
December 8, 2000

1



Inxar affirm Developer Tutorial

Paul Johnston

December 8, 2000

Contents

Abstract

org.inxar.affirm is a set of Java interfaces and XML-based reference
implementation designed to make server-side input validation straightfor-
ward. While input validation is most relevant to web-based applications,
it is useful under many circumstances. The fundamental scenario is that
you have a collection of data that needs to be systematically checked to
ensure that is meets some predetermined criteria. The act of validating
the input results either in a validated datum or some indication of failure
and the optional association to some feedback error message.

1 Introduction

affirm uses a simple yet versatile design model. We will use the following
scenario to illustrate the concepts:

You are designing a relatively simple web-based application which is
designed to be used by automotive shop mechanics such that they
can re-order spark plugs and the like at a moments’ notice over the
web. The application will need a few static HTML pages, some
dynamically-generated HTML pages, and a database. Today you
are writing the section of the application that allows your mechanics
to enter spark plug ordering data in an HTML form, evaluates the
data on the server, and store that information in the database.

1.1 Define your input

The first step is to ask “What data will I want to be validating?”. affirm
abstracts all input in the form of key value pairs, identical in essence to a
Hashtable. Thus, the first practical question is ”what are the keys to my
data?”. In this example, we will assume the <FORM> has three inputs:

<input type="text" name="partno"/>

<input type="text" name="qty"/>

<input type="text" name="comment"/>

2



Therefore, we will be validating the information associated with the keys
partno, qty, comments. Now we need to ask “What is the valid domain for
each value?”. After some analysis it is decided that partno is a string with
length at least 6 characters and not more than 15 characters. qty is a number
that is at least 1 but not more than 10,000. comment is a string of length between
0 and 4096 characters.

1.2 Define your error messages

We want to come up with reasonable error messages in case any of the afore-
mentioned criteria are invalid such that this message can be reported back to
the mechanic. These are:

partno Sorry, the part number you entered is invalid. Check that the partno
you entered has at least 6 characters and not more than 15 characters.

qty Sorry, the quantity you requested is invalid. Please choose between 1 and
10,000.

comment Sorry, you entered a string that was too long. Please keep your
comments within 4096 characters.

2 API Fundamentals

Now that we have a good idea of the problem we are trying to solve we can take
a closer look at how the API is structured and how it fits together. Note that
the API is essentially very simple, but since this is a tutorial we will try not
to make any assumptions. It is useful to define a few terms that have specific
meaning within the API:

2.1 Terminology

Affirmation We use the verb affirm to describe the process of validating input (affirm
that it is correct) and the noun Affirmation in reference to the API interface
Affirmation which encapsulates this behavior.

Proclamation As a noun, Proclamation refers to a set of Affirmations under a com-
mon context. In the example, our Proclamation is the set of (at least) three
affirmations that ensure that the form input is valid. We use the verb proclaim
to describe the process of validating the set of values. Thus, to proclaim your
input to validate each member in the input as defined by the affirmations.

Input The noun Input is used to refer to a set of key-value pairs the represent the
information we intend to affirm.

Datum When an affirmation is applied to a value in the input, that unit of infor-
mation is deemed valid or invalid. In the valid case, this information becomes a
datum. Thus, data (plural) refers to the set of (key,value) pairs that have been
positively affirmed.

3



Erratum In the case where an input value is rejected as invalid by affirmation, an
Erratum is created to hold the bad input and an error message describing why
or how the input value is invalid. Errata (plural) refers to the set of (key, value,
error message) trios that have been negatively affirmed.

It is also important to note that affirmation is not necessarily a passive
process. Therefore, when an Affirmation implementation inspects a value, it
may create a new object or transform the input object such that the value is in
a more usable state. For example, if a certain Affirmation is charged with the
task of determining whether a given String represents a valid integer, it may
also instantiate a new Integer object on this string and return it as the return
value from the Affirmation.affirm(Object) method.

In this way multiple Affirmation instances may be applied sequentially
over some input value, iteratively transforming the value into some desired
state. Due to the fact that sequential processing of the same key using dif-
ferent Affirmation instances is allowed, the concept of fatality is introduced.
An Affirmation is fatal if upon negative affirmation all subsequent process-
ing of the same key should be terminated. For example, say you have two
Affirmation instances both defined to operate on the key qty. The first one’s
task to to determine if the given key exists while the second has the task of
determining if the input represents a valid integer. In this case it makes no
sense to evaluate the second one if it is found that the key does not even exist.
In this way fatal acts like the boolean logical shortcut and operator &&.

2.2 Process

The overall sequence of events that occur during proclamation are as follows:

1. an Input is created from some arbitrary source which holds the (key,
value) pairs of interest.

2. a Proclamation object is obtained either de novo or more likely retrieved
from a cache and then Proclamation.proclaim(input) is invoked, initi-
ating the validation.

3. each Affirmation is applied in arbitrary order to the Input. For those
Affirmation objects that operate on the same (key, value), each one
is applied sequentially in the order that is was defined. Thus, if two
Affirmations affirmString and affirmLength are defined to operate
on the same key comment, they are applied in sequence in that order.
This is important since the input of one affirmation may depend upon the
output of some previous affirmation.

4. All affimations are applied. This process has the net effect of sorting the
input values into ‘good’ and ‘bad’ input which the held by the Data and
Errata containers, respectively.

5. At the end of the proclaim(Input) method, the Proclamation tests
whether the Errata is empty. If it is not empty, at least one invalid

4



data member has been found and a ProclamationException is thrown.
The Data and Errata objects may be retrieved from this exception object.

The fundamentally versatile aspect of the design is that arbitrarily complex
Affimation implementations can be used. At the simplest level, an Affimation
could simply test for the existence.

3 com.inxar.affirm Implementation

The org.inxar.affirm package is solely interfaces and exceptions – no im-
plementation is defined. The com.inxar.affirm package is an implementation
which uses XML elements to declare affirmation types and associated error mes-
sages. The XML document implementation used is com.sun.xml.tree.XmlDocument.
Each different element in the DTD maps to a different Affirm implementation.
Coming back to our example, a sample XML document for our proclamation is
as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE proclamation SYSTEM "file:/proclamation.dtd">

<proclamation name="orderform-input">

<affirm-length key="partno" min="6" max="15">

Sorry, the part number you entered is invalid.

Check that the partno you entered has at least 6 characters and

not more than 15 characters.

</affirm-length>

<affirm-int-range key="qty" lo="1" hi="10000">

Sorry, the quantity you requested is invalid. Please

choose between 1 and 10,000.

</affirm-int-range>

<affirm-length key="comment" min="0" max="4096">

Sorry, you entered a string that was too long.

Please keep your comments within 4096 characters.

</affirm-length>

</proclamation>

The DTD is always the best reference for what values are allowed, here are the basic types
abstracted below. An element has the general (default) form:

<affirm-{name} key="" key-type="String" isFinal="true" [other-attributes]>

error message included here...

</affirm-{name}>

key-type defaults to String but may be one of: boolean, byte, short, int, long, float,
double, char, String. isFinal defaults to true but may be one of true, false. The imple-
mentations defined in com.inxar.affirm are described briefly below:

<affirm-exists> Returns affirmatively with a the value unchanged if the given value is non-
null.

<affirm-boolean> Returns affirmatively with a Boolean if the given value is already a Boolean

or if the given value is a String and is equal to either ‘true’ or ‘false’.

<affirm-byte> Returns affirmatively with a Byte if the given value is already a Byte or if the
given value is a String and is parseable to a valid Byte.

5



<affirm-short> Returns affirmatively with a Short if the given value is already a Short or
if the given value is a String and is parseable to a valid Short.

<affirm-int> Returns affirmatively with a Integer if the given value is already a Integer or
if the given value is a String and is parseable to a valid Integer.

<affirm-long> Returns affirmatively with a Long if the given value is already a Long or if the
given value is a String and is parseable to a valid Long.

<affirm-float> Returns affirmatively with a Float if the given value is already a Float or
if the given value is a String and is parseable to a valid Float.

<affirm-double> Returns affirmatively with a Double if the given value is already a Double

or if the given value is a String and is parseable to a valid Double.

<affirm-char> Returns affirmatively with a Character if the given value is already a Character

or if the given value is a String of length 1.

<affirm-match pattern=""> Returns affirmatively with the unchanged String if the given
String matches the regular expression given by the attribute pattern.
Requires gnu.regexp.RE. in the classpath.

<affirm-int-range lo="" hi=""> Returns affirmatively with an Integer if the given value
is in the (inclusive) range given by the attributes lo and hi.

<affirm-double-range lo="" hi=""> Returns affirmatively with an Double if the given value
is in the (inclusive) range given by the attributes lo and hi.

<affirm-length min="" max=""> Returns affirmatively with the unchanged String if the
given String has length in the (inclusive) range given by the attributes min and max.

<affirm-type class=""> Returns affirmatively with the unchanged Object if the given Object

returns true by the Class.isInstance() method (instanceof operator) for the Class

name given by the class attribute.

<affirm-cc> Returns affirmatively with an int[] if the given String is a valid credit card as
determined by the Luhn Check Digit Algorithm.

The element <affirm> is provided to allow use of arbitrary Affirmation implementations.
For example, assume your application needs to know if a certain input value is a prime number.
In order to check this, you write a class org.example.PrimeAffirmation that implements
org.inxar.affirm.Affirmation. This class contains code which can correctly check if a value
is prime or not. In order to use this class in a “plug-and-play” fashion in the XML file, you
need to write a special constructor and add an entry in the file XML like so:

<affirm class="org.example.PrimeAffirmation">

<detail>Please enter a number which is (probably) prime and greater than 7.</detail>

</affirm>

The Java class name should be given in the class attribute. Each child element <arg

type="" value=""> represents one constructor argument to the class (not shown in this ex-
ample). The <detail> element is used to supply the error message.

Implementations must have a constructor which has 3 + number of <arg> elements.
Since the PrimeAffirmation class does not require any additional constructor arguments, the
constructor will only have three arguments, as shown below:

package org.example;

public class PrimeAffirmation

implements org.inxar.affirm.Affirmation

{

public PrimeAffirmation(

// The object to which the value is associated in the Input.

Object key,

// The error message that is printed when the affirmation fails.

6



String msg,

// The flag to determine if failure is fatal (described earlier).

boolean isFatal

)

{

...

}

}

4 Example Code
In this section we go over the steps that one would typically code. We assume that the xml
file shown earlier already exists.

// the uri of our xml file

String uri = "file:/my_proc_1.xml";

// use a hashtable for the example

final Hashtable hash = new Hashtable();

// populate this data

hash.put("partno", "ABDF-122-K-001");

hash.put("qty", "200");

hash.put("comment", "Rush Order");

// make an anonymous class to wrap the hash

Input input = new Input() {

public Object get(Object key) { return hash.get(key); }

public String toString() { return hash.toString();}

};

// create the prolamation object on the uri. This

// may throw an exception which we don’t show here...

Proclamation proc = new XMLProclamation(uri);

// now proclaim the input

try {

// fetch the good data

Data data = proc.proclaim(input);

// print the valid data

System.out.println(data.toString());

} catch (ProclamationException pex) {

// print the valid data

System.out.println(pex.data.toString());

// print the invalid data

java.util.Enumeration e = pex.errata.enumerator();

while (e.hasMoreElements()) {

// get the erratum

Erratum err = (Erratum)e.nextElement();

System.out.println("error for key "+err.getKey()+": ");

Detail detail = err.details();

do {

System.out.print(detail.getMessage());

7



} while (detail.hasNext());

System.out.println();

}

}

5 Conclusion
Validation of input data is a tedious and unsavory practice that, while extremely boring to
code, is quite necessary to many applications. affirm was designed to automate the validation
phase in a simple, modular, and straightforward manner. Most standard validation can be
done with the affirmation implementations defined in the com.inxar.affirm package. The
simplicity of the Affirmation interface makes it easy to define new objects with complexity
bounded only by your needs and imagination.

8


