
Getting Started
with Zinc Programming

Zinc® Application Framework™

Version 5

Zinc Software Incorporated
Pleasant Grove, Utah

c”).

ponsi-
ge

on-
 herein

ate
vided
ere

SE

orpo-
LL.
8-96
NOTICE

This documentation is available in electronic and printed formats. If the electronic documentation is
printable, a single copy may be printed for use by the Developer. Except for the foregoing, no part of
this publication may be reproduced, translated, stored in a retrieval system, or transmitted, in any
form or by any means, without the prior written permission of Zinc Software Incorporated (“Zin

DISCLAIMER

While every precaution has been taken in the preparation of this manual, Zinc assumes no res
bility for errors or omissions. This publication and features described herein are subject to chan
without notice. ZINC MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO
THE CONTENTS HEREIN AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

TRADEMARKS

Zinc is a registered trademark and Zinc Application Framework, Zinc Designer and Zinc DataC
nect are trademarks of Zinc Software Incorporated. All other trademarks and tradenames used
are owned by their respective holders.

LICENSE AGREEMENTS

Zinc Application Framework is licensed subject to the terms and conditions of one of two separ
license agreements found in the “Getting Started” manual. The Personal Version license is pro
to individuals developing non-commercial, non-distributable, personal-use-only applications. Th
is no license fee or royalty required for the Personal Version license. HOWEVER, TO EXERCI
RIGHTS BEYOND THE PERSONAL VERSION LICENSE, THE DEVELOPER MUST PUR-
CHASE A PROFESSIONAL VERSION LICENSE FROM ZINC.

ACKNOWLEGEMENTS

The ChartFolio framework used by ZafChart is licensed software ©1994-97 DPC Technology C
ration. The XPM library used by ZafImage on Motif is licensed software ©1989-95 GROUPE BU
The MetaWINDOW graphics primitives used by ZafDisplay on DOS is licensed software ©198
Metagraphics, Inc.

This manual was generated December 23, 1997.

Copyright © 1990-1997 Zinc Software Incorporated.
All Rights Reserved.
Printed in the United States of America on recycled paper.

Contacting Zinc

Worldwide Sales: info@zinc.com, sales@zinc.com
Technical Support: support@zinc.com
Training and Consulting: services@zinc.com
Web: http://www.zinc.com/
Ftp: ftp://ftp.zinc.com/
CompuServe: GO ZINC

North America Zinc Software Incorporated
405 South 100 East
Pleasant Grove, Utah 84062 USA
Tel: 1-801-785-8900
Sales: 1-800-638-8665
Support: 1-801-785-8998
Fax: 1-801-785-8996

Zinc Software Services, Inc.
42627 Garfield, Suite 214
Clinton Township, Michigan 48038 USA
Tel: 1-810-228-4900
Fax: 1-810-228-6633

Europe Zinc Software (UK) Ltd.
106-108 Powis Street
London, SE18 6LU United Kingdom
Tel: +44 (0)181 855-9918
Fax: +44 (0)181 316-2211
BBS: +44 (0)181 317-2310
Email: europe@zinc.com

Table of Contents v

3
8

 37

1
44
Table of Contents
Contacting Zinc iii

Quick Start 7
Getting Started 9
Hello World 1 11
Hello World 2 15

Architecture Basics 21
Architecture Basics—Event Flow 2
Event Window 2
Suggested Study

Appendices 39
Software License Agreement Professional Version 4
Software License Agreement Personal Version

Index. 47

vi Zinc Application Framework 5

Quick Start

Getting Started 9

the

g sys-
Getting Started
Congratulations on your selection of Zinc® Application Framework™ (ZAF),
the most powerful cross-platform internationalized application framework
available.

What Is Zinc
Application
Framework?

ZAF is a collection of C++ class libraries with source code, a visual interface
design tool called Zinc Designer™, example programs and more. ZAF is
easiest and most elegant C++ user interface API ever developed.

Zinc Application Framework allows a single code base to support multiple
platforms, including:

• Microsoft Windows

• X/Motif

• MS-DOS

• Apple Macintosh

• IBM OS/2

Many derivative operating systems are indirectly supported as well. For exam-
ple, Zinc’s MS-DOS support ports easily to embedded and real-time operating
systems such as P-SOS while ZAF’s X/Motif support ports easily to virtually
any Unix or real-time OS supporting X/Motif 1.2 or later. Consult current
ZAF 5 readme files for detailed information on tested and certified operating
systems.

Zinc Software is well-known for sophisticated internationalization (i18n) tech-
nology. Using this technology, ZAF supports virtually any single-, double-, or
mixed-byte language worldwide (subject to operating system limitations).
Zinc supports ISO-8859-1 and Unicode character encoding standards to pro-
vide portable i18n. In addition, ZAF 5 supports any locale (date, time and
number formatting).

Using Zinc’s i18n features, a single code base may support a completely inter-
national application. For example, a single ZAF executable might simulta-
neously support English, European languages, Japanese and Chinese.

How Does it
Work?

Zinc Application Framework defines an abstract user-interface API that is
independent of any operating system. This API is then mapped onto native
functionality of each operating system to provide a portable access method on
each environment. This technique, known as “layering,” allows ZAF to be
small, fast, and true to the visual and interactive nuances of each operatin

10 Zinc Application Framework 5

n-

 and

,
AF

st
,

ts

lity

may
asic

n
e-
ms
tem. Applications developed with ZAF are native, and therefore look and feel
like other applications developed using native tools on each OS.

When ZAF defines functionality that is not native to an operating system, ZAF
provides the functionality directly. In this way a “superset” of native functio
ality is assured without the overhead of thick “emulation” APIs.

How Do I Use
ZAF?

Zinc Application Framework is written entirely in C++. As such, it requires
that programmers be familiar with basic C++ concepts such as inheritance
derivation. While many C type hooks are supplied in ZAF, a knowledge of
C++ is essential.

ZAF is an advanced programming tool. It provides a high level of flexibility
extensibility, and scalability to expert users. At the same time, however, Z
is designed to be easy to use.

Zinc Designer, an interactive visual design tool, is the starting point for mo
ZAF applications. Using Zinc Designer, a developer lays out the windows
dialogs, and user interface objects that make up an application.

Each object may be customized using “property sheet” editors. ZAF objec
contain rich functionality including context-sensitive help, tool tips (pop-up
help), color and font selection, bitmap support and more. All this functiona
may be accessed and specified without code.

Once an application has been “defined” using Zinc Designer, source code
be generated. This source code can be immediately compiled to test the b
functionality of an application. More sophisticated functionality, including
application flow control, may be added at the source code level.

The next section of Getting Started will walk you through simple applicatio
scenarios to demonstrate the simplicity and power of Zinc Application Fram
work. For more complex, real-world applications, study the example progra
supplied with ZAF 5.

Hello World 1 11

n
ion

us-
ith
r
ay

itle
im-
tton

fol-
Hello World 1

Building a
Simple
Application

The best way to learn ZAF is to use it. Let’s begin by building the simple
“Hello World” program found in the “example/hello” directory. This program
creates a simple window using straight code (without the use of the visual
design tool, Zinc Designer). An example using Zinc Designer will follow.

In this chapter we'll be referring to Microsoft Windows. Detailed informatio
on building ZAF programs for each environment is included in the Installat
Guide and should be consulted before continuing.

To build the Hello1 application for 32-bit Microsoft Windows, change to the
directory containing the source code and type:

zmake win32

This command invokes “ZMake,” a Zinc-supplied make utility and uses a c
tom make file “zmake.mak.” Any make utility and compiler may be used w
ZAF, but ZMake is recommended since it is completely compiler and linke
independent. If you are using Motif or another platform your make utility m
be different.

Now, run the Hello1 application.

The Hello1 application utilizes the basic elements of a ZAF application.
Hello1 presents a simple window with appropriate decorations such as a t
bar and a border, and a prompt that says “Hello World!” (Note: since this s
ple example has no nice exit functionality, you'll need to use the system bu
or ALT-F4 to close it.)

Here is the source to the example. A detailed description of the code will
low:

// COPYRIGHT © 1997. All Rights Reserved. - HELLO1.CPP
// Zinc Software Incorporated. Pleasant Grove, Utah USA
// May be freely copied, used and distributed.

#include <zaf.hpp>

int ZafApplication::Main(void)
{

// Needed for linkers that don't automatically look for
// unresolved references to main() or WinMain() inside
// of libraries.
// (Either main() or WinMain() is found in a ZAF library.)
LinkMain();

12 Zinc Application Framework 5

n
 All

ns:
c-

e-

// Create a window with generic objects (border, maximize
// button, minimize button, system button, and title).
ZafWindow *helloWindow = new ZafWindow(0, 0, 30, 3);
helloWindow->AddGenericObjects(new ZafStringData("Hello
Window"));

// Attach a prompt with the "hello world" text.
// (The optional ZAF_ITEXT macro guarantees
// Unicode compatibility.)
helloWindow->Add(new ZafPrompt(2, 1, 0, ZAF_ITEXT("Hello
World!")));

// Center the window on the main monitor.
zafWindowManager->Center(helloWindow);

// Attach the window to the window manager
 // (make it appear on the screen).
zafWindowManager->Add(helloWindow);

// Process events.
// (This function passes events from the event manager to the
// window manager until an S_EXIT is received or no more
// windows are attached to the window manager.)
Control();

// Return an exit code to the OS.
return (0);

}

Let’s walk through the ten lines of functional code in detail:

#include <zaf.hpp>

The first “real” line of code includes the header file zaf.hpp. This file in tur
includes all the header files that define the classes you'll need to use ZAF.
ZAF applications should begin with this #include.

int ZafApplication::Main(void)

This example program contains a single method used by all ZAF applicatio
ZafApplication::Main(). Since every C++ application requires a main() fun
tion (or WinMain() in Microsoft Windows), the ZAF libraries automatically
include a main() or WinMain() function for you. In your own code, you'll cr
ate ZafApplication::Main() (or let Zinc Designer generate it for you) and let
ZAF handle the platform specific main() or WinMain().

Hello World 1 13

ell”
a
ow

rder,
e

ate
ion
ro
ll

The ZafApplication class handles many initialization tasks automatically. For
example, the following components are initialized prior to ZafApplica-
tion::Main() being called:

• ZafErrorSystem (an error handler) is instantiated

• ZafHelpTips (a “pop-up” help device) is instantiated

• ZafI18nData (the core internationalization class) is instantiated and initialized

LinkMain();

Our ZafApplication::Main() first calls LinkMain(). LinkMain() is a stub
method defined in the ZAF libraries along with main() or WinMain(). It is
called to assist linkers that don’t look for main() or WinMain() in libraries.
Some linkers don’t require calling LinkMain(), and others will report link
errors without it.

ZafWindow *helloWindow = new ZafWindow(0, 0, 30, 3);

Next we create a new instance of the ZafWindow class. The new window’s top
left corner is placed at the screen position (0, 0), which is at the top left corner
of the screen. The window's width is 30 cells, and its height is 3 cells. A “c
is basically the average width of a dialog font character, and the height of
string field. (Note: some Motif window managers may override exact wind
positioning based on user preferences.)

helloWindow->AddGenericObjects(new ZafStringData("Hello
Window"));

We want all the normal decorations on the window such as title bar and bo
so we call the AddGenericObjects() method. The title “Hello Window” will b
used in the window's title bar.

helloWindow->Add(new ZafPrompt(2, 1, 0, ZAF_ITEXT("Hello
World!")));

The client area of the window will contain a single prompt object, so we cre
a new ZafPrompt instance. The prompt will be placed within the client reg
of the window 2 cells from the left and 1 cell from the top. Passing in a ze
for the width causes the prompt to calculate its own width. The prompt wi
display the text “Hello World!” (Note that the text is passed to the optional
“ZAF_ITEXT()” macro to allow automatic conversion of 8-bit characters to
16-bit Unicode characters if the application is built in Unicode mode.)

zafWindowManager->Center(helloWindow);

14 Zinc Application Framework 5
We’ve decided that the window belongs in the center of the screen, so we call
the window manager’s Center() method to automatically center it for us. To
prevent visible movement on the screen we perform the centering prior to dis-
playing the window.

zafWindowManager->Add(helloWindow);

Next, we add the window to the window manager, which has the effect of dis-
playing it.

Control();

Like most modern user interfaces, Zinc Application Framework is event-
driven. To start the ZAF event system and allow the user to interact with our
application, we must now call the Control() method. Control() gets events and
causes them to flow through the ZAF system where they will ultimately arrive
at the correct object for processing.

Examples of events include a mouse click or a keystroke. These events are
passed to the object under the mouse pointer (click), or the object with focus
(keystroke) for processing. Control() continues processing events until it
receives an S_EXIT event, or until there are no windows on the window man-
ager to which it can pass events.

return (0);

Finally, our code returns a zero meaning that the application had no errors.
(Usually, a C++ application returns -1 if an error occurred.)

Clearly, this is a very simple example, meant to get you started programming
with ZAF quickly. You will also want to try using the Zinc Designer for rapid
visual development of user interface elements. The next chapter shows this
method.

Hello World 2 15

na-
 data

ly

e in

in
t
Hello World 2
In the previous chapter, we built a simple application strictly with source code.
This technique works well for small applications or for maximum customiza-
tion and control. For most applications there is a better way.

ZAF includes Zinc Designer, an interactive visual design tool, to greatly sim-
plify the task of building a user interface. To build the same application we
built in the previous chapter requires no hand-written source code, for exam-
ple. Hello2, found in the “example/hello” directory, demonstrates this alter
tive method in which Zinc Designer is used to generate a persistent object
file, “hello2.znc,” and to generate the source code necessary to access the
object data file at run time.

Using Zinc
Designer

Since this is our first experience using Zinc Designer, we’ll take things slow
and explain everything in detail. Later tutorials will assume much of the
knowledge gained in this chapter.

Start Zinc Designer and
create a new file

1. To recreate this application from scratch, open the Zinc Designer whil
a temporary directory—“work” for example. We don't want to overwrite
the Hello2 application shipped with ZAF.

2. In the “File” menu, select “New.” Use “hello2.znc” for the file name.

When you exit Zinc Designer (later), this file name will be stored on the ma
window’s “File” menu for easy access in the future. The “File” menu will lis
the five most recently used files.

16 Zinc Application Framework 5

ty

e
r.
Examining the file
browser and property
sheet

Now that we have a data file to edit,
the data file browser and property
sheet windows are open. These two
windows are most important when
using Zinc Designer, but both are
empty for now.

The “Browser” window will display
a hierarchy of objects contained in
the data file we’re using. These
objects may be edited by double-
clicking on them in the browser.
(Note: In some cases this is the only
way to edit an object, so keep it in
mind.)

The bottom “Property Sheet” win-
dow will display all of the properties
supported by the current “edit
object.” These properties are orga-
nized both by function and object.
As you change object properties
you’ll make your changes on this
window and click “Apply” to save
the change. If you are not happy with a change, a one-level undo capabili
will let you recover from your last “Apply” operation.

Create a window 3. Now create a window by selecting the ZafWindow button in the main
Designer window. The ZafWindow button is the left-most button on th
“Window” page of the toolbar notebook. A new window will now appea
The window may be resized and moved as desired.

Hello World 2 17

 in

e

ld
”
Note that the window is placed on the screen immediately after clicking the
“Window” button. The first five buttons on the “Window” toolbar page are
offset from the others because they share this behavior. All other controls
Zinc Designer must be selected and then placed in a specific position on a par-
ent control.

Modify window
properties

4. Change the title bar
text on the window by
selecting the “Win-
dow” page of the prop-
erty sheet. Click the
“Window Title” prop-
erty and replace the
default title bar text
with “Hello Win-
dow.” Click the
“Apply” button to
cause the change to
immediately take
effect on the window.

All changes except palette
changes (colors and fonts) take effect immediately so you can evaluate th
change. If you don’t like the change, click the “Undo” button to undo the
change.

5. Since we intend to
directly access this
window at run time (by
loading it by name
from the data file), we
must know its unique
identifier, or StringID.
To check or change the
StringID, select the
“StringID” property in
the “General” page of
the property sheet. To
make the StringID
easy to remember later,
change it to “HelloW-
indow” (no spaces) and select the “Apply” button again. (Note: we cou
have changed both the title and the StringID, then selected the “Apply
button just once.)

18 Zinc Application Framework 5

n-

,
Add a prompt object 6. Now add a prompt to the window by selecting the ZafPrompt but-
ton in the main Designer window. The ZafPrompt button is the
left-most button on the “Additional” page of the notebook.

After selecting the ZafPrompt
button, click the mouse in the
“Hello Window” where the
new prompt is to appear. This
process is called “placing”
the object. After placing the
control the mouse returns to
normal operation and may be
used to select other controls
on our edit window. The prompt may now be moved around on the wi
dow and sized as desired. (Tip: to rapidly place several objects of the
same type you may click the right mouse button to reset the “place”
object.)

Modify object properties 7. Now, using the prop-
erty sheet, change the
text of the prompt by
selecting the “Text”
property on the “Gen-
eral” property sheet
page. Change the text
to “Hello World!” as in
our first application.
Select the “Apply”
button on the property
sheet and watch the
change take effect.

You may wish to experi-
ment with some of the
other properties as well. Try the “Quick tip” property, for example.

Test the user interface
using “Test Mode”

8. Now, let's test the “com-
pleted” application. Select
“Test Open Windows” from
the “Options” menu. All the
Zinc Designer windows dis-
appear and only our edit win-
dow is left. In this mode Zinc
Designer allows the ZAF
libraries to take over—the
controls now appear and behave exactly as they will in the completed

Hello World 2 19

e”
w.

n to
w

t will

 you
compiled application. When finished testing, select the “End Test Mod
button in the lower right of the display, or close your application windo

Generate source code 9. Next, select “Code Generation” from the “Options” menu. During this
process three source files will be generated by Zinc Designer in additio
the main object data file “hello2.znc.” The main code generation windo
(initially showing the main “CPP” template) is displayed.

Notice that the notebook has three tabs. Each tab corresponds to a file tha
be generated by the designer. Each file has a generation “template” that
includes macros that will be used to complete the code. The macros are
defined from the property sheet currently displayed.

Resolve code
generation “macros”

10. Select the “WINDOWS”
property. This property spec-
ifies the windows that will be
loaded and presented on
screen when the application
starts. Enter “HelloWindow”
(no spaces), the StringID we
assigned earlier, and select
the “Apply” button. Note that
other properties were auto-
matically defaulted properly
by Zinc Designer and that the
code window now displays
generated code instead of the
template. You may browse
the generated source code and templates using the main window. As

20 Zinc Application Framework 5

.
in-

cfg”
a-
w

ted
t
an

e

s

to
 is
re
-bit

e

inc
e
de

ol.

res
become more familiar with ZAF you may take this opportunity to verify
the accuracy and completeness of the code generation (which may be
incomplete if the “Application” property sheet is incorrect.)

11. Now select the “Generate code” button on the code generation dialog
Zinc Designer will write the three source files to disk and a message w
dow will appear reporting that the code generation was successful.

12. Finally, select the “Save” item in the “File” menu of the main Designer
window and exit the Designer.

Source Code If you look in the current directory you’ll find that the Designer has created
five files—the three source files generated, plus two others. The “zdesign.
file is used by the Designer to store configuration information for itself (not
bly the “most recently used” files list), so we can ignore it. Let's briefly revie
the others:

“hello2.znc” is the data file that stores the window and other objects we crea
in the Designer. Zinc Designer may be used to modify this data file withou
generating new source code. In this way many changes may be made to
application without the need to recompile!

The “hello2.cpp,” “hello2.hpp,” and “hello2.inc” files contain the source cod
the Designer generated for the application.

Building the application “hello2.cpp” must be compiled and linked with the appropriate ZAF librarie
to build the final application. To do this we first need a makefile. You may
simply copy the example/hello/[makefile] we used in the previous chapter
build our new Hello2 application. Make sure that the “hello2.znc” data file
in the same directory as the application before running it, since that is whe
our window is stored. If you copy the make file, the make command for 32
Microsoft Windows will be:

zmake win32

That’s it! Run the application you’ve just built and check it out. You’ll find
that it runs exactly as it did in the test mode of Zinc Designer. With practic
you’ll soon be able to create simple applications in just a few minutes.

As you can see after using two techniques for creating applications with Z
Application Framework, both have advantages. Zinc Designer provides th
advantages of application prototyping, rapid interface development, and co
generation while “hand coding” provides maximum customization and contr
Most developers will combine these techniques when creating real-world
applications.

In the next section of “Getting Started” we’ll discuss Zinc’s basic architectu
and try some more complex tutorials to get you up and running quickly.

Architecture Basics

Architecture Basics - Event Flow 23

l

h a

th
Architecture Basics—Event
Flow

ZAF 5 General
Model

Zinc Application Framework is an event-driven system. The general architec-
ture diagram above, or “ZAF General Model,” illustrates ZAF’s fundamenta
event-driven architecture. Using this architecture, ZAF obtains events from
the operating system if the OS is itself event-driven, directly from input
devices, and from application code. These events are then passed throug
ZAF application using a well-defined protocol. If you are already familiar
with an event-driven operating system such as Microsoft Windows, Motif,
Macintosh, or OS/2, you will find ZAF to be quickly understandable, and bo
easier to use and more powerful than your native API.

24 Zinc Application Framework 5

.

ive

ized

librar-
 repre-
ers
 to
fer-
s.

ss
ile
An understanding of this architecture is fundamental to programming with
Zinc Application Framework, so let’s look at the architecture in more detail

Event Manager ZAF's event-driven system begins
with the event manager (the Zaf-
EventManager class) and its sup-
porting input devices.

For operating environments that
don't provide an event-driven sys-
tem (e.g. MS-DOS), the event
manager polls all the attached
devices such as the mouse and key-
board, and assembles events for any input information received.

In the more common case, an event-driven operating system provides nat
events that are intercepted by the ZAF event manager.

As events are received, each is encapsulated in an event structure recogn
by ZAF and is placed on ZAF’s internal event queue for later processing.

ZAF's event manager also handles events that are generated by the ZAF
ies themselves or created and posted to the queue by the programmer, as
sented by the “Application” box in the preceding diagram. ZAF programm
may also provide custom input devices (derived from the ZafDevice class)
communicate with non-standard input devices. See the Programmer's Re
ence manual for more information about ZafEventManager and event type

ZafApplication
::Control

Once the event manager has acquired events the main ZAF control proce
regains control of the application. This process is repeated continually wh
your application is running.

Architecture Basics - Event Flow 25

”
 pro-

d

eth-
sys-

eful to
les
notifi-

er.
ner-

is-
This section of the model shows that while the event manager manages event
acquisition into the event queue, ZafApplication::Control() retrieves individual
events from the event manager (via the ZafEventManager::Get() method) and
passes them to the window manager (via the ZafWindowManager::Event()
method). On event-driven operating systems the Control() loop will “sleep
when no events are available at the operating system, thus allowing other
cesses to fully utilize system resources.

Event Routing After an event is passed to the window manager (the ZafWindowManager
class), the window manager determines the event’s ultimate destination an
proper routing, and dispatches it appropriately.

There are two basic types of events processed by ZAF and two different m
ods of routing these events. The two event types are, roughly, “operating
tem events” and “ZAF events.”

OS Events

Operating system events are generated by an OS and are generally not us
the programmer without translating them to a portable equivalent. Examp
of OS events are mouse movement, redisplay (expose) messages, sizing
cations, etc.

ZAF Events

ZAF events are usually generated by the ZAF libraries or by the programm
Keyboard events are also considered “ZAF events.” These events are ge
ally useful to the programmer in their current state.

Direct Event Routing

In order to provide most efficient event routing, the window manager often
allows the native operating system to dispatch native events directly to the
appropriate object. This type of event dispatch, indicated by “OS Event D

26 Zinc Application Framework 5

S
r.

ppro-

ld for
sed
g
.

 the

s’

r
r
F
hat

t
and
ired
g can

patch” on the diagram, is called “Direct Event Routing” and is used for all O
events. These events are only rarely useful to the application programme

Top-Down Event Routing

Other events are handled by the window manager and dispatched to the a
priate window—usually the window with focus. The window in turn either
handles the event if appropriate, or passes the event to the appropriate chi
processing—usually the child with focus. ZAF events are commonly acces
by the programmer for application control and response. Top-Down routin
allows them to be handled hierarchically—at any level of the user interface

Exceptions to these event routing rules are made only when requested by
application programmer.

Event
Handling

Ultimately each event is received by a window
object's Event() method where it is processed.
This section of the General Model shows that
whether the OS or ZAF dispatches the event, a
window object eventually receives it—usually
the window object with focus.

The window object handles the event using a
hierarchy of Event() methods. The first Event()
method called belongs to the most-derived class
indicated by “Derived Class(es)” on the diagram. This class may be a ZAF
library object, or a programmer derivation.

If the derived class does not handle the event, it is passed to its base clas
Event() method for handling. This process may continue until the ultimate
base class, ZafWindowObject, receives the event and either processes it o
hands it off to the native operating system object for handling. (Remembe
that ZAF utilizes a “layered” user interface implementation where most ZA
objects have corresponding operating system objects “underneath” them t
can handle many operations natively.)

Derivation

ZAF offers two primary methods for customizing event response. The firs
method (described in the preceding section) is to derive from a ZAF class
overload its Event() method. There the programmer may process any des
events and pass the rest to a base class where the library’s default handlin
take over. The programmer may also directly call another object’s Event()
method if appropriate.

Callbacks

The second custom handling method relies on a less object oriented
technique—the callback function. A ZAF user function is a C type callback

Architecture Basics - Event Flow 27

ity

e

rta-

on-
ive
t

d rela-

 for
ss-
AF
or
able

to
function that automatically receives a small subset of events if assigned to a
ZAF user interface object. This event handling method is suitable for trivial
operations and does not require derivation.

Using either event handling method, Zinc’s architecture affords both flexibil
and extensibility.

Event Mapping The ZAF General Model processes both native and portable events. To
achieve portability, the programmer must therefore translate or “map” nativ
events to portable equivalents prior to interpreting them in an application.
ZAF provides the LogicalEvent() method for this purpose.

ZAF provides operating system independence by defining a large set of po
ble events. LogicalEvent() returns a context sensitive mapping of native OS
events to portable ZAF events. To accomplish this task, each ZAF class c
tains a unique table of event mappings that allows objects to translate nat
events in a specific way for each class. LogicalEvent() also converts even
data using similar context sensitivity. For example, mouse events contain
pointer coordinates that are converted relative to the top-left corner of the
object, and keyboard events contain character data that must be converte
tive to the current international character mode (ISO or Unicode).

Event mapping may seem complicated at first glance, but is actually trivial
the application programmer. A simple call to LogicalEvent() prior to proce
ing each event will yield a standardized result across all platforms. (The Z
libraries do not automatically call LogicalEvent() since they are optimized f
maximum performance in each operating system environment and are cap
of interpreting native OS events directly.)

The next chapter, Event Window, builds on the concepts discussed in this
chapter. It derives a basic “event window” to handle custom user events.
Study “Event Window” and other event examples in the ZAF 5 distribution
fully understand ZAF event handling.

28 Zinc Application Framework 5

e

w
se
f the

llo

ut

-

nt

e-
nu.

 to
t

se

de
Event Window
To experience the ZAF Event Flow Architecture in use, let’s create a simpl
application and watch how it works. “Event Window” will be a simple pro-
gram that demonstrates the trapping of events. It will have a single windo
with a pull-down menu that sends user-defined events to the window. The
user-defined events will then be trapped to change the background color o
window.

This tutorial builds on the experience gained in the “Hello World 1” and “He
World 2” tutorials. “Event Window” starts simple with plenty of detail and
becomes more advanced as it progresses.

A completed version of the application can be found in “example/event,” b
we’ll create it from scratch in a temporary directory to gain a better under-
standing of the concepts involved. Before continuing, you may wish to com
pile and run Zinc’s version to get a feel for the end product.

Part One—
Using Zinc
Designer

1. To start, first create a new directory—“work” for example. We don’t wa
to overwrite the example program shipped with ZAF 5. Eventually this
directory will contain source code, header files, a designer data file, a
make file and an executable.

Start Zinc Designer and
create a window

2. Next, launch Zinc Designer from your temporary directory. We’ll be cr
ating a new data file with a simple derived window and a pull-down me

3. Create a new data file called
“event1.znc.” Select “File, New”
from the menu.

4. Create a new ZafWindow and move
and size it as desired. (Click on the
first button in the “Window” page
of the toolbar notebook.)

Customize the window 5. Change the window’s title to “Event Window.” (Use the “Title” property
on the “Window” page of the property sheet and select “Apply.” Refer
the “Hello World 1” example chapter for a description of property shee
usage.)

6. Change the window’s StringID to “EventWindow” (no spaces). We’ll u
this StringID to refer to the window later. (StringID is on the “General”
property sheet page.)

7. Since we’ll be deriving a window to handle custom events, we need to
specify the derived class name. Later, Zinc Designer will generate co

Event Window 29

 to
ta

ll-

s
u”
ect

t
that loads our derived window using this class name and its StringID.
(Class Name is on the “Advanced” property sheet page.)

Add a pull-down menu
and pull-down items

8. Now, place a new ZafPullDownMenu on the window. (The third button
on the toolbar’s “Control” notebook tab.)

9. Once the pull-down menu is in place, we must invoke the menu editor
modify it and add our custom menu structure. To do this, select the da
file browser window and locate the pull-down menu. (You’ll find the pu
down menu in the following location: ZafWindow, EventWindow,
ZAF_NUMID_PULL_DOWN_MENU). Now, double-click the menu
item to invoke the menu editor.

Add pull-down items 10. Select the “Add” button to add a second ZafPullDownItem to the pull-
down menu (the first was automatically added to the menu when it wa
created). Then, select the first pull-down item in the “ZafPullDownMen
edit window and using the property sheet change its text to “File.” Sel
the property sheet “Apply” button to save the change.

11. Next, select the second pull-down item in the “ZafPullDownMenu” edi
window and with the property sheet change its text to “Color.”

30 Zinc Application Framework 5

his

ub-

-

.

t

ange
h of

Add pop-up menu
items to hook our
custom functionality

12. Now select the “File” menu option in the menu editor and click “Add”
again. Notice that a new sub-item was added to the File menu. Edit t
new item’s text (using the property sheet) and change it to “Exit.”

13. Using the same technique we used to add the “Exit” item, add three s
items to the “Color” menu. We want these to read “Red”, “Green”, and
“Blue.” When you finish, the menu editor should look similar to the fol
lowing picture.

Add functionality to the
pop-up items

14. Obviously, the “File, Exit” menu item will be used to exit the application
ZAF includes built-in functionality for adding an “exit” trigger to a menu
item. To set the exit behavior, change its pop-up item type to “Exit.”
Select the property sheet “Apply” button to set the change.

15. Unlike the “Exit” item, the “Red,” “Green,” and “Blue” menu items can’
take advantage of automatic pop-up types to invoke their actions since
they invoke unique application functionality. Instead, we’ll cause these
items to send programmer-defined events that our code can trap to ch
the window color. To do this, set the “Send message” property for eac
the pop-up items to “true”. “Send message” causes the item to put an
event on the ZAF event queue whenever this menu item is selected.

Event Window 31

e’ll
,

 and
te

ner-
 sym-

S”
e

e
 code

isk.
Since ZAF reserves event values above 10,000 for programmer use, w
start with that value. Set “10000” for the “Red” item’s “Value” property
“10001” for the “Green” item’s “Value” property, and “10002” for the
“Blue” item’s “Value” property. Be sure to click “Apply” after each
change! Later we’ll define these event constants in our header file.

16. Select the “OK” button in the “ZafPullDownMenu” edit window to dis-
miss the menu editor and finalize the menu changes.

Generate source code 17. With our user interface defined we are ready to generate source code
continue developing our application outside Zinc Designer. To genera
code select “Code Generation” from the designer’s “Options” menu.
You’ll see the source code window containing the template used to ge
ate code, and a custom property sheet page used to define the macro
bols used by the code generator.

18. Activate the property sheet. In the property sheet, change “INCLUDE
to “eventwn1.hpp”. This is the name of the header file we’ll create onc
we’re finished in Zinc Designer. Change the “WINDOWS” property to
“EventWindow”—the StringID of the derived window we just created.
Finally, select “Apply” to save the macros and apply them to the sourc
code template. You’ll see generated source code appear in the source
window:

19. Finally, select “Generate code” to save our generated source code to d
Save the persistent object data file we’ve created by using the “File”
menu’s “Save” option, and exit Zinc Designer.

32 Zinc Application Framework 5

-
l”

ow-

.

 our

Congratulations! You’re almost done and you’ve performed some sophisti
cated tasks in Zinc Designer. Take a break and get ready to do some “rea
programming.

Part Two—
Source Code

In Part One, Zinc Designer created the following four files:

As we continue building “Event Window” we’re going to add to the source
code created by Zinc Designer. The most critical addition is to define our
derived “EventWindow” class.

Let’s create new header and source files using the name we specified for
“INCLUDES” in the data file: “eventwn1.hpp” and “eventwn1.cpp”. Com-
pleted versions of these files are listed below with detailed discussions foll
ing.

Header file // COPYRIGHT (C) 1997. All Rights Reserved. - EVENTWN1.HPP
// Zinc Software Incorporated. Pleasant Grove, Utah USA
// May be freely copied, used and distributed.

#include <zaf.hpp>

const ZafEventType RED_BACKGROUND = 10000;
const ZafEventType GREEN_BACKGROUND = 10001;
const ZafEventType BLUE_BACKGROUND = 10002;

class EventWindow : public ZafWindow
{

File Purpose

event1.cpp Source code to the main process of our application
This code initializes ZAF, loads the window we
designed, starts the main control loop, and shuts
down gracefully when we’re done. “Hello World 1”
discusses this code in detail.

event1.hpp Main header file for our application. This code
defines a derived persistence class used to access
data file.

event1.inc Static tables containing information used when
accessing the Zinc data file. This file is “#include”d
by event1.cpp.

event1.znc The Zinc persistent object data file containing our
actual user interface definition.

Event Window 33

g

ere

s we
tch

In

ot
we
public:
// --- General members ---
virtual ~EventWindow(void) {}
virtual ZafEventType Event(const ZafEventStruct &event);

// --- Persistent members ---
EventWindow(const ZafIChar *name, ZafObjectPersistence
&persist);

};

Header file walk-
through

#include <zaf.hpp>

The header file “zaf.hpp” includes all the header files necessary for definin
classes used in a ZAF application. Every ZAF application must include it.
(Actually, the code generated by Zinc Designer automatically includes this
header, but since we need it earlier in the compile process we’ll include it h
as well.)

const ZafEventType RED_BACKGROUND = 10000;
const ZafEventType GREEN_BACKGROUND = 10001;
const ZafEventType BLUE_BACKGROUND = 10002;

These constants will allow us easy access to the three user-defined event
need to change colors, and make our code more readable. They must ma
the values we specified in Zinc Designer.

class EventWindow : public ZafWindow
{
public:
// --- General members ---
virtual ~EventWindow(void) {}
virtual ZafEventType Event(const ZafEventStruct &event);

// --- Persistent members ---
EventWindow(const ZafIChar *name, ZafObjectPersistence
&persist);

};

Our “EventWindow” class is derived from ZafWindow since that is the base
window type we created in Zinc Designer. ZafWindow will give us all the
functionality of a normal window and we’ll then add a bit more of our own.
our declaration we add three pieces required by our application:

• A virtual destructor is defined. This does nothing—it is even empty—and is n
strictly necessary since the compiler will automatically generate one for us if

34 Zinc Application Framework 5

ur
forget. Still, it is good coding practice to supply a destructor for all objects and we
have done so here.

• An Event() method is defined to intercept the three user-defined events for our
color changes.

• A persistent constructor is defined to load our derived window from the data file.

Source file // COPYRIGHT (C) 1997. All Rights Reserved. - EVENTWN1.CPP
// Zinc Software Incorporated. Pleasant Grove, Utah USA
// May be freely copied, used and distributed.

#include "eventwn1.hpp"

EventWindow::EventWindow(const ZafIChar *name,
ZafObjectPersistence &persist) : ZafWindow(name, persist)

{}

ZafEventType EventWindow::Event(const ZafEventStruct &event)
{
ZafEventType ccode = LogicalEvent(event);
switch (ccode)
{
case RED_BACKGROUND:
SetBackgroundColor(ZAF_CLR_RED);
break;

case GREEN_BACKGROUND:
SetBackgroundColor(ZAF_CLR_GREEN);
break;

case BLUE_BACKGROUND:
SetBackgroundColor(ZAF_CLR_BLUE);
break;

default:
// Pass the event to the base class for processing.
ccode = ZafWindow::Event(event);
break;

}

return (ccode);
}

Source file walk-through #include "eventwn1.hpp"

First, we include our header file “eventwn1.hpp” to provide definitions for o
constants and derived class.

Event Window 35

n’t

ts

nd-
e,
ocess-

ct to
ated

e
en-
EventWindow::EventWindow(const ZafIChar *name,
ZafObjectPersistence &persist) : ZafWindow(name, persist)

{}

Next, our simple persistent constructor simply calls the base class (ZafWin-
dow) persistent constructor to load our window from the data file. We need
do anything else here, since we don’t define any additional data for the
EventWindow class.

ZafEventType EventWindow::Event(const ZafEventStruct &event)
{
ZafEventType ccode = LogicalEvent(event);
switch (ccode)
{
case RED_BACKGROUND:
SetBackgroundColor(ZAF_CLR_RED);
break;

...

default:
// Pass the event to the base class for processing.
ccode = ZafWindow::Event(event);
break;

}

return (ccode);
}

The Event() method first calls LogicalEvent() to translate all incoming even
to their portable equivalents, then we trap each event that interests us:
RED_BACKGROUND, GREEN_BACKGROUND, and BLUE_BACK-
GROUND. When we find a matching event, each case calls SetBackgrou
Color() to change the background color of the window. In the “default” cas
all other events are passed to the base class Event() method for normal pr
ing.

That’s it! We’ve added some simple source code to a Zinc Designer proje
create an interesting, working application. In the process we’ve demonstr
how easy it is to utilize ZAF’s sophisticated event architecture.

We’re now ready to build an executable and test it.

Finishing Up

Create a make file and
build the application

Our final step is to create a make file. To build one on your own look at th
make files included with the ZAF example programs and refer to the docum

36 Zinc Application Framework 5

u

and

!

a-
m-

oard,
uses

s—
tation for your compiler’s make utility, or Zinc’s recommended “zmake” if yo
prefer.

To speed the process along, just copy the file “zmake.mak” (for Windows)
any support files needed (such as “wtest16.def” for 16-bit Microsoft Win-
dows). This will link together the necessary ZAF libraries, along with
“event1.cpp,” generated by Zinc Designer, and our “eventwn1.cpp.”

Now, build the application using zmake or your own make utility and enjoy
You’re on your way to becoming a Zinc expert.

Additional
Study

For more practice working with events, look at the expansion to this applic
tion, “Event Window 2” found in example/event. This example program de
onstrates the trapping of system events coming from the mouse and keyb
shows derived child objects, sends events using ZafEventManager::Put(),
C type user functions and more.

In the next chapter we’ll look at another of ZAF’s fundamental architecture
Model / View.

Suggested Study 37

 pro-
fer-
F.

con-
l dis-

ns

ssi-

t pro-
 start
Suggested Study

With an understanding of Zinc’s basic architecture, you are ready to begin
gramming with ZAF. For additional information, see the Programmer's Re
ence manual and closely examine the example programs provided with ZA

Zinc’s reference manual is unlike any reference you have used before. It
tains a great deal of example code, and provides architectural and practica
cussions in an interesting format. In short, the ZAF reference manual is
readable!

Before delving deeply into large scale projects using ZAF, you may wish to
study the following information:

• ZafWindowObject—the most important base class in ZAF.

• ZafWindow—a critical base class.

• Appendix: Property Matrices—quick reference to the capabilities and limitatio
of ZAF user interface objects.

• Appendix: Event Definitions—essential information about event types and po
bilities.

• Example programs—carefully selected programs that demonstrate importan
gramming techniques. Careful study of these examples will provide the best
to programming with ZAF.

38 Zinc Application Framework 5

Appendices

ZAF License Agreement - Professional Version 41

in-
ted
e.
n
di-
he
the
uter
d-
al
nt

.
he

r's
g
-
y
a-
le
ey
a-
l-
by
e
nd
a-

y
le
as
as
n

y-
y

-
k-
ot
e-
le
r-
Zinc Application Framework
Software License Agreement

Professional Version
DO NOT INSTALL OR USE THE ZINC APPLICATION FRAMEWORK SOFTWARE UNTIL YOU HAVE READ AND
ACCEPTED THIS LICENSE AGREEMENT. BY INSTALLING OR USING THE SOFTWARE YOU ACCEPT THIS
LICENSE AGREEMENT. IF YOU DO NOT AGREE TO THIS LICENSE AGREEMENT: (A) YOU MUST NOT INSTALL
OR USE THE SOFTWARE, AND (B) YOU MAY RETURN THE SOFTWARE, INCLUDING ALL PACKAGING, MEDIA,
AND DOCUMENTATION, FOR A REFUND, PROVIDED THAT THE RETURN IS MADE WITHIN TEN DAYS OF THE
DATE OF PURCHASE OF THIS LICENSE.

Zinc Application Framework, Version 5
Professional Version Software License Agreement

1. Developer. “Developer” is the person who accepts and
agrees to this Agreement. If Developer is an employee of a
company and intends to use the Software within the scope of
his/her employment or to develop Applications for the com-
pany, then the “Developer” includes the company, and
acceptance of this Agreement is also made on behalf of the
company.

2. Software. “Software” shall mean the Zinc Application
Framework computer programs provided with this Agree-
ment. The Software consists of “Shared Code” and one or
more “Platform Modules.” The license certificate provided
with this Agreement “designates the Platform Modules
which are licensed to Developer. These designated Platform
Modules are referred to as the “Licensed Platform Mod-
ules.” Notwithstanding anything in this Agreement to the
contrary, the Software does not include, and Developer has
no right to install, use or copy, any Platform Module not des-
ignated in the license certificate. If Developer desires to use
additional Platform Modules, a license for such additional
Platform Modules must first be purchased from Zinc or its
authorized reseller. Additional Platform Modules for which
a license is purchased shall be governed by this Agreement
as Licensed Platform Modules and shall be deemed part of
the Software. “Shared Code” means all Software other than
Platform Modules. Developer acknowledges that Zinc Soft-
ware Incorporated (“Zinc”) and its licensor(s) own the copy-
rights and other intellectual property in and to the Software.

3. Documentation. “Documentation” means the online doc-
umentation and printed documentation, if any, provided to
Developer in connection with this Agreement. Whenever the
context reasonably permits, any reference in this Agreement
to Software shall also apply to Documentation.

4. Applications. “Applications” mean computer program
applications other than competitive computer programs.
“Competitive computer programs” means computer pro-
grams that are competitive with, or that can be used in lieu
of, the Software.

5. License. Subject to the other provisions of this Agree-
ment, Zinc grants to Developer a nonexclusive, nontransfer-
able license (the “License”): (a) to use the Software to
develop Applications (as defined above), and (b) to exercise
“distribution rights” under Section 6 below. Each Licensed
Platform Module may be used by a single user only (i.e., the

Licensed Platform Module is restricted to the user) on a s
gle computer running under the operating system designa
on the license certificate for the Licensed Platform Modul
Developer may not use a Licensed Platform Module o
more than one computer at any given time unless an ad
tional license for each additional computer is purchased. T
Shared Code may be used by a single user only (i.e.,
Shared Code is restricted to the same user) on any comp
on which at least one of the users's Licensed Platform Mo
ule(s) is used as permitted above. Licenses for addition
users may be purchased from Zinc at their then-curre
prices. Rights not expressly granted are reserved by Zinc.

6. Distribution Rights. The Software includes “Linkable
Routines,” “Distributable Files,” and non-distributable files
Linkable Routines consist of the object code routines in t
Software libraries (e.g., *.LIB, lib*.a). Distributable Files
consist of those “run-time” files identified in the Software
documentation as required during execution of Develope
program applications. The License includes the followin
distribution rights: (a) authorization for Developer to incor
porate Linkable Routines into Applications developed b
Developer and to distribute them as part of such Applic
tions to Developer's customers, provided that the Linkab
Routines have been incorporated in such a way that th
cannot be used apart from the Applications, (b) authoriz
tion for Developer to distribute Distributable Files to Deve
oper's customers as part of the Applications developed
Developer, and (c) authorization for Developer to licens
Developer's customers to use such Linkable Routines a
Distributable Files as part of the Applications, but not sep
rate from such Applications.

7. Distribution Guidelines. Except for the Linkable Rou-
tines and Distributable Files, no portion of the Software ma
be distributed or transferred by Developer. The Linkab
Routines and Distributable Files may not be distributed
part of any computer program other than Applications
defined in Section 4 without the express written permissio
of Zinc. Developer must include an appropriate Zinc cop
right notice, in accordance with guidelines published b
Zinc, on all copies of Developer's Applications in which
Linkable Routines are incorporated or with which Distribut
able Files are distributed. Customers who receive any Lin
able Routines or Distributable Files under Section 6 may n
use any of the Linkable Routines or Distributable Files ind
pendent of Developer's Applications or use any Linkab
Routines or Distributable Files for any development pu

42 Zinc Application Framework 5

ct

er-

h.

may
o
er-
o
if-
ns
poses. Developer shall ensure that its Application license
agreements with customers are consistent with this Agree-
ment.

8. Copies. Developer may make copies of the Software pro-
vided that any such copy: (a) is created as an essential step in
the utilization of the Software on a computer in accordance
with the License and this Agreement, or (b) is only for archi-
val purposes to back-up the licensed use of the the Software.
Developer may also make copies of the Software to the
extent reasonably needed to exercise rights under the
License or this Agreement. All Zinc trademark and copy-
right notices must be faithfully reproduced and included on
copies made by Developer. Developer may not make any
other copies of the Software. The online Documentation
may be printed by Developer and used by Developer, but
only in connection with the licensed use of the Software.

9. Protection of the Software. Except as expressly autho-
rized in this Agreement, Developer may not: (i) disassemble,
decompile or otherwise reverse engineer the Software, or (ii)
create derivative works based upon the Software, or (iii)
rent, lease, sublicense, distribute, transfer, copy, reproduce,
or timeshare the Software, or (iv) allow any third party to
access or use the Software, or (v) modify the Software
(including any deletion of code from or addition of code to
the Software).

10. Source Code. “Licensed Source Code” shall mean that
portion of the Software's source code which is provided to
Developer in connection with this Agreement. The Licensed
Source Code is part of the Software and is governed by this
Agreement. The License includes authorization for Devel-
oper to use the Licensed Source Code to maintain and mod-
ify the Software to conform with Developer's needs in
creating Applications. All modified Software shall be gov-
erned by this Agreement as Software. The Licensed Source
Code may not be disclosed or distributed by Developer to
any other person. Developer is not entitled to any other Soft-
ware source code.

11. Disclaimer. Because Zinc has no control over modifica-
tions made by Developer, it is not obligated to maintain or
support modified versions of the Software and no warranties
are applicable to such modified versions. There is no war-
ranty that the Software is suitable for modification and all
modifications are undertaken at the risk and discretion of
Developer.

12. Limited Warranty.

12.a. Media and Documentation. Zinc warrants that if the
media or Documentation provided by Zinc are in a damaged
or physically defective condition at the time that the License
is purchased and if they are returned to Zinc (postage pre-
paid) within 90 days of the date this License is purchased,
then Zinc will provide Developer with replacements at no
charge.

12.b. Software. Zinc warrants that if the Software fails to
substantially conform to the specifications in the Software
documentation or to any other Software specifications pub-
lished by Zinc and if the nonconformity is reported in writ-
ing by Developer to Zinc within 90 days from the date the
License is purchased, then Zinc shall either remedy the non-
conformity or offer to refund the purchase price to Devel-
oper upon a return of all copies of the Software (including
all packaging, media, and Documentation) to Zinc. In the
event of a refund the License shall terminate.

13. Disclaimers and Limitations.

13.a. Disclaimer of Warranties. ZINC MAKES NO WAR-
RANTY, PROMISE OR REPRESENTATION NOT
EXPRESSLY SET FORTH IN THIS AGREEMENT.
EXCEPT AS EXPRESSLY WARRANTED HEREIN,
THE SOFTWARE IS PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND. ZINC DISCLAIMS AND
EXCLUDES ALL IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE. ZINC DOES
NOT WARRANT THAT THE SOFTWARE WILL SAT-
ISFY DEVELOPER'S REQUIREMENTS OR THAT IT
IS WITHOUT DEFECT OR ERROR OR THAT THE
OPERATION THEREOF WILL BE UNINTER-
RUPTED. THIS AGREEMENT GIVES DEVELOPER
SPECIFIC LEGAL RIGHTS. DEVELOPER MAY
HAVE OTHER RIGHTS, WHICH VARY FROM
STATE/JURISDICTION TO STATE/JURISDICTION.

13.b. Limitation on Liability. THE AGGREGATE LIA-
BILITY OF ZINC ARISING FROM OR RELATING
TO THIS AGREEMENT OR THE SOFTWARE
(REGARDLESS OF THE FORM OF ACTION OR
CLAIM--E.G., CONTRACT, WARRANTY, TORT,
STRICT LIABILITY, MALPRACTICE, FRAUD AND/
OR OTHERWISE) SHALL NOT EXCEED THE
TOTAL PAYMENT MADE BY DEVELOPER TO PUR-
CHASE THIS LICENSE. ZINC SHALL NOT IN ANY
CASE BE LIABLE FOR ANY SPECIAL, INCIDEN-
TAL, CONSEQUENTIAL, INDIRECT OR PUNITIVE
DAMAGES, OR FOR LOSS OF PROFIT, REVENUE,
DATA, OR PROGRAMS, EVEN IF ZINC HAS BEEN
ADVISED OF THE POSSIBILITY THEREOF.
BECAUSE SOME STATES DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF LIABILITY, THE
ABOVE LIMITATION MAY NOT APPLY.

13.c. Responsibility for Decisions. Developer is responsible
for decisions made and actions taken based on the Software.
The Software is designed and intended for use by computer
professionals experienced in the uses and limitations of
computer software and it is Developer’s responsibility to
ascertain the suitability of the Software.

13.d. Non-Parties. The officers, directors, employees, share-
holders and representatives of Zinc are not parties to this
Agreement and shall have no obligation or liability to Devel-
oper relating to this Agreement or the Software.

14. Sole Remedy and Allocation of Risk. DEVELOPER’S
SOLE AND EXCLUSIVE REMEDY IS SET FORTH IN
THIS AGREEMENT. This Agreement defines a mutually
agreed-upon allocation of risk and the License fees refle
such allocation of risk.

15. Governing Law. This Agreement shall be governed by
the laws of the State of Utah and the United States of Am
ica without giving effect to conflict of laws. Any litigation
between the parties shall be conducted exclusively in Uta

16. Entire Agreement. This Agreement sets forth the entire
understanding and agreement between the parties and
be amended only in a writing signed by both parties. N
vendor, distributor, dealer, retailer, sales person or other p
son is authorized by Zinc to modify this Agreement or t
make any warranty, representation or promise which is d
ferent than, or in addition to, the warranties, representatio
or promises of this Agreement.

ZAF License Agreement - Professional Version 43

7-
re
tah

-
e

f
ly
17. Termination. The License shall automatically terminate
if Developer materially breaches this Agreement. Upon ter-
mination of the License, Developer shall cease all use of the
Software and shall destroy all copies of the Software within
the possession or control of Developer and shall return the
original Software media and Documentation to Zinc.

18. U.S. Government Restricted Rights. The Software has
been developed entirely at private expense and is provided
as “Commercial Computer Software” or “restricted com-
puter software” with RESTRICTED RIGHTS. Use, duplica-
tion, or disclosure by the U.S. Government or U.S.
Government (sub)contractor is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of the Rights in Technical
Data and Computer Software Clause at DFARS 252.227-
7013 or subparagraphs (c)(1) and (2) of the Commercial

Computer Software--Restricted Rights at 48 CFR 52.22
19, as applicable. Contractor/Manufacturer is Zinc Softwa
Incorporated, 405 South 100 East, Pleasant Grove, U
84062.

19. Export Laws. Developer shall not export or distribute
any Software in violation of any applicable laws or regula
tions, including the export laws and regulations of th
United States.

20. Construction. In the construction and interpretation o
this Agreement, no rule of strict construction shall app
against either party.

44 Zinc Application Framework 5

,

g
se
e
y

en
art
r
r-
ri-
nd
ut
as

le
ot

b-
r
s-
n-

s-
al
use
con-
r-
ey

o-
p in
ce
i-
re.

he
the
er
st
by
the

le,
Zinc Application Framework
Software License Agreement

Personal Version
DO NOT INSTALL OR USE THE ZINC APPLICATION FRAMEWORK SOFTWARE UNTIL YOU HAVE READ AND
ACCEPTED THIS LICENSE AGREEMENT. BY INSTALLING OR USING THE SOFTWARE YOU ACCEPT THIS
LICENSE AGREEMENT. IF YOU DO NOT AGREE TO THIS LICENSE AGREEMENT YOU MUST NOT INSTALL OR
USE THE SOFTWARE.

THIS PERSONAL VERSION LICENSE IS OFFERED TO DEVELOPERS WHO DESIRE TO USE THE SOFTWARE FOR
PERSONAL USE ONLY. THE LICENSED DEVELOPER IS NOT REQUIRED TO PAY ANY LICENSE FEE OR ROYAL-
TIES FOR THIS PERSONAL VERSION LICENSE. HOWEVER, TO EXERCISE RIGHTS BEYOND THIS PERSONAL
VERSION LICENSE, THE DEVELOPER MUST PURCHASE A PROFESSIONAL VERSION LICENSE FROM ZINC.

Zinc Application Framework, Version 5
Personal Version Software License Agreement

1. Developer. “Developer” is the individual person who
accepts and agrees to this Agreement. No corporation, part-
nership, limited liability company or other organization or
business entity may be a Developer under this Agreement.
They may, however, purchase professional version licenses
from Zinc Software Incorporated (“Zinc”).

2. Software. “Software” shall mean the Zinc Application
Framework computer programs provided with this Agree-
ment. Developer acknowledges that Zinc and its licensor(s)
own the copyrights and other intellectual property in and to
the Software.

3. Documentation. “Documentation” means the online doc-
umentation and printed documentation, if any, provided to
Developer in connection with this Agreement. Whenever the
context reasonably permits, any reference in this Agreement
to Software shall also apply to Documention.

4. Personal Applications. “Personal Applications” mean
computer program applications developed by Developer
that: (a) are for use by Developer only, and not for use by, or
distribution to, any employer, customer or other person, and
(b) are not competitive computer programs. “Competitive
computer programs” means computer programs that are
competitive with, or that can be used in lieu of, the Software.

5. License. Subject to the other provisions of this Agree-
ment, Zinc grants to Developer a nonexclusive, nontransfer-
able license (the “License”): (a) to use the Software to
develop Personal Applications (as defined above), and (b) to
use such Personal Applications. Rights not expressly
granted are reserved by Zinc. The License does not include
any right to use the Software in connection with the develop-
ment of any computer program or application other than Per-
sonal Applications. In order to use the Software in
connection with the development of computer program
applications for use by others, Developer must first purchase
a professional version license from Zinc and agree to Zinc’s
then-current professional version license agreement.

6. Linkable Routines and Distributable Files. The Software
includes “Linkable Routines,” “Distributable Files,” and
non-distributable files. Linkable Routines consist of the

object code routines in the Software libraries (e.g., *.LIB
lib*). Distributable Files consist of those “run-time” files
identified in the Software documentation as required durin
execution of Developer’s program applications. The Licen
includes: (a) authorization for Developer to incorporat
Linkable Routines into Personal Applications developed b
Developer, provided that the Linkable Routines have be
incorporated in such a way that they cannot be used ap
from the Personal Applications, and (b) authorization fo
Developer to include Distributable Files as part of the Pe
sonal Applications developed by Developer, and (c) autho
zation for Developer to use such Linkable Routines a
Distributable Files as part of the Personal Applications, b
not separate from such Personal Applications. Except
provided in Section 7, Linkable Routines and Distributab
Files shall not be distributed or transfered by Developer, n
even as part of or with any Personal Application. To distri
ute Linkable Routines or Distributable Files as part of o
with an application, Developer must first purchase a profe
sional version license from Zinc and agree to Zinc’s the
current professional version license agreement.

7. Distribution Rights. A copy of the Software in its com-
plete and unmodified form as provided by Zinc may be di
tributed or transferred by Developer to any other individu
person. Such other person shall have no right to install or
the Software unless he/she accepts the same terms and
ditions as are in this Agreement. Although such other pe
son’s agreement shall be identical to this Agreement, th
shall be separate and independent agreements.

8. Copies. Developer may make copies of the Software pr
vided that any such copy: (a) is created as an essential ste
the utilization of the Software on a computer in accordan
with the License and this Agreement, or (b) is only for arch
val purposes to back-up the licensed use of the the Softwa
Developer may also make copies of the Software to t
extent reasonably needed to exercise rights under
License or this Agreement (e.g., distribution rights und
Section 7). All Zinc trademark and copyright notices mu
be faithfully reproduced and included on copies made
Developer. Developer may not make any other copies of
Software.

9. Protection of the Software. Except as expressly autho-
rized in this Agreement, Developer may not: (i) disassemb

ZAF License Agreement - Personal Version 45

o

-
his
l-

ct

er-

.

ay
o
er-
o
if-
ns

r-
the
in

ed
-
-
.

set
l
7-
ial
7-
re
tah

-
e

f
ly
decompile or otherwise reverse engineer the Software, or (ii)
create derivative works based upon the Software, or (iii)
rent, lease, sublicense, distribute, transfer, copy, reproduce,
or timeshare the Software, or (iv) allow any third party to
access or use the Software, or (v) modify the Software
(including any deletion of code from or addition of code to
the Software).

10. Licensed Source Code. “Licensed Source Code” shall
mean that portion of the Software’s source code which is
provided to Developer in connection with this Agreement.
The Licensed Source Code is part of the Software and is
governed by this Agreement. The License includes authori-
zation for Developer to use the Licensed Source Code to
maintain and modify the Software to conform with Devel-
oper’s needs in creating Personal Applications. All modified
Software shall be governed by this Agreement as Software.
The Licensed Source Code may not be disclosed or distrib-
uted by Developer to any other person except as part of a
distribution or transfer of a complete and unmodified copy
of the Software as provided by Zinc under Section 7. Devel-
oper is not entitled to any other Software source code.

11. Disclaimer. Because Zinc has no control over modifica-
tions made by Developer, it is not obligated to maintain or
support modified versions of the Software and no warranties
are applicable to such modified versions. There is no war-
ranty that the Software is suitable for modification and all
modifications are undertaken at the risk and discretion of
Developer.

12. Developer Source Code. Developer may distribute,
transfer, and disclose Developer’s source code to Personal
Applications, provided that no part of the Licensed Source
Code (or modified versions thereof) is distributed, trans-
ferred, or disclosed.

13. Disclaimer of Warranties. ZINC MAKES NO PROM-
ISE OR REPRESENTATION NOT EXPRESSLY SET
FORTH IN THIS AGREEMENT. BECAUSE THERE
IS NO LICENSE FEE OR ROYALTY, ZINC MAKES
NO WARRANTY OF ANY KIND AND THE SOFT-
WARE IS LICENSED AND PROVIDED TO DEVEL-
OPER STRICTLY ON AN “AS IS” BASIS. ZINC
DISCLAIMS AND EXCLUDES ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANT-
ABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. ZINC DOES NOT WARRANT THAT THE
SOFTWARE WILL SATISFY DEVELOPER’S
REQUIREMENTS OR THAT IT IS WITHOUT
DEFECT OR ERROR OR THAT THE OPERATION
THEREOF WILL BE UNINTERRUPTED. THIS
AGREEMENT GIVES DEVELOPER SPECIFIC
LEGAL RIGHTS. DEVELOPER MAY HAVE OTHER
RIGHTS, WHICH VARY FROM STATE/JURISDIC-
TION TO STATE/JURISDICTION.

14. Limitation on Liability. THE AGGREGATE LIABIL-
ITY OF ZINC ARISING FROM OR RELATING TO
THIS AGREEMENT OR THE SOFTWARE
(REGARDLESS OF THE FORM OF ACTION OR
CLAIM--E.G., CONTRACT, WARRANTY, TORT,
STRICT LIABILITY, MALPRACTICE, FRAUD AND/
OR OTHERWISE) SHALL NOT EXCEED TEN DOL-
LARS. ZINC SHALL NOT IN ANY CASE BE LIABLE
FOR ANY SPECIAL, INCIDENTAL, CONSEQUEN-

TIAL, INDIRECT OR PUNITIVE DAMAGES, OR
FOR LOSS OF PROFIT, REVENUE, DATA, OR PRO-
GRAMS, EVEN IF ZINC HAS BEEN ADVISED OF
THE POSSIBILITY THEREOF. BECAUSE SOME
STATES DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF LIABILITY, THE ABOVE LIMITA-
TION MAY NOT APPLY.

15. Responsibility for Decisions. Developer is responsible
for decisions made and actions taken based on the Software.
The Software is designed and intended for use by computer
professionals experienced in the uses and limitations of
computer software and it is Developer’s responsibility t
ascertain the suitability of the Software.

16. Non-Parties. The officers, directors, employees, share
holders and representatives of Zinc are not parties to t
Agreement and shall have no obligation or liability to Deve
oper relating to this Agreement or the Software.

17. Allocation of Risk. This Agreement defines a mutually
agreed-upon allocation of risk and the License fees refle
such allocation of risk.

18. Governing Law. This Agreement shall be governed by
the laws of the State of Utah and the United States of Am
ica without giving effect to conflict of laws. Any litigation
between the parties shall be conducted exclusively in Utah

19. Entire Agreement. This Agreement sets forth the entire
understanding and agreement between the parties and m
be amended only in a writing signed by both parties. N
vendor, distributor, dealer, retailer, sales person or other p
son is authorized by Zinc to modify this Agreement or t
make any warranty, representation or promise which is d
ferent than, or in addition to, the warranties, representatio
or promises of this Agreement.

20. Termination. The License shall automatically terminate
if Developer materially breaches this Agreement. Upon te
mination of the License, Developer shall cease all use of
Software and shall destroy all copies of the Software with
the possession or control of Developer.

21. U.S. Government Restricted Rights. The Software has
been developed entirely at private expense and is provid
as “Commercial Computer Software” or “restricted com
puter software” with RESTRICTED RIGHTS. Use, duplica
tion, or disclosure by the U.S. Government or U.S
Government (sub)contractor is subject to restrictions as
forth in subparagraph (c)(1)(ii) of the Rights in Technica
Data and Computer Software Clause at DFARS 252.22
7013 or subparagraphs (c)(1) and (2) of the Commerc
Computer Software - Restricted Rights at 48 CFR 52.22
19, as applicable. Contractor/Manufacturer is Zinc Softwa
Incorporated, 405 South 100 East, Pleasant Grove, U
84062.

22. Export Laws. Developer shall not export or distribute
any Software in violation of any applicable laws or regula
tions, including the export laws and regulations of th
United States.

23. Construction. In the construction and interpretation o
this Agreement, no rule of strict construction shall app
against either party.

46 Zinc Application Framework 5

Index

Index 49
A
Add

Hello World 1 13

AddGenericObjects
Hello World 1 13

Allocation of Risk
Personal License 45

Applications
Professional License . 41

Apply
Hello World 2 16

B
Browser Window

Hello World 2 16

Building a Simple App . . 11

C
Callbacks

Event Flow 26

Center
Hello World 1 13

Code Generation
Event Window 31
Hello World 2 19

Construction
Personal License 45
Professional License . 43

Control
Event Flow 24
Hello World 1 14

Copies
Personal License 44
Professional License . 42

D
Derivation

Event Flow 26

Designer Basics 15

destructor
Event Window 33

Developer
Personal License 44
Professional License . 41

Direct Event Routing
Event Flow 25

Disclaimer
Personal License 45
Professional License . 42

Disclaimer of Warranties
Personal License 45
Professional License . 42

Disclaimers and Limitations
Professional License . 42

Distribution Guidelines
Professional License . 41

Distribution Rights
Personal License 44
Professional License . 41

Documentation
Personal License 44
Professional License . 41

E
Entire Agreement

Personal License 45
Professional License . 42

Event
Event Flow 25
Event Window 34

Event Flow 23

Event Handling
Event Flow 26

Event Manager
Event Flow 24

Event Mapping
Event Flow 27

Event Routing
Event Flow 25

Event Window 28

Event Window 2
Event Window 36

event1.cpp
Event Window 32

EventWindow
Event Window 33

Export Laws
Personal License 45
Professional License . 43

G
General Model

Event Flow 23

Generate Code
Hello World 2 20

Get

50 Zinc Application Framework 5
Event Flow 25

Getting Started 9

Governing Law
Personal License 45
Professional License . 42

H
Hello World 1 11

Hello World 2 15

How Do I Use ZAF? 10

How Does ZAF Work? . . . 9

I
#include

Event Window 33

#include <zaf.hpp>
Hello World 1 12

INCLUDES
Event Window 31

K
keyboard events

Event Window 36

L
License

Personal License 44

Professional License . 41

License Agreement
Professional Version 41, 44

Limitation on Liability
Personal License 45
Professional License . 42

Limited Warranty
Professional License . 42

Linkable Routines and Distrib-
utable Files

Personal License 44

LinkMain
Hello World 1 13

LogicalEvent
Event Flow 27
Event Window 35

M
Main

Hello World 1 12

Media and Documentation
Professional License . 42

menu editor
Event Window 29

mouse events
Event Window 36

N
Non-Parties

Personal License 45
Professional License . 42

O
OS Events

Event Flow 25

P
persistent constructor

Event Window 34

Personal Applications
Personal License 44

Personal Version 44

Platforms supported 9

pop-up menu
Event Window 30

Professional Version 41

Property Sheet
Hello World 2 16

Protection of the Software
Personal License 44
Professional License . . 42

Put
Event Window 36

R
Responsibility for Decisions

Personal License 45
Professional License . . 42

return
Hello World 1 14

Index 51
S
Send message

Event Window 30

SetBackgroundColor
Event Window 35

Software
Personal License 44
Professional License 41, 42

Sole Remedy and Allocation
of Risk

Professional License . 42

Source Code
Personal License 45
Professional License . 42

StringID
Event Window 28
Hello World 2 17

Suggested Study 37

T
Termination

Personal License 45
Professional License . 43

Top-Down Event Routing
Event Flow 26

U
U.S. Government Restricted

Rights
Personal License 45
Professional License . 43

Undo
Hello World 2 16

user functions
Event Window 36

W
What Is ZAF? 9

WINDOWS
Event Window 31
Hello World 2 19

Z
ZAF 5 General Model

Event Flow 23

ZAF Events
Event Flow 25

ZAF General Model
Event Flow 23

ZAF_ITEXT
Hello World 1 13

ZAF_NUMID_PULL_DOW
N_MENU

Event Window 29

ZafApplication::Main
Hello World 1 12

ZafErrorSystem
Hello World 1 13

ZafHelpTips
Hello World 1 13

ZafI18nData
Hello World 1 13

ZafPullDownMenu
Event Window 29

ZafWindow

Event Window 29
Hello World 1 13

zmake
Hello World 1 11
Hello World 2 20

	Contacting Zinc
	Table of Contents
	Quick Start
	Getting Started
	Hello World 1
	Hello World 2

	Architecture Basics
	Architecture Basics—Event Flow
	Event Window
	Suggested Study

	Appendices
	Software License Agreement Professional Version
	Software License Agreement Personal Version

	Index
	A
	B
	C
	D
	E
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	Z

