
ArgoUML and Poseidon for UML

Users Guide and Manual

ArgoUML and Poseidon for UML: Users Guide and Manual
Copyright © 2001 by Marko Boger, Gentleware

Copyright (c) by Marko Boger, Gentleware.

This material may be altered and distributed according to the terms and conditions set forth in the Open Publication License, v1.0 or later (latest
version available at http://www.opencontent.org/openpub/).

Parts of this documentation originate from the ArgoUML Project. Special thanks to Kunle Odutola and Denny Daniels.

Table of Contents

About ArgoUML and Poseidon for UML...
1.Prerequisites..
2.Installation and first Start..

Start through Java Web Start... 2
Local Installation... 3
Start as Module in Netbeans or Forte for Java... 4

3.Guided Tour..
Opening the Default Example.. 5
Introducing the Workareas... 5
Navigation.. 7
Working with Diagrams... 8
Arranging Diagram Layout.. 9
Creating new Diagrams.. 10
Drag and Drop, Copy/Cut/Paste.. 11
Removing and Deleting... 11
Saving and Loading Projects... 12
Exporting Graphics and Printing... 13
A Walk through the Diagrams... 13
Constraints with OCL.. 15
Critiques... 15
Generating Code.. 15
Reverse-Engineering Code.. 16
Round-Trip Engineering.. 16
Searching Model Elements.. 16

4.Reference Manual...

About ArgoUML and Poseidon for UML

According to greek mythology, the hero Jason built a ship called Argo and with his
comrades, the Argonauts, he left for the quest of the golden fleece. Poseidon, god of
seas, protected and safely guided their journey.

About 4000 years later, Jason Robbins starts an open source project for a UML model-
ing tool and calls it ArgoUML. Many others join him in this adventurous undertaking
and the outcome is what you find described in this document.

ArgoUML was conceived as a tool and environment for use in the analysis and design
of object-oriented software systems. In this sense it is similar to many of the commer-
cial CASE tools that are sold as tools for modelling software systems. ArgoUML has a
number of very important distinctions from many of these tools:

• ArgoUML includes a number of features that support the cognitive needs object-
oriented software designers and architects. This was one of the main incentives to
start the ArgoUML project.

• ArgoUML supports open standards extensively - UML, XMI, SVG, OCL and oth-
ers. In this respect, ArgoUML is still ahead of many commercial tools.

• ArgoUML is a 100% Pure Java application. This allows ArgoUML to run on all
platforms for which a reliable port of the Java2 platform is available.

• ArgoUML is an open source product. The availability of the source permits en-
sures that a new generation of software designers and researchers now have a
proven framework from which they can drive the development and evolution of
CASE tools technologies.

Many features of the tool have evolved naturally in the open source project, but some
more advanced topics require the full-time effort that only a commercial company can
provide. Some of the core developer team have taken up the task and started the com-
pany Gentleware. They provide extensions in a tool suite called Poseidon for UML as
well as commercial services around these tools.

The basic version of Gentleware's tool suite, Poseidon for UML Community Edition, is
free of charge. It is based on ArgoUML and especially the user interface and general
usage of both tools are mostly identical. Therefore this document describes both ver-
sions simultaneously. Poseidon for UML is more feature rich and more stable. It is in-
tended for your daily work in commercial and professional environments. ArgoUML,
on the other hand, is open source and lends itself for research, study of the architecture
and for extensibility. It is assumed that Poseidon is the tool more frequently used and
by a community more in need of a Users Guide and Manual. Therefore this document

5

normally refers to Poseidon for UML. Differences to ArgoUML should be made ex-
plicit.

6

Chapter 1. Prerequisites

Poseidon for UML is entirely written in Java and therefore platform independent. It
runs on almost any modern personal computer. To successfully start and run Poseidon
for UML you need the following:

• Java Runtime Environment or Java Developer Kit. JDK 1.3 is recommended. A
version later than 1.2 is required. Poseidon for UML will not run with JDK 1.1.X
or JRE 1.1.X.

• A computer with reasonable memory and CPU power. For memory, 128 KB is
recommended, more is helpful. For CPU, a Pentium III or equivalent is recom-
mended.

• A specific operating system is not required. Poseidon for UML is known to run on
Windows 98, 2000 and NT, on Linux SuSe 6.X, 7.X and Red Hat as well as on
MacOS X. It is mostly developed and most tested on Linux, however, on Win-
dows platforms performance is known to be superior. Also, some implementa-
tions of the JDK for different platforms have bugs. Drag and Drop, for example,
does not run under Linux/JDK 1.3

1. Prerequisites

1

Chapter 2. Installation and first Start

This chapter informs you where you can get Poseidon for UML from, what you need to
do to install it and how you start it.

To install Poseidon for UML, there are currently three possible ways. You can do ei-
ther of the following:

• Download over the internet and locally install Poseidon for UML

• Install Java Web Start and start Poseidon for UML from the internet

• Install Netbeans or Forte for Java, download Poseidon for UML and install it as
module for Netbeans or Forte for Java

Start through Java Web Start

Java Web Start is a mechanism provided by Sun Microsystems to automatically install
and start applications from the internet. After Java Web Start is installed, all you need
to do is double-click a provided link. The required files are then automatically loaded
to a cache on your local disc and the program is started. The first time this may take a
little while, but the second time around, most information is taken from the local
cache.

The big advantage of this mechanism is, that if the program is updated on the server,
you will automatically start the new version. This also works if you are not online. In
that case the local copy from the cache is used.

First, Java Web Start needs to be installed. Follow the following steps:

1. Download the Java Web Start installation file. You can get it from

• Gentleware at http://www.gentleware.com,

• Tigris at http://www.argouml.org, or directly from

• Sun at http://java.sun.com/products/javawebstart/

You will automatically be provided with a self-installing file for your platform.

2. Close all your browser windows

2. Installation and first Start

2

3. Execute the downloaded file.

4. Open your browser again. Go to http://www.gentleware.com/products/ and click
on the icon provided for Java Web Start. After a few moments, Poseidon for UML
in the latest released version will start up automatically.

Local Installation

Local installation is very simple. In short, download the file, unzip it, open the created
folder and run the start script. Follow the following steps:

1. To locally install Poseidon, you first need to download the according file over the
internet. Make sure that you are connected to the internet. Then open your fa-
vorite internet browser and direct it to http://www.gentleware.com.

2. Navigate to the download area and follow the instructions. You will then have a
single file stored on your local hard drive in a location you indicated.

• This file is compressed using Zip. Move this file to a folder where you would
like to install Poseidon for UML. Then, to uncompress it, call the zip-
program used on your platform. Here are some examples:

• On Linux or Unix, open a command shell, go to the folder were the down-
loaded file is stored using the cd command, and call unzip PoseidonCE-
1.0Beta2.zip.

• On Windows start the Zip program. If the Zip programme is installed prop-
erly, it should automatically start if you double-click the downloaded file.
Then extract the file to a folder of your choice by clicking on the extract but-
ton and following the instructions.

3. Open the folder poseidon.

4. Run the start script that is provided for your platform.

• On Linux or Unix, open a command shell, go to the folder poseidon and
enter the command startPoseidon.sh command, and press return.

• On Windows, open the file browser and double-click the start script
startPoseidon.bat.

3

Start as Module in Netbeans or Forte for Java

Poseidon can be started as a module for the development environment Netbeans (open
source) or Forte for Java. Of Netbeans a version 3.2 or higher is required. For Forte it
needs to be 3.0 or higher.

To install it as a module, download and install Poseidon as described in the last sec-
tion, then procede as follows:

1. Open the menu item Tools->Options.

2. Select Modules. Right-click and select new module.

3. Now direct the file chooser to the directory where you unzipped the Poseidon dis-
tribution, go to subfolder lib and select the file poseidon.jar.

A new workspace should appear that contains the panes used in Poseidon.

2. Installation and first Start

4

Chapter 3. Guided Tour

This chapter introduces all basic concepts of Poseidon for UML by leading you
through an example. It is a guided tour that takes you to most of the features Poseidon
for UML without explaining all details. It gradually teaches you what you can do with
Poseidon for UML and how you can achieve that yourself. However, it is not a refer-
ence: it does not reveal all details.

Opening the Default Example

So lets start a guided tour through Poseidon for UML. Your distribution comes with a
default example built in. This example is used for the guided tour.

To open the default example, do the following:

• Start Poseidon.

• In the main menu, select Help, then Open Default Example.

The project you opened is designed to teach you pretty much everything you need to
know about UML and about Poseidon for UML. The example is taken from an eCom-
merce scenario where the company Softsale needs to model its business processes and
create an according software. It shows a typical scenario how Poseidon for UML can
be used. However, UML as well as Poseidon for UML are not restricted to this kind of
application, it is a general tool to model any kind of object-oriented software system or
even systems that have nothing to do with software at all. We'll learn more about the
example later. When the project is fully loaded, the screen should look like this:

Introducing the Workareas

The working window of Poseidon is separated in four areas. The biggest area is called
the Diagram Pane where usually the UML diagrams are displayed. To the left of it,
you find the so called Navigation Pane. Let's start with those two.

Models in UML are organized in Packages. The main package used in this example is
called softsale. It is displayed at the top of the navigation pane. You can open it by
clicking on the tree icon in front of the package name. Then your navigation pane
should look like this:

The package softsale contains several other packages (clients, ordering,

3. Guided Tour

5

products, boni and java), as well as a number of diagrams
(packageOverview, mainClassesOverview, ...) and model elements

(Surfer, Member, ...). The diagram at the top of the list, the packageOverview,
is currently displayed in the diagram pane that shows the dependencies between the
packages clients, ordering, products and boni.

The navigation pane is the main mechanism for navigating through a UML model. You
can navigate to all higher level model elements and diagrams from here. For example,
open the second diagram, called mainClassesOverview by double-clicking on the
icon in front of its name in the navigation pane. Then your diagram pane should dis-
play as follows:

This diagram already tells you quite a bit about what this example is all about. It mod-
els Clients, that are accociated with an Address, have an Account, and might
place Orders containing Products, that can be, for example, DigitalProducts.
However, this is just an overview diagram and only provides a high level view.

Lets look at some details. For this, go to the package clients in the navigation pane
and open the diagram clients.

Within the package clients, there are the classes Client, Account, Address,
Clients and CreditCard and a few associations. To find out more information on
the class Client, open the Client class in the navigation pane by clicking on the
tree icon and then select the Client class by clicking either on the name in the navi-
gation pane or on the according class element in the diagram.

Now, lets take a closer look at the window at the bottom, the details pane. This pane
displays many detail informations about the element currently selected and allows to
edit them. It consists of a number of different panels that can be selected through ac-
cording tabs at the top edge of the pane. The most important panel in the details pane is
the property panel. So far only packages and diagrams were selected and their proper-
ties are not very interesting. But now that a class is selected, it becomes an important
tool to view and change the model details. For example, try to change the name of the
class Client to Customer. Watch how the name changes in the diagram as well as
in the navigation pane (well, sorry, we currently still have update problems here, but
we'll fix that soon) as you type the new name in the property panel. Actually, the name
is changed in the entire model, including the diagram mainClassesOverview that
we looked at earlier. Yes, go check it out.

The fourth pane is called the todo-pane . It collects critiques and allows to sort them
according to different criteria. Critiques are one of many features offering cognitive
support to the developer. It is a very interesting feature, but it usually is needed a little
later in the development process. So we'll get to that a little later.

6

Navigation

A UML model can become quite complex. There are various informations that are im-
portant to different people and at different times. A UML-tool should provide elabo-
rated jet simple to use mechanisms to access that information. This is called naviga-
tion. Poseidon offers many different ways of navigating between the model elements.
Here, we'll look at the most important ones.

The most central mechanism for navigation is the navigation pane that we already had
a first look at. It organizes the UML model in a tree view and by opening and closing
the subtrees it gives access to almost all elements of a model. However, you can not
change model elements in the navigation pane and you can not access those elements
at a very detailed level.

But lets look at the possibilities it directly offers first before we'll see how it interacts
with the other windows. At the top edge of the navigation pane you find a drop-
down-menu that currently displays “package-centric”. And indeed the content of
the navigation pane is currently organized by the package structure: The top-level
package is softsale, that contains other packages like clients that contain
classes etc. You can change this to be centric to some other organization criteria. For
example, the navigation pane can be organized in a diagram-centric way. Select dia-
gram-centric in the drop-down menu and the navigation pane will change to display
the following:

Now you can see all diagrams contained in the example model at one glance. By click-
ing on one of the diagram names or icons, the according diagram opens in the diagram
pane and by opening the subtree the elements contained in that diagram are displayed.
The first two are the most commonly used views, the others are for more special cases,
for example to find out the inheritance structure of the model or the structure of the
navigation paths. And remember, the navigation pane displays the complete model
while a diagram might only show you some aspects. Select the clients class diagram,
open its subtree and then select the client class in the navigation pane.

Each time you make a selection in the navigation pane, the details pane is updated and
shows the details for that selection. Usually the details pane shows the property panel
that contains the most relevant details. We'll look at that in a minute but check out
some of the other panels now. If you select a different tab, the according panel will be
displayed (as long as it makes sense for the current selection). For example, if you
want to change the style of an element you can select the style tab and change the color
in which it is displayed. Lets take the client class, a very centric class, and set its lines
to bright red and its fill style to pink. You can also turn on and off the compartments
for attributes and operations here, try to do so for the Account and Address classes so
that you get the following display.

3. Guided Tour

7

.

Now lets go back to the property panel. This is the place to drill down deeper into the
model. It displays and allows to directly change the properties of an element. The
client class for example is currently public and has the stereotype entity.
Other properties are yet further down in the model and you need to navigate further to
change them. Take a look at the some of fields in the properties panel, like
Associations, Operations and Attributes. Everything that is marked as
blue in these fields operates like a hyperlink in a hyptertext would do. You can navi-
gate from the class to its associations or operations and look at or change the detail in-
formation on those. Select the checkPassword operation and have a look at its
properties. It is currently public, but you can change it to be private or
protected. Note that while you do that the little icon in front of the operations name
in the diagram pane changes from + to # and then to — accordingly.
Take a closer look at the parameters. They have properties themselves and thus have
their own property panel you can navigate to. Note the parameter type return. The
UML specification treats return types as special parameters. Thus every operation has
a return parameter that by default is set to void. In this example, though, the return
type of checkPassword is set to boolean. With the back, forward and up button
you can comfortably navigate back and forth through the properties panes, also similar
to a hypertext browser.

Working with Diagrams

Lets take a closer look at the diagrams pane. At the top edge of the diagram pane, you
find a number of tools you need to create and modify your UML models. If you have
ever worked with a UML tool or even just a drawing tool capable of creating UML di-
agrams, you are probably familiar with the general idea of such a tool bar. Each dia-
gram type has a specialized set of tools in its toolbar. Some of them are common to all,
though. Here is the tool bar for a class diagram:

If you want to find out the name of each individual tool, position your mouse over it an
wait a little while, then the name will appear just underneath the tool. The first is called
the Select tool. It is the default tool and is used to select diagram elements, move them
around and scale them. If this tool is active (it is if you did not select a different one)
you can select an element, for example the client class, and you will see that small blue
handles appear on the corners of the element. You can use these handle to resize it. A
selected element can be moved around if you select it again and keep the mouse
pressed.

The second tool is called the Broom. It can be helpful to arrange your diagram, espe-
cially for horizontal and vertical alignment. We'll look at that in a minute. These first
two tools are common to all diagram types.

8

The next set of tools are specialized for each diagram type. They allow the creation of
diagram elements and operate similar to a stamp. With a single click on such a tool you
can create one according diagram element. If you double-click, you can create a num-
ber of diagram elements, one after the other. The curser changes to a hair cross with
which you can select the position where to create the element in the diagram. In the ex-
ample of the class diagram, the first tool creates a package, the second a class. The
next tree can be used to define associations between classes or packages. For these to
operate, you already need to have the classes (or packages) you want to connect in
place. Place the mouse over the first, click and hold, move the mouse to the second and
release the mouse.

Some tools are only available in a certain context. In the class diagram for example,
the tool to create a new attribute or a new operation are only available when a class is
selected. If that is so, simply clicking on the button will create a new attribute or opera-
tion for that class, respectively.

The last set of tools are for general drawing purposes and are again common to all dia-
gram types. With these you can add other graphical elements to your diagram. You
should keep in mind, though, that these are not part of UML.

But the tool bar is not the only way to create new diagram elements or associations.
Poseidon provides an intelligent shortcut that can speed up the development of a dia-
gram quite a bit. Select a class (and move your mouse just a little bit) and you will see
additional buttons appear just off the edges of the class. These buttons are called Rapid
Buttons and are only available if an element is selected and the mouse is over it. They
are available for many diagram elements and allow to quickly create the most impor-
tant new elements that can be associated with it or to create a new association to an ex-
isting element. For a class these are associations to other classes and inheritance from a
superclass or to a subclass. Try to click on the rapid button underneath a class and you
will see that a new subclass appears where Poseidon thinks is a good place to put it. If
you click and hold the button, you can move the mouse and place the new element
where you like it to be. Or if you click, hold and move it over an existing element, only
the new association between these elements is created. Note that the rapid button just
over the class creates a superclass.

Arranging Diagram Layout

You already saw that you can lay out your diagram by using the select tool and moving
elements around. There are a number of other ways to beautify your diagrams. You can
not only move a selected class around by using the mouse but also by using the arrow
keys of your keyboard. Your elements move in the direction of the arrow in small in-
crements. Now hold down the shift key while pressing the key arrows. You will notice
that the elements move in larger increments. You can select several elements by hold-

3. Guided Tour

9

ing the shift key while selecting other elements. Now movements apply to all selec-
tions. You can also select a number of elements by clicking somewhere on the
workspace, hold the key and drag the mouse. A blue rectangle appears and all elements
that are completely enclosed in it will be selected.
If you want to select all elements of a diagram, you can use a hot-key to do that: press
CTRL-A.

But there are still other options. Select the tree classes Email, Client, and
CreditCard. Now go to the main menu and select Arrange->Align.

Select Align Tops, then select Arrange->Distribute->Distribute Horizontal Spacing.
Then the outcome should look like this:
All three classes aligned on the top edge and equal horizontal distance between them.
The other submenu-items of Arrange should new be self explaining. If not, go try them
out.

The layouting is supported by a grid. It you want a finer or a coarser grid than the de-
fault or if you want the grid to be displayed in a different manner, you can change this
in the view menu.

You can also change the layout of the edges. By default, Poseidon always tries to draw
a straight line without bendpoints but you can easily add bendpoints: Select an edge
and move it sideways. At first the edge simply moves sideways, too. But as soon as a
straight edge is no longer possible, a bendpoint is automatically added. You can add
several bendpoints to an edge so that you can wire your diagrams just as you like it. To
remove a bendpoint, just move it exactly over a different bendpoint and it is gone.

You can also move annotations around. Simply select the annotation and drag it
around. You will notice a little dotted red line that indicates to which association this
annotation belongs.

Creating new Diagrams

So far we have only been playing around with the class diagram. But Poseidon sup-
ports all diagrams of UML. You can look at some examples by clicking your way
through the example file. But how can you create your own diagrams?

Creating Diagrams is simple, but you might need a few informations to get it right. In
UML, most diagrams are assigned to a package. When creating a new diagram, it is as-
sumed you want it to be placed in the package you are currently working with. So if
you want it to be in a specific package, select that package first in the navigation pane.
Then, select Create from the main menu. From there you can select the diagram type
you want.

10

If what you wanted was a state diagram or an activity diagram, you might have found
that they are greyed out in the menu. The reason for this is, that these diagrams are not
directly assigned to a package but to a class or a use case. A State Diagram is always
assigned to a class, an Activity Diagram can be assigned to either of them. So to create
these diagram types, first select a class or a use case in the navigation or diagram pane.

If what you wanted was an Object Diagram or a Component Diagram, don't worry,
they are there, too. They just don't have their own editor. Select a Deployment Dia-
gram, it contains everything you need for all three of these diagram types. Using just
one editor for all three diagram types allows to combine these diagrams.

You can give your new diagram a name by selecting it in the navigation pane and
changing the default name in the property panel.

Be careful with diagram creation, though. The deletion of diagrams is a feature that
still is not implemented. To follow along the guided tour, create a new class diagram
for the top-level package softsale.

Drag and Drop, Copy/Cut/Paste

You have just created a new diagram. You can now fill this diagram either with new
elements using the tool bar and the rapid buttons as we have just seen. But maybe you
want to reuse the elements already present in the model, you just want to add a new
presentation for them. For this you can drag existing elements from the navigation
pane and drop them in the diagram. These elements will appear with all currently
known associations to other elements already present in the diagram. For example drag
the classes Client, Address and CreditCard to your new diagram. Your diagram should
look something like this:

The other possibility is to select elements in a different diagram, copy them by press-
ing CTRL-C and pasting them into your new diagram by hitting CTRL-V. To cut ele-
ment from a diagram, use CTRL-X. Of course you can also use these features from the
edit menu.

Removing and Deleting

Now that you have created different views of one model element in different diagrams,
you are well prepared to learn the difference between removing an element from a dia-
gram and deleting it from a model. If you are used to working with drawing tools like
Visio or Powerpoint to draw your UML-diagrams, deleting an element from your dia-
grams simply removes the according figure. With proper UML-modeling tools this is
different. You are working on a model and the diagrams are just rendered from these.

3. Guided Tour

11

This implies that there are two different meanings of “deleting an element”. With the
delete key, an element is completely removed from the model. That means, that it will
be removed from the current as well as from all other diagrams and you can not get it
back again. With CTRL-R you can remove it just from the diagram you are currently
working with but it remains untouched in other diagrams and it also remains in the
navigation pane.

Saving and Loading Projects

By now you might have made quite a few changes to the model. You may want to save
your changes to permanent store in a file. Of course you can save projects in Poseidon,
but there is something more to say about this. Poseidon does not save models in yet an-
other proprietary format but it make use of a standardized saving format that is based
on XML. The UML specification that is standardized by the OMG has provided a
mechanism how to exchange models in between different tools. This mechanism is
based on a special application of XML called XMI (which stands for XML Metadata
Interchange). In theory this sounds very nice, you can save a model in one tool and
load it again in another one. But in practice, the standard is just not standardized
enough. Not only are there different versions of UML, but also of XMI. And then the
interpretation of XMI also differs between tools. More importantly, though, the layout
information of diagrams in not transported via this mechanism. So all you can inter-
change between tools is the information presented in the navigation pane.

Many other tools can import or export XMI. And with some the interchange with Po-
seidon works quite well. To our knowledge, though, Poseidon and ArgoUML are the
only tools using XMI as standard saving format. This means that the diagram informa-
tion has to be stored in additional files. This is done using a format called PGML,
which is a predecessor to SVG, the Scalable Vector Graphics format, standardized by
the W3C. There is one such PGML file for each diagram. Also, some additional infor-
mation about the project needs to be stored, which is done in jet another format with
the ending .argo.

As a user you don't have to worry about all this. All of these files are zipped together to
just one compressed file with the ending .zargo. This is a regular ZIP file and you can
uncompress it using a ZIP tool or the Java JAR tool if you want to have a closer look
inside. You can even load the unzipped format (select the .argo file) but it is not rec-
ommended.

You can access saving and loading from the File menu just like in any other graphical
tool. Equally you can save a project under a new name, using the Save as.. menu item.
Or you can use the hot key CTRL-S to save a project. To create a fresh project, select
New Project. To import an XMI file, change the Open Project file chooser to XMI and
select the xmi-file.

12

Exporting Graphics and Printing

Another option you have from the file menu is to export graphics. If you want to use
your diagrams in other documents, in a report or a website or a slide show, you can ex-
port them in a set of different formats. The formats currently available are GIF,
Postscript (ps), Extended Postscript (eps) and Scalable Vector Graphics (SVG). For
web content, use the first. For text documents use ps or eps. This works especially well
with LaTeX documents. You can also use this format for desktop publishing tools as
provided by Corel or Adobe. You can use either in regular text processing systems like
MS Word or in presentation tools as Powerpoint. The most promising format, though,
is SVG. Currently there are not many applications supporting it for it is still brand new.
But in the future, this will be the format of choice for web content as well as for text
documents or even to manipulate these diagrams in graphic tools. Currently, there is a
plug-in from Adobe for the Internet Explorer, if you want to try to export diagrams in
SVG and view them in a browser. Also there is a graphics tool available from the
Apache project, called Batik.

But for now we have to make due with traditional formats due to the lack of applica-
tions. To save a diagram, select it in the navigation pane, then select Save Graphics ...
from the File menu. You can also directly print a diagram to a printer. The hot key for
this is CTRL-P.

The following section shows a number of GIF images exported from Poseidon, show-
ing various examples of diagram types available in UML.

A Walk through the Diagrams

There is a lot to say about when to use which diagram type and what the role of it
should be. That is what is referred to as Process or Method. But this is not the place to
do so. Here we'll just look at some examples of the various diagram types and explain
a bit more about the example application.

The first diagram to look at is the Use Case Diagram. Here users, or better said, the
roles the users have towards a (software) system, the tasks or Use Cases they are in-
volved in and the relation between the Use Cases are expressed. It is often used in
early stages of the process to collect the requirements. Please note that a complete Use
Case is not just the bubble that is used to represent it in the diagram, but a description
of the Use Case, a typical scenario, exceptional cases, preconditions etc., mostly ex-
pressed in external text or on cards. It can also comprise of other diagrams like a Se-
quence Diagram or Activity Diagram that explain the Use Case scenario.

To analyze the application domain and to pin down the terminology used (or to be

3. Guided Tour

13

used), Class Diagrams are applied. In this stage they remain relatively simple since
they are usually used to discuss things with the domain expert who can not be expected
to have computer technology background. The following Class Diagram is a typical
example for this.

Then the business process can be modeled, usually using Activity Diagrams. The fol-
lowing example shows an Activity Diagram that depicts the rules and the process of
paying an order. In the case of this example, this is not so simple, for Softsale will not
accept an order if you have overdue payments open, will only allow payment by in-
voice if your e-mail and home address have been verified and some other rules. Take a
closer look yourself.

Business process models do not lend themselves to implementation in an object-ori-
ented way. If you want to go the UML-way you should brake the business process
down and express it in terms of states for each object involved in the process. The fol-
lowing State Diagrams show a few examples of this.

Client State Diagram

CreditCard State Diagram

Account State Diagram

OrderController State Diagram

To express single scenarios or examples of these business processes and how the indi-
vidual objects interact with each other during execution, you can depict that in a
Sequence Diagram. The following one shows an example.

In parallel to the above the overall architecture needs to be developed, again using
Class Diagrams. But now not only terms of the domain but also implementation spe-
cific stuff gets expressed. A general pattern of an architecture is the Model-
View-Controller Pattern, or the Boundary-Control-Entity-Schema , as it is often
rephrased in the UML community. According to this, the architecture is constructed in
three layers. The first, the Boundary, is responsible for representing information to the
user and to receive his interactions. The next layer, Control, contains the rules how to
combine information and how to deal with interaction. And finally the Entity-layer
holds the data and is responsible for its persistence. To which layer a class belongs is
expressed using stereotypes. For Boundary, Control and Entity according stereotypes
are available. An example for this is shown below.

After a while, clusters of classes that strongly interact and form a unit will start to peal
out in the architecture. To express this, the according clusters can be represented as
components. If taken far enough, this can lead to a highly reusable component archi-
tecture. But such an architecture is hard to design from scratch and usually evolves

14

over time. An example for aComponent Diagram is shown below but this diagram type
still needs to be further developed. So be careful when using this diagram type.

Finally the way the individual components are deployed to a hardware system can be
described using the Deployment Diagram, also available in Poseidon.

Constraints with OCL

Generally speaking, UML is a graphical language. A graphical language is very suit-
able of expressing relatively high-level abstractions for architectures, workflows, pro-
cesses etc. But for expressing very detailed and fine-grained things like algorithms,
equations or constraints, textual languages might just be more suitable. The UML rec-
ognizes this and comes with a supplementary textual language to express constrains.
This language is called the OCL, or Object Constraint Language for long. Since it is
text it is simple to support by tools and many UML tools do just that and you can enter
a line of text in fields reserved for constraints. But also because it is text, it is quite dif-
ficult to tell — just by looking at it — whether syntax and semantics are used cor-
rectly. Tools can very much help with this, but most tools just don't. Poseidon does,
and to our knowledge is best at doing this.

Critiques

Before we get to generating code, lets check if our model is as nice as it should be. In
fact there is a very nice feature of Poseidon that supports this: critiques.

Generating Code

UML wouldn't be worth much if all you get is pretty pictures. What you want when an-
alyzing and designing a software system is the code. Poseidon provides a very power-
ful and flexible code generation framework based on a template mechanism. It is cur-
rently only used to generate Java code, but it is flexible enough to generate any kind of
programming language, or even other languages like HTML or XML.

Code generation is usually based on the classes of a model (all information that could
be displayed in a class diagram). The code can be generated to files using the menu
Generation. But in fact, the code generation mechanism is fast enough to constantly
generate it online while you are browsing through and changing your model. Take a
look at the details pane at the bottom of your window. There is a tab named source. Se-
lect it and what you will see is the code that is generated for the class that is currently
selected. This code is generated every time you make a new selection. So if you
change the name of a class and you want to see the new name in the source panel, sim-

3. Guided Tour

15

ply deselect and select the according class again. You will find the complete interface
definition for the class, including package information, import statements, class defini-
tion, inheritance information, attributes and methods with visibility, type and parame-
ters. As you would expect. Lets look at a simple example.

But Poseidon can do even more for you. It also generates setter and getter methods for
public fields. For bidirectional associations to other classes, also the code to manage
this relation is generated. Bidirectional associations in UML (associations with naviga-
tion in both directions allowed, which is default) need to be transformed to two uni-
directional associations in most common programing languages. If one of these is set,
the other should be set accordingly. Poseidon generates the according code for you.
Here is an example.

Reverse-Engineering Code

Software engineers often run into the problem of having to re-engineer an existing
project for which only code but no models are available. This is where reverse-en-
gineering comes into play. This means that a tool analyses the code and auto-generates
a model and a set of class diagrams for it. Poseidon can do this for Java code for which
the source code is available and in a state where it can be compiled without error. To
launch this process, go to the menu and direct the file chooser to the root package. It
will then analyze this as well as all subsequent packages. The outcome is a model con-
taining the according packages, all classes and their complete interface, as well as one
class diagram for each package. Classes that are needed to make the model complete
but are not present in the package structure are also established in separate packages.

Round-Trip Engineering

Code generation and reverse-engineering that code still does not make a round-trip en-
gineering. Reverse-engineering generates a new model from existing code, but it does
not by itself reconnect the existing code to an existing model. This is a feature that is
still not implemented in Poseidon. But a good code generation and a good reverse-
engineering mechanism are the main ingredients to bake such a mechanism. So stay
tuned.

Searching Model Elements

When your models start to grow, you will want a nice mechanism to search for ele-
ments. Poseidon offers a powerful search tool that is not just based on text but on
model information. It allows you to look for specific types of elements. The search tool
is invoked from the menu or by pressing. Type in the name of the element you are

16

looking for (you can also use * as place holder) and specify the type in which to look
for. If you are looking for a class, this type would be MClass.

For each search, a new tab is created so that you can access older search results. You
can also restrict the search space to be the result of an earlier search.

3. Guided Tour

17

Chapter 4. Reference Manual

4. Reference Manual

18

