
CERN-IT
LIGHT

How to get started
User’s documentation

Version: 1.1.0

Status: Final

ID: IPT-LIGHT-UHGS

Date: 05 June 2000

Created: 12 April 2000

Authors: D.Borillo
European Laboratory for Particle Physics

Laboratoire Européen pour la Physique des Particules

CH-1211 Genève 23 - Suisse

LIGHT How to get started
Document Control Sheet Version/Issue: 1.1/0
Document Control Sheet

Table 1 Document Control Sheet

Document Title: LIGHT How to get started

Version: 1.1 ID: IPT-LIGHT-UHGS

Issue: 0 Status: Final

Created: 21 October 1998

Date: 05 June 2000

Stored at: $CVSROOT/light2/doc/private/infrastructure

Tool Name: Adobe FrameMaker Version: 5.5

Template: Software Documentation Templates Version: xxx

Authorship Coordinator: A.Aimar

Written by: D.Borillo

Reviewed by:

Approved by:
page ii Final

This document has been prepared using the Software Documentation Layout Templates that have been

prepared by the IPT Group (Information, Process and Technology), IT Division, CERN (The European

Laboratory for Particle Physics). For more information please contact docsys@ptsun00.cern.ch.

LIGHT How to get started
Document Status Sheet Version/Issue: 1.1/0
Document Status Sheet

Table 2 Document Status Sheet

Title: LIGHT How to get started

ID: IPT-LIGHT-UHGS

Version Issue Date Reason for change

1.1 0 Reviewed by A.Kodahbandeh
Final page iii

LIGHT How to get started
Document Status Sheet Version/Issue: 1.1/0
page iv Final

LIGHT How to get started
Table of Contents Version/Issue: 1.1/0
Table of Contents

Document Control Sheet. . ii

Document Status Sheet . . iii

Table of Contents . . v

1 Overview . 1

2 Publisher Interface . . 3

2.1 The GUI . .3

2.2 The Interactive Console .4

2.3 The Batch Console .5

2.4 Installation procedure for the publisher interface5

2.4.1 Directory creation and environment variable settings 5

2.4.2 Java Development Kit and Run-time environment 6

2.4.3 Installing and running the Plug-in server (Apache) 6

2.4.4 Installing the Apache server 6

2.4.5 Configuring and running the Apache server 7

2.4.6 Setting the environment for the publisher system 7

2.4.7 Preparation procedure7

2.5 Run procedure .7

3 LIGHT servers . 9

3.1 The registration server . .9

3.2 Installing and running the registration server 9

3.2.1 Preparation procedure9

3.2.2 Run procedure on MS-Windows 9

3.2.3 Stop procedure on MS-Windows 10

3.2.4 Run procedure on Unix 10

3.2.5 Stop procedure on Unix 10

3.3 The data server . 10

3.4 Installing and running the data server 11

3.4.1 Preparation procedure 11

3.4.2 Run procedure on MS-Windows 11

3.4.3 Stop procedure on MS-Windows 11

3.4.4 Run procedure on Unix 11

3.4.5 Stop procedure on Unix 12

4 Example . 13

4.1 Installation procedures . . 13

4.2 Setting the Java policy file 13

4.3 Run the example step by step 14
Final page v

LIGHT How to get started
Table of Contents Version/Issue: 1.1/0
4.4 Understanding the example 15

A LIGHT publisher API . 17
page vi Final

LIGHT How to get started
1 Overview Version/Issue: 1.1/0
1 Overview

This document is a guide for the LIGHT (Logical Information Global HyperText) user defined

as “How to get started”. It contains information on how to install and run the different

components of LIGHT which can be found on the web:

http://light.cern.ch

It is supposed that all the needed components have been download from the web and stored

locally.

This document is formed by four chapters:

1. General structure of the document.

2. Publisher Interface. Description about how to get started with the publisher side of

the system.

3. LIGHT servers. Description about how to get started with the servers (both

registration and data servers).

4. Example. Some steps to follow in order to run the example provided on our web site.
Final page 1

LIGHT How to get started
1 Overview Version/Issue: 1.1/0
page 2 Final

LIGHT How to get started
2 Publisher Interface Version/Issue: 1.1/0
2 Publisher Interface

The publisher interface is the way through which you can produce LIGHT objects (and sotre

them into LIGHT) by analyzing your documents.

It is a 100% pure Java stand alone application composed by three user interfaces:

• the Graphical User Interface (Section 2.1);

• the Interactive Console (Section 2.2);

• the Batch Console.

This interfaces are all communicating between them and they allow simply to have different

types of access to the publisher API.

2.1 The GUI

Figure 1 A screen dump of the GUI
Final page 3

LIGHT How to get started
2 Publisher Interface Version/Issue: 1.1/0
The GUI is the first window which appears when you start the LIGHT publisher interface. The

API is accessed from here in a graphical way. Also the information about the packages created

and their content are displayed graphically.

By opening at the same time the GUI and the Interactive Console (see Section 2.2) you can see

which are the API commands that run performing the different types of graphical actions,

since there is a direct correspondence between the action executed on the GUI and the

interactive commands.

2.2 The Interactive Console

Through this console the publisher API can be access by typing the commands (or short-cuts

to the commands) in a shell style.

It is formed by a display component which shows messages deriving from the execution of

the commands and a line input component, using which you can type and execute the

different commands needed to perform the actions.

In order to run the interactive console you need to start the GUI (see Section 2.1) and from the

menu bar select View -> Interactive Console .

Figure 2 A screen dump of the interactive console
page 4 Final

LIGHT How to get started
2 Publisher Interface Version/Issue: 1.1/0
2.3 The Batch Console

The batch console allows to run LIGHT Batch Files (with extension .lbf). These files are

sequence of LIGHT commands which will be executed in batch mode. In the Input field you

have to specify the location of the batch file you want to execute, while in the Output field a

log file location will be specified.

In order to see an example of LIGHT Batch File you can refer to Section 4 or you can try to build

your on sets of commands by referring to the command description in Appendix A.

2.4 Installation procedure for the publisher interface

This section describes how to install all the components needed in order to install and run the

LIGHT publisher interface. All the modules and tools needed are referred from our web in the

section Downloads .

2.4.1 Directory creation and environment variable settings

1. Create a local directory under which you will install all the LIGHT components (i.e.

C:\Light\install on Windows or /home/Light/install on Unix).

2. Click on Start -> Settings -> Control Panel .

3. Double-click on System .

4. Choose the Environment tab.

5. On the Variable field type: LIGHT_INSTALL .

6. On the Value insert the base directory under which to install the LIGHT components

(e.g. C:\Light\install)

On Unix systems (csh):

1. From the command line type: setenv LIGHT_INSTALL = <your_home_dir>
(e.g. setenv LIGHT_INSTALL = /home/Light/install)

Figure 3 Screen dump of the batch console
Final page 5

LIGHT How to get started
2 Publisher Interface Version/Issue: 1.1/0
2.4.2 Java Development Kit and Run-time environment

LIGHT works with the Java 2 SDK, Standard Edition version 1.2 or more. If you do not have

already install it you can download directly from the Javasoft web site following the link from

our web: Downloads -> Tools & Libraries .

To test if the Java 2 SDK is already installed on your system, from a shell (MS-DOS or Unix)

type:

1. java -version

In order to be able to run the light components correctly you need also to add the location of

the Java bin directory to your path:

1. Click on Start -> Settings -> Control Panel .

2. Double-click on System .

3. Choose the Environment tab.

4. On the Variable field type: PATH.

5. On the Value insert the base directory under which you have installed Java bin

Run-time environment (i.e. <jre_bin_dir>;%Path%)

On Unix systems (csh):

1. From the command line type: setenv PATH = [jre_bin_dir]:$PATH

2.4.3 Installing and running the Plug-in server (Apache)

The Apache server is used by LIGHT for serving Java classes grouped in jar files for browser

and for the publisher system (as a RMI client) in order to allow remote class loading. It can be

run on the same machine as data server is hosted since it serves the same jar files as used by

data server, but also can be hosted on a separate machine. The CODEBASE property of each

data server must point to the jar file containing classes which have to be loaded remotely on

the Apache server (Light2analyzers.jar).

2.4.4 Installing the Apache server

You can download the Apache server from the link on the section Downloads -> Tools &
Libraries of our web site.

Following this link you will find all the necessary information on how to install the server.

From now on we will suppose that you have installed it in the directory

%LIGHT_INSTALL/Apache.
page 6 Final

LIGHT How to get started
2 Publisher Interface Version/Issue: 1.1/0
2.4.5 Configuring and running the Apache server

1. Modify the file %LIGHT_INSTALL%\Apache\conf\httpd.conf setting the

parameter:

• ServerName your_machine

• DocumentRoot <Value of %INSTALL_LIGHT%/hserver >

• <Directory <Value of %INSTALL_LIGHT%/hserver>>

• On Windows the default port value is 80.

• On Unix machines without the root privileges you will not be able to run

Apache on the default http port. Thus we propose to set the different port

number: 2099

2. run the Apache server following the instruction provided with the tool.

2.4.6 Setting the environment for the publisher system

In order to install the publisher system, it is necessary to have stored locally the LIGHT

publisher client tar file (publisher.tar) which can be download from the section

Downloads -> Executables of our web site.

2.4.7 Preparation procedure

1. Untar the file publisher.tar into the installation directory referred by the variable

LIGHT_INSTALL (this will create a sub-directory %LIGHT_INSTALL%\publisher).

2.5 Run procedure

1. Go to the publisher directory (%LIGHT_INSTALL%\publisher).

2. Run the file run.bat by double clicking on it (on MS-Windows systems) or run (on

Unix systems).
Final page 7

LIGHT How to get started
2 Publisher Interface Version/Issue: 1.1/0
page 8 Final

LIGHT How to get started
3 LIGHT servers Version/Issue: 1.1/0
3 LIGHT servers

There are two different kinds of servers in the LIGHT system which fulfil different issues: the

registration server (see Section 3.1) and the data server (see Section 3.3). Both servers are

written in 100% pure Java and in principle they run on every OS where a JVM can be installed.

They have been tested on Windows NT 4.0, Solaris 2.6 and Linux Redhat 6.1.

3.1 The registration server

The registration server (referred as RS) is a broker which stores and addresses references to

the different types of data available in the data servers, which means that it can handle

references to analyzers, visualizers and LIGHT object in a transparent way from the point of

view of the end-user. Both publishers and users of the system will always access the LIGHT

data stored in the data servers through a specified RS.

The RS is composed by two main components (which must be run separately, see Section 3.2):

one component is used to address data via the http protocol, way the other one is used to

address data by the publisher system.

3.2 Installing and running the registration server

In order to install the RS, it is necessary to have stored locally the LIGHT registration server

tar file (regserver.tar) which can be download from the section Downloads ->
Executables of our web site.

3.2.1 Preparation procedure

1. Untar the file regserver.tar into the installation directory referred by the variable

LIGHT_INSTALL (this will create a sub-directory %LIGHT_INSTALL%\rserver).

2. Modify the files %LIGHT_INSTALL%\rserver\settings.bat (or settings on

Solaris and Linux) as follow:

• LIGHT_RSHOST and LIGHT_RSPORT with your domain name and the port

you want to use (by default the host is set to %COMPUTERNAME%.cern.ch
and the port to 1099)

3.2.2 Run procedure on MS-Windows

1. Go to the registration server directory (%LIGHT_INSTALL%\rserver).

2. Run the file rmiregister.bat by double clicking on it.
Final page 9

LIGHT How to get started
3 LIGHT servers Version/Issue: 1.1/0
3. Run the batch file run.bat to start the RS (publisher application side).

4. Run the batch file startserver.bat to start the servlet application accessed using

the http protocol.

3.2.3 Stop procedure on MS-Windows

1. Go to the registration server directory (%LIGHT_INSTALL%\rserver).

2. Run the stopserver.bat file to shutdown the servlet runner.

3. Terminate the run.bat script by closing its window.

4. Terminate the rmiregister by closing its window.

3.2.4 Run procedure on Unix

1. Go to the registration server directory ($LIGHT_INSTALL/rserver).

2. Run the file rmiregister & in background.

3. Run the script run & to start the RS (publisher application side).

4. Run the script startserver to start the servlet application accessed using the http

protocol.

3.2.5 Stop procedure on Unix

1. Go to the registration server directory ($LIGHT_INSTALL/rserver).

2. Run the script stopserver to shutdown the servlet runner.

3. kill the run script by pressing Ctrl-C (first you may need to make this process

running in the foreground by typing fg).

4. kill the rmiregister by pressing Ctrl-C (first you may need to make this process

running in the foreground by typing fg).

3.3 The data server

The data server (referred as DS) stores physically all the LIGHT data (analyzers, visualizers and

LIGHT objects) which are then addressed by the RS (see Section 3.1). In principle there can be

more DS on which different data are stored (i.e. you can set one DS for the analyzers, one for

the visualizers and one for the LIGHT objects).
page 10 Final

LIGHT How to get started
3 LIGHT servers Version/Issue: 1.1/0
3.4 Installing and running the data server

In order to install the DS, it is necessary to have stored locally the LIGHT data server tar file

(dataserver.tar) and the LIGHT plug-ins and http server adds-on tar file

(httpserver.tar) which can be download from the section Downloads ->
Executables of our web site.

3.4.1 Preparation procedure

1. Untar the files dataserver.tar and httpserver.tar into the installation

directory referred by the variable LIGHT_INSTALL (this will create the

sub-directories %LIGHT_INSTALL%\dserver and %LIGHT_INSTALL%\hserver).

2. Modify the files %LIGHT_INSTALL%\dserver\settings.bat (or settings on

Solaris and Linux) as follow:

• LIGHT_DSHOST and LIGHT_DSPORT with your domain name and the port

you want to use (by default the host is set to %COMPUTERNAME%.cern.ch
and the port to 2098).

• LIGHT_HSHOST, LIGHT_HSPORT and LIGHT_HSPATH (for the plugin

server) with your domain name, the port you want to use and the path to the

plugin server (by default the host is set to %COMPUTERNAME%.cern.ch,

the port to 80 and the path to /).

3.4.2 Run procedure on MS-Windows

1. Go to the data server directory (%LIGHT_INSTALL%\dserver).

2. Run the rmiregister.bat file.

3. Run the batch file run.bat to start the data server.

3.4.3 Stop procedure on MS-Windows

1. Terminate the shell running the run.bat file by closing its window.

2. Terminate the rmiregister by closing its window.

3.4.4 Run procedure on Unix

1. Go to the data server directory ($LIGHT_INSTALL/dserver).

2. Run the rmiregister & script in background.

3. Run the script run to start the data server.
Final page 11

LIGHT How to get started
3 LIGHT servers Version/Issue: 1.1/0
3.4.5 Stop procedure on Unix

1. Kill the script run by pressing the Ctrl-C.

2. Kill the rmiregister by pressing Ctrl-C (first you may need to make this process

running in the foreground by typing fg).
page 12 Final

LIGHT How to get started
4 Example Version/Issue: 1.1/0
4 Example

This section describes how to install and run all the components needed to perform the test

example provided from our web site in the section Downloads -> Examples.

The example we refer in this section is the first one you can download from the site and it is

called FSM2 example (fsm2example.tar). It is a very simple C++ program correlated with

several Booch static diagrams.

The purpose of this very simple example (FSM2) is to allow you to get familiar with LIGHT and

also to verify that all the components you have installed can run correctly

4.1 Installation procedures

In order to run the example it is necessary to install correctly all the components of LIGHT

(client/server).

Section 4.2 assumes that you have followed the installation procedures for:

• publisher interface (Section 2.4);

• registration server (Section 3.2);

• data server (Section 3.4).

4.2 Setting the Java policy file

Before you can browse documents stored on the LIGHT servers, you need to download and

store your java.policy file:

1. Download the .java.policy file from our web site (section Downloads ->
Executables).

2. Save the .java.policy file into your profile directory (i.e.

C:\WNT\Profiles\<your_username>\.java.policy) . On Unix place the file

in the $HOME directory.

The .java.policy file provided on our web grants java applets loaded from any host the

permission to connect with any host on the http or any non-system port number:

grant codeBase "http://*/-" {
 permission java.net.SocketPermission "*:1024-65535", "connect, resolve";
 permission java.net.SocketPermission "*:80", "connect, resolve";
};

You can set up your own policy file with more restrictive policies using the policytool
provided by Sun Microsystems with the JDK package. With this tool set entries according to

the rules:
Final page 13

LIGHT How to get started
4 Example Version/Issue: 1.1/0
grant codeBase "http://your_http_server/-" {
permission java.net.SocketPermission "registration_server:port", "connect,

resolve";
permission java.net.SocketPermission "data_server1:port", "connect, resolve";
permission java.net.SocketPermission "data_server2:port", "connect, resolve";
....

};

If necessary, repeat the grant entry for different machines, or set the codeBase to your

domain with the statement:

"http://*.cern.ch/-"

Save the created file in your profile directory (i.e.

C:\WNT\Profiles\<your_username>\.java.policy) file (or in your $HOME directory

in case of using the browser on Unix).

4.3 Run the example step by step

1. Download the file fsm2example.tar from the section Downloads -> Examples
of our web site.

2. Untar the file fsm2example.tar into the directory %LIGHT_INSTALL% (this will

create the sub-directories %LIGHT_INSTALL%\examples\fsm2).

3. Modify the script %LIGHT_INSTALL%\examples\fsm2\fsm2.lbf substituting

the variables values as follow:

• set registrationServer <registration server host> (see

Section 3.2.1 to get the value)

• set dataServer <data server host>:<data server port> (see

Section 3.4.1 to get the values)

• set pluginServer <plugin server host>:<plugin server
port> (see Section 3.4.1 to get the values)

• set baseDir <absolute path of
%INSTALL_LIGHT%\examples\fsm2>

4. If it does not exist already create the direcxtory

%INSTALL_LIGHT%\examples\fsm2\local_ws.

5. Run all the servers (registration server, data server and plugin server, see Section 3).

6. Run the publisher GUI console (see Section 2.5).

7. From the GUI console select in the menu View -> Show Batch Console .

8. On the batch console use the Browse button to choose the file

%LIGHT_INSTALL%\examples\fsm2\fsm2.lbf.

9. Click on the Start button.

10. After executing fsm2.lbf check the log file (fsm2.log) for possible errors.
page 14 Final

LIGHT How to get started
4 Example Version/Issue: 1.1/0
11. If no error has been detected open a web browser window (Netscape 4.x or IE 5.x)

and open the following URL:

http://<registration server
host>:8080/servlet/LIGHTRegistrationServer

12. Navigate through the code and the diagrams analyzed and now displayed using

LIGHT.

4.4 Understanding the example

What have we done running the fsm2.lbf file? Which is the logic that LIGHT follows when

publishing documents? This section gives an overview of the step performed by the script, for

further details on the commands used please refer to the Appendix A.

The command set is used first to set the variables that then will be used by the script and all

the scripts invoked by it.

Then we are setting the location of the registration server to use via the command rsset and

the local workspace via the command workspaceset .

The visualizer plug-in LPackageIndex2 is used to browse the index of packages (which is

the first displayed when browsing). For this reason, we used the command

visualizerregister passing EMPTY as parameters for the LIGHT object type, subtype and

action, since this visualizer is used for all the packages independently from their content.

The command include is used to call sequentially the other scripts needed in the analysis

process.

The first script invoked creates the packages fsm.source and fsm.source.include with

the command packagecreate . Then it adds the files to be analyzed to the correct packages

through the command fa (file add) .

Once the packages are created and the files are set the script allows to configure the

connectivity rules via the command packageconfigure . The packages can then be

committed with the command packagecommit .

The only remaining step for this script is to register the plug-in analyzer LCPPAnalyzer
(which will then be used to run the analysis) via the command analyzerregister .

The second script performs similar tasks for the Booch static diagrams: creating and

configuring a package, adding the files, committing the packages and registering the needed

analyzer (LGIEAnalyzer).

The only step that it does in addiction is to import the packages between themselves with the

command importpackage . Importing a package into another one means that when

searching for LIGHT objects, LIGHT will look into a given package and if the needed objects can

not be located there they will be searched in all the imported packages.
Final page 15

LIGHT How to get started
4 Example Version/Issue: 1.1/0
Finally the third script associate file extensions with the correct analyzer using the command

formatregister and then it runs the analysis of the different packages with the command

analyzerrun .

It also register all the needed visualizer plug-ins to display the LIGHT objects by type and to

visualize indices of LIGHT objects (i.e. display LIGHT objects of type cpp_class subtype

declaration).

The last step is to commit once again the analyzed packages including the LIGHT objects

generated during the analysis process.

When browsing the first time the content referred by the selected registration server the

LPackageIndex2 visualizer will be used.
page 16 Final

LIGHT How to get started
A LIGHT publisher API Version/Issue: 1.1/0
A LIGHT publisher API

This appendix describes (in alphabetical order) all the commands accessible via the interactive

console, their related short-cuts (in parenthesis), the syntax of each of them and of course a

brief description of their behaviour.

analyzerregister (are)

Syntax: analyzerregister analyzer_name registration_server data_server

Register, in a given registration_server , an analyzer identified by analyzer_name (i.e.

ch.cern.light.ipt.cpp.analyzers.LCPPAnalyzer) and physically stored into a data_server .

analyzerrun (aru)

Syntax: analyzerrun package_name [input_document_name]

Run the appropriate analyzer (previously registered) on a given package identified by

package_name . Optionally it can be specified an input document: in this case the analysis

will be limited to this file.

fileadd (fa)

Syntax: fileadd file_pattern package_name

Add a file (or a set of files) specified by the file_pattern to a given package (specified by

package_name).

fileremove (frm)

Syntax: fileremove file_pattern package_name

Remove a file (or a set of files) specified by the file_pattern from a given package

(specified by package_name).

formatregister (fr)

Syntax: formatregister analyzer_name registration_server
extension,[extension]*

Associate an analyzer (analyzer_name) which is registered on a given

registration_server to a set of file extensions. This will allow the system to recognize

files by type of extension and run the correct analyzer when the command analyzerrun is

invoked.

help

Syntax: help [-f command_name]

Display the list of all the available commands on the display window of the interactive

console. The switch -f followed by a command display the syntax and a brief description of

each command.
Final page 17

LIGHT How to get started
A LIGHT publisher API Version/Issue: 1.1/0
include

Syntax: include lbf_file

Run a LIGHT batch file (lbf). Often used inside lbf files to invoke other lbf files.

packagecheckout (pch)

Syntax: packagecheckout package_name [registration_server
base_directory]

Check-out a package referred by package_name . If the package is not already existing on the

local work space also the registration_server and the directory where to map the

package (base_directory) must be specified, otherwise the current package values are

assumed.

packagecommit (pcom)

Syntax: packagecommit package_name [registration_server data_server]

Check-in (commit) a local package referred by package_name . If the package is committed

for the first time it is necessary also to specify the registration_server where the

package will be registered and the data_server where it will be physically stored.

Otherwise the current package values are assumed.

packageconfigure (pcon)

Syntax: packageconfigure package_name configuration_file

Configure a package referred by package_name getting the configuration data from a local

file specified by configuration_file (with extension lcf).

packagecreate (pcr)

Syntax: packagecreate package_name base_directory

Create locally an empty package giving it an identifier specified by package_name . The

base_directory parameter is used to specify where the files that will be added to the

package are mapped on the local system (e.g. they will be added specifying their local path

with respect to the base directory).

packagedelete (pd)

Syntax: packagedelete package_name

Delete a package referred by package_name from the local work space. The package will not

be removed from the data server where it has been committed.
page 18 Final

LIGHT How to get started
A LIGHT publisher API Version/Issue: 1.1/0
packageimport (pi)

Syntax: packageimport package_name package_imported registration_server

Import a package referred by package_imported (and registered in the

registration_server) into the package specified by package_name . This means that if,

while searching for a given LIGHT object, it is not found inside the package_name , the

system will look also in all the package imported using this command.

packageimportremove (pir)

Syntax: packageimportremove package_name package_imported

Remove a package (package_imported) imported with the command packageimport ,

from the package referred by package_name .

packagelist (plist)

Syntax: packagelist[-f] package_name

List the package specified by package_name and all its sub-packages. If the -f flag is

specified, the files belonging to each package listed will also be displayed.

packagemap (pm)

Syntax: packagemap package_name new_base_directory

Remap the package referred by package_name on a new local repository specified by

new_base_directory . This command is useful when the location of the files contained into

the package has been moved.

packagerename (prn)

Syntax: packagerename old_package_name new_package_name

Rename a package referred by old_package_name assigning to it a new name specified by

new_package_name .

packagesave (save,ps)

Syntax: packagesave [. || package_name]

Save a package referred by package_name and all its sub-packages into the local work space.

If . is specified it will save all the packages on the local work space.

quit (exit,q)

Syntax: quit

Exit from the publisher system.

ranalyzerlist (ralist)

Syntax: ranalyzerlist registration_server

List all the analyzers currently registered on a specified registration_server .
Final page 19

LIGHT How to get started
A LIGHT publisher API Version/Issue: 1.1/0
registrationserverset (rsset)

Syntax: registrationserverset registration_server

Set the registration_server to be the default registration server in the current session.

rpackagelist (rplist)

Syntax: rpackagelist registration_server

List all the packages currently registered on a specified registration_server .

rvisualizerlist (rvlist)

Syntax: rvisualizerlist registration_server

List all the visualizers currently registered on a specified registration_server .

set (setenv)

Syntax: set variable_name variable_value

Allow to set variables that can be reused in other commands. The variables are identified by

variable_name and they can have a value specified in variable_value . When using a

variable this is access by its name with the syntax %variable_name %.

visualizerregister (vr)

Syntax: visualizerregister registration_server objtype objsubtype
action visualizer_name data_server

Register a visualizer, referred by visualizer_name and located physically in

data_server , into a registration server specified by registration_server . This

visualizer will be used to display LIGHT objects of type objtype and subtype objsubtype .

An action can be also specified to target the behaviour of the visualizer itself (i.e. action =

index to visualize the index of the LIGHT objects searched).

workspaceget (wg)

Syntax: workspaceget

Return to the display the actual publishing work space.

workspaceset (ws)

Syntax: workspaceset directory_name

Set the publishing work space to the directory directory_name . This means that all the

LIGHT data produced locally will be stored in this directory.
page 20 Final

	1�� Overview
	2�� Publisher Interface
	2.1�� The GUI
	2.2�� The Interactive Console
	2.3�� The Batch Console
	2.4�� Installation procedure for the publisher interface
	2.4.1�� Directory creation and environment variable settings
	2.4.2�� Java Development Kit and Run-time environment
	2.4.3�� Installing and running the Plug-in server (Apache)
	2.4.4�� Installing the Apache server
	2.4.5�� Configuring and running the Apache server
	2.4.6�� Setting the environment for the publisher system
	2.4.7�� Preparation procedure

	2.5�� Run procedure

	3�� LIGHT servers
	3.1�� The registration server
	3.2�� Installing and running the registration server
	3.2.1�� Preparation procedure
	3.2.2�� Run procedure on MS-Windows
	3.2.3�� Stop procedure on MS-Windows
	3.2.4�� Run procedure on Unix
	3.2.5�� Stop procedure on Unix

	3.3�� The data server
	3.4�� Installing and running the data server
	3.4.1�� Preparation procedure
	3.4.2�� Run procedure on MS-Windows
	3.4.3�� Stop procedure on MS-Windows
	3.4.4�� Run procedure on Unix
	3.4.5�� Stop procedure on Unix

	4�� Example
	4.1�� Installation procedures
	4.2�� Setting the Java policy file
	4.3�� Run the example step by step
	4.4�� Understanding the example

