// Copyright (C) 2008 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include <dlib/geometry.h>
#include <sstream>
#include <string>
#include <cstdlib>
#include <ctime>
#include <dlib/string.h>
#include <dlib/matrix.h>
#include <dlib/rand.h>
#include <dlib/array2d.h>
#include <dlib/image_transforms.h>
#include "tester.h"
namespace
{
using namespace test;
using namespace dlib;
using namespace std;
logger dlog("test.geometry");
void geometry_test (
)
/*!
ensures
- runs tests on the geometry stuff compliance with the specs
!*/
{
print_spinner();
point p1;
point p2(2,3);
DLIB_TEST(p1.x() == 0);
DLIB_TEST(p1.y() == 0);
DLIB_TEST(p2.x() == 2);
DLIB_TEST(p2.y() == 3);
DLIB_TEST((-p2).x() == -2);
DLIB_TEST((-p2).y() == -3);
p2 += p2;
DLIB_TEST(p2.x() == 4);
DLIB_TEST(p2.y() == 6);
dlib::vector<double> v1 = point(1,0);
dlib::vector<double> v2(0,0,1);
p1 = v2.cross(v1);
DLIB_TEST(p1 == point(0,1));
DLIB_TEST(p1 != point(1,1));
DLIB_TEST(p1 != point(1,0));
p1 = point(2,3);
rectangle rect1 = p1;
DLIB_TEST(rect1.width() == 1);
DLIB_TEST(rect1.height() == 1);
p2 = point(1,1);
rect1 += p2;
DLIB_TEST(rect1.left() == 1);
DLIB_TEST(rect1.top() == 1);
DLIB_TEST(rect1.right() == 2);
DLIB_TEST(rect1.bottom() == 3);
DLIB_TEST(rect1.width() == 2);
DLIB_TEST(rect1.height() == 3);
// test the iostream << and >> operators (via string_cast and cast_to_string)
DLIB_TEST(string_cast<point>(" (1, 2 )") == point(1,2));
DLIB_TEST(string_cast<point>(" ( -1, 2 )") == point(-1,2));
DLIB_TEST(string_cast<rectangle>(" [(1, 2 )(3,4)]") == rectangle(1,2,3,4));
DLIB_TEST(string_cast<dlib::vector<double> >(" (1, 2 , 3.5)") == dlib::vector<double>(1,2,3.5));
DLIB_TEST(string_cast<rectangle>(cast_to_string(rect1)) == rect1);
DLIB_TEST(string_cast<point>(cast_to_string(p1)) == p1);
DLIB_TEST(string_cast<dlib::vector<double> >(cast_to_string(v1)) == v1);
rectangle rect2;
// test the serialization code
ostringstream sout;
serialize(rect1,sout);
serialize(p1,sout);
serialize(v1,sout);
serialize(rect1,sout);
serialize(p1,sout);
serialize(v1,sout);
istringstream sin(sout.str());
deserialize(rect2,sin);
deserialize(p2,sin);
deserialize(v2,sin);
DLIB_TEST(rect2 == rect1);
DLIB_TEST(p2 == p1);
DLIB_TEST(v2 == v1);
deserialize(rect2,sin);
deserialize(p2,sin);
deserialize(v2,sin);
DLIB_TEST(rect2 == rect1);
DLIB_TEST(p2 == p1);
DLIB_TEST(v2 == v1);
DLIB_TEST(sin);
DLIB_TEST(sin.get() == EOF);
v1.x() = 1;
v1.y() = 2;
v1.z() = 3;
matrix<double> mv = v1;
DLIB_TEST(mv.nr() == 3);
DLIB_TEST(mv.nc() == 1);
DLIB_TEST(mv(0) == 1);
DLIB_TEST(mv(1) == 2);
DLIB_TEST(mv(2) == 3);
set_all_elements(mv,0);
DLIB_TEST(mv(0) == 0);
DLIB_TEST(mv(1) == 0);
DLIB_TEST(mv(2) == 0);
mv(0) = 5;
mv(1) = 6;
mv(2) = 7;
v1 = mv;
DLIB_TEST(v1.x() == 5);
DLIB_TEST(v1.y() == 6);
DLIB_TEST(v1.z() == 7);
{
dlib::vector<double,2> vd2;
dlib::vector<double,3> vd3;
dlib::vector<long,2> vl2;
dlib::vector<long,3> vl3;
vd2.x() = 2.3;
vd2.y() = 4.7;
vd3.z() = 9;
vd3 = vd2;
vl2 = vd3;
vl3 = vd3;
DLIB_TEST(vd2.z() == 0);
DLIB_TEST(vd3.z() == 0);
DLIB_TEST(vl2.z() == 0);
DLIB_TEST(vl3.z() == 0);
DLIB_TEST(vl2.x() == 2);
DLIB_TEST(vl3.x() == 2);
DLIB_TEST(vl2.y() == 5);
DLIB_TEST(vl3.y() == 5);
DLIB_TEST(abs(vd2.cross(vd3).dot(vd2)) < 1e-7);
DLIB_TEST(abs(vd3.cross(vd2).dot(vd2)) < 1e-7);
DLIB_TEST(abs(vd2.cross(vd3).dot(vd3)) < 1e-7);
DLIB_TEST(abs(vd3.cross(vd2).dot(vd3)) < 1e-7);
DLIB_TEST(abs(vl2.cross(vl3).dot(vl2)) == 0);
DLIB_TEST(abs(vl3.cross(vl2).dot(vl2)) == 0);
DLIB_TEST(abs(vl2.cross(vl3).dot(vl3)) == 0);
DLIB_TEST(abs(vl3.cross(vl2).dot(vl3)) == 0);
DLIB_TEST((vd2-vd3).length() < 1e-7);
DLIB_TEST(vl2 == vl3);
vl2.x() = 0;
vl2.y() = 0;
vl3 = vl2;
vl2.x() = 4;
vl3.y() = 3;
DLIB_TEST(vl2.cross(vl3).length() == 12);
DLIB_TEST(vl3.cross(vl2).length() == 12);
matrix<double> m(3,3);
m = 1,2,3,
4,5,6,
7,8,9;
vd3.x() = 2;
vd3.y() = 3;
vd3.z() = 4;
vd3 = m*vd3;
DLIB_TEST_MSG(vd3.x() == 1*2 + 2*3 + 3*4,vd3.x() << " == " << (1*2 + 2*3 + 3*4));
DLIB_TEST(vd3.y() == 4*2 + 5*3 + 6*4);
DLIB_TEST(vd3.z() == 7*2 + 8*3 + 9*4);
(vd3*2).dot(vd3);
(vd2*2).dot(vd3);
(vd3*2).dot(vd2);
(vd2*2).dot(vd2);
(2*vd3*2).dot(vd3);
(2*vd2*2).dot(vd3);
(2*vd3*2).dot(vd2);
(2*vd2*2).dot(vd2);
(vd2 + vd3).dot(vd2);
(vd2 - vd3).dot(vd2);
(vd2/2).dot(vd2);
(vd3/2).dot(vd2);
}
{
dlib::vector<double,2> vd2;
dlib::vector<long,3> vl3;
vl3.x() = 1;
vl3.y() = 2;
vl3.z() = 3;
vd2.x() = 6.5;
vd2.y() = 7.5;
DLIB_TEST((vl3 + vd2).x() == 1+6.5);
DLIB_TEST((vl3 + vd2).y() == 2+7.5);
DLIB_TEST((vl3 + vd2).z() == 3+0);
DLIB_TEST((vl3 - vd2).x() == 1-6.5);
DLIB_TEST((vl3 - vd2).y() == 2-7.5);
DLIB_TEST((vl3 - vd2).z() == 3-0);
}
{
dlib::vector<double> v(3,4,5);
DLIB_TEST((-v).x() == -3.0);
DLIB_TEST((-v).y() == -4.0);
DLIB_TEST((-v).z() == -5.0);
}
{
rectangle rect;
point tl(2,3);
point tr(8,3);
point bl(2,9);
point br(8,9);
rect += tl;
rect += tr;
rect += bl;
rect += br;
DLIB_TEST(rect.tl_corner() == tl);
DLIB_TEST(rect.tr_corner() == tr);
DLIB_TEST(rect.bl_corner() == bl);
DLIB_TEST(rect.br_corner() == br);
}
{
point p1, center;
center = point(3,4);
p1 = point(10,4);
DLIB_TEST(rotate_point(center, p1, pi/2) == point(3,7+4));
center = point(3,3);
p1 = point(10,3);
DLIB_TEST(rotate_point(center, p1, pi/4) == point(8,8));
DLIB_TEST(rotate_point(center, p1, -pi/4) == point(8,-2));
DLIB_TEST(rotate_point(center, p1, pi/4 + 10*pi) == point(8,8));
DLIB_TEST(rotate_point(center, p1, -pi/4 + 10*pi) == point(8,-2));
DLIB_TEST(rotate_point(center, p1, pi/4 - 10*pi) == point(8,8));
DLIB_TEST(rotate_point(center, p1, -pi/4 - 10*pi) == point(8,-2));
point_rotator rot(pi/2);
DLIB_TEST(rot(point(1,0)) == point(0,1));
DLIB_TEST(rot(point(0,1)) == point(-1,0));
DLIB_TEST(point(rot.get_m()*(dlib::vector<double,2>(1,0))) == point(0,1));
DLIB_TEST(point(rot.get_m()*(dlib::vector<double,2>(0,1))) == point(-1,0));
}
{
rectangle rect;
rect = grow_rect(rect,1);
DLIB_TEST(rect.width() == 2);
DLIB_TEST(rect.height() == 2);
DLIB_TEST(rect.left() == -1);
DLIB_TEST(rect.top() == -1);
DLIB_TEST(rect.right() == 0);
DLIB_TEST(rect.bottom() == 0);
}
{
rectangle rect;
rect = grow_rect(rect,2);
DLIB_TEST(rect.width() == 4);
DLIB_TEST(rect.height() == 4);
DLIB_TEST(rect.left() == -2);
DLIB_TEST(rect.top() == -2);
DLIB_TEST(rect.right() == 1);
DLIB_TEST(rect.bottom() == 1);
rect = shrink_rect(rect,1);
DLIB_TEST(rect.width() == 2);
DLIB_TEST(rect.height() == 2);
DLIB_TEST(rect.left() == -1);
DLIB_TEST(rect.top() == -1);
DLIB_TEST(rect.right() == 0);
DLIB_TEST(rect.bottom() == 0);
}
{
std::vector< dlib::vector<double> > a;
dlib::vector<double> v;
dlib::rand rnd;
for (int i = 0; i < 10; ++i)
{
v.x() = rnd.get_random_double();
v.y() = rnd.get_random_double();
v.z() = rnd.get_random_double();
a.push_back(v);
}
// This test is just to make sure the covariance function can compile when used
// on a dlib::vector. The actual test doesn't matter.
DLIB_TEST(sum(covariance(mat(a))) < 10);
}
DLIB_TEST(rectangle() + point(5,4) + point(10,10) == rectangle(5,4,10,10));
// make sure the center of a centered rectangle is always right
for (long x = -10; x <= 10; ++x)
{
for (long y = -10; y <= 10; ++y)
{
for (long w = 0; w < 10; ++w)
{
for (long h = 0; h < 10; ++h)
{
DLIB_TEST(center(centered_rect(x,y,w,h)) == point(x,y));
}
}
}
}
}
// ----------------------------------------------------------------------------------------
void test_border_enumerator()
{
border_enumerator be;
DLIB_TEST(be.at_start() == true);
DLIB_TEST(be.size() == 0);
DLIB_TEST(be.current_element_valid() == false);
DLIB_TEST(be.move_next() == false);
DLIB_TEST(be.at_start() == false);
DLIB_TEST(be.current_element_valid() == false);
DLIB_TEST(be.move_next() == false);
DLIB_TEST(be.at_start() == false);
DLIB_TEST(be.current_element_valid() == false);
DLIB_TEST(be.size() == 0);
be = border_enumerator(rectangle(4,4,4,4),1);
DLIB_TEST(be.at_start() == true);
DLIB_TEST(be.size() == 1);
be = border_enumerator(rectangle(4,4,4,4),3);
DLIB_TEST(be.at_start() == true);
DLIB_TEST(be.size() == 1);
be = border_enumerator(rectangle(4,4,4,4),0);
DLIB_TEST(be.at_start() == true);
DLIB_TEST(be.size() == 0);
be = border_enumerator(rectangle(4,4,5,5),0);
DLIB_TEST(be.at_start() == true);
DLIB_TEST(be.size() == 0);
be = border_enumerator(rectangle(4,4,5,5),1);
DLIB_TEST(be.at_start() == true);
DLIB_TEST(be.size() == 4);
be = border_enumerator(rectangle(4,4,5,5),2);
DLIB_TEST(be.size() == 4);
be = border_enumerator(rectangle(4,4,6,6),1);
DLIB_TEST(be.size() == 8);
be = border_enumerator(rectangle(4,4,6,6),2);
DLIB_TEST(be.size() == 9);
be = border_enumerator(rectangle(4,4,6,6),3);
DLIB_TEST(be.size() == 9);
DLIB_TEST(be.at_start() == true);
array2d<unsigned char> img, img2;
for (int size = 1; size < 10; ++size)
{
for (int bs = 0; bs < 4; ++bs)
{
img.set_size(size,size);
img2.set_size(size,size);
assign_all_pixels(img, 1);
assign_all_pixels(img2, 1);
zero_border_pixels(img2, bs,bs);
be = border_enumerator(get_rect(img),bs);
DLIB_TEST(be.at_start() == true);
DLIB_TEST(be.current_element_valid() == false);
while (be.move_next())
{
DLIB_TEST(be.at_start() == false);
DLIB_TEST(be.current_element_valid() == true);
DLIB_TEST_MSG(get_rect(img).contains(be.element()) == true,
get_rect(img) << " " << be.element()
);
const point p = be.element();
img[p.y()][p.x()] = 0;
}
DLIB_TEST(be.at_start() == false);
DLIB_TEST(be.current_element_valid() == false);
DLIB_TEST(be.move_next() == false);
DLIB_TEST(be.current_element_valid() == false);
DLIB_TEST(be.move_next() == false);
DLIB_TEST(be.current_element_valid() == false);
DLIB_TEST(be.at_start() == false);
DLIB_TEST(mat(img) == mat(img2));
}
}
for (int size = 1; size < 10; ++size)
{
for (int bs = 0; bs < 4; ++bs)
{
img.set_size(size,size+5);
img2.set_size(size,size+5);
assign_all_pixels(img, 1);
assign_all_pixels(img2, 1);
zero_border_pixels(img2, bs,bs);
const point shift(4,5);
be = border_enumerator(translate_rect(get_rect(img),shift),bs);
DLIB_TEST(be.at_start() == true);
DLIB_TEST(be.current_element_valid() == false);
while (be.move_next())
{
DLIB_TEST(be.current_element_valid() == true);
DLIB_TEST(be.at_start() == false);
DLIB_TEST_MSG(get_rect(img).contains(be.element()-shift) == true,
get_rect(img) << " " << be.element()
);
const point p = be.element()-shift;
img[p.y()][p.x()] = 0;
}
DLIB_TEST(be.current_element_valid() == false);
DLIB_TEST(be.move_next() == false);
DLIB_TEST(be.current_element_valid() == false);
DLIB_TEST(be.move_next() == false);
DLIB_TEST(be.current_element_valid() == false);
DLIB_TEST(be.at_start() == false);
DLIB_TEST(mat(img) == mat(img2));
}
}
for (int size = 1; size < 10; ++size)
{
for (int bs = 0; bs < 4; ++bs)
{
img.set_size(size+2,size);
img2.set_size(size+2,size);
assign_all_pixels(img, 1);
assign_all_pixels(img2, 1);
zero_border_pixels(img2, bs,bs);
const point shift(-4,5);
be = border_enumerator(translate_rect(get_rect(img),shift),bs);
DLIB_TEST(be.current_element_valid() == false);
while (be.move_next())
{
DLIB_TEST(be.current_element_valid() == true);
DLIB_TEST_MSG(get_rect(img).contains(be.element()-shift) == true,
get_rect(img) << " " << be.element()
);
const point p = be.element()-shift;
img[p.y()][p.x()] = 0;
}
DLIB_TEST(be.current_element_valid() == false);
DLIB_TEST(be.move_next() == false);
DLIB_TEST(be.current_element_valid() == false);
DLIB_TEST(be.move_next() == false);
DLIB_TEST(be.current_element_valid() == false);
DLIB_TEST(mat(img) == mat(img2));
}
}
{
matrix<bool,4,5> hits, truth;
const rectangle rect = rectangle(1,1,4,3);
border_enumerator be(rect, rectangle(2,2, 3, 3));
DLIB_TEST(be.size() == 8);
hits = false;
while (be.move_next())
{
DLIB_TEST(rect.contains(be.element()));
hits(be.element().y(), be.element().x()) = true;
}
DLIB_TEST(be.current_element_valid() == false);
DLIB_TEST(be.size() == 8);
truth = false;
truth(1,1) = truth(1,2) = truth(1,3) = truth(1,4) = truth(2,1) =
truth(3,1) = truth(2,4) = truth(3,4) = true;
DLIB_TEST_MSG(truth == hits, truth << endl << hits);
be = border_enumerator(rect, rectangle(0,0, 9, 9));
DLIB_TEST(be.size() == 0);
hits = false;
while (be.move_next())
{
DLIB_TEST(rect.contains(be.element()));
hits(be.element().y(), be.element().x()) = true;
}
DLIB_TEST(be.current_element_valid() == false);
DLIB_TEST(be.size() == 0);
truth = false;
DLIB_TEST(truth == hits);
be = border_enumerator(rect, rectangle(0,0, 3, 9));
DLIB_TEST(be.size() == 3);
hits = false;
while (be.move_next())
{
DLIB_TEST(rect.contains(be.element()));
hits(be.element().y(), be.element().x()) = true;
}
DLIB_TEST(be.current_element_valid() == false);
DLIB_TEST(be.size() == 3);
truth = false;
truth(1,4) = truth(2,4) = truth(3,4) = true;
DLIB_TEST(truth == hits);
be = border_enumerator(rect, rectangle(2,1, 4, 3));
DLIB_TEST(be.size() == 3);
hits = false;
while (be.move_next())
{
DLIB_TEST(rect.contains(be.element()));
hits(be.element().y(), be.element().x()) = true;
}
DLIB_TEST(be.current_element_valid() == false);
DLIB_TEST(be.size() == 3);
truth = false;
truth(1,1) = truth(2,1) = truth(3,1) = true;
DLIB_TEST(truth == hits);
be = border_enumerator(rect, rectangle(1,1, 5, 2));
DLIB_TEST(be.size() == 4);
hits = false;
while (be.move_next())
{
DLIB_TEST(rect.contains(be.element()));
hits(be.element().y(), be.element().x()) = true;
}
DLIB_TEST(be.current_element_valid() == false);
DLIB_TEST(be.size() == 4);
truth = false;
truth(3,1) = truth(3,2) = truth(3,3) = truth(3,4) = true;
DLIB_TEST(truth == hits);
}
}
// ----------------------------------------------------------------------------------------
void test_find_affine_transform()
{
//typedef dlib::vector<double,2> vect;
typedef point vect;
std::vector<vect> from, to;
from.push_back(vect(0,0));
to.push_back(vect(0,1));
from.push_back(vect(0,1));
to.push_back(vect(1,1));
from.push_back(vect(1,1));
to.push_back(vect(1,0));
from.push_back(vect(1,0));
to.push_back(vect(0,0));
point_transform_affine t = find_affine_transform(from,to);
for (unsigned long i = 0; i < from.size(); ++i)
{
dlog << LINFO << "affine transformation error: "<< length(t(from[i])-to[i]);
DLIB_TEST(length(t(from[i])-to[i]) < 1e-14);
}
}
// ----------------------------------------------------------------------------------------
double projective_transform_pass_rate(const double error_rate)
{
print_spinner();
dlog << LINFO << "projective_transform_pass_rate, error_rate: "<< error_rate;
dlib::rand rnd;
running_stats<double> pass_rate;
for (int rounds = 0; rounds < 1000; ++rounds)
{
running_stats<double> rs, rs_true;
matrix<double> H = 2*(randm(3,3,rnd)-0.5);
H(0,2) = rnd.get_random_gaussian()*10;
H(1,2) = rnd.get_random_gaussian()*10;
H(2,0) = rnd.get_random_double()*2.1;
H(2,1) = rnd.get_random_double()*2.1;
H(2,2) = 1 + rnd.get_random_gaussian()*3.1;
point_transform_projective tran(H);
const int num = rnd.get_random_32bit_number()%8 + 4;
std::vector<dlib::vector<double,2> > from_points, to_points;
for (int i = 0; i < num; ++i)
{
dlib::vector<double,2> p = randm(2,1,rnd)*1000;
from_points.push_back(p);
to_points.push_back(tran(p) + (randm(2,1,rnd)-0.5)*error_rate);
}
point_transform_projective tran2 = find_projective_transform(from_points, to_points);
for (unsigned long i = 0; i < from_points.size(); ++i)
{
const double err = length_squared(tran2(from_points[i]) - to_points[i]);
rs.add(err);
const double err_true = length_squared(tran(from_points[i]) - to_points[i]);
rs_true.add(err_true);
}
if ( rs.mean() < 0.01)
{
pass_rate.add(1);
}
else
{
dlog << LINFO << " errors: mean/max: " << rs.mean() << " " << rs.max();
pass_rate.add(0);
}
}
dlog << LINFO << " pass_rate.mean(): "<< pass_rate.mean();
return pass_rate.mean();
}
// ----------------------------------------------------------------------------------------
class geometry_tester : public tester
{
public:
geometry_tester (
) :
tester ("test_geometry",
"Runs tests on the geometry stuff.")
{}
void perform_test (
)
{
geometry_test();
test_border_enumerator();
test_find_affine_transform();
DLIB_TEST(projective_transform_pass_rate(0.1) > 0.99);
DLIB_TEST(projective_transform_pass_rate(0.0) == 1);
}
} a;
}