
-DYD�7XWRULDO

Using MULTILIZER™ Java Edition 2.0

May 1999

Copyright © 1999 Innoview Data Technologies, Ltd. All rights reserved.

MULTILIZER is a trademark of Innoview Data Technologies, Ltd.
JBuilder is a registered trademark of Inprise Corporation.

7DEOH�RI�&RQWHQWV

1 Preface.. 1

2 Introduction to the tutorial .. 2

3 Opening the Monolingual Application .. 3

4 Making the Application Multilingual ... 4

5 Creating a Dictionary for the Application 6

6 Internationalizing the Code.. 11

7 Changing Language On Run Time.. 16

8 Adding Western Languages .. 19

9 Adding Non-Western Languages .. 20

10 Writing Multilingual Applets ... 21

11 Writing Multilingual Swing Applications 22

MULTILIZER – Tutorial 1

�� 3UHIDFH

The purpose of this tutorial is to familiarize you with common software localization tasks,
when using MULTILIZER™. To obtain the most precise definitions on component use
and technical details, please refer to the on-line help.

The following items can be found in LQWUR�SGI

• Typographical conventions used in this document.

• General information on localization

• How does MULTILIZER™ work, what is Language Manager for?

• What is the ”Native” language, used in Language Manager?

The following items can be found in ODQJPDQ�SGI

• Language Manager related tasks.

2 MULTILIZER - Tutorial

�� ,QWURGXFWLRQ�WR�WKH�WXWRULDO

In this tutorial we are going to create a multilingual application. The application will be a
simple driving-time calculator, Dcalc which a user can use to calculate the average
driving time for a given distance.

The Dcalc application is very simple but still it uses most of the features of MULTILIZER.
The creation of the application is divided into several lessons each covering one or more
MULTILIZER functions.

This tutorial is written for JBuilder 3. With each instructions there is also an explanation
how to acomplish it using the plain JDK. If you use some other Java IDE (e.g. Visual
Café, Visual Age, PowerJ, etc.) you can easily modify the procedure to match your Java
IDE.

This symbol indicates that the information given applies to JBuilder only. In the front of a
header it applies to the whole chapter, otherwise it applies to the current paragraph.

This symbol indicates that the information given applies to plain JDK only. In the front of a
header it applies to the whole chapter, otherwise it applies to the current paragraph.

All screen-captured images have been taken when the active language of Language
Manager is English. Set English on by clicking the Earth-image on the left side of the
Language Manager’s tool bar.

The Dcalc sample application locates in the samples\dcalc subdirectory of your
MULTILIZER’s Java directory.

To see more about how to use MULTILIZER read the online help and study the other
sample applications found in the samples subdirectory.

If you used the Windows setup the MULTILIZER setup created the following program
group:

)LJXUH����0XOWLOL]HU�3URJUDP�*URXS�

Before you can start building Dcalc you have to install MULTILIZER beans. To get the
information on how to install them, see the readme files. Double click the -DYD�5HDGPH
icon of the compiler to open the readme. If you instaled MULTILIZER from a ZIP file read
index.html file.

MULTILIZER – Tutorial 3

�� 2SHQLQJ�WKH�0RQROLQJXDO�$SSOLFDWLRQ

We could start from scratch but in most cases it is a completed application or at least an
application under construction that you want to globalize. This is what we are going to do.
The samples\tutorial contains the English Dcalc. Open it, compile it, and finally run
it.

The application should look like this:

)LJXUH����7KH�PRQROLQJXDO�DSSOLFDWLRQ�XVLQJ�(QJOLVK�

The user interface language is English and the application uses the default locale, witch
in this case is Finnish (Finland). The speeding ticket is formatted using the Finnish
currency format (marks) and the date and time is also formatted using the Finnish format.
Standard Java provides this kind of localization.

In the following chapters we will make Dcalc truly multilingual step-by-step.

4 MULTILIZER - Tutorial

�� 0DNLQJ�WKH�$SSOLFDWLRQ�0XOWLOLQJXDO

The first step is to make Dcalc multilingual, by just dropping two components on the form.
Select the Translator component from the Component Palette. Drop the
PXOWLOL]HU�7UDQVODWRU on the form. Drop the PXOWLOL]HU�7HVW'LFWLRQDU\ component on the
form as well.

The result should look like this:

)LJXUH����7KH�WUDQVODWRU�DQG�GLFWLRQDU\�FRPSRQHQWV�KDYH�EHHQ�DGGHG�RQ�WKH�IRUP�

Add the following code to the below of the import lines:

LPSRUW multilizer.*;

Add the following code just before the constructor of MainFrame:

TestDictionary testDictionary1 = QHZ TestDictionary();
Translator translator1 = QHZ Translator();

What are these two components for? TestDictionary is one of the dictionary components
of MULTILIZER. A dictionary component provides string or phrase translation for the
application. Normally each application contains one dictionary component that contains
all the translation data of the application. MULTILIZER contains several different
dictionary components: one for getting the translation data from a text file, an other for
data from a database, etc.

The TestDictionary is a special case. It does not require any dictionary data but it makes
the translation on the fly by mangling the original string to a test string. In a normal case
you can not use the test dictionary in your final application because the translations are
not a real language. However, the test dictionary is really handy in the development
phase.

The Translator on the other hand is the component that does all the work. It scans the
form before it becomes visible and translates the user interface string from the original
value to the current language.

Select WUDQVODWRU� component and move to the Properties windows. Drop down the value
list of the KRVW property. Select this. This specifies the control that the translator should
translate. In the most cases it it the frame containing the translator component.

Add the following code to the jbInit function:

translator1.setHost(WKLV);

Add the translator1.translate() line to the contructor of the MainFrame:

MULTILIZER – Tutorial 5

SXEOLF MainFrame()
{
 enableEvents(AWTEvent.WINDOW_EVENT_MASK);
 WU\
 {
 jbInit();

 fineLabel.setText(NumberFormat.getCurrencyInstance(
 Locale.getDefault()).format(new Integer(100)));

 dateLabel.setText(DateFormat.getDateTimeInstance(
 DateFormat.LONG,
 DateFormat.MEDIUM,
 Locale.getDefault()).format(new Date()));

 localeLabel.setText(Locale.getDefault().getDisplayName(Locale.UK));

 translator1.translate();
 }
 FDWFK (Exception e)
 {
 e.printStackTrace();
 }
}

The translate method makes the translator to translate its host control. A proper place to
call this is the last line of the constructor.

Compile and run Dcalc. It should look like this:

)LJXUH����³7UDQVODWHG´�DSSOLFDWLRQ��7KH�WHVW�GLFWLRQDU\�WUDQVODWHG�HYHU\�VWULQJ�WR�XSSHU�FDVHG�VWULQJ�

As you can see, every user interface string is now in upper case. The translator changed
every string type property after the form had been loaded from the resource. By default
the test dictionary translates every string by putting it in upper-case.

For additional information on using the test dictionary, see the online help topic
"TestDictionary".

This was a quick demonstration of the power of MULTILIZER. In the next chapter we will
create a real dictionary that contains real languages.

6 MULTILIZER - Tutorial

�� &UHDWLQJ�D�'LFWLRQDU\�IRU�WKH�$SSOLFDWLRQ

Double click the Language Manager icon from the MULTILIZER program group to start
Language Manager.

Language Manager is a Windows application. If your development environment is not
Windows you have to manually create the dictionary. If you have Windows but you
installed MULTILIZER from the plaform independed ZIP you won’t have Language
Manager. In such case donwload Language Manager from MULTILIZER’s web page and
install Language Manager. For information on the dictionary file formats, find the online
help topic "File Formats".

Choose File | New to start the Dictionary Wizard. The following dialog box appears:

)LJXUH����7KH�:HOFRPH�VKHHW�

Press the Next button. The Source Directory sheet appears.

MULTILIZER – Tutorial 7

)LJXUH����7KH�6RXUFH�VKHHW�LV�XVHG�WR�HQWHU�WKH�VRXUFH�GLUHFWRU\�

This sheet specifies the directory where your application is located. Choose the
samples\tutorial subdirectory of your MULTILIZER setup. If your application locates
on multiple directories you can later add more directories. Dictionary Wizard detects the
application type. If it is wrong you can select the right type.

Press the Next button. The Project Information sheet appears:

)LJXUH����7KH�,QIRUPDWLRQ�VKHHW�LV�XVHG�WR�HQWHU�WKH�SURMHFW�QDPH�DQG�DSSOLFDWLRQ�ILOH�

8 MULTILIZER - Tutorial

This sheet specifies the directory name. You can also enter other information about the
dictionary, the author, and the company.

Press the Next button. The Dictionary Type sheet appears:

)LJXUH����7KH�'LFWLRQDU\�VKHHW�LV�XVHG�WR�VSHFLI\�WKH�GLFWLRQDU\�W\SH�

This sheet specifies the type of dictionary. The online help describes each dictionary type.
Change the type from binary to text, accept the default values and press the 1H[W button.

The Languages sheet appears:

MULTILIZER – Tutorial 9

)LJXUH����7KH�/DQJXDJHV�VKHHW�LV�XVHG�WR�DGG�ODQJXDJHV�WR�WKH�GLFWLRQDU\�

This sheet lets you add string languages to the dictionary. By default the dictionary
contains the native language. This is the language you used to program your application.
From Available languages select English and press the >> button. This adds English
support to the dictionary.

Add some other European language (we will take care of Far Eastern and Middle Eastern
languages later). If you add Finnish the result should look like this:

)LJXUH�����1DWLYH��(QJOLVK�DQG�)LQQLVK�DGGHG�WR�GLFWLRQDU\�

10 MULTILIZER - Tutorial

Press the 1H[W button. The Ready to create dictionary sheet appears. Now you have
almost finished creating the dictionary.

Press the)LQLVK button to end Dictionary Wizard. The following dictionary grid appears.

)LJXUH�����7KH�GLFWLRQDU\�JULG�

Save the dictionary by choosing File | Save As.

We could translate the Finnish (or your own language) column manually by entering the
translations. However there is an easier way: using the glossaries. They implement the
translation memory. The glossary files contain the translations of the most common
strings or phrases (e.g. File, Open, About, etc). To make your translation job easier we
can first let Language Manager use the glossaries to translate those strings.

Language Manager contains several glossary files for most supported languages. You
can edit the glossary files list by choosing Tools | Glossaries.

For additional information on glossaries, find the online help topic "Glossaries".

Open Dcalc’s dictionary by choosing the uppermost item from the File | Reopen menu.

The next task is to translate the Finnish (or your own language) column. We can now use
the master dictionary to translate some of the strings. Right mouse click the header of the
Finnish column. A popup menu appears. Choose Translate | Using Glossaries. Language
Manager translates most of the strings. It is up to you to translate the rest.

Use the arrow keys to move to the right cell and start typing. Translate every row.
Because the native language is English you do not have to translate the English column.
The dictionary uses the native string if the translation is not found.

For additional information on coping with failing translations, find the online help topic
"MissingTranslation".

MULTILIZER – Tutorial 11

�� ,QWHUQDWLRQDOL]LQJ�WKH�&RGH

We have the dictionary files now. Let’s use them. Delete the TestDictionary component
from the form. Add the PXOWLOL]HU�7H[W'LFWLRQDU\ component. Choose the component and
move to the Properties window. Set the ILOH1DPH property to dictionary.languages
and the WUDQVODWLRQ)LOH1DPH property to dictionary.translations (i.e. the
dictionary that you created in previous lesson). Set the QDPH property to dictionary1.

The Properties window should look like this:

)LJXUH�����7KH�3URSHUWLHV�ZLQGRZ�VKRZLQJ�WKH�SURSHUWLHV�RI�D�ELQDU\�GLFWLRQDU\�FRPSRQHQW�

Let’s study some of the properties. The ODQJXDJH property specifies the active language.
By default it is –1. This makes MULTILIZER check the current locale of the user and find
the language that matches the locale. If none is found the first (non-native) language is
used.

The ORFDOH property specifies the active locale. The active language determines the
language of the user interface. The active locale, however, determines the locale used by
the application. The locale is a country and language specific object that controls how the
date, time, currency, number, etc. are formatted.

In our case the dictionary contains English and Finnish. If the locale setting of the user is
Finnish (Finland) the user interface of Dcalc will be in Finnish and the locale will be
Finnish (Finland).

Add the following code just before the contructor of MainFrame:

TextDictionary dictionary1 = QHZ TextDictionary();

Add the followig code to the jbInit fuction.

dictionary1.setFileName("dictionary.languages");
dictionary1.setTranslationFileName("dictionary.translations");

Run the application. It should look like this:

12 MULTILIZER - Tutorial

)LJXUH�����'FDOF�LQ�)LQQLVK�

Making a multilingual application is this simple. In a simple case, this is all you have to do
to make a multilingual application. In most other cases you have do a little bit more.

If the program contains items which are just country (locale)-specific and hard coded in
the source, they must be removed. This phase is called internationalization: it makes your
software international and language/country independent. The next phase would then be
to localize the program, i.e., add for each target country the locale-specific issues. This is
done easily by using MULTILIZER. The remaining document discusses how to do this.

Dcalc calculates the average driving time. Most countries use the metric system, where
the distance is expressed in kilometers. However in the US miles are used. Let’s study
how to make Dcalc compatible with both kilometers and miles.

When pressing the Calculate button Dcalc calls the following event:

MULTILIZER – Tutorial 13

YRLG calculateButton_actionPerformed(ActionEvent e)
{
 LQW distance;

 WU\
 {
 distance = Integer.valueOf(textField.getText().trim()).intValue();
 LI (distance < 0)
 WKURZ QHZ NumberFormatException();

 String[] params =
 {
 QHZ Integer(distance/100).toString(),
 QHZ Integer((LQW)(60*(distance%100)/100)).toString()
 };

 MessageDialog.messageBox(
 this,
 "Driving Time",
 MessageFormat.format("The average driving time is {0} hours and {1}
minutes", params),
 MessageDialog.OK);
 }
 FDWFK (NumberFormatException ex)
 {
 String[] params = { textField.getText() };

 MessageDialog.messageBox(
 WKLV,
 "Invalid value",
 MessageFormat.format("\"{0}\" in not a valid distance", params),
 MessageDialog.OK);
 textField.requestFocus();
 }
}

When the English (United States) locale is on the user gives the distance in miles. To
convert miles to kilometers add the following just before
String[] params =;

LI (Utils.getMeasurementSystem(dictionary1.getActiveLocale()) ==
Utils.US_MEASUREMENT)
 distance = (LQW)Utils.MILE_IN_METERS*distance/1000;

This is enough for to system to convert miles to kilometers but not for the user. He or she
will most definitely be a bit confused if the user interface still prompts in kilometers. To
make user interface react on the locale change adds the ODQJXDJH&KDQJHG event to the
translator component and writes the following code:

14 MULTILIZER - Tutorial

YRLG translator1_languageChanged(DictionaryEventObject e)
{
 LI (Utils.getMeasurementSystem(dictionary1.getActiveLocale()) ==
Utils.US_MEASUREMENT)
 unitLabel.setText(translator1.translate("in miles")); //ivlm
 HOVH
 unitLabel.setText(translator1.translate("in kilometres")); //ivlm

 fineLabel.setText(NumberFormat.getCurrencyInstance(
 dictionary1.getActiveLocale()).format(QHZ Integer(100)));

 dateLabel.setText(DateFormat.getDateTimeInstance(
 DateFormat.LONG,
 DateFormat.MEDIUM,
 dictionary1.getActiveLocale()).format(QHZ Date()));

 localeLabel.setText(Utils.getLocaleName(
 dictionary1.getActiveLocale(), dictionary1));
 languageLabel.setText(dictionary1.translate(
 dictionary1.getLanguageData().englishName));
}

Add the followng code the the jbInit function. It adds the languageChanged event to the
translator.

translator1.addLanguageChangeListener(QHZ multilizer.DictionaryListener()
{
 SXEOLF YRLG languageChanged(DictionaryEventObject e)
 {
 translator1_languageChanged(e);
 }
});

First the code checks the measurement system. This is done by comparing the
PHDVXUHPHQW6\VWHP variable of the active locale. The code updates the text and help
string. Let’s study the following code in more detail:

unitLabel.setText(translator1.translate("in kilometres"));

In a monolingual application you would have used the following code:

unitLabel.setText("in kilometres");

This isn’t the proper way in a multilingual application because the same EXE file must
work on every language and locale. That’s why the native string is translated before being
assigned to the Caption property.

The lower part of the event updates the speeding fine, current time, active language
name, and active locale name.

The constructor monolingual MainFrame contains the following code:

fineLabel.setText(NumberFormat.getCurrencyInstance(
 Locale.getDefault()).format(QHZ Integer(100)));

dateLabel.setText(DateFormat.getDateTimeInstance(
 DateFormat.LONG,
 DateFormat.MEDIUM,
 Locale.getDefault()).format(QHZ Date()));

localeLabel.setText(Locale.getDefault().getDisplayName(Locale.UK));

This code is not required any more because the GLFWLRQDU\�BODQJXDJH&KDQJHG event
updates the labels. You can remove it.

MULTILIZER – Tutorial 15

We need to make a few modifications to the FDOFXODWH%XWWRQBDFWLRQ3HUIRUPHG event to
make the message boxes multilingual. Consider the following code:

MessageDialog.messageBox(
 WKLV,
 "Driving Time",
 MessageFormat.format("The average driving time is {0} hours and {1}
minutes", params),
 MessageDialog.OK);

MULTILIZER can not translate the standard message dialogs. You must use
MULTILIZER’s own PXOWLOL]HU�0HVVDJH'LDORJ or add a translator component to the
message dialog.

multilizer.MessageDialog.messageBox(
 WKLV,
 "Driving Time", //ivlm
 Utils.formatMessage(
 "The average driving time is {0} hours and {1} minutes", //ivlm
 params,
 dictionary1),
 MessageDialog.OK,
 QHZ Translator(dictionary1));

Remember that you have to translate the exception message, as well.

multilizer.MessageDialog.messageBox(
 WKLV,
 "Invalid value", //ivlm
 Utils.formatMessage(
 "\"{0}\" in not a valid distance", //ivlm
 params,
 dictionary1),
 MessageDialog.OK,
 QHZ Translator(dictionary1));

Translate the message box in the DERXW0HQX,WHPBDFWLRQ3HUIRUPHG event.

multilizer.MessageDialog.messageBox(
 WKLV,
 "About DCALC", //ivlm
 "DCALC calculates the driving time.", //ivlm
 MessageDialog.OK,
 QHZ Translator(dictionary1));

In this case you do not have to translate the text parameter but you can let the
MessageDialog to translate it. This is because the message is not parametrized.

Most string constants in the above code examples are trailed with ivlm comment. The
comment is a tag for Language Manager. The tag makes Language Manager to extract
the string and to add it to the dictionary.

16 MULTILIZER - Tutorial

�� &KDQJLQJ�/DQJXDJH�2Q�5XQ�7LPH

Dcalc now has the ability to adapt to the current language and locale settings of the user.
What about changing the language and/or locale on run time? Is this possible? Yes.

Double click the File menu and move to the white area (Type Here) on the bottom of the
menu. Type 	/DQJXDJH«. Move the memo on the top of the ([LW menu.

The result should look like this:

)LJXUH�����$GG�WKH�/DQJXDJH�PHQX�LWHP�WR�WKH�PDLQ�PHQX�

Add the following code just before the constructor of MainFrame:

MenuItem menuItem1 = QHZ MenuItem();

Add the following code int the jbInit function:

menuItem1.setLabel("Language...");
menuItem1.addActionListener(QHZ java.awt.event.ActionListener()
{
 SXEOLF YRLG actionPerformed(ActionEvent e)
 {
 menuItem1_actionPerformed(e);
 }
});
fileMenu.add(menuItem1);

Write the following event handler to the Language… menu item:

YRLG menuItem1_actionPerformed(ActionEvent e)
{
 SelectLanguageDialog dialog = QHZ SelectLanguageDialog(
 WKLV,
 QHZ Translator(dictionary1),
 IDOVH);

 LI (dialog.showModal())
 dictionary1.setLanguage(dialog.getLanguage());
}

The dialog box contains a list of available languages that the user can select. After
showing the dialog the event sets the new active language by setting the ODQJXDJH
property of the dictionary component.

Run the application and choose File | Language… (Or Tiedosto | Kieli… if you have
Finnish active). The following dialog box appears:

MULTILIZER – Tutorial 17

)LJXUH�����7KH�6HOHFW�/DQJXDJH�GLDORJ�ER[�OHWV�WKH�XVHU�VHOHFW�WKH�DFWLYH�ODQJXDJH�RQ�UXQ�WLPH�

The SelectLanguage dialog box shows all available languages in a list box.

Select a new language and press the OK button. The active language (user interface) of
Dcalc changes to that language. By default the active locale also changes to the default
locale of the language. You can set the active language and locale independently by
setting the ELQGLQJ property of the dictionary component to false.

The 6HOHFW/DQJXDJH'LDORJ dialog box contains strings that need to be translated as well.
Also the 0HVVDJH'LDORJ uses several strings (e.g. “OK”, “Cancel”). The string tables of
Language Manager contains all these constant strings. All you need to do is to add them
to your dictionary. Launch Language Manager. Open the dictionary. &KRRVH�3URMHFW |
,QFOXGH | 6\VWHP�6WULQJ. The System String dialog box appears. Check Language
Dialog, and Message Dialog check boxes.

)LJXUH�����7KH�6\VWHP�6WULQJV�GLDORJ�ER[�OHWV�WKH�GHYHORSHU�DGG�VWULQJV�XVHG�E\�WKH�V\VWHP�RU�E\
WKH�VWDQGDUG�FRPSRQHQWV�

Press the OK button. Language Manager adds the strings used by the selected items.
The glossaries contain translations of these strings. You do not have to translate them.
Let Language Manager get the translations from the glossaries: Select any cell in the
Finnish column. Choose /DQJXDJH | 7UDQVODWH | 8VLQJ�*ORVVDULHV.

18 MULTILIZER - Tutorial

Now our Dcalc application is fully multilingual. The user interface, locale settings, and
input measures match the local settings. The user can even change the language on run
time. The remaining chapters describe some of the advanced features of MULTILIZER.

MULTILIZER – Tutorial 19

�� $GGLQJ�:HVWHUQ�/DQJXDJHV

It is quite likely that you need to add new languages to your applications after the original
languages. How to do that? This is the most powerful feature of MULTILIZER. After
making your application multilingual, adding new languages is a piece of cake. You do
not have to change the source code at all. Neither do you have to change the resources
(forms) in any way. In fact, you do not even have to recompile the application.

Let’s add Swedish to the dictionary. Start Language Manager. Choose)LOH | 2SHQ and
browse the Java\Samples\Tutorial\dcalc.lmp. Choose 3URMHFW | /DQJXDJHV.

The Languages dialog box appears:

)LJXUH�����7KH�/DQJXDJHV�GLDORJ�ER[�OHWV�WKH�XVHU�DGG�RU�UHPRYH�ODQJXDJHV�

Select Swedish from the available languages and press the !! button. Press the 2.
button to close the dialog box. The Swedish column appears in the dictionary grid.
Translate it and save the project. Next time your run Dcalc, Swedish is available.

20 MULTILIZER - Tutorial

�� $GGLQJ�1RQ�:HVWHUQ�/DQJXDJHV

Java uses Unicode strings. That’s why in theory every Java application can display any
characters. Unfortunately Java must always work on the top of the host platform (e.g.
Windows, Linux, Solaris). The host platform does not necessary contain the font support
needed by the language.

You might need to update the font.properties files of your Java runtime environment to
add Far Eastern and Middle Eastern fonts.

MULTILIZER – Tutorial 21

��� :ULWLQJ�0XOWLOLQJXDO�$SSOHWV

Writing multilingual applets is as easy as writing multilingual applications. However you
have to notice the following items:

• To make the applet compatible with most browser use the AppletTraslator component
instead of the Translator component.

• Set the applet property of the dictionary component to refer to the applet.

For additional information on writing applets, see the Dcalc and Euro applets from the
samples subdirectory.

22 MULTILIZER - Tutorial

��� :ULWLQJ�0XOWLOLQJXDO�6ZLQJ�$SSOLFDWLRQV

Writing multilingual Swing application is as easy as writing multilingual AWT applications.
However you have to notice the following items:

• Add the SwingModule bean to the main frame. This adds the Translator bean the
ability to translate the Swing components.

Learn more from the online documentation.

