtual Ma-
chine?;

o this class uses the factory design pattern for futures creation (class Fut ur eFact or y)
enabling their customization (remote futures for example);

e this class uses the strategy design pattern to allow the customization of the
asynchronism (class Met hodl nvocat or ); three semantics are available as de-
scribed in 6.2.

1The next release will usethe new j ava. uti | . | oggi ng package of the JDK 1.4.
2This property is also ensured on deserialization of an instance of this class.
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6.2 Asynchronism semantics

Synchronous semantic

This semantic ensure that a method invocation on an asynchronous reference (Async-

hr onousRef er ence. cal | () )do not return until the method has been terminated.
This semantic is in opposition with the specification of the Asynchr onousRef er ence
but the implementation provided by the Synchr onousMet hodl nvocat or class is
used essentially for testing and debugging purpose: a programmer can develop with
the synchronous semantic to find non asynchronous related bugs before switching into
an asynchronous semantic one.

6.2.1 Concurrent semantics

This semantic ensure that sequential asynchronous methods invocation (sequence of
Asynchr onousRef erence. cal | () invocations) result in concurrent execution
of those methods. Two classes are provided that implement this semantic.

Threaded concurrency semantic

Each asynchronous method invocation creates a dedicated thread for the execution of
the specified method. While this implementation (Thr eadedMet hodl nvocat or)
may have a little overhead it does not have the deadlock problem of the thread pooled
concurrency semantic implementation (see below).

Threadpooled concurrency semantic

This implementation (Thr eadPool edMet hodl nvocat or ) uses a highly customiz-
able Thr eadPool to prevent threads creation overhead. This threads pool has some
specific property:

e the class Thr eadPool extends the class j ava. | ang. Thr eadG oup en-
suring a “grouping” semantic of the pre-allocated threads in the pool (global
interruption for example);

o priority of the daemon status of the pre-allocated threads can be specified,;

o the threads pool has a lower and a upper bounds of pre-allocated threads that can
be fixed.

The behaviour of the threadpooled concurrency mechanism is as follow:

When an asynchronous method invocation is made, the method is enqueued, while
each pre-allocated thread of the thread pool try to dequeue a method to execute it. If
the number of methods enqueued is greater than the number of pre-allocated threads
then new threads are created so their number will not exceed the upper bound. Then, if
some pre-allocated threads are idle (there are no more methods in the queue to execute)
and if their number is greater than the lower bound, some pre-allocated threads die so
their number is not smaller than the lower bound. To prevent threads allocation and
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deallocation yoyo effect, deallocation of threads is an event that occurs less frequently
(by a customizable factor) than allocation. Hence, setting the lower bound to 0 and the
upper bound to an infinite value (j ava. | ang. | nt eger . MAX_VALUE) correpond
to the threaded concurrency semantic.

The major drawbacks of treads pools is that they are subject to deadlock: con-
sider a generic threads pool (like the class Thr eadPool described above) with an
execut e() method which enqueue tasks (Such as method invocation). Suppose a is
enqueuing lots of tasks, each of them also enqueuing other tasks in the same threads
pool and waiting on their termination. The number of threads will grow up to the upper
bound limit of pre-allocated threads in the pool (either the user fixed limit, the sys-
tem fixed limit, or the limit imposed by the availble memory in the system). Every
thread is waiting the termination of a task still not dequeued since there is no more idle
pre-allocated threads that can execute it. This situation leads to a deadlock!

Hence, whith a threads pool, developpers should never enqueue tasks that enqueue
task on the same threads pool and wait on their termination. RAMI consider this sit-
uation as rare (or bad design of the application which is using the threads pool) and
choose the threadpooled concurrency semantic as the default concurrency semantic
implementation when creating a new Asynchr onousRef er encel npl since it is
the best choice for performance.

6.3 Singlethreaded semantic

The concurrency semantic ensure that methods runs concurrently but this behaviour
may not be acceptable when asynchronous method invocation is made on non-threadsafe
instances. Hence, the single threaded semantic ensure that only one thread runs the
methods of the object the asynchronous reference is referencing. Currently two imple-
mentation is provided:

Fifo single threaded semantic

This implementation (Fi f oMet hodl nvocat or) preserve the order of sequential
invocations of the method Asynchr onousRef er encel npl . cal | (). The first
invocation will be executed by the attached thread firstly. This semantic is rather similar
to the one provided in ProActive [5] and has the same interesting properties. It must
be pointed out that this semantic can lead to deadlock in some situations such as the
following:

A instance a of a class A contains a method Resul t F f () which invokes asyn-
chronously the method Resul t G g() of an instance b of a class B and waits for its
termination. Consider also that the method Resul t G g() invokes asynchronously
the method f () of the object a (indirect recursion) and also waits for its termination.
If the asynchronism semantic is the fifo single threaded semantic, then this leads to a
deadlock since the invocation of f () in the method b. g() enqueue the request (the
method f () to execute) in the object a which has only one thread currently waiting
for the termination of b. g() . Hence, this semantic must be use whith care.
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Random single threaded semantic

This implementation (Randomvet hodl nvocat or ) randomly execute a method within
the list of previous asynchronous method invocations (Asynchr onousRef er encel npl . cal | ()).
This semantic may leads to deadlock as in the fifo single threaded semantic.

6.4 Customized asynchronous semantic

The semantic of the asynchronism provided by the method Asynchr onousRef er encel npl . cal | ()
is defined by an instance of a class which must implements the interface Met hodl nvocat or.

Hence, it is possible to customize the semantic of the asynchronous method invocations

on an object by implementing this interface. This feature allows the developper to spe-

cialize its asynchronous method invocation to ensure some specific properties or to

enhanced the performance.

6.5 Performance consideration

Analysing performance of an asynchronous method invocation is not easy. Synchronous
and asynchronous method invocation are in opposition: they do the same thing (in-
voking a method of an object) but in rather distinct ways. Hence comparing them is
meaningless. Moreover, reflection adds an overhead to the method invocation itself but
provides dymanism which is the main concern of RAMI: any public method of any
object can be called asynchronously.

6.5.1 Overhead of the reflexive asynchronism provided by RAMI

In this section, we measure the overhead added by the handling of the reflexive asyn-
chronism on empty calls. The table 6.1 shows the average time spent to invoke an
empty method with the RAMI framework using the Asynchr onousRef er encel npl
with different Met hodl nvocat or implementations on different jdks. The test was
performed 100,000 times on a GNU/Linux 2.4/Bi-Pentium 111 450 mhz system. The
jdk1.2 uses a classic JVM whereas jdk1.3 and jdk1.4 uses the HotSpot [18] technol-
ogy. The test invokes the empty method a hundred of times before the real benchmark
begins to prevent cache effect.

The first thing to notice is how the RAMI framework adds a significant over-
head to a standard synchronous empty method invocation. The table do not men-
tion the average time for these calls because they are near 0 ms/call (minimum is 3
ms/100000 calls for the JDK1.2 while the maximum is 38 ms/100000 calls for the
JDK1.4 -client). It must be noticed that empty method can be inlined in NOP (No
Operation) by Just In Time compilers (either classic JVM or HotSpot VM), while
the amount of work to do in RAMI invocations to provide reflexivity and asynchro-
nism is really non negligible. Fut ur eCl i ent are created on each invocation of the
Asynchr onousRef er encel npl . cal | () methodusingaFut ur eFact ory im-
plementation. Moreover, creating lots of short lived objects such as futures increase
the garbage collector work which decreases the performance. This fact is really easy
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Synchronous Concurrency S!ngIeThreaded
Threaded | ThreadPooled Fifo Random

JDK 1.2 137.22 60.263 26.837 23.953 | 23.861
JDK 1.3 -client 89.12 911.833 48.130 20.684 | 20.746
JDK 1.3 -server 95.65 905.551 50.837 21.221 | 21.398
JDK 1.4 -client 87.43 72.499 24.950 22.260 | 22.791
JDK 1.4 -server 77.62 74.788 24.299 22.210 | 22.748

Table 6.1: RAMI overhead in ns/call

to observe by increasing the stack size of the virtual machine by the - Xns and - Xnx
of the command line: running the same “Synchronous” test with j ava - Xms256m
- Xmx512nx command line (JDK1.4 -client) gives a 35% speedup with an average of
56.72 ns/call. In the next RAMI release, we will experiment with two different tech-
niques to prevent short lived objects creation: implicit and explicit reuse of objects.
Both techniques will be new Fut ur eFact or y implementations and will not break
the existing framework.

The table is interesting to see the behaviour of different JVM when using RAMI.

The “Synchronous” row test (using the contradictory synchronous asynchronous
semantic of Synchr onousMet hodl nvocat or class) shows the direct RAMI over-
head since no threads are involved.

The “Threaded” and “ThreadPooled” rows shows the overhead of the concurrency
semantic (Thr eadedMet hodl nvocat or and Thr eadPool edMet hodl nvocat or
classes). As expected, creating a thread for each method invocation add a large over-
head to the reflexive asynchronous method invocation.

Concerning the threaded concurrency semantic, we can observe several things: the
JDK1.4 test uses 30% of the CPU in system space and 46% in user space while an
average of 1500 threads/secondes were created. We guess that the time spent in system
space concern the context switch of threads while in the user space, the CPU execute
the RAMI code, and probably most of the garbage collector code. In the JDK1.3
test, only 3% of its CPU time was into system space and 5% in user space while an
average of 200 threads/secondes were created. We assume that the HotSpot VM of the
JDK1.3 is a really immature version of the HotSpot technology where threads, locks
and memory management is really inefficient.

The “Fifo” and the “Random” rows shows the overhead of the single threaded se-
mantic (Fi f oMet hodl nvocat or and Randomivet hodl nvocat or classes): in-
vocations are enqueued and this require synchronization.

It must be noticed that the HotSpot Virtual Machine delivered with the JDK1.3 is
really inefficient.

Using the RAMI framework in the way described above is really not a good idea
! First, empty methods are really rare in common programs ! But, worse, using an
asynchronous method invocation to invoke a method synchronously is a real bad de-
sign practice: it adds a significant overhead and gives absolutely no advantages since
the asynchronism which ususally provides better reactivity (unblocked 1/O operation)
and/or speedup on SMP computers, is ignored ! Hence to measure the advantage of the
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RAMI framework, we need a real example.

6.5.2 Analysis on a real example

We have tested the RAMI library to compute the decimals of the number 7. The algo-
rithm used is the one found by Bailey, Borwein and Plouffe [4, 1]. The formula used
for this test is:

2.1 4 2 1 1
W_ZZZ%I_G"(SZHLI_87J+4_8i+5_8i+6)

We implement the above formula in the Pi Conput er class which contains the
method

Bi gDeci mal conpute(int start, int end);

Hence, to compute the n first decimals of 7, it suffice to create an instance conput er
of the Pi Conput er class and to invoke:

conput er. conput e(0, n);

To illustrate the benefits of RAMI, the following code has been implemented: in-
stead of invoking conput er . conput e( 0, n), we cut the original n sum into p
subsums where p is a parameter which usually depends on the number of processors
in the computer. The mai n() method invokes the conput e() method p times in a
reflexive asynchronous way using the RAMI framework. Hence, if two or more proces-
sors are available, each subsum can be computed in parallel. Before each computation,
dummy calls are generated to prevent caches effect (Just In Time compiler optimiza-
tions for example) and the method Syst em gc() is invoked to try garbage collecting
as much objects as possible before the computing start. Moreover, memory parame-
ters are specified to the JVM to have a minimum stack (option - Xns) of 128 Mb and
a maximum (option - Xnx) of 256 Mb. Since each parameter affect the behaviour of
the Java Virtual Machine, results give a general overview of the performance one can
obtain with RAMI.

The test was performed on an AlIX IBM R6000 SP3 375Mhz quadri-processor
node to compute 1000 decimals. On the AIX system, the shell environment variable
Al XTHREAD MNRATI Ospecify the number of user threads per kernel threads to be
used. Since all threads involved in this example are cpu consuming, we specify a ration
of1: 1.

Notice that the direct invocation of Pi Conput er . conput e(0, 1000) takean
average of 3:18.20 (3 minutes and 18.20 secondes, average on 7 execution) to termi-
nate. The chart 6.1(a) shows the time spent to compute 1000 decimals of 7 in function
of the parameter p of subsums.

Several things must be noticed:
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Figure 6.1; Time spent to compute 1000 decimals of Pi on a quadriprocessor node
using RAMI.

o the best time is achieved with p > 3 as expected (4 processors node) resulting in
a speedup® of

BestSequentialTime 3 :18.20

dup = = =387T~4
Speedup BestParallelTime 0:51.24 3.87
and an efficiency of
. Speedup 3.87
E = =_— =0. ~1
f ficiency ProcessorsNumber 4 0-9675

o the time spent with any asynchronus semantic (including the contradictory syn-
chronous one) is sometimes better than a direct invocation ;

o the threaded concurrency semantic provides the best performance.

The first point shows that the concurrency asynchronus semantic is the most effi-
cient as expected.

The second point tends to prove that RAMI do not introduce a significant overhead
when used properly but is suspicious: using RAMI implies many operation such as
futures handling and reflexive invocation. While we had suspected the Just In Time
compiler of the JVM to introduce “noises” in our benchmark, executing it in inter-
preted mode (- Xi nt ) shows the same result. We are currently analysing this strange
behaviour.

The last point shows that the threaded concurrency semantic tends to be the most
efficient in terms of computation time. Nevertheless, when measuring the time spent
for the request to be aknowledged* as shown in the chart 6.1(b) , the threaded concur-
rency semantic is the less efficient as expected (the synchronous semantic request time

3According to the defi nition of the speedup where the best sequential time is the time of the direct invo-
cation of the method conput e() without the RAMI overhead
4i.e. on the returned of thecal | () method where the caller thread is no longer blocked
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is nonsense as it is the same as the computed time !). Creating a thread on each asyn-
chronous method invocation has an overhead. The threadpooled concurrency semantic
is a best choice when the time spent to do the request is more critical than the time

spent to execute the method.
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Chapter 7

Transparency

7.1 Introduction

As mentionned above, RAMI focused on dynamic aspect. To achieve its goal, RAMI
uses the reflection mechanism provided by Java. So, the cal | method need a Met hod
and an array for its arguments. This is a major drawback. First, it is really annoying
to give such information for a simple method invocation (even if in fact, it is asyn-
chronous). Second, and probably most importantly, this syntax avoid compiler check-
ing, what is called strong typing.

A solution to both problems is the notion of transparency, that is the possibility to
perform an asynchronous method invocation as a synchronous local method invocation.

7.2 The Strong typing problem

Strong typing is the mechanism allowing the compiler to verify a bit more than the
syntax of a call ; its arguments and the variable in which the result is to be set is
also checked using the notion of type. Typing is strong because it is known when the
programmer writes its application.

The problem arise in reflective method invocation because methods are specified
with a St r i ng which is not checked at runtime. The compiler doesn’t know that this
string represents a method name. Also, parameters are specified in a generic array of
oj ect's. As with St ri ng, the compiler cannot suppose that the array represents
method parameters. How can strong typing be ensured in such a situation ?

One solution is to declare an interface and to give client a proxy which implements
this interface. When the client invoke a method of this proxy, the real reflective method
invocation is performed. Since the proxy may be generated by compilation, strong
typing is ensured. The reader may wonder how usefull is reflective method invocation
if a compiler must generate a proxy to ensure strong typing. The reader may see a
contradiction here and yes it is ! But imagine that the proxy resides on a different JVM
(host) that the object it redirect method invocation on. In such a way, this mechanism
ensure remote method invocation with strong typing. Using interfaces, clients invokes
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method naturally and this is what is called transparency. RMI and Corba uses a similar
mechanism to implement transparency of remote method invocation.

But, RAMI provides reflective asynchronous method invocation and the asynchro-
nism leads to some more problems.

7.3 Total transparency

As seen in the previous section, the notion of interface resolve both problems of strong
typing and of transparency of reflective method invocation. How this solution can
be extended to provide both strong typing and transparency of asynchronous method
invocation ?

One solution is the use of the wait-by-necessity mechanism. The idea is to provide
total transparency of asynchronous method invocation. When a method is called, a fu-
ture result is returned immediatly* allowing the thread to continue its execution during
the real method invocation. When the thread use the result, it is blocked. Thus, for the
caller thread, the asynchronous layer is transparent, it is not seen at all.

7.3.1 Inheritance

As done in [5], each method of an interface implemented by a proxy returns a future
object. This object is an instance of a class which extends the orginal declared returned
class in the (remote) interface. Then, each method of the returned object is a blocking
method : if the result of the related call is achieved, the method returns immediatly,
otherwise, the caller is blocked until the method returns.

This solution arise lots of problems related to inheritance :

o final classes cannot be inherited, thus, such classes cannot be inherited to create
future objects;

o final methods cannot be overridden to implement the wait-by-necessity mecha-
nism in future objects;

e public fields access cannot be blocked : the wait-by-necessity mechanism cannot
be implemented for fields.

Moreover, for asynchronous remote method invocation, public fields access arises a
coherency problem : when such a field is used by a remote client, the proxy is modified
instead of the related remote objects.

For all those reasons, another immplementation is provided in RAMI.

7.3.2 Interfaces and the j ava. | ang. ref | ect . Pr oxy class

The wait-by-necessity mechanism is implemented only for objects which implements
interfaces. Since interface declares only public methods, fields are not concerning

1j.e. note that some cpu cycles may be consumed to manage the asynchronism, but the real method has
not yet start running.
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avoiding the problems describes above. Moreover, this solution avoid the problem of
fi nal classes or methods arises by the inheritance solution.

The Asynchr onousPr oxyl nvocat i onHandl er class

Java, since the jdk v1.3 provides the Pr oxy class which can implements any given
class. To get an instance of this class, a user must give the list of interfaces to imple-
ment, and a j ava. | ang. refl ect. | nvocat i onHandl er which whill handle
invocations on the returned proxy instance.

RAMI provides the Asynchr onousPr oxyl nvocat i onHandl er which im-
plements the wait-by-necessity mechanism.

The program 7.3.1 is an example of a total transparent asynchronous method invo-
cation using this implementation.

Program 7.3.1 An example of a total transparent asynchronous method invocation
using Asynchr onousPr oxyl nvocat i onHandl er.

1 // Instanciate an object inplenenting a given interface
M/l nterface object = new Myl npl ();

/1l Gets its renoteReference
5 AsynchronousRef erence asynchronousRef erence = // depends on inpl enentation

/Il Gets the invocation handler
I nvocat i onHandl er proxyHandl er =
0 Asynchr onousPr oxyl nvocat i onHandl er . get | nst ance(asynchr onousRef er ence) ;
1

/] Gets the total transparent proxy
M/l nterface proxy = (MylInterface)
Proxy. newPr oxyl nst ance(t hi s. get 0 ass() . get d assLoader (),
new Cl ass[] {M/nterface.class},
15 proxyHandl er) ;

/1 Total transparent asynchronous nethod invocation
/1 'result’ is a wait-by-necessity futur inplenentation.

20 Resul tInterface result = proxy.foo("fooArg");
/1 1f the asynchronous invocation of 'foo’ has term nated, this nmethods returns
// the result. Oherwise, the caller is blocked until the result is avail able.
Obj ect o = result.nethod(arg);

Problems related to interfaces solution

Even if these solution avoid the problems of fields access, and of final classes and meth-
ods, it has its drawback : it can only be used for classes which implements interfaces -
which limits legacy code.

For example, if a method returns a Long object, only the method conpar eTo
can be invoked with this mechanism : Long do not implements another interface than
Conpar abl e and thus, any other method must be called with the raw mechanism
provided by RAMI: the cal | method preventing transparency.

32



7.3.3 Problems of total transparency

Many problems arise with the total transparency mechanism.

Exceptions handling

The total transparent asynchronous method invocation mechanism is not well suited
for exception handling. What happend when the method declares an exception and
throws one ? Remember that the caller thread did continue its execution and is not in a
standard t r y/ cat ch block statement.

Perhaps a solution is to catch the exception behind it, and to throw it again on result
access thanks to the wait-by-necessity mechanism. But, access to the result object are
methods, which do not necessarily declare the thrown exception declared in the invoked
method.

Another solution, as done by [5] is to limit asynchronous method invocation to
method which do not declare any exception. Hence, any method which declares excep-
tion to be thrown, would be invoked synchronously.

Those solutions do not cover the problem of undeclared exception, subclasses of
Runt i meExcepti on.

Developper consciousness

The total transparent asynchronous method invocation allows programmer to forget the
asynchronismand to develop as in usual synchronous method invocation. This provides
legacy code since already existing code can bu used with very little modifications to
ensure asynchronism, hence concurrency or parallelism (depending on number of cpus
considered or hosts in case of remote method invocation).

Consequently, this mechanism, conjugued with remote method invocaton, allows
programs to run more efficiently since they use parallelism transparently.

Programmer who have already developped parallel application using standard par-
allel library (PVM or MPI), can see the benefit of this mechanism.

Nevertheless, this mechanism has the developper consciousness problem.

To be efficient, total transparent asynchronous method invocation must follow a
simple rule :

e method invocation must be done earliest;

e result access must be done latest.
Consider the code fragment below :

doSonet hi ng();
doSonret hi ngEl se( obj ect . met hod());
continue();

which is the "natural way" method invocation are done. If the total transparent
asynchronous method invocation mechanism is used, this fragment will probably run
less efficienlty than without it. In fact, the mechanism has a cost (handling threads and
future object creation), which must be considered. The previous fragment do not use
the concurrency involved in the mechanism (parallelism in distributed computing). So,
to be more efficient, the code fragment should be rewritten using the simple rule :

33



/1 Total transparent asynchronous nethod invocation
M/Resul t result = object.nethod()

/1 Do sonething concurrently
doSonet hi ng();

/1 Use the result (may be bl ocked on result method
/1 invocation if object.nmethod() did not returned yet.)
doSonet hi ngEl se(result);

continue();

Programmer must be conscious of the asynchronism of their method invocation,
and of the total transparent mechanism to write efficient code.

7.4 Semi transparency

The semi transparency mechanism try to solve problems linked to total transparency.
First, to avoid the developper consciousness problem, asynchronous method invocation
need to be "special call". Second, strong typing must be ensure, and the notion of inter-
face seems a good solution to provide a sort of transparency in asynchronous method
invocation.

7.4.1 Client’s view of object

RAMI distinguish the object which is referenced by an Asynchr onousRef er ence
and the client’s view of it. In fact, two clients may have distincts view of the same
objects. This is the notion of interfaces. An object may implements many interfaces,
each of which represents distincts view of him.

But, RAMI do not require objects to implement interfaces. Remenber that RAMI
uses reflection to provides dynamism. Here the dilemna.

Why objects should they declare the interface they implements ? The answer is
strong typing : an interface is a type and the compiler can check several things with
it. But, RAMI consider that every objects implements a whole set of interfaces even if
they do not declare them.

How can this be true ? .
Here an extract of a run of a well known program called j avap?:

shel | > javap java. | ang. Obj ect

Conpi | ed from Ooj ect.java

public class java.lang. Object {
public java.lang. Object();
public final native java.lang.d ass getC ass();
public native int hashCode();
publ i ¢ bool ean equal s(java. | ang. Obj ect);

[-.-]

public java.lang.String toString();
public final native void notify();
public final native void notifyAll();
static {};

2This as been executed on a Linux machine but results must be similar on any platform supporting Java
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What does this mean ? j ava. | ang. Obj ect implements its own interface which
are all of its publ i ¢ fields®. Moreover, it implements many more interfaces which

are all the combinations of its publ i c fields. _ _
For example, RAMI considers that j ava. | ang. Obj ect implements also the
interface below :

public interface Anonynmpusl {
public native int hashCode();
publ i c bool ean equal s(j ava. | ang. Obj ect);
public java.lang. String toString();

}
and also this one :

public interface Anonynous2 {
public java.lang. String toString();
}

Itisevidentthatj ava. | ang. Obj ect do not declare the interfaces Anonynous1
and Anonynous?2.

A client can communicate with an object if it has a knowledge of methods the
object implements i.e. if it has an interface.

7.4.2 The JayaConpi | er class

RAMI provides the j ayac compiler which is in fact based on the JayaConpi | er
class. This class creates a Java class in pure Java source code which has the same name
as the one given in argument, but which resides in a package named the same as the one
of the given class prefixed by ’jaya’. Hence, if you compilethej ava. | ang. Cbj ect
class, thenthe j aya compiler will generatesthej aya. j ava. | ang. Qbj ect . More-
over, any class or interface, which the given class extends or implements is also com-
piled. Then, if you compile the class j ava. | ang. Stri ng, then the j aya com-
piler will generate the j aya. j ava. | ang. Stri ng class along with j aya. j a-
va. |l ang. Obj ect,j aya.java.io. Serializabl e,jaya. java. |l ang. Com
par abl e,and | aya. j ava. | ang. Char Sequence.

The jaya generated classes (called jaya classes) contains all the publ i ¢ methods
declared in their related “standard classes” prefixed by r ani _ and changed to return a

Fut ur e i ent instead of their original returned class.
For example, consider the class :

public class M/C ass {
public StringBuffer foo(String s) {

}
}

Its jaya related classes is:
package j aya;
public class M/ ass {

[-.-1]
public static final Method fooMethod;

3j avap gives more information than just publ i ¢ fi eldsaspr ot ect ed and st at i ¢ fi elds for exam-
ple, but you can have just publ i c fi eldswithj avap - public
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static{
/1l Initialisation of the fooMethod field

(-1
}

public Futuredient ram _foo(String s) {
bj ect args[] = new Object[]{s};
return asynchronousRef erence. cal | (f ooMet hod, args);

}
[...]
}

This class will be the client’s proxy of a given instance of MyClass :

[...]

M/C ass nmyObj ect = new MyCl ass();

Asynchr onousRef erence asynchronousReference = // depends on inplenentation

/1 Gets a sem transparent asynchronous proxy
jaya. MyC ass ar_nyObject = // gets the instance

/1 Sem transparent reflective asynchronous nethod invocation
Futuredient future = ar_nyQbject.ram _foo("Hello Wrld");

[...1]

Systemout.println(future.waitForResult());

[...]
}

Each methods which start with r ami _is a semi transparent asynchronous method
invocation. Thus, this mechanism allows strong typing but resolve both problems of
exception handling and of developper consciousness : since methods return future ob-
jects, the developper cannot forget the asynchronism property of its call. Thus, he can
program more efficiently doing asynchronous call earlier, and result recovery later.

7.5 Summary

This chapter has focused on transparency. Two distincts features provided in RAMI
has been described :

o total transparent asynchronous method invocation which uses the wait-by-necessity
mechanism but which arise two problems : exception handling and developper
consciousness.

e semi transparent asynchronous method invocation which uses the notion of client’s
view of a remote object by proxy java source generation.
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Chapter 8

Conclusion and perspectives

This document has presented RAMI a framework that provides reflective asynchronous
method invocation. It focused on dynamic aspect by being entirely based on the reflec-
tion mechanism. Objects in RAMI do not have to implement a special interface or
inherit a special class or even to be compiled. Any object can be used asynchronously
by being referenced by an asynchronous reference. In RAMI, such references are in-
stances of class that implements the Asynchr onousRef er ence interface.

RAMI uses futures to handle the result of (or the exception thrown) by an asyn-
chronous method invocation. RAMI permits developpers to use an event-driven pro-
gramming scheme by the use of the Cal | back interface. Chained asynchronism
specify the semantic of an asynchronous reference on another asynchronous reference
in the Asynchr onousRef er encePai r.

RAMI proposes an implementation of its specification which provides several prop-
erties such as unicity of asynchronous references, customizable future factories ans
customizable asynchronous semantic.

While RAMI focuses on dynamism using reflection, it has its drawback: this mech-
anism do not ensure strong typing. Two distincts solutions is provided based on trans-
parency of asynchronous method invocation: total transparent and semi transparent
reflective asynchronous method invocation.

Whereas RAMI is not dedicated for asynchronous remote method invocation, its
design allows anyone to implements a remote asynchronous reference. This is already
done by our team with the JACODb [21, 22] framework which provides dynamic reflec-
tive remote method invocation where any object can become remote at any time and
where any methods of such a remote object can be invoked asynchronously using a
specific implementation of the Asynchr onousRef er ence interface.
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