
1

Version 2, February 11, 1996
(Next scheduled update - March 3, 1996)

As taken from Netscape Corporation’s World Wide Web Site

 2

Table of Contents
JavaScript Working Document…4

The Mother of all Disclaimers …5
Learning JavaScript…5

JavaScript and Java…5
JavaScript Development…6
Navigator Scripting…7

Using JavaScript in HTML …7
Scripting Event Handlers …9
Tips and Techniques …12

JavaScript Values, Names, and Literals…15
Values…15
Datatype Conversion…15
Variable Names…16
Literals…17

JavaScript Expressions and Operators…19
Expressions…19
Conditional Expressions…19
Assignment Operators (=, +=, -=, *=, /=)…20
Operators…20
Arithmetic Operators…20
Bitwise Operators…22

The JavaScript Object Model…26
Objects and Properties…26
Functions and Methods…27
Creating New Objects…28

Using Built-in Objects and Functions…32
Using the String Object…32
Using the Math Object…32
Using the Date Object…33
Using Built-in Functions…34

Overview of JavaScript Statements…36
Navigator Objects…37

Using Navigator Objects…37
Navigator Object Hierarchy…38
JavaScript and HTML Layout…39
Key Navigator Objects…40

Objects…42
anchor object (client)…42
button object (client)…43
checkbox object (client)…44
Date object (common)…45
document object (client)…47
form object (client)…48
frame object (client)…50
hidden object (client)…52
history object (client)…53
link object (client)…54
location object (client)…56
Math object (common)…57
navigator object (client)…59
password object (client)…59
radio object (client)…61
reset object (client)…62
select object (client)…64
string object (common)…66
submit object (client)…67
text object (client)…68
textarea object (client)…70
window object (client)…71

Methods and Functions…74
abs method…74
acos method…75
alert method…75
anchor method…76
asin method…77
atan method…78
back method…78
big method…79
blink method…80
blur method…80
bold method…81
ceil method…82
charAt method…83
clear method…83
clearTimeout method…84
click method…84
close method (document object)…85
close method (window object)…86
confirm method…87
cos method…87
escape function…88
eval function…89
exp method…89
fixed method…90
floor method…90
focus method…91
fontcolor method…92
fontsize method…93
forward method…94
getDate method…94
getDay method…95
getHours method…96
getMinutes method…96
getMonth method…97
getSeconds method…98
getTime method…98
getTimezoneOffset method…99
getYear method…99
go method…100
indexOf method…101
isNaN function…102
italics method…103
lastIndexOf method…103
link method…104
log method…105
max method…106
min method…106
open method (document object)…107
open method (window object)…108
parse method…110
parseFloat function…111
parseInt function…112
pow method…113
prompt method…113
random method…114
round method…114
select method…115
setDate method…116
setHours method…116

3

setMinutes method…117
setMonth method…117
setSeconds method…118
setTime method…118
setTimeout method…119
setYear method…121
sin method…121
small method…122
sqrt method…123
strike method…123
sub method…124
submit method…125
substring method…126
sup method…126
tan method…127
toGMTString method…128
toLocaleString method…128
toLowerCase method…129
toString method…129
toUpperCase method…130
unEscape function…131
UTC method…131
write method…132
writeln method…133

Properties…135
action property…135
alinkColor property…136
anchors property…136
appCodeName property…137
appName property…138
appVersion property…138
bgColor property…139
checked property…140
cookie property…141
defaultChecked property…142
defaultSelected property…142
defaultStatus property…143
defaultValue property…144
E property…145
elements property…145
encoding property…146
fgColor property…147
forms property…147
frames property…148
hash property…149
host property…149
hostname property…150
href property…151
index property…152
lastModified property…153
length property…153
linkColor property…154
links property…155
LN2 property…155
LN10 property…156
location property…156
method property…157
name property…158
options property…158
parent property…159
pathname property…159
PI property…160
port property…161
protocol property…161
referrer property…162

search property…162
selected property…164
selectedIndex property…164
self property…165
SQRT1_2 property…166
SQRT2 property…167
status property…167
target property…168
text property…169
title property…169
top property…170
userAgent property…170
value property…171
vlinkColor property…172
window property…172

Event handlers…174
onBlur event handler…174
onChange event handler…174
onClick event handler…175
onFocus event handler…176
onLoad event handler…176
onMouseOver event handler…177
onSelect event handler…177
onSubmit event handler…178
onUnload event handler…178

Statements…179
break statement…179
comment statement…179
continue statement…180
for statement…180
for...in statement…181
function statement…182
if...else statement…182
return statement…183
var statement…183
while statement…183
with statement…184

Reserved words…185
Color values…186
PERSISTENT CLIENT STATE…189
HTTP COOKIES …189

INTRODUCTION …189
OVERVIEW …189
SPECIFICATION …189
Syntax of the Cookie HTTP Request Header…191
EXAMPLES …192

JavaScript Snippets…194
The Digital Clock…194

 4

This document was prepared by Aj Brown of IPST from the original JavaScript Authoring Guide from
Netscape’s World Wide Web site : http://home.netscape.com

You may reach me at any of the following email addresses :

ajbrown@ajbrown.com
ajbrown@ipst.com
ajbrown@shore.net
webmaster@ipst.com
Compuserve : 102636,362
http://www.ipst.com

I encourage any and all comments, suggestions, or code snippets that we could include in this working document
to help fellow developers explore and take advantage of JavaScript.

If you have a code snippet you feel would be of value, please email it to me, and I will include it in the
next version.

It looks as if a monthly update is all I can handle right now.

Look for our HTML Primer and Reference in PDF format coming soon.

JavaScript Working Document
Current Version : Version 2, dated February 11, 1996
Next Update : March 3, 1996

Ongoing JavaScript Development

Development of the JavaScript language and its documentation continues. Additional features are planned; some
current features could be modified if necessary.

Documentation Update

• Reorganized and updated Introduction and Navigator Authoring sections.
• Reworked descriptions and syntax of document, frame, and window objects.
• Added info about elements array to syntax of each form element (button, radio, text, etc.).
• Added info to object documentation about which arguments the properties reflect.
• Reworked descriptions of string, date, and object arguments for all methods.
• Added encoding property.
• Converted RGB values to hex in Color Values section.
• Miscellaneous minor fixes to syntax, wording, etc.
• Completed numerous properties.

5

The Mother of all Disclaimers

 JavaScript and its documentation are currently under development. Some of the language is not yet
implemented. That which is implemented is subject to change. Information provided at this time is incom-

plete and should not be considered a language specification. JavaScript is a work in progress whose
potential we'd like to share with you, the beta users, in this developmental form.

Learning JavaScript
JavaScript is a compact, object-based scripting language for developing client and server Internet applica-
tions. Netscape Navigator 2.0 interprets JavaScript statements embedded directly in an HTML page, and
LiveWire enables you to create server-based applications similar to common gateway interface (CGI)
programs.

In a client application for Navigator, JavaScript statements embedded in an HTML page can recognize
and respond to user events such as mouse clicks, form input, and page navigation.

For example, you can write a JavaScript function to verify that users enter valid information into a form
requesting a telephone number or zip code. Without any network transmission, an HTML page with
embedded JavaScript can interpret the entered text and alert the user with a message dialog if the input is
invalid. Or you can use JavaScript to perform an action (such as play an audio file, execute an applet, or
communicate with a plug-in) in response to the user opening or exiting a page.

JavaScript and Java

The JavaScript language resembles Java, but without Java's static typing and strong type checking.
JavaScript supports most of Java's expression syntax and basic control flow constructs. In contrast to
Java's compile-time system of classes built by declarations, JavaScript supports a run-time system based
on a small number of data types representing numeric, Boolean, and string values. JavaScript has a simple
instance-based object model that still provides significant capabilities.

JavaScript also supports functions, again without any special declarative requirements. Functions can be
properties of objects, executing as loosely typed methods.

JavaScript complements Java by exposing useful properties of Java applets to script authors. JavaScript
statements can get and set exposed properties to query the state or alter the performance of an applet or
plug-in.

Java is an extension language designed, in particular, for fast execution and type safety. Type safety is
reflected by being unable to cast a Java int into an object reference or to get at private memory by corrupt-
ing Java bytecodes.

Java programs consist exclusively of classes and their methods. Java's requirements for declaring classes,
writing methods, and ensuring type safety make programming more complex than JavaScript authoring.
Java's inheritance and strong typing also tend to require tightly coupled object hierarchies.

 6

In contrast, JavaScript descends in spirit from a line of smaller, dynamically typed languages like
HyperTalk and dBASE. These scripting languages offer programming tools to a much wider audience
because of their easier syntax, specialized built-in functionality, and minimal requirements for object
creation.

The following table compares and contrasts JavaScript and Java.

JavaScript Java

Interpreted (not compiled) by client
Compiled on server before execution on
client.

Object-based. Code uses built-in, extensible
objects, but no classes or inhereitance

Object-orientated. Applets consist of object
classes with inheritance.

Code integrated with, and embedded in,
HTML.

Applets distinct from HTML (accessed from
HTML pages)

Variable data types not declared (loose
typing).

Variable data types must be declared (strong
typing).

Dynamic binding; object references checked
at run-time

Static binding; object references must exist at
compile-time

Secure. cannot write to hard disk Secure. cannot write to hard disk

JavaScript Development
A script author is not required to extend, instantiate, or know about classes. Instead, the author acquires
finished components exposing high-level properties such as "visible" and "color", then gets and sets the
properties to cause desired effects.

As an example, suppose you want to design an HTML page that contains some catalog text, a picture of a
shirt available in several colors, a form for ordering the shirt, and a color selector tool that's visually
integrated with the form. You could write a Java applet that draws the whole page, but you'd face compli-
cated source encoding and forgo the simplicity of HTML page authoring.

A better route would use Java's strengths by implementing only the shirt viewer and color picker as
applets, and using HTML for the framework and order form. A script that runs when a color is picked
could set the shirt applet's color property to the picked color. With the availability of general-purpose
components like a color picker or image viewer, a page author would not be required to learn or write
Java. Components used by the script would be reusable by other scripts on pages throughout the catalog.

7

Navigator Scripting
• Using JavaScript in HTML
• Scripting Event Handlers
• Tips and Techniques

Using JavaScript in HTML

JavaScript can be embedded in an HTML document in two ways:

• As statements and functions using the SCRIPT tag.
• As event handlers using HTML tags.

The SCRIPT tag

A script embedded in HTML with the SCRIPT tag uses the format:

<SCRIPT>
 JavaScript statements...
</SCRIPT>

The optional LANGUAGE attribute specifies the scripting language as follows:

<SCRIPT LANGUAGE="JavaScript">
 JavaScript statements...
</SCRIPT>

The HMTL tag, <SCRIPT>, and its closing counterpart, </SCRIPT> can enclose any number of JavaScript
statements in a document.

JavaScript is case sensitive.

Example 1: a simple script.

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
document.write("Hello net.")
</SCRIPT>
</HEAD>
<BODY>
That's all, folks.
</BODY>
</HTML>

Example 1 page display.

Hello net. That's all folks.

 8

Code Hiding

Scripts can be placed inside comment fields to ensure that your JavaScript code is not displayed by old browsers
that do not recognize JavaScript. The entire script is encased by HTML comment tags:

<!-- Begin to hide script contents from old browsers.
// End the hiding here. -->

Defining and Calling Functions

Scripts placed within SCRIPT tags are evaluated after the page loads. Functions are stored, but not executed.
Functions are executed by events in the page.

It's important to understand the difference between defining a function and calling the function. Defining the
function simply names the function and specifies what to do when the function is called. Calling the function
actually performs the specified actions with the indicated parameters.

Example 2: a script with a function and comments.

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
<!-- to hide script contents from old browsers
 function square(i) {
 document.write("The call passed ", i ," to the function.","
")
 return i * i
 }
 document.write("The function returned ",square(5),".")
// end hiding contents from old browsers -->
</SCRIPT>
</HEAD>
<BODY>

All done.
</BODY>
</HTML>

Example 2 page display.

We passed 5 to the function.
The function returned 25.
All done.

The HEAD tag

Generally, you should define the functions for a page in the HEAD portion of a document. Since the HEAD is
loaded first, this practice guarantees that functions are loaded before the user has a chance to do anything that
might call a function.

9

Example 3: a script with two functions.

<HTML>
<HEAD>
<SCRIPT>
<!--- hide script from old browsers
function bar() {
 document.write("<HR ALIGN='left' WIDTH=25%>")
}
function output(head, level, string) {
 document.write("<H" + level + ">" + head + "</H" + level + "><P>" + string)
}
document.write(bar(),output("Make Me Big",3,"Make me ordinary."))
// end hiding from old browsers -->
</SCRIPT>
</HEAD>
<BODY>
<P>
Thanks.
</BODY>
</HTML>

Example 3 results.

Make Me Big

Make me ordinary.

Thanks.

Quotes

Use single quotes (') to delimit string literals so that scripts can distinguish the literal from attribute values enclosed
in double quotes. In the previous example, function bar contains the literal 'left' within a double-quoted attribute
value. Here's another example:

<INPUT TYPE="button" VALUE="Press Me" onClick="myfunc('astring')">

Scripting Event Handlers

JavaScript applications in the Navigator are largely event-driven. Events are actions that occur, usually as a result
of something the user does. For example, a button click is an event, as is giving focus to a form element. There is
a specific set of events that Navigator recognizes. You can define Event handlers, scripts that are automatically
executed when an event occurs.

Event handlers are embedded in documents as attributes of HTML tags to which you assign JavaScript code to
execute. The general syntax is

<TAG eventHandler="JavaScript Code">

 10

where TAG is some HTML tag and eventHandler is the name of the event handler.

For example, suppose you have created a JavaScript function called compute. You can cause Navigator to
perform this function when the user clicks on a button by assigning the function call to the button's onClick event
handler:

<INPUT TYPE="button" VALUE="Calculate" onClick="compute(this.form)">

You can put any JavaScript statements inside the quotes following onClick. These statements get executed when
the user clicks on the button. If you want to include more than one statement, separate statements with a semico-
lon (;).

In general, it is a good idea to define functions for your event handlers because:

• it makes your code modular-you can use the same function as an event handler for many different items.
• it makes your code easier to read.

Notice in this example the use of this.form to refer to the current form. The keyword this refers to the current
object-in the above example, the button object. The construct this.form then refers to the form containing the
button. In the above example, the onClick event handler is a call to the compute() function, with
this.form, the current form, as the parameter to the function.

Events apply to HTML tags as follows:
• Focus, Blur, Change events: text fields, textareas, and selections
• Click events: buttons, radio buttons, checkboxes, submit buttons, reset buttons, links
• Select events: text fields, textareas
• MouseOver event: links

If an event applies to an HTML tag, then you can define an event handler for it. In general, an event handler has
the name of the event, preceded by "on." For example, the event handler for the Focus event is onFocus.

Many objects also have methods that emulate events. For example, button has a click method that emulates the
button being clicked. Note: The event-emulation methods do not trigger event-handlers. So, for example, the
click method does not trigger an onClick event-handler. However, you can always call an event-handler directly
(for example, you can call onClick explicitly in a script).

Event Occurs when ... Event Handler

blur User removes input focus from form element onBlur

click User clicks on form element or link onClick

change User changes value of text, textarea, or select element onChange

focus User gives form element input focus onFocus

load User loads the page in the Navigator onLoad

mouseover User moves mouse pointer over a link or anchor onMouseOver

select User selects form element's input field onSelect

submit User submits a form onSubmit

unload User exits the page onUnload

11

Example 4: a script with a form and an event handler attribute.

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
function compute(form) {
 if (confirm("Are you sure?"))
 form.result.value = eval(form.expr.value)
 else
 alert("Please come back again.")
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Enter an expression:
<INPUT TYPE="text" NAME="expr" SIZE=15 >
<INPUT TYPE="button" VALUE="Calculate" ONCLICK="compute(this.form)">

Result:
<INPUT TYPE="text" NAME="result" SIZE=15 >

</FORM>
</BODY>
</HTML>

Example 4 page display.

Enter an expression: 9 + 5

Result: 14

Example 5: a script with a form and event handler attribute within a BODY tag.

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
function checkNum(str, min, max) {
 if (str == "") {
 alert("Enter a number in the field, please.")
 return false
 }
 for (var i = 0; i < str.length; i++) {
 var ch = str.substring(i, i + 1)
 if (ch < "0" || ch > "9") {
 alert("Try a number, please.")
 return false
 }
 }
 var num = 0 + str
 if (num < min || num > max) {
 alert("Try a number from 1 to 10.")
 return false
 }
 return true

 12

}
function thanks() {
 alert("Thanks for your input.")
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Please enter a small number:
<INPUT NAME="num"
 ONCHANGE="if (!checkNum(this.value, 1, 10))
 {this.focus();this.select();} else {thanks()}"
 VALUE="0">
</FORM>
<SCRIPT LANGUAGE="JavaScript">
document.write("<PRE>")
document.writeln("Field name: " + document.forms[0].num.name)
document.writeln("Field value: " + document.forms[0].num.value)
document.write("</PRE>")
</SCRIPT>
</BODY>
</HTML>

Example 5 page display.

Please enter a small number: 7
Field name: num
Field value: 7

Tips and Techniques

This section describes various useful scripting techniques.

Updating Pages

JavaScript in Navigator generates its results from the top of the page down. Once something has been formatted,
you can't change it without reloading the page. Currently, you cannot update a particular part of a page without
updating the entire page. However, you can update a "sub-window" in a frame separately.

Printing

You cannot currently print output created with JavaScript. For example, if you had the following in a page:

<P>This is some text.
<SCRIPT>document.write("<P>And some generated text")</SCRIPT>

And you printed it, you would get only "This is some text", even though you would see both lines on-screen.

Using Quotes

Be sure to alternate double quotes with single quotes. Since event handlers in HTML must be enclosed in quotes,

13

you must use single quotes to delimit arguments.
For example

<FORM NAME="myform">
<INPUT TYPE="button" NAME="Button1" VALUE="Open Sesame!"
onClick="window.open('stmtsov.html', 'newWin', 'toolbar=no,directories=no')">
</FORM>

Defining Functions

It is always a good idea to define all of your functions in the HEAD of your HTML page. This way, all functions
will be defined before any content is displayed. Otherwise, the user might perform some action while the page is
still loading that triggers an event handler and calls an undefined function, leading to an error.

Creating Arrays

An array is an ordered set of values that you reference through an array name and an index. For example, you
could have an array called emp, that contains employees' names indexed by their employee number. So emp[1]
would be employee number one, emp[2] employee number two, and so on.

JavaScript does not have an explicit array data type, but because of the intimate relationship between arrays and
object properties (see JavaScript Object Model), it is easy to create arrays in JavaScript. You can define an
array object type, as follows:

function MakeArray(n) {
 this.length = n;
 for (var i = 1; i <= n; i++) {
 this[i] = 0 }
 return this
 }
}

This defines an array such that the first property, length, (with index of zero), represents the number of elements in
the array. The remaining properties have an integer index of one or greater, and are initialized to zero.

You can then create an array by a call to new with the array name, specifying the number of elements it has. For
example:

emp = new MakeArray(20);

This creates an array called emp with 20 elements, and initializes the elements to zero.

Populating an Array

You can populate an array by simply assigning values to its elements. For example:

emp[1] = "Casey Jones"
emp[2] = "Phil Lesh"
emp[3] = "August West"

and so on.

 14

You can also create arrays of objects. For example, suppose you define an object type named Employees, as
follows:

function Employee(empno, name, dept) {
 this.empno = empno;
 this.name = name;
 this.dept = dept;
}

Then the following statements define an array of these objects:

emp = new MakeArray(3)
emp[1] = new Employee(1, "Casey Jones", "Engineering")
emp[2] = new Employee(2, "Phil Lesh", "Music")
emp[3] = new Employee(3, "August West", "Admin")

Then you can easily display the objects in this array using the show_props function (defined in the section on the
JavaScript Object Model) as follows:

for (var n =1; n <= 3; n++) {
 document.write(show_props(emp[n], "emp") + "
");
}

15

JavaScript Values, Names, and Literals
• Values
• Variable Names
• Literals

Values

JavaScript recognizes the following types of values:

• numbers, such as 42 or 3.14159
• logical (Boolean) values, either true or false
• strings, such as "Howdy!"
• null, a special keyword denoting a null value

This relatively small set of types of values, or data types, enables you to perform useful functions with
your applications.Notice that there is no explicit distinction between integer and real-valued numbers. Nor
is there an explicit date data type. However, the date object and related built-in functions enable you to
handle dates.

Objects and functions are the other fundamental elements in the language. You can think of objects as
named containers for values, and functions as procedures that your application can perform.

Datatype Conversion

JavaScript is a loosely typed language. That means that you do not have to specify the datatype of a
variable when you declare it, and datatypes are converted automatically as needed during the course of
script execution.

JavaScript will attempt to convert an expression to the datatype of the left-hand operand. Expressions are
always evaluated from left to right, so JavaScript applies this rule at each step in the evaluation of a
complex expression.

For example, suppose you define the following variables

var astring = "7"

var anumber = 42

Then consider the following statements:

x = astring + anumber

y = anumber + astring

 16

The first statement will convert anumber to a string value, because the left-hand operand, astring, is a
string. The statement will then concatenate the two strings, so x will have a value of "742".

Conversely, the second statement will convert astring to a numeric value, because the left-hand operand,
anumber, is a number. The statement then adds the two numbers, so y will have a value of 49.

JavaScript cannot convert some strings to numbers. For example, the statements

var anumber = 42

var astring = "Phil"

y = anumber + astring

will generate an error, becuase "Phil" cannot be converted to a number.

The following table summarizes conversion between data types.

NOTE: Much of the functionality specified in this table is not implemented as of Navigator beta4.

D ata type Fun ction O bject N umb er Boo lean Strin g

Fun ction - function error error decompile

O bject

N ull Object

error
funobj OK

-
error
0

true
false

toString
"null"

N umb er (non-zero)

0
Error (N aN)

+ infinity
-infinity

error

Number
null
Number
Number
Number

-

true
false
false
true
true

toString
"0"
"NaN"
"+Infinity"
"-Infinity"

Boo lean: false
true

error Boolean
0
1

-
"false"
"true"

Strin g (non-nu ll)

N ull String

funstr OK
error

String
numstr OK
error

true
false

-

Variable Names

You use variables to hold values in your application. You give these variables names by which you
reference them, and there are certain rules to which the names must conform.

A JavaScript identifier or name must start with a letter or underscore ("_"); subsequent characters can also

Converted to data type :

17

be digits (0-9). Letters include the characters "A" through "Z" (uppercase) and the characters "a" through
"z" (lowercase). JavaScript is case-sensitive.
Some examples of legal names are:

• Number_hits
• temp99
• _name

Literals

Literals are the way you represent values in JavaScript. These are fixed values that you literally provide in
your application source, and are not variables. Examples of literals include:

• 42
• 3.14159
• "To be or not to be"

Integers

Integers can be expressed in decimal (base 10), hexadecimal (base 16), or octal (base 8) format. A decimal
integer literal consists of a sequence of digits (optionally suffixed as described below) without a leading 0
(zero).

An integer can be expressed in octal or hexadecimal rather than decimal. A leading 0 (zero) on an integer
literal means it is in octal; a leading 0x (or 0X) means hexadecimal. Hexadecimal integers can include
digits (0-9) and the letters a-f and A-F. Octal integers can include only the digits 0-7.

Floating Point Literals

A floating point literal can have the following parts: a decimal integer, a decimal point ("."), a fraction
(another decimal number), an exponent, and a type suffix. The exponent part is an "e" or "E" followed by
an integer, which can be signed (preceded by a "+" or "-"). A floating point literal must have at least one
digit, plus either a decimal point or "e" (or "E"). Some examples of floating point literals are:

• 3.1415 • -3.1E12
• .1e12 • 2E-12

Boolean Literals

The boolean type has two literal values: true and false.

String Literals

A string literal is zero or more characters enclosed in double (") or single (') quotes. A string must be
delimited by quotes of the same type; that is, either both single quotes or double quotes. The following are
examples of string literals:

 18

• "blah" • 'blah'
• "1234" • "one line \n another line"

Special Characters

You can use the following special characters in JavaScript string literals:

• \b indicates a backspace.
• \f indicates a a form feed.
• \n indicates a new line character.
• \r indicates a carriage return.
• \t indicates a tab character.

19

JavaScript Expressions and Operators
• Expressions
• Operators

• Arithmetic Operators
• Bitwise Operators
• Logical Operators
• Comparison Operators
• String Operators
• Operator Precedence

Expressions

An expression is any valid set of literals, variables, operators, and expressions that evaluates to a single
value. The value may be a number, a string, or a logical value. Conceptually, there are two types of
expressions: those that assign a value to a variable, and those that simply have a value. For example, the
expression

x = 7

is an expression that assigns x the value 7. This expression itself evaluates to 7. Such expressions use
assignment operators. On the other hand, the expression

3 + 4

simply evaluates to 7; it does not perform an assignment. The operators used in such expressions are
referred to simply as operators.

JavaScript has the following kinds of expressions:

• Arithmetic: evaluates to a number, for example
• String: evaluates to a character string, for example "Fred" or "234"
• Logical: evaluates to true or false

The special keyword null denotes a null value. In contrast, variables that have not been assigned a value
are undefined, and cannot be used without a run-time error.

Conditional Expressions

A conditional expression can have one of two values based on a condition. The syntax is

(condition) ? val1 : val2

If condition is true, the expression has the value of val1, Otherwise it has the value of val2. You can use a
conditional expression anywhere you would use a standard expression.

For example,

status = (age >= 18) ? "adult" : "minor"

 20

This statement assigns the value "adult" to the variable status if age is eighteen or greater. Otherwise, it
assigns the value "minor" to status.

Assignment Operators (=, +=, -=, *=, /=)

An assignment operator assigns a value to its left operand based on the value of its right operand. The
basic assignment operator is equal (=), which assigns the value of its right operand to its left operand.
That is, x = y assigns the value of y to x.

The other operators are shorthand for standard arithmetic operations as follows:

• x += y means x = x + y
• x -= y means x = x - y
• x *= y means x = x * y
• x /= y means x = x / y
• x %= y means x = x % y

There are additional assignment operators for bitwise operations:

• x <<= y means x = x << y
• x >>= y means x = x >> y
• x >>>= means x = x >>> y
• x &= means x = x & y
• x ^= means x = x ^ y
• x |= means x = x | y

Operators

LiveScript has arithmetic, string, and logical operators. There are both binary and unary operators. A
binary operator requires two operands, one before the operator and one after the operator:

operand1 operator operand2

For example, 3 + 4 or x * y

A unary operator requires a single operand, either before or after the operator:

operator operand

or

operand operator

For example x++ or ++x.

Arithmetic Operators

Arithmetic operators take numerical values (either literals or variables) as their operands and return a

21

single numerical value.
Standard Arithmetic Operators

The standard arthmetic operators are addition (+), subtraction (-), multiplication (*), and division (/).
These operators work in the standard way.

Modulus (%)

The modulus operator is used as follows:
var1 % var2

The modulus operator returns the first operand modulo the second operand, that is, var1 modulo var2, in
the statement above, where var1 and var2 are variables. The modulo function is the remainder of inte-
grally dividing var1 by var2. For
example, 12 % 5 returns 2.

Increment (++)

The increment operator is used as follows:
var++ or ++var

This operator increments (adds one to) its operand and returns a value. If used postfix, with operator after
operand (for example x++), then it returns the value before incrementing. If used prefix with operator
before operand (for example, ++x), then it returns the value after incrementing.

For example, if x is 3, then the statement

y = x++

increments x to 4 and sets y to 3.

If x is 3, then the statement

y = ++x

increments x to 4 and sets y to 4.

Decrement (--)

The decrement operator is used as follows:

var-- or --var

This operator decrements (subtracts one from) its operand and returns a value. If used postfix (for ex-
ample x--) then it returns the value before decrementing. If used prefix (for example, --x), then it returns
the value after decrementing.

For example, if x is 3, then the statement
y = x--

 22

decrements x to 2 and sets y to 3.
If x is 3, then the statement

y = --x

decrements x to 2 and sets y to 2.

Unary negation (-)

The unary negation operator must precede its operand. It negates its operand. For example,

x = -x

negates the value of x; that is if x were 3, it would become -3.

Bitwise Operators

Bitwise operators treat their operands as a set of bits (zeros and ones), rather than as decimal, hexadeci-
mal, or octal numbers. For example, the decimal number 9 has a binary representation of 101. Bitwise
operators perform their operations on such binary representations, but they return standard JavaScript
numerical values.

Bitwise Logical Operators

The bitwise operators are:

• Bitwise AND &. Returns a one if both operands are ones.
• Bitwise OR |. Returns a one if either operand is one.
• Bitwise XOR ^. Returns a one if one but not both operands are one.

The bitwise logical operators work conceptually as follows:

• The operands are converted to 32-bit integers, and expressed a series of bits (zeros and ones).
• Each bit in the first operand is paired with the corresponding bit in the second operand: first bit

to first bit, second bit to second bit, and so on.
• The operator is applied to each pair of bits, and the result is constructed bitwise.

Bitwise Shift Operators

The bitwise shift operators are:

• Left Shift (<<)
• Sign-propagating Right Shift (>>)
• Zero-fill Right shift (>>>)

The shift operators take two operands: the first is a quantity to be shifted, and the second specifies the
number of bit positions by which the first operand is to be shifted. The direction of the shift operation is

23

controlled by the operator used.
Shift operators convert their operands to 32-bit integers, and return a result of the same type as the left
operator.

Left Shift (<<)

This operator shifts the first operand the specified number of bits to the left. Excess bits shifted off to the
left are discarded.
Zero bits are shifted in from the right.

Example TBD.

Sign-propagating Right Shift (>>)

This operator shifts the first operand the specified number of bits to the right. Excess bits shifted off to the
right are discarded.
Copies of the leftmost bit are shifted in from the left.

Example TBD.

Zero-fill right shift (>>>)

This operator shifts the first operand the specified number of bits to the left. Excess bits shifted off to the
right are discarded.
Zero bits are shifted in from the left.

Example TBD.

Logical Operators

Logical operators take logical (Boolean) values as operands. They return a logical value. Logical values
are true and false.

And (&&)

Usage: expr1 && expr2

The logical "and" operator returns true if both logical expressions expr1 and expr2 are true. Otherwise, it
returns false.

Or (||)

Usage: expr1 || expr2

The logical "or" operator returns true if either logical expression expr1 or expr2 is true. If both expr1 and
expr2 are false, then it returns false.

Not (!)

 24

Usage: !expr

The logical "not" operator is a unary operator that negates its operand expression expr. That is, if expr is
true, it returns false, and if expr is false, then it returns true.

Short-Circuit Evaluation

As logical expressions are evaluated left to right, they are tested for possible "short circuit" evaluation
using the following rule:

• false && anything is short-circuit evaluated to false.
• true || anything is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations will always be correct. Note that the anything part of
the above expressions is not evaluated, so any side effects of doing so do not take effect.

Comparison Operators (= =, >, >=, <, <=, !=)

A comparison operator compares its operands and returns a logical value based on whether the compari-
son is true or not. The operands may be numerical or string values. When used on string values, the
comparisons are based on the standard lexicographical ordering.

The operators are:

• Equal (= =): returns true if the operands are equal.
• Not equal (!=): returns true if the operands are not equal.
• Greater than (>): returns true if left operand is greater than right operand. Example: x > y returns

true if x is greater than y.
• Greater than or equal to (>=): returns true if left operand is greater than or equal to right operand.

Example: x >= y returns true if x is greater than or equal to y.
• Less than (<): returns true if left operand is less than right operand. Example: x < y returns true if x

is less than y.
• Less than or equal to (<=): returns true if left operand is less than or equal to right operand.

Example: x <= y returns true if x is less than or equal to y.

String Operators

In addition to the comparison operators, which may be used on string values, the concatenation operator
(+) concatenates two string values together, returning another string that is the union of the two operand
strings. For example,

"my " + "string"

returns the string

"my string"

The shorthand assignment operator += can also be used to concatenate strings. For example, if the vari-
able mystring is a string that has the value "alpha", then the expression

mystring += "bet"

25

evaluates to "alphabet" and assigns this value to mystring.

Operator Precedence

The precedence of operators determines the order they are applied when evaluating an expression. You
can override operator precedence by using parentheses.

The precedence of operators, from lowest to highest is as follows:

comma ,
assignment = += -= *= /= %= <<= >>= >>>= &= ^= |=
conditional ?:
logical-or ||
logical-and &&
bitwise-or |
bitwise-xor ^
bitwise-and &
equality == !=
relational < <= > >=
shift << >> >>>
addition/subtraction + -
multiply/divide * / %
negation/increment ! ~ - ++ --
call, member () [] .

 26

The JavaScript Object Model
JavaScript is based on a simple object-oriented paradigm. An object is a construct with properties that are
JavaScript variables. Properties can be other objects. Functions associated with an object are known as the
object's methods.

In addition to objects that are built into the Navigator client and the LiveWire server, you can define your
own objects.

• Objects and Properties
• Functions and Methods
• Creating New Objects

Objects and Properties

A JavaScript object has properties associated with it. You access the properties of an object with a simple
notation:

objectName.propertyName

Both the object name and property name are case sensitive.
You define a property by assigning it a value. For example, suppose there is an object named myCar (we'll discuss
how to create objects later-for now, just assume the object already exists). You can give it properties named
make, model, and year as follows:

myCar.make = "Ford"

myCar.model = "Mustang"

myCar.year = 69;

An array is an ordered set of values associated with a single variable name. Properties and arrays in
JavaScript are intimately related; in fact, they are different interfaces to the same data structure. So, for
example, you could access the properties of the myCar object described above as follows:

myCar["make"] = "Ford"

myCar["model"] = "Mustang"

myCar["year"] = 67;

Equivalently, each of these elements can be accessed by its index, as follows:

myCar[0] = "Ford"

myCar[1] = "Mustang"

myCar[2] = 67;

This type of an array is known as an associative array, because each index element is also associated with a string
value. To illustrate how this works, the following function displays the properties of the object, when you pass the
object and the object's name as arguments to the function:

27

function show_props(obj, obj_name) {

 var result = ""
 for (var i in obj)

 result += obj_name + "." + i + " = " + obj[i] + "\n"
 return result;
}

So, the function call show_props(myCar, "car") would return the following:

myCar.make = Ford

myCar.model = Mustang

myCar.year = 67

Functions and Methods

Functions are one of the fundamental building blocks in JavaScript. A function is a JavaScript procedure--a set of
statments that performs a specific task--that you can then call anywhere in the current application. In a Navigator
application, you can use any functions defined in the current page. You use the function statement to define a
function. In Navigator, it is generally a good idea to define all your functions in the HEAD of a page. When a user
loads the page, the functions will then be loaded first.

A function definition consists of the function keyword, followed by

• the name of the function
• a list of parameters to the function, enclosed in parentheses, and separated by commas
• the JavaScript statements that define the function, enclosed in curly braces, {...}

The statements in a function can include other function calls defined for the current application. A function can be
recursive, that is, it can call itself.

For example, here is the definition of a simple function named pretty_print:

function pretty_print(string) {

 document.write("<HR><P>" + string)

}

This function takes a string as its argument, adds some HTML tags to it using the concatenation operator (+),
then displays the result to the current document.

Defining a function does not execute it. You have to call the function for it to do its work. For example,
you could call the pretty_print function as follows:

<SCRIPT>

pretty_print("This is some text to display")

</SCRIPT>

 28

The parameters of a function are not limited to just strings and numbers. You can pass whole objects to a func-
tion, too.

Methods

A method is a function associated with an object. You define a method in the same way as you define a
standard function. Then, use the following syntax to associate the function with an existing object:

object.methodname = function_name

where object is an existing object, methodname is the name you are assigning to the method, and
function_name is the name of the function.

You can then call the method in the context of the object as follows:

object.methodname(params);

Using this for Object References

JavaScript has a special keyword, this, that you can use to refer to the current object. For example, sup-
pose you have a function called validate that validates an object's value property, given the object, and the
high and low values:

function validate(obj, lowval, hival) {

 if ((obj.value < lowval) || (obj.value > hival))

 alert("Invalid Value!")

}

Then, you could call validate in each form element's onChange event handler, using this to pass it the
form element, as in the following example:

<INPUT TYPE = "text" NAME = "age" SIZE = 3 onChange="validate(this, 18, 99)">

In general, in a method this refers to the calling object.

Creating New Objects

Both client and server JavaScript have a number of predefined objects. In addition, you can create your
own objects. Creating your own object requires two steps:

• Define the object type by writing a function.
• Create an instance of the object with new.

To define an object type, create a function for the object type that specifies its name, and its properties and

29

methods. For example, suppose you want to create an object type for cars. You want this type of object to be
called car, and you want it to have properties for make, model, year, and color. To do this, you would write the
following function:

function car(make, model, year) {

 this.make = make;

 this.model = model;

 this.year = year;
}

Notice the use of this to assign values to the object's properties based on the values passed to the function.

Now you can create an object called mycar as follows:

mycar = new car("Eagle", "Talon TSi", 1993);

This statement creates mycar and assigns it the specified values for its properties. Then the value of mycar.make

is the string "Eagle", car1.year is the integer 1993, and so on.

You can create any number of car objects by calls to new. For example,

kenscar = new car("Nissan", "300ZX", 1992)

An object can have a property that is itself another object. For example, suppose I define an object called
person as follows:

function person(name, age, sex) {

 this.name = name;

 this.age = age;

 this.sex = sex;
}

And then instantiate two new person objects as follows:

rand = new person("Rand McNally", 33, "M")

ken = new person("Ken Jones", 39, "M")

Then we can rewrite the definition of car to include an owner property that takes a person object, as
follows:

function car(make, model, year, owner) {

 this.make = make;

 this.model = model;

 30

 this.year = year;

 this.owner = owner;
}

To instantiate the new objects, you then use the following:

car1 = new car("Eagle", "Talon TSi", 1993, rand);

car2 = new car("Nissan", "300ZX", 1992, ken)

Notice that instead of passing a literal string or integer valuewhen creating the new objects, the above statements
pass the objects rand and ken as the parameters of the owners. Then if you want to find out the name of the
owner of car2, you can access the following property:

car2.owner.name

Note that you can always add a property to a previously defined object. For example, the statement:

car1.color = "black"

adds a property color to car1, and assigns it a value of "black". However, this does not affect any other
objects. To add the new property to all objects of the same type, you have to add the property to the
definition of the car object type.

Defining Methods

You can define methods for an object type by including a method defnition in the object type definition.
For example, suppose you have a set of image GIF files, and you want to define a method that displays
the information for the cars, along with the corresponding image. You could define a function such as:

function displayCar() {
 var result = "A Beautiful " + this.year
 + " " + this.make + " " + this.model;
 pretty_print(result)
}

where pretty_print is the previously defined function to display a string. Notice the use of this to refer to
the object to which the method belongs.
You can make this function a method of car by adding the statement

this.displayCar = displayCar;

to the object definition. So, the full definition of car would now look like:

function car(make, model, year, owner) {
this.make = make;

 this.model = model;
 this.year = year;
 this.owner = owner;
 this.displayCar = displayCar;
}

31

Then you can call this new method as follows:

car1.displayCar()

car2.displayCar()

This will produce output like this:

A Beautiful 1993 Eagle Talon TSi

A Beautiful 1992 Nissan 300ZX

 32

Using Built-in Objects and Functions
The JavaScript Language contains the following built-in objects and functions:

• String object
• Math object
• Date object
• Built-in functions

These objects and their properties and methods are built into the language. You can use these objects in
both client applications with Netscape Navigator and server applications with LiveWire.

Using the String Object

Whenever you assign a string value to a variable or property, you create a string object. String literals are
also string objects. For example, the statement

mystring = "Hello, World!"

creates a string object called mystring. The literal "blah" is also a string object.

The string object has methods that return:

• a variation on the string itself, such as substring and toUpperCase.
• an HTML formatted version of the string, such as bold and link.

For example, given the above object, mystring.toUpperCase() returns "HELLO, WORLD!", and so
does "hello, world!".toUpperCase().

Using the Math Object

The built-in Math object has properties and methods for mathematical constants and functions. For ex-
ample, the Math object's PI property has the value of pi, which you would use in an application as

Math.PI

Similarly, standard mathematical functions are methods of Math. These include trigonometric, logarith-
mic, exponential, and
other functions. For example, if you want to use the trigonometric function sine, you would write

Math.sin(1.56)

Note that all trigonometric methods of math take arguments in radians.

It is often convenient to use the with statement when a section of code uses several math constants and
methods, so you don't have to type "Math" repeatedly. For example,

with (Math) {

33

 a = PI * r*r;

 y = r*sin(theta)

 x = r*cos(theta)

}

Using the Date Object

JavaScript does not have a date data type. However, the date object and its methods enable you to work
with dates and times in your applications. The date object has a large number of methods for setting,
getting, and manipulating dates. It does not have any properties.

JavaScript handles dates very similarly to Java. The two languages have many of the same date methods,
and both languages store dates as the number of milliseconds since January 1, 1970 00:00:00.

NOTE: You cannot currently work with dates prior to 1/1/70.

To create a date object:

varName = new Date(parameters)

where varName is a JavaScript variable name for the date object being created; it can be a new object or a
property of an existing object.

The parameters for the Date constructor can be any of the following:

• Nothing: creates today's date and time. For example, today = new Date()

• A string representing a date in the following form: "Month day, year hours:minutes:seconds".
For example, Xmas95= new Date("December 25, 1995 13:30:00") If you omit hours,
minutes, or seconds, the value will be set to zero.

• A set of integer values for year, month, and day. For example, Xmas95 = new Date(95,11,25)

• A set of values for year, month, day, hour, minute, and seconds For example, Xmas95 = new

Date(95,11,25,9,30,0)

The Date object has a large number of methods for handling dates and times. The methods fall into these
broad categories:

• "set" methods, for setting date and time values in date objects
• "get" methods, for getting date and time values from date objects
• "to" methods, for returning string values from date objects.
• parse and UTC methods, for parsing date strings.

The "get" and "set" methods enable you to get and set seconds, minutes, hours, day of the month, day of
the week, months, and years separately. There is a getDay method that returns the day of the week, but no
corresponding setDay method, because the day of the week is set automatically. These methods use
integers to represent these values as follows:

• seconds and minutes: 0 to 59

 34

• hours: 0 to 23
• day: 0 to 6 (day of the week)
• date: 1 to 31 (day of the month)
• months: 0 (January) to 11 (December)
• year: years since 1900

For example, suppose you define the following date:

Xmas95 = new Date("December 25, 1995")

Then Xmas95.getMonth() returns 11, and Xmas95.getYear() returns 95.

The getTime and setTime methods are useful for comparing dates. The getTime method returns the
number of milliseconds since the epoch for a date object.

For example, the following code displays the number of shopping days left until Christmas:

today = new Date()

nextXmas = new Date("December 25, 1990")

nextXmas.setYear(today.getYear())

msPerDay = 24 * 60 * 60 * 1000 ; // Number of milliseconds per day

daysLeft = (nextXmas.getTime() - today.getTime()) / msPerDay;

daysLeft = Math.round(daysLeft);

document.write("Number of Shopping Days until Christmas: " + daysLeft);

This example creates a date object named today that contains today's date. It then creates a date object
named nextXmas, and sets the year to the current year. Then, using the number of milliseconds per day, it
computes the number of days between today and nextXmas, using getTime, and rounding to a whole
number of days.

The parse method is useful for assigning values from date strings to existing date objects. For example,
the following code uses parse and setTime to assign a date to the IPOdate object.

IPOdate = new Date()

IPOdate.setTime(Date.parse("Aug 9, 1995"))

Using Built-in Functions

JavaScript has several “top-level” functions built-in to the language.
They are :

• eval
• parseInt
• parseFloat

35

The eval Function

The built-in function eval takes a string or numeric expression as its arguement. If the arguement is a string, it
attempts to convert it to a numeric expression, evaluates the expression, and returns the value. If the arguement is
an expression, it evaluates the expression.

This function is useful for evaluating a string representing a numerical expression to a number. For example, input
from a form element is always in a string, but you often want to convert it to a numerical value.

The following example takes input in a text field, applies the eval function and displays the result in another text
field. If you type a numerical expression in the first field, and click on the button, the expression will be evaluted.
For example, enter "(666 * 777) / 3", and click on the button to see the result.

<SCRIPT>

function compute(obj) {

 obj.result.value = eval(obj.expr.value)

}

</SCRIPT>

<FORM NAME="evalform">

Enter an expression: <INPUT TYPE=text NAME="expr" SIZE=20 >

Result: <INPUT TYPE=text NAME="result" SIZE=20 >

<INPUT TYPE="button" VALUE="Click Me" onClick="compute(this.form)">

</FORM>

The parseInt and parseFloat Functions

TBD

 36

Overview of JavaScript Statements
JavaScript supports a compact set of statements that nevertheless enables you to incorporate a great deal
of interactivity in web pages.

• Variable Declaration / Assignment
• Function Definition
• Conditionals
• Loops

• for loop
• while loop
• for...in loop
• break and continue statements

• with statement
• Comments

Further overview information TBD. Refer to statements reference for specific information.

37

Navigator Objects
• Using Navigator Objects
• Navigator Object Hierarchy
• JavaScript and HTML Layout
• Key Navigator Objects

Using Navigator Objects

When you load a page in Navigator, it creates a number of objects corresponding to the page, its contents,
and other pertinent information.

Every page always has the following objects:

• window: the top-level object; contains properties that apply to the entire window. There is also a
window object for each "child window" in a frames document.

• location: contains properties on the current URL
• history: contains properties representing URLs the user has previously visited
• document: contains properties for content in the current document, such as title, background color,

and forms

The properties of the document object are largely content-dependent. That is, they are created based on
the content that you put in the document. For example, the document object has a property for each form
and each anchor in the document.

For example, suppose you create a page named simple.html that contains the following HTML:

<TITLE>A Simple Document</TITLE>
<BODY><FORM NAME="myform" ACTION="FormProc()" METHOD="get" >Enter a value: <INPUT
TYPE=text NAME="text1" VALUE="blahblah" SIZE=20 >
Check if you want:
<INPUT TYPE="checkbox" NAME="Check1" CHECKED onClick="update(this.form)"> Option
#1
<P>
<INPUT TYPE="button" NAME="Button1" VALUE="Press Me" onClick="update(this.form)">
</FORM></BODY>

As always, there would be window, location, history, and document objects. These would have properties
such as:

• location.href = "http://www.terrapin.com/samples/vsimple.html"
• document.title = "A Simple Document"
• document.fgColor = #000000
• document.bgColor = #ffffff
• history.length = 7

 38

These are just some example values. In practice, these values would be based on the document's actual
location, its title, foreground and background colors, and so on.
Navigator would also create the following objects based on the contents of the page:

• document.myform
• document.myform.Check1
• document.myform.Button1

These would have properties such as:

• document.myform.action = http://terrapin/mocha/formproc()
• document.myform.method = get
• document.myform.length = 5
• document.myform.Button1.value = Press Me
• document.myform.Button1.name = Button1
• document.myform.text1.value = blahblah
• document.myform.text1.name = text1
• document.myform.Check1.defaultChecked = true
• document.myform.Check1.value = on
• document.myform.Check1.name = Check1

Notice that each of the property references above starts with "document," followed by the name of the
form, "myform," and then the property name (for form properties) or the name of the form element. This
sequence follows the Navigator's object hierarchy, discussed in the next section.

Navigator Object Hierarchy

The objects in Navigator exist in a hierarchy that reflects the hierarchical structure of the HTML page
itself. Although you cannot derive object classes from these objects, as you can in languages such as Java,
it is useful to understand the Navigator's JavaScript object hierarchy. In the strict object-oriented sense,
this type of hierarchy is known as an instance hierarchy, since it concerns specific instances of objects
rather than object classes.

In this hierarchy, an object's "descendants" are properties of the object. For example, a form named
"form1" is an object, but is also a property of document, and is referred to as "document.form1". The
Navigator object hierarchy is illustrated below:

navigator
window
 |
 +--parent, frames, self, top
 |
 +--location
 |
 +--history
 |
 +--document
 |
 +--forms
 | |
 | elements (text fields, textarea, checkbox, password
 | radio, select, button, submit, reset)

39

 +--links
 |
 +--anchors

To refer to specific properties of these objects, you must specify the object name and all its ancestors.
Exception: You are not required to include the window object.

JavaScript and HTML Layout

To use JavaScript properly in the Navigator, it is important to have a basic understanding of how the
Navigator performs layout. Layout refers to transforming the plain text directives of HTML into graphical
display on your computer. Generally speaking, layout happens sequentially in the Navigator. That is, the
Navigator starts from the top of the HTML file and works its way down, figuring out how to display
output to the screen as it goes. So, it starts with the HEAD of an HTML document, then starts at the top of
the BODY and works its way down.

Because of this "top-down" behavior, JavaScript only reflects HTML that it has encountered. For ex-
ample, suppose you define a form with a couple of text input elments:

<FORM NAME="statform">
<input type = "text" name = "username" size = 20>
<input type = "text" name = "userage" size = 3>

Then these form elements are reflected as JavaScript objects document.statform.username and
document.statform.userage, that you can use anywhere after the form is defined. However, you could not
use these objects before the form is defined. So, for example, you could display the value of these objects
in a script after the form definition:

<SCRIPT>
document.write(document.statform.username.value)
document.write(document.statform.userage.value)
</SCRIPT>

However, if you tried to do this before the form definition (i.e. above it in the HTML page), you would
get an error, since the objects don't exist yet in the Navigator.

Likewise, once layout has occurred, setting a property value does not affect its value or its appearance.
For example, suppose you have a document title defined as follows:

<TITLE>My JavaScript Page</TITLE>

This is reflected in JavaScript as the value of document.title. Once the Navigator has displayed this in
layout (in this case, in the title bar of the Navigator window), you cannot change the value in JavaScript.
So, if later in the page, you have the following script:

document.title = "The New Improved JavaScript Page"

it will not change the value of document.title nor affect the appearance of the page, nor will it generate an
error.

 40

Key Navigator Objects

Some of the most useful Navigator objects include document, form, and window.

Using the document Object

One of the most useful Navigator objects is the document object, because its write and writeln methods can
generate HTML. These methods are the way that you display JavaScript expressions to the user. The only
difference between write and writeln is that writeln adds a carriage return at the end of the line. However, since
HTML ignores carriage returns, this will only affect preformatted text, such as that inside a PRE tag.

The document object also has onLoad and onUnload event-handlers to perform functions when a user first
loads a page and when a user exits a page.

There is only one document object for a page, and it is the ancestor for all the form, link, and anchor
objects in the page.

Using the form Object

Navigator creates a form object for each form in a document. You can name a form with the NAME
attribute, as in this example:

<FORM NAME="myform">
<INPUT TYPE="text" NAME="quantity" onChange="...">
...
</FORM>

There would be a JavaScript object named myform based on this form. The form would have a property
corresponding to the text object, that you would refer to as

document.myform.quantity

You would refer to the value property of this object as

document.myform.quantity.value

The forms in a document are stored in an array called forms. The first (topmost in the page) form is
forms[0], the second forms[1], and so on. So the above references could also be:

document.forms[0].quantity
document.forms[0].quantity.value

Likewise, the elements in a form, such as text fields, radio buttons, and so on, are stored in an elements
array.

Using the window Object

The window object is the "parent" object for all other objects in Navigator. You can always omit the
object name in references to window properties and methods.

41

Window has several very useful methods that create new windows and pop-up dialog boxes:

• open and close: Opens and closes a browser window
• alert: Pops up an alert dialog box
• confirm: Pops up a confirmation dialog box

The window object has properties for all the frames in a frameset. The frames are stored in the frames
array. The frames array contains an entry for each child frame in a window. For example, if a window
contains three child frames, these frames are reflected as window.frames[0], window.frames[1], and
window.frames[2].

The status property enables you to set the message in the status bar at the bottom of the client window.

 42

Objects
The following objects are available in JavaScript:

• anchor • Math
• button • navigator
• checkbox • password
• Date • radio
• document •reset
• form • select
• frame • string
• hidden • submit
• history • text
• link • textarea
• location • window

NOTE: Each object topic indicates whether the object is part of the client (in Navigator), server (in
LiveWire), or is common (built-in to JavaScript). Server objects are not included in this version of the
documentation.

anchor object (client)

An anchor is a piece of text identified as the target of a hypertext link.

Syntax

To define an anchor, use standard HTML syntax:

 [HREF=locationOrURL]
 anchorText

NAME=”anchorname” specifies a tag that becomes an available hypertext target within the current document.
HREF=locationorURL identifies a destination anchor or URL.
anchorText specifies the text to display at the anchor.

To use an anchor's properties and methods:

xxx to be supplied

Description

You can reference the anchor objects in your code by using the anchors property of the document object.
The anchors property is an array that contains an entry for each anchor in a document.

Properties
none

43

Methods

none

Event handlers

None.

Examples

<H2>Welcome to JavaScript</H2>

See also

• link object
• anchors property

button object (client)

A button object is a pushbutton on an HTML form.

Syntax

To define a button:

<INPUT
 TYPE="button"
 NAME="buttonName"
 VALUE="buttonText"
 [onClick="handlerText"]>

NAME=”buttonName” specifies the name of the button object as a property of the enclosing form object and
can be accessed using the name property.
VALUE=”buttonText” specifies the label to display on the button face and can be accessed using the value
property.

To use a button's properties and methods:

1. buttonName.propertyName
2. buttonName.methodName(parameters)
3. formname .elements.[index]. propertyName
4. formname. elements.[index]. methodname (parameters)

buttonName is the value of the NAME attribute of a button object.
formName is either the value of the NAME attribute of a form object or an element in the forms array.
index is an integer representing a button object on a form.
propertyName is one of the properties listed below. methodName is one of the methods listed below.
methodName is one of the methods listed below.

 44

Description
A button object is a form element and must be defined with a <FORM>...</FORM> tag.
The button object is a custom button that you can use to perform an action you define.

Properties

• name
• value

Methods

• click

Event handlers

• onClick

Examples

A custom button does not necessarily load a new page into the client; it merely executes the script speci-
fied by the onClick event handler. In the following example, myfunction() is a JavaScript function.

 <INPUT TYPE="button" VALUE="Calculate" NAME="calc_button"
 onClick="myfunction(this.form)">

See also

• form, reset, and submit objects

checkbox object (client)

A checkbox object is a checkbox on an HTML form. A checkbox is a toggle switch that lets the user set a
value on or off.

Syntax

To define a checkbox, use standard HTML syntax with the addition of the onClick event handler:

<INPUT
 TYPE="checkbox"
 NAME="checkboxName"
 [CHECKED]
 [onClick="handlerText"]>
 textToDisplay

To use a checkbox object's properties and methods:

1. checkboxName.propertyName
2. checkboxName.methodName(parameters)

45

checkboxName is the value of the NAME attribute of a checkbox object.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

A checkbox object is a form element and must be defined within a <FORM>...</FORM> tag.

Use the checked property to specify whether the checkbox is currently checked. Use the defaultChecked prop-
erty to specify whether the checkbox is checked when the form is loaded.

Properties

• checked reflects the CHECKED argument
• defaultChecked
• name reflect the NAME argument
• value reflects the VALUE argument

Methods

• click

Event handlers

• onClick

Examples

Specify your music preferences (check all that apply):

<INPUT TYPE="checkbox" NAME="musicpref_rnb" CHECKED> R&B

<INPUT TYPE="checkbox" NAME="musicpref_jazz" CHECKED> Jazz

<INPUT TYPE="checkbox" NAME="musicpref_blues" CHECKED> Blues

<INPUT TYPE="checkbox" NAME="musicpref_newage" CHECKED> New Age

See also

• form and radio object s

Date object (common)

The Date object lets you work with dates and times.

Syntax

To create a Date object:

1. dateObjectName = new Date()

 46

2. dateObjectName = new Date("month day, year hours:minutes:seconds")
3. dateObjectName = new Date(year, month, day)
4. dateObjectName = new Date(year, month, day, hours, minutes, seconds)

dateObjectName is either the name of a new object or a property of an existing object.
month, day, year, hours, minutes, and seconds are string values for form 2 of the syntax. For forms 3 and
4, they are integer values.

To use Date methods:

dateObjectName.methodName(parameters)

dateObjectName is the value of the NAME attribute of a Date object.

Exceptions: The Date object's parse and UTC methods are static methods that you use as follows:

Date.UTC(parameters)
Date.parse(parameters)

Description

Form 1 of the syntax creates today's date and time. If you omit hours, minutes, or seconds from form 2 or
4 of the syntax, the value will be set to zero.

JavaScript handles dates very similar to the way Java handles dates: both languages have many of the
same date methods, and both store dates internally as the number of milliseconds since January 1, 1970
00:00:00.

JavaScript does not have a date data type, but you can use the Date object and its methods to work with
dates and times in your applications. The Date object has many methods for setting, getting, and manipu-
lating dates.

Properties

None.

Methods

• getDate • setDate
• getDay • setHours
• getHours • setMinutes
• getMinutes • setMonth
• getMonth • setSeconds
• getSeconds • setTime
• getTime • setYear
• getTimeZoneoffset • toGMTString
• getYear • toLocaleString
• parse • UTC

47

Event handlers

None. Built-in objects do not have event handlers.

Examples

today = new Date()
birthday = new Date("December 17, 1995 03:24:00")
birthday = new Date(95,12,17)
birthday = new Date(95,12,17,3,24,0)

document object (client)

The document object contains information on the current document.

Syntax

To define a document object, use standard HTML syntax with the addition of the onLoad and onUnLoad
event handlers:

<BODY
 BACKGROUND="backgroundImage"
 BGCOLOR="#backgroundColor"
 FGCOLOR="#foregroundColor"
 LINK="#unfollowedLinkColor"
 ALINK="#activatedLinkColor"
 VLINK="#followedLinkColor"
 [onLoad="handlerText"]
 [onUnLoad="handlerText"]>
</BODY>

BGCOLOR, FGCOLOR, LINK, ALINK, and VLINK are color specifications expressed as a hexadecimal
RGB triplet (in
the format "#rrggbb") or as one of the string literals listed in the Color Appendix.

To use the current document's properties and methods:

1. document. propertyName
2. document. methodName(parameters)

propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

The <BODY>...</BODY> tag encloses an entire document, which is defined by the current URL. The

 48

entire body of the document (all other HTML elements for the document) goes within the <BODY>...</BODY>
tag.

You can reference the anchors, forms, and links of a document by using the anchors, forms, and links
properties. These properties are arrays that contain an entry for each anchor, form, or link in a document.

Properties

• alinkColor reflects the ALINK argument.
• anchors
• bgColor reflects the BGCOLOR argument
• cookie
• fgColor reflects the FGCOLOR argument.
• forms is a reflection of all the forms in the document.
• lastModified
• linkColor reflects the LINK argument.
• links is a reflection of all the links in the document.
• location
• referrer
• title reflects the content of <TITLE>...</TITLE>
• vlinkColor reflects the VLINK argument.

Methods

• clear
• close
• open
• write
• writeln

Event handlers

None. The onLoad and onUnload event handlers are specified in the <BODY> tag but are actually event han-
dlers for the window object.

Examples

xxx to be supplied

See also

• frame and window objects

form object (client)

A form lets users input text and make choices from form objects such as checkboxes, radio buttons, and selec-
tion lists. You can also use a form to post data to or retrieve data from a server.

49

Syntax

To define a form, use standard HTML syntax with the addition of the onSubmit event handler:

<FORM
 NAME=” formName”
 TARGET=" windowName"
 ACTION=" serverURL "
 METHOD=GET | POST

ENCTYPE=”encodingType ”
 [onSubmit="handlerText"]>
</FORM>

NAME=”formName” specifies the name of the form object.

TARGET specifies the window that form responses go to. When you submit a form with a TARGET attribute,
server responses are displayed in the specified window instead of the window that contains the form.
windowName may be an existing window created by previous targetted form submits or link clicks; it may also
refer to named frames in a <FRAMESET> tag; it may also be _top, _parent, _self, or _blank.

ACTION secifies the URL of the server to which form field input information is sent. “GET” is the default value.

METHOD GET | POST specifies how information is sent to the server specified by ACTION. GET (the default)
appends the input information to the URL which on most receiving systems becomes the value of the environment
variable QUERY_STRING. POST sends the input information in a data body which is available on stdin with the
data length set in the environment variable CONTENT_LENGTH.

To use a form's properties and methods:

1. formName.propertyName
2. formName.methodName (parameters)
3. forms[index]. propertyName
4. forms[index]. methodName(parameters)

formName is the value of the NAME attribute of a form object.
index is an integer representing a form object.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

Each form in a document is a distinct object.

You can reference the form objects in your code by using the forms property of the document object. The
forms property is an array that contains an entry for each form in a document.

You can reference a form's elements in your code by using the form name or the forms property of the document
object. The forms property is an array that contains an entry for each form in a document.

 50

Properties

• action reflects the ACTION argument.
• elements
• encoding reflects the ENCTYPE argument.
• method reflects the METHOD argument.
• target reflects the TARGET argument.

Methods

• submit

Event handlers

• onSubmit

Examples

xxx to be supplied

See also

• elements and forms properties

frame object (client)

A frame is a sub-HTML document; a series of frames makes up the page.

Syntax

To define a frame object, use standard HTML syntax. The onLoad and onUnload event handlers are specified in
the <FRAMESET> tag but are actually event handlers for the window object :

<FRAMESET
 ROWS=" rowHeightValueList "
 COLS=" columnWidthList ">
 textToDisplay

[onLoad=” handlerText”]
[onUnload=” handlerText ”]

 [<FRAME SRC="locationOrURL" NAME="frameName">]
</FRAMESET>

ROWS =”rowHeightValueList” is a comma-separated list of values specifying the row-height of the frame. An
optional suffix defines the units. Default units are pixels.
COLS=”columnWidthList” is a comma-separated list of values specifying the column-width of the frame. An
optional suffix defines the units. Default units are pixels.
textToDisplay specifies the text to display in the frame.
FRAME defines a frame.
SRC=”locationOrURL” specifies the URL of the document to be displayed in the frame.

51

NAME=”frameName” specifies a name to be used as a target of hypertext links.

To use a frame's properties and methods:
1. frameName.propertyName
2. frameName.methodName. (properties)
3. frames [index]. propertyName
4. frames [index]. methodName(properties)

frameName is the value of the NAME attribute in the <FRAME> tag of a frame object.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.
index is an integer representing a frame object.

Description

The <FRAMESET> tag is used in an HTML document whose sole purpose is to define the layout of the sub-
HTML documents, or frames, that make up the page. Each frame is a window object.

You can reference the frame objects in your code by using the frames property of the window object. The frames
property is an array that contains an entry for each frame in a window containing a <FRAMESET> tag.

If a <FRAME> tag contains SRC and NAME attributes, you can refer to that frame from a sibling frame by using
parent .frameName or parent.frames[index] . For example, if the fourth frame in a set has
NAME="homeFrame", sibling frames can refer to that frame using parent.homeFrame or
parent.frames[3].

Properties

A frame object is a type of window and has the same properties as a window object. Some properties, however,
have no effect on a frame because frames do not have all the features of windows; for example, setting status and
defaultStatus has no effect because a frame has no status bar.

• defaultStatus
• frames
• parent
• self
• status
• top
• window

Methods

A frame object is a type of window and has the same methods as a window object.
• alert
• close
• confirm
• open
• prompt
• setTimeout
• clearTimeout

 52

Event handlers

None. The onLoad and onUnload event handlers are specified in the <FRAMESET> tag but are actually event
handlers for the window object.

Examples

xxx to be supplied

See also

• document and window objects
• frames property

hidden object (client)

A text object that is suppressed from form display on an HTML form.

Syntax

To define a hidden object:

<INPUT
 TYPE="hidden"
 NAME=" hiddenName "
 [VALUE=" textValue "]

NAME="hiddenName" specifies the name of the hidden object as a property of the enclosing form object and
can be accessed using the name property.
VALUE="textValue" specifies the value of the hidden object and can be accessed using the value property.

To use a hidden object's properties:

1. hiddenName.propertyName
2. formName.elements [index]. propertyName

hiddenName is the value of the NAME attribute of a password object.
formName is either the value of the NAME attribute of a form object or an element in the <I>forms</I> array.
index is an integer representing a hidden object on a form.
propertyName is one of the properties listed below.

Description
A hidden object is a form element and must be defined within a <FORM>...</FORM> tag.
You can use hidden objects instead of cookies for client/server communication.

Properties
• defaultValue

53

• name reflects the NAME argument
• value reflects the VALUE argument

Methods

None.

Event handlers

None.

Examples

xxx to be supplied

See also
• cookie property

history object (client)

The history object contains information on the URLs that the client has visited. This information is stored in a
history list, and is accessible through the Navigator's Go menu.

Syntax

To use a history object:

1. history. propertyName
2. history. methodName(parameters)

propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

The history object is a linked list of URLs the user has visited, as shown in the Navigator's Go menu.

Properties

• length

Methods

• back
• forward
• go

 54

Event handlers

None.

Examples

The following example goes to the URL the user visited three clicks ago.

history.go(-3)

See also

• location object

link object (client)

A link is a piece of text identified as a hypertext link. When the user clicks the link text, the link hypertext
reference is loaded into its target window.

Syntax

To define a link, use standard HTML syntax with the addition of the onClick and onMouseOver event
handlers:

<A [NAME="anchorName"]
 HREF=locationOrURL
 TARGET="windowName"
 [onClick="handlerText"]
 [onMouseOver="handlerText"]>
 linkText

NAME=”anchorName” specifies a tag that becomes an available hypertext target within the current document.
HREF=locationOrURL identifies a destination anchor or URL.
TARGET=”windowName” specifies the window that the link is loaded into. WindowName can be an existing
window created by previous targeted form submits or link clicks; it can be a frame name specified in a
<FRAMESET> tag; or it can be one of the magic frame names _top, _parent, _self, or _blank.
linkText is rendered as a hypertext link to the URL.

To use a link's properties:

document.links[index]. propertyName

index is an integer representing a link object.
propertyName is one of the properties listed below.

55

Description

Each link object is a location object.

You can reference the link objects in your code by using the links property of the document object. The links
property is an array that contains an entry for each link in a document.

When you specify a URL, you can use JavaScript statements in addition to using standard URL formats. The
following list shows the syntax for specifying some of the most common types of URLs.

URL Type Protocol Example

JavaScript code javascript javascript:history.go(-1)

World Wide Web http:// http://www.netscape.com/

File file:// file:///javascript/methods.html

FTP ftp:// ftp://ftp.mine.com/home/mine

MailTo mailto:// mailto:info@netscape.com

Gopher gopher:// gopher.myhost.com

Properties

• target reflects the TARGET argument.

Methods

None.

Event handlers

• onClick
• onMouseOver

Examples

The following example creates a hypertext link to an anchor named javascript_intro.

Introduction to JavaScript

The following example creates a hypertext link to a URL.

Netscape Home Page

The following example takes the user back x entries in the history list:

Click here

 56

See also

• anchor object
• links property

location object (client)

The location object contains information on the current URL.

Syntax

To use a location object:

1. location. propertyName
2. location. methodName(parameters)

propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

The location object represents a complete URL. Each property of the location object represents a different
portion of the URL.

The following diagram of a URL shows the relationships between the location properties:

protocol // hostname : port pathname search hash

protocol represents the beginning of the URL, up to and including the first colon.
hostname represents the domain name or IP address of a network host.
port represents the port number to connect to.
pathname represents the url-path portion of the URL.
search represents any query information in the URL, beginning with a question mark.
hash represents an anchor name fragment in the URL, beginning with a hash mark (#).

The location object has two other properties not shown in the diagram above:

href represents a complete URL.
host represents the concatenation hostname:port.

The location object is contained by the window object and is within its scope. If you reference a location object
without specifying a window, the location object represents the current location. If you reference a location object
and specify a window name, for example, windowName.location. propertyName , the location object repre-
sents the location of the specified window.

Do not confuse the location object with the location property of the document object. You cannot change the
value of the location object, but you can change the value of the location property. Also, the location object has

57

properties, and the location property does not. document.location is a string-valued property that usually
matches what window.location is set to when you load the document, but redirection may change it.

Properties

• hash
• host
• hostname
• href
• pathname
• port
• protocol
• search

Methods

• assign
• toString

Event handlers

None.

Examples

xxx to be supplied

See also

• history object
• location property

Math object (common)

The built-in Math object has properties and methods for mathematical constants and functions. For example, the
Math object's PI property has the value of pi.

Syntax

To use a Math object:
1. Math. propertyName
2. Math. methodName(parameters)

propertyName is one of the properties listed below.
methodName is one of the methods listed below.

 58

Description

You reference the constant PI as Math.PI . Constants are defined with the full precision of real numbers in
JavaScript.

Similarly, you reference Math functions as methods. For example, the sine function is
Math.sin(argument)

, where argument is the argument.

It is often convenient to use the with statement when a section of code uses several Math constants and methods,
so you don't have to type "Math" repeatedly. For example,

with (Math) {
 a = PI * r*r
 y = r*sin(theta)
 x = r*cos(theta)
}

Properties

• E
• LN10
• LN2
• PI
• SQRT1_2
• SQRT2

Methods

• abs • max
• acos • min
• asin • pow
• atan • random
• ceil • round
• cos • sin
• exp • sqrt
• floor • tan

Event handlers

None. Built-in objects do not have event handlers.

Examples

xxx to be supplied

59

navigator object (client)

The navigator object contains information about the version of Navigator in use.

Syntax

To use a navigator object:

navigator.<I>propertyName</I>

propertyName is one of the properties listed below.

Description

Use the navigator object to determine which version of the Navigator your users have.

Properties

• appName
• appVersion
• appCodeName
• userAgent

Methods

None.

Event handlers

None.

Examples

<H2>Welcome to JavaScript</H2>

See also

• link object
• anchors property

password object (client)

A password object is a text field on an HTML form. When the user enters text into the field, asterisks (*)
hide anything entered from view.

 60

Syntax

To define a password object, use standard HTML syntax:

 <INPUT
 TYPE="password"
 NAME="passwordName"
 [VALUE="textValue"]
 SIZE=integer>

NAME="passwordName" specifies the name of the password object as a property of the enclosing form object
and can be accessed using the name property.
VALUE="textValue" specifies the value of the password object and can be accessed using the value property.
SIZE=integer specifies the number of characters in the password object.

To use a password object's properties and methods:

1. passwordName.propertyName
2. passwordName.methodName (parameters)
3. formName.elements[index]. propertyName
4. formName.elements[index]. methodName(parameters)

passwordName is the value of the NAME attribute of a password object.
formName is either the value of the NAME attribute of a form object or an element in the forms array.
index is an integer representing a password object on a form.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

A password object is a form element and must be defined within a <FORM>...</FORM> tag.

Properties

• defaultValue
• name reflects the NAME argument
• value reflects the VALUE argument

Methods

• focus
• blur
• select

Event handlers

None.

61

Examples

Password: <INPUT TYPE="password" NAME="password" VALUE="" SIZE=25>

See also

• form and text objects

radio object (client)

A radio object is a set of radio buttons on an HTML form. A set of radio buttons lets the user choose one item
from a list.

Syntax

To define a set of radio buttons, use standard HTML syntax with the addition of the onClick event han-
dler:

<INPUT
 TYPE="radio"
 NAME="radioName"
 VALUE="buttonValue"
 [CHECKED]
 [onClick="handlerText"]>
 textToDisplay

NAME="radioName" specifies the name of the radio object as a property of the enclosing form object and can
be accessed using the name property. All radio buttons in a group should have the same NAME attribute.
VALUE="buttonValue" specifies the value returned when the radio button is selected and can be accessed
using the value property. This defaults to "on".
CHECKED specifies that the radio button is selected and can be accessed using the checked property.
textToDisplay specifies the label to display beside the radio button and can be accessed using the value property

To use a radio button's properties and methods:

1. radioName [index1]. propertyName
2. radioName [index1]. methodName(parameters)
3. formName.elements[index2]. propertyName
4. formName.elements[index2]. methodName(parameters)

radioName is the value of the NAME attribute of a radio object.
index1 is an integer representing a radio button in a radio object.
formName is either the value of the NAME attribute of a form object or an element in the forms array.
index2 is an integer representing a radio button on a form. The elements array contains an entry for each radio
button in a radio object.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.

 62

Description

A radio object is a form element and must be defined within a <FORM>...</FORM> tag.

All radio buttons in a radio button group use the same name property. To access the individual radio buttons in
your code, follow the object name with an index starting from zero, one for each button the same way you would
for an array such as forms: document.forms[0].radioName[0] is the first,
document.forms[0].radioName[1] is the second, etc.

Properties

• checked reflects the CHECKED argument
• defaultChecked
• index
• length
• name reflects the NAME argument
• value reflects the VALUE argument

Methods

• click

Event handlers

• onClick
Examples

The following example defines a radio button group to choose among three music catalogs. Each radio button is
given the same name, NAME="musicChoice", forming a group of buttons for which only one choice can be
selected. The example also defines a text field that defaults to what was chosen via the radio buttons but that
allows the user to type a nonstandard catalog name as well. JavaScript automatically sets the catalog name input
field based on the radio buttons.

<INPUT TYPE="text" NAME="catalog" SIZE="20">
<INPUT TYPE="radio" NAME="musicChoice" VALUE="soul-and-r&b"
 onClick="musicForm.catalog.value = 'soul-and-r&b'"> Soul and R&B
<INPUT TYPE="radio" NAME="musicChoice" VALUE="jazz"
 onClick="musicForm.catalog.value = 'jazz'"> Jazz
<INPUT TYPE="radio" NAME="musicChoice" VALUE="classical"
 onClick="musicForm.catalog.value = 'classical'"> Classical

See also

• checkbox, form, and select objects

reset object (client)

A reset object is a reset button on an HTML form. A reset button resets all elements in a form to their defaults.

63

Syntax

To define a reset button, use standard HTML syntax with the addition of the onClick event handler:

<INPUT
 TYPE="reset"

NAME="resetName"
 VALUE="buttonText"
 [onClick="handlerText"]>

NAME="resetName" specifies the name of the reset object as a property of the enclosing form object and can
be accessed using the name property.
VALUE="buttonText" specifies the text to display on the button face and can be accessed using the value
property.

To use a reset button's properties and methods:

1. resetName . propertyName
2. resetName . methodName(parameters)
3. formName.elements[index]. propertyName
4. formName.elements[index]. methodName(parameters)

resetName is the value of the NAME attribute of a reset object.
formName is either the value of the NAME attribute of a form object or an element in the forms array.
index is an integer representing a reset object on a form.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

A reset object is a form element and must be defined within a <FORM>...</FORM> tag.

Properties

• name reflects the NAME argument
• value reflects the VALUE argument

Methods

• click

Event handlers

• onClick

Examples

The following example displays a text object containing "CA". If the user types a different state abbreviation in the
text object and then clicks the Clear Form button, the original value of "CA" is restored.

 64

State: <INPUT TYPE="text" NAME="state" VALUE="CA" SIZE="2">
<P><INPUT TYPE="reset" VALUE="Clear Form">

See also

• button, form, and submit objects

select object (client)

A select object is a selection list or scrolling list on an HTML form. A selection list lets the user choose
one item from a list. A scrolling list lets the user choose one or more items from a list.

Syntax

To define a select object, use standard HTML syntax with the addition of the onBlur, onChange, and
onFocus event handlers:

<SELECT
 NAME="selectName"
 [SIZE="integer"]
 [MULTIPLE]
 [onBlur="handlerText"]
 [onChange="handlerText"]
 [onFocus="handlerText"]>
 <OPTION [SELECTED]> textToDisplay [... <OPTION> textToDisplay]
</SELECT>

NAME="selectName" specifies the name of the select object as a property of the enclosing form object and
can be accessed using the name property.
SIZE="integer" specifies the number of options visible when the form is displayed and can be accessed using
the length property.
MULTIPLE specifies that the select object is a scrolling list (not a selection list).
OPTION specifies a selection element in the list.
SELECTED specifies that the option is selected by default and can be accessed using the selected property.
textToDisplay specifies the text to display in the list and can be accessed using the value property.

To use a select object's properties and methods:

1. selectName.propertyName
2. selectName.methodName (parameters)
3. formName.elements[index]. propertyName
4. formName.elements[index]. methodName(parameters)

selectName is the value of the NAME attribute of a select object.
formName is either the value of the NAME attribute of a form object or an element in the <I>forms</I> array.
index is an integer representing a select object on a form.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.

To use a select object's option's properties:

65

1. selectName .options[index1]. propertyName
2. formName.elements[index2].options[index1]. propertyName

selectName is the value of the NAME attribute of a select object.
index1 is an integer representing an option in a select object.
formName is either the value of the NAME attribute of a form object or an element in the forms array.
index2 is an integer representing a select object on a form.
propertyName is one of the properties listed below.

Description

A select object is a form element and must be defined within a <FORM>...</FORM> tag.

You can reference the options of a select object in your code by using the options property. The options property
is an array that contains an entry for each option in a select object: selectName.options[0] is the first,
selectName.options[1] is the second, etc. Each option has the properties listed below.

Properties

The select object has the following properties:
• length reflects the SIZE argument
• name reflects the NAME argument
• options
• selectedIndex

The options property has the following properties:
• defaultSelected
• index
• selected reflects the SELECTED argument
• text
• value

Methods

None.

Event handlers

• onBlur
• onChange
• onFocus

Examples

The following example displays a selection list.

Choose the music type for your free CD:

 66

<SELECT NAME="music_type_single">
 <OPTION SELECTED> R&B <OPTION> Jazz <OPTION> Blues <OPTION> New Age</SELECT>
<P>Choose the music types for your free CDs:

<SELECT NAME="music_type_multi" MULTIPLE>
 <OPTION SELECTED> R&B <OPTION> Jazz <OPTION> Blues <OPTION> New Age</SELECT>

See also

• form and radio objects
• options property

string object (common)

A string object consists of a series of characters.

Syntax

To use a string object:

1. stringName . propertyName
2. stringName.methodName (parameters)

stringName is the name of a string variable.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

A string can be represented as a literal enclosed by single or double quotes; for example, "Netscape" or
'Netscape'.

Properties

• length

Methods

• anchor •fontsize • sub
• big • indexOf • substring
• blink • italics • sup
• bold • lastIndexOf • toLowerCase
• charAt • link • toUpperCase
• fixed • small
• fontcolor • strike

Event handlers

None. Built-in objects do not have event handlers.

67

Examples

The following statement creates a string variable.

var last_name = "Schaefer"

last_name.length is 8.
last_name.toUpperCase() is "SCHAEFER".
last_name.toLowerCase() is "schaefer".

See also

• text and textarea objects

submit object (client)

A submit object is a submit button on an HTML form. A submit button causes a form to be submitted.

Syntax

To define a submit button, use standard HTML syntax with the addition of the onClick event handler:

<INPUT
 TYPE="submit"
 NAME="submitName"
 VALUE="buttonText"
 [onClick="handlerText"]>

NAME="submitName" specifies the name of the submit object as a property of the enclosing form object and
can be accessed using the name property.
VALUE="buttonText" specifies the label to display on the button face and can be accessed using the value
property.

To use a submit button's properties and methods:

1. submitName.propertyName
2. submitName.methodName (parameters)
3. formName.elements[index]. propertyName
4. formName.elements[index]. methodName(parameters)

submitName is the value of the NAME attribute of a submit object.
formName is either the value of the NAME attribute of a form object or an element in the forms array.
index is an integer representing a submit object on a form.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

A submit object is a form element and must be defined within a <FORM>...</FORM> tag.

 68

Clicking a submit button submits a form to the program specified by the form's action property. This action
always loads a new page into the client; it may be the same as the current page, if the action so specifies or is not
specified.

Properties

• name reflects the NAME argument
• value reflects the VALUE argument

Methods

• click

Event handlers

• onClick

Examples

<INPUT TYPE="submit" NAME="submit_button" VALUE="Done">

See also

• button, form, and reset objects
• submit method

text object (client)

A text object is a text input field on an HTML form. A text field lets the user enter a word, phrase, or
series of numbers.

Syntax

To define a text object, use standard HTML syntax with the addition of the onBlur, on Change, onFocus,
and onSelect event handlers:

<INPUT
 TYPE="text"
 NAME="textName"
 VALUE="textValue"
 SIZE=integer
 [onBlur="handlerText"]
 [onChange="handlerText"]
 [onFocus="handlerText"]
 [onSelect="handlerText"]>

NAME="textName" specifies the name of the text object as a property of the enclosing form object and can be
accessed using the name property.

69

VALUE="textValue" specifies the value of the text object and can be accessed using the value property.
SIZE=integer specifies the number of characters in the text object.

To use a text object's properties and methods:

1. textName.propertyName
2. textName.methodName (parameters)
3. formName.elements[index]. propertyName
4. formName.elements[index]. methodName(parameters)

textName is the value of the NAME attribute of a text object.
formName is either the value of the NAME attribute of a form object or an element in the forms array.
index is an integer representing a text object on a form.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

A text object is a form element and must be defined within a <FORM>...</FORM> tag.

text objects can be updated (redrawn) dynamically by setting the value property (this.value).

Properties

• defaultValue
• name reflects the NAME argument
• value reflects the VALUE argument

Methods

• focus
• blur
• select

Event handlers

• onBlur
• onChange
• onFocus
• onSelect

Examples

Last name: <INPUT TYPE="text" NAME="last_name" VALUE="" SIZE=25>

See also

• form, password, string, and textarea objects

 70

textarea object (client)

A textarea object is a multiline input field on an HTML form. A textarea field lets the user enter words, phrases,
or numbers.

Syntax

To define a text area, use standard HTML syntax with the addition of the onBlur, onChange, onFocus, and
onSelect event handlers:

<TEXTAREA
 NAME="textareaName"
 ROWS="integer"
 COLS="integer"
 [onBlur="handlerText"]
 [onChange="handlerText"]
 [onFocus="handlerText"]
 [onSelect="handlerText"]>
 textToDisplay
</TEXTAREA>

NAME="textareaName" specifies the name of the textarea object as a property of the enclosing form object
and can be accessed using the name property.
ROWS="integer" and COLS="integer" define the physical size of the displayed input field in numbers of
characters.
textToDisplay specifies the value of the textarea object and can be accessed using the value property. A textarea
allows only ASCII text, and new lines are respected.

To use a textarea object's properties and methods:

1. textareaName.propertyName
2. textareaName.methodName (parameters)
3. formName.elements[index]. propertyName
4. formName.elements[index]. methodName(parameters)

textareaName is the value of the NAME attribute of a textarea object.
formName is either the value of the NAME attribute of a form object or an element in the forms array.
index is an integer representing a textarea object on a form.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.

Description

A textarea object is a form element and must be defined within a <FORM>...</FORM> tag.

textarea objects can be updated (redrawn) dynamically by setting the value property (this.value).

Properties
• defaultValue
• name reflects the NAME argument
• value reflects the VALUE argument

71

Methods

• focus
• blur
• select

Event handlers

• onBlur
• onChange
• onFocus
• onSelect

Examples

Description:

<TEXTAREA NAME="item_description" ROWS=6 COLS=55>
Our storage ottoman provides an attractive way to
store lots of CDs and videos--and it's versatile
enough to store other things as well.

It can hold up to 72 CDs under the lid and 20 videos
in the drawer below.
</TEXTAREA>

See also

• form, password, string, and text objects

window object (client)

A window object is the top-level object for each document, location, and history object group.

Syntax

To define a window, use the open method :

windowVar = window.open(" URL", " windowName", [" windowFeatures "])

windowVar is the name of a new window. Use this variable when referring to a window's properties, methods,
and containership.
windowName is the window name to use in the TARGET argument of a <FORM> or <A> tag.
xxx and location object? For details on defining a window, see the open method.

To use a window's properties and methods:
1. window. propertyName
2. window. methodName
3. self. propertyName
4. self. methodName
5. windowVar.propertyName
6. windowVar.methodName

 72

windowVar is a variable referring to a window object. See the preceding syntax for defining a window.
propertyName is one of the properties listed below.
methodName is one of the methods listed below.

To define an onLoad or onUnload event handler for a window object, use the <BODY> or <FRAMESET> tags:

<BODY
 ...
 [onLoad="<I>handlerText</I>"]
 [onUnload="<I>handlerText</I>"]>
</BODY>

<FRAMESET
 ROWS="<I>rowHeightValueList</I>"
 COLS="<I>columnWidthList</I>"
 [onLoad="<I>handlerText</I>"]
 [onUnload="<I>handlerText</I>"]>
 [<FRAME SRC=" locationOrURL " NAME=" frameName ">]
</FRAMESET>
</PRE>

For information on the <BODY> and <FRAMESET> tags, see the document and frame objects.

Description

The window object is the top-level object in the JavaScript client hierarchy. The top window is a "document
window" or "Web Browser window". Frame objects are also windows.

Because the existence of the current window is assumed, you do not have to reference the name of the window
when you call its methods and assign its properties. For example, status="Jump to a new location" is a
valid property assignment, and close() is a valid method call.

The self and window properties are synonyms for the current window, and you can optionally use them to refer to
the current window. For example, you can close the current window by calling either window.close() or
self.close() . You can use these properties to make your code more readable, or to disambiguate the prop-
erty reference self.status from a form called status . See the properties and methods listed below for more
examples.

You can reference a window's frame objects in your code by using the frames property. The frames property is
an array that contains an entry for each frame in a window containing a <FRAMESET> tag.

Windows lack event handlers until some HTML is loaded into them containing a <BODY> or <FRAMESET>
tag.

Properties

• defaultStatus
• frames
• parent
• self

73

• status
• top
• window

Methods

• alert
• close
• confirm
• open
• prompt
• setTimeout
• clearTimeout

Event handlers

• onLoad
• onUnload

Examples

xxx to be supplied

See also

• document and frame objects
• frames property

 74

Methods and Functions
The following methods and functions are available in JavaScript:

• abs • close • getSeconds • parseInt • sqrt
• acos • confirm • getTime • pow • strike
• alert • cos • getTimeZoneoffset • prompt • sub
• anchor • escape • getYear • random • submit
• asin • eval • go • round • substring
• atan • exp • indexOf • select • sup
• back • fixed • italics • setDate • tan
• big • floor • lastIndexOf • setHours • toGMTString
• blink • focus • link • setMinutes • toLocaleString
• blur • fontcolor • log • setMonth •toLowerCase
• bold • fontsize • max •setSeconds •toString
• ceil • forward • min • setTimeout • toUpperCase
• charAt • getDate • open (document) • setTime • unEscape
• clear • getDay • open (window) • setYear • UTC
• clearTimeout • getHours • parse • sin • write
• click • getMinutes • parseFloat • small • writeln
• close (document) •getMonth • isNaN

abs method

Returns the absolute value of its argument.

Syntax

Math.abs(number)

number is any numeric expression.

Applies to

Math

Examples

In the following example, the user enters a number in the first text box and presses the Calculate button to
display the absolute value of the number.

<FORM>
<P>Enter a number:
<INPUT TYPE="text" NAME="absEntry">
<P>The absolute value is:
<INPUT TYPE="text" NAME="result">
<P>
<INPUT TYPE="button" VALUE="Calculate" onClick="form.result.value =
Math.abs(form.absEntry.value)">
</FORM>

75

acos method

Returns the arc cosine (in radians) of its argument.

Syntax

Math.acos(number)

number should be a numeric expression between -1 and 1. The acos method returns a numeric value
between 0 and pi radians. If the value of number is outside the suggested range, the return value is always
0.

Applies to

Math

Examples

// Displays the value 0
document.write("The arc cosine of 1 is " + Math.acos(1))

// Displays the value 3.141592653589793
document.write("<P>The arc cosine of -1 is " + Math.acos(-1))

// Displays the value 0
document.write("<P>The arc cosine of 2 is " + Math.acos(2))

See also

• asin, atan, cos, sin, tan methods

alert method

Displays an Alert dialog box with a message and an OK button.

Syntax

alert("message")

message is any string or a property of an existing object.

Description

Use the alert method to display a message that does not require a user decision. The message argument specifies
a message that the dialog box contains.

Applies to
• window

 76

Examples

In the following example, the testValue function checks the name entered by a user in the text element of
a form to make sure that it is no more than eight characters in length. This example uses the alert method
to prompt the user of an application to enter a valid value.

function testValue(textElement) {
 if (textElement.length > 8) {
 alert("Please enter a name that is 8 characters or less")
 }
}

You can call the testValue function in the onBlur event handler of a form's text element, as shown in the
following example:

Name: <INPUT TYPE="text" NAME="userName" onBlur="testValue(userName.value)">

See also

• confirm, prompt methods

anchor method

Creates an HTML anchor that is used as a hypertext target.

Syntax

text.anchor(nameAttribute)

text is any string or a property of an existing object.
nameAttribute is any string or a property of an existing object.

Description

Use the anchor method with the write or writeln methods to programatically create and display an anchor in a
document. Create the anchor with the anchor method, then call write or writeln to display the anchor in a docu-
ment.

In the syntax, the text string represents the literal text that you want the user to see. The nameAttribute string
represents the NAME attribute of the HTML <A> tag.

Applies to

string

Examples

The following example opens the msgWindow window and creates an anchor for the Table of Contents:

77

 var myString="Table of Contents"

 msgWindow=window.open("","displayWindow")
 msgWindow.document.writeln(myString.anchor("contents_anchor"))
 msgWindow.document.close()

The previous example produces the same output as the following HTML:

Table of Contents

See also

• link method

asin method

Returns the arc sine (in radians) of its argument.

Syntax

Math.asin(number)

number should be a numeric expression between -1 and 1. The asin method returns a numeric value
between -pi/2 and pi/2 radians. If the value of number is outside the suggested range, the return value is
always 0.

Applies to

Math

Examples

// Displays the value 1.570796326794897 (pi/2)
document.write("The arc sine of 1 is " + Math.asin(1))

// Displays the value -1.570796326794897 (-pi/2)
document.write("<P>The arc sine of -1 is " + Math.asin(-1))

// Displays the value 0 because the argument is out of range
document.write("<P>The arc sine of 2 is " + Math.asin(2))

See also

• acos, atan, cos, sin, tan methods

 78

atan method
Returns the arc tangent (in radians) of its argument.

Syntax

Math.atan(number)

number is a numeric expression representing the tangent of an angle. The atan method returns a numeric value
between -pi/2 and pi/2 radians.

Applies to

Math

Examples

// Displays the value 0.7853981633974483
document.write("The arc tangent of 1 is " + Math.atan(1))

// Displays the value -0.7853981633974483
document.write("<P>The arc tangent of -1 is " + Math.atan(-1))

// Displays the value 0.4636476090008061
document.write("<P>The arc tangent of .5 is " + Math.atan(.5))

See also

• acos, asin, cos, sin, tan methods

back method

Loads the previous URL in the history list.

Syntax

history.back()

Description

This method performs the same action as a user choosing the Back button in the Navigator. The back
method is the same as history.go(-1).

Applies to

history

Examples

79

The following custom buttons perform the same operations as the Navigator Back and Forward buttons:

<P><INPUT TYPE="button" VALUE="< Back" onClick="history.back()">
<P><INPUT TYPE="button" VALUE="> Forward" onClick="history.forward()">

See also

• forward, go methods

big method

Causes the calling string object to be displayed in a big font by surrounding it with the HTML font tags
<BIG> and </BIG> .

Syntax

stringName.big()

stringName is any string or a property of an existing object.

Description

Use the big method with the write or writeln methods to format and display a string in a document.

Applies to

string

Examples

The following example uses string methods to change the size of a string:

var worldString="Hello, world"

document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also

• fontsize, small methods

 80

blink method

Causes the calling string object to blink by surrounding it with the HTML tags <BLINK> and </BLINK> .

Syntax

stringName.blink()

stringName is any string or a property of an existing object.

Description

Use the blink method with the write or writeln methods to format and display a string in a document.

Applies to

string

Examples

The following example uses string methods to change the formatting of a string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also

• bold, italics, strike methods

blur method

Removes focus from the specified object.

Syntax

1. passwordName.blur()
2. textName.blur()
3. textareaName.blur()

81

passwordName is either the value of the NAME attribute of a password object or an element in the elements
array.
textName is either the value of the NAME attribute of a text object or an element in the elements array.
textareaName is either the value of the NAME attribute of a textarea object or an element in the elements array.

Description

Use the blur method to remove focus from a specific form element.

Applies to

password, text, textarea

Examples

The following example removes focus from the password element userPass:

userPass.blur()

This example assumes that the password is defined as:

<INPUT TYPE="password" NAME="userPass">

See also

• focus, select methods

bold method

Causes the calling string object to be displayed as bold by surrounding it with the HTML tags and
 .

Syntax

stringName.bold()

stringName is any string or a property of an existing object.

Description

Use the bold method with the write or writeln methods to format and display a string in a document.

Applies to

string

Examples

 82

The following example uses string methods to change the formatting of a string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also

• blink, italics, strike methods

ceil method

Returns the least integer greater than or equal to its argument.

Syntax

Math.ceil(number)

number is any numeric expression.

Applies to

Math

Examples

//Displays the value 46
document.write("The ceil of 45.95 is " + Math.ceil(45.95))

//Displays the value -45
document.write("<P>The ceil of -45.95 is " + Math.ceil(-45.95))

See also

• floor method

83

charAt method

Returns the character at the specified index.

Syntax

stringName.charAt(index)

stringName is any string or a property of an existing object.
index is any integer from 0 to stringName.length() - 1.

Description

Characters in a string are indexed from left to right. The index of the first character is 0, and the index of the last
character is stringName.length - 1.

Applies to

string

Examples

The following example displays characters at different locations in the string "Brave new world".

var anyString="Brave new world"

document.write("The character at index 0 is " + anyString.charAt(0))
document.write("The character at index 1 is " + anyString.charAt(1))
document.write("The character at index 2 is " + anyString.charAt(2))
document.write("The character at index 3 is " + anyString.charAt(3))
document.write("The character at index 4 is " + anyString.charAt(4))

See also

• indexOf, lastIndexOf methods

clear method

Clears the window.

Syntax

document.clear()

Description

The clear method empties the content of a window, regardless of how the content of the window has been
painted.

 84

Applies to

document

Examples

When the following function is called, the clear method empties the contents of the msgWindow window:
function windowCleaner() {
 msgWindow.document.clear()
 msgWindow.document.close()
}

See also

• close, open, write, writeln methods

clearTimeout method

Cancels a timeout that was set with the setTimeout method.

Syntax

clearTimeout(timeoutID)

timeoutID is a timeout setting that was returned by a previous call to the setTimeout method.

Description

See the description for the setTimeout method.

Applies to

window

Examples

See the examples for the setTimeout method.

See also

• setTimeout method

click method
Simulates a mouse click on the calling form element.

Syntax

85

1. buttonName.click()
2. radioName.click()
3. checkboxName.click()

buttonName is either the value of the NAME attribute of a button, reset, or submit object or an element in the
elements array.
radioName is an element in a radio array.
checkboxName is either the value of the NAME attribute of a checkbox object or an element in the elements
array.

Description

The effect of the click method varies according to the calling element:
• For button, reset, and submit, performs the same action as clicking the button.
• For a radio, selects a radio button.
• For a checkbox, checks the check box and sets its value to on.

Applies to

button, checkbox, radio, reset, submit

Examples

The following example toggles the selection status of the first element in the musicType radio group on
the musicForm form:

document.musicForm.musicType[0].click()

The following example toggles the selection status of the newAge checkbox on the musicForm form:

document.musicForm.newAge.click()

close method (document object)

Closes an output stream and forces data sent to layout to display.

Syntax

document.close()

Description

The close method closes a stream opened with the document.open() method. If the stream was opened to layout,
the close method forces the content of the stream to display. Font style tags, such as <BIG> and <CENTER>,
automatically close a layout stream without calling the close method.

The close method also stops the "meteor shower" in the Netscape icon and displays "Document: Done" in

 86

the status bar.

Applies to

document

Examples

The following function calls document.close() to close a stream that was opened with document.open().
The document.close() method forces the content of the stream to display in the window.

function windowWriter1() {
 var myString = "Hello, world!"
 msgWindow.document.open()
 msgWindow.document.write("<P>" + myString)
 msgWindow.document.close()
}

See also

• clear, open, write, writeln methods

close method (window object)

Closes the window.

Syntax

window.close()

Description

The close method closes the current window.

Applies to

window

Examples

Any of the following examples close the current window:

window.close()
self.close()
close()

See also

• open method

87

confirm method

Displays a Confirm dialog box with the specified message and OK and Cancel buttons.

Syntax

confirm("message")

message is any string or a property of an existing object.

Description

Use the confirm method to ask the user to make a decision that requires either an OK or a Cancel. The message
argument specifies a message that prompts the user for the decision. The confirm method returns true if the user
chooses OK and false if the user chooses Cancel.

Applies to

window

Examples

This example uses the confirm method in the confirmCleanUp function to confirm that the user of an
application really wants to quit. If the user chooses OK, the custom cleanUp() function closes the applica-
tion.

function confirmCleanUp() {
 if (confirm("Are you sure you want to quit this application?")) {
 cleanUp()
 }
}

You can call the confirmCleanUp function in the onClick event handler of a form's pushbutton, as shown
in the following example:

<INPUT TYPE="button" VALUE="Quit" onClick="confirmCleanUp()">

See also

• alert, prompt methods

cos method

Returns the cosine of its argument.

Syntax

 88

Math.cos(number)

number is a numeric expression representing the size of an angle in radians. The cos method returns a numeric
value between -1 and 1, which represents the cosine of the angle.

Applies to

Math

Examples

 //Displays the value 6.123031769111886e-017
document.write("The cosine of PI/2 radians is " + Math.cos(Math.PI/2))

//Displays the value -1
document.write("<P>The cosine of PI radians is " + Math.cos(Math.PI))

//Displays the value 1
document.write("<P>The cosine of 0 radians is " + Math.cos(0))

See also

• acos, asin, atan, sin, tan methods

escape function

Returns the ASCII encoding of an argument in the ISO Latin-1 character set.

Syntax

escape(char)

char is a non-alphanumeric character in the ISO Latin-1 character set.

Description

The escape function is a built-in JavaScript function. It is not a method associated with any object, but is part of
the language itself.

The value returned by the escape function is a string of the form "%xx", where xx is the ASCII encoding of the
argument.

Examples

The following example returns "%26"

89

escape("&")

See also

• unEscape function

eval function

The eval function takes a JavaScript arithmetic expression as its argument and returns the value of the argument as
a number.

Syntax
eval(expression)

expression is any expression or sequence of statements.

Description

The eval function is a built-in JavaScript function. It is not a method associated with any object, but is part of the
language itself.

Example

In the following example, both uses of eval assign the value 42 to the variable result.

x = 6
result = eval((3+3)*7)
result = eval(x*7)

exp method

Returns e to the power of its argument, i.e. ex, where x is the argument, and e is Euler's constant, the base of the
natural logarithms.

Syntax

Math.exp(number)

number is any numeric expression.

Applies to

Math

 90

Examples

//Displays the value 2.718281828459045
document.write("The value of e¹ is " + Math.exp(1))

See also

• log, pow methods

fixed method

Causes the calling string object to be displayed in fixed-pitch font by surrounding it with the HTML tags
<TT> and </TT> .

Syntax

stringName.fixed()

stringName is any string or a property of an existing object.

Description

Use the fixed method with the write or writeln methods to format and display a string in a document.

Applies to

string

Examples

The following example uses the fixed method to change the formatting of a string:

var worldString="Hello, world"

document.write(worldString.fixed())

The previous example produces the same output as the following HTML:

<TT>Hello, world</TT>

floor method

Returns the greatest integer less than or equal to its argument.

Syntax

Math.floor(number)

91

number is any numeric expression.

Applies to

Math

Examples

//Displays the value 45
document.write("<P>The floor of 45.95 is " + Math.floor(45.95))

//Displays the value -46
document.write("<P>The floor of -45.95 is " + Math.floor(-45.95))

See also

• ceil method

focus method

Gives focus to the specified object.

Syntax

1. passwordName.focus()
2. textName.focus()
3. textareaName.focus()

passwordName is either the value of the NAME attribute of a password object or an element in the elements
array.
textName is either the value of the NAME attribute of a text object or an element in the elements array.
textareaName is either the value of the NAME attribute of a textarea object or an element in the elements array.

Description

Use the focus method to navigate to a specific form element and give it focus. You can then either programatically
enter a value in the element or let the user enter a value.

Applies to

password, text, textarea

Examples

In the following example, the checkPassword function confirms that a user has entered a valid password. If the
password is not valid, the focus method returns focus to the password field and the select method highlights it so

 92

the user can re-enter the password.

function checkPassword(userPass) {
 if (badPassword) {
 alert("Please enter your password again.")
 userPass.focus()
 userPass.select()
 }
}

This example assumes that the password is defined as:

<INPUT TYPE="password" NAME="userPass">

See also

• blur, select methods

fontcolor method

Causes the calling string object to be displayed in the specified color by surrounding it with the HTML tags
 and .

Syntax

stringName.fontcolor(color)

stringName is any string or a property of an existing object.
color is a string expressing the color as a hexadecimal RGB triplet or as one of the string literals listed in the
Color Appendix.

Description

Use the fontcolor method with the write or writeln methods to format and display a string in a document.

If you express color as a hexadecimal RGB triplet, you must use the format rrggbb. For example, the
hexadecimal RGB values for salmon are red=FA, green=80, and blue=72, so the RGB triplet for salmon is
"FA8072".

Applies to

string

Examples

The following example uses the fontcolor method to change the color of a string

var worldString="Hello, world"

93

document.write(worldString.fontcolor("maroon") + " is maroon in this line")
document.write("<P>" + worldString.fontcolor("salmon") + " is salmon in this
line")
document.write("<P>" + worldString.fontcolor("red") + " is red in this line")

document.write("<P>" + worldString.fontcolor("8000") + " is maroon in hexadecimal
in this line")
document.write("<P>" + worldString.fontcolor("FA8072") + " is salmon in
hexadecimal in this line")
document.write("<P>" + worldString.fontcolor("FF00") + " is red in hexadecimal in
this line")

The previous example produces the same output as the following HTML:

Hello, world is maroon in this line
<P>Hello, world is salmon in this line
<P>Hello, world is red in this line

Hello, world is maroon in hexadecimal in this line
<P>Hello, world is salmon in hexadecimal in this line
<P>Hello, world is red in hexadecimal in this line

fontsize method

Causes the calling string object to be displayed in the specified font size by surrounding it with the HTML font
size tags <FONTSIZE=size> ... </FONTSIZE> .

Syntax

stringName.fontsize(size)

stringName is any string or a property of an existing object.
size is an integer between one and seven, or a string representing a signed integer between 1 and 7.

Description

Use the fontsize method with the write or writeln methods to format and display a string in a document. When you
specify size as an integer, you set the size of stringName to one of the seven defined sizes. When you specify
size as a string such as "-2", you adjust the font size of stringName relative to the size set in the BASEFONT
tag.

Applies to

string

Examples

The following example uses string methods to change the size of a string:

var worldString="Hello, world"

 94

document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also

• big, small methods

forward method

Loads the next URL in the history list.

Syntax
history.forward()

Description

This method performs the same action as a user choosing the Forward button in the Navigator. The for-
ward method is the same as history.go(1) .

Applies to

history

Examples

The following custom buttons perform the same operations as the Navigator Back and Forward buttons:

<P><INPUT TYPE="button" VALUE="< Back" onClick="history.back()">
<P><INPUT TYPE="button" VALUE="> Forward" onClick="history.forward()">

See also

• back, go methods

getDate method

Returns the day of the month for a date object.

Syntax
dateObjectName.getDate()

95

dateObjectName is either the name of a date object or a property of an existing object.

Description

The value returned by getDate is an integer between 1 and 31.

Applies to

Date

Examples

The second statement below assigns the value 25 to the variable day, based on the value of the date object
Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
day = Xmas95.getDate()

See also

• setDate method

getDay method

Returns the day of the week for a date object.

Syntax

dateObjectName.getDay()

dateObjectName is either the name of a date object or a property of an existing object.

Description

The value returned by getDay is an integer corresponding to the day of the week: zero for Sunday, one for
Monday, two for Tuesday, and so on.

Applies to

Date

Examples

The second statement below assigns the value 1 to weekday, based on the value of the date object
Xmas95. This is because December 25, 1995 is a Monday.

Xmas95 = new Date("December 25, 1995 23:15:00")
weekday = Xmas95.getDay()

 96

getHours method

Returns the hour for a date object.

Syntax

dateObjectName.getHours()

dateObjectName is either the name of a date object or a property of an existing object.

Description

The value returned by getHours is an integer between 0 and 23.

Applies to
Date

Examples

The second statement below assigns the value 23 to the variable hours, based on the value of the date object
Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
hours = Xmas95.getHours()

See also

• setHours method

getMinutes method

Returns the minutes in a date object.

Syntax

dateObjectName.getMinutes()

dateObjectName is either the name of a date object or a property of an existing object.

Description

The value returned by getMinutes is an integer between 0 and 59.

Applies to

Date

97

Examples

The second statement below assigns the value 15 to the variable minutes, based on the value of the date
object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
minutes = Xmas95.getMinutes()

See also

• setMinutes method

getMonth method

Returns the month in a date object.

Syntax

dateObjectName.getMonth()

dateObjectName is either the name of a date object or a property of an existing object.

Description

The value returned by getMonth is an integer between zero and eleven. Zero corresponds to January, one to
February, and so on.

Applies to

Date

Examples

The second statement below assigns the value 11 to the variable month, based on the value of the date
object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
month = Xmas95.getDate()

See also

• setMonth method

 98

getSeconds method

Returns the seconds in the current time.

Syntax

dateObjectName.getSeconds()

dateObjectName is either the name of a date object or a property of an existing object.

Description

The value returned by getSeconds is an integer between 0 and 59.

Applies to

Date

Examples

The second statement below assigns the value 30 to the variable secs, based on the value of the date object
Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:30")
secs = Xmas95.getSeconds()

See also

• setSeconds method

getTime method

Returns the numeric value corresponding to the time for a date object.

Syntax

dateObjectName.getTime()

dateObjectName is either the name of a date object or a property of an existing object.

Description

The value returned by the getTime method is the number of milliseconds since the epoch (1 January 1970
00:00:00). You can use this method to help assign a date and time to another date object.

Applies to

99

Date

Examples

The following example assigns the date value of theBigDay to sameAsBigDay.

theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date()
sameAsBigDay.setTime(theBigDay.getTime())

See also

• setTime method

getTimezoneOffset method

Returns the time zone offset in minutes for the current locale.

Syntax

dateObjectName.getTimezoneOffset()

dateObjectName is either the name of a date object or a property of an existing object.

Description

The time zone offset is the difference between local time and GMT. This value would be a constant except for
daylight savings time.

Applies to

Date

Examples

x = new Date()
currentTimeZoneOffsetInHours = x.getTimezoneOffset()/60

getYear method

Returns the year in the date object.

Syntax

dateObjectName.getYear()

dateObjectName is either the name of a date object or a property of an existing object.

 100

Description

The value returned by getYear is the year less 1900. For example, if the year is 1976, the value returned is 76.

Applies to

Date

Examples

The second statement below assigns the value 95 to the variable year, based on the value of the date
object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
year = Xmas95.getYear()

See also

• setYear method

go method

Loads a URL in the history list.

Syntax

history.go(delta | "location")

delta is an integer representing a relative position in the history list.
location is a string representing all or part of a URL in the history list.

Description

The go method navigates to the location in the history list determined by the argument that you specify.

The delta argument is a positive or negative integer. If delta is greater than zero, the go method loads the
URL that is that number of entries forward in the history list; otherwise, it loads the URL that is that
number of entries backward in the history list.

The location argument is a string. Use location to load the nearest history entry whose URL contains
location as a substring. The location to URL matching is case-insensitive

Applies to

history

Examples

101

The following button navigates to the nearest history entry that contains the string "home.netscape.com":

<P><INPUT TYPE="button" VALUE="Go" onClick="history.go('home.netscape.com')">

The following button navigates to the URL that is three entries backward in the history list:

<P><INPUT TYPE="button" VALUE="Go" onClick="history.go(-3)">

See also

• back, forward methods

indexOf method

Returns the index within the calling string object of the first occurrence of the specified value, starting the search at
fromIndex.

Syntax

stringName.indexOf(character, [fromIndex])

stringName is the name of any string variable or string object.
character is a string representing the character to search for.
fromIndex is the location within the calling string to start the search from, any integer from 0 to
stringName.length() - 1.

Description

Characters in a string are indexed from left to right. The index of the first character is 0, and the index of
the last character is stringName.length - 1.

If you do not specify a value for fromIndex, JavaScript assumes 0 by default.

Applies to

string

Examples

The following example uses indexOf and lastIndexOf to locate values in the string "Brave new world".

var anyString="Brave new world"
//Displays 8
document.write("<P>The index of the first w from the beginning is " +
anyString.indexOf("w"))
//Displays 10
document.write("<P>The index of the first w from the end is " +
anyString.lastIndexOf("w"))
//Displays 6

 102

document.write("<P>The index of 'new' from the beginning is " +
anyString.indexOf("new"))
//Displays 6
document.write("<P>The index of 'new' from the end is " +
anyString.lastIndexOf("new"))

See also

• charAt, lastIndexOf methods

isNaN function

On Unix platforms, evaluates an argument to determine if it is "NaN".

Syntax

isNaN(testValue)

testValue is the value you want to evaluate.

Description

The isNaN function is a built-in JavaScript function. It is not a method associated with any object, but is part of
the language itself. isNaN is available on Unix platforms only.

On all platforms except Windows, the parseFloat and parseInt functions return "NaN" when they evaluate a value
that is not a number. The "NaN" value is not a number in any radix. You can call the isNaN function to determine
if the result of parseFloat or parseInt is "NaN". If "NaN" is passed on to arithmetic operations, the operation
results will also be "NaN".

Examples

The following example evaluates floatValue to determine if it is a number, then calls a procedure accordingly.

floatValue=parseFloat(toFloat)

if isNaN(floatValue) {
 notFloat()
} else {
 isFloat()
}

See also
• parseFloat and parseInt functions

103

italics method

Causes the calling string object to be italicized by surrounding it with the HTML tags <I> and </I>.

Syntax

stringName.italics()

stringName is any string or a property of an existing object.

Description

Use the italics method with the write or writeln methods to format and display a string in a document.

Applies to

string

Examples

The following example uses string methods to change the formatting of a string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also

• blink, bold, strike methods

lastIndexOf method

Returns the index within the calling string object of the last occurrence of the specified value. The calling string is
searched backwards, starting at fromIndex.

Syntax

stringName .lastIndexOf(searchValue , [fromIndex])

 104

stringName is any string or a property of an existing object.
searchValue is a string representing the value to search for.
fromIndex is the location within the calling string to start the search from, any integer from 0 to
stringName.length() - 1.

Description

Characters in a string are indexed from left to right. The index of the first character is 0, and the index of the last
character is stringName.length - 1.

If you do not specify a value for fromIndex, JavaScript assumes stringName.length() - 1 (the end of the
string) by default.

Applies to

string

Examples

The following example uses indexOf and lastIndexOf to locate values in the string "Brave new world".

var anyString="Brave new world"

//Displays 8
document.write("<P>The index of the first w from the beginning is " +
anyString.indexOf("w"))
//Displays 10
document.write("<P>The index of the first w from the end is " +
anyString.lastIndexOf("w"))
//Displays 6
document.write("<P>The index of 'new' from the beginning is " +
anyString.indexOf("new"))
//Displays 6
document.write("<P>The index of 'new' from the end is " +
anyString.lastIndexOf("new"))

See also

• charAt, indexOf methods

link method

Creates an HTML hypertext link that jumps to another URL.

Syntax

linkName.link(hrefAttribute)

linkName is any string or a property of an existing object.
hrefAttribute is any string or a property of an existing object.

105

Description

Use the link method with the write or writeln methods to programatically create and display a hypertext
link in a document. Create the link with the link method, then call write or writeln to display the link in a docu-
ment.

In the syntax, the linkName string represents the literal text that you want the user to see. The
hrefAttribute string represents the HREF attribute of the HTML A tag, and it should be a valid URL.
Applies to

string

Examples

The following example displays the word "Netscape" as a hypertext link that returns the user to the
Netscape home page:

var hotText="Netscape"
var URL="http://www.netscape.com"

document.open()
document.write("Click to return to " + hotText.link(URL))
document.close()

The previous example produces the same output as the following HTML:

Click to return to Netscape

See also

• anchor method

log method

Returns the natural logarithm (base e) of its argument.

Syntax

Math.log(number)

number is any positive numeric expression. If the value of number is outside the suggested range, the return value
is always -1.797693134862316e+308.

Applies to

Math

Examples

 106

//Displays the value 2.302585092994046
document.write("The natural log of 10 is " + Math.log(10))

//Displays the value 0
document.write("<P>The natural log of 1 is " + Math.log(1))

//Displays the value -1.797693134862316e+308 because the argument is out of range
document.write("<P>The natural log of 0 is " + Math.log(0))

See also
• exp, pow methods

max method

Returns the greater of its two arguments.

Syntax

max(number1, number2)

number1 and number2 are any numeric arguments.

Applies to

Math

Examples

//Displays the value 20
document.write("The maximum value is " + Math.max(10,20))

//Displays the value -10
document.write("<P>The maximum value is " + Math.max(-10,-20))

See also

• min method

min method

Returns the lesser of its two arguments.

Syntax

min(number1, number2)

number1 and number2 are any numeric arguments.

107

Applies to

Math

Examples

//Displays the value 10
document.write("
The minimum value is " + Math.min(10,20))

//Displays the value -20
document.write("<P>The minimum value is " + Math.min(-10,-20))

See also

• max method

open method (document object)

Opens a stream to collect the output of write or writeln methods.

Syntax

document.open(["mimeType"])

mimeType specifies any of the following document types:

 text/html
 text/plain
 image/gif
 image/jpeg
 image/xbm
 plugIn

plugIn is any two-part plug-in MIME type that Netscape supports.

Description

The open method opens a stream to collect the output of write or writeln methods. If the mimeType is text or
image, the stream is opened to layout; otherwise, the stream is opened to a plug-in. If a document exists in the
target window, the open method clears it.

End the stream by using the document.close() method. The close method causes text or images that were sent to
layout to display. After using document.close(), issue document.open() again when you want to begin another
output stream.

mimeType is an optional argument that specifies the type of document to which you are writing. If you do not

 108

specify a mimeType, the open method assumes text/html by default.

Following is a description of mimeType:
• text/html specifies a document containing ASCII text with HTML formatting.
• text/plain specifies a document containing plain ASCII text with end-of-line characters to delimit
 displayed lines.
• image/gif specifies a document with encoded bytes constituting a GIF header and pixel data.
• image/jpeg specifies a document with encoded bytes constituting a JPEG header and pixel data.
• image/xbm specifies a document with encoded bytes constituting a XBM header and pixel data.
• plugIn loads the specified plug-in and uses it as the destination for write and writeln methods. For

example, x-world/vrml loads the VR Scout VRML plug-in from Chaco Communications, and applica
tion/x-director loads the Macromedia Shockwave plug-in.

Applies to

document

Examples

The following function calls document.open() to open a stream before issuing a write method:

function windowWriter1() {
 var myString = "Hello, world!"
 msgWindow.document.open()
 msgWindow.document.write("<P>" + myString)
 msgWindow.document.close()
}

See also

• clear, close, write, writeln methods

open method (window object)

Opens a new web browser window.

Syntax

window.open("URL", "windowName", ["windowFeatures"])

URL specifies the URL to open in the new window.
windowName specifies a name for the window object being opened.
windowFeatures is a comma-separated list of any of the following options and values:

 toolbar[=yes|no]|[=1|0]
 location[=yes|no]|[=1|0]
 directories[=yes|no]|[=1|0]
 status[=yes|no]|[=1|0]
 menubar[=yes|no]|[=1|0]
 scrollbars[=yes|no]|[=1|0]

109

 resizable[=yes|no]|[=1|0]
 width=pixels
 height=pixels

You may use any subset of these options. Separate options with a comma. Do not put spaces between the
options.

pixels is a positive integer specifying the dimension in pixels.

Description

The open method opens a new web browser window on the client, similar to choosing File|New Web
Browser from the menu of the Navigator. The URL argument specifies the URL contained by the new
window. If URL is an empty string, a new, empty window is created.

In event handlers, you must specify window.open() instead of simply using open(). Due to the scoping of
static objects in JavaScript, a call to open() without specifying an object name is equivalent to
document.open().

windowFeatures is an optional, comma-separated list of options for the new window. The boolean
windowFeatures options are set to true if they are specified without values, or as yes or 1. For example,
open("", "messageWindow", "toolbar") and open("", "messageWindow", "toolbar=1") both set
the toolbar option to true. If windowName does not specify an existing window and you do not specify
windowFeatures, all boolean windowFeatures are true by default.

Following is a description of the windowFeatures:
• toolbar creates the standard Navigator toolbar, with buttons such as "Back" and "Forward", if

true
• location creates a Location entry field, if true
• directories creates the standard Navigator directory buttons, such as "What's New" and "What's

Cool", if true
• status creates the status bar at the bottom of the window, if true
• menubar creates the menu at the top of the window, if true
• scrollbars creates horizontal and vertical scrollbars when the document grows larger than the

window dimensions, if true
• resizable allows a user to resize the window, if true
• copyhistory gives the new window the same session history as the current window, if true
• width specifies the width of the window in pixels
• height specifies the height of the window in pixels

Applies to

window

Examples

In the following example, the windowOpener function opens a window and uses write methods to display
a message:

function windowOpener() {

 110

 msgWindow=window.open("","Display
window","toolbar=no,directories=no,menubar=no")

 msgWindow.document.write("<HEAD><TITLE>Message window</TITLE></HEAD>")
 msgWindow.document.write("<CENTER><BIG>Hello, world!</BIG></CENTER>")
}

The following is an onClick event handler that opens a new client window displaying the content speci
fied in the file sesame.html. It opens it with the specified option settings and names the corre
sponding window object newWin.

<FORM NAME="myform">
<INPUT TYPE="button" NAME="Button1" VALUE="Open Sesame!"
onClick="window.open('sesame.html', 'newWin',
'toolbar=no,directories=no,menubar=no,status=yes,width=300,height=300')">
</form>

Notice the use of single quotes (') inside the onClick event handler.

See also

• close method

parse method

Returns the number of milliseconds in a date string since January 1, 1970 00:00:00, local time.

Syntax

Date.parse(dateString)

dateString is a string representing a date.

Description

The parse method takes a date string (such as "Dec 25, 1995"), and returns the number of milliseconds
since January 1, 1970 00:00:00 (local time). This function is useful for setting date values based on string
values, for example in conjunction with the setTime method and the Date object.

Given a string representing a time, parse returns the time value. It accepts the IETF standard date syntax: "Mon,
25 Dec 1995 13:30:00 GMT". It understands the continental US time zone abbreviations, but for general use, use
a time zone offset, for example "Mon, 25 Dec 1995 13:30:00 GMT+0430" (4 hours, 30 minutes west of the
Greenwich meridian). If you do not specify a time zone, the local time zone is assumed. GMT and UTC are
considered equivalent.

Because the parse function is a static method of Date, you always use it as Date.parse() , rather than as a
method of a date object you created.

Applies to

111

Date

Examples

If IPOdate is an existing date object, then

IPOdate.setTime(Date.parse("Aug 9, 1995"))

See also

• UTC method

parseFloat function

Parses a string argument and returns a floating point number.

Syntax

parseFloat(string)

string is a string that represents the value you want to parse.

Description

The parseFloat function is a built-in JavaScript function. It is not a method associated with any object, but is part
of the language itself.

parseFloat parses its argument, a string, and attempts to return a floating point number. If it encounters a charac-
ter other than a sign (+ or -), numeral (0-9), a decimal point, or an exponent, then it returns the value up to that
point and ignores that character and all succeeding characters.

If the first character cannot be converted to a number, parseFloat returns one of the following values:
• 0 on Windows platforms.
• "NaN" on any other platform, indicating that the value is not a number.

For arithmetic purposes, the "NaN" value is not a number in any radix. You can call the isNaN function to deter-
mine if the result of parseFloat is "NaN". If "NaN" is passed on to arithmetic operations, the operation results will
also be "NaN".

Examples

The following examples all return 3.14:

parseFloat("3.14")
parseFloat("314e-2")
parseFloat("0.0314E+2")
var x = "3.14"
parseFloat(x)

 112

The following example returns ”NaN” or 0:

parseFloat("FF2")

See also

• isNaN mthod and parseInt function

parseInt function

Parses a string argument and returns an integer of the specified radix or base.
Syntax

parseInt(string, radix)

string is a string that represents the value you want to parse.
radix is an integer that represents the radix of the return value.

Description

The parseInt function is a built-in JavaScript function. It is not a method associated with any object, but is
part of the language itself.

The parseInt function parses its first argument, a string, and attempts to return an integer of the specified
radix (base). For example, a radix of 10 indicates to convert to a decimal number, 8 octal, 16 hexadecimal,
and so on. For radixes above 10, the letters of the alphabet indicate numerals greater than 9. For example,
for hexadecimal numbers (base 16), A through F are used.

If parseInt encounters a character that is not a numeral in the specified radix, it ignores it and all succeeding
characters and returns the integer value parsed up to that point. ParseInt truncates numbers to integer values.

If the first character cannot be converted to a number, parseFloat returns one of the following values:
• 0 on Windows platforms.
• "NaN" on any other platform, indicating that the value is not a number.

For arithmetic purposes, the "NaN" value is not a number in any radix. You can call the isNaN function to deter-
mine if the result of parseInt is "NaN". If "NaN" is passed on to arithmetic operations, the operation results will
also be "NaN".

Examples

The following examples all return 15:

parseInt("F", 16)
parseInt("17", 8)
parseInt("15", 10)
parseInt(15.99, 10)
parseInt("FXX123", 16)
parseInt("1111", 2)

113

parseInt("15*3", 10)

The following examples all return “NaN” or zero:

parseInt("Hello", 8)
parseInt("0x7", 10)
parseInt("FFF", 10)

See also

• isNaN method or parseFloat function

pow method

Returns base to the exponent power, that is, baseexponent.

Syntax

pow(base, exponent)

base is any numeric expression.
exponent is any numeric expression.

Applies to

Math

Examples

//Displays the value 49
document.write("7 to the power of 2 is " + Math.pow(7,2))

//Displays the value 1024
document.write("<P>2 to the power of 10 is " + Math.pow(2,10))

See also

• exp, log methods

prompt method

Displays a Prompt dialog box with a message and an input field.

Syntax

prompt(message, [inputDefault])

 114

message is any string or a property of an existing object; the string is displayed as the message.
inputDefault is a string or integer that represents the default value of the input field.

Description

Use the prompt method to display a dialog box that receives user input. If you do not specify an initial value for
inputDefault, the dialog box displays the value <undefined>.

Applies to

window

Examples

prompt("Enter the number of cookies you want to order:", 12)

See also

• alert, confirm methods

random method

Returns a pseudo-random number between zero and one. This method is available on X-platforms only.

Syntax

Math.random()

Applies to

Math

Examples

//Displays a random number between 0 and 1
document.write("The random number is " + Math.random())

round method

Returns the value of the argument rounded to the nearest integer. If the decimal portion of the argument is .5 or
greater, the argument is rounded to the next highest integer. If the decimal portion of the argument is less than .5,
the argument is rounded to the next lowest integer.

Syntax

round(number)

115

number is any numeric expression.

Applies to

Math

Examples

//Displays the value 20
document.write("The rounded value is " + Math.round(20.49))

//Displays the value 21
document.write("<P>The rounded value is " + Math.round(20.5))

//Displays the value -20
document.write("<P>The rounded value is " + Math.round(-20.5))

//Displays the value -21
document.write("<P>The rounded value is " + Math.round(-20.51))

select method

Selects the input area of the specified object.

Syntax

1. passwordName.select()
2. textName.select()
3. textareaName.select()

passwordName is either the value of the NAME attribute of a password object or an element in the elements
array.
textName is either the value of the NAME attribute of a text object or an element in the elements array.
textareaName is either the value of the NAME attribute of a textarea object or an element in the elements array.

Description

Use the select method to highlight the input area of a form element. You can use the select method with the focus
method to highlight a field and position the cursor for a user response.

Applies to

password, text, textarea

Examples

In the following example, the checkPassword function confirms that a user has entered a valid password.
If the password is not valid, the select method highlights the password field and focus method returns focus to it

 116

so the user can re-enter the password.

function checkPassword(userPass) {
 if (badPassword) {
 alert("Please enter your password again.")
 userPass.focus()
 userPass.select()
 }
}

This example assumes that the password is defined as:

<INPUT TYPE="password" NAME="userPass">

See also

• blur, focus methods

setDate method

Sets the day of the month for a date object.

Syntax

dateObjectName.setDate(dayValue)

dateObjectName is either the name of a date object or a property of an existing object.
dayValue is an integer from 1 to 31 representing the day of the month.

Applies to

Date

Examples

The second statement below changes the day for theBigDay to the 24th of July from its original value.

theBigDay = new Date("July 27, 1962 23:30:00")
theBigDay.setDate(24)

See also

• getDate method

setHours method

Sets the hours in the current time.

117

Syntax

dateObjectName.setHours(hoursValue)

dateObjectName is either the name of a date object or a property of an existing object.
hoursValue is an integer between 0 and 23 representing the hour.

Applies to

Date

Examples

theBigDay.setHours(7)

See also

• getHours method

setMinutes method

Sets the minutes in the current time.

Syntax

dateObjectName.setMinutes(minutesValue)

dateObjectName is either the name of a date object or a property of an existing object.
minutesValue is an integer between 0 and 59 representing the minutes.

Applies to

Date

Examples

theBigDay.setMinutes(45)

See also

• getMinutes method

setMonth method

Sets the month in the current date.

 118

Syntax

dateObjectName.setMonth(monthValue)

dateObjectName is either the name of a date object or a property of an existing object.
monthValue is an integer between 0 and 11 representing the month.

Applies to

Date

Examples

theBigDay.setMonth(6)

See also

• getMonth method

setSeconds method

Sets the seconds in the current time.

Syntax

dateObjectName.setSeconds(secondsValue)

dateObjectName is either the name of a date object or a property of an existing object.
secondsValue is an integer between 0 and 59.

Applies to

Date

Examples

theBigDay.setSeconds(30)

See also

• getSeconds method

setTime method

Sets the value of a date object.

119

Syntax

dateObjectName.setTime(timevalue)

dateObjectName is either the name of a date object or a property of an existing object.
timevalue is an integer representing the number of milliseconds since the epoch (1 January 1970 00:00:00).

Description

Use the setTime method to help assign a date and time to another date object.

Applies to

Date

Examples

theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date()
sameAsBigDay.setTime(theBigDay.getTime())

See also

• getTime method

setTimeout method

Evaluates an expression after a specified number of milliseconds have elapsed.

Syntax

timeoutID=setTimeout(expression, msec)

timeoutID is an identifier that is used only to cancel the evaluation with the clearTimeout method.
expression is a string expression.
msec is a numeric value or numeric string in millisecond units.

Description

The setTimeout method evaluates an expression after a specified amount of time. It does not evaluate the
expression repeatedly. For example, if a setTimeout method specifies 5 seconds, the expression is evalu-
ated after 5 seconds, not every 5 seconds.

Applies to

window

 120

Examples

The following example displays an alert message 5 seconds (5,000 milliseconds) after the user clicks a button. If
the user clicks the second button before the alert message is displayed, the timeout is cancelled and the alert does
not display.

<SCRIPT LANGUAGE="JavaScript">
function displayAlert()
{
 alert("5 seconds have elapsed since the button was clicked.")
}
</SCRIPT>
<BODY>
<FORM>
Click the button on the left for a reminder in 5 seconds
click the button on the right to cancel the reminder before
it is displayed.
<P>
<INPUT TYPE="button" VALUE="5-second reminder" NAME="remind_button"
 onClick="timerID=setTimeout('displayAlert()',5000)">
<INPUT TYPE="button" VALUE="Clear the 5-second reminder"
 NAME="remind_disable_button"
 onClick="clearTimeout(timerID)">
</FORM>
</BODY>

The following example displays the current time in a text object. The showtime() function, which is called
recursively, uses the setTimeout method update the time every second.

<HEAD>
<SCRIPT LANGUAGE="JavaScript">
<!--
var timerID = null
var timerRunning = false
function stopclock(){
 // cannot directly test timerID on DEC OSF/1 in beta 4.
 if(timerRunning)
 clearTimeout(timerID)
 timerRunning = false
}
function startclock(){
 // Make sure the clock is stopped
 stopclock()
 showtime()
}
function showtime(){
 var now = new Date()
 var hours = now.getHours()
 var minutes = now.getMinutes()
 var seconds = now.getSeconds()
 var timeValue = "" + ((hours > 12) ? hours - 12 : hours)
 timeValue += ((minutes < 10) ? ":0" : ":") + minutes
 timeValue += ((seconds < 10) ? ":0" : ":") + seconds
 timeValue += (hours >= 12) ? " P.M." : " A.M."
 document.clock.face.value = timeValue
 timerID = setTimeout("showtime()",1000)
 timerRunning = true

121

}
//-->
</SCRIPT>
</HEAD>

<BODY onLoad="startclock()">
<FORM NAME="clock" onSubmit="0">
 <INPUT TYPE="text" NAME="face" SIZE=12 VALUE ="">
</FORM>
</BODY>

See also

• clearTimeout method

setYear method

Sets the year in the current date.

Syntax

dateObjectName.setYear(yearValue)

dateObjectName is either the name of a date object or a property of an existing object.
yearValue is an integer greater than 1900.

Applies to

Date

Examples

theBigDay.setYear(96)

See also

• getYear method

sin method

Returns the sine of its argument.

Syntax

Math.sin(number)

number is a numeric expression representing the size of an angle in radians. The sin method returns a numeric

 122

value between -1 and 1, which represents the sine of the angle.

Applies to

Math

Examples

//Displays the value 1
document.write("The sine of pi/2 radians is " + Math.sin(Math.PI/2))

//Displays the value 1.224606353822377e-016
document.write("<P>The sine of pi radians is " + Math.sin(Math.PI))

//Displays the value 0
document.write("<P>The sine of 0 radians is " + Math.sin(0))

See also

• acos, asin, atan, cos, tan methods

small method

Causes the calling string object to be displayed in a small font by surrounding it with the HTML font tags
<SMALL>...</SMALL>.

Syntax

stringName.small()

stringName is any string or a property of an existing object.

Description

Use the small method with the write or writeln methods to format and display a string in a document.

Applies to

string

Examples

The following example uses string methods to change the size of a string:

var worldString="Hello, world"

document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))

123

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also

• big, fontsize methods

sqrt method

Returns the square root of its argument.

Syntax

Math.sqrt(number)

number is any non-negative numeric expression. If the value of number is outside the suggested range, the
return value is always 0.

Applies to

Math

Examples

//Displays the value 3
document.write("The square root of 9 is " + Math.sqrt(9))

//Displays the value 1.414213562373095
document.write("<P>The square root of 2 is " + Math.sqrt(2))

//Displays the value 0 because the argument is out of range
document.write("<P>The square root of -1 is " + Math.sqrt(-1))

strike method

Causes the calling string object to be displayed as struck out text by surrounding it with the HTML tags
<STRIKE> and </STRIKE> .

Syntax

stringName.strike()

stringName is any string or a property of an existing object.

Description

 124

Use the strike method with the write or writeln methods to format and display a string in a document.

Applies to

string

Examples

The following example uses string methods to change the formatting of a string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also

• blink, bold, italics methods

sub method

Causes the calling string object to be displayed as a subscript by surrounding it with the HTML tags
_{and}.

Syntax

stringName.sub()

stringName is any string or a property of an existing object.

Description

Use the sub method with the write or writeln methods to format and display a string in a document.

Applies to

string

Examples

125

The following example uses the sub and sup methods to format a string:

var superText="superscript"
var subText="subscript"

document.write("This is what a " + superText.sup() + " looks like.")
document.write("<P>This is what a " + subText.sub() + " looks like.")

The previous example produces the same output as the following HTML:

This is what a ^{superscript} looks like.
<P>This is what a _{subscript} looks

See also

• sup method
like.

submit method

Submits a form.

Syntax

formName.submit()

formName is the name of any form or an element in the forms array.

Description

The submit method submits the specified form. It performs the same action as a submit button.

Applies to

form

Examples

The following example submits a form called musicChoice:

document.musicChoice.submit()

If musicChoice is the first form created, you also can submit it as follows:

document.forms[0].submit()

See also

• submit object

 126

substring method

The substring method returns a subset of a string object.

Syntax

stringName.substring(indexA, indexB)

stringName is any string or a property of an existing object.
indexA is any integer from 0 to stringName.length() - 1.
indexB is any integer from 0 to stringName.length() - 1.

Description

Characters in a string are indexed from left to right. The index of the first character is 0, and the index of
the last character is stringName.length - 1.

If indexA is less than indexB, the substring method returns the subset starting with the character at indexA
and ending with the character before indexB. If indexA is greater than indexB, the substring method
returns the subset starting with the character at indexB and ending with the character before indexA. If
indexA is equal to indexB, the substring method returns the empty string.

Applies to

string

Examples

The following example uses substring to display characters from the string "Netscape".

var anyString="Netscape"

//Displays "Net"
document.write(anyString.substring(0,3))
document.write(anyString.substring(3,0))
//Displays "cap"
document.write(anyString.substring(4,7))
document.write(anyString.substring(7,4))

sup method

Causes the calling string object to be displayed as a superscript by surrounding it with the HTML tags
^{and}.

Syntax

stringName.sup()

stringName is the name of any string variable.

127

Description

Use the sup method with the write or writeln methods to format and display a string in a document.

Applies to

string

Examples

The following example uses the sub and sup methods to format a string:

var superText="superscript"
var subText="subscript"

document.write("This is what a " + superText.sup() + " looks like.")
document.write("<P>This is what a " + subText.sub() + " looks like.")

The previous example produces the same output as the following HTML:

This is what a ^{superscript} looks like.
<P>This is what a _{subscript} looks like.

See also

• sub method

tan method

Returns the tangent of its argument.

Syntax

Math.tan(number)

number is a numeric expression representing the size of an angle in radians. The tan method returns a
numeric which represents the tangent of the angle.

Applies to

Math

Examples

//Displays the value 0.9999999999999999
document.write("The tangent of pi/4 radians is " + Math.tan(Math.PI/4))

//Displays the value 0

 128

document.write("<P>The tangent of 0 radians is " + Math.tan(0))

See also

• acos, asin, atan, cos, sin methods

toGMTString method

Converts a date to a string, using the Internet GMT conventions.

Syntax

dateObjectName.toGMTString()

dateObjectName is either the name of a date object or a property of an existing object.

Applies to

Date

Examples

In the following example, today is a date object:

today.toGMTString()

In this example, toGMTString converts the date to GMT (UTC) using the operating system's time zone offset and
returns a string value in the following form:

Mon, 18 Dec 1995 17:28:35 GMT

See also

• toLocaleString method

toLocaleString method

Converts a date to a string, using the locale conventions.

Syntax

dateObjectName.toLocaleString()

dateObjectName is either the name of a date object or a property of an existing object.

Applies to

129

Date

Examples

In the following example, today is a date object:

today.toLocaleString()

In this example, toLocaleString returns a string value in the following form:

12/18/95 17:28:35

See also

• toGMTString method

toLowerCase method

Converts the calling string to lower case.

Syntax

stringName.toLowerCase()

stringName is any string or a property of an existing object.

Applies to

string

Examples

The following examples both yield "alphabet".

var upperText="ALPHABET"
document.write(upperText.toLowerCase())

"ALPHABET".toLowerCase

See also

• toUpperCase method

toString method

Converts the value of a Date object or the current location object to a string.

Syntax

 130

1. dateObjectName.getDate()

dateObjectName is the name of a date object.

2. location.toString()

Description

The value returned by the method location.toString() is the same as the value of the property location.href.

Applies to

Date, location objects

Examples

The following example converts the Date object theBigDay to a string:

theBigDay.toString()

The following example displays the value of the current location:

document.write("The value of location.toString() is "+ location.toString())

toUpperCase method

Converts the calling string to upper case.

Syntax

stringName.toUpperCase()

stringName is any string or a property of an existing object.

Applies to

string

Examples

The following examples both yield "ALPHABET".

var lowerText="alphabet"
document.write(lowerText.toUpperCase())

"alphabet".toUpperCase

131

See also

• toLowerCase method

unEscape function

Returns the ASCII character for the specified value.

Syntax

unescape(string)

string is a string of the form "%xx", where xx is a number between 0 and 255 (decimal) or 0x0 and 0xFF
(hexadecimal).
Description

The escape function is a built-in JavaScript function. It is not a method associated with any object, but is
part of the language itself.

The string returned by the unescape function is a non-alphanumeric character in the ISO Latin-1 character set.

Examples

The following example returns "&"

unescape("%26")

See also

• escape function

UTC method

Returns the number of milliseconds in a date object since January 1, 1970 00:00:00, Universal Coordi-
nated Time (GMT).

Syntax

Date.UTC(year, month, day [, hrs] [, min] [, sec])

year is a year after 1900.
month is a month between 0-11.
date is a day of the month between 1-31.
hrs is hours between 0-23.
min is minutes between 0-59.
sec is seconds between 0-59.

 132

Description

UTC takes comma-delimited date parameters and returns the number of milliseconds since January 1, 1970
00:00:00, Universal Coordinated Time (GMT).

Because UTC is a static method of Date, you always use it as Date.UTC() , rather than as a method of a date
object you created.

Applies to

Date

Examples

The following statement creates a date object using GMT instead of local time:

gmtDate = new Date(Date.UTC(96, 11, 1, 0, 0, 0))

See also

• parse method

write method

Writes one or more HTML expressions to a document in the specified window.

Syntax

write(expression1 [,expression2], ...[,expressionN])

expression1 through expressionN are any JavaScript expressions.

Description

The write method displays any number of expressions in a document window. You can specify any
JavaScript expression with the write method, including numerics, strings, or logicals.

The write method is the same as the writeln method, except the write method does not append a newline
character to the end of the output.

Use the write method within any <SCRIPT> tag or within an event handler. Event handlers execute after
the original document closes, so the write method will implicitly open a new document of mimeType text/html

if you do not explicitly issue a document.open() method in the event handler.

Applies to

133

document

Examples

In the following example, the write method takes several arguments, including strings, a numeric, and a variable:

var mystery = "world"
// Displays Hello world testing 123
msgWindow.document.write("Hello ", mystery, " testing ", 123)

In the following example, the write method takes two arguments. The first argument is an assignment expression,
and the second argument is a string literal.

//Displays Hello world...
msgWindow.document.write(mystr = "Hello "+ "world...")

In the following example, the write method takes a single argument that is a conditional expression. If the value of
the variable age is less than 18, the method displays "Minor". If the value of age is greater than or equal to 18, the
method displays "Adult".

msgWindow.document.write(status = (age >= 18) ? "Adult" : "Minor")

See also

• close, clear, open, writeln methods

writeln method

Writes one or more HTML expressions to a document in the specified window and follows them with a
newline character.

Syntax

writeln(expression1 [,expression2], ...[,expressionN])

expression1 through expressionN are any JavaScript expressions.

Description

The writeln method displays any number of expressions in a document window. You can specify any
JavaScript expression, including numerics, strings, or logicals.

The writeln method is the same as the write method, except the writeln method appends a newline charac-
ter to the end of the output.

Use the writeln method within any <SCRIPT> tag or within an event handler. Event handlers execute after
the original document closes, so the writeln method will implicitly open a new document of mimeType
text/html if you do not explicitly issue a document.open() method in the event handler.

 134

Applies to

document

Examples

All the examples used for the write method are also valid with the writeln method.

See also

• close, clear, open, write methods

135

Properties
The following properties are available in JavaScript:

• action • E • links • selected
• alinkColor • encoding • LN2 •selectedIndex
• anchors •elements •LN10 • self
• appCodeName •fgColor • location • SQRT1_2
• appName •forms • method • SQRT2
• appVersion •frames •name •status
• bgColor • hash • options •target
• checked •host • parent •text
• cookie • hostname • pathname •title
• defaultChecked •href • PI • top
• defaultSelected •index • port • userAgent
• defaultStatus • lastModified •protocol • value
• defaultValue •length • referrer •vlinkColor

• linkColor • search •window

action property

A string specifying the URL of the server to which form field input information is sent.

Syntax

formName.action

formName is the name of any form or an element in the forms array.

Description

The action property is a reflection of the ACTION attribute of the HTML FORM tag. You can set this property
before or after the HTML source has been through layout.

Applies to

form

Examples

The following example sets the action property of the musicForm form to the value of the variable urlName:

document.musicForm.action=urlName

See also
• method, target properties

 136

alinkColor property

The color of an active link (after mouse-button down, but before mouse-button up).

Syntax

document.alinkColor

Description

The alinkColor property is expressed as a hexadecimal RGB triplet or as one of the string literals listed in the
Color Appendix. This property is the JavaScript reflection of the ALINK attribute of the HTML BODY tag. You
cannot set this property after the HTML source has been through layout.

If you express the color as a hexadecimal RGB triplet, you must use the format rrggbb. For example, the hexa-
decimal RGB values for salmon are red=FA, green=80, and blue=72, so the RGB triplet for salmon is "FA8072".

Applies to

document

Examples

The following example sets the color of active links to aqua using a string literal:

document.alinkColor="aqua"

The following example sets the color of active links to aqua using a hexadecimal triplet:

document.alinkColor="00FFFF"

See also

• bgColor, fgColor, linkColor, and vlinkColor properties

anchors property

xxx

Syntax

xxx

Description

Array of objects corresponding to named anchors (tags) in source order.
The anchors array contains an entry for each anchor in a document. For example, if a document contains three

137

anchors, these anchors are reflected as document.anchors[0], document.anchors[1], and
document.anchors[2].

To obtain the number of anchors in a document, use the length property: document.anchors.length .

Applies to

document

Examples

xxx Examples to be supplied.

See also

• links, length properties

appCodeName property

A string specifying the code name of the browser.

Syntax

navigator.appCodeName

Description

appCodeName is a read-only property.

Applies to

navigator

Examples
The following example displays the value of the appCodeName property:

document.write("The value of navigator.appCodeName is " + navigator.appCodeName)

This example displays information such as the following:

The value of navigator.appCodeName is Mozilla

See also

• appName, appVersion, userAgent properties

 138

appName property

A string specifying the name of the browser.

Syntax

navigator.appName

Description

appName is a read-only property

Applies to

navigator

Examples

The following example displays the value of the appName property:

document.write("The value of navigator.appName is " + navigator.appName)

This example displays information such as the following:

The value of navigator.appName is Netscape

See also

• appVersion, appCodeName, userAgent properties

appVersion property

A string specifying version information for the Navigator.

Syntax

navigator.appVersion

Description

The appVersion property specifies version information in the following format:
releaseNumber (platform; country)

The values contained in this format are the following:
• releaseNumber is the version number of the Navigator. For example, "2.0b4" specifies Navigator 2.0,

beta 4.
• platform is the platform upon which the Navigator is running. For example, "Win16" specifies a 16-bit

139

version of Windows such as Windows 3.11.
• country is either "I" for the international release, or "U" for the domestic U.S. release. The domestic

release has a stronger encryption feature than the international release.

appVersion is a read-only property.

Applies to

navigator

Examples

The following example displays version information for the Navigator:

document.write("The value of navigator.appVersion is " + navigator.appVersion)

This example displays information such as the following:

The value of navigator.appVersion is 2.0b5 (Win95, I)

See also
• appName, appCodeName, userAgent properties

bgColor property

The color of the document background.

Syntax

document.bgColor

Description

The bgColor property is expressed as a hexadecimal RGB triplet or as one of the string literals listed in the Color
Appendix. This property is the JavaScript reflection of the BGCOLOR attribute of the HTML BODY tag. The
default value of this property is set by the user on the colors tab of the Preferences dialog box, which is displayed
by choosing General Preferences from the Options menu. You can set this property before or after the HTML
source has been through layout.

If you express the color as a hexadecimal RGB triplet, you must use the format rrggbb. For example, the hexa-
decimal RGB values for salmon are red=FA, green=80, and blue=72, so the RGB triplet for salmon is "FA8072".

Applies to

document

Examples

 140

The following example sets the color of the document background to aqua using a string literal:

document.bgColor="aqua"

The following example sets the color of the document background to aqua using a hexadecimal triplet:

document.bgColor="00FFFF"

See also

• alinkColor, fgColor, linkColor, and vlinkColor properties

checked property

A Boolean value specifying the selection state of a checkbox or radio element.

Syntax

1. checkboxName.checked
2. radioName [index].checked

checkboxName is the value of the NAME attribute of a checkbox object.
radioName is the value of the NAME attribute of a radio object.
index is an integer representing a radio button in a radio object.

Description

If a checkbox or radio element is selected, the value of the checked property is true; otherwise, it is false.

You can set the checked property at any time. The display of the checkbox element updates immediately when
you set the checked property.

Applies to

checkbox, radio

Examples

The following example examines an array of radio elements called musicType on the musicForm form to deter-
mine which button is selected. The VALUE attribute of the selected button is assigned to the checkedButton
variable.

function stateChecker() {
 var i = ""
 var checkedButton = ""
 for (i in document.musicForm.musicType) {
 if (document.musicForm.musicType[i].checked=="1") {

141

 checkedButton=document.musicForm.musicType[i].value
 }
 }
}

See also

• defaultChecked property

cookie property

String value of a cookie, which is a small piece of information stored by the Navigator in the cookies.txt file.

Syntax

document.cookie

Description

Use string methods such as substring, charAt, indexOf, and lastIndexOf to determine the value stored in the
cookie. See the Netscape cookie specification for a complete specification of the cookie syntax.

You can set the cookie property at any time.

Applies to

document

Examples

The following function uses the cookie property to record a reminder for users of an application. The "expires="
component sets an expiration date for the cookie, so it persists beyond the current browser session.

 function RecordReminder(time, expression) {
 // record a cookie of the form "@<T>=<E>" to map from <T> in milliseconds
 // since the epoch, returned by Date.getTime(), onto an encoded expression,
 // <E> (encoded to contain no white space, semicolon, or comma characters)
 document.cookie = "@" + time + "=" + expression + ";"
 // set the cookie expiration time to one day beyond the reminder time
 document.cookie += "expires=" + Date(time + 24*60*60*1000)
}

When the user loads the page that contains this function, another function uses indexOf("@") and indexOf("=") to
determine the date and time stored in the cookie.

See Also
• hidden object

 142

defaultChecked property

A Boolean value indicating the default selection state of a checkbox or radio element.

Syntax

1. checkboxName .defaultChecked
2. radioName [index].defaultChecked

checkboxName is the value of the NAME attribute of a checkbox object.
radioName is the value of the NAME attribute of a radio object.
index is an integer representing a radio button in a radio object.

Description

If an checkbox or radio element is selected by default, the value of the defaultChecked property is true; other-
wise, it is false. defaultChecked initially reflects whether the HTML CHECKED attribute is used within an
INPUT tag; however, setting defaultChecked may override the CHECKED attribute.

You can set the defaultChecked property at any time. The display of the checkbox element does not update when
you set the defaultChecked property, only when you set the checked property.

Applies to

checkbox, radio

Examples

The following example resets an array of radio elements called musicType on the musicForm form to the default
selection state.

function radioResetter() {
 var i=""
 for (i in document.musicForm.musicType) {
 if (document.musicForm.musicType[i].defaultChecked==true) {
 document.musicForm.musicType[i].checked=true
 }
 }
}

See also

 checked property

defaultSelected property

A Boolean value indicating the default selection state of an option in a select element.

143

Syntax

selectName .options[index].defaultSelected

selectName is the value of the NAME attribute of a select object.
index is an integer representing an option in a select object.

Description

If an option in a select element is selected by default, the value of the defaultSelected property is true; otherwise,
it is false. defaultSelected initially reflects whether the HTML SELECTED attribute is used within an OPTION
tag; however, setting defaultSelected may override the SELECTED attribute.

Applies to

options property

Examples

In the following example, the restoreDefault() function returns the musicType element to its default state. The for
loop evaluates every option in the select element. The if statement sets the selected property if defaultSelected is
true.

function restoreDefault() {
 for (var i = 0; i < document.musicForm.musicType.length; i++) {
 if (document.musicForm.musicType.options[i].defaultSelected == true) {
 document.musicForm.musicType.options[i].selected=true
 }
 }
}

The previous example assumes that the select element is similar to the following:

<SELECT NAME="musicType">
 <OPTION SELECTED> R&B
 <OPTION> Jazz
 <OPTION> Blues
 <OPTION> New Age
</SELECT>

See also

• index, selected and selectedIndex properties

defaultStatus property

The default message displayed in the status bar at the bottom of the window.

 144

Syntax

windowReference .defaultStatus

windowReference is a valid way of referring to a window, as described in the window object.

Description

The defaultStatus message appears when nothing else is in the status bar. Do not confuse the defaultStatus
property with the status property. The status property reflects a priority or transient message in the status bar,
such as the message that appears when a mouseOver event occurs over an anchor.

You can set the defaultStatus property at any time. You must return true if you want to set the defaultStatus
property in the onMouseOver event handler.

Applies to

window

Examples

In the following example, the statusSetter() function sets both the status and defaultStatus properties in an
onMouseOver event handler:

function statusSetter() {
 window.defaultStatus = "Click the link for the Netscape home page"
 window.status = "Netscape home page"
}

<A HREF="http://www.netscape.com" onMouseOver = "statusSetter(); return
true">Netscape

In the previous example, notice that the onMouseOver event handler returns a value of true. You must return true
to set status or defaultStatus in an event handler.

See also

• status property

defaultValue property

xxx

Syntax

xxx

Description

145

For hidden, password, text, and textarea, string, the initial contents of the field.

Applies to

hidden, password, text, textarea

Examples

xxx Examples to be supplied.

See also

• value property

E property

Euler's constant and the base of natural logarithms, approximately 2.718.

Syntax

Math.E

Description

Because E is a constant, it is a read-only property of Math.

Applies to

Math

Examples

The following example displays Euler's constant:

document.write("Euler's constant is " + Math.E)

See also

• LN2, LN10, PI, SQRT1_2, SQRT2 properties

elements property

xxx

Syntax

 146

xxx
Description

Array of objects corresponding to form elements (such as checkbox, radio, and text objects) in source order.

The elements array contains an entry for each object in a form. For example, if a form has a text field, a radio
button group, and a checkbox, these elements are reflected as formName.elements[0],

formName.elements[1] , and
formName.elements[2].

Applies to

form

Examples

xxx Examples to be supplied.

encoding property

A string specifying the MIME encoding of the form.

Syntax

formName.encoding

formName is the name of any form or an element in the forms array.

Description

The encoding property is a reflection of the ENCTYPE attribute of the HTML FORM tag.

Applies to

form

Examples

xxx To be supplied

See also

xxx To be supplied

147

fgColor property

The color of the document foreground text.

Syntax

document.fgColor

Description

The fgColor property is expressed as a hexadecimal RGB triplet or as one of the string literals listed in the Color
Appendix. This property is the JavaScript reflection of the FGCOLOR attribute of the HTML BODY tag. The
default value of this property is set by the user on the colors tab of the Preferences dialog box, which is displayed
by choosing General Preferences from the Options menu. You cannot set this property after the HTML source
has been through layout.

If you express the color as a hexadecimal RGB triplet, you must use the format rrggbb. For example, the hexa-
decimal RGB values for salmon are red=FA, green=80, and blue=72, so the RGB triplet for salmon is "FA8072".

Applies to

document

Examples

The following example sets the color of the foreground to aqua using a string literal:

document.fgColor="aqua"

The following example sets the color of the foreground to aqua using a hexadecimal triplet:
document.fgColor="00FFFF"

See also

• alinkColor, bgColor, linkColor, and vlinkColor properties

forms property

xxx

Syntax

xxx

Description

 148

Array of objects corresponding to named forms (<FORM NAME=""> tags) in source order.

The forms array contains an entry for each form object in a document. For example, if a document contains three
forms, these forms are reflected as document.forms[0], document.forms[1] , and document.forms[2] .

You can refer to a form's elements by using the forms array. For example, you would refer to a text object named
quantity in the second form as:

document.forms[1].quantity

You would refer to the value property of this text object as:

document.forms[1].quantity.value

To obtain the number of forms in a document, use the length property: document.forms.length .

Applies to

document

Examples

xxx Examples to be supplied.

See also

• length property

frames property

xxx

Syntax

xxx

Description

Array of objects corresponding to child frame windows (<FRAMESET> tag) in source order.

The frames array contains an entry for each child frame in a window. For example, if a window contains
three child frames, these frames are reflected as window.frames[0], window.frames[1] , and
window.frames[2] .

To obtain the number of number of child frames in a window, use the length property:
window.frames.length.

149

Applies to

window

Examples

xxx Examples to be supplied.

See also

• length property

hash property

A string beginning with a hash mark (#) that specifies an anchor name fragment in the URL.

Syntax

location.hash

Description

The hash property specifies a portion of the URL.

You can set the hash property at any time, although it is safer to set the href property to change a location. If the
hash that you specify cannot be found in the current location, you will get an error.

See RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html) for complete information about the hash.

Applies to

location

Examples

See the examples for the href property.

See also

• host, hostname, href, pathname, port, protocol, search properties

host property

A string specifying the hostname:port portion of the URL.

 150

Syntax

location.host

Description

The host property specifies a portion of the URL. The host property is the concatenation of the hostname and
port properties, separated by a colon. When the port property is null, the host property is the same as the
hostname property.

You can set the host property at any time, although it is safer to set the href property to change a location. If the
host that you specify cannot be found in the current location, you will get an error.

See Section 3.1 of RFC 1738 for complete information about the hostname and port.

Applies to

location

Examples

See the examples for the href property.

See also

• hash, hostname, href, pathname, port, protocol, search properties

hostname property

A string specifying the domain name or IP address of a network host.

Syntax

location.hostname

Description

The hostname property specifies a portion of the URL. The hostname property is a substring of the host property.
The host property is the concatenation of the hostname and port properties, separated by a colon. When the port
property is null, the host property is the same as the hostname property.

You can set the hostname property at any time, although it is safer to set the href property to change a location. If
the hostname that you specify cannot be found in the current location, you will get an error.

See Section 3.1 of RFC 1738 for complete information about the hostname.

151

Applies to

location

Examples

See the examples for the href property.

See also

• hash, host, href, pathname, port, protocol, search properties

href property

A string specifying the entire URL.

Syntax

location.href

Description

The href property specifies the entire URL. Other location object properties are substrings of the href property.
You can set the href property at any time.

Applies to

location

Examples

In the following example, the window.open statement creates a window called newWindow and loads the
specified URL into it. The document.write statements display all the properties of newWindow.location in a
window called msgWindow.

newWindow=window.open("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.href = " + newWindow.location.href +
"<P>")
msgWindow.document.write("newWindow.location.protocol = " +
newWindow.location.protocol + "<P>")
msgWindow.document.write("newWindow.location.host = " + newWindow.location.host +
"<P>")
msgWindow.document.write("newWindow.location.hostName = " +
newWindow.location.hostName + "<P>")
msgWindow.document.write("newWindow.location.port = " + newWindow.location.port +
"<P>")
msgWindow.document.write("newWindow.location.pathname = " +
newWindow.location.pathname + "<P>")

 152

msgWindow.document.write("newWindow.location.search = " +
newWindow.location.search + "<P>")
msgWindow.document.write("newWindow.location.hash = " + newWindow.location.hash +
"<P>")
msgWindow.document.close()

The previous example displays the following output:

newWindow.location.href = http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object
newWindow.location.protocol = http:
newWindow.location.host = home.netscape.com
newWindow.location.hostName = home.netscape.com
newWindow.location.port =
newWindow.location.pathname = /comprod/products/navigator/version_2.0/script/
script_info/objects.html
newWindow.location.search =
newWindow.location.hash = #checkbox_object

See also

• hash, host, hostname, pathname, port, protocol, search properties

index property

An integer representing the index of a radio element or an option in a select element.

Syntax

1. radioName .index
2. selectName .options[indexValue].index

radioName is the value of the NAME attribute of a radio object.
selectName is the value of the NAME attribute of a select object.
indexValue is an integer representing an option in a select object.

Description

For radio, number, the ordinal number of the radio field, 0-based. For a select object option, the number identify-
ing the position of the option in the selection, starting from zero.

Applies to

radio object, options property

Examples

xxx Examples to be supplied.

153

See also

For options:
• defaultSelected, selected, selectedIndex properties

lastModified property

A string representing the date that a document was last modified.

Syntax

document.lastModified

Description

lastModified is a read-only property.

Applies to

document

Examples

In the following example, the value of the lastModified property is assigned to a variable called currentDate:

var currentDate = ""
newWindow = window.open("http://www.netscape.com")
currentDate = newWindow.document.lastModified

length property

xxx

Syntax

xxx

Description
For a history object, the length of the history list. For a string object, the integer length of the string. For a radio
object, the number of radio buttons in the object. For an anchors, forms, frames, links, or options array, the
number of elements in the array. For a select element, the number of options in the element.

For a null string, length is zero.

 154

Applies to
• history, radio, select, string objects
• anchors, forms, frames, links, options properties

Examples

xxx Example with history to be supplied.

If the string object mystring is "netscape", then mystring.length returns the integer 8.

If the current document contains five forms, then document.forms.length returns the integer 5.

linkColor property

The color of the document hyperlinks.

Syntax

document.linkColor

Description

The linkColor property is expressed as a hexadecimal RGB triplet or as one of the string literals listed in the
Color Appendix. This property is the JavaScript reflection of the LINK attribute of the HTML BODY tag. The
default value of this property is set by the user on the colors tab of the Preferences dialog box, which is displayed
by choosing General Preferences from the Options menu. You cannot set this property after the HTML source
has been through layout.

If you express the color as a hexadecimal RGB triplet, you must use the format rrggbb. For example, the hexa-
decimal RGB values for salmon are red=FA, green=80, and blue=72, so the RGB triplet for salmon is "FA8072".

Applies to

document

Examples

The following example sets the color of document links to aqua using a string literal:

document.linkColor="aqua"

The following example sets the color of document links to aqua using a hexadecimal triplet:

document.linkColor="00FFFF"

See also

• alinkColor, bgColor, fgColor, and vlinkColor properties

155

links property

xxx

Syntax

xxx

Description

Array of objects corresponding to link objects (tags) in source order.

The links array contains an entry for each link object in a document. For example, if a document contains
three link objects, these links are reflected as document.links[0], document.links[1] , and
document.links[2].

To obtain the number of links in a document, use the length property: document.links.length .

Applies to

document

Examples

xxx Examples to be supplied.

See also

• anchors, length properties

LN2 property

The natural logarithm of two, approximately 0.693.

Syntax

Math.LN2

Description

Because LN2 is a constant, it is a read-only property of Math.

Applies to
Math

 156

Examples

The following example displays the natural log of 2:

document.write("The natural log of 2 is " + Math.LN2)

See also

• E, LN10, PI, SQRT1_2, SQRT2 properties

LN10 property

The natural logarithm of ten, approximately 2.302.

Syntax

Math.LN10

Description

Because LN10 is a constant, it is a read-only property of Math.

Applies to

Math

Examples

The following example displays the natural log of 10:

document.write("The natural log of 10 is " + Math.LN10)

See also

• E, LN2, PI, SQRT1_2, SQRT2 properties

location property

A string specifying the complete URL of the document.

Syntax

document.location

Description

157

Do not confuse the location object with the location property of the document object. The location object has
properties with values you can change, and the location property does not. document.location is a string-
valued property that usually matches what window.location is set to when you load the document, but redirec-
tion may change it.

location is a read-only property of document.

Applies to

document

Examples

The following example displays the URL of the current document:

document.write("The current URL is " + document.location)

See also
• location object

method property

A string specifying how form field input information is sent to the server.

Syntax

formName.method

formName is the name of any form or an element in the forms array.

Description

The method property is a reflection of the METHOD attribute of the HTML FORM tag. You cannot set this
property after the HTML source has been through layout. The method property can evaluate to either "get" or
"post". See the form object for more information.

Applies to

form

Examples

The following example sets the method property of the musicInfo form to "post":

musicInfo.method="post"

See also

• action, target properties

 158

name property

xxx

Syntax

xxx

Description

A string whose value is the same as the NAME attribute of the object. Note that for button, reset, and
submit objects, this is the internal name for the button, not the label that appears onscreen.

Applies to

• button, checkbox, hidden, password, radio, reset, select, submit, text, textarea

Examples

xxx Examples to be supplied.

See also

 • value property

options property

xxx

Syntax

xxx

Description

Array of objects corresponding to options in a select object (<OPTION> tags) in source order.

The options array contains an entry for each option in a select object. For example, if a select object named
musicStyle contains three options, these options are reflected as musicStyle.options[0],

musicStyle.options[1] , and musicStyle.options[2].

To obtain the number of options in a select object, use the length property of the select object:
selectName .length .

Applies to
select

159

Properties
• defaultSelected
• index
• selected reflects the SELECTED argument
• text
• value

Examples

xxx Examples to be supplied.

See also

• length property

parent property

xxx

Syntax

xxx

Description

In a <FRAMESET> and <FRAME> relationship, the <FRAMESET> window.

Applies to

window

Examples

xxx Examples to be supplied.

pathname property

A string specifying the url-path portion of the URL.

Syntax

location.pathname

Description

 160

The pathname property specifies a portion of the URL. The pathname supplies the details of how the specified
resource can be accessed.

You can set the pathname property at any time, although it is safer to set the href property to change a location. If
the pathname that you specify cannot be found in the current location, you will get an error.

See Section 3.1 of RFC 1738 for complete information about the pathname.

Applies to

location

Examples

See the examples for the href propeerty.

See also

• hash, host, hostname, href, port, protocol, search properties

PI property

The ratio of the circumference of a circle to its diameter, approximately 3.1415.

Syntax

Math.PI

Description

Because PI is a constant, it is a read-only property of Math.

Applies to

Math

Examples

The following example displays the value of pi:

document.write("The value of pi is " + Math.PI)

See also

• E, LN2, LN10, SQRT1_2, SQRT2 properties

161

port property

A string specifying the port number to connect to, if any.

Syntax

location.port

Description

The port property specifies a portion of the URL. The port property is a substring of the host property. The host
property is the concatenation of the hostname and port properties, separated by a colon. When the port property
is null, the host property is the same as the hostname property.

You can set the port property at any time, although it is safer to set the href property to change a location. If the
port that you specify cannot be found in the current location, you will get an error.

See Section 3.1 of RFC 1738 for complete information about the port.

Applies to

location

Examples

See the examples for the href property.

See also

• hash, host, hostname, href, pathname, protocol, search properties

protocol property

A string specifying the beginning of the URL, up to and including the first colon.

Syntax

location.protocol

Description

The protocol property specifies a portion of the URL. The protocol indicates the access method of the URL. For
example, a protocol of "http:" specifies Hypertext Transfer Protocol, and a protocol of "javascript:" specifies
JavaScript code.

You can set the protocol property at any time, although it is safer to set the href property to change a location. If
the protocol that you specify cannot be found in the current location, you will get an error.

 162

The protocol property represents the scheme name of the URL. See Section 2.1 of RFC 1738 for complete
information about the protocol.

Applies to

location

Examples

See the examples for the href property.

See also

• hash, host, hostname, href, pathname, port, search properties

referrer property

xxx

Syntax

xxx

Description

xxx Description to be supplied.
Applies to

document

Examples

xxx Examples to be supplied.

search property

A string beginning with a question mark that specifies any query information in the URL.

Syntax

location.search

Description

The search property specifies a portion of the URL.

163

You can set the search property at any time, although it is safer to set the href property to change a location. If the
search that you specify cannot be found in the current location, you will get an error.

See Section 3.3 of RFC 1738 for complete information about the search.

Applies to

location

Examples

In the following example, the window.open statement creates a window called newWindow and loads the
specified URL into it. The document.write statements display all the properties of newWindow.location in a
window called msgWindow.

newWindow=window.open("http://guide-p.infoseek.com/WW/NS/
Titles?qt=RFC+1738+&col=WW")
msgWindow.document.write("newWindow.location.href = " + newWindow.location.href +
"<P>")
msgWindow.document.write("newWindow.location.protocol = " +
newWindow.location.protocol + "<P>")
msgWindow.document.write("newWindow.location.host = " + newWindow.location.host +
"<P>")
msgWindow.document.write("newWindow.location.hostName = " +
newWindow.location.hostName + "<P>")
msgWindow.document.write("newWindow.location.port = " + newWindow.location.port +
"<P>")
msgWindow.document.write("newWindow.location.pathname = " +
newWindow.location.pathname + "<P>")
msgWindow.document.write("newWindow.location.search = " +
newWindow.location.search + "<P>")
msgWindow.document.write("newWindow.location.hash = " + newWindow.location.hash +
"<P>")
msgWindow.document.close()

The previous example displays the following output:

newWindow.location.href = http://guide-p.infoseek.com/WW/NS/
Titles?qt=RFC+1738+&col=WW
newWindow.location.protocol = http:
newWindow.location.host = guide-p.infoseek.com
newWindow.location.hostName = guide-p.infoseek.com
newWindow.location.port =
newWindow.location.pathname = /WW/NS/Titles
newWindow.location.search = ?qt=RFC+1738+&col=WW
newWindow.location.hash =

See also

• hash, host, hostname, href, pathname, port, protocol properties

 164

selected property

A Boolean value specifying the current selection state of an option in a select object.

Syntax

selectName .options[index].selected

selectName is the value of the NAME attribute of a select object.
index is an integer representing an option in a select object.

Description

If an option in a select element is selected, the value of its selected property is true; otherwise, it is false.

You can set the selected property at any time. The display of the select element updates immediately when you
set the selected property.

In general, the selected property is more useful than the selectedIndex property for select elements that are
created with the MULTIPLE attribute. With the selected property, you can evaluate every option in the options
array to determine multiple selections, and you can select individual options without clearing the selection of other
options.

Applies to

options property

Examples

See the examples for the defaultSelected property.

See also

• defaultSelected property

selectedIndex property

An integer specifying the index of the selected item.

Syntax

selectName .selectedIndex

selectName is the value of the NAME attribute of a select object.

Description

165

Options in a select element are indexed in the order in which they are defined, starting with an index of 0. You can
set the selectedIndex property at any time. The form element updates immediately when you set the
selectedIndex property.

In general, the selectedIndex property is more useful for select elements that are created without the MULTIPLE
attribute. If you evaluate selectedIndex when multiple options are selected, the selectedIndex property specifies
the index of the first option only. Setting selectedIndex clears any other options that are selected in the element.

The selected property of the select element's options array is more useful for select elements that are created with
the MULTIPLE attribute. With the selected property, you can evaluate every option in the options array to
determine multiple selections, and you can select individual options without clearing the selection of other options.

Applies to

select

Examples

In the following example, the getSelectedIndex() function assigns the selected index in the musicType element to
the variable chosenIndex :

function getSelectedIndex() {
 var chosenIndex=""
 chosenIndex=document.musicForm.musicType.selectedIndex
}

The previous example assumes that the select element is similar to the following:

<SELECT NAME="musicType">
 <OPTION SELECTED> R&B
 <OPTION> Jazz
 <OPTION> Blues
 <OPTION> New Age
</SELECT>

See also

• defaultSelected, index, selected properties

self property

The self property refers to the current window.

Syntax

xxx

Description
The self property refers to the current window. Use the self property to disambiguate a window property from a

 166

form of the same name. You can also use the self property to make your code more readable.

Applies to

window

Examples

In the following example, self.status is used to set the status property. This usage disambiguates the status
property of a window from a form called "status".

<A HREF=""
 onClick="this.href=pickRandomURL()"
 onMouseOver="self.status='Pick a random URL' ; return true">
Go!

See also

• window property

SQRT1_2 property

The square root of one-half; equivalently, one over the square root of two, approximately 0.707.

Syntax

Math.SQRT1_2

Description

Because SQRT1_2 is a constant, it is a read-only property of Math.

Applies to

Math

Examples

The following example displays 1 over the square root of 2:

document.write("1 over the square root of 2 is " + Math.SQRT1_2)

See also

• E, LN2, LN10, PI, SQRT2 properties

167

SQRT2 property

The square root of two, approximately 1.414.

Syntax

Math.SQRT2

Description

Because SQRT2 is a constant, it is a read-only property of Math.

Applies to

Math

Examples

The following example displays the square root of 2:

document.write("The square root of 2 is " + Math.SQRT2)

See also

 • E, LN2, LN10, PI, SQRT1_2 properties

status property

Specifies a priority or transient message in the status bar at the bottom of the window, such as the message that
appears when a mouseOver event occurs over an anchor.

Syntax

windowReference .status

windowReference is a valid way of referring to a window, as described in the window object.

Description

Do not confuse the status property with the defaultStatus property. The defaultStatus property reflects the default
message displayed in the status bar.

You can set the status property at any time. You must return true if you want to set the status property in the
onMouseOver event handler.

Applies to

 168

window

Examples

Suppose you have created a JavaScript function called pickRandomURL() that lets you select a URL at random.
You can use the onClick event handler of an anchor to specify a value for the HREF attribute of the anchor
dynamically, and the onMouseOver event handler to specify a custom message for the window in the status
property:

<A HREF=""
 onClick="this.href=pickRandomURL()"
 onMouseOver="self.status='Pick a random URL'; return true">
Go!

In the above example, the status property of the window is assigned to the window's self property, as self.status.
As this example shows, you must return true to set the status property in the onMouseOver event handler.

See also

 • defaultStatus property

target property

For form, a string specifying the name of the window that responses go to after a form has been submitted. For
link, a string specifying the name of the window that displays the content of a clicked hypertext link.

Syntax

1. formName.target
2. linkName .target

formName is the name of any form or an element in the forms array.
linkName is an element in the links array.

Description

The target property is a reflection of the TARGET attribute of the HTML FORM and A tags. You can set this
property before or after the HTML source has been through layout.

Applies to

form, link

Examples

The following example specifies that responses to the musicInfo form are displayed in the "msgWindow" window:

document.musicInfo.target="msgWindow"

169

See also

For form:
 • action, method properties

text property

xxx

Syntax

xxx

Description

String, reflection of the text after the <OPTION> tag.

Applies to

select

Examples

xxx Examples to be supplied.

title property

A string representing the title of a document.

Syntax

document.title

Description

The title property is a reflection of the value specified within the <TITLE> and </TITLE> tags. If a document
does not have a title, the title property is null.

title is a read-only property.

Applies to

document

 170

Examples

In the following example, the value of the title property is assigned to a variable called <I>docTitle</I>:

var docTitle = ""
newWindow = window.open("http://www.netscape.com")
docTitle = newWindow.document.title

top property

xxx

Syntax
xxx

Description

The top-most ancestor window, which is its own parent.

Applies to

window

Examples

xxx Examples to be supplied.

userAgent property

A string representing the value of the user-agent header sent in the HTTP protocol from client to server.

Syntax

navigator.userAgent

Description

Servers use the value sent in the user-agent header to identify the client.

userAgent is a read-only property.

Applies to

navigator

171

Examples

The following example displays userAgent information for the Navigator:

document.write("The value of navigator.userAgent is " + navigator.userAgent)

This example displays information such as the following:

The value of navigator.userAgent is Mozilla/2.0b5 (Win16; I)

See also

• appName, appVersion, appCodeName properties

value property

For button, reset, and submit objects, a string that is the same as the VALUE attribute (this is the label that
appears onscreen, not the internal name for the button). For checkbox, a string, "on" if item is checked; "off"
otherwise. For radio, a string, reflection of the VALUE attribute. For select objects, reflection of VALUE at-
tribute, sent to server on submit. For hidden, text, textarea, and string, the contents of the field.

Syntax

xxx

Description

For button, reset, and submit objects, a string that is the same as the VALUE attribute (this is the label that
appears onscreen, not the internal name for the button). For checkbox, a string, "on" if item is checked; "off"
otherwise. For radio, a string, reflection of the VALUE attribute. For select objects, reflection of VALUE at-
tribute, sent to server on submit. For text and textarea, string, the contents of the field.

If you change the value property of a text or textArea object, the object on the form is updated dynami-
cally. If you change the value property of any other type of object, the object on the form is not updated.

Applies to

button, checkbox, hidden, password, radio, reset, select, submit, text, textarea

Examples

xxx Examples to be supplied.

See also

For password, text, and textarea:
 • defaultValue property

 172

vlinkColor property

The color of visited links.

Syntax

document.vlinkColor

Description

The vlinkColor property is expressed as a hexadecimal RGB triplet or as one of the string literals listed in the
Color Appendix. This property is the JavaScript reflection of the VLINK attribute of the HTML BODY tag. The
default value of this property is set by the user on the colors tab of the Preferences dialog box, which is displayed
by choosing General Preferences from the Options menu. You cannot set this property after the HTML source
has been through layout.

If you express the color as a hexadecimal RGB triplet, you must use the format rrggbb. For example, the hexa-
decimal RGB values for salmon are red=FA, green=80, and blue=72, so the RGB triplet for salmon is "FA8072".

Applies to

document

Examples

The following example sets the color of visited links to aqua using a string literal:

document.vlinkColor="aqua"

The following example sets the color of active links to aqua using a hexadecimal triplet:

document.vlinkColor="00FFFF"

See also

• alinkColor, bgColor, fgColor, and linkColor properties

window property

xxx

Syntax

xxx

Description

173

The window property refers to the current window. Use the window property to disambiguate a property
of the window object from a form of the same name. You can also use the window property to make your code
more readable.

Applies to

window

Examples

In the following example, window.status is used to set the status property. This usage disambiguates the status
property of a window from a form called "status".

<A HREF=""
 onClick="this.href=pickRandomURL()"
 onMouseOver="window.status='Pick a random URL' ; return true">
Go!

See also

 self property

 174

Event handlers
The following event handlers are available in JavaScript:

• onBlur
• onChange
• onClick
• onFocus
• onLoad
• onMouseOver
• onSelect

 • onSubmit
• onUnload

onBlur event handler

A blur event occurs when a select, text, or textarea field on a form loses focus. The onBlur event handler
executes JavaScript code when a blur event occurs.

See the relevant objects for the onBlur syntax.

Applies to

select, text, textarea

Examples

In the following example, userName is a required text field. When a user attempts to leave the field, the
onBlur event handler calls the required() function to confirm that userName has a legal value.

<INPUT TYPE="text" VALUE="" NAME="userName" onBlur="required(this.value)">

See also

• onChange , onFocus event handlers

onChange event handler

A change event occurs when a select, text, or textarea field loses focus and its value has been modified.
The onChange event handler executes JavaScript code when a change event occurs.

Use the onChange event handler to validate data after it is modified by a user.

See the relevant objects for the onChange syntax.

175

Applies to

select, text, textarea

Examples

In the following example, userName is a text field. When a user attempts to leave the field, the onBlur
event handler calls the checkValue() function to confirm that userName has a legal value.

<INPUT TYPE="text" VALUE="" NAME="userName" onBlur="checkValue(this.value)">

See also

• onBlur , onFocus event handlers

onClick event handler

A click event occurs when an object on a form is clicked. The onClick event handler executes JavaScript
code when a click event occurs.

See the relevant objects for the onClick syntax.

Applies to

button, checkbox, radio, link, reset, submit

Examples

For example, suppose you have created a JavaScript function called compute(). You can execute the
compute() function when the user clicks a button by calling the function in the onClick event handler, as
follows:

<INPUT TYPE="button" VALUE="Calculate" onClick="compute(this.form)">

In the above example, the keyword this refers to the current object; in this case, the Calculate button. The
construct this.form refers to the form containing the button.

For another example, suppose you have created a JavaScript function called pickRandomURL() that lets
you select a URL at random. You can use the onClick event handler of an anchor to dynamically specify a
value for the HREF attribute of the anchor, as shown in the following example:

<A HREF=""
 onClick="this.href=pickRandomURL()"
 onMouseOver="window.status='Pick a random URL'; return true">
Go!

In the above example, the onMouseOver event handler specifies a custom message for the Navigator
status bar when the user places the mouse pointer over the Go! anchor. As this example shows, you must

 176

return true to set the window.status property in the onMouseOver event handler.

onFocus event handler

A focus event occurs when a field receives input focus by tabbing or clicking with the mouse. Selecting
within a field results in a select event, not a focus event. The onFocus event handler executes JavaScript
code when a focus event occurs.

See the relevant objects for the onFocus syntax.

Applies to

select, text, textarea

Examples

The following example uses an onFocus handler in the valueField textarea object to call the valueCheck()
function.

<INPUT TYPE="textarea" VALUE="" NAME="valueField" onFocus="valueCheck()">

See also

• onBlur , onChange event handlers

onLoad event handler

A load event occurs when Navigator finishes loading a window or all frames within a <FRAMESET>.
The onLoad event handler executes JavaScript code when a load event occurs.

Use the onLoad event handler within either the <BODY> or the <FRAMESET> tag, for example, <BODY

onLoad="...">.

Applies to

window

Examples

In the following example, the onLoad event handler displays a greeting message after a web page is
loaded.

<BODY onLoad="window.alert("Welcome to the Brave New World home page!")>

See also
• onUnload event handler

177

onMouseOver event handler

A mouseOver event occurs when the mouse pointer is over an object. The onMouseOver event handler
executes JavaScript code when a mouseOver event occurs.

You must return true if you want to set the status or defaultStatus properties with the onMouseOver event han-
dler.

See the relevant objects for the onMouseOver syntax.

Applies to

link

Examples

By default, the HREF value of an anchor displays in the status bar at the bottom of the Navigator when a user
places the mouse pointer over the anchor. In the following example, the onMouseOver event handler provides the
custom message "Click this if you dare."

<A HREF="http://home.netscape.com/"
 onMouseOver="window.status='Click this if you dare!'; return true">
Click me

See onClick for an example of using onMouseOver when the anchor HREF attribute is set dynamically.

onSelect event handler

A select event occurs when a user selects some of the text within a text or textarea field. The onSelect
event handler executes JavaScript code when a select event occurs.

See the relevant objects for the onSelect syntax.

Applies to

text, textarea

Examples

The following example uses an onSelect handler in the valueField text object to call the selectState()
function.

<INPUT TYPE="text" VALUE="" NAME="valueField" onFocus="selectState()">

 178

onSubmit event handler

A submit event occurs when a user submits a form. The onSubmit event handler executes JavaScript code when
a submit event occurs.

You must return true in the event handler to allow the form to be submitted; return false to prevent the
form from being submitted.

See the relevant objects for the onSubmit syntax.

Applies to

form

Examples

In the following example, the onSubmit event handler calls the badFormData() function to evaluate the data being
submitted. If the data is legal, the form is submitted; otherwise, the form is not submitted.

form.onSubmit="return badFormData(this)"

onUnload event handler

An unload event occurs when you exit a document. The onUnload event handler executes JavaScript code
when an unload event occurs.

Use the onLoad event handler within either the <BODY> or the <FRAMESET> tag, for example, <BODY

onLoad="...">.

Applies to

window

Examples

In the following example, the onUnload event handler calls the cleanUp() function to perform some shut
down processing when the user exits a web page:

<BODY onUnload="cleanUp()">

See also

• onLoad event handler

179

Statements
JavaScript statements consist of keywords used with the appropriate syntax. A single statement may span
multiple lines. Multiple statements may occur on a single line if each statement is separated by a semi-
colon.

Syntax conventions : All keywords in syntax statements are in bold. Words in italics represent user-defined
names or statements. Any portions enclosed in square brackets, [], are optional. { statements } indicates a
block of statements, which can consist of a single statement or multiple statements delimited by a curly braces {}.

The following statements are available in JavaScript:
• break • if...else
• comment • return
• continue • var
• for • while
• for...in • with
• function

break statement

The break statement terminates the current while or for loop and transfers program control to the state-
ment following the terminated loop.

Syntax

break

Examples

The following function has a break statement that terminates the while loop when i is 3, and then returns the
value 3 * x.

function func(x) {
 var i = 0
 while (i < 6) {
 if (i == 3)
 break
 i++
 }
 return i*x
}

comment statement

Comments are notations by the author to explain what the script does, and they are ignored by the interpreter.
JavaScript supports Java-style comments:

• Comments on a single line are preceded by a double-slash (//).

 180

• Comments that span multiple lines are preceded by a /* and followed by a */.

Syntax

1. // comment text
2. /* multiple line comment text */

Examples

// This is a single-line comment.

/* This is a multiple-line comment. It can be of any length, and
you can put whatever you want here. */

continue statement

The continue statement terminates execution of the block of statements in a while or for loop, and continues
execution of the loop with the next iteration. In contrast to the break statement, it does not terminate the execu-
tion of the loop entirely: instead,

• In a while loop, it jumps back to the condition.
• In a for loop, it jumps to the update expression.

Syntax

continue

Examples

The following example shows a while loop that has a continue statement that executes when the value of i is 3.
Thus, n takes on the values 1, 3, 7, and 12.

i = 0
n = 0
while (i < 5) {
 i++
 if (i == 3)
 continue
 n += i
}

for statement

A for loop consists of three optional expressions, enclosed in parentheses and separated by semicolons, followed
by a block of statements executed in the loop. The parts of the for statement are:

• The initial expression, generally used to initialize a counter variable. This statement may optionally
declare new variables with the var keyword. This expression is optional.

181

• The condition that is evaluated on each pass through the loop. If this condition is true, the statements in
the succeeding block are performed. This conditional test is optional. If omitted, then the condition
always evaluates to true.

• An update expression generally used to update or increment the counter variable. This expres
sion is optional.

• A block of statements that are executed as long as the condition is true. This can be a single statement
or multiple statements. Although not required, it is good practice to indent these statements four spaces
from the beginning of the for statement.

Syntax

for ([initial expression]; [condition]; [update expression]) {
 statements
}
initial expression = statement | variable declaration

Examples

This for statement starts by declaring the variable i and initializing it to zero. It checks that i is less than nine, and
performs the two succeeding statements, and increments i by one after each pass through the loop.

for (var i = 0; i < 9; i++) {
 n += i
 myfunc(n)
}

for...in statement

The for statement iterates variable var over all the properties of object obj. For each distinct property, it
executes the statements in statements.

Syntax

for (var in obj) {
 statements }

Examples

The following function takes as its argument an object and the object's name. It then iterates over all the
object's properties and returns a string that lists the property names and their values.

function dump_props(obj, obj_name) {
 var result = "", i = ""
 for (i in obj)
 result += obj_name + "." + i + " = " + obj[i] + "\n"
 return result
}

 182

function statement

The function statement declares a JavaScript function name with the specified parameters param. To return a
value, the function must have a return statement that specifies the value to return. You cannot nest a function
statement in another
statement or in itself.

All parameters are passed to functions, by value. In other words, the value is passed to the function, but if
the function changes the value of the parameter, this change is not reflected globally or in the calling
function.

Syntax

function name([param] [, param] [..., param]) {
 statements }

Examples

//This function returns the total dollar amount of sales, when
//given the number of units sold of products a, b, and c.
function calc_sales(units_a, units_b, units_c) {
 return units_a*79 + units_b*129 + units_c*699
}

if...else statement

The if...else statement is a conditional statement that executes the statements in statements if condition is
true. In the optional else clause, it executes the statements in else statements if condition is false. These
may be any JavaScript statements, including further nested if statements.

Syntax

if (condition) {
 statements
} [else {
 else statements
}]

Examples

if (cipher_char == from_char) {
 result = result + to_char
 x++
} else
 result = result + clear_char

183

return statement

The return statement specifies the value to be returned by a function.

Syntax

return expression;

Examples

The following simple function returns the square of its argument, x, where x is an number.

function square(x) {
 return x * x
}

var statement

The var statement declares a variable varname, optionally initializing it to value. The variable name varname
can be any legal identifier, and value can be any legal expression. The scope of a variable is the current function
or, for variables declared outside a function, the current application.

Using var outside a function is optional; you can declare a variable by simply assigning it a value. However, it is
good style to use var, and it is necessary in functions if there is a global variable of the same name.

Syntax

var varname [= value] [..., varname [= value]]

Examples

var num_hits = 0, cust_no = 0

while statement

The while statement is a loop that evaluates the expression condition, and if it is true, executes statements. It
then repeats this process, as long as condition is true. When condition evaluates to false, execution continues
with the statement following statements.

Although not required, it is good practice to indent the statements a while loop four spaces from the beginning of
a for statement.

Syntax

while (condition) {
 statements
}

 184

Examples

The following while loop iterates as long as n is less than three. Each iteration, it increments n and adds it to x.
Therefore, x and n take on the following values:

• After the first pass: x = 1 and n = 1
• After the second pass: x = 2 and n = 3
• After the third pass: x = 3 and n = 6

After completing the third pass, the condition n < 3 is no longer true, so the loop terminates.

n = 0
x = 0
while(n < 3) {
 n ++; x += n
}

with statement

The with statement establishes object as the default object for the statements. Any property references
without an object are then assumed to be for object. Note that the parentheses are required around object.

Syntax

with (object){
 statements
}

Examples

with (Math) {
 a = PI * r*r
 x = r * cos(theta)
 y = r * sin(theta)
}

185

Reserved words
The reserved words in this list cannot be used as JavaScript variables, functions, methods, or object
names. Some of these words are keywords used in JavaScript; others are reserved for future use.

• abstract • extends • int • super
• boolean • false • interface • switch
• break • final • long • synchronized
• byte • finally • native • this
• case • float • new • throw
• catch • for • null • throws
• char • function • package • transient
• class • goto • private • true
• const • if • protected • try
• continue • implements • public • var
• default • import • return • void
• do • in • short • while
• double • instanceof • static • with
• else

 186

Color values
The string literals in this table can be used to specify colors in the JavaScript alinkColor, bgColor,
fgColor, linkColor, and vlinkColor properties and the fontcolor method.

You can also use these string literals to set the color in the HTML reflections of these properties, for
example <BODY BGCOLOR="bisque"> , and to set the COLOR attribute of the FONT tag, for example,
color .

The following red, green, and blue values are in Decimal and Hexidecimal.

Decimal Hexidecimal
Color Red Green Blue Red Green Blue
aliceblue 240 248 255 F0 F8 FF
antiquewhite 250 235 215 FA EB D7
aqua 0 255 255 00 FF FF
aquamarine 127 255 212 7F FF D4
azure 240 255 255 F0 FF FF
beige 245 245 220 F5 F5 DC
bisque 255 228 196 FF E4 C4
black 0 0 0 00 00 00
blanchedalmond 255 235 205 FF EB CD
blue 0 0 255 00 00 FF
blueviolet 138 43 226 8A 2B E2
brown 165 42 42 A5 2A 2A
burlywood 222 184 135 DE B8 87
cadetblue 95 158 160 5F 9E A0
chartreuse 127 255 0 7F FF 00
chocolate 210 105 30 D2 69 1E
coral 255 127 80 FF 7F 50
cornflowerblue 100 149 237 64 95 ED
cornsilk 255 248 220 FF F8 DC
crimson 220 20 60 DC 14 3C
cyan 0 255 255 00 FF FF
darkblue 0 0 139 00 00 8B
darkcyan 0 139 139 00 8B 8B
darkgoldenrod 184 134 11 B8 86 0B
darkgray 169 169 169 A9 A9 A9
darkgreen 0 100 0 00 64 00
darkkhaki 189 183 107 BD B7 6B
darkmagenta 139 0 139 8B 00 8B
darkolivegreen 85 107 47 55 6B 2F
darkorange 255 140 0 FF 8C 00
darkorchid 153 50 204 99 32 CC
darkred 139 0 0 8B 00 00
darksalmon 233 150 122 E9 96 7A
darkseagreen 143 188 143 8F BC 8F
darkslateblue 72 61 139 48 3D 8B
darkslategray 47 79 79 2F 4F 4F
darkturquoise 0 206 209 00 CE D1

187

darkviolet 148 0 211 94 00 D3
deeppink 255 20 147 FF 14 93
deepskyblue 0 191 255 00 BF FF
dimgray 105 105 105 69 69 69
dodgerblue 30 144 255 1E 90 FF
firebrick 178 34 34 B2 22 22
floralwhite 255 250 240 FF FA F0
forestgreen 34 139 34 22 8B 22
fuchsia 255 0 255 FF 00 FF
gainsboro 220 220 220 DC DC DC
ghostwhite 248 248 255 F8 F8 FF
gold 255 215 0 FF D7 00
goldenrod 218 165 32 DA A5 20
gray 128 128 128 80 80 80
green 0 128 0 00 80 00
greenyellow 173 255 47 AD FF 2F
honeydew 240 255 240 F0 FF F0
hotpink 255 105 180 FF 69 B4
indianred 205 92 92 CD 5C 5C
indigo 75 0 130 4B 00 82
ivory 255 255 240 FF FF F0
khaki 240 230 140 F0 E6 8C
lavender 230 230 250 E6 E6 FA
lavenderblush 255 240 245 FF F0 F5
lawngreen 124 252 0 7C FC 00
lemonchiffon 255 250 205 FF FA CD
lightblue 173 216 230 AD D8 E6
lightcoral 240 128 128 F0 80 80
lightcyan 224 255 255 E0 FF FF
lightgoldenrodyellow 250 250 210 FA FA D2
lightgreen 144 238 144 90 EE 90
lightgrey 211 211 211 D3 D3 D3
lightpink 255 182 193 FF B6 C1
lightsalmon 255 160 122 FF A0 7A
lightseagreen 32 178 170 20 B2 AA
lightskyblue 135 206 250 87 CE FA
lightslategray 119 136 153 77 88 99
lightsteelblue 176 196 222 B0 C4 DE
lightyellow 255 255 224 FF FF E0
lime 0 255 0 00 FF 00
limegreen 50 205 50 32 CD 32
linen 250 240 230 FA F0 E6
magenta 255 0 255 FF 00 FF
maroon 128 0 0 80 00 00
mediumaquamarine 102 205 170 66 CD AA
mediumblue 0 0 205 00 00 CD
mediumorchid 186 85 211 BA 55 D3
mediumpurple 147 112 219 93 70 DB
mediumseagreen 60 179 113 3C B3 71
mediumslateblue 123 104 238 7B 68 EE
mediumspringgreen 0 250 154 00 FA 9A
mediumturquoise 72 209 204 48 D1 CC

Decimal Hexidecimal
Color Red Green Blue Red Green Blue

 188

mediumvioletred 199 21 133 C7 15 85
midnightblue 25 25 112 19 19 70
mintcream 245 255 250 F5 FF FA
mistyrose 255 228 225 FF E4 E1
moccasin 255 228 181 FF E4 B5
navajowhite 255 222 173 FF DE AD
navy 0 0 128 00 00 80
oldlace 253 245 230 FD F5 E6
olive 128 128 0 80 80 00
olivedrab 107 142 35 6B 8E 23
orange 255 165 0 FF A5 00
orangered 255 69 0 FF 45 00
orchid 218 112 214 DA 70 D6
palegoldenrod 238 232 170 EE E8 AA
palegreen 152 251 152 98 FB 98
paleturquoise 175 238 238 AF EE EE
palevioletred 219 112 147 DB 70 93
papayawhip 255 239 213 FF EF D5
peachpuff 255 218 185 FF DA B9
peru 205 133 63 CD 85 3F
pink 255 192 203 FF C0 CB
plum 221 160 221 DD A0 DD
powderblue 176 224 230 B0 E0 E6
purple 128 0 128 80 00 80
red 255 0 0 FF 00 00
rosybrown 188 143 143 BC 8F 8F
royalblue 65 105 225 41 69 E1
saddlebrown 139 69 19 8B 45 13
salmon 250 128 114 FA 80 72
sandybrown 244 164 96 F4 A4 60
seagreen 46 139 87 2E 8B 57
seashell 255 245 238 FF F5 EE
sienna 160 82 45 A0 52 2D
silver 192 192 192 C0 C0 C0
skyblue 135 206 235 87 CE EB
slateblue 106 90 205 6A 5A CD
slategray 112 128 144 70 80 90
snow 255 250 250 FF FA FA
springgreen 0 255 127 00 FF 7F
steelblue 70 130 180 46 82 B4
tan 210 180 140 D2 B4 8C
teal 0 128 128 00 80 80
thistle 216 191 216 D8 BF D8
tomato 255 99 71 FF 63 47
turquoise 64 224 208 40 E0 D0
violet 238 130 238 EE 82 EE
wheat 245 222 179 F5 DE B3
white 255 255 255 FF FF FF
whitesmoke 245 245 245 F5 F5 F5
yellow 255 255 0 FF FF 00
yellowgreen 154 205 50 9A CD 32

Decimal Hexidecimal
Color Red Green Blue Red Green Blue

189

PERSISTENT CLIENT STATE
HTTP COOKIES

Preliminary Specification - Use with caution

INTRODUCTION

Cookies are a general mechanism which server side connections (such as CGI scripts) can use to both store and
retrieve information on the client side of the connection. The addition of a simple, persistent, client-side state
significantly extends the capabilities of Web-based client/server applications.

OVERVIEW

A server, when returning an HTTP object to a client, may also send a piece of state information which the client
will store. Included in that state object is a description of the range of URLs for which that state is valid. Any
future HTTP requests made by the client which fall in that range will include a transmittal of the current value of
the state object from the client back to the server. The state object is called a cookie, for no compelling reason.

This simple mechanism provides a powerful new tool which enables a host of new types of applications to be
written for web-based environments. Shopping applications can now store information about the currently se-
lected items, for fee services can send back registration information and free the client from retyping a user-id on
next connection, sites can store per-user preferences on the client, and have the client supply those preferences
every time that site is connected to.

SPECIFICATION

A cookie is introduced to the client by including a Set-Cookie header as part of an HTTP response, typically this
will be generated by a CGI script.

Syntax of the Set-Cookie HTTP Response Header

This is the format a CGI script would use to add to the HTTP headers a new piece of data which is to be stored
by the client for later retrieval.

Set-Cookie: NAME=VALUE; expires=DATE;
path=PATH; domain=DOMAIN_NAME; secure

NAME=VALUE
This string is a sequence of characters excluding semi-colon, comma and white space. If there is a need
to place such data in the name or value, some encoding method such as URL style %XX encoding is
recommended, though no encoding is defined or required.

This is the only required attribute on the Set-Cookie header.

 190

expires=DATE
The expires attribute specifies a date string that defines the valid life time of that cookie. Once the
expiration date has been reached, the cookie will no longer be stored or given out.

The date string is formatted as:

 Wdy, DD-Mon-YY HH:MM:SS GMT

This is based on RFC 850, RFC 1036, and RFC 822, with the variations that the only legal time zone is
GMT and the separators between the elements of the date must be dashes.

expires is an optional attribute. If not specified, the cookie will expire when the user's session ends.

Note: There is a bug in Netscape Navigator version 1.1 and earlier. Only cookies whose path attribute is
set explicitly to "/" will be properly saved between sessions if they have an expires attribute.

domain=DOMAIN_NAME
When searching the cookie list for valid cookies, a comparison of the domain attributes of the cookie is
made with the Internet domain name of the host from which the URL will be fetched. If there is a tail
match, then the cookie will go through path matching to see if it should be sent. "Tail matching" means
that domain attribute is matched against the tail of the fully qualified domain name of the host. A domain
attribute of "acme.com" would match host names "anvil.acme.com" as well as "shipping.crate.acme.com".

Only hosts within the specified domain can set a cookie for a domain and domains must have at least two
(2) or three (3) periods in them to prevent domains of the form: ".com", ".edu", and "va.us". Any domain
that fails within one of the seven special top level domains listed below only require two periods. Any
other domain requires at least three. The seven special top level domains are: "COM", "EDU", "NET",
"ORG", "GOV", "MIL", and "INT".

The default value of domain is the host name of the server which generated the cookie response.

path=PATH
The path attribute is used to specify the subset of URLs in a domain for which the cookie is valid. If a
cookie has already passed domain matching, then the pathname component of the URL is compared
with the path attribute, and if there is a match, the cookie is considered valid and is sent along with the
URL request. The path "/foo" would match "/foobar" and "/foo/bar.html". The path "/" is the most general
path.

If the path is not specified, it as assumed to be the same path as the document being described by the
header which contains the cookie.

secure
If a cookie is marked secure, it will only be transmitted if the communications channel with the host is a
secure one. Currently this means that secure cookies will only be sent to HTTPS (HTTP over SSL)
servers.

If secure is not specified, a cookie is considered safe to be sent in the clear over unsecured channels.

191

Syntax of the Cookie HTTP Request Header

When requesting a URL from an HTTP server, the browser will match the URL against all cookies and if any of
them match, a line containing the name/value pairs of all matching cookies will be included in the HTTP request.
Here is the format of that line:

Cookie: NAME1=OPAQUE_STRING1; NAME2=OPAQUE_STRING2 ...

Additional Notes

• Multiple Set-Cookie headers can be issued in a single server response.

• Instances of the same path and name will overwrite each other, with the latest instance taking prece
dence. Instances of the same path but different names will add additional mappings.

• Setting the path to a higher-level value does not override other more specific path mappings. If there
are multiple matches for a given cookie name, but with separate paths, all the matching cookies will be
sent. (See examples below.)

• The expires header lets the client know when it is safe to purge the mapping but the client is not re
quired to do so. A client may also delete a cookie before it's expiration date arrives if the number of
cookies exceeds its internal limits.

• When sending cookies to a server, all cookies with a more specific path mapping should be sent before
cookies with less specific path mappings. For example, a cookie "name1=foo" with a path mapping of
"/" should be sent after a cookie "name1=foo2" with a path mapping of "/bar" if they are both to be
sent.

• There are limitations on the number of cookies that a client can store at any one time. This is a specifi
cation of the minimum number of cookies that a client should be prepared to receive and store.

• 300 total cookies
• 4 kilobytes per cookie, where the name and the OPAQUE_STRING combine to form the 4

kilobyte limit.
• 20 cookies per server or domain. (note that completely specified hosts and domains are treated

as separate entities and have a 20 cookie limitation for each, not combined)
Servers should not expect clients to be able to exceed these limits. When the 300 cookie limit or the 20
cookie per server limit is exceeded, clients should delete the least recently used cookie. When a cookie
larger than 4 kilobytes is encountered the cookie should be trimmed to fit, but the name should remain
intact as long as it is less than 4 kilobytes.

• If a CGI script wishes to delete a cookie, it can do so by returning a cookie with the same name, and
an expires time which is in the past. The path and name must match exactly in order for the expiring
cookie to replace the valid cookie. This requirement makes it difficult for anyone but the originator of a
cookie to delete a cookie.

• When caching HTTP, as a proxy server might do, the Set-cookie response header should never be
cached.

• If a proxy server receives a response which contains a Set-cookie header, it should propagate the Set-

 192

cookie header to the client, regardless of whether the response was 304 (Not Modified) or 200 (OK).

Similarly, if a client request contains a Cookie: header, it should be forwarded through a proxy, even if
the conditional If-modified-since request is being made.

EXAMPLES

Here are some sample exchanges which are designed to illustrate the use of cookies.

First Example transaction sequence:

Client requests a document, and receives in the response:

Set-Cookie: CUSTOMER=WILE_E_COYOTE; path=/; expires=Wednesday, 09-Nov-99 23:12:40
GMT

When client requests a URL in path "/" on this server, it sends:

Cookie: CUSTOMER=WILE_E_COYOTE

Client requests a document, and receives in the response:

Set-Cookie: PART_NUMBER=ROCKET_LAUNCHER_0001; path=/

When client requests a URL in path "/" on this server, it sends:

Cookie: CUSTOMER=WILE_E_COYOTE; PART_NUMBER=ROCKET_LAUNCHER_0001

Client receives:

Set-Cookie: SHIPPING=FEDEX; path=/foo

When client requests a URL in path "/" on this server, it sends:

Cookie: CUSTOMER=WILE_E_COYOTE; PART_NUMBER=ROCKET_LAUNCHER_0001

When client requests a URL in path "/foo" on this server, it sends:

Cookie: CUSTOMER=WILE_E_COYOTE; PART_NUMBER=ROCKET_LAUNCHER_0001; SHIPPING=FEDEX

Second Example transaction sequence:

Assume all mappings from above have been cleared.

Client receives:

Set-Cookie: PART_NUMBER=ROCKET_LAUNCHER_0001; path=/

When client requests a URL in path "/" on this server, it sends:

193

Cookie: PART_NUMBER=ROCKET_LAUNCHER_0001

Client receives:

Set-Cookie: PART_NUMBER=RIDING_ROCKET_0023; path=/ammo

When client requests a URL in path "/ammo" on this server, it sends:

Cookie: PART_NUMBER=RIDING_ROCKET_0023; PART_NUMBER=ROCKET_LAUNCHER_0001

 NOTE: There are two name/value pairs named "PART_NUMBER" due to the inheritance of the "/" mapping
 in addition to the "/ammo" mapping.

 Corporate Sales: 415/528-2555; Personal Sales: 415/528-3777
 If you have any questions, please visit Customer Service.

 Copyright © 1996 Netscape Communications Corporation

 194

JavaScript Snippets

The Digital Clock

This is a submission that’s extremely popular. It’s mainly a ticking digital clock originally taken from Netscape’s
sight, and altered to taste by various sources. This is how it ended up as used on my company’s page
(http://www.ipst.com)

<HTML>
<HEAD>
<TITLE>IPST • Internet Professional Services & Training</TITLE>
<!--Updated 2/6/96-->
<SCRIPT language="JavaScript">
<!--
var timerID = null;
var timerRunning = false;
function stopclock (){
 if(timerRunning)
 cleartimeout(timerID);
 timerRunning=false;
}
function startclock (){
 stopclock();
 showtime();
}
function showtime (){
 var now = new Date();
 var dow = now.getDay();
 if(dow == 0){
 dow = "Sun";
 } else {
 if(dow == 1){
 dow = "Mon";
 } else {
 if(dow == 2){
 dow = "Tues";
 } else {
 if(dow == 3){
 dow = "Wed";
 } else {
 if(dow == 4){
 dow = "Thur";
 } else {
 if(dow == 5){
 dow = "Fri";
 } else {
 dow = "Sat";
 }}}}}}
 var month = now.getMonth();
 if(month < 10){
 month = "0" + month;
 }
 var date = now.getDate();

195

 if(date < 10){
 date = "0" + date;
 }
 var year = now.getYear();
 var hours = now.getHours();
 var minutes = now.getMinutes();
 var seconds = now.getSeconds();
 var timeValue = " " + dow;
 timeValue += " " + month + "/" + date + "/" + year;
 timeValue += " " + ((hours > 12) ? hours - 12 : hours);
 timeValue += ((minutes < 10) ? ":0" : ":") + minutes;
 timeValue += ((seconds < 10) ? ":0" : ":") + seconds;
 timeValue += (hours >= 12) ? " P.M." : " A.M.";
 document.clock.face.value = timeValue;
 timerID = setTimeout("showtime()",1000);
 timerRunning = true;
}
// -->
</script>
</HEAD>
<BODY BGCOLOR=#000000 TEXT=#ffffff LINK=#a68c24 VLINK=#404040
onLoad="startclock()">
<FORM name="clock" onSubmit="0">
<INPUT type="text" name="face" size=29 value=" WELCOME TO IPST ! "
onClick="this.Blur()"><FORM name="clock" onSubmit="0">
</FORM>

This will output a text field looking like this :

Setting the value of the INPUT field will allow whatever you want to show while the page is loading.
When the page fully loads, the clock will load.

Thanks to Netscape and the JavaScript Index (http://www.c2.org/~andreww/javascript) for this example.

Remember, if anyone has any examples of value, please email us so we may include it in the next version.

 196

	Table of Contents
	JavaScript Working Document…
	The Mother of all Disclaimers …
	Learning JavaScript…
	JavaScript and Java…
	JavaScript Development…
	Navigator Scripting…
	Using JavaScript in HTML …
	Scripting Event Handlers …
	Tips and Techniques …
	JavaScript Values, Names, and Literals…
	Values…
	Datatype Conversion…
	Variable Names…
	Literals…
	JavaScript Expressions and Operators…
	Expressions…
	Conditional Expressions…
	Assignment Operators (=, +=, -=, *=, /=)…
	Operators…
	Arithmetic Operators…
	Bitwise Operators…
	The JavaScript Object Model…
	Objects and Properties…
	Functions and Methods…
	Creating New Objects…
	Using Built-in Objects and Functions…
	Using the String Object…
	Using the Math Object…
	Using the Date Object…
	Using Built-in Functions…
	Overview of JavaScript Statements…
	Navigator Objects…
	Using Navigator Objects…
	Navigator Object Hierarchy…
	JavaScript and HTML Layout…
	Key Navigator Objects…
	Objects…
	anchor object (client)…
	button object (client)…
	checkbox object (client)…
	Date object (common)…
	document object (client)…
	form object (client)…
	frame object (client)…
	hidden object (client)…
	history object (client)…
	link object (client)…
	location object (client)…
	Math object (common)…
	navigator object (client)…
	password object (client)…
	radio object (client)…
	reset object (client)…
	select object (client)…
	string object (common)…
	submit object (client)…
	text object (client)…
	textarea object (client)…
	window object (client)…
	Methods and Functions…
	abs method…
	acos method…
	alert method…
	anchor method…
	asin method…
	atan method…
	back method…
	big method…
	blink method…
	blur method…
	bold method…
	ceil method…
	charAt method…
	clear method…
	clearTimeout method…
	click method…
	close method (document object)…
	close method (window object)…
	confirm method…
	cos method…
	escape function…
	eval function…
	exp method…
	fixed method…
	floor method…
	focus method…
	fontcolor method…
	fontsize method…
	forward method…
	getDate method…
	getDay method…
	getHours method…
	getMinutes method…
	getMonth method…
	getSeconds method…
	getTime method…
	getTimezoneOffset method…
	getYear method…
	go method…
	indexOf method…
	isNaN function…
	italics method…
	lastIndexOf method…
	link method…
	log method…
	max method…
	min method…
	open method (document object)…
	open method (window object)…
	parse method…
	parseFloat function…
	parseInt function…
	pow method…
	prompt method…
	random method…
	round method…
	select method…
	setDate method…
	setHours method…
	setMinutes method…
	setMonth method…
	setSeconds method…
	setTime method…
	setTimeout method…
	setYear method…
	sin method…
	small method…
	sqrt method…
	strike method…
	sub method…
	submit method…
	substring method…
	sup method…
	tan method…
	toGMTString method…
	toLocaleString method…
	toLowerCase method…
	toString method…
	toUpperCase method…
	unEscape function…
	UTC method…
	write method…
	writeln method…
	Properties…
	action property…
	alinkColor property…
	anchors property…
	appCodeName property…
	appName property…
	appVersion property…
	bgColor property…
	checked property…
	cookie property…
	defaultChecked property…
	defaultSelected property…
	defaultStatus property…
	defaultValue property…
	E property…
	elements property…
	encoding property…
	fgColor property…
	forms property…
	frames property…
	hash property…
	host property…
	hostname property…
	href property…
	index property…
	lastModified property…
	length property…
	linkColor property…
	links property…
	LN2 property…
	LN10 property…
	location property…
	method property…
	name property…
	options property…
	parent property…
	pathname property…
	PI property…
	port property…
	protocol property…
	referrer property…
	search property…
	selected property…
	selectedIndex property…
	self property…
	SQRT1_2 property…
	SQRT2 property…
	status property…
	target property…
	text property…
	title property…
	top property…
	userAgent property…
	value property…
	vlinkColor property…
	window property…
	Event handlers…
	onBlur event handler…
	onChange event handler…
	onClick event handler…
	onFocus event handler…
	onLoad event handler…
	onMouseOver event handler…
	onSelect event handler…
	onSubmit event handler…
	onUnload event handler…
	Statements…
	break statement…
	comment statement…
	continue statement…
	for statement…
	for...in statement…
	function statement…
	if...else statement…
	return statement…
	var statement…
	while statement…
	with statement…
	Reserved words…
	Color values…
	PERSISTENT CLIENT STATE…
	HTTP COOKIES …
	INTRODUCTION …
	OVERVIEW …
	SPECIFICATION …
	Syntax of the Cookie HTTP Request Header…
	EXAMPLES …
	JavaScript Snippets…
	The Digital Clock…

