// Copyright (C) 2008 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include <iostream>
#include <fstream>
#include <sstream>
#include <dlib/compress_stream.h>
#include <dlib/base64.h>
#include <string>
#include <cstdlib>
#include <ctime>
#include <dlib/serialize.h>
#include <dlib/image_transforms.h>
#include "tester.h"
namespace dlib
{
static bool operator!=(const rgb_pixel& a, const rgb_pixel& b)
{
return !(a.red==b.red && a.green==b.green && a.blue==b.blue);
}
static bool operator!=(const bgr_pixel& a, const bgr_pixel& b)
{
return !(a.red==b.red && a.green==b.green && a.blue==b.blue);
}
static bool operator!=(const hsi_pixel& a, const hsi_pixel& b)
{
return !(a.h==b.h && a.s==b.s && a.i==b.i);
}
static bool operator!=(const rgb_alpha_pixel& a, const rgb_alpha_pixel& b)
{
return !(a.red==b.red && a.green==b.green && a.blue==b.blue && a.alpha==b.alpha);
}
}
namespace
{
// ----------------------------------------------------------------------------------------
using namespace test;
using namespace dlib;
using namespace std;
struct test_object
{
signed char i1;
signed short i2;
signed long i3;
unsigned char i4;
unsigned short i5;
unsigned long i6;
uint64 i7;
int64 i8;
signed char i1_0;
signed short i2_0;
signed long i3_0;
unsigned char i4_0;
unsigned short i5_0;
unsigned long i6_0;
uint64 i7_0;
int64 i8_0;
signed char i1_n;
signed short i2_n;
signed long i3_n;
float f1;
double f2;
long double f3;
float f1_inf;
double f2_inf;
long double f3_inf;
float f1_ninf;
double f2_ninf;
long double f3_ninf;
float f1_qnan;
double f2_qnan;
long double f3_qnan;
float f1_snan;
double f2_snan;
long double f3_snan;
std::string s1;
std::wstring s2;
int array[10];
bool b_true;
bool b_false;
void set_state_1(
)
{
i1 = 1;
i2 = 2;
i3 = 3;
i4 = 4;
i5 = 5;
i6 = 6;
i7 = 7;
i8 = 8;
i1_0 = 0;
i2_0 = 0;
i3_0 = 0;
i4_0 = 0;
i5_0 = 0;
i6_0 = 0;
i7_0 = 0;
i8_0 = 0;
i1_n = -1;
i2_n = -2;
i3_n = -3;
f1 = 123.456f;
f2 = 543.341;
f3 = 5234234.23;
f1_inf = numeric_limits<float>::infinity();
f2_inf = numeric_limits<double>::infinity();
f3_inf = numeric_limits<long double>::infinity();
f1_ninf = -numeric_limits<float>::infinity();
f2_ninf = -numeric_limits<double>::infinity();
f3_ninf = -numeric_limits<long double>::infinity();
f1_qnan = numeric_limits<float>::quiet_NaN();
f2_qnan = numeric_limits<double>::quiet_NaN();
f3_qnan = numeric_limits<long double>::quiet_NaN();
f1_snan = numeric_limits<float>::signaling_NaN();
f2_snan = numeric_limits<double>::signaling_NaN();
f3_snan = numeric_limits<long double>::signaling_NaN();
s1 = "davis";
s2 = L"yo yo yo";
for (int i = 0; i < 10; ++i)
array[i] = i;
b_true = true;
b_false = false;
}
void set_state_2(
)
{
i1 = 10;
i2 = 20;
i3 = 30;
i4 = 40;
i5 = 50;
i6 = 60;
i7 = 70;
i8 = 80;
i1_0 = 5;
i2_0 = 6;
i3_0 = 7;
i4_0 = 8;
i5_0 = 9;
i6_0 = 10;
i7_0 = 11;
i8_0 = 12;
i1_n = -13;
i2_n = -25;
i3_n = -12;
f1 = 45.3f;
f2 = 0.001;
f3 = 2.332;
f1_inf = f1;
f2_inf = f2;
f3_inf = f3;
f1_ninf = f1;
f2_ninf = f2;
f3_ninf = f3;
f1_qnan = f1;
f2_qnan = f2;
f3_qnan = f3;
f1_snan = f1;
f2_snan = f2;
f3_snan = f3;
s1 = "";
s2 = L"";
for (int i = 0; i < 10; ++i)
array[i] = 10-i;
b_true = false;
b_false = true;
}
void assert_in_state_1 (
)
{
DLIB_TEST (i1 == 1);
DLIB_TEST (i2 == 2);
DLIB_TEST (i3 == 3);
DLIB_TEST (i4 == 4);
DLIB_TEST (i5 == 5);
DLIB_TEST (i6 == 6);
DLIB_TEST (i7 == 7);
DLIB_TEST (i8 == 8);
DLIB_TEST (i1_0 == 0);
DLIB_TEST (i2_0 == 0);
DLIB_TEST (i3_0 == 0);
DLIB_TEST (i4_0 == 0);
DLIB_TEST (i5_0 == 0);
DLIB_TEST (i6_0 == 0);
DLIB_TEST (i7_0 == 0);
DLIB_TEST (i8_0 == 0);
DLIB_TEST (i1_n == -1);
DLIB_TEST (i2_n == -2);
DLIB_TEST (i3_n == -3);
DLIB_TEST (abs(f1 -123.456) < 1e-5);
DLIB_TEST (abs(f2 - 543.341) < 1e-10);
DLIB_TEST (abs(f3 - 5234234.23) < 1e-10);
DLIB_TEST (f1_inf == numeric_limits<float>::infinity());
DLIB_TEST (f2_inf == numeric_limits<double>::infinity());
DLIB_TEST (f3_inf == numeric_limits<long double>::infinity());
DLIB_TEST (f1_ninf == -numeric_limits<float>::infinity());
DLIB_TEST (f2_ninf == -numeric_limits<double>::infinity());
DLIB_TEST (f3_ninf == -numeric_limits<long double>::infinity());
DLIB_TEST (!(f1_qnan <= numeric_limits<float>::infinity() && f1_qnan >= -numeric_limits<float>::infinity() ));
DLIB_TEST (!(f2_qnan <= numeric_limits<double>::infinity() && f1_qnan >= -numeric_limits<double>::infinity() ));
DLIB_TEST (!(f3_qnan <= numeric_limits<long double>::infinity() && f1_qnan >= -numeric_limits<long double>::infinity() ));
DLIB_TEST (!(f1_snan <= numeric_limits<float>::infinity() && f1_qnan >= -numeric_limits<float>::infinity() ));
DLIB_TEST (!(f2_snan <= numeric_limits<double>::infinity() && f1_qnan >= -numeric_limits<double>::infinity() ));
DLIB_TEST (!(f3_snan <= numeric_limits<long double>::infinity() && f1_qnan >= -numeric_limits<long double>::infinity() ));
DLIB_TEST (s1 == "davis");
DLIB_TEST (s2 == L"yo yo yo");
for (int i = 0; i < 10; ++i)
{
DLIB_TEST (array[i] == i);
}
DLIB_TEST (b_true == true);
DLIB_TEST (b_false == false);
}
void assert_in_state_2 (
)
{
DLIB_TEST (i1 == 10);
DLIB_TEST (i2 == 20);
DLIB_TEST (i3 == 30);
DLIB_TEST (i4 == 40);
DLIB_TEST (i5 == 50);
DLIB_TEST (i6 == 60);
DLIB_TEST (i7 == 70);
DLIB_TEST (i8 == 80);
DLIB_TEST (i1_0 == 5);
DLIB_TEST (i2_0 == 6);
DLIB_TEST (i3_0 == 7);
DLIB_TEST (i4_0 == 8);
DLIB_TEST (i5_0 == 9);
DLIB_TEST (i6_0 == 10);
DLIB_TEST (i7_0 == 11);
DLIB_TEST (i8_0 == 12);
DLIB_TEST (i1_n == -13);
DLIB_TEST (i2_n == -25);
DLIB_TEST (i3_n == -12);
DLIB_TEST (abs(f1 - 45.3) < 1e-5);
DLIB_TEST (abs(f2 - 0.001) < 1e-10);
DLIB_TEST (abs(f3 - 2.332) < 1e-10);
DLIB_TEST (abs(f1_inf - 45.3) < 1e-5);
DLIB_TEST (abs(f2_inf - 0.001) < 1e-10);
DLIB_TEST (abs(f3_inf - 2.332) < 1e-10);
DLIB_TEST (abs(f1_ninf - 45.3) < 1e-5);
DLIB_TEST (abs(f2_ninf - 0.001) < 1e-10);
DLIB_TEST (abs(f3_ninf - 2.332) < 1e-10);
DLIB_TEST (abs(f1_qnan - 45.3) < 1e-5);
DLIB_TEST (abs(f2_qnan - 0.001) < 1e-10);
DLIB_TEST (abs(f3_qnan - 2.332) < 1e-10);
DLIB_TEST (abs(f1_snan - 45.3) < 1e-5);
DLIB_TEST (abs(f2_snan - 0.001) < 1e-10);
DLIB_TEST (abs(f3_snan - 2.332) < 1e-10);
DLIB_TEST (s1 == "");
DLIB_TEST (s2 == L"");
for (int i = 0; i < 10; ++i)
{
DLIB_TEST (array[i] == 10-i);
}
DLIB_TEST (b_true == false);
DLIB_TEST (b_false == true);
}
};
// ----------------------------------------------------------------------------------------
void serialize (
const test_object& item,
std::ostream& out
)
{
dlib::serialize(item.i1,out);
dlib::serialize(item.i2,out);
dlib::serialize(item.i3,out);
dlib::serialize(item.i4,out);
dlib::serialize(item.i5,out);
dlib::serialize(item.i6,out);
dlib::serialize(item.i7,out);
dlib::serialize(item.i8,out);
dlib::serialize(item.i1_0,out);
dlib::serialize(item.i2_0,out);
dlib::serialize(item.i3_0,out);
dlib::serialize(item.i4_0,out);
dlib::serialize(item.i5_0,out);
dlib::serialize(item.i6_0,out);
dlib::serialize(item.i7_0,out);
dlib::serialize(item.i8_0,out);
dlib::serialize(item.i1_n,out);
dlib::serialize(item.i2_n,out);
dlib::serialize(item.i3_n,out);
dlib::serialize(item.f1,out);
dlib::serialize(item.f2,out);
dlib::serialize(item.f3,out);
dlib::serialize(item.f1_inf,out);
dlib::serialize(item.f2_inf,out);
dlib::serialize(item.f3_inf,out);
dlib::serialize(item.f1_ninf,out);
dlib::serialize(item.f2_ninf,out);
dlib::serialize(item.f3_ninf,out);
dlib::serialize(item.f1_qnan,out);
dlib::serialize(item.f2_qnan,out);
dlib::serialize(item.f3_qnan,out);
dlib::serialize(item.f1_snan,out);
dlib::serialize(item.f2_snan,out);
dlib::serialize(item.f3_snan,out);
dlib::serialize(item.s1,out);
dlib::serialize(item.s2,out);
dlib::serialize(item.array,out);
dlib::serialize(item.b_true,out);
dlib::serialize(item.b_false,out);
}
// ----------------------------------------------------------------------------------------
void deserialize (
test_object& item,
std::istream& in
)
{
dlib::deserialize(item.i1,in);
dlib::deserialize(item.i2,in);
dlib::deserialize(item.i3,in);
dlib::deserialize(item.i4,in);
dlib::deserialize(item.i5,in);
dlib::deserialize(item.i6,in);
dlib::deserialize(item.i7,in);
dlib::deserialize(item.i8,in);
dlib::deserialize(item.i1_0,in);
dlib::deserialize(item.i2_0,in);
dlib::deserialize(item.i3_0,in);
dlib::deserialize(item.i4_0,in);
dlib::deserialize(item.i5_0,in);
dlib::deserialize(item.i6_0,in);
dlib::deserialize(item.i7_0,in);
dlib::deserialize(item.i8_0,in);
dlib::deserialize(item.i1_n,in);
dlib::deserialize(item.i2_n,in);
dlib::deserialize(item.i3_n,in);
dlib::deserialize(item.f1,in);
dlib::deserialize(item.f2,in);
dlib::deserialize(item.f3,in);
dlib::deserialize(item.f1_inf,in);
dlib::deserialize(item.f2_inf,in);
dlib::deserialize(item.f3_inf,in);
dlib::deserialize(item.f1_ninf,in);
dlib::deserialize(item.f2_ninf,in);
dlib::deserialize(item.f3_ninf,in);
dlib::deserialize(item.f1_qnan,in);
dlib::deserialize(item.f2_qnan,in);
dlib::deserialize(item.f3_qnan,in);
dlib::deserialize(item.f1_snan,in);
dlib::deserialize(item.f2_snan,in);
dlib::deserialize(item.f3_snan,in);
dlib::deserialize(item.s1,in);
dlib::deserialize(item.s2,in);
dlib::deserialize(item.array,in);
dlib::deserialize(item.b_true,in);
dlib::deserialize(item.b_false,in);
}
// ----------------------------------------------------------------------------------------
// This function returns the contents of the file 'stuff.bin' but using the old
// floating point serialization format.
const std::string get_decoded_string()
{
dlib::base64::kernel_1a base64_coder;
dlib::compress_stream::kernel_1ea compressor;
std::ostringstream sout;
std::istringstream sin;
// The base64 encoded data from the file 'stuff.bin' we want to decode and return.
sout << "AVaifX9zEbXa9aocsrcRuvnNrR3WLuuU5eLWiy0UeXmnKXGLKZz8V44gzT4CM6wnCmAHFQug8G3C";
sout << "4cuLdNgp2ApkeLcvwFNJRENE0ShrRaxEBFEA8nah7vm8B2VmgImNblCejuP5IcDt60EaCKlqiit8";
sout << "+JGrzYxqBm3xFS4P+qlOROdbxc7pXBmUdh0rqNSEvn0FBPdoqY/5SpHgA2yAcH8XFrM1cdu0xS3P";
sout << "8PBcmLMJ7bFdzplwhrjuxtm4NfEOi6Rl9sU44AXycYgJd0+uH+dyoI9X3co5b3YWJtjvdVeztNAr";
sout << "BfSPfR6oAVNfiMBG7QA=";
// Put the data into the istream sin
sin.str(sout.str());
sout.str("");
// Decode the base64 text into its compressed binary form
base64_coder.decode(sin,sout);
sin.clear();
sin.str(sout.str());
sout.str("");
// Decompress the data into its original form
compressor.decompress(sin,sout);
// Return the decoded and decompressed data
return sout.str();
}
// This function returns the contents of the file 'stuff.bin' but using the new
// floating point serialization format.
const std::string get_decoded_string2()
{
dlib::base64 base64_coder;
dlib::compress_stream::kernel_1ea compressor;
std::ostringstream sout;
std::istringstream sin;
// The base64 encoded data from the file 'stuff.bin' we want to decode and return.
sout << "AVaifX9zEbXa9aocsrcRuvnNqzZLptZ5mRd46xScCIfX6sq/46hG9JwIInElG50EtJKJY/+jAWit";
sout << "TpDBWrxBz124JRLsBz62h0D3Tqgnd8zygRx7t33Ybw40o07MrhzNEHgYavUukaPje5by78JIWHgk";
sout << "l7nb/TK+9ndVLrAThJ4v+GiPT3kh9H1tAAAAAQhbLa06pQjhrnjTXcRox1ZBEAV9/q1zAA==";
// Put the data into the istream sin
sin.str(sout.str());
sout.str("");
// Decode the base64 text into its compressed binary form
base64_coder.decode(sin,sout);
sin.clear();
sin.str(sout.str());
sout.str("");
// Decompress the data into its original form
compressor.decompress(sin,sout);
// Return the decoded and decompressed data
return sout.str();
}
// ----------------------------------------------------------------------------------------
// Declare the logger we will use in this test. The name of the tester
// should start with "test."
logger dlog("test.serialize");
void serialize_test (
)
/*!
ensures
- runs tests on the serialization code for compliance with the specs
!*/
{
print_spinner();
ostringstream sout;
test_object obj;
obj.set_state_1();
obj.assert_in_state_1();
serialize(obj, sout);
obj.assert_in_state_1();
obj.set_state_2();
obj.assert_in_state_2();
serialize(obj, sout);
obj.assert_in_state_2();
istringstream sin(sout.str());
deserialize(obj,sin);
obj.assert_in_state_1();
deserialize(obj,sin);
obj.assert_in_state_2();
// now do the same thing as above but deserialize from some stored binary
// data to make sure the serialized values are portable between different
// machines
sin.clear();
sin.str(get_decoded_string());
deserialize(obj,sin);
obj.assert_in_state_1();
deserialize(obj,sin);
obj.assert_in_state_2();
sin.clear();
sin.str(get_decoded_string2());
deserialize(obj,sin);
obj.assert_in_state_1();
deserialize(obj,sin);
obj.assert_in_state_2();
/*
// This is the code that produced the encoded data stored in the get_decoded_string() function
ofstream fout("stuff.bin",ios::binary);
obj.set_state_1();
obj.assert_in_state_1();
serialize(obj, fout);
obj.assert_in_state_1();
obj.set_state_2();
obj.assert_in_state_2();
serialize(obj, fout);
obj.assert_in_state_2();
*/
}
template <typename T>
void test_vector (
)
{
std::vector<T> a, b;
for (int i = -10; i < 30; ++i)
{
a.push_back(i);
}
ostringstream sout;
dlib::serialize(a, sout);
istringstream sin(sout.str());
dlib::deserialize(b, sin);
DLIB_TEST(a.size() == b.size());
DLIB_TEST(a.size() == 40);
for (unsigned long i = 0; i < a.size(); ++i)
{
DLIB_TEST(a[i] == b[i]);
}
std::vector<T> c;
sout.str("");
dlib::serialize(c, sout);
sin.str(sout.str());
dlib::deserialize(a, sin);
DLIB_TEST(a.size() == 0);
DLIB_TEST(c.size() == 0);
}
void test_vector_bool (
)
{
std::vector<bool> a, b;
a.push_back(true);
a.push_back(true);
a.push_back(false);
a.push_back(true);
a.push_back(false);
a.push_back(true);
ostringstream sout;
dlib::serialize(a, sout);
istringstream sin(sout.str());
dlib::deserialize(b, sin);
DLIB_TEST(a.size() == b.size());
DLIB_TEST(a.size() == 6);
for (unsigned long i = 0; i < a.size(); ++i)
{
DLIB_TEST(a[i] == b[i]);
}
}
// ----------------------------------------------------------------------------------------
// This function returns the contents of the file 'matarray.dat'
const std::string get_decoded_string_matarray_old()
{
dlib::base64 base64_coder;
dlib::compress_stream::kernel_1ea compressor;
std::ostringstream sout;
std::istringstream sin;
// The base64 encoded data from the file 'matarray.dat' we want to decode and return.
sout << "AW852sEbTIeV+m/wLUcKJKPW+6IclviUWZcFh1daDZ0blDjPNTgPx0Lv56sIEwlG4I6C5OJzJBkZ";
sout << "PvczLjS7IEKh6eg7amNOyEexsQSgojL1oMe2gDEfkyInUGPJV90sNS0cvp/hIB134V8JCTYUP6vH";
sout << "9qpegLSIIQG+/NjLWyK2472vC88BJfKgkL3CPLMjQwB3tB928FNLbESDLIvpnb6q9ve68iuoyZZt";
sout << "z3TTJxHW3MIdgzuhNomvPxfo/Q+7lC/Orj0FewUX90al6DckwzOtLVRidh/ZKpsQsxzJYQGkjdX5";
sout << "mDzzXKqQb3Y3DnzEmwtRD9CUON3iRv1r26gHWLYorrYA";
// Put the data into the istream sin
sin.str(sout.str());
sout.str("");
// Decode the base64 text into its compressed binary form
base64_coder.decode(sin,sout);
sin.clear();
sin.str(sout.str());
sout.str("");
// Decompress the data into its original form
compressor.decompress(sin,sout);
// Return the decoded and decompressed data
return sout.str();
}
// This function returns the contents of the file 'matarray.dat'
const std::string get_decoded_string_matarray()
{
dlib::base64 base64_coder;
dlib::compress_stream::kernel_1ea compressor;
std::ostringstream sout;
std::istringstream sin;
// The base64 encoded data from the file 'matarray.dat' we want to decode and return.
sout << "gO6XH2WGbm8Xaw3a5FJbh3V823W6P2Qk/vHaAAAAARccIppHWdmViaKby7JA5PQvXjYMWUYvXRHv";
sout << "xPdURZl1un3CT/rjT11Yry0y3+1W7GBmfBJ0gVFKGdiGuqoNAMtmzL/ll3YfEQ7ED7aB33aDTktw";
sout << "AWVkHT+gqTbKwjP+8YvB3s3ziK640ITOAWazAghKDVl7AHGn+fjq29paBZMczuJofl8FinZUhwa9";
sout << "Ol5gdAEQa6VZDmJUeo2soTJcEDpkW9LkRmXvjQkyEHfEHQNFDfQq4p2U+dHz4lOKlcj3VzQIeG/s";
sout << "oxa9KhJND4aQ5xeNUUHUzFBU3XhQHlyDIn/RNdX/ZwA=";
// Put the data into the istream sin
sin.str(sout.str());
sout.str("");
// Decode the base64 text into its compressed binary form
base64_coder.decode(sin,sout);
sin.clear();
sin.str(sout.str());
sout.str("");
// Decompress the data into its original form
compressor.decompress(sin,sout);
// Return the decoded and decompressed data
return sout.str();
}
void setup_mats_and_arrays (
array2d<int>& a,
matrix<int>& m,
array2d<unsigned char>& img1,
array2d<rgb_pixel>& img2,
array2d<bgr_pixel>& img3,
array2d<rgb_alpha_pixel>& img4,
array2d<hsi_pixel>& img5
)
{
a.set_size(3,5);
int cnt = 0;
for (long r = 0; r < a.nr(); ++r)
{
for (long c = 0; c < a.nc(); ++c)
{
a[r][c] = cnt++;
}
}
m = mat(a);
img1.set_size(3,5);
img2.set_size(3,5);
img3.set_size(3,5);
img4.set_size(3,5);
img5.set_size(3,5);
assign_all_pixels(img1, 0);
assign_all_pixels(img2, 0);
assign_all_pixels(img3, 0);
assign_all_pixels(img4, 0);
assign_all_pixels(img5, 0);
unsigned char pcnt = 0;
for (long r = 0; r < img1.nr(); ++r)
{
for (long c = 0; c < img1.nc(); ++c)
{
rgb_alpha_pixel temp;
temp.red = pcnt++;
temp.green = pcnt++;
temp.blue = pcnt++;
temp.alpha = 150+pcnt++;
assign_pixel(img1[r][c], temp);
assign_pixel(img2[r][c], temp);
assign_pixel(img3[r][c], temp);
assign_pixel(img4[r][c], temp);
}
}
for (long r = 0; r < img5.nr(); ++r)
{
for (long c = 0; c < img5.nc(); ++c)
{
img5[r][c].h = pcnt++;
img5[r][c].s = pcnt++;
img5[r][c].i = pcnt++;
}
}
}
void test_deserialize(
std::istream& fin
)
{
array2d<int> a;
matrix<int> m;
array2d<unsigned char> img1;
array2d<rgb_pixel> img2;
array2d<bgr_pixel> img3;
array2d<rgb_alpha_pixel> img4;
array2d<hsi_pixel> img5;
setup_mats_and_arrays(a,m,img1,img2,img3,img4,img5);
array2d<unsigned char> img1_;
array2d<rgb_pixel> img2_;
array2d<bgr_pixel> img3_;
array2d<rgb_alpha_pixel> img4_;
array2d<hsi_pixel> img5_;
matrix<int> m_;
array2d<int> a_;
deserialize(a_, fin); DLIB_TEST(mat(a_) == mat(a));
deserialize(m_, fin); DLIB_TEST(mat(m_) == mat(m));
deserialize(a_, fin); DLIB_TEST(mat(a_) == mat(a));
deserialize(m_, fin); DLIB_TEST(mat(m_) == mat(m));
deserialize(img1_, fin); DLIB_TEST(mat(img1_) == mat(img1));
deserialize(img2_, fin); DLIB_TEST(mat(img2_) == mat(img2));
deserialize(img3_, fin); DLIB_TEST(mat(img3_) == mat(img3));
deserialize(img4_, fin); DLIB_TEST(mat(img4_) == mat(img4));
deserialize(img5_, fin); DLIB_TEST(mat(img5_) == mat(img5));
}
void test_deserialize_all_array2d(
std::istream& fin
)
{
array2d<int> a;
matrix<int> m;
array2d<unsigned char> img1;
array2d<rgb_pixel> img2;
array2d<bgr_pixel> img3;
array2d<rgb_alpha_pixel> img4;
array2d<hsi_pixel> img5;
setup_mats_and_arrays(a,m,img1,img2,img3,img4,img5);
array2d<unsigned char> img1_;
array2d<rgb_pixel> img2_;
array2d<bgr_pixel> img3_;
array2d<rgb_alpha_pixel> img4_;
array2d<hsi_pixel> img5_;
array2d<int> m_;
array2d<int> a_;
deserialize(a_, fin); DLIB_TEST(mat(a_) == mat(a));
deserialize(m_, fin); DLIB_TEST(mat(m_) == mat(m));
deserialize(a_, fin); DLIB_TEST(mat(a_) == mat(a));
deserialize(m_, fin); DLIB_TEST(mat(m_) == mat(m));
deserialize(img1_, fin); DLIB_TEST(mat(img1_) == mat(img1));
deserialize(img2_, fin); DLIB_TEST(mat(img2_) == mat(img2));
deserialize(img3_, fin); DLIB_TEST(mat(img3_) == mat(img3));
deserialize(img4_, fin); DLIB_TEST(mat(img4_) == mat(img4));
deserialize(img5_, fin); DLIB_TEST(mat(img5_) == mat(img5));
}
void test_deserialize_all_matrix(
std::istream& fin
)
{
array2d<int> a;
matrix<int> m;
array2d<unsigned char> img1;
array2d<rgb_pixel> img2;
array2d<bgr_pixel> img3;
array2d<rgb_alpha_pixel> img4;
array2d<hsi_pixel> img5;
setup_mats_and_arrays(a,m,img1,img2,img3,img4,img5);
matrix<unsigned char> img1_;
matrix<rgb_pixel> img2_;
matrix<bgr_pixel> img3_;
matrix<rgb_alpha_pixel> img4_;
matrix<hsi_pixel> img5_;
matrix<int> m_;
matrix<int> a_;
deserialize(a_, fin); DLIB_TEST(mat(a_) == mat(a));
deserialize(m_, fin); DLIB_TEST(mat(m_) == mat(m));
deserialize(a_, fin); DLIB_TEST(mat(a_) == mat(a));
deserialize(m_, fin); DLIB_TEST(mat(m_) == mat(m));
deserialize(img1_, fin); DLIB_TEST(mat(img1_) == mat(img1));
deserialize(img2_, fin); DLIB_TEST(mat(img2_) == mat(img2));
deserialize(img3_, fin); DLIB_TEST(mat(img3_) == mat(img3));
deserialize(img4_, fin); DLIB_TEST(mat(img4_) == mat(img4));
deserialize(img5_, fin); DLIB_TEST(mat(img5_) == mat(img5));
}
void test_array2d_and_matrix_serialization()
{
ostringstream sout;
array2d<int> a;
matrix<int> m;
array2d<unsigned char> img1;
array2d<rgb_pixel> img2;
array2d<bgr_pixel> img3;
array2d<rgb_alpha_pixel> img4;
array2d<hsi_pixel> img5;
setup_mats_and_arrays(a,m,img1,img2,img3,img4,img5);
serialize(a, sout);
serialize(m, sout);
serialize(a, sout);
serialize(m, sout);
serialize(img1, sout);
serialize(img2, sout);
serialize(img3, sout);
serialize(img4, sout);
serialize(img5, sout);
// --------------------
{
istringstream sin(sout.str());
test_deserialize(sin);
}
{
istringstream sin(sout.str());
test_deserialize_all_array2d(sin);
}
{
istringstream sin(sout.str());
test_deserialize_all_matrix(sin);
}
{
istringstream sin(get_decoded_string_matarray());
test_deserialize(sin);
}
{
istringstream sin(get_decoded_string_matarray());
test_deserialize_all_array2d(sin);
}
{
istringstream sin(get_decoded_string_matarray());
test_deserialize_all_matrix(sin);
}
{
// Make sure we can still deserialize the serialization
// format for array2d and matrix objects used by older versions
// of dlib.
istringstream sin(get_decoded_string_matarray_old());
test_deserialize(sin);
}
}
// ----------------------------------------------------------------------------------------
class serialize_tester : public tester
{
/*!
WHAT THIS OBJECT REPRESENTS
This object represents a test for the serialization . When it is constructed
it adds itself into the testing framework. The command line switch is
specified as test_serialize by passing that string to the tester constructor.
!*/
public:
serialize_tester (
) :
tester ("test_serialize",
"Runs tests on the serialization code.")
{}
void perform_test (
)
{
serialize_test();
test_vector<char>();
test_vector<unsigned char>();
test_vector<int>();
test_vector_bool();
test_array2d_and_matrix_serialization();
}
} a;
}