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Abstract

This document describes the Mandala/RAMI subpackage, a library for Reflective Asyn-
chronous Method Invocation. It is entirely based on the reflexion mechanism which is
provided in the JavaTM 1 language.

This document deals also with exception handling usually neglected in asynchronous
method invocation ; with the event driven programming scheme provided ; with the
chained asynchronism mechanism ; with the asynchronism semantic and with trans-
parency where the complexity involved in asynchronous method invocation is entirely
masked (total transparency) or partially masked semi transparency to the end user.

keywords: reflective asynchronous method invocation, asynchronism semantic,
total-transparency, semi-transparency

1Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. The author is independent of Sun Microsystems, Inc.
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Chapter 1

Introduction

Java [?] is no more a tool for applets programmer but is a language widely used in
every domain of computer science : smartcards [?], personnal digital assistant [?],
workstations [?], enterprise server [?], supercomputers [?].

Java is an objects oriented language [?] and uses the model of method invocation
– sometimes abstracted to message passing. Its development kit [?] contains a thread
API (java.lang.Thread) and its virtual machine specification [?] defines threads
behaviour1.

We propose a new package to extend dynamically method invocation to asyn-
chronous method invocation. Related works are described in the section 2. Dynamism
is our main objective and means that objects have not to be designed specifically to be
used in an asynchronous way ensuring legacy code and separation of concerns. This
property is achieved by the use of the reflection provided in Java and will be discussed
in the section 3. Different models used to provide asynchronous method invocation
are discussed in the section 4. The package we propose called RAMI for reflective
asynchronous method invocation is based on the concept of asynchronous references
– inspired on standard synchronous Java reference – and is described in the section 5.
Our implementation of this concept is then described and analysed in the section 6.
Whereas reflection provides dynamism, it raises the problem of weak type checking
where type checking is done at runtime instead of compile time which is a real draw-
backs for programmers. Our solution to this problem is provided by the transparency
mechanism described in the section 7. Conclusion and perspectives are given in the
section 8.

1Which is not followed by implementation of the Java Virtual Machine which uses native threads such as
HotSpotTM [?].
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Chapter 2

Related Works

Several works focuses on asynchronous method invocation but they are all dedicated
to the remote case. For example, K.Falkner and al. [?] extends the language with
the keyword asynch to declare methods of the remote object that are called in an
asynchronous way. A re-implementation of the RMI stubs and skeletons and the use of
Futures [?] allow developers to deal with asynchronous calls.

Research is also carried out around dynamism. HORB [?] for instance, is a Java
ORB (Object Request Broker) which does not need a declarative interface to create re-
mote objects. Any object can be compiled by a dedicated compiler to become remote.
Asynchronous remote method invocation is based on a method naming convention.
For example, a method foo() of a remote object must be renamed foo_Asynch()
and clients must use foo_Request() and foo_Receive() to achieve the asyn-
chronous call to foo(). Reflective Remote Method Invocation [?] focuses on the same
concern using the same reflection technique, i.e. dynamic remote method invocation,
and provide also asynchronism but is also dedicated to remote objects.
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Chapter 3

Reflection provides dynamism

As defined in the API documentation of the java.lang.reflect package: " Re-
flection allows programmatic access to information about the fields, methods and con-
structors of loaded classes, and the use reflected fields, methods, and constructors to
operate on their underlying counterparts on objects, within security restrictions."

This allows the programmer to access some language caracteristics of an object at
runtime. For example, given an instance of the java.lang.String class contain-
ing "foo", and an instance a of the class A defines below:

public class A {
public StringBuffer foo(StringBuffer sb) {

return sb.append(sb.reverse()); // do something very usefull !
}

}

An invocation of the foo method of the object a can be done in two different way:

// Natural way
StringBuffer sb = a.foo(new StringBuffer("Dummy"));

// Reflective way
StringBuffer sb = (StringBuffer)

Class.forName("A") // Returns a Class object reflecting ’A’
.getMethod("foo", // Returns a Method object reflecting ’foo’

new Class[]{StringBuffer.class})
.invoke(a, // Invokes the method ’foo’

new Object[]{new StringBuffer("Dummy")});

As shown above, reflective method invocation is not really adapted to the develop-
ment of applications. Many problems arise with reflection. The first and probably the
most important of all is the lack of type checking. In the ’natural way’, the compiler
tells if the parameter given to the method does conform or not to the one specified in
the signature. The same check is made on the result returned by the method. The com-
piler do verify also that the variable refers to an instance of the specified class (or one
of its subclass) so the method called ’foo’ can safely be invoked. All of this checks
are not done in reflective method invocation. Moreover, reflective method invocation
is less efficient that natural method invocation. Some works has to be done to discover
the class of the object, discover the name of one of its method, and invoking it. All of
this is done at runtime while it is done at compile time in the natural way.
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So why focusing on the reflective approach ? Basically, the best advantage of re-
flection is also its best drawback : reflection provides dynamic programming. Although
the discovering an object at runtime is mainly used in object inspectors, debuggers or
class browser, it can actually provide extensibility and pluggability[?]. The dynamic
feature provided by reflection is the focus of RAMI i.e. any method of any objects
must be asynchronously invokable even if the object was not designed in this way.
This ensure separation of concerns.
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Chapter 4

Asynchronous method
invocation

4.1 The message passing abstraction

Object oriented programming is sometime abstracted to message passing program-
ming: invoking a.foo(t) may be abstract to "sending the message foo(t) to the
object a". The returned result is the reply of the message. If we extend the abtraction,
then we may consider two phases:

1. sending the message,

2. getting the reply.

In method invocation, when a message has been sent, the caller must wait the answer
before continuing. Sometime, it is preferable to send a message, to do something
during the time the object constructs its reply (i.e. during the execution of the specified
method), and to get the reply a bit later1. This leads to asynchronous message passing
i.e. asynchronous method invocation.

4.2 Models

Method invocation is not very adapted to asynchronous communication since a method
call often returns a result. The caller thread has to wait for the availability of this re-
sult. Therefore, many frameworks modify the method invocation paradigm to suite
asynchronism. For example, some provide asynchronism with a send/receive mod-
el [?], others propose a publish/subscribe model [?]. Although these models are more
adapted to asynchronous communication, any existing code has to be rewritten - when
possible. For example, if a synchronous communication is changed for efficiency rea-
sons to an asynchronous one, the programmer has to introduce the send/receive

1It must be noticed that this description may be enlarged to the remote case where the sender and the
receiver of the message do not reside on the same host.
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instructions on both client and server sides2. Such a change may have a really bad
impact on the design of the application and is prone to the introduction of new bugs.

The use of an inner anonymous inlined thread such as

new Thread() {
public void run() {

// invoke the desired
// method asynchronously
StringBuffer sb = a.foo(new StringBuffer("Dummy"));

}
}.start();

is not a good design solution: a thread object must be instantiated and result polling
must be implemented. Moreover, using an explicit thread to deal with asynchronous
method invocation breaks the model of the message passing paradigm. It may be
preferable to deal with synchronous/asynchronous method invocation (message pass-
ing) instead of using threads as described by [?].

Hence, several projects focus on an asynchronous method invocation schema in a
more or less transparent way, using so called future objects. Most of them are static and
dedicated to asynchronous remote method invocation. For example, the asynchronous
remote method invocation mechanism described by K.Falkner and Al. [?] needs a com-
pilation phase to generate stubs dedicated to the asynchronous paradigm.

This document describes the architecture of the RAMI package which provides
reflective asynchonous method invocation.

2Since objects use message passing for their communication, the name client is used for the object that
invokes the method of another object named the server. This definition extends naturally to remote objects.
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Chapter 5

Asynchronous references

Whereas Java defines reflection of references (java.lang.ref) for garbage col-
lecting purposes, RAMI defines the notion of asynchronous reference for concurrency
purposes. An asynchronous reference is a reference on another object which provides
asynchronous method invocation. If O is an object, AR(O) is an asynchronous ref-
erence on O (figure 5.1). As with standard, synchronous reference, there is only one
asynchronous reference on any object in a given Java Virtual Machine. RAMI contains
the AsynchronousReference interface which declares the following method:

FutureClient call(Method method, Object[] args);

For any Java objects, invoking one of its method asynchronously requires three
steps:

1. getting an asynchronous reference on the object;

2. getting the reflection of the method to invoke;

3. and perfoming the asynchronous method invocation.

Hence, the asynchronous invocation of

Asynchronous reference
RAMI 

Standard Java
Synchronous reference

Object

(a) Asynchronous reference abstrac-
tion

Standard Java
Synchronous reference

Object

Asynchronous reference
RAMI objectStandard Java

Synchronous reference

(b) Asynchronous reference in the JVM

Figure 5.1: RAMI asynchronous reference and Java synchronous reference.
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a.foo(new StringBuffer("Dummy"));

is done by the following code:

// Gets an asynchronous reference on ’a’
AsynchronousReference asynchronousReference = // Depends on implementation !
// Gets the reflection of the "foo()" method
Method fooMethod = a.getClass().getMethod("foo",

new Class[]{StringBuffer.class});

// perform the asynchronous invocation of ’a.foo(new StringBuffer("Dummy"));’
asynchronousReference.call(fooMethod,

new Object[]{new StringBuffer("Dummy")});

As the reader may noticed, using reflection leads to a really unatural and nearly
impractical syntax. Solutions to this problem will be discussed in section 7. Moreover,
the above code needs more explanations:

� the reader may have noticed that it will not compile since it doesn’t catch the
NoSuchMethodException the getMethod() method may throw, hence
a try/catch block must be added for this code to compile. This is the main
problem of the reflection: errors which are usually checked at compile time are
discovered atruntime. Developpers are encouraged in this case to declare their
fooMethod in a static final field, and initialized in a static bloc.
Hence, performance penalty of try/catch block is minimized and errors are
discovered when the class is loaded.

� Since RAMI is Java-interface based1, getting an AsynchronousReference
variable depends on the implementation of the interface. Hence, it is not shown
here.

� The method toString() returns a result which is not used in the preceding
code. The next section describes mechanism RAMI provides to handle the result
of an asynchronous method invocation.

5.1 Futures: handling the result

The last line of the preceding code does not use the result returned by the method
foo(). Moreover, it does not illustrate the use of the asynchronism provided by the
call() method of the asynchronous reference. Hence, consider the following line of
code:

// Gets an asynchronous reference on ’a’
AsynchronousReference asynchronousReference = // Depends on implementation !
// Gets the reflection of the "foo()" method
Method fooMethod = a.getClass().getMethod("foo",

new Class[]{StringBuffer.class});

// perform the asynchronous invocation of ’a.foo(new StringBuffer("Dummy"));’
asynchronousReference.call(fooMethod,

new Object[]{new StringBuffer("Dummy")});

doSomething();

1RAMI also provides different implementations of every interfaces it defines. Some implementations of
the AsynchronousReference interface will be discussed in the performance section 6.5
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Reference
Asynchronous

(7)

(5)

(6)

callerThread
(1)

(4’)

(9)

(8)

future.isResultAvailable();

future = ar.call(method, args);

future
(3)

(2)

(4)
calleeThread

future.setResult(res, exception);

object.method(args);

result = future.getResult();

(10)

Object

Figure 5.2: The call() asynchronous mechanism.

Here, the method doSomething() is executed in concurrency2 with the foo()
method. This is why asynchronous method invocation is usefull for: the invocation of
a method - the sending of a message - does not require waiting for the reply: getting the
reply is just done when needed. This requires some practice to get used to: invoking
methods at the earliest and getting their result at the latest.

Then, how the result of an asynchronous method invocation can be get ? The
idea comes with the notion of future [?]. When a method is invoked asynchronously
thanks to call(), a future object is returned that handles everything related to asyn-
chronism. The Figure 5.2 illustrates the AsynchronousReference’s call()
mechanism and one use of the FutureClient instance returned. (1) A thread
(callerThread) is running, preparing a reflective asynchronous method invocation.
It does the call() invocation (2) which returns a FutureClient object (future)
(3). The asynchronous reference implementation performs the actual asynchronous
method invocation in the calleeThread) (4) the other client thread continues its
execution (4’). Periodically, the callerThread may test the availability of the re-
sult (5 and 6). When the called method terminates, the asynchronous reference im-
plementation updates the future object (7). The next run by the callerThread
is a positive availability test (8). It then gets the returned result (9) and continues its
execution (10).

The FutureClient object is a future object which provides result polling, result
blocking and callee thread control.

Methods of a future object can be unrelated or related to the result returned by the
asychronous method invocation. Unrelated methods can be used as any usual methods
since their invocation does not depend on the asynchronous method invocation such as
toString(), equals() or hashCode(). Related methods can be either safe or

2In parallel if the computer contains more than one CPU. To be really rigorous, it de-
pends on the implementation : an implementor may provide a synchronous implementation of the
AsynchronousReference interface! RAMI provides such an implementation used for testing (see 6.2)
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unsafe regarding the validity of their returned value which depends on the availability
of the result. The result returned by an unsafe related method is undefined, hence
unusable, if the result of the asychronous method invocation is not available. On the
opposite, the result returned by a safe related method is always valid. Unsafe related
method are provided to allow efficient (non-blocking) programming scheme.

Unrelated methods will not be shown in this document, but the RAMI API specifies
which methods are unrelated and which are related.

In the following, each method that returns an information on the asynchronous
method invocation is specified safe or unsafe. If a method is specified unsafe, you must
wait the availibility of the result before considering the value returned by the method
as valid.

5.1.1 InvocationInfo : getting information

Basic informations on an asynchronous method invocation such as "which method was
invoked ?" or "which arguments where specified ?", are provided by the InvocationInfo
interface. Every method of this interface is safe related meaning the result they return
is always valid.

This interface provides methods to get informations that are available as soon as
the asynchronous method invocation is made (when the call() is invoked). Thus
informations are static regarding the life of the asynchronous method invocation: they
do not change over time. Moreover, each methods this interface declares is safe related.

5.1.2 InvocationObserver : polling

When an asynchronous method invocation has been made, some information may be
usefull to gather. The InvocationObserver interface provides methods for this
purpose. For example, a method is provided to know if the result is available. The "re-
sult" is either the returned value of the method or the exception it throws. It is available
if the method invocation has terminated. Hence, a method invocation is considered
terminated when either the method as returned normally (with a return statement
or when the last statement of a void method has been reached) or when the method
throws an exception (either a checked exception, a runtime exception or an error).
Polling the availability of the result of an asynchronous method invocation is provided
by the method isResultAvailable().

During an asynchronous method invocation, it may be usefull to have a reference
on the thread which is really executing the code of the method you’ve specified - the
callee thread. This thread may not be available if the invocation has not yet started.
Hence, polling its availability is provided by the method isCalleeAvailable().
Once this method returns true, the getCalleeThread() can be used to get a
reference on the callee thread making possible its interruption thanks to the method
interrupt() for example. Developpers must be aware that the thread may have
died if the method is already terminated.

This interface provides methods to get informations that are available during the
asynchronous method invocation. Thus informations are dynamic regarding the life of
the asynchronous method invocation: they change over time. Moreover, each methods
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this interface declares is safe related except for the method getCalleeThread()
which is unsafe related and returns an undefined value while isCalleeAvailable()
returns false.

5.1.3 MethodResult : getting the result

When the execution of an asynchronous method invocation is considered terminated,
the result is available and some informations such as "did an exception occur during
the invocation of the method ?" or "What is the result of the asynchronous method
invocation ?" may be get. This is the aim of the MethodResult interface. It provides
informations on a terminated asynchronous method invocation. This is the reason why
each of its method is unsafe related meaning they return an undefined value if the result
is not yet available i.e. if the method is not considered terminated yet.

For example, the result of an asynchronous method invocation is provided by getReturnedResult().
Developpers must be aware that this method returns an Object and may throw the
exception thrown by the invocation of the method. If the programmer is sure that
no exception has been thrown (exceptionOccured() must return false), you
can use getReturnedResultTrusted() instead which eliminates the need of a
try/catch block and its performance penalty. Otherwise, getException() re-
turns the exception that have been thrown during the asynchronous method invocation.

This interface provides methods to get informations that are available after the
asynchronous method invocation i.e. when it is considered as terminated. Thus infor-
mations are static regarding the life of the asynchronous method invocation: they do
not change over time. Moreover, each methods this interface declares is unsafe related:
they return an undefined value while isResultAvailable() returns false.

5.1.4 InvocationEventsWaiter : waiting for events

Developpers may be interested in events occuring during an asynchronous method in-
vocation. For example, the availability of the result, the availability of the callee are
such events. Instead of polling for such events, programmers may wait until this event
occurs. The InvocationEventsWaiter provides methods to wait fo such events.
For example, waiting for the availability of the result of an asynchronous method invo-
cation and getting it in the same time is provided by the waitForResult()method.
Again, the result may be an exception; in such a case, this exception is rethrown by this
method. Symetrically, waiting until the callee thread has been set by the underlying
implementation is provided by the waitUntilCalleeAvailable().

Each method this interface declares is safe related.

5.1.5 FutureClient : the all-in-one interface

Instead of dealing with many interfaces, RAMI provides for ease of use, the FutureClient
interface which extends the four interfaces seen above : InvocationInfo,InvocationObserver,
MethodResult and InvocationEventsWaiter. This interface is the one re-
turned by the method call() of the AsynchronousReference interface which
defines the behavior of any asynchronous reference.
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5.2 Exception handling

One of the bad thing in asynchronous method invocation is how to handle exceptions
properly ? When the method is really invoked, the caller thread is probably not in
the try/catch statement corresponding to the one that must be used when a usual
method which declares exception is invoked. Consider the following code :

public class A {
public StringBuffer foo(StringBuffer sb) {

return sb.append(sb.reverse()); // do something very usefull !
}

public static void main(String args[]) {
A a = new A();

Method fooMethod = A.class.getMethod("foo", new Class[0]);
AsynchronousReference reference = // depends on implementation

FutureClient future = reference.call(fooMethod,
new Object[]{null});

doSomethingElse();
}

The invocation of foo(null) throws a NullPointerException as expected.
Where should the try/catch statements be placed to ensure correct handling of the
exception ?

RAMI provides two techniques to deal with exceptions in asynchronous method
invocation.

5.2.1 On result recovery

The first and easiest technique is to deal with exceptions when recovering the re-
sult. This means that until the caller checks exceptions, it is not notified that the
asynchronous method invocation has thrown an exception. The MethodResult in-
terface provides the method exceptionOccured() to know if an exception has
been thrown and the getException() to get the thrown exception. The method
waitForResult() of the InvocationEventsWaiter may throw the excep-
tion that has been thrown during the asynchronous method invocation. Since waitForResult()
declares Throwable to be thrown, it must be enclosed by a try/catch statement
ensuring the proper handling of the thrown exception.

The program 5.2.1 is an example of polling using the InvocationObserver
interface and of handling result and exceptions "by hand" while the program 5.2.2
shows the use of the InvocationEventsWaiter interface. The use of the callee
thread is shown by the program 5.2.3.

5.2.2 Earliest notification

The second technique to deal with exception in asynchronous method invocation is to
use an event driven programming scheme. Hence, the next section will describes this
scheme, and the earliest notification technique used to deal with exception in asyn-
chronous method invocation will be described in section 5.3.5.
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Program 5.2.1 Using the InvocationObserver interface.

1 // Gets the reflection of the "foo()" method
Method fooMethod =

A.class.getMethod("foo",
new Class[]{StringBuffer.class});

5
FutureClient future =

asynchronousReference.call(fooMethod,
new Object[]{new StringBuffer("Hello")});

10 // Polling the result
while(!future.isResultAvailable()) {

// This method is running concurrently to "foo"
doSomething();

}
15

// The result is available : the method invocation is considered terminated

if (future.exceptionOccured()) {
// An exception occured

20 Throwable t = future.getException();
handleException(t);

}else{
// No exception occured
StringBuffer result = future.getReturnedResultTrusted();

25 handleResult(result);
}

5.3 Callback : event driven programming

Whereas future provides result polling and result waiting, it may be more convenient to
use event driven programming scheme. This means invoking a method asynchronously
and doing something else without refering in the following code in the previously made
asynchronous method invocation. Another object will be notified of the termination of
the asynchronous method invocation and will use the result (or the exception thrown).
The Callback interface provides the event driven programming scheme. It defines
the method done() method which is invoked once an asynchronous method is con-
sidered terminated. Each reflective asynchronous method invocation has an associated
Callback accessible with the method Callback() of the InvocationInfo in-
terface.

You have three different ways to specify the Callback to use once your asyn-
chronous method invocation terminates.

5.3.1 Global Object Scope : the default one

Each AsynchronousReference contains a Callback instance with a global ob-
ject scope. This means that the Callback instance is related to its AsynchronousReference
instance. If a thread modify the global object scope Callback instance, then any
other thread will see the same Callback instance. This global object scope instance
is the default one meaning that in absence of any other type of Callback scope (see
below), it is used when an asynchronous method invocation terminates.

16



Program 5.2.2 Using the InvocationEventsWaiter interface.

1 // Gets the reflection of the "foo" method
Method fooMethod =

MyObject.class.getMethod("foo",
new Class[]{StringBuffer.class});

5
FutureClient future =

asynchronousReference.call(fooMethod,
new Object[]{new StringBuffer("Hello")});

10 // This method is running concurrently to "foo"
doSomething();

try{
StringBuffer result = future.waitForResult();

15 handleResult(result);
}catch(Throwable t) {

handleException(t);
}

Program 5.2.3 using the callee thread.

5.3.2 Local Thread Scope : the thread specific one

Each AsynchronousReference contains many Callback instances with a local
thread scope. This means that each Callback instance is not only related to its asyn-
chronous reference instance but also to the thread which makes asynchronous method
invocation (via the call() method). Hence, if a thread modify its local thread scope
Callback instance, then other threads are not affected by this modification and will
continue to see their own local thread scope Callback instance if they have one or
the global object scope one otherwise. When a thread has an associated local thread
scope Callback instance, it is used instead of the global object one.

5.3.3 Local Method Scope : the method specific one

You may specify a Callback to use instead of the global object scope default or
the local thread scope ones. Hence, when doing an asynchronous method invocation,
you use the overloaded call() method which takes a supplementary parameter : a
Callback which is used instead of the default and the thread specific one.

5.3.4 CallbackManager : the handler of Callback

Handling global object scope and local thread scope requires pair of Get/Set meth-
ods - accessors which are defined in the CallbackManager interface. Hence, the
AsynchronousReference interface contains the getCallbackManager()which
returns the instance used to manage Callback.
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5.3.5 Illustration of event driven programming scheme

This section presents three implementations of the Callback interface to illustrate
the benefits of the event driven programming scheme.

CallbackListeners: separate normal from abnormal termination

This implementation separates the real result of an asynchronous method invocation
and the exception it may have thrown. It takes Callback has events listeners and
when the result arrives, dispatches it to exception event listeners if an exception oc-
curred or to result listeners otherwise.

InterrupterCallback : the interrupter one

As describes in the section 5.2.2, waiting for the caller to check for exception is not
always acceptable. It may be preferable to be notified as soon as possible to prevent
a thread for computing something unused if the asynchronous method invocation as
thrown an exception. Hence, as soon as the asynchronous method invocation is consid-
ered terminated, a notification event must be handled. The InterrupterCallback
implementation of the Callback interface interrupts the caller thread when the method
is terminated. So, the caller thread may test its interrupt flag providing a mechanism
called the earliest notification. The program 5.3.1 shows such a mechanism.

5.4 Chained asynchronism

What is the benefits and the signification of having an asynchronous reference on an-
other asynchronous reference on an object ? Even if this idea seems really strange,
it may be considered that the RAMI package can be used by framework designed to
distributed computing as the JACOb framework. In such a situation, where objects are
remotely accessible, an asynchronous method invocation may be implemented in two
distincts way :

� the asynchronism may be implemented by the proxy of the remote objects ;

� the asynchronism may be implemented by the remote objects themselves.

In this last situation, invoking a remote method is semi asynchronous since the
server side of the remote object must be contacted first - which is a synchronous oper-
ation. Then asynchronism may be added on the proxy of the remote object to provide
a client-side asynchronism leading to full-asynchronism. Moreover, chained asynchro-
nism provides a way to add services to some methods of an object. This is why having
chained asynchronous reference is considered.

5.4.1 Mechanism

In a chain of asynchronous references, the following notation is adopted:

(AR(AR(AR(O))))
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Program 5.3.1 The earliest notification mechanism.

1 // Gets the reflection of the "foo" method
Method fooMethod =

MyObject.class.getMethod("foo",
new Class[]{StringBuffer.class});

5
FutureClient future =

asynchronousReference.call(fooMethod,
new Object[]{new StringBuffer("Coucou")},
new InterrupterTerminatedCallHandler());

10
// Polling with exception handling
while(!future.isResultAvailable()){

doSomeLittleWork();
if (Thread.isInterrupted() &&

15 result.isResultAvailable()){
// The interrupter has
// interrupted us. The remote
// method invocation has thrown
// an exception.

20 break;
}else{

// Maybe someone else
// has interrupted us ?

}
25 endWork();

}
try{

// Get the result. If an exception
// has been thrown by the asynchronous method

30 // invocation, it is thrown here.
MyResultObject myResult =

(MyResultObject)future.getReturnedResult();
}catch(Throwable t){

// The asynchronous method invocation has thrown an exception,
35 // handles it.

handleException(t);
}

which means the last (left-sided) asychronous reference is on another asychronous ref-
erence on another asychronous reference on the object O. Thus, invoking the method
foo of the object O needs a chain of call() invocations such as :

MyClass object = new MyClass();

// Gets an AsynchronousReference on an AsynchronousReference on an
// AsynchronousReference on MyClass
AsynchronousReference reference = //depends on implementation

// Gets the reflection of the "foo()" method
Method fooMethod =

MyClass.class.getMethod("foo",
new Class[]{StringBuffer.class});

// Gets the reflection of the "call" method
Method callMethod =

AsynchronousReference.class.getMethod("call",
new Class[]{Method.class,
Object[].class});

// Parameter of the the "foo" method
Object[] fooParam = new Object[] {new StringBuffer("Dummy")};

19



// Parameter of the last call
Object[] lastCallParam = new Object[] {fooMethod, fooParam};

// Parameter of the mid call
Object[] midCallParam = new Object[] {callMethod, lastCallParam};

FutureClient future = asynchronousReference.call(callMethod, midCallParam);

This is practically unusable ! So RAMI provides an elegant way to solve this
problem.

5.4.2 AsynchronousReferencePair : pair of asynchronous
references

The AsynchronousReferencePair takes two asynchronous references called
the head and the tail where the head is referencing the tail and makes a new AsynchronousReference
which simulates an asynchronous reference on the object referenced by the tail. So, if
AR(AR(O)) is a chain of asynchronous reference on the object O, you can make an
AsynchronousReferencePair referencingOwhich is also a standardAsynchronousReference
(it implements the same interface) : ARP(O). Then invoking a method foo() on O
do not require a chained invocation of the call() method but only one - as with any
AsynchronousReference. The AsynchronousReferencePair implemen-
tation must provides the same semantic on the call() invocation as the AsynchronousReference.

5.4.3 List of asynchronous references

Now that we have pairs of asynchronous references that can be considered as stan-
dard AsynchronousReference, making list of AsynchronousReference is
fairly simple : AR(AR(AR(O))) can be arranged into AR(ARP(O)) and since an
AsynchronousReferencePaircan be considered as an AsynchronousReference
(i.e. ARP � AR), we have AR(AR(O)) which can be transformed into ARP(O) which
gives AR(O). Hence, writing it shorter:

�����������	������
��
�����������	��������
��
� � �����	������
��
������������
�� � ������
��

So doing an asynchronous method invocation on the object O do not depends on
the number of asynchronous references chained to it. The last example which is really
unusable can be written - thanks to AsynchronousReferencePair :

MyObject myObject = new MyObject();

// Constructs an AsynchronousReference with the help of
// AsynchronousReferencePair wich constructs a chained of AsynchronousReference
// on MyObject
AsynchronousReference reference = //depends on implementation

// Gets the reflection of the "foo" method
Method fooMethod =

MyObject.class.getMethod("foo",
new Class[]{StringBuffer.class});

// Usual asynchronous method invocation while it does a chained invocations of
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// call() methods.
FutureClient future =

asynchronousReference.call(fooMethod,
new Object[] {new StringBuffer("Blah")});
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Chapter 6

RAMI implementation
description

This section focus on the RAMI own implementation of its specification.

6.1 An implementation of the AsynchronousReference
interface : the AsynchronousReferenceImpl
class

This class implements the AsynchronousReference interface in a highly config-
urable way :

� logging is provided by a Syslog class instance1 which provides debugging
facilities such as thread trace;

� the class implements a variant of the singleton design pattern [?]: only one in-
stance of this class referencing a given object can exists in any Java Virtual Ma-
chine2;

� this class uses the factory design pattern for futures creation (class FutureFactory)
enabling their customization (remote futures for example);

� this class uses the strategy design pattern to allow the customization of the
asynchronism (class MethodInvocator); three semantics are available as de-
scribed in 6.2.

1The next release will use the new java.util.logging package of the JDK 1.4.
2This property is also ensured on deserialization of an instance of this class.
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6.2 Asynchronism semantics

Synchronous semantic

This semantic ensure that a method invocation on an asynchronous reference (Async-
hronousReference.call()) do not return until the method has been terminated.
This semantic is in opposition with the specification of the AsynchronousReference
but the implementation provided by the SynchronousMethodInvocator class is
used essentially for testing and debugging purpose: a programmer can develop with
the synchronous semantic to find non asynchronous related bugs before switching into
an asynchronous semantic one.

6.2.1 Concurrent semantics

This semantic ensure that sequential asynchronous methods invocation (sequence of
AsynchronousReference.call() invocations) result in concurrent execution
of those methods. Two classes are provided that implement this semantic.

Threaded concurrency semantic

Each asynchronous method invocation creates a dedicated thread for the execution of
the specified method. While this implementation (ThreadedMethodInvocator)
may have a little overhead it does not have the deadlock problem of the thread pooled
concurrency semantic implementation (see below).

Threadpooled concurrency semantic

This implementation (ThreadPooledMethodInvocator)uses a highly customiz-
able ThreadPool to prevent threads creation overhead. This threads pool has some
specific property:

� the class ThreadPool extends the class java.lang.ThreadGroup en-
suring a “grouping” semantic of the pre-allocated threads in the pool (global
interruption for example);

� priority of the daemon status of the pre-allocated threads can be specified;

� the threads pool has a lower and a upper bounds of pre-allocated threads that can
be fixed.

The behaviour of the threadpooled concurrency mechanism is as follow:
When an asynchronous method invocation is made, the method is enqueued, while

each pre-allocated thread of the thread pool try to dequeue a method to execute it. If
the number of methods enqueued is greater than the number of pre-allocated threads
then new threads are created so their number will not exceed the upper bound. Then, if
some pre-allocated threads are idle (there are no more methods in the queue to execute)
and if their number is greater than the lower bound, some pre-allocated threads die so
their number is not smaller than the lower bound. To prevent threads allocation and
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deallocation yoyo effect, deallocation of threads is an event that occurs less frequently
(by a customizable factor) than allocation. Hence, setting the lower bound to 0 and the
upper bound to an infinite value (java.lang.Integer.MAX_VALUE) correpond
to the threaded concurrency semantic.

The major drawbacks of treads pools is that they are subject to deadlock: con-
sider a generic threads pool (like the class ThreadPool described above) with an
execute() method which enqueue tasks (Such as method invocation). Suppose a is
enqueuing lots of tasks, each of them also enqueuing other tasks in the same threads
pool and waiting on their termination. The number of threads will grow up to the upper
bound limit of pre-allocated threads in the pool (either the user fixed limit, the sys-
tem fixed limit, or the limit imposed by the availble memory in the system). Every
thread is waiting the termination of a task still not dequeued since there is no more idle
pre-allocated threads that can execute it. This situation leads to a deadlock!

Hence, whith a threads pool, developpers should never enqueue tasks that enqueue
task on the same threads pool and wait on their termination. RAMI consider this sit-
uation as rare (or bad design of the application which is using the threads pool) and
choose the threadpooled concurrency semantic as the default concurrency semantic
implementation when creating a new AsynchronousReferenceImpl since it is
the best choice for performance.

6.3 Single threaded semantic

The concurrency semantic ensure that methods runs concurrently but this behaviour
may not be acceptable when asynchronous method invocation is made on non-threadsafe
instances. Hence, the single threaded semantic ensure that only one thread runs the
methods of the object the asynchronous reference is referencing. Currently two imple-
mentation is provided:

Fifo single threaded semantic

This implementation (FifoMethodInvocator) preserve the order of sequential
invocations of the method AsynchronousReferenceImpl.call(). The first
invocation will be executed by the attached thread firstly. This semantic is rather similar
to the one provided in ProActive [?] and has the same interesting properties. It must
be pointed out that this semantic can lead to deadlock in some situations such as the
following:

A instance a of a class A contains a method ResultF f() which invokes asyn-
chronously the method ResultG g() of an instance b of a class B and waits for its
termination. Consider also that the method ResultG g() invokes asynchronously
the method f() of the object a (indirect recursion) and also waits for its termination.
If the asynchronism semantic is the fifo single threaded semantic, then this leads to a
deadlock since the invocation of f() in the method b.g() enqueue the request (the
method f() to execute) in the object a which has only one thread currently waiting
for the termination of b.g(). Hence, this semantic must be use whith care.
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Random single threaded semantic

This implementation (RandomMethodInvocator) randomly execute a method within
the list of previous asynchronous method invocations (AsynchronousReferenceImpl.call()).
This semantic may leads to deadlock as in the fifo single threaded semantic.

6.4 Customized asynchronous semantic

The semantic of the asynchronism provided by the methodAsynchronousReferenceImpl.call()
is defined by an instance of a class which must implements the interfaceMethodInvocator.
Hence, it is possible to customize the semantic of the asynchronous method invocations
on an object by implementing this interface. This feature allows the developper to spe-
cialize its asynchronous method invocation to ensure some specific properties or to
enhanced the performance.

6.5 Performance consideration

Analysing performance of an asynchronous method invocation is not easy. Synchronous
and asynchronous method invocation are in opposition: they do the same thing (in-
voking a method of an object) but in rather distinct ways. Hence comparing them is
meaningless. Moreover, reflection adds an overhead to the method invocation itself but
provides dymanism which is the main concern of RAMI: any public method of any
object can be called asynchronously.

6.5.1 Overhead of the reflexive asynchronism provided by RAMI

In this section, we measure the overhead added by the handling of the reflexive asyn-
chronism on empty calls. The table 6.1 shows the average time spent to invoke an
empty method with the RAMI framework using the AsynchronousReferenceImpl
with different MethodInvocator implementations on different jdks. The test was
performed 100,000 times on a GNU/Linux 2.4/Bi-Pentium III 450 mhz system. The
jdk1.2 uses a classic JVM whereas jdk1.3 and jdk1.4 uses the HotSpot [?] technol-
ogy. The test invokes the empty method a hundred of times before the real benchmark
begins to prevent cache effect.

The first thing to notice is how the RAMI framework adds a significant over-
head to a standard synchronous empty method invocation. The table do not men-
tion the average time for these calls because they are near 0 ms/call (minimum is 3
ms/100000 calls for the JDK1.2 while the maximum is 38 ms/100000 calls for the
JDK1.4 -client). It must be noticed that empty method can be inlined in NOP (No
Operation) by Just In Time compilers (either classic JVM or HotSpot VM), while
the amount of work to do in RAMI invocations to provide reflexivity and asynchro-
nism is really non negligible. FutureClient are created on each invocation of the
AsynchronousReferenceImpl.call()method using a FutureFactory im-
plementation. Moreover, creating lots of short lived objects such as futures increase
the garbage collector work which decreases the performance. This fact is really easy
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Synchronous
Concurrency SingleThreaded

Threaded ThreadPooled Fifo Random
JDK 1.2 137.22 60.263 26.837 23.953 23.861

JDK 1.3 -client 89.12 911.833 48.130 20.684 20.746
JDK 1.3 -server 95.65 905.551 50.837 21.221 21.398
JDK 1.4 -client 87.43 72.499 24.950 22.260 22.791
JDK 1.4 -server 77.62 74.788 24.299 22.210 22.748

Table 6.1: RAMI overhead in ns/call

to observe by increasing the stack size of the virtual machine by the -Xms and -Xmx
of the command line: running the same “Synchronous” test with java -Xms256m
-Xmx512mx command line (JDK1.4 -client) gives a 35% speedup with an average of
56.72 ns/call. In the next RAMI release, we will experiment with two different tech-
niques to prevent short lived objects creation: implicit and explicit reuse of objects.
Both techniques will be new FutureFactory implementations and will not break
the existing framework.

The table is interesting to see the behaviour of different JVM when using RAMI.
The “Synchronous” row test (using the contradictory synchronous asynchronous

semantic of SynchronousMethodInvocator class) shows the direct RAMI over-
head since no threads are involved.

The “Threaded” and “ThreadPooled” rows shows the overhead of the concurrency
semantic (ThreadedMethodInvocatorandThreadPooledMethodInvocator
classes). As expected, creating a thread for each method invocation add a large over-
head to the reflexive asynchronous method invocation.

Concerning the threaded concurrency semantic, we can observe several things: the
JDK1.4 test uses 30% of the CPU in system space and 46% in user space while an
average of 1500 threads/secondes were created. We guess that the time spent in system
space concern the context switch of threads while in the user space, the CPU execute
the RAMI code, and probably most of the garbage collector code. In the JDK1.3
test, only 3% of its CPU time was into system space and 5% in user space while an
average of 200 threads/secondes were created. We assume that the HotSpot VM of the
JDK1.3 is a really immature version of the HotSpot technology where threads, locks
and memory management is really inefficient.

The “Fifo” and the “Random” rows shows the overhead of the single threaded se-
mantic (FifoMethodInvocator and RandomMethodInvocator classes): in-
vocations are enqueued and this require synchronization.

It must be noticed that the HotSpot Virtual Machine delivered with the JDK1.3 is
really inefficient.

Using the RAMI framework in the way described above is really not a good idea
! First, empty methods are really rare in common programs ! But, worse, using an
asynchronous method invocation to invoke a method synchronously is a real bad de-
sign practice: it adds a significant overhead and gives absolutely no advantages since
the asynchronism which ususally provides better reactivity (unblocked I/O operation)
and/or speedup on SMP computers, is ignored ! Hence to measure the advantage of the

26



RAMI framework, we need a real example.

6.5.2 Analysis on a real example

We have tested the RAMI library to compute the decimals of the number � . The algo-
rithm used is the one found by Bailey, Borwein and Plouffe [?, ?]. The formula used
for this test is:

��� �� � ���
		�
 � �
�������	�� ������ � �

	��������� 	������
 �
We implement the above formula in the PiComputer class which contains the

method

BigDecimal compute(int start, int end);

Hence, to compute the n first decimals of � , it suffice to create an instance computer
of the PiComputer class and to invoke:

computer.compute(0, n);

To illustrate the benefits of RAMI, the following code has been implemented: in-
stead of invoking computer.compute(0, n), we cut the original � sum into �
subsums where � is a parameter which usually depends on the number of processors
in the computer. The main() method invokes the compute() method � times in a
reflexive asynchronous way using the RAMI framework. Hence, if two or more proces-
sors are available, each subsum can be computed in parallel. Before each computation,
dummy calls are generated to prevent caches effect (Just In Time compiler optimiza-
tions for example) and the method System.gc() is invoked to try garbage collecting
as much objects as possible before the computing start. Moreover, memory parame-
ters are specified to the JVM to have a minimum stack (option -Xms) of 128 Mb and
a maximum (option -Xmx) of 256 Mb. Since each parameter affect the behaviour of
the Java Virtual Machine, results give a general overview of the performance one can
obtain with RAMI.

The test was performed on an AIX IBM R6000 SP3 375Mhz quadri-processor
node to compute 1000 decimals. On the AIX system, the shell environment variable
AIXTHREAD_MNRATIO specify the number of user threads per kernel threads to be
used. Since all threads involved in this example are cpu consuming, we specify a ration
of 1:1.

Notice that the direct invocation of PiComputer.compute(0, 1000) take an
average of 3:18.20 (3 minutes and 18.20 secondes, average on 7 execution) to termi-
nate. The chart 6.1(a) shows the time spent to compute 1000 decimals of � in function
of the parameter � of subsums.

Several things must be noticed:

27



(a) Total time (b) Request time

Figure 6.1: Time spent to compute 1000 decimals of Pi on a quadriprocessor node
using RAMI.

� the best time is achieved with ����� as expected (4 processors node) resulting in
a speedup3 of
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� the time spent with any asynchronus semantic (including the contradictory syn-
chronous one) is sometimes better than a direct invocation ;

� the threaded concurrency semantic provides the best performance.

The first point shows that the concurrency asynchronus semantic is the most effi-
cient as expected.

The second point tends to prove that RAMI do not introduce a significant overhead
when used properly but is suspicious: using RAMI implies many operation such as
futures handling and reflexive invocation. While we had suspected the Just In Time
compiler of the JVM to introduce “noises” in our benchmark, executing it in inter-
preted mode (-Xint) shows the same result. We are currently analysing this strange
behaviour.

The last point shows that the threaded concurrency semantic tends to be the most
efficient in terms of computation time. Nevertheless, when measuring the time spent
for the request to be aknowledged4 as shown in the chart 6.1(b) , the threaded concur-
rency semantic is the less efficient as expected (the synchronous semantic request time

3According to the definition of the speedup where the best sequential time is the time of the direct invo-
cation of the method compute() without the RAMI overhead

4i.e. on the returned of the call() method where the caller thread is no longer blocked
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is nonsense as it is the same as the computed time !). Creating a thread on each asyn-
chronous method invocation has an overhead. The threadpooled concurrency semantic
is a best choice when the time spent to do the request is more critical than the time
spent to execute the method.
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Chapter 7

Transparency

7.1 Introduction

As mentionned above, RAMI focused on dynamic aspect. To achieve its goal, RAMI
uses the reflection mechanism provided by Java. So, the callmethod need a Method
and an array for its arguments. This is a major drawback. First, it is really annoying
to give such information for a simple method invocation (even if in fact, it is asyn-
chronous). Second, and probably most importantly, this syntax avoid compiler check-
ing, what is called strong typing.

A solution to both problems is the notion of transparency, that is the possibility to
perform an asynchronous method invocation as a synchronous local method invocation.

7.2 The Strong typing problem

Strong typing is the mechanism allowing the compiler to verify a bit more than the
syntax of a call : its arguments and the variable in which the result is to be set is
also checked using the notion of type. Typing is strong because it is known when the
programmer writes its application.

The problem arise in reflective method invocation because methods are specified
with a String which is not checked at runtime. The compiler doesn’t know that this
string represents a method name. Also, parameters are specified in a generic array of
Objects. As with String, the compiler cannot suppose that the array represents
method parameters. How can strong typing be ensured in such a situation ?

One solution is to declare an interface and to give client a proxy which implements
this interface. When the client invoke a method of this proxy, the real reflective method
invocation is performed. Since the proxy may be generated by compilation, strong
typing is ensured. The reader may wonder how usefull is reflective method invocation
if a compiler must generate a proxy to ensure strong typing. The reader may see a
contradiction here and yes it is ! But imagine that the proxy resides on a different JVM
(host) that the object it redirect method invocation on. In such a way, this mechanism
ensure remote method invocation with strong typing. Using interfaces, clients invokes
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method naturally and this is what is called transparency. RMI and Corba uses a similar
mechanism to implement transparency of remote method invocation.

But, RAMI provides reflective asynchronous method invocation and the asynchro-
nism leads to some more problems.

7.3 Total transparency

As seen in the previous section, the notion of interface resolve both problems of strong
typing and of transparency of reflective method invocation. How this solution can
be extended to provide both strong typing and transparency of asynchronous method
invocation ?

One solution is the use of the wait-by-necessity mechanism. The idea is to provide
total transparency of asynchronous method invocation. When a method is called, a fu-
ture result is returned immediatly1 allowing the thread to continue its execution during
the real method invocation. When the thread use the result, it is blocked. Thus, for the
caller thread, the asynchronous layer is transparent, it is not seen at all.

7.3.1 Inheritance

As done in [?], each method of an interface implemented by a proxy returns a future
object. This object is an instance of a class which extends the orginal declared returned
class in the (remote) interface. Then, each method of the returned object is a blocking
method : if the result of the related call is achieved, the method returns immediatly,
otherwise, the caller is blocked until the method returns.

This solution arise lots of problems related to inheritance :

� final classes cannot be inherited, thus, such classes cannot be inherited to create
future objects;

� final methods cannot be overridden to implement the wait-by-necessity mecha-
nism in future objects;

� public fields access cannot be blocked : the wait-by-necessity mechanism cannot
be implemented for fields.

Moreover, for asynchronous remote method invocation, public fields access arises a
coherency problem : when such a field is used by a remote client, the proxy is modified
instead of the related remote objects.

For all those reasons, another immplementation is provided in RAMI.

7.3.2 Interfaces and the java.lang.reflect.Proxy class

The wait-by-necessity mechanism is implemented only for objects which implements
interfaces. Since interface declares only public methods, fields are not concerning

1i.e. note that some cpu cycles may be consumed to manage the asynchronism, but the real method has
not yet start running.
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avoiding the problems describes above. Moreover, this solution avoid the problem of
final classes or methods arises by the inheritance solution.

The AsynchronousProxyInvocationHandler class

Java, since the jdk v1.3 provides the Proxy class which can implements any given
class. To get an instance of this class, a user must give the list of interfaces to imple-
ment, and a java.lang.reflect.InvocationHandler which whill handle
invocations on the returned proxy instance.

RAMI provides the AsynchronousProxyInvocationHandler which im-
plements the wait-by-necessity mechanism.

The program 7.3.1 is an example of a total transparent asynchronous method invo-
cation using this implementation.

Program 7.3.1 An example of a total transparent asynchronous method invocation
using AsynchronousProxyInvocationHandler.

1 // Instanciate an object implementing a given interface
MyInterface object = new MyImpl();

// Gets its remoteReference
5 AsynchronousReference asynchronousReference = // depends on implementation

// Gets the invocation handler
InvocationHandler proxyHandler =

AsynchronousProxyInvocationHandler.getInstance(asynchronousReference);
10

// Gets the total transparent proxy
MyInterface proxy = (MyInterface)

Proxy.newProxyInstance(this.getClass().getClassLoader(),
new Class[] {MyInterface.class},

15 proxyHandler);

// Total transparent asynchronous method invocation
// ’result’ is a wait-by-necessity futur implementation.
ResultInterface result = proxy.foo("fooArg");

20
// If the asynchronous invocation of ’foo’ has terminated, this methods returns
// the result. Otherwise, the caller is blocked until the result is available.
Object o = result.method(arg);

Problems related to interfaces solution

Even if these solution avoid the problems of fields access, and of final classes and meth-
ods, it has its drawback : it can only be used for classes which implements interfaces -
which limits legacy code.

For example, if a method returns a Long object, only the method compareTo
can be invoked with this mechanism : Long do not implements another interface than
Comparable and thus, any other method must be called with the raw mechanism
provided by RAMI: the call method preventing transparency.
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7.3.3 Problems of total transparency

Many problems arise with the total transparency mechanism.

Exceptions handling

The total transparent asynchronous method invocation mechanism is not well suited
for exception handling. What happend when the method declares an exception and
throws one ? Remember that the caller thread did continue its execution and is not in a
standard try/catch block statement.

Perhaps a solution is to catch the exception behind it, and to throw it again on result
access thanks to the wait-by-necessity mechanism. But, access to the result object are
methods, which do not necessarily declare the thrown exception declared in the invoked
method.

Another solution, as done by [?] is to limit asynchronous method invocation to
method which do not declare any exception. Hence, any method which declares excep-
tion to be thrown, would be invoked synchronously.

Those solutions do not cover the problem of undeclared exception, subclasses of
RuntimeException.

Developper consciousness

The total transparent asynchronous method invocation allows programmer to forget the
asynchronism and to develop as in usual synchronous method invocation. This provides
legacy code since already existing code can bu used with very little modifications to
ensure asynchronism, hence concurrency or parallelism (depending on number of cpus
considered or hosts in case of remote method invocation).

Consequently, this mechanism, conjugued with remote method invocaton, allows
programs to run more efficiently since they use parallelism transparently.

Programmer who have already developped parallel application using standard par-
allel library (PVM or MPI), can see the benefit of this mechanism.

Nevertheless, this mechanism has the developper consciousness problem.
To be efficient, total transparent asynchronous method invocation must follow a

simple rule :
� method invocation must be done earliest;

� result access must be done latest.
Consider the code fragment below :

doSomething();
doSomethingElse(object.method());
continue();

which is the "natural way" method invocation are done. If the total transparent
asynchronous method invocation mechanism is used, this fragment will probably run
less efficienlty than without it. In fact, the mechanism has a cost (handling threads and
future object creation), which must be considered. The previous fragment do not use
the concurrency involved in the mechanism (parallelism in distributed computing). So,
to be more efficient, the code fragment should be rewritten using the simple rule :
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// Total transparent asynchronous method invocation
MyResult result = object.method()

// Do something concurrently
doSomething();

// Use the result (may be blocked on result method
// invocation if object.method() did not returned yet.)
doSomethingElse(result);

continue();

Programmer must be conscious of the asynchronism of their method invocation,
and of the total transparent mechanism to write efficient code.

7.4 Semi transparency

The semi transparency mechanism try to solve problems linked to total transparency.
First, to avoid the developper consciousness problem, asynchronous method invocation
need to be "special call". Second, strong typing must be ensure, and the notion of inter-
face seems a good solution to provide a sort of transparency in asynchronous method
invocation.

7.4.1 Client’s view of object

RAMI distinguish the object which is referenced by an AsynchronousReference
and the client’s view of it. In fact, two clients may have distincts view of the same
objects. This is the notion of interfaces. An object may implements many interfaces,
each of which represents distincts view of him.

But, RAMI do not require objects to implement interfaces. Remenber that RAMI
uses reflection to provides dynamism. Here the dilemna.

Why objects should they declare the interface they implements ? The answer is
strong typing : an interface is a type and the compiler can check several things with
it. But, RAMI consider that every objects implements a whole set of interfaces even if
they do not declare them.

How can this be true ?
Here an extract of a run of a well known program called javap2:

shell> javap java.lang.Object
Compiled from Object.java
public class java.lang.Object {

public java.lang.Object();
public final native java.lang.Class getClass();
public native int hashCode();
public boolean equals(java.lang.Object);

[...]
public java.lang.String toString();

public final native void notify();
public final native void notifyAll();
static {};

}

2This as been executed on a Linux machine but results must be similar on any platform supporting Java
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What does this mean ? java.lang.Object implements its own interface which
are all of its public fields3. Moreover, it implements many more interfaces which
are all the combinations of its public fields.

For example, RAMI considers that java.lang.Object implements also the
interface below :

public interface Anonymous1 {
public native int hashCode();
public boolean equals(java.lang.Object);
public java.lang.String toString();

}

and also this one :

public interface Anonymous2 {
public java.lang.String toString();

}

It is evident that java.lang.Object do not declare the interfaces Anonymous1
and Anonymous2.

A client can communicate with an object if it has a knowledge of methods the
object implements i.e. if it has an interface.

7.4.2 The JayaCompiler class

RAMI provides the jayac compiler which is in fact based on the JayaCompiler
class. This class creates a Java class in pure Java source code which has the same name
as the one given in argument, but which resides in a package named the same as the one
of the given class prefixed by ’jaya’. Hence, if you compile the java.lang.Object
class, then the jaya compiler will generates the jaya.java.lang.Object. More-
over, any class or interface, which the given class extends or implements is also com-
piled. Then, if you compile the class java.lang.String, then the jaya com-
piler will generate the jaya.java.lang.String class along with jaya.ja-
va.lang.Object,jaya.java.io.Serializable,jaya.java.lang.Com-
parable, and jaya.java.lang.CharSequence.

The jaya generated classes (called jaya classes) contains all the public methods
declared in their related “standard classes” prefixed by rami_ and changed to return a
FutureClient instead of their original returned class.

For example, consider the class :

public class MyClass {
public StringBuffer foo(String s) {

...
}

}

Its jaya related classes is:

package jaya;

public class MyClass {
[...]

public static final Method fooMethod;

3javap gives more information than just public fields as protected and static fields for exam-
ple, but you can have just public fields with javap -public
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static{
// Initialisation of the fooMethod field

[...]
}

[...]
public FutureClient rami_foo(String s) {

Object args[] = new Object[]{s};
return asynchronousReference.call(fooMethod, args);

}
[...]
}

This class will be the client’s proxy of a given instance of MyClass :

[...]
MyClass myObject = new MyClass();
AsynchronousReference asynchronousReference = // depends on implementation

// Gets a semi transparent asynchronous proxy
jaya.MyClass ar_myObject = // gets the instance

// Semi transparent reflective asynchronous method invocation
FutureClient future = ar_myObject.rami_foo("Hello World");

[...]

System.out.println(future.waitForResult());

[...]
}

Each methods which start with rami_ is a semi transparent asynchronous method
invocation. Thus, this mechanism allows strong typing but resolve both problems of
exception handling and of developper consciousness : since methods return future ob-
jects, the developper cannot forget the asynchronism property of its call. Thus, he can
program more efficiently doing asynchronous call earlier, and result recovery later.

7.5 Summary

This chapter has focused on transparency. Two distincts features provided in RAMI
has been described :

� total transparent asynchronous method invocation which uses the wait-by-necessity
mechanism but which arise two problems : exception handling and developper
consciousness.

� semi transparent asynchronous method invocation which uses the notion of client’s
view of a remote object by proxy java source generation.
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Chapter 8

Conclusion and perspectives

This document has presented RAMI a framework that provides reflective asynchronous
method invocation. It focused on dynamic aspect by being entirely based on the reflec-
tion mechanism. Objects in RAMI do not have to implement a special interface or
inherit a special class or even to be compiled. Any object can be used asynchronously
by being referenced by an asynchronous reference. In RAMI, such references are in-
stances of class that implements the AsynchronousReference interface.

RAMI uses futures to handle the result of (or the exception thrown) by an asyn-
chronous method invocation. RAMI permits developpers to use an event-driven pro-
gramming scheme by the use of the Callback interface. Chained asynchronism
specify the semantic of an asynchronous reference on another asynchronous reference
in the AsynchronousReferencePair.

RAMI proposes an implementation of its specification which provides several prop-
erties such as unicity of asynchronous references, customizable future factories ans
customizable asynchronous semantic.

While RAMI focuses on dynamism using reflection, it has its drawback: this mech-
anism do not ensure strong typing. Two distincts solutions is provided based on trans-
parency of asynchronous method invocation: total transparent and semi transparent
reflective asynchronous method invocation.

Whereas RAMI is not dedicated for asynchronous remote method invocation, its
design allows anyone to implements a remote asynchronous reference. This is already
done by our team with the JACOb [?, ?] framework which provides dynamic reflective
remote method invocation where any object can become remote at any time and where
any methods of such a remote object can be invoked asynchronously using a specific
implementation of the AsynchronousReference interface.
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