y 0 F T 1R

73 =il

Programmer’s Manual

Version 0.5

August 10, 1998

SoftWired AG
Technoparkstrasse 1
8005 Zurich
ibus@softwired.ch
www.softwired.ch

—q

© Copyright 1998 SoftWired AG. All rights reserved.
Document-reference: Programmers Manual.fm

Page 2 Programmer’s Manual

Table of Contents

TWhy IBUS? . 7
2 Getting Started 8
2-1 An Example Application 8
2-2 Sending and Receiving Data 10
2-3 Configuring Your Environment 10
3 Uniform Resource Locators i 12
3-1 Why Those Addresses? 12
3-2 URLFactory 12
3-3 Demultiplexing 13
3-4 Code Example 13
4 Protocol Stacks 15
4-1 The Main Protocol Objects 16
4-2 Summary of Features 18
4-3 Quality of Service Strings 18
-4 AllaSeS . . o 19
4-5 Code Example 19
S POSTINGS . . 21
5-1 Code Example 21
6 Pushing and Pulling Postings 23
6-1 Pushing Data 23
6-2 Pulling Data 23
6-3 Opening Transmission Channels 24
6-4 Subscribing Receiver Objects 25
6-5 IP Multicast Communication 25
6-6 TCP Communication 26
6-7 Code Example 28
7 Membership and Failure Notification 30
7-1 Definitionof Terms 30
7-2 Membership Classes 31
7-3 Registering a Membership Monitor 32
7-4TIme-0OUts ..o 32
7-5Code Example 33
8 logging Events 35
8-TLoglevels 35
8-2 Logging Events in Java Applications 36
8-3 Redirecting Log Output 36
8-4 Code Example 37

© SoftWired AG Page 3

OThreads 38
9-1 Single-Threaded Dispatch 38
9-2 Thread-Per-Request 38
9-3 Thread-Pool 39
9-4 Thread-Per-Channel 39
9-5 CoMPaAriSON . . oot 39
9-6 Code Example 39

AiBus System Properties 41

B A Note about Configuration Management 42

Page 4

Programmer’s Manual

This document describes the writing of iBus applications. It refers to the iBus ja-
vadoc HTML documentation when explaining programming interfaces. An arrow
notation (> See ...) is used to refer to information provided in the HTML docu-
mentation.

Examples of iBus applications are provided in the i Bus\ example directory which
is part of the documentation JAR file. The development of iBus protocol objects is
not addressed by this manual.

© SoftWired AG Page 5

Page 6 Programmer’s Manual

1 Why iBus?

iBus is a 100% Java™ middleware aimed to support intranet applications such as
content delivery systems, groupware, financial news distribution systems,
fault-tolerant client-server systems, and multimedia applications. iBus provides
multicast channels that allow Java applications to interact by a push/pull/subscribe
communication paradigm. The system is conceived to run atop TCP and IP multi-
cast. Besides serving as a versatile communication platform, iBus also performs co-
ordination tasks such as notifying applications when other applications they
depend on start or fail.

iBus can be used along with JDK Serialization, AWT, Java Beans, Java IDL, Java Me-
dia Framework and other packages.

iBus supports the development of location independent applications that are re-
located from one machine to another without affecting their peer applications.
The iBus architecture has no single point of failure and there are no background
services that need to be present in order to use iBus.

iBus provides a quality of service framework in which applications only pay for ser-
vices they need: programmers request qualities of service such as reliable and un-
reliable multicast, reliable and unreliable point-to-point communication, and
failure detection. The protocol composition framework that is part of the package
allows programmers to extend iBus with yet unsupported qualities of service, for
example message compression or encryption.

© SoftWired AG Page 7

2 Getting Started

iBus is best introduced by providing a simple yet realistic example that uses the
push and subscription APIs.

2-1 An Example Application

Consider an application that reads foreign exchange data from a satellite feed and
transmits ticks' to a large number of trader workstations for display in a AWT wid-
get. The application consists of a TickTalker and of a TickListener tool.

The talker runs on a workstation attached to the satellite feed, it uses the get -
NextTick () method to read the next tick from the satellite feed?. The talker
then multicasts the tick to all receivers.

A listener application receives those tick objects and passes them along to the
drawTick () method for display. The talker application consists of class Tick-
Talker:

import iBus.*;
import FinancialInfo.Tick;
import DataFeeds.SatelliteFeed;

// tick talker application.
public class TickTalker {
public static void main(String argvl[])
throws Exception
{
// declare a destination URL, a protocol stack
// for reliable multicast, and a posting object:
final iBusURL url = iBusURLFactory.create ("StockEx-Feed",
"1.0", "/ticks");

final Stack stack = new Stack("Reliable");
final Posting posting = new Posting();

// connect to the satellite feed:
final SatelliteFeed satellite
= new SatelliteFeed("Reuters:Triarchl");

// allocate one slot in the posting:
posting.setLength (1) ;

// register this application as a talker on the tick channel:
stack.registerTalker (url);

1. Atickis a unit of financial information, such as the US Dollar / Yen exchange rate at a given point in time.
2. Here we assume that the satellite software buffers incoming ticks and that getNextTick () reads from the
buffer.

Page 8 Programmer’s Manual

N I R

// in a loop, get the next tick and push it:
for (;:) |
// get the next tick from satellite feed:
final Tick t = satellite.getNextTick();

// multicast the tick:
posting.setObject (0, t);
stack.push(url, posting);

The listener application consists of class TickListener and TickDispatch.
iBus feeds incoming ticks into a TickDispatch object by calling its dispatch-
Push method:

import iBus.*;
import FinancialInfo.Tick;
import FinanciallInfo.GraphWidget;

// tick listener application.
public class TickListener {
public static void main(String argv([])
throws Exception
{
// declare a destination URL and a protocol stack
// for reliable multicast (must match the talker application):
final iBusURL url = iBusURLFactory.create ("StockEx-Feed",
"1.0", "/ticks");
final Stack stack = new Stack("Reliable");

// create a receiver object that dispatches incoming postings:
final TickDispatch disp = new TickDispatch();

// subscribe the receiver object to the tick channel:
stack.subscribe (url, disp);

// wait for incoming postings:
stack.wailtTillExit () ;

}

// This class is needed for receiving Postings on the tick channel.
class TickDispatch implements iBus.Receiver {
public void dispatchPush (iBusURL source, Posting p)
{
// retrieve the tick from the posting:
Tick t = (Tick)p.getObject (0);

// draw the tick in a AWT graph widget:

© SoftWired AG Page 9

2-2

2-3

graph .drawTick(t);
}

// (error and dispatchPull method not shown here.)

private GraphWidget graph = new GraphWidget ("Tick Display");

Sending and Receiving Data

In the example above ticks are transmitted efficiently by multicast. iBus exploits
hardware multicast facilities as available in Ethernet and Tokenring LANs. The net-
work load is thus constant and independent of the number of TickListeners
that tap into the tick channel. You can relocate talkers and listeners from one ma-
chine to another dynamically without need to restart any of their peer applica-
tions. iBus enables a model of spontaneous networking where applications join
and leave channels dynamically.

Neither registries nor naming services need to be contacted by iBus when an ap-
plication requests to join a channel. iBus provides the abstraction of a ubiquitous
information bus on behalf of which applications exchange events.

Class Tick only needs to implement interface java.io.Serializable inor-
der to be transmitted via an iBus channel. A Tick object would typically provide
a string describing a cross rate, for example "USD/JPY", and an exchange rate,
for example 129.900.

iBus implements a publication/subscription paradigm where self-describing data
objects, called postings in iBus terminology, are injected into communication
channels. Communication is typically one-to-many and asynchronous, although
point-to-point communication and synchronous invocation are supported as well.
Talker applications push postings into one or more channels, listener applications
subscribe to one or more channels to receive postings. In addition a pull opera-
tion is provided that works much like RMI. Pull is a two-way operation used to ex-
plicitly request data from an iBus application.

A quality of service such as reliable multicast or encrypted communication is tied
to a channel. In iBus a quality of service is represented by a protocol stack. Talkers
and listeners need to agree on a URL and on a protocol stack to exchange infor-
mation.

Configuring Your Environment

In order to build and run iBus applications you need a copy of JDK-1.1.1 or higher.
The location of the iBus jar file needs to be included in your CLASSPATH en-
vironment variable. For example

setenv CLASSPATH "${CLASSPATH}:/usr/local/lib/java/ibus.jar"

Page 10

Programmer’s Manual

To test your set up enter: javap iBus.Stack. This will print the interface of
class Stack showing that the iBus package is accessible via the class path.

© SoftWired AG Page 11

3 Uniform Resource Locators

3-1

#> See iBus.iBusURL

A iBusURL object denotes a communication channel by which Java applications
exchange postings. iBus URLs are of the form

ibus://<address>[:<port>]<subject>

The address is a class A, B, C or D (multicast) IP address or a host name. IP multi-
cast is the predominant communication mechanism in iBus. Point-to-point com-
munication is normally used only within the iBus software to deliver
acknowledgements and channel membership management messages. However,
programmers are free to subscribe and to post to point-to-point URLs by TCP or
UDP. If no port number is specified then a default of 8733 is used. If 0 is provided
as the port number then iBus will pick the next free port number and assign it to
the URL. This is useful when creating server applications that use an iBus TCP stack.

The subject is an application specific hierarchical string to fully denote an iBus
communication channel. The following are examples of IP multicast URLs:

ibus://226.1.1.33/ny-stockex/APL
ibus://226.1.1.33/ny-stockex/SUN
ibus://226.1.1.33:9111/ny-stockex/IBM
ibus://226.1.2.1/inhouse/teleconf/10am
ibus://226.1.2.2/inhouse/financial/news

The following URL denotes a point-to-point channel:

ibus://myhost.somewhere.com:8111/services/file server

Why Those Addresses?

An early design decision was that iBus applications should not depend on the
presence of any iBus registry or name server. Once you have a network set up be-
tween two machines you are able to run iBus applications. IP multicast addresses
are embedded into iBus URLs such that no name server needs to be present, and
to give you maximum flexibility in mapping high-traffic channels to IP multicast
addresses. The iBusURLFactory class is provided for making the creation of
URLs and the assignment of IP multicast addresses easier.

URL Factory

»> See iBus.iBusURLFactory

Class iBusURLFactory helps the application developer in creating URLs that
obey a well-defined format. The factory also provides for automatic assignment of
IP multicast numbers. For that a hash algorithm is applied to the subject part of
the URL to compute a IP multicast address. It is thus guaranteed that a given sub-

Page 12

Programmer’s Manual

ject always maps to the same IP multicast address. We recommend that you al-
ways rely on iBusURLFactory for generating URLs since this allows you to run
a distributed application in multiple system areas.

The URL factory constructs URLs of the form:

ibus://<address>[:<port>]/<System>/<Service>/<Version>/Subject

* System denotes the system area the application is running in, for example,
production system, test system, or Joe's development system. The System
part can be set only through the iBusSystem property as described in
Appendix A. It defaults to the name dev for development. The remaining
three components can be set through the iBusURLFactory methods.

* Service provides the name of the iBus service the URL is generated for. For
example StockEx-Feed, Videoserver, Directory411, etc.

* Version provides the version of the application. This allows you to run
multiple versions of the same application simultaneously without having the
applications interfering with each other.

* Subject contains a service specific hierarchical subject, for example
/quotes/sun, /movies/forrestgump, /inquiries, etc.

3-3 Demultiplexing

The demultiplexing of iBus traffic is done partly in the networking hard- and soft-
ware, and partly in the iBus software. Postings that are sent to two different IP
multicast addresses are typically demultiplexed by the network card. Some Ether-
net cards do this in hardware, other leave the demultiplexing to their device driver.
Check with your card vendor for details.

Postings pushed to URLs that differ only in their subject part are demultiplexed by
iBus. This means that if your application is subscribed to

ibus://226.1.2.1/weather/dailyforecast, then postings pushed to
ibus://226.1.2.1/movies/forrestgump propagate up to your applica-
tion's iBus layer where they are discarded. This can place a substantial computa-
tional burden on applications. You might thus want to use separate IP addresses

for traffic intensive channels to relieve your CPU from doing too much demulti-
plexing work.

3-4 Code Example

The following code fragment demonstrates the creation of URLs and the extrac-
tion of information thereof:

// using the i1BusURL class directly (not recommended) :
iBusURL ul = new iBusURL("ibus://226.1.1.33:9999/ny-stockex/APL");

© SoftWired AG Page 13

// using the iBusURLFactory (recommended) :

1iBusURL u?2 iBusURLFactory.create ("StockEx-Feed",
"1.0", "/quotes/sun");

iBusURL u3 = iBusURLFactory.create ("Videoserver",
"0.7", "/movies/forrestgump");

iBusURL u4 = iBusURLFactory.create("Directory411",
"2.1", "/inquiries");

// returns "/ny-stockex/APL"
String subject = ul.getSubject();

// returns 226.1.1.33:
String address = ul.getAddress();

// returns 9999:
int port = ul.getPort();

// returns the iBus default port, typically 8733:
int defPort = iBusURL.getDefaultPort();

// returns "ibus://224.17.251.126:8733/<your name>/
// <StockEx-Feed>/<1.0>/quotes/sun"
String url = u2.toString();

Page 14

Programmer’s Manual

4 Protocol Stacks

»> See [Bus.Stack

Talkers and listeners need to agree on a URL and on a protocol stack to be able
to exchange data. A protocol stack represents a quality of service (QOS) such as
reliable multicast, reliable point-to-point streaming, encrypted communication,
and so forth. A stack consists of a linear list of protocol objects. Postings are al-
ways pushed and received on behalf of stacks. Application may use multiple stacks
simultaneously.

At the sending side, the posting travels down the stack from the topmost to the
bottommost protocol object. The first protocol object might encrypt the posting,
the second one fragment large postings into chunks that fit in a network packet,
the third one buffer fragments for retransmission, and the bottommost object
would typically transmit the fragments by plain IP multicast.

At the receiving side a fragment arrives at the bottommost protocol object in the
stack. The next object checks whether any prior fragment is missing. The postings
are then assembled and decrypted.

Java Receiver Java Receiver
Objects Objects
Y Y
CRYPT CRYPT
Stack l T Stack l T
FRAG FRAG
NAK NAK
IPMCAST IPMCAST
N N
iBus Application iBus Applicatiof
—) { == |P Network

Figure 1: Two iBus applications communicating through protocol stacks

© SoftWired AG Page 15

4-1

The Main Protocol Objects

»> See iBus.ProtocolObject, iBus.layers.IPMCAST, iBus.layers.REACH, etc.

protocol objects are included in the 1Bus. 1ayers package. iBus mainly provides
the following protocol objects:

* IPMCAST manages java.net.MulticastSocket and
java.net.DatagramSocket objects for sending and receiving UDP
datagrams. IPMCAST does not implement any reliability or flow control
mechanism. This object can be used stand-alone or in conjunction with REACH
and NAK.

* REACH is a simple failure detection and membership layer. For each channel
the stack is subscribed to as a listener or as a talker, REACH periodically
submits a heartbeat message on an internal control channel.

When a remote REACH layer receives a heartbeat for the first time it forms a
new View object and passes it up the stack. The View object includes the URL
of the sender of the heartbeat. Section 7 explains how to obtain channel
membership notifications from iBus.

If a REACH layer does not receive any heartbeat from a sender for a certain
amount of time, it forms a new View object that excludes the sender and
passes it up the stack. Hence applications will temporarily disagree on the view
for a given channel but eventually converge to a consistent view. Hence the
name “REACH": it means the layer provides reachability information. REACH is
conceived to reside atop a multicast protocol object such as IPMCAST.

* NAK is a fully reliable, negative acknowledgements (NAK) multicast layer. NAK
uses immediate, receiver-initiated, NAK-based, unicast loss notification
combined with originator based unicast and multicast retransmission
(selectable). The NAK protocol is similar to RAMP (RFC 1485).

NAK does not implement any FIFO ordering nor the elimination of duplicated
messages. This is accomplished by a FIFO layer atop of NAK. NAK only makes
sure that each message is received at least once, without caring about
duplicates and messages arriving out of FIFO order.

NAK does not implement any failure detection as this is handled by the
membership layer beneath NAK (REACH, for example). NAK is fully reliable,
i.e., it is both sender and receiver reliable. For that it takes advantage of the
membership information which is delivered to it by the membership layer
beneath. This increases the reliability of the NAK protocol considerably.

* FIFO implements a first-in-first-out ordering of messages as well as duplicate
elimination. FIFO receives a stream of messages from beneath. It eliminates
any duplicates and orders messages according to their sequence numbers.
FIFO does not implement any loss recovery as this is handled by the layers
below. FIFO is to be placed atop a reliable multicast object such as NAK.

Page 16

Programmer’s Manual

* FRAG fragments and reassembles messages that are larger than a certain
threshold size. The fragment size can be specified as part of the QOS string.
The default size matches a UDP datagram. FRAG is to be placed atop FIFO.

* LOCALBUS is a protocol object for local communication within one virtual
machine. Its purpose is to accommodate Java Applets that want to exchange
events within one virtual machine or Web browser. This allows one to use iBus
much like the InfoBus™ product. LOCALBUS does not send or receive any data
through a network. LOCALBUS is typically the sole protocol object of its stack.

* PULL implements request/reply style communication similar to RMI. Unlike
RMI, PULL multicasts requests to all receivers on the channel. Every receiver
may return a reply to the initiator of the pull. PULL is to reside on top of a
reliable multicast protocol object such as NAK.

* TCP is intended for push and pull communication via TCP/IP. When
subscribe is called on a TCP stack a java.net.ServerSocket is
created. When registerTalker is called a TCP connection is established to
the destination address given by the URL. This default behavior can be
changed by setting the talkerconnect and listenerconnect
properties as described in Section 6-6.

TCP supports communication between one talker and one listener, between
multiple talkers and one listener, and between multiple listeners and one
talker.

TCP can be used stand-alone or beneath DISPATCH. None of the PULL, FIFO,
FRAG, REACH, and NAK objects are needed by TCP.

* DISPATCH. In iBus there is one thread which transports events up the stack
and invokes the user defined dispatch methods on iBus.Receiver objects.
DISPATCH can be used as the topmost protocol object to realize threading
policies such as single dispatch thread (the default), thread per request,
thread pool, and thread per channel.

* BADNET is a debugging aid that maliciously duplicates, reorders, and throws
away messages.

* SEQCHK is a debugging aid to check sequence numbers. It aborts the
application when a message is received out of sequence.

* TEMPLATE is provided in source code form to be used as a template when
developing new protocol objects.

© SoftWired AG Page 17

4-2 Summary of Features

. Buffers Buffers
Protocol Resides ato Implements Failure incomin outooin
Object p Pull Operation | Detection g gomg
messages messages
IPMCAST (stand-alone) X
REACH IPMCAST X
NAK REACH X
FIFO NAK X
FRAG FIFO X
LOCALBUS (stand-alone)
PULL NAK X
TCP (stand-alone) X
DISPATCH TCP, NAK, X
LOCALBUS, ...

Table 1: Summary of protocol object features

4-3 Quality of Service Strings

»> See [Bus.Stack

iBus provides the Stack helper class for creating a protocol stack out of a string-
ified QOS representation. The QOS strings you will typically use are listed below.

e "TPMCAST" for plain IP multicast with no flow control and no retransmission
of lost postings. This is usually adequate for transmitting audio or video

packets3in a best-effort manner. Here the maximum size of a posting is limited
to 8 kb”.

* "REACH: IPMCAST" to add failure detection to the aforementioned quality of
service. Here your application will be notified when another application joins
the channel, leaves the channel, or crashes. In Section 7 you will learn how to
obtain such failure notifications from iBus.

* "DISPATCH:PULL:FRAG:FIFO:NAK:REACH: IPMCAST" for reliable,
first-in-first-out ordered multicast. This QOS provides retransmission of lost
fragments, delivery of postings in the same order as they were sent, and
fragmentation/reassembly of large postings.

* 'DISPATCH: TCP" for point-to-point communication via TCP/IP.

* "LOCALBUS" for applications that use iBus to exchange events only locally in
the context of one Java virtual machine.

3. which is the maximum size of a UDP datagram.

Page 18 Programmer’s Manual

Most protocol objects can be parametrized through the QOS string or by invoking
property setter methods. Refer to the HTML layer documentation to find a descrip-
tion of those properties and their default values. The following examples demon-
strates parameterization of common protocol objects:

e "TPMCAST (tt1=2)"applies a IP multicast time-to-live value of 2. The same
can be achieved by calling the method TPMCAST.setTTL (int ttl).

* "FRAG (size=2048)" fragments postings into chunks of 2 kilobytes. The
fragment size can be set only via the QOS string and cannot be tuned at
run-time.

* 'NAK (epochsz=100, retrinterval=4000)" uses an epoch size of 100
messages and a retransmission interval of 4000 milliseconds.

* "REACH (timeout=10000)" to use a time-out of 10 seconds. If REACH has
not received any heartbeats from an application during time-out
milliseconds, it tags the application as crashed. The same can be achieved by
calling the method REACH. setTimeout (int timeout).

4-4 Aliases

To make creation of QOS strings easier you can refer to frequently used strings us-
ing aliases. Note that aliases can be embedded in QOS strings: for secure and re-
liable communication one could specify a QOS such as CRYPT:Reliable.

Alias Expands to
Reliable DISPATCH:PULL:FRAG:FIFO:NAK:REACH: IPMCAST
Unreliable DISPATCH: IPMCAST

Point-to-Point DISPATCH:TCP

Table 2: QOS alias expansion done by the Stack class

4-5 Code Example

import iBus.*;
import iBus.layers.*;

// Using QOS strings:

// sl and s2 implement the same QOS:

Stack sl = new Stack("Reliable");

Stack s2 = new Stack("DISPATCH:PULL:FRAG:FIFO:NAK:REACH:IPMCAST") ;

// manually compose a stack:
Stack s3 = new Stack(); // empty Q0S, no protocol objects.
s3.attach (new IPMCAST());

// s4 has the same QOS as s3:
Stack s4 = new Stack ("IPMCAST");

© SoftWired AG Page 19

// peek at protocol objects:
REACH r = (REACH)s2.getProtocolObject ("REACH") ;
FIFO f = (FIFO)sl.getProtocolObject ("FIFO");

Page 20 Programmer’s Manual

5 Postings

»> See iBus.Posting

All data to be pushed or pulled via iBus needs to be encapsulated in posting ob-
jects. Class Posting provides the abstraction of a dynamic array of serializable
Java objects. A posting also provides addressing information useful to its receivers.

A posting has a length property which is to be set by the setLength method.
Initially the length is zero. A length of N allows you to fill up to N objects into a
posting. Objects are referred through an integer index. Accessing a posting be-
yond the value of its length property leads to an exception.

Any java.io.Serializable object can be packed into a posting and sent
through a channel. This includes your own objects that implement interface Se-
rializable, AWT components, Java Beans, many of the JDK classes, iBus post-
ings, protocol objects, and so forth.

On the sending side, an object is serialized by traversing its references to other ob-
jects in the object graph recursively to create a complete serialized representation
of the graph. On the receiving side the object graph is de-serialized and recon-
structed. This default behavior is tailored by using the transient Java keyword
or by overwriting the JDK methods writeObject and readObject. For details
refer to the JavaSoft documentation on JDK serialization.

Class Posting uses an increment factor to speed up applications that call set-
Length repeatedly to increase the length by a small amount. With an increment
factor of 2 (the default), calling setLength with the current length plus one
doubles the size of the internal buffer of the posting.

5-1 Code Example

Posting p = new Posting();
p.setLength(2);

p.setObject (0, "hello");
p.setObject (1, new java.util.Date());

// this throws an exception since the value of the length
// property is exceeded:
p.setObject (2, "world");

// read a posting:
String hello = (String)p.getObject(0);
java.util.Date d = (java.util.Date)p.getObject(1l);

// this throws an exception since the value of the length
// property is exceeded:
String world = (String)p.getObject (2);

// get the length of the posting:

© SoftWired AG Page 21

int length = p.getLength();
// length is 2.

Page 22 Programmer’s Manual

6 Pushing and Pulling Postings

»>See [Bus.Stack

The stack class not only serves for interconnecting protocol objects but also as
the API by which programmers transmit and receive postings. The class declara-
tion of 1Bus.Stack is as follows:

public class Stack {

public Stack() { ... };

public Stack(String gos) { ... };

public void push (iBusURL url, Posting p) { ... };

public Posting[] pull (iBusURL url, Posting request) { ... };
public void subscribe (1BusURL url, Receiver rcv) { ... };
public void unsubscribe (1BusURL url, Receiver rcv) { ... };
public void registerTalker (iBusURL url) { ... };

public void unregisterTalker (iBusURL url) { ... };

}i

The default constructor ties an empty quality of service string which means no
protocol objects are associated with the stack. This kind of stack is needed for add-
ing protocol objects manually as was exemplified in Section 4-5.

A QOS string is passed to create protocol objects using the Java class loader. The
remaining methods are used for sending and receiving data, they are explained
below.

6-1 Pushing Data

To transmit a posting via iBus, the operation
void push (iBusURL url, Posting p)

is used. url denotes the iBus channel through which the posting object is trans-
mitted by the protocol embodied by the stack. Push communication is in one di-
rection from the talker to the listeners, and non-blocking.

6-2 Pulling Data

In order to explicitly request data from an iBus application, a client application in-
vokes the operation

Posting [] pull (iBusURL url, Posting request)

© SoftWired AG Page 23

6-3

Pull communication is two-way and blocking, analogous to RMI. The Java thread
that issues a pull operation is blocked until the request posting is dispatched
by the listener objects subscribed to the URL and until the sender's protocol stack
has received a reply posting from one of the listeners. If no reply is received within
a configurable timeout, then zero replies are returned. If all listeners have crashed
without returning a reply then an exception is thrown.

iBus always returns the first arriving reply posting, subsequent replies to the pull
operation are silently discarded (Figure 2). Note that pull communication is sup-
ported only by the qualities of service Reliable and TCP...

push dispatchPush pull dispatchPull
A B C D A B C D
time request posting
\]

\\

e

reply| postings

A\ /]

Figure 2: Push and pull communication. A - D denote iBus applications, arrows de-
note network messages. A push is simply multicast on the channel. Pull
blocks the sender (dotted line) until a reply is received.

Opening Transmission Channels

Before you push or pull any postings you need to open the channel by calling the
registerTalker method. This is a once-only activity for each channel and
needed mainly for the management of internal iBus resources. There is also a un-
registerTalker method for closing a channel. Typically you call unregis-
terTalker when you will not be transmitting on the channel any more.

Page 24

Programmer’s Manual

6-4 Subscribing Receiver Objects

»> See IBus.Receiver

For registering an interest in the postings that are pushed and pulled to and from
a channel, listener applications issue the

void subscribe (1BusURL url, Receilver rcv)

operation. The listener application is in charge of providing a Java object (rcv)
that implements interface iBus.Receiver:
public interface Receiver {

void dispatchPush (iBusURL channel, Posting p);

Posting dispatchPull (iBusURL channel, Posting request);

void error (1BusURL channel, String details);

}i

When a push request is received on the channel denoted by channel, iBus passes
the posting along to the Receiver object by invoking its di spatchPush oper-
ation. On a pull request the dispatchPull operation is invoked. The posting
that is returned by dispatchPull is transmitted back to the client that has is-
sued the pull request. If null is returned by dispatchPull then no reply is re-
turned to the client and it is assumed that another listener will honor the pull
request.

An application can subscribe multiple receiver objects to the same channel, and
also subscribe the same receiver object to multiple channels.

6-5 IP Multicast Communication

IP multicast allows you to transmit datagrams from one sender to many receivers
efficiently. iBus provides protocol stacks for reliable and unreliable multicast and
also provides for transparent fragmentation and reassembly of events that exceed
a UDP datagram size.

6-5.1 The Basics

The class D IP address range (from 224.0.0.0 to 239.255.255.255) has been re-
served by the Internet Assigned Numbers Authority (IANA) for IP multicast®. The
main differences of a class D address to a point-to-point IP address are that

* an IP multicast address represents a group of machines and not just a single
machine. Machines can join and leave groups dynamically

* the same class D address can be used on multiple machines

* multicast is used to transport datagrams sent to a IP multicast address

* receivers and senders can be relocated from one machine to another easily
* only UDP is supported and not TCP

4. See RFC 1700.

© SoftWired AG Page 25

6-5.2

6-6

* spontaneous networking is enabled. Applications just need to bind to an IP
multicast address to exchange events with all other applications also bound to
the address. No name server needs to be consulted.

IP multicast addresses map 1:1 into Ethernet multicast addresses. Thus an infor-

mation bus which relies on IP multicast provides high scalability and reliability as

the dependence on message distribution and naming processes is eliminated.

IP multicast is a unreliable communication protocol meaning that datagrams can

get lost or duplicated. There is no such thing as “TCP over IP multicast”. An infor-

mation bus thus needs to provide own reliability protocols.

IP multicast communication is supported by all major operating systems (Win-

dows 95, Windows 98, NT, Solaris, AlX, FreeBSD, Linux etc.). However, as of today

IP multicast is available within intranets but not over the whole Internet.

The iBus approach consists in using IP multicast within applications that runin a

company’s intranet and to forward iBus postings from one intranet to another

through a secure TCP connection. Such posting routing software will be provided
by SoftWired Inc. in the near future.

Propagation of Datagrams

The propagation of an IP multicast datagram is controlled by the value of its time
to live (TTL) field. The value can be set through the tt1 property of the IPMCAST
protocol object. The value of the TTL field is interpreted as follows.

* 0: postings are delivered only to the applications on the same host as the
sender

* 1: postings are delivered to the applications on the same subnet as the sender.
This is the default in iBus.

* 15: postings are delivered to the applications in the same site as the sender

* 63: postings are delivered to the applications in the same region as the sender
* 127: postings are delivered worldwide

* 191: postings are delivered worldwide, with limited bandwidth

* 255: no restrictions.

It is up to the routers to impose those restrictions.

TCP Communication

iBus also provides a TCP protocol stack. This stack is intended for iBus applications
that communicate via the Internet, for intranet applications requiring only

point-to-point channels, and for Applets that get downloaded from the Internet.
The TCP stack provides exactly the same push/subscribe API as the multicast stack.

Page 26

Programmer’s Manual

6-6.1 Server Applications

A server application creates a TCP stack and issues the subscribe operation to
open a server socket and to start listening for connections. A TCP stack can sup-

port multiple TCP channels. The following example code is assumed to run on ma-
chine server.softwired. ch:

// create a TCP stack:
final Stack stack = new Stack ("DISPATCH:TCP");

// create a TCP URL with the localhost address and port 7777.
// (With 0 as the port number the next free port is assigned
// to the URL)
final iBusURL url = iBusURLFactory.create ("MyServer",

"1.0", "/requests", "server.softwired.ch", 7777);

MyReceiver rcv = new MyReceiver();
try |
stack.subscribe (url, rcv);
} catch (Exception e) {
log .panic("cannot subscribe to " + url + ": " + e);

// wait for connections:
stack.waltTillExit () ;

6-6.2 Client Applications

A client application connects to a remote TCP stack by issuing the register-
Talker operation:

// create a TCP stack:
final Stack stack = new Stack ("DISPATCH:TCP");

// create a TCP URL. The host name denotes the server machine:
final iBusURL url = iBusURLFactory.create ("MyServer",
"1.0", "/requests", "server.softwired.ch", 7777);

try |
stack.registerTalker (url);
} catch (iBusException e) {
log .panic("registerTalker failed: " + e);

// now you can transmit postings to the server.

6-6.3 Client Connect vs. Server Connect

If your firewall set-up does not allow the client to establish a TCP connection to
the server you can configure the TCP stack such that registerTalker creates
the server socket and subscribe connects to it. The server application then
needs to be modified as follows:

// create a TCP stack:
final Stack stack = new Stack ("DISPATCH:TCP (listenerconnect=1)");

© SoftWired AG Page 27

6-6.4

// create a TCP URL. The host name denotes the server machine:
final iBusURL url = iBusURLFactory.create ("MyServer",
"1.0", "/requests", "client.softwired.ch", 7777);

MyReceiver rcv = new MyReceiver();
try {
stack.subscribe (url, rcv);
} catch (Exception e) {
log .panic("cannot subscribe to " + url + ": " + e);

// wait for connections:
stack.wailtTillExit () ;

The client application needs to be modified as follows. Note that now the client
needs to be started before the server, and on the machine server.soft-
wired. ch:

// create a TCP stack:
final Stack stack = new Stack("DISPATCH:TCP (talkerconnect=0)");

// create a TCP URL with the localhost address and port 7777.
// (With 0 as the port number the next free port is assigned
// to the URL)
final iBusURL url = iBusURLFactory.create ("MyServer",

"1.0", "/requests", "client.softwired.ch", 7777);

try {
stack.registerTalker (url);

} catch (iBusException e) {
log .panic("registerTalker failed: " + e);

// now you can transmit postings to the server.

Multicast via TCP

The TCP stack by default allows multiple talkers to connect with the same listener.
The stack can be configured to allow multiple listeners to receive postings from
one talker by setting 1istenerconnect=1 and talkerconnect=0 as in the
previous example.

Code Example

The next example demonstrates the interaction with a fictive iBus application that
implements a time service. To that purpose a TimeClient object is provided
which employs pull communication to retrieve the wall-clock time from a re-
mote time server:

import iBus.*;

Page 28

Programmer’s Manual

N B B B

public class TimeClient {
public static void main(String[] argv)

{

throws Exception

// create an iBus protocol stack, a destination URL,

// and a posting:

Stack stack = new Stack("Reliable");

iBusURL url = iBusURLFactory.create("Timeserver",
"1.0", "/daytime");

Posting request = new Posting();

Posting replies|[];

request.setLength(1l);

request.setObject (0, "Get Time");

// open the channel:
stack.registerTalker (url);

// pull a reply posting from a remote time server:
replies = stack.pull (url, request);

if (replies.length == 0) {
// timeout. No reply from server.
System.err.println("Timeout: no time server");
// (we could wait and retry the pull operation.)
return;

// display the remote time:
System.out.println("The remote time is "
+ (String)replies[0].getObject (0));

// close the channel:
stack.unregisterTalker (url);

© SoftWired AG

Page 29

7 Membership and Failure Notification

7-1

»> See iBus.View, iBus.ChannelMember, iBus.Membership,
iBus.Stack.registerMonitor ()

In many real-world distributed systems, applications join and leave communica-
tion channels in response to external events. An application joins a channel by call-
ing Stack.subscribe or Stack.registerTalker. An application leaves a
channel by calling Stack.unsubscribe, Stack.unregisterTalker, or by
crashing.

iBus provides an API that allows you to register a membership monitor object on
which iBus invokes a method when applications join or leave a channel you are
interested in.

Definition of Terms

* View: A view is the “opinion” an application has at a certain time on what
members are subscribed to a given channel. Views are represented by the class
iBus.View.

* Member: An application that is subscribed or registered to a channel is called
a member. More exactly, not the applications themselves but the protocol
stacks in them are the members of the channel. A member is named by an
iBus URL.

* View Change: When a member joins or leaves a channel, a new View object
is delivered to the members on the channel. iBus delivers View objects by
invoking the viewChange method on an instance of interface Membership.

* Member Role: A stack can become a member of a channel in one of three
ways: by registering as a listener (Stack. subscribe), as a talker
(Stack.registerTalker), or both. A member can thus be in the role of a
listener, of a talker, or both. A View object contains the URLs of the members
along with their roles.

* Membership Protocol: A piece of logic implemented in a protocol object, in
REACH for example. The membership protocol makes sure that view changes
are delivered to the members of a channel. It can also ensure that all members
agree on the views they receive, that push and pull operations are
synchronized with view changes, and so forth. Such view synchronization will
be available in a future release of iBus.

* Rank: A membership protocol may assign a rank number to each member. A
rank is an integer value ranging from 0 ton - i, n being the number of
members on the channel. Rank number 0 typically denotes to the oldest
member. Rank numbers are contiguous and unique, they are reassigned
automatically when a member joins or leaves the channel. This feature is not
supported by iBus yet.

Page 30

Programmer’s Manual

Application A Application B
Join Channel X 4
View Change X;1 4 Time
Join Channel X |
View Change X;2 1 View Change X;2 |
CRASH 14
View Change X;1 |
Restart 4
Join Channel X 4
View Change X;2 1 View Change X;2 |
Y Y

Figure 3: View changes delivered to two iBus applications A and B. First A starts
and joins channel X. Aview change is delivered to A for X, indicating that
there is one channel member. Then B starts and joins channel X. A view
change is now delivered to both applications indicating that there are
two channel members. A crashes and a view change is delivered to B,
indicating that B is the only channel member now. (Now B could initiate
a failover protocol). Finally A is restarted and a view change containing
two members is delivered to both applications.

7-2 Membership Classes

»> See [Bus.View, iBus.ChannelMember, iBus.Membership,
iBus.Stack.registerMonitor()

The iBus membership APl mainly consists of class iBus.View, class
iBus.ChannelMember, and interface iBus.Membership.

A View object provides the rank of the member to which the view object is

passed, through the getMyRank accessor. The number of members in the view
is obtained by calling getNumMembers. getMember returns the ChannelMem-
ber object for a given member URL. The getMembers accessor returns an array

© SoftWired AG Page 31

7-4

of ChannelMember objects with one entry per member. getChannel returns
the channel the view belongs to. Finally, the functions containsMember, con-
tainsListener, and containsTalker are used to check whether a specific
member exists in a view.

A iBus.ChannelMember object mainly provides information on the role of a

member through the isListener and isTalker accessors. getURL returns
the URL of the member. This URL can be used to compare members, you should
not push or subscribe to that URL.

Registering a Membership Monitor

#> See iBus.Membership, Stack.registerMonitor

In order to receive view change notifications you need to provide a class that im-
plements interface iBus.Membership. You then pass an instance of the class

along to the Stack.registerMonitor call. When a view change occurs, the
iBus membership protocol object detects it and delivers a view change notification
by invoking the viewChange method on the Membership object you registered
with the stack.

Note that to receive view change notifications a protocol stack needs to provide a
membership protocol object such as REACH.

Time-Outs

As we saw in Section 4-3 the REACH layer relies on a heartbeat and time-out pro-
tocol to detect failures. A heartbeat is transmitted every hbeat milliseconds. If the
heartbeat of a remote REACH object has not been received for t imeout millisec-
onds then the sender is believed crashed and excluded from the view. hbeat and
timeout are tailorable properties of the REACH protocol object.

Those properties are important for a well functioning failure detection, thus some
tuning might be required for your application. Typically hbeat is set to approxi-
mately 1/8 of timeout. If the time-out property is low (e.g., < 10.000 millisec-
onds) then the probability of suspecting an overloaded application as crashed is
high. If the time-out value is high (e.g., > 45.000 milliseconds) then the probabil-
ity of false suspicion is low, but it also takes longer to detect a failure. We recom-
mend using a timeout value of 12.000 and a hbeat of 1500 for clusters of NT
and Unix servers which are moderately loaded. We recommend increasing tim-
eout t0 45.000 and hbeat to 5000 in situations where the network and the ma-
chines can become highly loaded, or when Windows 95 PCs are part of the
system.

The properties are set as follows:
Stack s = new Stack("Reliable");

// obtain the REACH protocol object from the stack:

Page 32

Programmer’s Manual

N B B B

REACH r = (REACH)s.getProtocolObject ("REACH") ;
// set timeout and hbeat properties:
r.setTimeout (45000) ;

r.setHbeat (5000) ;

7-5 Code Example

import iBus.*;
import iBus.layers.*;

// a class for receiving view changes:
class MyMonitor implements iBus.Membership {
// upcall method invoked by iBus to deliver a view change:
public void viewChange (View newView)
{
System.err.println("Got a view change for channel: "
+ newView.getChannel () + ". Channel members:");

// print the URL and the role of each member:

for (int i = 0; i < newView.getMembers().length; i++) {
ChannelMember m = newView.getMembers () [i];
System.err.println (m.getURL ()
+ (m.isListener() ? " listener " : "™)
+ (m.isTalker() ? " talker" : ""));

// register a monitor, then generate view changes by calling
// registerTalker and unregisterTalker repeatedly. Run several
// instances of this application on various machines:
//
public class MembershipTest {
public static void main(String argv([])
throws Exception
{
// a test channel:
iBusURL channel
= iBusURLFactory.create ("Test", "1.0", "/test");

// create a stack containing a membership object (REACH).
// (The "Reliable" quality of service string would work as
// well):

Stack s = new Stack ("REACH:IPMCAST");

// set timeout and heartbeat to low values to make
// failure detection more aggressive:

REACH r = (REACH)s.getProtocolObject ("REACH") ;
r.setTimeout (10000) ;

r.setHbeat (1000) ;

// create an instance of our membership monitor and register

© SoftWired AG Page 33

// it for the test channel:
MyMonitor mon = new MyMonitor();
s.registerMonitor (channel, mon);

// produce some view changes. iBus will invoke

// mon.viewChange () :

for(int 1 = 0; i < 10; i++) {
s.registerTalker (channel);
Thread.currentThread() .sleep(5000) ;
s.unregisterTalker (channel);
Thread.currentThread() .sleep(15000) ;

// unregister the monitor and terminate the application:
s.unregisterMonitor (channel, mon);

Page 34 Programmer’s Manual

8 Logging Events

#> See |Bus.Log

For tracing the execution of an application, iBus provides a simple yet powerful
logging facility. The logging facility allows you to assign a severity level to an
event, to filter out events that belong to a certain level, to turn on logging just in
a specific part of your application, and to direct logging output to a file or to a
bus channel.

8-1 Log Levels

* Log.junkLevel: the most verbose level, used in early development stages

of a component. junkLevel events are printed only if the log level is set to

Log.junkLevel.

Log.infolLevel: informative events, statistics etc. infoLevel events are

printed if the log level is set to either Log.infoLevel or Log. junkLevel.

* Log.warnLevel: for printing warning messages such as a file system filling
up. warnLevel events are always printed and cannot be turned off. This is
level is the default.

* Log.panicLevel: for logging unrecoverable errors. panicLevel events

are always printed and cannot be turned off. The application is aborted by the

Log facility.

Log.debugLevel: for tracing problems. This is an alternative to writing

directly to java.lang.System.err. debugLevel events are always

printed and cannot be turned off.

Events are logged by passing a string to the methods Log. junk, Log. info,
Log.warn, Log.panic, and Log.debug, respectively.

Log.setLogLevel is used for setting the log level. Setting the level to
Log.infoLevel filters out all events that have a lower level than infolLevel,
namely junkLevel events. Setting it to Log.warnLevel filters out infoLev-
el and junkLevel events.

By Log.setDefaultStream you can specify a JDK java.io.PrintStream
object to write logging output to. By default java.lang.System.err is used.

You typically create one Log object per component you want to log. To the Log
constructor you provide a symbolic name for the component. Now you are able
to turn logging on just for that component, by passing its name in conjunction

with the iBusLog system properties described in Section 8-2. A code example is

provided at the end of the chapter.

© SoftWired AG Page 35

8-2

Logging Events in Java Applications

You can turn logging on by setting the system property iBusLogLevel to one
of the strings junk, info or warn. This applies to all Log objects in the applica-
tion. By setting the 1 BusLog JDK system property to a colon-delimited list of
names you activate logging selectively for certain parts of your application.

The following example shows how to activate infoLevel logging just for the
REACH and the FRAG protocol object of the iBus.util.talker application:

% java -DiBusLoglLevel=info -DiBusLog="REACH, FRAG" iBus.util.talker
The talker application now produces output much like the
following:

REACH: INFO : startHeartbeat: starting hb thread
REACH: INFO : startHeartbeat: created GroupInfo for
ibus://193.72.83.52:42004/sys/reply

REACH: INFO : run: sending hbeat to
ibus://193.72.83.52:42004/1ibus/REACH/hb/sys/reply
REACH: INFO : run: sending hbeat to
ibus://193.72.83.52:42004/1ibus/REACH/hb/sys/reply
FRAG: INFO : dnPush: sending a message of 222 bytes
REACH: INFO : run: sending hbeat to
ibus://193.72.83.52:42004/1ibus/REACH/hb/sys/reply

Redirecting Log Output

By setting the iBusLogToF1ile system property you can direct log output to a
file. If the value of iBusLogToFile is not defined then a file ibuslog. txt is
created in the local run directory. A file name can be assigned to the iBus-
LogToFile property. Example:

% java -DiBusLogToFile iBus.util.talker

% java -DiBusLogToFile="mylogfile.txt" iBus.util.talker

By setting the iBusLogToChannel property the log output is directed to an iBus
channel. This allows a system operator to monitor distributed applications by tap-
ping a monitoring GUI tool into the log channel. By default the iBus channel de-
fined by iBus.Log.LOGCHANNEL is used. Example:

Q

% java -DiBusLogToChannel iBus.util.talker

% java -DiBusLogToChannel="ibus://226.1.1.2/mylogchannel"” \
iBus.util.talker

Page 36

Programmer’s Manual

8-4 Code Example

The following code fragment shows how the logging facility is used such way that
logging can be turned on only for MyClass objects.

class MyClass {
private final static Log log = new Log("MyClass");

public void doSomething (String str) {

log .info("doSomething: working on " + str);

try { ...}

catch (Exception e) {
log_.warn("doSomething: error:" + e);

}

log .info("doSomething: done working on " + str);

To activate infoLevel logging in MyClass the application is started by the
command
% java -DiBusLog=MyClass -DiBusLogLevel=info MyApplication

© SoftWired AG Page 37

9 Threads

»> See Bus.layers. DISPATCH

iBus provides a variety of threading models for invoking the upcalls defined in in-
terface iBus.Receiver. In the simplest case (single-threaded dispatch) the pro-
grammer needs to be aware of two threads: the application’s main thread and
the iBus event dispatching thread which invokes dispatchPush and dis-
patchPull.

As you may have expected the threading policy is implemented as a protocol ob-
ject. The DISPATCH protocol object provides the policies

single-threaded dispatch
thread-per-request
thread-pool

and thread-per-channel.

Single-Threaded Dispatch

Single-threaded dispatch is the default. This means there is exactly one iBus thread
per protocol Stack which receives incoming messages and other events, and in-
vokes the dispatchPush and dispatchPull methods.

Only when a dispatch upcall returns the next event can be dispatched. Note that
each Stack object contains a dispatcher thread meaning that the upcalls of the re-
ceiver objects registered with different stacks run in parallel.

This policy is suitable when the dispatch operations only perform short computa-
tions and do not block for a long time while reading from a database, for example.
This model is also to be chosen when the application is subscribed to only one or
a few channels and FIFO ordering of requests is important.

Thread-Per-Request

The performance of servers that carry out long running queries or computations
can be improved considerably by using the thread-per-request policy. A new
thread is created for each posting to dispatch. When the dispatch operation re-
turns the thread is destroyed. Note that FIFO ordering of incoming messages is no
longer guaranteed because postings that arrive on the same channel are dis-
patched concurrently.

This policy is for situations where the dispatch upcalls are very long running (many
seconds, minutes or more), the event arrival rate is low, and FIFO ordering of
events Is irrelevant.

Page 38

Programmer’s Manual

9-3 Thread-Pool

A drawback of thread-per-request is that too many threads are created when
events arrive at a high rate. Thread-pool works like thread-per-request except that
a maximum is imposed on the number of dispatcher threads that are running con-
currently. If an event arrives while all threads are in use, the event is buffered until
one of the threads becomes free.

This policy is for situations where the dispatch upcalls are long running, the event
arrival rate is high, and FIFO ordering of requests is irrelevant.

9-4 Thread-Per-Channel

This policy is provided to achieve some parallelism while maintaining FIFO order-
ing of incoming postings. It is conceived for applications that subscribe to several
channels. A thread is created for each active subscription. Each thread dispatches
the events that arrive on the channel assigned to the thread?.

This policy is for situations where the dispatch upcalls are long running, the appli-
cation is subscribed to several channels, and FIFO ordering of requests is impor-
tant. The event arrival rate can be high.

9-5 Comparison

FIFO ensured Parallelism Overhead per event
Single-threaded Yes None Low
Thread-per-request No Highest High
Thread-pool No High (customizable) | Low
Thread-per-channel Yes Medium Low

Table 3: Comparison of the thread policies implemented by DISPATCH

9-6 Code Example

// Create a single-threaded TCP Stack (default):
Stack single = new Stack ("DISPATCH:TCP");

// Create a thread-per-request TCP Stack:
Stack perReqg = new Stack("DISPATCH (threadPerRequest=1) :TCP");

// Create a thread-pool TCP Stack with 3 threads:
Stack pool = new Stack("DISPATCH (threadPool=1,poolSize=3):TCP");

5. With only one channel this model corresponds to single-threaded dispatch.

© SoftWired AG Page 39

// Create a thread-per-channel TCP Stack with 3 threads:
Stack perChan = new Stack ("DISPATCH (threadPerChannel=1):TCP");

// Create a single-threaded IP multicast Stack (default):
Stack single2 = new Stack("Reliable");

// Create a thread-per-request IP multicastStack:
Stack perReg2 = new Stack ("DISPATCH (threadPerRe-
quest=1) : PULL: FRAG: FIFO:NAK:REACH: IPMCAST") ;

Page 40 Programmer’s Manual

Appendix A iBus System Properties

iBus applications are configured by setting the following Java system properties.
In general this is accomplished by passing the -D option to the Java interpreter.
The system properties are accessed by calling java.lang.System.getProp-
erty (). You should not modify iBus system properties at run-time.

* iBusAppName=name to set the name of the application. The name is used
by the logging facility, for example.

* iBusLogLevel={junk, info,warn} to set the iBus log level.

* iBusLog=logmodulel, logmodule?2, ... to activate logging just in
certain parts of an application.

* iBusLogToFile=filename to direct logging output to a file. If no file
name is provided then ibuslog. txt is used.

* iBusLogToChannel=ibusurl to direct logging output to an iBus
channel. If no URL is provided then iBus.Log.LOGCHANNEL is used.

* iBusPort=number to set the default iBus port number.

* iBusHostAddress=ipaddress to set the IP address of the local host. By

default java.net.InetAddress.getLocalHost () is used. This option
is useful when running on machines with multiple IP interfaces.

* iBusHostName=name to set the name of the local host. By default
java.net.InetAddress.getLocalHost () .getHostName () is used.

* iBusSystem=area to set the name of the system area the application is
running in. For example, production, test, development, joes-test
etc. By default the name dev is used.

* iBusVersion writes the iBus version string to System.err.

© SoftWired AG Page 41

Appendix B A Note about Configuration
Management

Companies that provide on-line access to their information system are faced with
the problem of running a production information system while developing new

versions of the services which constitute the system. Obviously it is necessary to

run the production system in isolation of the iBus events that are generated while
working on new and improved services.

To this purpose iBus provides the notion of isolated system areas allowing one to
run a production version of a system along with a test version of the system and
one or more development versions of the system. iBus makes sure that the areas
are isolated and that the postings of one area do not propagate into other areas.

Ideally the production system runs on a cluster of dedicated machines. Paying cus-
tomers typically connect to the production system. The most stable versions of
your iBus applications are installed on that system. The production system is man-
aged by a crew of operators but is not directly accessible by developers.

The test system can be seen as a "staging area" in which newly developed (and
tested) services are installed before they are incorporated into the production sys-
tem. Ideally the test system is running on a separate set of machines, it is accessi-
ble by the development team. Once the test system has been stable for a certain
amount of time, the software in the test system is moved to the production sys-
tem.

When a new service is to be implemented then a development area is used to
avoid interfering with the test and, worse, with the production system. Once a cer-
tain level of stability is achieved the service is integrated into the test system.

To allow your software to evolve in this manner you

* should always use the iBusURLFactory to create iBus URLs. (See
Section 3-2)

* set the iBusSystem property to the name of the system area your
application has to runin.

By default applications run in the development system area. To place an iBus
application in another area, production for example, the command line argu-
ment

-DiBusSystem=production

is passed to the java or jre command. This sets the JDK system property
iBusSystem to the value production.

Page 42 Programmer’s Manual

	1 Why iBus?
	2 Getting Started
	2-1 An Example Application
	2-2 Sending and Receiving Data
	2-3 Configuring Your Environment

	3 Uniform Resource Locators
	3-1 Why Those Addresses?
	3-2 URL Factory
	3-3 Demultiplexing
	3-4 Code Example

	4 Protocol Stacks
	4-1 The Main Protocol Objects
	4-2 Summary of Features
	4-3 Quality of Service Strings
	4-4 Aliases
	4-5 Code Example

	5 Postings
	5-1 Code Example

	6 Pushing and Pulling Postings
	6-1 Pushing Data
	6-2 Pulling Data
	6-3 Opening Transmission Channels
	6-4 Subscribing Receiver Objects
	6-5 IP Multicast Communication
	6-5.1 The Basics
	6-5.2 Propagation of Datagrams

	6-6 TCP Communication
	6-6.1 Server Applications
	6-6.2 Client Applications
	6-6.3 Client Connect vs. Server Connect
	6-6.4 Multicast via TCP

	6-7 Code Example

	7 Membership and Failure Notification
	7-1 Definition of Terms
	7-2 Membership Classes
	7-3 Registering a Membership Monitor
	7-4 Time-Outs
	7-5 Code Example

	8 Logging Events
	8-1 Log Levels
	8-2 Logging Events in Java Applications
	8-3 Redirecting Log Output
	8-4 Code Example

	9 Threads
	9-1 Single-Threaded Dispatch
	9-2 Thread-Per-Request
	9-3 Thread-Pool
	9-4 Thread-Per-Channel
	9-5 Comparison
	9-6 Code Example

	Appendix A iBus System Properties
	Appendix B A Note about Configuration Management

