Inspector User's Manual

Jeff Steinbok

[image: image1.png]2 Invoking Method: mouseEnter in Class: java.a... B
ey p—" (P ot

int

int

ok cance

User's Manual

© Jeff Steinbok, 1998. All rights reserved.

Inspector is freeware. You are free to use it for any non-commercial purpose. You are free to distribute Inspector only if the full package including documentation and copyright information are included in the distribution. You may not distribute Inspector commercially. You may not modify the source code.

I would, however, like to know who's using Inspector, so please email me at steinbok@interchange.ubc.ca and let me know how you use it and what you think of it.

Future versions of Inspector can be found at: http://www.interchg.ubc.ca/steinbok/inspector and downloaded free of charge.

Thank you for trying Inspector.

Table Of Conents

Table Of Contents
P. 2
What is the Inspector
P. 3
Setting-Up the Inspector
P. 4
Object/Class Inspector
P. 5
Array Inspector
P. 7
Thread Inspector
P. 8
Using the Clipboard
P. 9
What is the Inspector

Inspector is a full featured JAVA class browser and editor. It is written in 100% pure JAVA and compiled with Sun's JAVA Development Kit 1.1.6 so it works with essentially all applications.

Inspector allows users to view the contents of an object (fields and methods) as well as edit and browse fields and invoke methods. Inspector also allows you to view any class by supplying it the fully qualified class name.

In a nutshell, inspector allows you to look inside your application without having to attach a full debugger. Inspector will not interfere with the running of your application nor will it cause any speed decreases. Also, inspector, as it is only an object itself, will not crash your JAVA virtual machine.

The inspector has several modes, each of which will be described in detail in this document:

· Object / Class Inspector

· Array Inspector

· Thread Inspector

Setting-Up the Inspector

The Inspector comes packaged in an uncompressed JAR file. To use it, simply include the JAR file in your CLASSPATH or in your project (if you are using an IDE), and call the following constructor, with the parameter being the object you with to inspect.

new inspector.Inspector(<object>);

Object / Class Inspector

[image: image2.png]hs’:)@'@jﬁﬁr

The object and class inspectors share the same screen layout, the difference lies in what actions can be performed.

The title of the window indicated whether you're viewing an object or a class and what type it is.

By default, all public fields and methods on the class are shown. This includes all methods and fields declared by superclasses of the object. This view can be changed however, to view all declared methods and fields in the class. This will show all private members as well, but will not display superclass information.

Note:
Even if you can view a private member, you can only edit, browse, or invoke a member for which the Inspector has permission, which in most cases are public members. This is the limitation of inspector being written in JAVA, it has the same security restrictions as any other class.

To edit or browse a field, simple double-click on its entry in the lower pane. If the field is a primitive type, a text entry box will be presented where you can edit the contents of the field. If the field is an object a new inspector will be launched on the contents of the field.

[image: image3.png][E2 Inspecting Obiect of Type: java.awt Button
Fle Bt View Jwvav e

Contructors

[-[o0x]

[ubi ava awd Buton)
public java.aut Butiongava lang.Sting)

Methods

bl inal natve ava Tang Class Java lang Dbject getoiassg
ublio native intjava.lang.Objact hashCode0

public boolean java.lang Gbject squaisjava lang.Object)
public java.1ang Sting java aut ComponentioStingd

publc inal native void ava.lang Object ntify0

‘

Fields

[ubii statc il ot java antimage ImageObsermer WD TH = 1
[publc staicfinal intjava antimage.ImageObserver HEIGHT = 2.
public staticfnal intava antimage.ImageObsenver PROPERTIES = &
publio staticfinal intava antimage.ImageCbsenver SOMEBITS
publio staticfinalintava awtimage ImageGbsenver FRAMEBITS
[public staticfinal intava antimage ImageGbsenver ALLBITS = 32

18

Reaty

 To invoke a method, simply double click the method in the center pane. If parameters are required, you will be prompted for them in a screen similar to the one below. For primitive parameters or Strings, simply type in the value in the lines next to the type labels. For object parameters, you must either pass in null (by pressing the null button) or paste in an object from the clipboard.

All parameters are type checked upon pressing the Ok button. If there is an incorrect parameter, it will be reset to null if it is an object, or reset to a blank entry and hilited if it is a primitive. The return value will appear in the status bar (if it's a primitive type) otherwise a new inspector will be launched on that returned object. If the returned value is null or an exception is thrown, it will be noted in the status bar as well.

Note:
In the class inspector, since there is no actual instance of the object, only static methods and fields can be edited or invoked.

Array Inspector

[image: image4.png][Eiinspecting Array of Type: java.awt Button B[] X

Fie Edt View JavaVh Help
Array Indices (Type: java.awt.Button)

vt Sutontouion .8.0:8 el abe-TE5T)
s

v ot utontouion 0.0 et
.o st utor .0 00 i
.o Butooutorz 00 00 i et TEST)
s

i

i

i

i

i

<nutl> =
Inspecting index of 40

Updaie

Reaty

The Inspector handles array's differently than it handles simple objects and classes. If an array is inspected, this window will display. It indicates, in its title that an array is being inspected, as well as the type of the individual components.

The bottom portion of the screen indicates the total number of elements and the currently selected element index.

Note:
The currently selected index starts at 0, while the total number of elements starts at 1, therefore the last element is index 39/40 in this example.

To change the location of the selection, either type in a new index value into the edit box at the bottom, or simply click on a different line in the list view. To edit or browse an array index, simply double click on it. If the array type is primitive, you will be able to edit the value, otherwise, an inspector will be launched on that individual array index.

You can also copy and paste individual array entries if they are not of primitive types. See the section on using the clipboard for more information.

Thread Inspector

[image: image5.png]2% Thread Inspector [-[5[x]
Fle Edt View JavaVit Hep
Running Threads

Thieadimain.g.main]
Thiead[AWT-Eventausus.0,5,main]
[ThieadlawT windons 5,main]
Thieadiscreen Updater & main]

Updafe

Reaty

The thread inspector gives you a view of what threads are currently active in the JAVA virtual machine.

To browse a thread, simply double click on it. You can also copy and paste an individual thread via the Edit menu.

Note:
In the future, I'm hoping to add suspend/resume buttons the thread display. For now, to suspend or resume threads, browse the thread, and invoke the appropriate methods within.

Using the Clipboard

[image: image6.png]2 Object Clipboard Viewer

o javaaut utton java.awt Butenlbuton2 00,040 nvalidJabei=TEST] [EigE | Delne

clas [Ljava.awt Button; [Ljava awt Button;@10539 orouss | Deite

dlas 1/ @105 orouss | Deite

Cancel { Close

The clipboard in the Inspector is the means to move objects around different views. It acts similarly to the system clipboard, but it only contains objects and it can contain up to ten different entries.

The clipboard has three functionalities: copy, paste, and view. This image is of the view screen. The only difference between the modes is that in the view mode, you have the option to browse or delete an entry, in the copy and paste modes you can either browse or select that entry.

Note:
Deleting an object only deletes it from the clipboard, it does not dispose of it unless there are no other references to it.

Page 2

