MULTILIZER

G L OB AL L oCALI ZATI1I ON

Java Tutorial

Using MULTILIZER™ Java Edition 2.0
May 1999
Copyright © 1999 Innoview Data Technologies, Ltd. All rights reserved.

MULTILIZER is a trademark of Innoview Data Technologies, Ltd.
JBuilder is a registered trademark of Inprise Corporation.

Table of Contents

o (=] = ol 1
Introduction to the tutorial..............uuuuviiiiiiiiiiies 2
Opening the Monolingual Applicationccooeeiiieiieieeiees 3
Making the Application Multilingualccccoooiiiiiiiiiii, 4
Creating a Dictionary for the Applicationccccoeeeein. 6
Internationalizing the Code...........ccceeeiiiiiiiiiiece e, 11
Changing Language On RUN TiMe........ccooiiiiiiiiis 16
Adding Western LanguUagescoovvvvvuiiieeeeeeeeeeiiiiise e e e e eeeeeennnnns 19
Adding Non-Western Languagesceeeeeeeeeeeeeeeeeeeemeeeeeeeeeeeenee. 20
Writing Multilingual APPIEtSceviiieiiiiice e, 21

Writing Multilingual Swing Applicationsccccceeiiiiiiiiiiininns 22

MULTILIZER — Tutorial 1

Preface

The purpose of this tutorial is to familiarize you with common software localization tasks,
when using MULTILIZER™. To obtain the most precise definitions on component use
and technical details, please refer to the on-line help.

The following items can be found in intro.pdf
¢ Typographical conventions used in this document.
* General information on localization

 How does MULTILIZER™ work, what is Language Manager for?

What is the "Native” language, used in Language Manager?

The following items can be found in langman.pdf

» Language Manager related tasks.

MULTILIZER - Tutorial

Introduction to the tutorial

-

NOTE!

In this tutorial we are going to create a multilingual application. The application will be a
simple driving-time calculator, Dcalc which a user can use to calculate the average
driving time for a given distance.

The Dcalc application is very simple but still it uses most of the features of MULTILIZER.
The creation of the application is divided into several lessons each covering one or more
MULTILIZER functions.

This tutorial is written for JBuilder 3. With each instructions there is also an explanation
how to acomplish it using the plain JDK. If you use some other Java IDE (e.g. Visual
Café, Visual Age, PowerlJ, etc.) you can easily modify the procedure to match your Java
IDE.

This symbol indicates that the information given applies to JBuilder only. In the front of a
header it applies to the whole chapter, otherwise it applies to the current paragraph.

This symbol indicates that the information given applies to plain JDK only. In the front of a
header it applies to the whole chapter, otherwise it applies to the current paragraph.

All screen-captured images have been taken when the active language of Language
Manager is English. Set English on by clicking the Earth-image on the left side of the
Language Manager’s tool bar.

The Dcalc sample application locates in the sanpl es\ dcal ¢ subdirectory of your
MULTILIZER’s Java directory.

To see more about how to use MULTILIZER read the online help and study the other
sample applications found in the sanpl es subdirectory.

If you used the Windows setup the MULTILIZER setup created the following program
group:

g Multilizer M= B3
File Edit “iew Help

o & B g

; Java Help JavaHelp JavaFReadme
[HTLMHelp] [HavaHelp]

F.DIF [F nr L, 5_\,\;""“’%:
.._...»-"“5‘r
Jawa Tutorial Language Language
tanage... b anager
7 object(s) |3ETKE v

Figure 1. Multilizer Program Group.

Before you can start building Dcalc you have to install MULTILIZER beans. To get the
information on how to install them, see the readme files. Double click the Java Readme
icon of the compiler to open the readme. If you instaled MULTILIZER from a ZIP file read
i ndex. htm file.

MULTILIZER — Tutorial 3

Opening the Monolingual Application

We could start from scratch but in most cases it is a completed application or at least an
application under construction that you want to globalize. This is what we are going to do.
The sanpl es\t ut ori al contains the English Dcalc. Open it, compile it, and finally run
it.

The application should look like this:

E%Driving Time Calculator

File Helg

Give the driving distance

||— in kilometres Calculate |
Speeding fine: 100,00 mik

Date and time: 12 helmikuuta 1999 21:25:24
Current lacale: Finnish (Finland)

Llser interface language: English

Figure 2. The monolingual application using English.

The user interface language is English and the application uses the default locale, witch
in this case is Finnish (Finland). The speeding ticket is formatted using the Finnish
currency format (marks) and the date and time is also formatted using the Finnish format.
Standard Java provides this kind of localization.

In the following chapters we will make Dcalc truly multilingual step-by-step.

MULTILIZER - Tutorial

Making the Application Multilingual

The first step is to make Dcalc multilingual, by just dropping two components on the form.
Select the Translator component from the Component Palette. Drop the

multilizer. Translator on the form. Drop the multilizer. TestDictionary component on the
form as well.

The result should look like this:

El-!}’_‘\, MainFrame
H-E3 U
--'ﬁ Men
'5 Data Access
=53 Other
borderLayout
B testDictionaryt

Figure 3. The translator and dictionary components have been added on the form.

Add the following code to the below of the import lines:
import nmultilizer.*;
Add the following code just before the constructor of MainFrame:

TestDictionary testDictionaryl = new TestDictionary();
Transl ator translatorl = new Translator();

What are these two components for? TestDictionary is one of the dictionary components
of MULTILIZER. A dictionary component provides string or phrase translation for the
application. Normally each application contains one dictionary component that contains
all the translation data of the application. MULTILIZER contains several different
dictionary components: one for getting the translation data from a text file, an other for
data from a database, etc.

The TestDictionary is a special case. It does not require any dictionary data but it makes
the translation on the fly by mangling the original string to a test string. In a normal case
you can not use the test dictionary in your final application because the translations are
not a real language. However, the test dictionary is really handy in the development
phase.

The Translator on the other hand is the component that does all the work. It scans the
form before it becomes visible and translates the user interface string from the original
value to the current language.

Select translator1 component and move to the Properties windows. Drop down the value
list of the host property. Select t hi s. This specifies the control that the translator should
translate. In the most cases it it the frame containing the translator component.

Add the following code to the j bl ni t function:
transl ator 1. set Host (this);

Add thetransl ator 1. transl at e() line to the contructor of the Mai nFr ane:

MULTILIZER — Tutorial 5

public Mai nFrane()

enabl eEvent s(AWIEvent . W NDOW EVENT_MASK) ;
try

jblnit();

fi neLabel . set Text (Nunber For mat . get Cur r encyl nst ance(
Local e. get Defaul t()).fornmat (new I nteger(100)));

dat eLabel . set Text (Dat eFor mat . get Dat eTi nmel nst ance(

Dat eFor mat . LONG,

Dat eFor mat . MEDI UM

Local e. getDefault()).format (new Date()));
| ocal eLabel . set Text (Local e. get Def aul t () . get Di spl ayNane(Local e. UK)) ;
translatorl.translate();

catch (Exception e)

e.printStackTrace();

}
}

The translate method makes the translator to translate its host control. A proper place to
call this is the last line of the constructor.

Compile and run Dcalc. It should look like this:

=3 DRIVING TIME CALCULATOR M [=] E3
FILE HELP

GIVE THE DRIVING DISTAMCE
[INKLOMETRES CALCULATE |
SPEEDING FINE: 100,00 MK

DATE AND TIME: 12, HELMIKUUTA 1988 21:42:36
CURRENT LOCALE: FINMISH (FINLAND)

USER INTERFACE LAMNGUAGE: EMGLISH

Figure 4. “Translated” application. The test dictionary translated every string to upper cased string.

As you can see, every user interface string is now in upper case. The translator changed
every string type property after the form had been loaded from the resource. By default
the test dictionary translates every string by putting it in upper-case.

For additional information on using the test dictionary, see the online help topic
"TestDictionary".

MORE INFO

This was a quick demonstration of the power of MULTILIZER. In the next chapter we will
create a real dictionary that contains real languages.

MULTILIZER - Tutorial

Creating a Dictionary for the Application

NOTE!

Double click the Language Manager icon from the MULTILIZER program group to start
Language Manager.

Language Manager is a Windows application. If your development environment is not
Windows you have to manually create the dictionary. If you have Windows but you
installed MULTILIZER from the plaform independed ZIP you won't have Language
Manager. In such case donwload Language Manager from MULTILIZER’s web page and
install Language Manager. For information on the dictionary file formats, find the online
help topic "File Formats".

Choose File | New to start the Dictionary Wizard. The following dialog box appears:

Dictionary Wizard - Welcome |
Thiz wizard quides pou bo create a new Language Manager project.

Follaws the instructions it gives to you. Prezs F1 or the Help button at any time to get more
inforrmnatior.

Y'ou can cancel the wizard at any time by preszing the Cancel button.

Prezz the Mext button ta start the wizard.

Hack MHest Cancel |

Figure 5. The Welcome sheet.

Press the Next button. The Source Directory sheet appears.

MULTILIZER — Tutorial

Dictionary Wizard - Source

Select a directory where the source codes of pour application are located. 'ou can later add new

directories.

Dipive:

EE

Directony:

[

= C:M
(= Program Files
(= Multilizer
= Java
[=r =amples

Help |

Back

=]|

—Application wpe:
= Delphi, 32-bit

 Delphi, 16-bit

" C++Builder

£ Yizual Basic, 32-hit
£ Yizual Basic, 16-bit
= Yizual J++

+ JBuilder

£ Other Java

" HTML pages

" Urnknown, please select

MHest

Cancel

Figure 6. The Source sheet is used to enter the source directory.

This sheet specifies the directory where your application is located. Choose the

sanmpl es\t ut ori al subdirectory of your MULTILIZER setup. If your application locates
on multiple directories you can later add more directories. Dictionary Wizard detects the

application type. If it is wrong you can select the right type.

Press the Next button. The Project Information sheet appears:

Dictionary Wizard - Information

Give the name of the Language Manager project and some ather information about the project.

Project Hame:

doalc

Dezcription:

Author:

Campan:

Help |

Back

MHest

Cancel |

Figure 7. The Information sheet is used to enter the project name and application file.

MULTILIZER - Tutorial

This sheet specifies the directory name. You can also enter other information about the
dictionary, the author, and the company.

Press the Next button. The Dictionary Type sheet appears:

Dictionary Wizard - Dictionary

Select the dictionary type. [F the dictionany already exists it will be ovenaritien. You can later
change the dictionar lype.

—Dictionary:
IEinar_l,l file j

[T Contest senzitive

Drictionary file namme:
IE:'&F‘mgram Filezhhultilizerh avahzamplesitutornaldcalc. mid J

Optionz... | Big endian, Unicode, wersion 3

Help | Back Hest Caricel

Figure 8. The Dictionary sheet is used to specify the dictionary type.

This sheet specifies the type of dictionary. The online help describes each dictionary type.
Change the type from binary to text, accept the default values and press the Next button.

The Languages sheet appears:

MULTILIZER — Tutorial 9

Dictionary Wizard - Languages |

Add the languages that vou want to support. The upper-mozt language iz the native language of
the aplication. |t iz recommended to wuze a separate native language. v'ou can later add new
languages.

Available languages: Selected languages:

&frikaans - 55, | M ative language s
&lbanian — — |

Arabic
Basque L]

B elaruszian -
Bulgarian o
Catalan

Chineze, Simplified
Chineze, Traditional
Croatian

Czech LI

Available zub languages:

Arabic [Algeria) ﬂ 5, |
Arahic [Bahrain]

Arabic [Egupt]

Arahic [lraq] LI

Help | Back et Cancel |

Figure 9. The Languages sheet is used to add languages to the dictionary.

This sheet lets you add string languages to the dictionary. By default the dictionary
contains the native language. This is the language you used to program your application.
From Available languages select English and press the >> button. This adds English
support to the dictionary.

Add some other European language (we will take care of Far Eastern and Middle Eastern
languages later). If you add Finnish the result should look like this:

Dictionary Wizard - Languages |

Add the languages that you want bo suppart. The upper-most [anguage i the native language of
the aplication. It i= recommended to uze a zeparate native language. “'ou can later add new
languages.

Available languages: Selected languages:

Croatian ;I 3 M ative lahguage Up
Czech = E nglish -
Danish [—

Dutch J Dl
E stanian

|Fasroese <4
erman

Greek,

Hebrew

Hunaarian LI

Available zub languages:

Arabic [Algeria) f’ 55 |
Arabic [Bahrain)

Arabic [Equpt]
Arabic [Irag)

Help | Back | Hest Caricel |

Figure 10. Native, English and Finnish added to dictionary.

10

MULTILIZER - Tutorial

MORE INFO

MORE INFO

Press the Next button. The Ready to create dictionary sheet appears. Now you have
almost finished creating the dictionary.

Press the Finish button to end Dictionary Wizard. The following dictionary grid appears.

@ Language Manager 4 - c:\program files\multilizer\wic\samples\tutorial\d... [W[=] E3
File Edit Project Language Tranzlation Yiew Taool: Help

@ ol ALE ==

Native English Finnish =
+ PEM_

+ &Calculate

+ | &File

+ &Give the driving
distance

* &Help

++ | Astralia

++ |Belize

++ |Canada

++ |Caribbean

* Current locale:
* Date and time:

+ Default

. Driving time calculator

+ durmrny

- TR hd
| 0:0 | Madified | |Prezs the right mouse button to activate the Language m 2

Figure 11. The dictionary grid.
Save the dictionary by choosing File | Save As.

We could translate the Finnish (or your own language) column manually by entering the
translations. However there is an easier way: using the glossaries. They implement the
translation memory. The glossary files contain the translations of the most common
strings or phrases (e.g. File, Open, About, etc). To make your translation job easier we
can first let Language Manager use the glossaries to translate those strings.

Language Manager contains several glossary files for most supported languages. You
can edit the glossary files list by choosing Tools | Glossaries.

For additional information on glossaries, find the online help topic "Glossaries".
Open Dcalc’s dictionary by choosing the uppermost item from the File | Reopen menu.

The next task is to translate the Finnish (or your own language) column. We can now use
the master dictionary to translate some of the strings. Right mouse click the header of the
Finnish column. A popup menu appears. Choose Translate | Using Glossaries. Language
Manager translates most of the strings. It is up to you to translate the rest.

Use the arrow keys to move to the right cell and start typing. Translate every row.
Because the native language is English you do not have to translate the English column.
The dictionary uses the native string if the translation is not found.

For additional information on coping with failing translations, find the online help topic
"MissingTranslation".

MULTILIZER — Tutorial 11

Internationalizing the Code

Fal

Fal

We have the dictionary files now. Let’s use them. Delete the TestDictionary component
from the form. Add the muiltilizer. TextDictionary component. Choose the component and
move to the Properties window. Set the fileName property to di cti onary. | anguages
and the translationFileName property to di cti onary. transl ati ons (i.e. the
dictionary that you created in previous lesson). Set the name property to di cti onaryl.

The Properties window should look like this:

®_ dictionaryl [TextDiction... S E3

[o 0

name dictionary
autoTranslate True
hinding Locale to language [1]

checkSupport True
dictionaryMame Dictionary1

fileMame dictionary languages
filelsage Auta [0]

language -1

locale Dretfault

missing Translation | Use native [0]
translationFileMame dictionary translations
updateDetautLocal True

Figure 12. The Properties window showing the properties of a binary dictionary component.

Let's study some of the properties. The language property specifies the active language.
By default it is —1. This makes MULTILIZER check the current locale of the user and find
the language that matches the locale. If none is found the first (non-native) language is
used.

The locale property specifies the active locale. The active language determines the
language of the user interface. The active locale, however, determines the locale used by
the application. The locale is a country and language specific object that controls how the
date, time, currency, number, etc. are formatted.

In our case the dictionary contains English and Finnish. If the locale setting of the user is
Finnish (Finland) the user interface of Dcalc will be in Finnish and the locale will be
Finnish (Finland).

Add the following code just before the contructor of MainFrame:

TextDictionary dictionaryl = new TextDictionary();

Add the followig code to the jbinit fuction.

dictionaryl. setFil eNanme("dictionary. | anguages");
dictionaryl. set Transl ati onFi | eNane("di ctionary.translations");

Run the application. It should look like this:

12

MULTILIZER - Tutorial

[=3 Aioaikalaskin _ O] x|

Tiedosta Ohje

Anna ajomatka

I— kilarmetreissa Laske |
Ylinopeussakko: 100,00 mk

Faivamaara ja aika: 13, helmikuuta 1999 7:01:03
Aldiivinen paikanne: Finnish Finland)

kayttdliittyrman kieli: - englanti

Figure 13. Dcalc in Finnish.

Making a multilingual application is this simple. In a simple case, this is all you have to do
to make a multilingual application. In most other cases you have do a little bit more.

If the program contains items which are just country (locale)-specific and hard coded in
the source, they must be removed. This phase is called internationalization: it makes your
software international and language/country independent. The next phase would then be
to localize the program, i.e., add for each target country the locale-specific issues. This is
done easily by using MULTILIZER. The remaining document discusses how to do this.

Dcalc calculates the average driving time. Most countries use the metric system, where
the distance is expressed in kilometers. However in the US miles are used. Let's study
how to make Dcalc compatible with both kilometers and miles.

When pressing the Calculate button Dcalc calls the following event:

MULTILIZER — Tutorial 13

void cal cul at eButton_acti onPer for med(Acti onEvent e)

{

int di stance;

try

{
di stance = Integer.valueO (textField.getText().trim()).intValue();
if (distance < 0)
throw new Number For mat Exception();

String[] parans =

new | nteger(di stance/ 100).toString(),
new | nteger((int) (60*(di stance%d00)/100)).toString()
b

MessageDi al og. nessageBox(
this,
"Driving Tinme",
MessageFor mat . f or mat (" The average driving tine is {0} hours and {1}
m nut es", parans),
MessageDi al og. OK) ;

catch (Nunber For mat Excepti on ex)
String[] parans = { textField.getText() };

MessageDi al og. nessageBox(
this,
"l nvalid val ue",
MessageFormat . format ("\"{0}\" in not a valid distance", parans),
MessageDi al og. OK) ;
text Fi el d. request Focus();

}
}

When the English (United States) locale is on the user gives the distance in miles. To
convert miles to kilometers add the following just before
String[] parans =

if (Utils. get Measurenent Systen(dictionaryl. getActivelLocale()) ==
Utils. US_MEASUREMENT)
di stance = (int)Utils. M LE_|I N METERS*di st ance/ 1000;

This is enough for to system to convert miles to kilometers but not for the user. He or she
will most definitely be a bit confused if the user interface still prompts in kilometers. To
make user interface react on the locale change adds the languageChanged event to the
translator component and writes the following code:

MULTILIZER - Tutorial

void transl atorl_| anguageChanged(Di cti onaryEvent Obj ect e)

if (Utils. get Measurenent Systen(dictionaryl. getActivelLocale()) ==
Utils. US_MEASUREMENT)
uni t Label . set Text (transl atorl.translate("in nmles")); //ivlm
else
uni t Label . set Text (transl atorl.translate("in kilometres")); //ivim

fi neLabel . set Text (Nunber For mat . get Cur r encyl nst ance(
dictionaryl. get ActiveLocal e()).fornmat(new | nteger(100)));

dat eLabel . set Text (Dat eFor nat . get Dat eTi el nst ance(
Dat eFor mat . LONG,
Dat eFor mat . MEDI UM
dictionaryl. get Acti veLocal e()).format(new Date()));

| ocal eLabel . set Text (Util s. get Local eNang(
dictionaryl. get ActivelLocal e(), dictionaryl));
| anguagelabel . set Text (di ctionaryl. transl ate(
di ctionaryl. get LanguageDat a() . engl i shNan®)) ;
}

Add the followng code the the jblnit function. It adds the languageChanged event to the
translator.

transl at or 1. addLanguageChangelLi stener (new nul tilizer. Di cti onaryLi stener ()

{
public void | anguageChanged(Di cti onaryEvent Cbj ect e)
{
transl ator 1_| anguageChanged(e) ;
}
1

First the code checks the measurement system. This is done by comparing the
measurementSystem variable of the active locale. The code updates the text and help
string. Let’s study the following code in more detail:

uni t Label . set Text(translatorl.translate("in kilometres"));
In a monolingual application you would have used the following code:
uni t Label . set Text ("in kil onetres");

This isn’t the proper way in a multilingual application because the same EXE file must
work on every language and locale. That's why the native string is translated before being
assigned to the Caption property.

The lower part of the event updates the speeding fine, current time, active language
name, and active locale name.

The constructor monolingual MainFrame contains the following code:

fi neLabel . set Text (Nunber For mat . get Cur r encyl nst ance(
Local e. getDefault()).for mat (new | nteger(100)));

dat eLabel . set Text (Dat eFor nat . get Dat eTi el nst ance(
Dat eFor mat . LONG,
Dat eFor mat . MEDI UM
Local e.getDefault()).format (new Date()));

| ocal eLabel . set Text (Local e. get Def aul t () . get Di spl ayNanme(Local e. UK)) ;

This code is not required any more because the dictionary1_languageChanged event
updates the labels. You can remove it.

MULTILIZER — Tutorial 15

We need to make a few modifications to the calculateButton_actionPerformed event to
make the message boxes multilingual. Consider the following code:

MessageDi al og. nessageBox(

this,

"Driving Tinme",

MessageFor mat . f or mat (" The average driving tine is {0} hours and {1}
m nutes", parans),

MessageDi al og. OK) ;

MULTILIZER can not translate the standard message dialogs. You must use
MULTILIZER’s own multilizer.MessageDialog or add a translator component to the
message dialog.

mul tilizer. MessageDi al og. mnessageBox(

this,

"Driving Tine", //ivlim

Utils.format Message(
"The average driving tine is {0} hours and {1} minutes", //ivim
par ans,
di ctionaryl),

MessageDi al og. K,

new Transl ator(dictionaryl));

Remember that you have to translate the exception message, as well.

mul tilizer. MessageDi al og. messageBox(

this,

"I'nvalid value", //ivim

Utils.format Message(
"\"{O}\" in not a valid distance", //ivlim
par ans,
dictionaryl),

MessageDi al og. K,

new Transl ator(dictionaryl));

Translate the message box in the aboutMenultem_actionPerformed event.

mul tilizer. MessageDi al og. messageBox(
this,
"About DCALC', //ivlm
"DCALC cal cul ates the driving tine.", //ivim
MessageDi al og. K,
new Transl ator(dictionaryl));

In this case you do not have to translate the text parameter but you can let the
MessageDialog to translate it. This is because the message is not parametrized.

Most string constants in the above code examples are trailed with ivim comment. The
comment is a tag for Language Manager. The tag makes Language Manager to extract
the string and to add it to the dictionary.

16

MULTILIZER - Tutorial

Changing Language On Run Time

S

Fal

Fal

Dcalc now has the ability to adapt to the current language and locale settings of the user.
What about changing the language and/or locale on run time? Is this possible? Yes.

Double click the File menu and move to the white area (Type Here) on the bottom of the
menu. Type &Language.... Move the memo on the top of the Exit menu.

The result should look like this:

HBH®BH &~

Help

Figure 14. Add the Language menu item to the main menu.

Add the following code just before the constructor of MainFrame:
Menul tem menultenl = new Menultem();
Add the following code int the jbinit function:

menul t eml. set Label (" Language...");
menul t enll. addAct i onLi st ener (new j ava. awt . event. Acti onLi st ener ()

{

public void actionPerforned(Acti onEvent e)

{

menul tendl_act i onPer f or med(e) ;

}

1)
fileMenu. add(nmenul teml);

Write the following event handler to the Language... menu item:
void menul teml_acti onPerformed(Acti onEvent e)

Sel ect LanguageDi al og di al og = new Sel ect LanguageDi al og(
this,
new Transl ator(dictionaryl),
false);

if (di al og. showivbdal ())
di ctionaryl. set Language(di al og. get Language());

The dialog box contains a list of available languages that the user can select. After
showing the dialog the event sets the new active language by setting the language
property of the dictionary component.

Run the application and choose File | Language... (Or Tiedosto | Kieli... if you have
Finnish active). The following dialog box appears:

MULTILIZER — Tutorial 17

A Select Language E

English (0]

Finnish 4'
Cancel |

Figure 15. The Select Language dialog box lets the user select the active language on run time.
The SelectLanguage dialog box shows all available languages in a list box.

Select a new language and press the OK button. The active language (user interface) of
Dcalc changes to that language. By default the active locale also changes to the default
locale of the language. You can set the active language and locale independently by
setting the binding property of the dictionary component to false.

The SelectLanguageDialog dialog box contains strings that need to be translated as well.
Also the MessageDialog uses several strings (e.g. “OK?”, “Cancel”). The string tables of
Language Manager contains all these constant strings. All you need to do is to add them
to your dictionary. Launch Language Manager. Open the dictionary. Choose Project |
Include | System String. The System String dialog box appears. Check Language
Dialog, and Message Dialog check boxes.

System Strings |

—Select the string groups ok

[+ Language Dialog
[T Languages

[Locale Dialog

[+ Mezzage Dialog

[Sublanguage Cialog

Cancel

Help

Figure 16. The System Strings dialog box lets the developer add strings used by the system or by
the standard components.

Press the OK button. Language Manager adds the strings used by the selected items.
The glossaries contain translations of these strings. You do not have to translate them.
Let Language Manager get the translations from the glossaries: Select any cell in the
Finnish column. Choose Language | Translate | Using Glossaries.

18

MULTILIZER - Tutorial

Now our Dcalc application is fully multilingual. The user interface, locale settings, and
input measures match the local settings. The user can even change the language on run
time. The remaining chapters describe some of the advanced features of MULTILIZER.

MULTILIZER — Tutorial 19

Adding Western Languages

It is quite likely that you need to add new languages to your applications after the original
languages. How to do that? This is the most powerful feature of MULTILIZER. After
making your application multilingual, adding new languages is a piece of cake. You do
not have to change the source code at all. Neither do you have to change the resources
(forms) in any way. In fact, you do not even have to recompile the application.

Let's add Swedish to the dictionary. Start Language Manager. Choose File | Open and
browse the Java\ Sanpl es\ Tut ori al \ dcal c. | np. Choose Project | Languages.

The Languages dialog box appears:

Languages |

Available languages: Selected language and sub languages:
Afrikaang ﬂ 53 M ative lahguage I

Albanian = Englizh =
Arabic Finrizh

Basque el

B elarusian -
Bulgarian i
Catalan

Chineze, Simplified LI

Available zub languages:

Arabic [#lgeria) 3 - |
Arabic [Bahrain)

Arabic [Equpt]
Arahic [Iraq)
Arabic [Jordan)

Arabic [Kuvait) =l oK Cancel Help

LT RPN | Y ey |

Figure 17. The Languages dialog box lets the user add or remove languages.

Select Swedish from the available languages and press the >> button. Press the OK
button to close the dialog box. The Swedish column appears in the dictionary grid.
Translate it and save the project. Next time your run Dcalc, Swedish is available.

20

MULTILIZER - Tutorial

Adding Non-Western Languages

Java uses Unicode strings. That's why in theory every Java application can display any
characters. Unfortunately Java must always work on the top of the host platform (e.qg.
Windows, Linux, Solaris). The host platform does not necessary contain the font support
needed by the language.

You might need to update the font.properties files of your Java runtime environment to
add Far Eastern and Middle Eastern fonts.

MULTILIZER — Tutorial 21

Writing Multilingual Applets

MORE INFO

Writing multilingual applets is as easy as writing multilingual applications. However you
have to notice the following items:

» To make the applet compatible with most browser use the AppletTraslator component
instead of the Translator component.

» Set the applet property of the dictionary component to refer to the applet.

For additional information on writing applets, see the Dcalc and Euro applets from the
samples subdirectory.

22

MULTILIZER - Tutorial

Writing Multilingual Swing Applications

Writing multilingual Swing application is as easy as writing multilingual AWT applications.
However you have to notice the following items:

* Add the SwingModule bean to the main frame. This adds the Translator bean the
ability to translate the Swing components.

Learn more from the online documentation.

