Java memory profiler user guide

Robert Olofsson, robert.olofsson@khelekore.org
2nd February 2004

“We should forget about small efficiencies, say about 97% of the
time: Premature optimization is the root of all evil.”

Donald Knuth
“Make it work before you make it work fast.”
Jon Bentley
“I feel the need — the need for speed.”

Tom Cruise in Top Gun

1 Getting and installing jmp

JMP can be downloaded from the jmp web page found at
http://www.khelekore.org/jmp/. Both source and binary versions of jmp is
available. For the latest and greatest the source install is recomended. Source
installation can however be a bit problematic, especially under windows so the
binaries can be nice.

1.1 Source instalation

After downloading jmp unpack it and compile it. A standard installation where
everything needed is found should look like this.



tar -xvzf jmp-0.29.tar.gz
cd jmp-0.28

./configure

make

make installl

JMP uses the GTK+/2.x libraries unless the —enable-noui switch is added to
configure.

GTK+/2.x is available from http://www.gtk.org/ if you don’t have it al-
ready (most linux distributions have the needed libraries from start). If you
have the choice of runtime and development packages, you need to install both
to build jmp.

If you are running windows I would suggest that you grab one of the prebuilt
binaries for jmp.dll. If you want to compile jmp under windows you should first
install cygwin and a GTK+-runtime, then you should be able to install jmp as
above.

1.2 Contacting the jmp project

The best way to contact the users or developers of jmp is probably to use the
public mailing lists.

e jmp-devel@khelekore.org for patches, bug reports, feature requests etc.

e jmp-user@khelekore.org for usage questions, success stories and other
jmp related questions.

2 Testing jmp

2.1 Unix systems

For the jvm to be able to find the libjmp.so? you either need to place it
under some directory where the linker will look (/usr/lib and /usr/local/lib
are probably searched) or add the directory where libjmp.so is placed to the
LD LIBRARY PATH. If you run bash you do:

export LD_LIBRARY_PATH=/path/to/jmp/lib:$LD_LIBRARY_PATH

2.2 Windows system

Make sure that both jmp.dll and the GTK+ runtimes can be found in your
PATH. Also if you run windows 95/98/ME you really should:

set PANGO_WIN32_NO_UNISCRIBE=1

Since the text handling in GTK+ for thoose platforms will work much faster®
with this option.

If you can not change the PATH, you can try to put jmp in the WINDOWS
or WINNT folder or even the directory you are starting java from

Imake install may require root privileges

2If you run Linux and/or Solaris the name will be libjmp.so, if you happen to run HP-UX,
AIX or some other dialect the name may be something else, the name is not really important
as long as the shared library can be found by the jvm.

31t may even be that jmp is unusable without this option.



2.3 JMP help and first examples

Ok, so you have compiled and installed jmp, how do you test it? The first test
is to run the

java -Xrunjmp:help
If the output you get starts with:
jmp/0.29 initializing...

Followed by a lot of other text (actually a quick help for jmp) you seem to have
jmp working. The version number may of course vary, 0.29 was the latest stable
release when this document was written.

If jmp seems to work I suggest that you find some small test program and
start it under jmp to familiarize yourself with the extra controls and windows
jmp provides. Try something simple such as the hello world program:

java -Xrunjmp HelloWorld

If your program exits quickly you may only see the jmp windows flash before
closing, if so try adding something like a

System.in.read ();

to your java code before if finishes.

3 Profiling

Before you start to profile you need to figure out what it is you want to know.
Running jmp with everything turned on will waste a lot of time. Profiling is
a time consuming operation. Basically there are three available options when
profiling:

e Profiling objects to find memory leaks and find causes for heavy memory
usage

e Profiling methods to find out where your program spends time

e Inspect threads to find out why your program is blocked

Even if you start jmp with a minimal set of profiling options turned on, they
can be enabled when your program has reached a state suitable for profiling, as
is done in example 1.

4 Startup options
JMP can take a number of startup options. The most important ones are:

help which will make jmp show a short description of the options available.

nogui which will make jmp run without any user interface. Can be useful for
automated unit tests.



dumpfile=<filename> which will tell jmp where to dump the data it collects.

dumptimer=<seconds> which will tell jmp to dump its data at a fixed
intervall.

filter=<some.package> adds an initial recursive filter to “some.package” It
is possible to give several filter to include more than one package. See
section 5.3 for more information of filters.

threadtime will make jmp use thread time instead of absolute time. This
option is currently only available under linux.

noobjects will make jmp start with object profiling off.
nomethods will make jmp start with method profiling off.

nomonitors will make jmp start with monitor profiling off.

Several options can be given at once and should be comma separated.

4.1 Examples

Here are a few examples of how jmp can be run for different profiling tasks. If
you actually read* the help text and understand the examples given here your
profiling will be easier and much faster

1. java -Xrunjmp:noobjects,nomethods,nomonitors rabbit.proxy.Proxy
This will start jmp with a minimum of tracing. This is very useful if you
have an initialization that takes much time. Once your application has
reached a suitable state for profiling you enable the profiling you need.

2. java -Xrunjmp:noobjects,nomonitors,filter=rabbit rabbit.proxy.Proxy
This will start jmp with only method tracing on. An initial filter for classes
in rabbit and sub packages is also set.

3. java -Xrunjmp:nomethods,nomonitors,filter=rabbit rabbit.proxy.Proxy
This will start jmp with only object tracing on. Filter as above.

4. java -Xrunjmp:nomonitors,filter=rabbit rabbit.proxy.Proxy
This will start jmp with object and method tracing. Filter as above.

4Well nobody reads the documentation so why should you?



5 JMP Main window

@ Clava Memory: Profiler - Main 2%
File Options Help

Dump J Reset ‘ Restore

| Heapdump Monitors Freeze ui Threads

Heap 17035264 - Used 9022480 Filtered 736768
Garbage collection completed: 5149 objects moved, 140744 objects freed in 1 346955 seconds A

The main window for jmp has a few buttons, a menu bar with some entries,
a heap graph and a status bar. The buttons give easy access to the standard
operations used when profiling. The heap graph gives a good overview of how
much memory the jvm is currently using both in graphics and in text form.

5.0.1 Buttonbar

Dump this button creates a file with the current status of the jvm. The file
contains all threads with complete stack traces®, all classes with an in-
stance count that is not zero and also all methods that have a method
time that is not zero. The file created will only hold information that
passes the current filter for methods and classes.

Reset this button temporarily sets the instance count to zero for all classes
and also set all method times to zero. This can be very useful if you want
to profile a specific operation after running the profiler for some time. No
data is thrown away by pressing reset, all data is saved and can be brought
back by the restore button.

Restore this button restores the values from all previous resets. That is it is
not possible to store several levels of information, only one level is stored
even though the reset button may give the impression of several levels.

System.GC force the jvm to do a full garbage collect. According to the jvmpi
specification this actually cause the garbage collector to run (if you have
read the java API you know that the System.GC call is only a hint to the
jvm).

Heapdump ask the jvm for a heap dump, when jmp parses the heap it will
build up the instance owner information. The heapdump will also be saved
in a text file that can be analyzed later on. ©

Monitors brings up information about current monitors, this may be used
to detect deadlocks. See section 9 for more information about monitors.
This button will ask the jvm for a monitor dump so you do not need any
profiling enabled for this button to work.

Freeze ui tells jmp to stop updating its user interface. Profiling will still con-
tinue, but no updates will be shown. Pressing this button once more will

50nly if method tracing is enabled
6Note: at least the SUN jvm will allocate a big block of data for the heap dump. This
means that memory usage will increase until the next GC occurs.



resume the ui updates. Updating the jmp user interface takes time so this
button will make profiling run faster. This button can also be used if you
want to see the results of an operation for a longer time, but still want
the profiler and program to continue running in the background.

Threads brings up the thread window. This window shows all threads in the
jvm and it is possible to inspect the stack for each thread. See section 8
for more information.

5.0.2 Menubar
File

Dump performs the same function as the dump-button.

Reset counters performs the same function as the reset-button.
Restore counters performs the same function as the restore-button.
System GC performs the same function as the System.GC-button.
Heapdump performs the same function as the heapdump-button.

Monitors performs the same function as the Monitors-button. See sec-
tion 9 for more information.

Freeze ui performs the same function as the freeze ui-button.

Threads performs the same function as the Threads-button. See section
8 for more information.

Options

Filter brings up a dialog for setting the current filter. See section 5.3 for
more information.

Events brings up a dialog for selecting which profiling events jmp will
enable.

Help

About brings up a dialog showing the authors of jmp.

5.1 Heap graph

The heap graph shows memory usage over time. The graph has three colors,
normally pink, blue and green. Green is used to show the currently filtered set,
blue shows total memory usage” and pink shows how much memory is allocated
for the java heap.

Under the heap graph there are three information boxes that gives exact
sizes for the heap size in bytes, the number of used bytes and the number of
bytes used by classes in the currently filtered set.

The graph is rescaled as needed and by watching it it should be quite easy
to see if you have a memory leak (that is if the graph keeps increasing). You can
also see if you allocate a lot of temporary objects by checking if your heap graph
shows a saw tooth characteristics. Heavy allocation of temporary objects meand
that you have a lot of garbage collection going on. Heavy garbage collection is
generally not good for performance.

"Relative to last reset.



5.2 Status bar

The status bar will show some information about what happens inside the jvm.
A typical message that will be displayed in the status bar from time to time is
the garbage collection summary. Other information found here is the name of
the files that are created when jmp writes a data dump file or performs a heap
dump.

5.3 Filter

@ Tlava Memory: Profiler - Filter Gptions
[Current filters
MODE

match recursive

-

Y ————T E

4] ¥

: Remmrel

rAdd filter- 3
Include | ¢E match recursive| = ‘ Add‘

CIose'

Normally you will filter the data shown to only include the classes you are
interested in. Showing all the classes loaded will be slower and show much noice.
The filter dialog is available in the options menu. It is possible to set up several
filters, each filter can include or exclude the matched classes. In jmp there are
4 type of filters:

Match class this mode jmp will only show instances and methods from the
specified class.

Match package this mode will make jmp show all classes and methods from
one specific package.

Match recursive this mode will make jmp show all classes and methods from
one specific package and all of the sub packages of it. For example a
recursive filter of “java.awt” will also match “java.awt.event.FocusEvent”.

Match all in this mode no filtering is done, all classes loaded are shown.

Filters are evaluated in reverse order order (last filter is evaluated first). Normal
usage is to have one or two include recursive filters for the package(s) you want
to see data about. It is however possible to add one filter that matches all and
then add an exclude <somepackage> to show data about every class except
thoose in somepackage.

The filter menues found in some popup menues will remove all filters and
install one new filter, the type of the installed filter will be either of match class,
match recursive or match all.



5.4 Profiling events

The event dialog makes it possible to enable and dissable profiling events during
runtime. Running with full profiling takes much time, so only enable what you
need.

e Enable object tracing if you want to find memory leaks. This will give you
a correct instance count and togheter with a heap dump you will know
which objects that hold the references to the objects that should have
been garbage collected.

e Enable method tracing if you want to find performance hot spots. This
will show you how much time each method takes and how many times it
has been called.

e Enable monitor tracing if you want to find out about deadlocks and con-
tention.



6 Profiling objects

2 Tlava Memory Profiler - Objects =
Class Instances IMax instar‘iSize ]#GC "—T‘
Total 26024 26143 513040 200
rabbit.http.GeneralHeader$t 22381 22438 358096 108
rabbit.http HTTPHeader 2372 2377 24880 11

rabbit. cache.NCacheEntry

rabbit. proxy.Connection g show alloced instances 0
rabbit.io HTTPINpuUtStream g (B EHECENEE 4
rabbit.io, HTTROUtputStrearn 10 AR b R 2 =
{ Inspect class ]
Showing 24 classes out of 24 Filter Moz

6.1 Class window

This window holds a table that shows quick information about the classes in the
jvm. Normally you have it filtered so the view will not show full information,
only what you want to see. By clicking on a column header will make jmp
sort the classes according to that column. Only classes that have an instance
count that is not zero is shown, a negative instance count is possible after the
reset button has been pressed and garbage collection has taken place. There is
one special row in this table, it has the “class name” Total and that row is a
summary of the current view. Total is not real class, it is only shown that way
in this view. The meaning of Total is to give a quick overview of how much
memory the currently selected set uses.

Class is the full name of the class, including the package the class belongs to.

Instances is the current number of currently allocated instances of this class.
Note that jmp does not check if the instances are reachable(live) or not.
That is all instances that have not yet been garbage collected are also
counted.

Max instances is the maximum number of simultianous instances of this class.
Note that jmp does not check if the instances are reachable(live) or not.
That is all instances that have not yet been garbage collected are also
counted.

Size is the current size, in bytes, of all instances of this class. Note that jmp
does not check if the instances are reachable(live) or not. That is all
instances that have not yet been garbage collected are also counted.

#GC is the number of instances of this class that have been garbage collected.
If you create a lot of short lived instances this column will show a high
count. Big numbers in this column are usually worth an investigation.

By right clicking on a row you will get a popup menu with some additional op-
tions that may be useful for finding memory leaks or understanding the memory
usage.



6.2 Show alloc’ed instances

2 ‘Chiect dump =28
Class Is array Allocating class Allocating method
~ rabbit.cache NCacheEntry 4 i rabbit.cache.NCache rabbit.cache.NCacheENtry newEntry
inspect instance
java.lang.String SWned objestntie ke Jjava.lang.StringBuffer java.lang.String toString () filename
java.util.Date = < rabbit.cache NCache rabbit.cache NCacheEntry newEntry expires
java.util.Date 4 FALSE 24 rabbit.cache NCache void addEntry (rabbit.cache NCachel cachetime
¥ rabbit.http HTTPHeader 4 FALSE 40 rabbit.io. HTTRPINputStream rabbit.http.HTTPHeader readHTTPHe key
javalang.string 4 FALSE 24 Java.lang.string Jjava.lang.string substring (int, int) httpversion
java.lang.String 4 FALSE 24 Jjava.lang.String java.lang.String substring (int, int) requestURT  [+|
q | i

This operation brings up a window with all instances of this class that have
not yet been garbage collected. In this window you can see where each instance
was allocated (if known, that is if method tracing and object tracing was enabled
when the object was created). Note: in jmp/0.29 a heap dump will cause
allocation information to be lost.

By selecting an object and right-clicking you will get a popup menu with
two options, the first option, “inspect instance”, find all non null references in
the object and expand the instance tree with them. Inspection of an instance
is done at the request time so when the window shows up for the first time it
will have a simple list in it, only by manually selecting the “inspect instance”
will you get a tree. For the second option “owned object statistics” see below,
section 6.2.1.

Class the name of the class. When this dialog is opened from the class list all
instances should be of the same type, but if the dialog is opened from the
method window (see section 7.2) or some instances are inspected then the
instances may be of different classes.

Arena which memory arena the object currently lives in. Depending on garbage
collector for your jvm the arenas may be “short lived objects” and “long
lived objects”. How many different arenas that are used by the jvm can
vary much depending on which garbage collector that has been selected®.

Is array if the object is an array or not, 1 means array, 0 means normal in-
stance.

Size the size of the instance or array. Instances of the same class should nor-
mally have the same size, but if they are arrays the size will vary.

Allocating class the class that created the instance. This information is only
available if both method profiling and object profiling was enabled at the
time the instance was allocated. If allocating class is unknown a “?” will
be shown instead.

Allocating method the name of the method that created the instance. This
information is only available if both method profiling and object profiling
was enabled at the time the instance was allocated. If allocatinng method
is unknown “[system init]” will be shown instead.

Variable is the name of the variable (or index for arrays) holding this instance.
This column is only given for objects that have been found by inspecting
a node higher up in the tree.

8Due to limitations in SUN’s jvm all the arena column rarely holds any information.

10



6.2.1 Owned object statistics

By selecting this option jmp will find all objects below a given object and show
how data the selected object keep alive. The window show the number of
instances of each class found and the size of all instances. Circular references
and/or multiple references are handled nicely.

This is a quick way to find out how much memory a single object keeps
alive. Note however that other instances may also keep the same objects alive,
so do not believe that you will free all of the data shown if you can remove the
selected instance.

6.3 Show object owners

2 (pstance owners. =11 ]
Flease dump heap and retry if list seems incomplete/incorrect
Showing a max of 100 instances

Class J'A

~ rabbit.util. IPAccess

v 0x4472f038 is located in an array 0x4472f020 of java.lang.Object at index O
= 0x4472f020 is a variable (elementData) in object 0x4472f008 of class java.util.\ector
Ox4472f008 is a static variable (iplist) in class rabbit. filter.AccessFilter

4] [+]

Found 1 instances (in last heap dump) of the 1 current instances %

A

During heap dumps jmp stores the owner for each object. This information is
available in the popup menu reached by right-clicking on a class. If no heap has
been dumped the first time this information is requested, jmp will automatically
request on heap dump. Since a heap dump takes time this may cause a delay
before this window is shown for the first time.

In the window a tree will show who the owner(s) of each instance are. Fol-
lowing the tree will show you why your objects won’t be garbage collected.

The information is only gathered during heap dumps so if a lot of garbage
collection has happend after the last heap dump the information may not be
complete. For best result run the garbage collector, get a heap dump and then
directly show instance owners.

6.4 Show object owners statistics

@ ‘Gwner. siatistics. 98%
java.lang.String
Class E!Instances ‘3
rabbit.http.GeneralHeader$Header 450390
rabbit.http HTTPHeader 9552
java.lang.Object[] 2925
rabbit.cache.NCacheEntry 1194
java.util. Hashtable$Entry 387
dmnem kil Tre kA s Em b —AD _.v_i
4 [

This is a quick way to find out a summary of which objects it is that keeps
the references to a given class. In the image above we can see that it is the
GeneralHeader and HTTPHeader that keeps most of the String references. As

11



with the object owners, this option requires a recent heap dump to show ac-
curate information and jmp will automatically request a heap dump if no such
information has been gathered.

The statistics is only gathered for direct references, no high order collection
is done, use the show object owners dialog to find out such information.

6.5 Inspect class

This function brings up a window with some data about the class. The data dis-
played contains the super class, the implemented interfaces, the static variables
and the instance variables in the class.

6.6 Show strings

Since a very common cause of high memory usage is duplicate strings it is good
to check if there are many duplicates and this method brings up a window where
it is easy to find strings that occur more than once.

It is very easy to generate duplicate strings, reading data from files or a
database will quite often do it. One way to reduce the memory usage is to make
sure that you do not keep duplicate strings in memory. If you find that you have
many duplicate strings then you may want to add a string cache? that given a
string either finds it in the cache and returns the cached string or adds it to the
cache for furhter usage.

The window contains a tree where each root node holds a strings (to identify
the starting character of the strings under it) and a count of the number of
strings under that node. The leafs of the tree are the individual strings.

The window has a button to write a file with all the char[] for later inspection.
There is also a button to close the window.

6.7 Filter

The filter menu entries is a fast and simple way of setting a recursive filter for
all of the (super) packages or the selected class. There is also an option “no
filter” that will remove the current filter. If you need more options for filtering
you can open the filter dialog from the main window (found in the menus as
options->filter), see section 5.3 for more information about what types of filters
jmp can have.

9String.intern() may be what you want, however if you want more control I suggest you
use your own cache based on a WeakHashMap.

12



7 Profiling methods

2 Clava Menory-Profiler - Methods. 1]
Class Method |secs JcaHs Jsubs sec Itota\ Iobjects Ibvtes ] =
rabbit.cache.NCache rabbit.cache.NCacheEntry getEntry (java.la 28.221818 323 061765 28.83947 0 0
rabbit.cache.NCache void addEntry (rabbit.cache . NCacheEntry) 11.817822 122  3.41012 15.227%94 732 13664

159 1.71582 556950
190832 3574 423.91884 426,10967 3574 85776
996383 4896 163955 263524 0 0
»|758043 5111 9.04456 9.80261 10230 368280 =

rabbit.handler BaseHandler void addCacheStream ()
rabbit.http.GeneralHeader java.lang.String readLine

show alloc’ed instances

show called methods
rabbit.http.GeneralHeader java.lang.String getHead <pow method info

rabbit.html. HTMLParser rabbit.html Tag tag (Int) Fijter

il — ]

7.1 Method window

In the methods window you will find information about all the methods that
have been called'® when method profiling has been enabled (and some columns
also need object profiling to show interesting values).

Class is the class of the method.

Method is the signature of the method. JMP tries to convert the JNI signature
into something human readable.

Secs is the time spent in this method alone. Note: only time when method
profiling has been enabled is counted.

Calls is the number of times this method has been called. Note: only time
when method profiling has been enabled is counted.

Subs sec is the time spent in methods called from this method has taken. If
your method is recursive it may show a big time here. Note: only time
when method profiling has been enabled is counted.

Total is the sum of the columns secs and subs sec. Note: only time when
method profiling has been enabled is counted.

Objects is the number of objects this method has allocated. Note this column
only shows interesting values if both method and object profiling has been
enabled.

bytes is the number of bytes this method has allocated. Note this column
only shows interesting values if both method and object profiling has been
enabled.

The standard sort order of this table is based on the column secs, but by clicking
on any table header you will sort on that column.

Some people think that the default sort order should be total, but that would
mean that the main-method was on top always and we already know that the
program takes time, if we did not we would not profile it.

Sorting on either class or method will sort on first class and then on method.

By right clicking on a row you will get a popup with some additional oper-
ations.

10This information is accurate, but see section 12 on why it sometimes will show odd results.

13



7.2 Show alloc’ed instances

This is the same window as can be reached from the class window described in
section 6.2. The objects shown will all have the allocating class and method
set to the selected row in the method window. Objects that have been garbage
collected since they were allocated will not show up in the list. This means that
you can use this option to find out if your method allocated short lived or long
lived objects. Make sure that your long lived objects are the ones you intended.

7.3 Show called methods

This will bring up a call graph as a tree. Currently only the class and method
names will show.

Class the name of the class that the called method is in.

Method the signature of the method that were called.

It is quite common to find a few methods that are not expected here, mostly con-
structors of different kinds (the methods that have a signature of “void <init> (...)")
and class initialization (methods that have a signature of “void <clinit> ()”).

7.4 Method info

This window will show some extra information about each method like source
file, JNI signature and line numbers for the start and end of the method.

7.5 Filter

This filter works exactly as the filter on objects, see section 5.3 and 6.7 for more
information.

14



8 Current thread status

& Current threpds. = = L=
Threads

Name |Group |Parent |Contenatlcn Status Time =
DestroylavayvM main system 0.000000000 Condition wait £6.570000000

Finalizer system <unknown> 0.004103000 Condition wait 0.110000000

RabbIT proxy version 2.0.26 main  system 0.000000000 Runnable 0.110000000

RabblTz: O main  system 18.04£423000 Condition wait 5.030000000

RabbIT2: 1 main  system 50.967307000 Condition wait 9.160000000
DlnhhTT'?' 2 main svstam 77 NE12R7I0N0 Canditinn wait 14 2A000NNNN i iIJ
4 |3

Stack
Class Method =

rabbit.handler.BaseHandler void addCacheStream ()

rabbit.handler.BaseHandler void handle ()

rabbit.proxy.Connection void handleRequest (rabbit.http.HTTPHeader)
rabbit.proxy.Connection void filterandHandleRequest (rabbit.http. HTTPHeader)

bt e Fenmasting armbol iAo £
Ll [+
waiting for 0x44c04108 of class rabbit.cache.NCache 4

i

8.1 Thread window

The thread window is a two paned window that show the current threads and
a stack trace for a specific thread and moment. When jmp is running there will
be a thread named “jmp-gtk”, this is the thread that jmp uses to update its user
interface.

8.1.1 Current threads

At the top of the window is a list of current threads. By clicking on a column
header you can select the sort order for this table.

Name is the name of each thread.

Group is the name of the thread group. If the group is not known the group
name will be shown as <unknown>

Parent is the name of the thread group that this thread was created in. Some
threads are started without a parent thread. Thoose threads will have the
parent <unknown>

Contention is the total time this thread has spent waiting for a monitor. Time
is only counted when monitor profiling is enabled. If a thread has high
contention it is probably a good idea to investigate why and try deserialize
the critical paths.

Status shows what the thread is doing. Status can be one of:

Condition wait means that the thread is waiting, normally this includes
sleep (), read () and other blocking operations.

Monitor wait means that the thread is waiting for a monitor. Heavy
contention is not good for performance.

Runnable means that the thread is either on the CPU performing work
or waiting for its turn on the CPU.

15



When a thread has been suspended or interrrupted it will also have flags
to indicate the status:

(S) means that the thread has been suspended.
(I) means that the thread has been interruped.

Time is the total time the thread has been running. This column will only
show sane values when jmp is run with the threadtime argument, which
means that it currently only works under linux.

8.1.2 Inspecting one threads stack

When you click on a thread its current stack will be shown in the bottom part
of the thread window. Note that this will only work if you have method tracing
enabled. Some threads, like the jmp-gtk and the Signal Dispatcher thread will
never show information since they are only executing native code. The method
at the top of the table is the method that the thread is currently executing.

Class is the name of the class that holds the method.

Method is the human readable method name.

8.1.3 Statusbar

The statusbar will show some information about the currently selected thread.
If monitor profiling is enabled and the selected thread is waiting on an object
the id and class of that object will be shown.

16



9 Monitor window

2 “Monitor info =2%
. Mylock 1 java.lang.refReference$lock 4
MName MylLock

Monitor id Ox44c49d50

awner Thread-0

Entry count 2

(Waiting to enter
Thread-2 id; Ox82aefc0 main system
|Thread-1 id: 0x82ac&80 main system

Waiting for notify

The monitor window lets you see which monitors that are currently active.
At the top of this tabbed pane you select the monitor you want to inspect. It
is always possible to show the monitors, when this dialog is opened a monitor
dump is performed so no profiling needs to be enabled if all you want is to check
the monitors in a deadlock situation.

The information for each monitor shows the name!' and id of the monitor.
You also see which thread that currently holds this monitor. If you need more
information about the thread use the thread window.

There are two lists of threads, the first list shows which threads that are
waiting to enter a block synchronized on the monitor and the second list shows
which threads that are waiting for a notify on the given monitor. Both lists show
the thread name, the thread id, the thread group and the thread parent. Again
if you want more information about the threads look in the threads window.

9.1 Deadlock detection

JMP has a semi-automatic deadlock detector, now what does that mean? It

means that when you open the monitor dialog jmp will search for a deadlock

situation. If a deadlock is detected a warning dialog is shown. It will look like

this image.

2 ‘Peadlock detected. -]
Warning deadlock detected!

Thread-0 holding Deadlocker (Ox44c491a8), is trying to enter Deadlocker (0x44c431b8)

Thread-2 holding DeadlLocker (0Ox44c491b8), is trying to enter Deadlocker (0x44c491b0)

Thread-1 holding DeadlLocker (Ox44c491b0), is trying to enter DeadlLocker (0x44c491a8)
Thread-0 holding DeadLocker (0x44c491a8)

In the dialog we can see the circular dependancies of the three threads that
are in a deadlock situation.

' The name is either the class name for a java monitor or the string name given native
monitor.

17



10 Java api

JMP has a java API that can be used to control jmp from inside java. You
will still need to start your java program with -Xrunjmp to use jmp though.
This API is quite new and it only has limited functionality, but the idea is
that it should be possible to control profiling options from normal java code for
example from inside unit tests.

Controlling jmp from inside java code can be as simple as (this example uses
features first found in jmp/0.29)

JMPController.runGC (); // run deterministic GC
JMPController.runDataDump () ; // get a data dump
JMPController.enableObjectEvents (); // start profiling
runTest0fCode (); // run actual test
JMPController.disableObjectEvents ();// end profiling
JMPController.runGC (); // clean up
JMPController.runDataDump (); // get a data dump

To find more information about the java api consult the javadoc.

To use the java api you will need the jmp.JMPController.class in your class-
path. This class is not found in all the binaries, so you may have to download
it from the JMPs web site.

11 File formats

11.1 Dump file format

JMP normally writes data dumps to files named jmp dump-<number>.txt
where number always starts at 0 and is incremented for each dump. The name
may be set with the startup option dumpfile. Files are written in the current
directory and successive runs overwrite previous files without asking!2.

The dump files that jmp produces contain much of the information found in
the user interface. Basically the file is tab separated, making it easy to import
the data into your favorite spreadsheat program. Dump files have three sections
and depending on what profiling options are turned on when the file is generated
the sections may be empty. The first section contains a list of all the threads in
the system and the stack for each of the thread. The second section is a list of all
the (filtered) classes with name, instance count and the other information found
in the class window. The third section contains (filtered) method information,
much like the method window.

11.2 Heap dump file format

JMP writes the heap dump data to files named jmp heap dump <number>
where number always starts at 0 and is incremented for each dump. In the
future it should be possible to set the name of the files with a startup option.
Files are written in the current directory and successive runs overwrite previous
files without asking?!3.

12This is a security problem, but you do not run the profiler as root do you?
13This is a security problem, but you do not run the profiler as root do you?

18



Each time that jmp parses a heap dump it records the data into a file that
can be analyzed later on, but be warned, it is much easier to use the GUI to
inspect the heap after a heap dump. You will need to know a bit of JNI and
understand what the types have for letters (I for int, J long...).

11.3 String dump file format

JMP writes the string dump data to files named jmp_string dump-<number>.txt
where number starts with 0 and is incremented for each dump file written. In
the future it should be possible to set the name of the files with a startup option.
Files are written in the current directory and successive runs overwrite previous
files without asking.

The string dump files contain data on the format ‘“’<string>’\t’<count>"".
Remember that the strings may contain newlines. The file is UTF-8 encoded.

12 Inlining and other features

Hotspot and probably other jvms inline methods to achieve faster code. This
feature may be problematic when trying to profile a program. Sometimes your
methods won’t seem to be called at all (they have been inlined into someplace
else) and sometimes your methods will seem to allocate much more objects than
you can see (inlined methods allocations are added to the outer method).

12.1 Bugs

JMP has bugs that may cause it to crash, normally taking the whole jvm with
it. When you encounter a crash please try to build a debug-enabled version and
report to the jmp-devel mailing list, see the README supplied with jmp for
how to enable debugging. Running with less profiling events enabled can also
make jmp more stable.

There are also bugs in at least SUN’s jvins (at least up to 1.4.0_02) that
may cause it to crash at random if you have method tracing enabled.

13 JVM simulator

In the source code for jmp you will find a small simulator that can be used for
testing jmp and other jvmpi based profilers. To build and run a test of jmp go
into the jvmsimulator directory and do:

make jvmsimulator
jvmsimulator libjmp.so additional_arguments

The additional arguments are the same as the one from argument found in “java
-Xrunjmp:additional arguments”. If you happen to develop another profiler
you can test it by changing libjmp.so to the name of that profiler. To test jmp
you must give at least the argument simulator to tell jmp to not evaluate the
jvm version (that requires java method calls and that can not yet be done in
the simulator).

19



