
The Glasgow Pascal Compiler
with vector extensions1

Paul Cockshott

January 16, 2016

1ISBN 978-1-4477-6156-3 , Copyright(c) Paul Cockshott, University of Glasgow

2

Contents

1 Elements of the language 9
1.1 Alphabet . 9

1.1.1 Extended alphabet . 9
1.2 Reserved words . 9
1.3 Comments . 10
1.4 Identifiers . 10
1.5 Literals . 10

1.5.1 Integer numbers . 10
1.5.2 Real numbers . 11
1.5.3 Character strings . 11

2 Declarations 13
2.1 Constants . 13

2.1.1 Array constants . 14
2.1.2 Pre-declared constants . 14

2.2 Labels . 14
2.3 Types . 15

2.3.1 Simple types . 15
2.3.2 Structured types . 18
2.3.3 Dynamic types . 19
2.3.4 Class types . 22
2.3.5 File types . 24

2.4 Variables . 24
2.4.1 External Variables . 25
2.4.2 Entire Variables . 25
2.4.3 Indexed Variables . 25
2.4.4 Field Designators . 27
2.4.5 Referenced Variables . 27

2.5 Procedures and Functions . 27
2.5.1 Procedural Parameters to Procedures 28
2.5.2 Procedure types . 28

3 Algorithms 29
3.1 Expressions . 29

3.1.1 Mixed type expressions . 29
3.1.2 Primary expressions . 29
3.1.3 Unary expressions . 30
3.1.4 Operator Reduction . 33
3.1.5 Complex conversion . 34
3.1.6 Conditional expressions . 34
3.1.7 Factor . 35
3.1.8 Multiplicative expressions . 36

3

4 CONTENTS

3.1.9 Additive expressions . 36
3.1.10 Expressions . 37
3.1.11 Operator overloading . 37
3.1.12 Vector inner product . 39
3.1.13 Matrix to Vector Product . 40
3.1.14 Matrix to Matrix multiplication 42

3.2 Statements . 42
3.2.1 Assignment . 42
3.2.2 Procedure statement . 44
3.2.3 Goto statement . 44
3.2.4 Exit Statement . 44
3.2.5 Compound statement . 44
3.2.6 If statement . 44
3.2.7 Case statement . 45
3.2.8 With statement . 45
3.2.9 For statement . 45
3.2.10 Vectorised For statements . 45
3.2.11 Parallel For statements . 46
3.2.12 While statement . 46
3.2.13 Repeat statement . 46

3.3 Input Output . 47
3.3.1 Input . 47
3.3.2 Output . 47

4 Programs, Units and Libraries 49
4.1 The export of identifiers from units . 49

4.1.1 The export of Operators from units 50
4.2 Unit parameterisation and generic functions 50
4.3 The invocation of programs and units . 50
4.4 The compilation of programs and units. 51
4.5 Instantiation of parametric units . 51

4.5.1 Direct instantiation . 52
4.5.2 Indirect instantiation . 52

4.6 The System Unit . 52
4.6.1 System unit constants . 55

4.7 Libraries, static and dynamic . 55
4.7.1 Linking to external libraries . 55
4.7.2 The export of procedures from libraries. 56
4.7.3 Creating libraries . 56
4.7.4 Cross Language Parameter Passing 58

5 Implementation issues 61
5.1 Using Unicode with Vector Pascal . 61

5.1.1 Letter based Identifiers . 61
5.1.2 Ideographic identifiers . 61
5.1.3 Special Symbols . 62

5.2 Invoking the compiler . 63
5.2.1 Environment variable . 63
5.2.2 Compiler options . 63
5.2.3 Dependencies . 64

5.3 Procedure and function mechanism . 64
5.3.1 Requirements . 64
5.3.2 The C calling convention . 67
5.3.3 Var Params . 68

CONTENTS 5

5.3.4 Nested Functions . 69
5.3.5 Detail of calling method used on the Pentium 71

5.4 Multi-core Parallelism . 73
5.4.1 The PURE Function Extension . 75
5.4.2 Task Parallelism and Block Structure 75

5.5 Example Programs . 79
5.5.1 Image convolution . 79

5.6 Array representation . 81
5.6.1 Range checking . 81

6 CONTENTS

Introduction

Pascal[22, 17] is an old programming language whose relative popularity has declined over
the years, but like Fortran and C it lends itself to efficient code generation. Vector Pascal
was first developed by Turner[36] and Formella[12]. It supports whole array operations in
a manner that is similar to Fortran 90. This manual describes the Glasgow Pascal Com-
piler which supports vector extensions similar to those developed by Turner and Formella,
extensions introduced in ISO Extended Pascal[16] and some new extensions.

Modern processors have provision for parallelism in two ways:

1. The Single Instruction-stream Multiple Data-stream (SIMD) model in which a sin-
gle instruction causes the same mathematical operation to be carried out on several
operands, or pairs of operands at the same time. The level of parallelism supported
ranges from 2 floating point operations at a time on the older AMD K6 architecture
to 8 floating point operations at a time on the Intel AVX architecture.

2. The provision of multiple cores on one chip which execute parallel instructionsets.
These may all run the same instructionset as on Intel processors, or run distinct in-
structionsets as on the IBM Cell chip.

Whilst processor architectures are moving towards greater levels of parallelism, the most
widely used programming languages like C, Java and Delphi are structured around a model
of computation in which operations take place on a single value at a time. This was appro-
priate when processors worked this way, but has become an impediment to programmers
seeking to make use of the performance offered by multi-media instructionsets. The in-
troduction of SIMD instruction sets[14][29] to Personal Computers potentially provided
substantial performance increases, but the ability of most programmers to harness this per-
formance was held back by two factors. The first was the limited availability of compilers
that make effective use of these instructionsets in a machine independent manner. The sec-
ond is the fact that most popular programming languages were designed on the word at a
time model of the classic von Neumann computer.

The Glasgow Pascal Compiler aims to provide an efficient and concise notation for
programmers using Multi-core and SIMD enhanced CPUs. In doing so it borrows concepts
for expressing data parallelism that have a long history, dating back to Iverson’s work on
APL in the early ’60s[18].

Define a vector of type T as having type T []. Then if we have a binary operator ω :
(T ⊗T)→ T , in languages derived from APL we automatically have an operator ω : (T []⊗
T [])→ T [] . Thus if x,y are arrays of integers k = x+ y is the array of integers where
ki = xi + yi.

The basic concept is simple, there are complications to do with the semantics of oper-
ations between arrays of different lengths and different dimensions, but Iverson provides a
consistent treatment of these. The most recent languages to be built round this model are J,
an interpretive language[20][5][21], and F[28] a modernised Fortran. In principle though
any language with array types can be extended in a similar way. Iverson’s approach to
data parallelism is machine independent. It can be implemented using scalar instructions
or using the SIMD model. The only difference is speed.

7

8 CONTENTS

Vector Pascal incorporates Iverson’s approach to data parallelism. Its aim is to provide
a notation that allows the natural and elegant expression of data parallel algorithms within a
base language that is already familiar to a considerable body of programmers and combine
this with modern compilation techniques.

By an elegant algorithm I mean one which is expressed as concisely as possible. El-
egance is a goal that one approaches asymptotically, approaching but never attaining[7].
APL and J allow the construction of very elegant programs, but at a cost. An inevitable
consequence of elegance is the loss of redundancy. APL programs are as concise, or even
more concise than conventional mathematical notation[19] and use a special character-set.
This makes them hard for the uninitiated to understand. J attempts to remedy this by re-
stricting itself to the ASCII character-set, but still looks dauntingly unfamiliar to program-
mers brought up on more conventional languages. Both APL and J are interpretive which
makes them ill suited to many of the applications for which SIMD speed is required. The
aim of the vector extensions in the Glasgow Pascal Compiler is to provide the conceptual
gains of Iverson’s notation within a framework familiar to imperative programmers.

Pascal[22]was chosen as a base language over the alternatives of C and Java. C was
rejected because notations like x+y for x and y declared as int x[4], y[4], already have
the meaning of adding the addresses of the arrays together. Java was rejected because of
the difficulty of efficiently transmitting data parallel operations via its intermediate code to
a just in time code generator.

Iverson’s approach to data parallelism is machine independent. It can be implemented
using scalar instructions or using the SIMD model. The only difference is speed.

Chapter 1

Elements of the language

1.1 Alphabet
The Glasgow Pascal Compiler accepts files in the UTF-8 encoding of Unicode as source.
Since ASCII is a subset of this, ASCII files are valid input.

Pascal programs are made up of letter, digits and special symbols. The letters digits and
special symbols are draw either from a base character set or from an extended character set.
The base character set is drawn from ASCII and restricts the letters to be from the Latin
alphabet. The extended character set allows letters from other alphabets.

The special symbols used in the base alphabet are shown in table1.1 .

1.1.1 Extended alphabet
The extended alphabet is described in section 5.1Using Unicode with Vector Pascal.

1.2 Reserved words
The reserved words are

ABS, ADDR, AND, ARRAY,
BEGIN, BYTE2PIXEL,
CASE, CAST, CDECL, CHR, CONST, COS,
DIV, DO, DOWNTO,

END, ELSE, EXIT, EXTERNAL,

Table 1.1: Special symbols

+ : (
- ’)
* = [
/ <>]

:= < {
. <= }
, >= ^
; > ..

+: @ *)
-: $ (*
_ **

9

10 CHAPTER 1. ELEMENTS OF THE LANGUAGE

FALSE, FILE, FOR, FUNCTION,
GOTO,
IF, IMPLEMENTATION, IN, INTERFACE, IOTA,
LABEL, LIBRARY, LN,
MAX, MIN, MOD,
NAME, NDX, NOT,
OF, OR, ORD, OTHERWISE,
PACKED, PERM, PIXEL2BYTE, POW, PRED,

PROCEDURE, PROGRAM, PROTECTED ,
RDU, RECORD, REPEAT, ROUND,
SET, SHL, SHR, SIN, SIZEOF, STRING, SQRT, SUCC,
TAN, THEN, TO, TRANS, TRUE, TYPE,
VAR,
WITH, WHILE, UNIT, UNTIL, USES
Reserved words may be written in either lower case or upper case letters, or any com-

bination of the two.

1.3 Comments
The comment construct

{ < any sequence of characters not containing “}” > }
may be inserted between any two identifiers, special symbols, numbers or reserved

words without altering the semantics or syntactic correctness of the program. The brack-
eting pair (* *) may substitute for { }. Where a comment starts with { it continues until
the next }. Where it starts with (* it must be terminated by *)1.

1.4 Identifiers
Identifiers are used to name values, storage locations, programs, program modules, types,
procedures and functions. An identifier starts with a letter followed by zero or more letters,
digits or the special symbol _. Case is not significant in identifiers. ISO Pascal allows the
Latin letters A-Z to be used in identifiers. The Glasgow Pascal Compiler extends this by
allowing symbols from the Greek, Cyrillic, Katakana and Hiragana, or CJK character sets

1.5 Literals

1.5.1 Integer numbers
Integer numbers are formed of a sequence of decimal digits, thus 1, 23, 9976 etc, or as
hexadecimal numbers, or as numbers of any base between 2 and 36. A hexadecimal number
takes the form of a $ followed by a sequence of hexadecimal digits thus $01, $3ff, $5A.
The letters in a hexadecimal number may be upper or lower case and drawn from the range
a..f or A..F.

A based integer is written with the base first followed by a # character and then a
sequence of letters or digits. Thus 2#1101 is a binary number 8#67 an octal number and
20#7i a base 20 number.

The default precision for integers is 32 bits2.

1Note this differs from ISO Pascal which allows a comment starting with { to terminate with *) and vice versa.
2The notation used for grammar definition is a tabularised BNF . Each boxed table defines a production, with

the production name in the left column. Each line in the right column is an alternative for the production. The
metasymbol + indicates one or more repetitions of what immediately preceeds it. The Kleene star * is used for
zero or more repetitions. Terminal symbols are in single quotes. Sequences in brackets [] are optional.

1.5. LITERALS 11

Table 1.2: The hexadecimal digits of Vector Pascal.
Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Notation 1 0 1 2 3 4 5 6 7 8 9 A B C D E F
Notation 2 0 1 2 3 4 5 6 7 8 9 a b c d e f.

<digit sequence> <digit> +
<decimal integer> <digit sequence>
<hex integer> ‘$’<hexdigit>+
<based integer> <digit sequence>’#’<alphanumeric>+
<unsigned integer> <decimal integer>

<hex integer>
<based integer>

1.5.2 Real numbers
Real numbers are supported in floating point notation, thus 14.7, 9.99e5, 38E3, 3.6e-4
are all valid denotations for real numbers. The default precision for real numbers is also
32 bit, though intermediate calculations may use higher precision. The choice of 32 bits as
the default precision is influenced by the fact that 32 bit floating point vector operations are
well supported in multi-media instructions.

<exp> ‘e’
‘E’

<scale factor> [<sign>] <unsigned integer>
<sign> ‘-’

‘+’
<unsigned real> <decimal integer> ‘.’ <digit sequence>

<decimal integer>‘ .’ <digit sequence> <exp><scale factor>
<decimal integer><exp> <scale factor>

Fixed point numbers

In the Glasgow Pascal Compiler output code pixels are represented as signed fixed point
fractions in the range -1.0 to 1.0. Within this range, fixed point literals have the same
syntactic form as real numbers.

1.5.3 Character strings
Sequences of characters enclosed by quotes are called literal strings. Literal strings consist-
ing of a single character are constants of the standard type char. If the string is to contain a
quote character this quote character must be written twice.

’A’ ’x’ ’hello’ ’John”s house’

are all valid literal strings. The allowable characters in literal strings are any of the
Unicode characters above u0020. The character strings must be input to the compiler in
UTF-8 format.

12 CHAPTER 1. ELEMENTS OF THE LANGUAGE

Chapter 2

Declarations

Pascal is a language supporting nested declaration contexts. A declaration context is either
a program context, and unit interface or implementation context, or a procedure or function
context. A resolution context determines the meaning of an identifier. Within a resolution
context, identifiers can be declared to stand for constants, types, variables, procedures or
functions. When an identifier is used, the meaning taken on by the identifier is that given in
the closest containing resolution context. Resolution contexts are any declaration context
or a with statement context. The ordering of these contexts when resolving an identifier is:

1. The declaration context identified by any with statements which nest the current
occurrence of the identifier. These with statement contexts are searched from the
innermost to the outermost.

2. The declaration context of the currently nested procedure declarations. These proce-
dure contexts are searched from the innermost to the outermost.

3. The declaration context of the current unit or program.

4. The interface declaration contexts of the units mentioned in the use list of the current
unit or program. These contexts are searched from the rightmost unit mentioned in
the use list to the leftmost identifier in the use list.

5. The interface declaration context of the System unit.

6. The pre-declared identifiers of the language.

2.1 Constants
A constant definition introduces an identifier as a synonym for a constant.

<constant declaration> <identifier>=<expression>
<identifier>’:’<type>’=’<typed constant>

Constants can be simple constants or typed constants. A simple constant must be a con-
stant expression whose value is known at compile time. This restricts it to expressions for
which all component identifiers are other constants, and for which the permitted operators
are given in table2.1 . This restricts simple constants to be of scalar or string types.

Table 2.1: The operators permitted in constant expressions.
+ - * / div mod shr shl and or

13

14 CHAPTER 2. DECLARATIONS

Typed constants provide the program with initialised variables which may hold array
types.

<typed constant> <expression>
<array constant>

2.1.1 Array constants

Array constants are comma separated lists of constant expressions enclosed by brackets.
Thus

tr:array[1..3] of real =(1.0,1.0,2.0);
is a valid array constant declaration, as is:
t2:array[1..2,1..3] of real=((1.0,2.0,4.0),(1.0,3.0,9.0));

The array constant must structurally match the type given to the identifier. That is to
say it must match with respect to number of dimensions, length of each dimension, and
type of the array elements.

<array constant> ’(’ <typed constant> [,<typed constant>]* ’)’

2.1.2 Pre-declared constants

maxint The largest supported integer value.

pi A real numbered approximation to π

maxchar The highest character in the character set.

maxstring The maximum number of characters allowed in a string.

maxreal The highest representable real.

minreal The smallest representable positive real number.

epsreal The smallest real number which when added to 1.0 yields a value distinguish-
able from 1.0.

maxdouble The highest representable double precision real number.

mindouble The smallest representable positive double precision real number.

complexzero A complex number with zero real and imaginary parts.

complexone A complex number with real part 1 and imaginary part 0.

2.2 Labels
Labels are written as digit sequences. Labels must be declared before they are used. They
can be used to label the start of a statement and can be the destination of a goto statement.
A goto statement must have as its destination a label declared within the current innermost
declaration context. A statement can be prefixed by a label followed by a colon.

Example
label 99;
begin read(x); if x>9 goto 99; write(x*2);99: end;

2.3. TYPES 15

Table 2.2: Categorisation of the standard types.
type category
real floating point
double floating point
byte integral
pixel fixed point
shortint integral
word integral
integer integral
cardinal integral
boolean scalar
char scalar

2.3 Types
A type declaration determines the set of values that expressions of this type may assume
and associates with this set an identifier.

<type> <simple type>
<structured type>
<pointer type>

<type definition> <identifier>’=’<type>

2.3.1 Simple types
Simple types are either scalar, standard, subrange or dimensioned types.

<simple type> <scalar type>
<integral type>
<subrange type>
<dimensioned type>
<floating point type>

Scalar types

A scalar type defines an ordered set of identifier by listing these identifiers. The declaration
takes the form of a comma separated list of identifiers enclosed by brackets. The identifiers
in the list are declared simultaneously with the declared scalar type to be constants of this
declared scalar type. Thus

colour = (red,green,blue);
day=(monday,tuesday,wednesday,thursday,

friday,saturday,sunday);

are valid scalar type declarations.

Standard types

The following types are provided as standard in Vector Pascal:

integer The numbers are in the range -maxint to +maxint.

real These are a subset of the reals constrained by the IEEE 32 bit floating point
format.

16 CHAPTER 2. DECLARATIONS

double These are a subset of the real numbers constrained by the IEEE 64 bit floating
point format.

pixel These are represented as fixed point binary fractions in the range -1.0 to 1.0.

boolean These take on the values (false,true)which are ordered such that true>false.

char These include the characters from chr(0) to charmax. All the allowed char-
acters for string literals are in the type char, but the character-set may include
other characters whose printable form is country specific.

pchar Defined as ^char.

byte These take on the positive integers between 0 and 255.

shortint These take on the signed values between -128 and 127.

word These take on the positive integers from 0 to 65535.

cardinal These take on the positive integers form 0 to 4292967295, i.e., the most that
can be represented in a 32 bit unsigned number.

longint A 32 bit integer, retained for compatibility with Turbo Pascal.

int64 A 64 bit integer.

complex A complex number with the real and imaginary parts held to 32 bit precision.

Subrange types

A type may be declared as a subrange of another scalar or integer type by indicating the
largest and smallest value in the subrange. These values must be constants known at com-
pile time.

<subrange type> <constant> ’..’ <constant>

Examples: 1..10, ’a’..’f’, monday..thursday.

Pixels

The conceptual model of pixels in Vector Pascal is that they are real numbers in the range
−1.0..1.0. As a signed representation it lends itself to subtraction. As an unbiased repre-
sentation, it makes the adjustment of contrast easier. For example, one can reduce contrast
50% simply by multiplying an image by 0.5 1. Assignment to pixel variables in Vector
Pascal is defined to be saturating - real numbers outside the range −1..1 are clipped to it.
The multiplications involved in convolution operations fall naturally into place.

The implementation model of pixels used in Vector Pascal is of 8 bit signed integers
treated as fixed point binary fractions. All the conversions necessary to preserve the mono-
tonicity of addition, the range of multiplication etc, are delegated to the code generator
which, where possible, will implement the semantics using efficient, saturated multi-media
arithmetic instructions.

1When pixels are represented as integers in the range 0..255, a 50% contrast reduction has to be expressed as
((p−128)÷2)+128.

2.3. TYPES 17

Dimensioned types

These provide a means by which floating point types can be specialised to represent dimen-
sioned numbers as is required in physics calculations. For example:

kms =(mass,distance,time);
meter=real of distance;
kilo=real of mass;
second=real of time;
newton=real of mass * distance * time POW -2;
meterpersecond = real of distance *time POW -1;
The grammar is given by:

<dimensioned type> <real type> <dimension >[’*’ <dimension>]*
<real type> ’real’

’double’
<dimension> <identifier> [’POW’ [<sign>] <unsigned integer>]

The identifier must be a member of a scalar type, and that scalar type is then referred
to as the basis space of the dimensioned type. The identifiers of the basis space are re-
ferred to as the dimensions of the dimensioned type. Associated with each dimension of
a dimensioned type there is an integer number referred to as the power of that dimension.
This is either introduced explicitly at type declaration time, or determined implicitly for the
dimensional type of expressions.

A value of a dimensioned type is a dimensioned value. Let logd t of a dimensioned type
t be the power to which the dimension d of type t is raised. Thus for t =newton in the
example above, and d =time, logd t =−2

If x and y are values of dimensioned types txand tyrespectively, then the following op-
erators are only permissible if tx = ty

+ - < > <> = <= >=

For + and -, the dimensional type of the result is the same as that of the arguments. The
operations

* /

are permitted if the types txand ty share the same basis space, or if the basis space of
one of the types is a subrange of the basis space of the other.

The operation POW is permitted between dimensioned types and integers.

Dimension deduction rules

1. If x = y∗ z for x : t1,y : t2,z : t3 with basis space B then

∀d∈B logd t1 = logd t2 + logd t3

2. If x = y/z for x : t1,y : t2,z : t3 with basis space B then

∀d∈B logd t1 = logd t2− logd t3

3. If x = y POW z for x : t1,y : t2,z : integer with basis space for t2, B then

∀d∈B logd t1 = logd t2× z

.

18 CHAPTER 2. DECLARATIONS

2.3.2 Structured types

Static Array types

An array type is a structure consisting of a fixed number of elements all of which are the
same type. The type of the elements is referred to as the element type. The elements of an
array value are indicated by bracketed indexing expressions. The definition of an array type
simultaneously defines the permitted type of indexing expression and the element type.

The index type of a static array must be a scalar or subrange type. This implies that the
bounds of a static array are known at compile time.

<array type> ’array’ ’[’ <index type>[,<index type>]* ’]’ ’of’ <type>
<index type> <subrange type>

<scalar type>
<integral type>

Examples
array[colour] of boolean;

array[1..100] of integer;

array[1..2,4..6] of byte;

array[1..2] of array[4..6] of byte;

The notation [b,c] in an array declaration is shorthand for the notation [b] of array [
c]. The number of dimensions of an array type is referred to as its rank. Scalar types have
rank 0.

String types

A string type denotes the set of all sequences of characters up to some finite length and
must have the syntactic form:

<string-type> ’string[’ <integer constant>’]’
’string’
’string(’ <ingeger constant>’)’

the integer constant indicates the maximum number of characters that may be held
in the string type. The maximum number of characters that can be held in any string
is indicated by the pre-declared constant maxstring. The type string is shorthand for
string[maxstring].

Record types

A record type defines a set of similar data structures. Each member of this set, a record
instance, is a Cartesian product of number of components or fields specified in the record
type definition. Each field has an identifier and a type. The scope of these identifiers is the
record itself.

A record type may have as a final component a variant part. The variant part, if a
variant part exists, is a union of several variants, each of which may itself be a Cartesian
product of a set of fields. If a variant part exists there may be a tag field whose value
indicates which variant is assumed by the record instance.

All field identifiers even if they occur within different variant parts, must be unique
within the record type.

2.3. TYPES 19

<record type> ’record’ <field list> ’end’
<field list> <fixed part>

<fixed part>’;’ <variant part>
<variant part>

<fixed part> <record section> [’;’ <record section.]*
<record section> <identifier>[’,’ <identifier>]* ’:’ <type>

<empty>
<variant part> ’case’ [<tag field> ’:’] <type identifier> ’of’<variant>[’;’ <variant>]*
<variant> <constant> [’,’ <constant>]*’:’ ’(’ <field list> ’)’

<empty>

Set types

A set type defines the range of values which is the power-set of its base type. The base type
must be an ordered type, that is a type on which the operations <, = and > are defined2.
Thus sets may be declared whose base types are characters, numbers, ordinals, or strings.
Any user defined type on which the comparison operators have been defined can also be
the base type of a set.

<set type> ’set’ ’of’ <base type>

2.3.3 Dynamic types
Variables declared within the program are accessed by their identifier. These variables exist
throughout the existence of the scope within which they are declared, be this unit, program
or procedure. These variables are assigned storage locations whose addresses, either ab-
solute or relative to some register, can be determined at compile time. Such locations a
referred to as static3. Storage locations may also be allocated dynamically. Given a type t,
the type of a pointer to an instance of type t is ^t.

A pointer of type ^t can be initialised to point to a new store location on the heap of
type t by use of the built in procedure new. Thus if p:^t,

new(p);
causes p to point at a store location of type t. The space can be freed by calling

dispose(p). If garbage collection is enabled at compile time, freeing of store is automatic.
By default garbage collection is off.

Pointers to dynamic arrays

The types pointed to by pointer types can be any of the types mentioned so far, that is to
say, any of the types allowed for static variables. In addition however, pointer types can be
declared to point at dynamic arrays.

A dynamic array is an array whose bounds are determined at run time.
Pascal 90[16] introduced the notion of schematic or parameterised types as a means of

creating dynamic arrays. Thus where r is some integral or ordinal type one can write
type z(a,b:r)=array[a..b] of t;
If p:^z, then

2ISO Pascal requires the base type to be a scalar type, a character type, integer type or a subrange thereof.
When the base type is one of these, Vector Pascal implements the set using bitmaps. When the type is other than
these, balanced binary trees are used. It is strongly recomended that use be made of Boehm garbage collector (see
section 5.2.2) if non-bitmapped sets are used in a program.

3The Pascal concept of static variables should not be equated with the notion of static variables in some other
languages such as C or Java. In Pascal a variable is considered static if its offset either relative to the stack base
or relative to the start of the global segment can be determined at compile/link time. In C a variable is static only
if its location relative to the start of the global segment is known at compile time.

20 CHAPTER 2. DECLARATIONS

Figure 2.1: How dynamic arrays are implemented

new(p,n,m)
where n,m:r initialises p to point to an array of bounds n..m. The bounds of the array

can then be accessed as p^.a, p^.b. In this case a, b are the formal parameters of the
array type. Vector Pascal currently only allows parameterised types to be allocated on the
heap via new. The extended form of the procedure new must be passed an actual parameter
for each formal parameter in the array type. Dynamic array types can be used to allow slices
of arrays to be passed as parameters to functions as shown here:

type vector(a:integer)=array[0..a] of integer;
pv=^vector;
function sumsq (var v:vector):integer;
var total,i:integer;
begin

total:=0;
for i:=0 to v.a do total:= total+ v[i]*v[i];
sumsq:=total;

end;
var vp:pv;
begin

new (vp,6);
vp^:=iota[0];
writeln(sumsq (vp^[3..5]));

When using schematic array types in this way, one must take care to pass the array as a
var parameter. This is because, unlike static arrays which are simply copied on the stack
when passed as value parameters, the compiler can not pre-allocate space on the call stack
for a schematic array. This means that you must pass them by reference as a var parameter.
Schematic arrays are implemented as descriptors to the actual arrays.

Aliases

In addition to being able to implicitly alias parts of arrays when passing them to procedures
the same effect can be achieved by the built in procedure alias.

type vector(a:integer)=array[1..a] of integer;

2.3. TYPES 21

pv=^vector;
var vp,p:pv;
begin

new (vp,6);
vp^:=iota[0];
alias(p,vp^[3..5]);
(* now vp^[3]= p^[1] *)

The alias procedure takes as its first parameter a pointer to a schematic array, and as its
second paramter an array section. The types of the schematic array an the array section
must match. It initialises the array pointer to point to a new descriptor on the heap of the
array section. This new descriptor occupies heap space, and if gargage collection is not
enabled it should be discarded using dispose when it it no longer needed.

Delphi style arrays

Vector Pascal also allows the use of Delphi style declarations for dynamic arrays. Thus one
can declare:

type vector = array of real;
matrix = array of array of real;

The size of such arrays has to be explicitly initialised at runtime by a call to the library
procedure setlength. Thus one might have:

function readtotal:real;
var len:integer;

v:vector;
begin
readln(len);
setlength(v,len);
readln(v);
readtotal := \+ v;

end;

The function readtotal reads the number of elements in a vector from the standard input.
It then calls setlength to initialise the vector length. Next it reads in the vector and
computes its total using the reduction operator \+.

Delphi style arrays are implemented as pointers. In the example, the variable v denotes
an array of reals not a pointer to an array of reals. That is to say you do not have to
explicitly dereference v using ^ . However, since the array size is not known at compile
time setlength will allocate space for the array on the heap not in the local stack frame.
The use of setlength is thus restricted to programs which have been compiled with the
garbage collection flag enabled (see section 5.2.2). The procedure setlength must be
passed a parameter for each dimension of the dynamic array. The bounds of the array a
formed by
setlength(a,i,j,k)
would then be 0..i-1, 0..j-1, 0..k-1.

Low and High

The built in functions low and high return the lower and upper bounds of an array respec-
tively. They work with both static and dynamic arrays. Consider the following examples.

program arrays;
type z(a,b:integer)=array[a..b] of real;

22 CHAPTER 2. DECLARATIONS

vec = array of real;
line= array [1..80] of char;
matrix = array of array of real;

var i:^z; v:vec; l:line; m:matrix;
begin
setlength(v,10);setlength(m,5,4);
new(i,11,13);
writeln(low(v), high(v));
writeln(low(m), high(m));
writeln(low(m[0]),high(m[0]));
writeln(low(l),high(l));
writeln(low(i^),high(i^));

end.

would print

0 9
0 4
0 3
1 80

11 13

2.3.4 Class types
The simplest form of class type is similar to a record. Consider the following example:

type A= class
f1:integer;

end;
B=class(A)
f2:real;
end;

var c1,anA:A;c2:B;d:boolean;
begin

new(c1);
new(c2);
c1^.f1:=1;
c1.f1:=2;
anA:=c2;
c2.f1:= 1+ c1^.f1;
d:=(c1.f1+c2.f1)<>5 ;

At the end of the above code d is false. The example declares two classes A with field f1
and class B which has fields f1 and f2. The construct (A) in the header of B indicates that
it inherits all the fields of A.

When a variable of a class type is explicitly declared, what is actually being declared is
a pointer to an instance of that class. The pointer must be initialised using new as shown.
Fields can be accessed using the same . notation used for record fields except that for
classes the ^ for pointer dereference can be optionally elided. The ability to elide the
pointer dereference operator for class instances is a feature inherited from the syntax of
Delphi.

Note that in the example the variable anA must point to an instance of class A but it is
valid to assign to it a pointer to an instance of class B since an instance of class B contains
all the fields that a class A instance contains.

Classes can contain procedure and function header declarations as shown in the next
example. The function or procedure itself must be declared lower down within the scope

2.3. TYPES 23

in which the class itself is declared4. When declaring a procedure belonging to a class, the
name of the procedure must be prepended by the class name followed by a full-stop.

program classdemo;
type A= class

f1:integer;
function hello:boolean;
end;

var c1:A;
function A.hello:boolean;
begin

writeln(’hello from class A with a method’);
hello:=true;

end;

The functions or procedures declared within a class can be invoked by prepending the
function or procedure name with the class instance variable followed by a fullstop:

begin
new(c1);
c1.f1:=2;
if not c1.hello then
writeln(’this will never be written’)

end.

Procedures or functions implementing headers declared within a class have access to the
fields of the class instance that they belong to. Within the procedure, names declared in the
class appear to be in an immediately enclosing scope as shown below.

type A= class
f1:integer;
function hello:boolean;
end;

var c1:A;
i:integer;

function a.hello:boolean;
begin

hello:=f1=i;
end;
begin

new(c1);
c1.f1:=2;
i:=c1.f1;
if not c1.hello then { something is very wrong }

The function hello in A has access to the field f1.
If a class B has a procedure with the same name as one in class A then the procedure in

B will override the one in A as shown:

type A= class
f1:integer;
function hello:boolean;
end;

B= class (A)

4This is analogous to the way interfaces of units may contain procedure headers (see Chapter 4).

24 CHAPTER 2. DECLARATIONS

f2:integer;
function hello:boolean;
end;

var c1:b;
i:integer;

function A.hello:boolean;
begin
writeln(’this will not be called ’);
hello:=false;

end;
function B.hello:boolean;
begin

hello:=f1=i;
end;
begin

new(c1);
c1.f1:=2;
i:=c1.f1;
if c1.hello then
writeln(’inheritance works as expected’);

end.

Protected, Public, Private, Virtual

The above keywords from Delphi are accepted by the Vector Pascal compiler but ignored.
In essence all procedures and functions in classes are assumed to be virtual in the Delphi
sense.

2.3.5 File types
A type may be declared to be a file of a type. This form of definition is kept only for back-
ward compatibility. All file types are treated as being equivalent. A file type corresponds to
a handle to an operating system file. A file variable must be associated with the operating
system file by using the procedures assign, rewrite, append, and reset provided by
the system unit. A pre-declared file type text exists.

Text files are assumed to be in Unicode UTF-8 format. Conversions are performed
between the internal representation of characters and UTF-8 on input/output from/to a text
file.

2.4 Variables
Variable declarations consist of a list of identifiers denoting the new variables, followed by
their types.

<variable declaration> <identifier> [’,’ <identifier>]* ’:’ <type><extmod>

Variables are abstractions over values. They can be either simple identifiers, compo-
nents or ranges of components of arrays, fields of records or referenced dynamic variables.

<variable> <identifier>
<indexed variable>
<indexed range>
<field designator>
<referenced variable>

2.4. VARIABLES 25

Examples
x,y:real;
i:integer;
point:^real;
dataset:array[1..n]of integer;
twoDdata:array[1..n,4..7] of real;

2.4.1 External Variables

A variable may be declared to be external by appending the external modifier.

<extmod> ’;’ ’external’ ’name’ <stringlit>

This indicates that the variable is declared in a non Vector Pascal external library. The
name by which the variable is known in the external library is specified in a string literal.

Example
count:integer; external name ’_count’;

2.4.2 Entire Variables

An entire variable is denoted by its identifier. Examples x,y,point,

2.4.3 Indexed Variables

A component of an n dimensional array variable is denoted by the variable followed by n
index expressions in brackets.

<indexed variable> <variable>’[’ <expression>[’,’<expression>]* ’]’

The type of the indexing expression must conform to the index type of the array vari-
able. The type of the indexed variable is the component type of the array.

Examples
twoDdata[2,6]
dataset[i]
Given the declaration
a=array[p] of q
then the elements of arrays of type a, will have type q and will be identified by indices

of type p thus:
b[i]
where i:p, b:a.
Given the declaration
z = string[x]
for some integer x ≤maxstring, then the characters within strings of type z will be

identified by indices in the range 1..x, thus:
y[j]
where y:z, j:1..x.

Indexed Ranges

A range of components of an array variable are denoted by the variable followed by a range
expression in brackets.

<indexed range> <variable> ’[’ <range expression>[’,’ <range expression>]* ’]’
<range expression> <expression> ’..’ <expression>

26 CHAPTER 2. DECLARATIONS

The expressions within the range expression must conform to the index type of the
array variable. The type of a range expression a[i..j] where a: array[p..q] of t is
array[0..j-i] of t.

Examples:
dataset[i..i+2]:=blank;
twoDdata[2..3,5..6]:=twoDdata[4..5,11..12]*0.5;
Subranges may be passed in as actual parameters to procedures whose corresponding

formal parameters are declared as variables of a schematic type. Hence given the following
declarations:

type image(miny,maxy,minx,maxx:integer)=array[miny..maxy,minx..maxx]
of byte;

procedure invert(var im:image);begin im:=255-im; end;
var screen:array[0..319,0..199] of byte;
then the following statement would be valid:
invert(screen[40..60,20..30]);

Indexing arrays with arrays

If an array variable occurs on the right hand side of an assignment statement, there is a fur-
ther form of indexing possible. An array may be indexed by another array. If x:array[t0]
of t1 and y:array[t1] of t2, then y[x] denotes the virtual array of type array[t0]
of t2 such that y[x][i]=y[x[i]]. This construct is useful for performing permutations.
To fully understand the following example refer to sections 3.1.3,3.2.1.

Example Given the declarations
const perms:array[0..3] of integer=(3,1,2,0);
var ma,m0:array[0..3] of integer;
then the statements
m0:= (iota 0)+1;
write(’m0=’);for j:=0 to 3 do write(m0[j]);writeln;
ma:=m0[perms];
write(’perms=’);for j:=0 to 3 do write(perms[j]);writeln;
writeln(’ma:=m0[perms]’);for j:=0 to 3 do write(ma[j]);writeln;
would produce the output

m0= 1 2 3 4
perms= 3 1 2 0
ma:=m0[perms]
4 2 3 1

This basic method can also be applied to multi-dimensional array. Consider the follow-
ing example of an image warp:

type pos = 0..255;
image = array[pos,pos] of pixel;
warper = array[pos,pos,0..1] of pos;

var im1 ,im2 :image;
warp :warper;

begin
....
getbackwardswarp(warp);
im2 := im1 [warp];
....

2.5. PROCEDURES AND FUNCTIONS 27

The procedure getbackwardswarp determines for each pixel position x, y in an image
the position in the source image from which it is to be obtained. After the assignment we
have the postcondition

im2[x,y] = im1[warp[x,y,0],warp[x,y,1]]∀x,y ∈ pos

2.4.4 Field Designators
A component of an instance of a record type, or the parameters of an instance of a schematic
type are denoted by the record or schematic type instance followed by the field or parameter
name.

<field designator> <variable>’.’<identifier>

2.4.5 Referenced Variables
If p:^t, then p^ denotes the dynamic variable of type t referenced by p.

<referenced variable> <variable> ’^’

2.5 Procedures and Functions
Procedure and function declarations allow algorithms to be identified by name and have
arguments associated with them so that they may be invoked by procedure statements or
function calls.

<procedure declaration> <procedure heading>’;’[<proc tail>]
<proc tail> ’forward’

’external’ [’name’ <string>]
<block>

<paramlist> ’(’<formal parameter sec>[’;’<formal parameter sec>]*’)’
<procedure heading> ’procedure’ <identifier> [<paramlist>]

’function’<identifier> [<paramlist>]’:’<type>
<formal parameter sec> [’var’]<identifier>[’,’<identifier>]’:’<type>

<procedure heading>
<procedure type> ’procedure’ [<paramlist>]

’function’ [<paramlist>]’:’<type>
The parameters declared in the procedure heading are local to the scope of the pro-

cedure. The parameters in the procedure heading are termed formal parameters. If the
identifiers in a formal parameter section are preceded by the word var, then the formal pa-
rameters are termed variable parameters. The block5 of a procedure or function constitutes
a scope local to its executable compound statement. Within a function declaration there
must be at least one statement assigning a value to the function identifier. This assign-
ment determines the result of a function, but assignment to this identifier does not cause an
immediate return from the function.

Function return values can be scalars, pointers, records, strings, static arrays or sets.
Arrays whose size is determined at run time may not be returned from a function.

Where a procedure is declared as forward it must be followed by a full definition of
procedure lower in the current scope.

The external declaration form allows calls to be made to libraries written in other lan-
guages.

5see section 4.

28 CHAPTER 2. DECLARATIONS

Examples The function sba is the mirror image of the abs function.
function sba(i:integer):integer;
begin if i>o then sba:=-i else sba:=i end;
type stack:array[0..100] of integer;
procedure push(var s:stack;i:integer);
begin s[s[0]]:=i;s[0]:=s[0]+1; end;

procedure append(var f:fileptr);external;
procedure close (var f:fileptr); external name ’pasclose’;

2.5.1 Procedural Parameters to Procedures

A procedure may have parameters that are themselves procedures as shown in the following
example.

program CONF103(output);
var

i : integer;
procedure alsoconforms(x : integer);
begin
writeln(’ PASS...6.6.3.1-4 (CONF103)’)

end;
procedure conforms(procedure alsoconforms(x : integer));

var x : boolean;
begin

x:=true;
alsoconforms(1)

end;
begin

i:=2;
conforms(alsoconforms)

end.

2.5.2 Procedure types
Procedural types may be declared. This in turn allows procedure variables. These store the
address of a procedure or function and can be assigned to using the address operator @.

Example

program procvar;
type t=procedure (x:integer);
var v:t;

procedure f(a:integer);begin writeln(a);end;
begin

v:= @f;
v(3);

end.

Chapter 3

Algorithms

3.1 Expressions
An expression is a rule for computing a value by the application of operators and functions
to other values. These operators can be monadic - taking a single argument, or dyadic -
taking two arguments.

3.1.1 Mixed type expressions
The arithmetic operators are defined over the base types integer and real. If a dyadic op-
erator that can take either real or integer arguments is applied to arguments one of which
is an integer and the other a real, the integer argument is first implicitly converted to a real
before the operator is applied. Similarly, if a dyadic operator is applied to two integral
numbers of different precision, the number of lower precision is initially converted to the
higher precisions, and the result is of the higher precision. Higher precision of types t,u
is defined such that the type with the greater precision is the one which can represent the
largest range of numbers. Hence reals are taken to be higher precision than longints even
though the number of significant bits in a real may be less than in a longint.

When performing mixed type arithmetic between pixels and another numeric data type,
the values of both types are converted to reals before the arithmetic is performed. If the
result of such a mixed type expression is subsequently assigned to a pixel variable, all
values greater than 1.0 are mapped to 1.0 and all values below -1.0 are mapped to -1.0.

3.1.2 Primary expressions

<primary expression> ’(’ <expression> ’)’
<literal string>
’true’
’false’
<unsigned integer>
<unsigned real>
<variable>
<constant id>
<function call>
<set construction>

The most primitive expressions are instances of the literals defined in the language:
literal strings, boolean literals, literal reals and literal integers. ’Salerno’, true, 12, $ea8f,
1.2e9 are all primary expressions. The next level of abstraction is provided by symbolic

29

30 CHAPTER 3. ALGORITHMS

identifiers for values. X, left, a.max, p^.next, z[1], image[4..200,100..150] are
all primary expressions provided that the identifiers have been declared as variables or
constants.

An expression surrounded by brackets () is also a primary expression. Thus if e is an
expression so is (e).

<function call> <function id> [’(’ <expression> [,<expression>]* ’)’]
<element> <expression>

<range expression>

Let e be an expression of type t1 and if f is an identifier of type function(t1):t2,
then f(e) is a primary expression of type t2. A function which takes no parameters is
invoked without following its identifier by brackets. It will be an error if any of the actual
parameters supplied to a function are incompatible with the formal parameters declared for
the function.

<set construction> ’[’ [<element>[,<element>]*] ’]’

Finally a primary expression may be a set construction. A set construction is written as a
sequence of zero or more elements enclosed in brackets [] and separated by commas. The
elements themselves are either expressions evaluating to single values or range expressions
denoting a sequence of consecutive values. The type of a set construction is deduced by
the compiler from the context in which it occurs. A set construction occurring on the right
hand side of an assignment inherits the type of the variable to which it is being assigned.
The following are all valid set constructions:

[], [1..9], [z..j,9], [a,b,c,], [’beyond’,’all’, ’limit’]
[] denotes the empty set.

3.1.3 Unary expressions
A unary expression is formed by applying a unary operator to another unary or primary
expression. The unary operators supported are +, -, *, /, div, mod, and, or, not,
round, sqrt, abs, byte2pixel, pixel2byte, succ, pred, iota, trans, addr, ln,
ord, chr, sin, cos, tan, and @.

Thus the following are valid unary expressions: -1, +b, not true, sqrt abs x,
sin theta. In standard Pascal some of these operators are treated as functions,. Syntacti-
cally this means that their arguments must be enclosed in brackets, as in sin(theta). This
usage is also recognised by the Glasgow Pascal Compiler.

The dyadic operators +, -, *, /, div, mod , and or are all extended to unary
context by the insertion of an implicit value under the operation. Thus just as -a = 0-a so
too /2 = 1/2. For sets the notation -s means the complement of the set s. The implicit
value inserted are given below.

type operators implicit value
number +,- 0
string + ”

set +,- empty set
number *,/ ,div,mod 1
number max lowest representable number of the type
number min highest representable number of the type
boolean and true
boolean or false

A unary operator can be applied to an array argument and returns an array result. Sim-
ilarly any user declared function over a scalar type can be applied to an array type and

3.1. EXPRESSIONS 31

Table 3.1: Unary operators
lhs rhs meaning

<unaryop> ’+’ +x = 0+x identity operator
’-’ -x = 0-x,

note: this is defined on integer, real and complex
’*’, ’×’ *x=1*x identity operator

’/’ /x=1.0/x
note: this is defined on integer, real and complex

’div’, ’÷’ div x =1 div x
’mod’ mod x = 1 mod x
’and’ and x = true and x
’or’ or x = false or x

’not’, ’¬’ complements booleans
’round’ rounds a real to the closest integer

’sqrt’, ’√’ returns square root as a real number.
’sin’ sine of its argument. Argument in radians. Result is real.
’cos’ cosine of its argument. Argument in radians. Result is real.
’tan’ tangent of its argument. Argument in radians. Result is real.
’abs’ if x<0 then abs x = -x else abs x= x
’ln’ loge of its argument. Result is real.

’ord’ argument scalar type, returns ordinal
number of the argument.

’chr’ converts an integer into a character.
’succ’ argument scalar type,

returns the next scalar in the type.
’pred’ argument scalar type,

returns the previous scalar in the type.
’iota’, ’ι’ iota i returns the ith current index

’trans’ transposes a matrix or vector
’pixel2byte’ convert pixel in range -1.0..1.0 to byte in range 0..255
’byte2pixel’ convert a byte in range 0..255 to a pixel in

the range -1.0..1.0
’@’,’addr’ Given a variable, this returns an

untyped pointer to the variable.

return an array. If f is a function or unary operator mapping from type r to type t then
if x is an array of r, and a an array of t, then a:=f(x) assigns an array of t such that
a[i]=f(x[i])

<unary expression> <unaryop> <unary expression>
’sizeof’ ’(’ <type> ’)’
<operator reduction>
<primary expression>
’if’<expression> ’then’ <expression> ’else’ <expression>

sizeof

The construct sizeof(t) where t is a type, returns the number of bytes occupied by an
instance of the type.

32 CHAPTER 3. ALGORITHMS

iota

The operation iota i returns the ith current implicit index1.

Examples Thus given the definitions
var v1:array[1..3]of integer;
v2:array[0..4] of integer;
then the program fragment
v1:=iota 0;
v2:=iota 0 *2;
for i:=1 to 3 do write(v1[i]); writeln;
for i:=0 to 4 do write(v2[i]); writeln;
would produce the output

1 2 3
0 2 4 6 8

whilst given the definitions
m1:array[1..3,0..4] of integer;m2:array[0..4,1..3]of integer;
then the program fragment
m2:= iota 0 +2*iota 1;
writeln(’m2:= iota 0 +2*iota 1 ’);
for i:=0 to 4 do begin for j:=1 to 3 do write(m2[i,j]); writeln; end;

would produce the output

m2:= iota 0 +2*iota 1
2 4 6
3 5 7
4 6 8
5 7 9
6 8 10

The argument to iota must be an integer known at compile time within the range of implicit
indices in the current context. The reserved word ndx is a synonym for iota.

perm A generalised permutation of the implicit indices is performed using the syntactic
form:

perm[index-sel[,index-sel]*]expression

The index-sels are integers known at compile time which specify a permutation on the
implicit indices. Thus in e evaluated in context perm[i, j,k]e, then:

iota 0 = iota i, iota 1= iota j, iota 2= iota k

This is particularly useful in converting between different image formats. Hardware frame
buffers typically represent images with the pixels in the red, green, blue, and alpha channels
adjacent in memory. For image processing it is convenient to hold them in distinct planes.
The perm operator provides a concise notation for translation between these formats:

1See section 3.2.1.

3.1. EXPRESSIONS 33

type rowindex=0..479;
colindex=0..639;

var channel=red..alpha;
screen:array[rowindex,colindex,channel] of pixel;
img:array[channel,colindex,rowindex] of pixel;

...
screen:=perm[2,0,1]img;

trans and diag provide shorthand notions for expressions in terms of perm. Thus in
an assignment context of rank 2, trans = perm[1,0] and diag = perm[0,0].

trans

The operator trans transposes a vector or matrix. It achieves this by cyclic rotation of the
implicit indices. Thus if trans e is evaluated in a context with implicit indices

iota 0.. iota n
then the expression e is evaluated in a context with implicit indices
iota’0.. iota’n
where
iota’x = iota ((x+1)mod n+1)
It should be noted that transposition is generalised to arrays of rank greater than 2.

Examples Given the definitions used above in section 3.1.3, the program fragment:
m1:= (trans v1)*v2;
writeln(’(trans v1)*v2’);
for i:=1 to 3 do begin for j:=0 to 4 do write(m1[i,j]); writeln; end;

m2 := trans m1;
writeln(’transpose 1..3,0..4 matrix’);
for i:=0 to 4 do begin for j:=1 to 3 do write(m2[i,j]); writeln; end;
will produce the output:

(trans v1)*v2
0 2 4 6 8
0 4 8 12 16
0 6 12 18 24
transpose 1..3,0..4 matrix
0 0 0
2 4 6
4 8 12
6 12 18
8 16 24

3.1.4 Operator Reduction

Any dyadic operator can be converted to a monadic reduction operator by the functional \.
Thus if a is an array, \+a denotes the sum over the array. More generally \Φx for some
dyadic operator Φ means x0Φ(x1Φ..(xnΦι)) where ι is the implicit value given the operator
and the type. Thus we can write \+ for summation, * for nary product etc. The dot product
of two vectors can thus be written as

x:= \+ y*x;

34 CHAPTER 3. ALGORITHMS

instead of
x:=0;
for i:=0 to n do x:= x+ y[i]*z[i];
A reduction operation takes an argument of rank r and returns an argument of rank r-1

except in the case where its argument is of rank 0, in which case it acts as the identity
operation. Reduction is always performed along the last array dimension of its argument.

The operations of summation and product can be be written eithter as the two functional
forms \ + and \ ∗ or as the prefix operators ∑ (Unicode 2211) and ∏ (Unicode 220f).

<operator reduction> ’\’<dyadic op> <multiplicative expression>
’∑’ <mutliplicative expression>
’∏’ < multiplicative expression>

<dyadic op> <expop>
<multop>
<addop>

The reserved word rdu is available as a lexical alternative to \, so \+ is equivalent to
rdu+.

3.1.5 Complex conversion
Complex numbers can be produced from reals using the function cmplx. cmplx(re,im) is
the complex number with real part re, and imaginaray part im.

The real and imaginary parts of a complex number can be obtained by the functions re
and im. re(c) is the real part of the complex number c. im(c) is the imaginary part of the
complex number c.

3.1.6 Conditional expressions
The conditional expression allows two different values to be returned depenent upon a
boolean expression.

var a:array[0..63] of real;
...

a:=if a>0 then a else -a;

...

The if expression can be compiled in two ways:

1. Where the two arms of the if expression are parallelisable, the condition and both
arms are evaluated and then merged under a boolean mask. Thus, the above assign-
ment would be equivalent to:

a:= (a and (a>0))or(not (a>0) and -a);

were the above legal Pascal2.

2. If the code is not paralleliseable it is translated as equivalent to a standard if state-
ment. Thus, the previous example would be equivalent to:

for i:=0 to 63 do if a[i]>0 then a[i]:=a[i] else a[i]:=-a[i];

Expressions are non parallelisable if they include function calls.

2This compilation strategy requires that true is equivalent to -1 and false to 0. This is typically the represen-
tation of booleans returned by vector comparison instructions on SIMD instruction sets. In the Glasgow Pascal
Compiler this representation is used generally and in consequence, true<false.

3.1. EXPRESSIONS 35

Table 3.2: Null elements for boolean masking

Type Null Element
Numbers 0
Strings empty string
Booleans false

The dual compilation strategy allows the same linguistic construct to be used in recursive
function definitions and parallel data selection.

Use of boolean mask vectors

In array programming many operations can be efficiently be expressed in terms of boolean
mask vectors. Given the declarations:

const
s:array[1..4] of string[8]=(’dog’,’fish’,’bee’,’beans’);
i:array[1..4] of integer=(1,2,3,4);
r:array[1..4] of real=(0.5,1.0,2.0,4.0);
b:array[1..4] of boolean=(false,true,false,true);

var
c:array[1..4] of complex;

and if c is intialised to cmplx(1,0.5), then the statements

write (b,i and b, r and b);
write(s:12, (s and b):12);
write(c and b);

will output

false true false true
0 2 0 4
0 1 0 4

dog fish bee beans
fish beans

0j0 1j5e-1 0j0 1j5e-1

and operations using boolean arrays are particularly usefull in performing parallel selection
operations on arrays. For numeric types, they commpile efficiently to SIMD code. Anding
a value with boolean true leaves the value unchanged, anding with false returns a null
element.

3.1.7 Factor
A factor is an expression that optionally performs exponentiation. Extended Pascal sup-
ports exponentiation either by integer exponents or by real exponents. A number x can be
raised to an integral power y by using the construction x pow y. A number can be raised to
an arbitrary real power by the ** operator. The result of ** is always real valued.

<expop> ’pow’
’**’

<factor> <unary expression> [<expop> <unary expression>]

36 CHAPTER 3. ALGORITHMS

Table 3.3: Multiplicative operators
Operator Left Right Result Effect of a op b
*, × integer integer integer multiply

string integer string replicate, ’ab’*2 =’abab’
real real real multiply

complex complex complex multiply
/ integer integer real division

real real real division
complex complex complex division

div, ÷ integer integer integer division
mod integer integer integer remainder
and boolean boolean boolean logical and
shr integer integer integer shift a by b bits right
shl integer integer integer shift a by b bits left

in, ∈ t set of t boolean true if a is member of b

3.1.8 Multiplicative expressions

Multiplicative expressions consist of factors linked by the multiplicative operators *, ×,
/, div, ÷,, mod, shr, shl and. The use of these operators is summarised in table
3.3.

<multop> ’*’
’×’
’/’
’div’
’÷’
’shr’
’shl’
’and’
’mod’

<multiplicative expression> <factor> [<multop> <factor>]*
<factor>’in’<multiplicative expression>

3.1.9 Additive expressions

An additive expression allows multiplicative expressions to be combined using the addition
operators +, -, or, +:,max, min, -:, ><. The additive operations are summarised in
table3.4 .

<addop> ’+’
’-’
’or’

’max’
’min’
’+:’
’-:’

<additive expression> <multiplicative expression> [<addop> <multiplicative expression>]*

<expression> <additive expression> <relational operator> <expression>

3.1. EXPRESSIONS 37

Table 3.4: Addition operations
Left Right Result Effect of a op b

+ integer integer integer sum of a and b

real real real sum of a and b

complex complex complex sum of a and b

set set set union of a and b

string string string concatenate a with b ’ac’+’de’=’acde’
- integer integer integer result of subtracting b from a

real real real result of subtracting b from a

complex complex complex result of subtracting b from a

set set set complement of b relative to a

+: 0..255 0..255 0..255 saturated + clipped to 0..255
-128..127 -128..127 -128..127 saturated + clipped to -128..127

-: 0..255 0..255 0..255 saturated - clipped to 0..255
-128..127 -128..127 -128..127 saturated - clipped to -128..127

min integer integer integer returns the lesser of the numbers
real real real returns the lesser of the numbers

max integer integer integer returns the greater of the numbers
real real real returns the greater of the numbers

or boolean boolean boolean logical or
>< set set set symetric difference

Table 3.5: Relational operators

< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
<> Not equal to
= Equal to
in Tests set membership,right operand must be a set
is Tests class membership, left operand an instance right

operand a class type

3.1.10 Expressions

An expression can optionally involve the use of a relational operator to compare the results
of two additive expressions. Relational operators always return boolean results and are
listed in table 3.5.

3.1.11 Operator overloading

The dyadic operators can be extended to operate on new types by operator overloading.
Figure 3.1 shows how arithmetic on the type complex required by Extended Pascal [16] is
defined in Vector Pascal. Each operator is associated with a semantic function and if it is a
non-relational operator, an identity element. The operator symbols must be drawn from the
set of predefined Vector Pascal operators, and when expressions involving them are parsed,
priorities are inherited from the predefined operators. The type signature of the operator is
deduced from the type of the function3.

3Vector Pascal allows function results to be of any non-procedural type.

38 CHAPTER 3. ALGORITHMS

interface
type

Complex = record data : array [0..1] of real ;
end ;

var
complexzero, complexone : complex;

function real2cmplx (realpart :real):complex ;
function cmplx (realpart ,imag :real):complex ;
function complex_add (A ,B :Complex):complex ;
function complex_conjugate (A :Complex):complex ;
function complex_subtract (A ,B :Complex):complex ;
function complex_multiply (A ,B :Complex):complex ;
function complex_divide (A ,B :Complex):complex ;

{ Standard operators on complex numbers }
{ symbol function identity element }
operator + = Complex_add , complexzero ;
operator / = complex_divide , complexone ;
operator * = complex_multiply , complexone ;
operator - = complex_subtract , complexzero ;
operator cast = real2cmplx ;

Note that only the function headers are given here as this code comes from the interface part of the
system unit. The function bodies and the initialisation of the variables complexone and complexzero
are handled in the implementation part of the unit.

Example 3.1: Defining operations on complex numbers

<operator-declaration> ’operator’ ’cast’ ’=’ <identifier>
’operator’ <dyadicop> ’=’ <identifier>’,’<identifier>
’operator’ <relational operator> ’=’ <identifier>

When parsing expressions, the compiler first tries to resolve operations in terms of
the predefined operators of the language, taking into account the standard mechanisms
allowing operators to work on arrays. Only if these fail does it search for an overloaded
operator whose type signature matches the context.

In the example in figure 3.1, complex numbers are defined to be records containing
an array of reals, rather than simply as an array of reals. Had they been so defined, the
operators +,*,-,/ on reals would have masked the corresponding operators on complex
numbers.

The provision of an identity element for complex addition and subtraction ensures that
unary minus, as in −x for x :complex, is well defined, and correspondingly that unary /
denotes complex reciprocal. Overloaded operators can be used in array maps and array
reductions.

Implicit casts

The Vector Pascal language already contains a number of implicit type conversions that
are context determind. An example is the promotion of integers to reals in the context of
arithmetic expressions. The set of implicit casts can be added to by declaring an operator
to be a cast as is shown in the line:

operator cast = real2cmplx ;

3.1. EXPRESSIONS 39

{:tests vector product of integer vectors }
program conf551;
const

a:array[0..3] of integer=(1,1,2,3);
b:array[0..3] of integer=(1,2,3,4);

var i:integer;
begin

i:=a.b;
if i=21 then

writeln(’PASS integer vector product allowed’)
else

writeln(’FAIL integer vector product i=’,i)
end.

Example 3.2: Example of the inner product operation

{:tests vector product of string and integer }
program conf550;
const roman:array[0..4] of string[3]=(’C’,’L’,’X’,’V’,’I’);

num: array[0..4] of integer =(1,1,2,0,3);
var s:string[80];
begin

s:=num.roman;
if s=’CLXXIII’ then

writeln(’PASS string integer vector product allowed’)
else

writeln(’FAIL CONF550 string integer vector product s=’,s)
end.

Example 3.3: Using vector product to format roman numerals

Given an implict cast from type t0→ t1, the function associated with the implicit cast
is then called on the result of any expression e : t0 whose expression context requires it to
be of type t1.

3.1.12 Vector inner product

The inner product of two vectors is defined as:

a.b = ∑
i

ai×bi

or in Vector Pascal notation: a.b = \+ a*b . Vector Pascal supports this inner product
operation on any pair of vectors with the following properties:

1. The lengths of the vectors must be the same.

2. The types of the vectors must be such that they support the operators + and *.

Inner product can obviously be used on numeric vectors as shown in Example 3.2 but it can
also be used with other types for which + and * are defined, as shown in Example 3.3.

The inner product operation is of higher priority than any other. Its arguments must be
arrays.

40 CHAPTER 3. ALGORITHMS

3.1.13 Matrix to Vector Product
Matrix to vector product can be used to carry out generalised linear geometry transforms.
We can do this in Vector Pascal if a two dimensional array is used to multiply a one dimen-
sional array, using the dot product operator. If M is a two dimensional array and v a vector,
M.v produces the transformed vector.VECTOR

The program matvmult shown in Example 3.4, shows the repeated application of a
rotation and translation matrix to the unit x vector. When the matrix

1√
2

−1√
2

0 0
1√
2

1√
2

0 0
0 0 1 0.2
0 0 0 1

is applied to a vector of the form [x,y,z,1], it rotates it by 45◦ and moves it up by 0.2.

Data-flow Hazards

Note that in Example 3.4, one can not simply write v1:=M.v1, instead one has to write:

v2:=M.v1;
v1:=v2;

since the vector v1 might be changing whilst it was being read. Had the compiler been
encountered this statement it would have generated the error messages:

compilation failed
17 : Error assignment invalid
17 : Error in primary expression started by m
17 : Error attempting to reduce rank of variable
17 : Error data hazard found. Destination v1 is used with

an index permutation on right hand side of := which
can cause it to be corrupted.
You can get round this by assigning to a temporary
array instead and then assigning the temporary to
destination v1

A check for data-flow hazards is applied to all array assignment statements. If array ex-
pressions could all be evaluated in parallel, then there would be no hazards. The problem
arises because only simple array expressions can be evaluated entirely in parallel. In other
cases the array assignment has to be broken down by the compiler into a sequence of steps.
This gives rise to the danger that an array location may be altered by an early step prior to
it being used a source of data by a subsequent step.

In most cases there will be no problem even where the destination vector appears on
the right hand side of an assignment. Thus:

M:=M+v;

for some matrix M and vector v, is ok, since here each element of M depends only on its own
prior value. However for v1:=M.v1, we have the equations

v10 =
3

∑
j=0

M0 jv1 j (3.1)

v11 =
3

∑
j=0

M1 jv1 j (3.2)

In which ever order the code for these equations is evaluated, either v10 or v11will be
altered before it is used in the other equation.

3.1. EXPRESSIONS 41

program matvmult;
type vec=array[0..3] of real;

mat=array[0..3] of vec;
const

rr2= 0.7071067 ; { 1/sqrt(2) }
M:mat=((rr2,-rr2,0.0,0.0) , { 45degree spiral matrix }

(rr2,rr2,0.0,0.0),
(0.0,0.0,1.0,0.2),
(0.0,0.0,0.0,1.0));

v:vec=(1.0,0.0,0.0,1.0);
var v1,v2:vec; i:integer;
begin

write (M,v);
v1:=v;
(* perform 8 45degree rotations *)
for i:=1 to 8 do begin

v2:=M.v1;
v1:=v2;
write(v1);

end;
end.

produces as output

0.70711 -0.70711 0.00000 0.00000
0.70711 0.70711 0.00000 0.00000
0.00000 0.00000 1.00000 0.20000
0.00000 0.00000 0.00000 1.00000
1.00000 0.00000 0.00000 1.00000
0.70711 0.70711 0.20000 1.00000
0.00000 1.00000 0.40000 1.00000
-0.70711 0.70711 0.60000 1.00000
-1.00000 -0.00000 0.80000 1.00000
-0.70711 -0.70711 1.00000 1.00000
-0.00000 -1.00000 1.20000 1.00000
0.70711 -0.70711 1.40000 1.00000
1.00000 -0.00000 1.60000 1.00000

Example 3.4: Using a spiral rotation matrix to operate on the unit x vector.

42 CHAPTER 3. ALGORITHMS

program matmmult;
const

A:array[1..2,1..3] of integer=((3,1,2),
(2,1,3));

B:array[1..3,1..2] of integer=((1,2),
(3,1),
(2,3));

var C:array[1..2,1..2] of integer;
begin
C:=A.B;
writeln(C);

end.

Produces output

10 13
11 14

Example 3.5: Matrix by matrix multiplication.

3.1.14 Matrix to Matrix multiplication
The dot operator can be used between matrices to perform matrix multiplication as illus-VECTOR

trated in Example 3.5. This applies the standard equation for matrix multiplication:

cik =
p

∑
s=1

aisbsk (3.3)

where A is of order (m× p)and B is of order (p× n) to give a resulting matrix C of
order (m×n).

3.2 Statements

<statement> <variable>’:=’<expression>
<procedure statement>
<empty statement>
’goto’ <label>;
’exit’[’(’<expression>’)’]
’begin’ <statement>[;<statement>]*’end’
’if’<expression>’then’<statement>[’else’<statement>]
<case statement>
’for’ <variable>’:=’ <expression> ’to’ <expression> ’do’ <statement>
’for’ <variable>’:=’ <expression> ’downto’ <expression> ’do’ <statement>
’for’ <variable> ’in’ <expression> ’do’ <statement>
’repeat’ <statement> ’until’ <expression>
’with’ <record variable> ’do’ < statement>
<io statement>
’while’ <expression> ’do’ <statement>

3.2.1 Assignment
An assignment replaces the current value of a variable by a new value specified by an
expression. The assignment operator is :=. Standard Pascal allows assignment of whole

3.2. STATEMENTS 43

arrays. Vector Pascal extends this to allow consistent use of mixed rank expressions on the
right hand side of an assignment. Given

r0:real; r1:array[0..7] of real;
r2:array[0..7,0..7] of real
then we can write

1. r1:= r2[3]; { supported in standard Pascal }

2. r1:= /2; { assign 0.5 to each element of r1 }

3. r2:= r1*3; { assign 1.5 to every element of r2}

4. r1:= \+ r2; { r1 gets the totals along the rows of r2}

5. r1:= r1+r2[1];{ r1 gets the corresponding elements of row 1 of r2 added
to it}

The assignment of arrays is a generalisation of what standard Pascal allows. Consider the
first examples above, they are equivalent to:

1. for i:=0 to 7 do r1[i]:=r2[3,i];

2. for i:=0 to 7 do r1[i]:=/2;

3. for i:=0 to 7 do

for j:=0 to 7 do r2[i,j]:=r1[j]*3;

4. for i:=0 to 7 do

begin

t:=0;

for j:=7 downto 0 do t:=r2[i,j]+t;

r1[i]:=t;

end;

5. for i:=0 to 7 do r1[i]:=r1[i]+r2[1,i];

In other words the compiler has to generate an implicit loop over the elements of the array
being assigned to and over the elements of the array acting as the data-source. In the above
i,j,t are assumed to be temporary variables not referred to anywhere else in the program.
The loop variables are called implicit indices and may be accessed using iota.

The variable on the left hand side of an assignment defines an array context within
which expressions on the right hand side are evaluated. Each array context has a rank
given by the number of dimensions of the array on the left hand side. A scalar variable has
rank 0. Variables occurring in expressions with an array context of rank r must have r or
fewer dimensions. The n bounds of any n dimensional array variable, with n≤ r occurring
within an expression evaluated in an array context of rank r must match with the rightmost
n bounds of the array on the left hand side of the assignment statement.

Where a variable is of lower rank than its array context, the variable is replicated to
fill the array context. This is shown in examples 2 and 3 above. Because the rank of
any assignment is constrained by the variable on the left hand side, no temporary arrays,
other than machine registers, need be allocated to store the intermediate array results of
expressions.

The compiler will attempt to vectorise l array assignments provided that the underlying
hardware supports vectorisation. If the code has been compiled with the -cores directive
the compiler will attempt to parallelise the evaluation of 2 dimensional array assignments
accross multiple cores.

44 CHAPTER 3. ALGORITHMS

3.2.2 Procedure statement
A procedure statement executes a named procedure. A procedure statement may, in the
case where the named procedure has formal parameters, contain a list of actual parame-
ters. These are substituted in place of the formal parameters contained in the declaration.
Parameters may be value parameters or variable parameters.

Semantically the effect of a value parameter is that a copy is taken of the actual pa-
rameter and this copy substituted into the body of the procedure. Value parameters may be
structured values such as records and arrays. For scalar values, expressions may be passed
as actual parameters. Array expressions are not currently allowed as actual parameters.

A variable parameter is passed by reference, and any alteration of the formal parameter
induces a corresponding change in the actual parameter. Actual variable parameters must
be variables.

<parameter> <variable> for formal parameters declared as var
<expression> for other formal parameters

<procedure statement> <identifier>
<identifier> ’(’ <parameter> [’,’<parameter>]* ’)’

Examples

1. printlist;

2. compare(avec,bvec,result);

3.2.3 Goto statement
A goto statement transfers control to a labelled statement. The destination label must be
declared in a label declaration. It is illegal to jump into or out of a procedure.

Example goto 99;

3.2.4 Exit Statement
An exit statement transfers control to the calling point of the current procedure or function.
If the exit statement is within a function then the exit statement can have a parameter: an
expression whose value is returned from the function.

Examples

1. exit;

2. exit(5);

3.2.5 Compound statement
A list of statements separated by semicolons may be grouped into a compound statement
by bracketing them with begin and end .

Example begin a:=x*3; b:=sqrt a end;

3.2.6 If statement
The basic control flow construct is the if statement. If the boolean expression between if
and then is true then the statement following then is followed. If it is false and an else
part is present, the statement following else is executed.

3.2. STATEMENTS 45

3.2.7 Case statement
The case statement specifies an expression which is evaluated and which must be of inte-
gral or ordinal type. Dependent upon the value of the expression control transfers to the
statement labelled by the matching constant.

<case statement> ’case’<expression>’of’<case actions>’end’
<case actions> <case list>

<case list> ’else’ <statement>
<case list> ’otherwise’ <statement>

<case list> <case list element>[’;’<case list element.]*
<case list element> <case label>[’,’ <case label>]’:’<statement>
<case label> <constant>

<constant> ’..’ <constant>

Examples

case i of case c of
1:s:=abs s; ’a’:write(’A’);
2:s:= sqrt s; ’b’,’B’:write(’B’);
3: s:=0 ’A’,’C’..’Z’,’c’..’z’:write(’ ’);
end end

3.2.8 With statement
Within the component statement of the with statement the fields of the record variable can
be referred to without prefixing them by the name of the record variable. The effect is to
import the component statement into the scope defined by the record variable declaration
so that the field-names appear as simple variable names.

Example var s:record x,y:real end;
begin
with s do begin x:=0;y:=1 end ;
end

3.2.9 For statement
A for statement executes its component statement repeatedly under the control of an itera-
tion variable. The iteration variable must be of an integral or ordinal type. The variable is
either set to count up through a range or down through a range.

for i:= e1 to e2 do s
is equivalent to
i:=e1; temp:=e2;while i<=temp do s;
whilst
for i:= e1 downto e2 do s
is equivalent to
i:=e1; temp:=e2;while i>= temp do s;

3.2.10 Vectorised For statements
The default is for all for loops to be executed sequentially, but if either multi-core code is
selected or the -fastforloop option is supplied on the commandline and the underlying hard-
ware supports vectorvectorisefor loops. That is to say if the loop is a simple assignment,
contains no function calls, and there are no detectable loop dependencies, the loop will be

46 CHAPTER 3. ALGORITHMS

transformed into a loop with fewer iterations that works on several words of data at once.
Thus if the programme had been compilerd

3.2.11 Parallel For statements

On a multi-core machine it is possible to execute a for statement in parallel on the different
cores. To do this you must precede the for statement by a comment containing the directive
$par thus:

{$par}
for j:=1 to 100 do

for i:= 1 to 100 do
d[j,i]:=a[i]*b[j];

In this case the outer loop is potentially run in parallel accross the cores. To take advantage
of this you must inform the compiler on the comand line how many cores it is to compile
the program for. For example

vpc myprog -cpuAVX32 -cores12

would compile myprog for a computer running the AVX instructions, to generate 32 bit
code, running on 12 cores.

If the loop is run on many cores the value of the loop iterator variables and the iterator
variables of any nested loops are undefined on exit from the outermost loop. Thus in the
example above the values of i, j are undefined on exit from the parallel code.

The parallel for statements must not use the word downto, ie they should notionally be
upward counting. But if the loop is run on many cores the order in which the instances of
the loop body are executed are, in fact, undefined. It is the responsibility of the programmer
not to use code in a parallel loop that is in any way order dependent.

3.2.12 While statement

A while statement executes its component statement whilst its boolean expression is true.
The statement

while e do s

is equivalent to
10: if not e then goto 99; s; goto 10; 99:

3.2.13 Repeat statement

A repeat statement executes its component statement at least once, and then continues to
execute the component statement until its component expression becomes true.

repeat s until e

is equivalent to
10: s;if e then goto 99; goto 10;99:

3.3. INPUT OUTPUT 47

3.3 Input Output

<io statement> ’writeln’[<outparamlist>]
’write’<outparamlist>
’readln’[<inparamlist>]
’read’<inparamlist>

<outparamlist> ’(’<outparam>[’,’<outparam>]*’)’
<outparam> <expression>[’:’ <expression>] [’:’<expression>]
<inparamlist> ’(’<variable>[’,’<variable>]*’)’

Input and output are supported from and to the console and also from and to files.

3.3.1 Input
The basic form of input is the read statement. This takes a list of parameters the first
of which may optionally be a file variable. If this file variable is present it is the input
file. In the absence of a leading file variable the input file is the standard input stream.
The parameters take the form of variables into which appropriate translations of textual
representations of values in the file are read. The statement

read(a,b,c)
where a,b,c are non file parameters is exactly equivalent to the sequence of statements
read(a);read(b);read(c)
The readln statement has the same effect as the read statement but finishes by reading

a new line from the input file. The representation of the new line is operating system
dependent. The statement

readln(a,b,c)
where a,b,c are non file parameters is thus exactly equivalent to the sequence of state-

ments
read(a);read(b);read(c);readln;
Allowed typed for read statements are: integers, reals, strings and enumerated types.

3.3.2 Output
The basic form of output is the write statement. This takes a list of parameters the first of
which may optionally be a file variable. If this file variable is present it is the output file. In
the absence of a leading file variable the output file is the console. The parameters take the
form of expressions whose values whose textual representations are written to the output
file. The statement

write(a,b,c)
where a,b,c are non file parameters is exactly equivalent to the sequence of statements
write(a);write(b);write(c)
The writeln statement has the same effect as the write statement but finishes by writ-

ing a new line to the output file. The representation of the new line is operating system
dependent. The statement

writeln(a,b,c)
where a,b,c are non file parameters is thus exactly equivalent to the sequence of state-

ments
write(a);write(b);write(c);writeln;
Allowed types for write statements are integers, reals, strings and enumerated types.

Parameter formating

A non file parameter can be followed by up to two integer expressions prefixed by colons
which specify the field widths to be used in the output. The write parameters can thus have

48 CHAPTER 3. ALGORITHMS

the following forms:
e e:m e:m:n

1. If e is an integral type its decimal expansion will be written preceeded by sufficient
blanks to ensure that the total textual field width produced is not less than m.

2. If e is a real its decimal expansion will be written preceeded by sufficient blanks to
ensure that the total textual field width produced is not less than m. If n is present
the total number of digits after the decimal point will be n. If n is omitted then the
number will be written out in exponent and mantissa form with 6 digits after the
decimal point

3. If e is boolean the strings ’true’ or ’false’ will be written into a field of width not less
than m.

4. If e If the value of e is a string-type value with a length of n, the default value of m
shall be n. The representation shall consist of

if m > n,
(m - n) spaces,

if n > 0,
the first through n-th characters of the value of e in that order.

if 1 <= m <= n,
the first through m-th characters in that order.

if m = 0,
no characters.

Chapter 4

Programs, Units and Libraries

Vector Pascal supports the popular system of separate compilation units found in Turbo
Pascal. A compilation unit can be either a program, a unit or a library.

<program> ’program’ <identifier>’;’[<uses>’;’]<block>’.’
<invocation> <unitid>[’(’ <type identifier>[’,’<type identifier>]*’)’]
<unitid> <identifier>[’:’ ’apu’ <identifier> ’[’ <intconst>’]’]
<uses> ’uses’ <invocation>[’,’<invocation>]*
<block> [<decls>’;’]*’begin’ <statement>[’;’<statement>]*’end’
<decls> ’const’ <constant declaration>[’;’<constant declaration>]*

’type’<type definition>[’;’<type definition>]*
’label’ <label>[’,’ <label>]
<procedure declaration>
’var’ <variable declaration>[’;’ <variable declaration>]

<unit> <unit header> <unit body>
<unit body> ’interface’[<uses>][<decls>] ’implementation’<block>’.’

’interface’[<uses>][<decls>] ’in’ <invocation> ’;’
<unit header> <unit type><identifier>

’unit’ <identifier> ’(’ <type identifier> [’,’ <type identifier>]* ’)’
<unit type> ’unit’

’library’

An executable compilation unit must be declared as a program. The program can use
several other compilation units all of which must be either units or libraries. The units or
libraries that it directly uses are specified by a list of identifiers in an optional use list at
the start of the program. A unit or library has two declaration portions and an executable
block.

4.1 The export of identifiers from units

The first declaration portion is the interface part and is preceded by the reserved word
interface.

The definitions in the interface section of unit files constitute a sequence of enclosing
scopes, such that successive units in the with list ever more closely contain the program
itself. Thus when resolving an identifier, if the identifier can not be resolved within the
program scope, the declaration of the identifier within the interface section of the rightmost
unit in the uses list is taken as the defining occurrence. It follows that rightmost occurrence
of an identifier definition within the interface parts of units on the uses list overrides all
occurrences in interface parts of units to its left in the uses list.

49

50 CHAPTER 4. PROGRAMS, UNITS AND LIBRARIES

unit genericsort(t) ;
interface
type

dataarray (n ,m :integer)=array [n ..m] of t ;
procedure sort (var a :dataarray); (see Figure 4.2)

implementation

procedure sort (var a :dataarray); (see Figure 4.2)
begin
end .

Example 4.1: A polymorphic sorting unit.

The implementation part of a unit consists of declarations, preceded by the reserved
word implementation that are private to the unit with the exception that a function or
procedure declared in an interface context can omit the procedure body, provided that the
function or procedure is redeclared in the implementation part of the unit. In that case the
function or procedure heading given in the interface part is taken to refer to the function
or procedure of the same name whose body is declared in the implementation part. The
function or procedure headings sharing the same name in the interface and implementation
parts must correspond with respect to parameter types, parameter order and, in the case of
functions, with respect to return types.

A unit may itself contain a use list, which is treated in the same way as the use lists of
a program. That is to say, the use list of a unit makes accessible identifiers declared within
the interface parts of the units named within the use list to the unit itself.

4.1.1 The export of Operators from units
A unit can declare a type and export operators for that type.

4.2 Unit parameterisation and generic functions
Standard Pascal provides es some limited support for polymorphism in its read and write
functions. Vector Pascal allows the writing of polymorphic functions and procedures
through the use of parameteric units.

A unit header can include an optional parameter list. The parameters identifiers which
are interepreted as type names. These can be used to declare polymorphic procedures and
functions, parameterised by these type names. This is shown in figure 4.1.

4.3 The invocation of programs and units
Programs and units contain an executable block. The rules for the execution of these are as
follows:

1. When a program is invoked by the operating system, the units or libraries in its use
list are invoked first followed by the executable block of the program itself.

2. When a unit or library is invoked, the units or libraries in its use list are invoked first
followed by the executable block of the unit or library itself.

4.4. THE COMPILATION OF PROGRAMS AND UNITS. 51

procedure sort (var a :dataarray);
var

Let i, j ∈ integer;
Let temp ∈ t;

begin
for i← a.n to a.m - 1 do

for j← a.n to a.m - 1 do
if aj > aj+1 then begin begin

temp← aj;
aj ← aj+1;
aj+1 ← temp;

end ;
end ;

Example 4.2: procedure sort

3. The order of invocation of the units or libraries in a use list is left to right with the
exception provided by rule 4.

4. No unit or library may be invoked more than once.

Note that rule 4 implies that a unit x to the right of a unit y within a use list, may be invoked
before the unit y, if the unit y or some other unit to y’s left names x in its use list.

Note that the executable part of a library will only be invoked if the library in the
context of a Vector Pascal program. If the library is linked to a main program in some
other language, then the library and any units that it uses will not be invoked. Care should
thus be taken to ensure that Vector Pascal libraries to be called from main programs written
in other languages do not depend upon initialisation code contained within the executable
blocks of units.

4.4 The compilation of programs and units.
When the compiler processes the use list of a unit or a program then, from left to right, for
each identifier in the use list it attempts to find an already compiled unit whose filename
prefix is equal to the identifier. If such a file exists, it then looks for a source file whose
filename prefix is equal to the identifier, and whose suffix is .pas. If such a file exists and
is older than the already compiled file, the already compiled unit, the compiler loads the
definitions contained in the pre-compiled unit. If such a file exists and is newer than the
pre-compiled unit, then the compiler attempts to re-compile the unit source file. If this re-
compilation proceeds without the detection of any errors the compiler loads the definitions
of the newly compiled unit. The definitions in a unit are saved to a file with the suffix .mpu,
and prefix given by the unit name. The compiler also generates an assembler file for each
unit compiled.

4.5 Instantiation of parametric units
Instantiation of a parametric unit refers to the process by which the unbound type variables
introduced in the parameter list of the unit are bound to actual types. In Vector Pascal all
instantiation of parametric units and all type polymorphism are resolved at compile time.
Two mechanisms are provided by which a parametric unit may be instantiated.

52 CHAPTER 4. PROGRAMS, UNITS AND LIBRARIES

4.5.1 Direct instantiation
If a generic unit is invoked in the use list of a program or unit, then the unit name must
be followed by a list of type identifiers. Thus given the generic sort unit in figure 4.1, one
could instantiate it to sort arrays of reals by writing

uses genericsort(real);
at the head of a program. Following this header, the procedure sort would be declared

as operating on arrays of reals.

4.5.2 Indirect instantiation
A named unit file can indirectly instantiate a generic unit where its unit body uses the
syntax

’interface’ <uses><decls> ’in’ <invocation> ’;’
For example

unit intsort ;
interface

in genericsort (integer);

would create a named unit to sort integers. The naming of the parametric units allows more
than one instance of a given parametric unit to be used in a program. The generic sort unit
could be used to provide both integer and real sorting procedures. The different variants of
the procedures would be distinquished by using fully qualified names - e.g., intsort.sort .

4.6 The System Unit
All programs and units include by default the unit system.pas as an implicit member of
their with list. This contains declarations of private run time routines needed by Vector
Pascal and also the following user accessible routines.

function abs Return absolute value of a real or integer.

function alias(array section) This returns a pointer to an array with the same type
and occupying the same memory cells as the array section passed in.

procedure append(var f:file); This opens a file in append mode.

pure function ArcCos (x:Real):Real; The inverse function of cos. Calcu-
lates (approximates) the angle θ ∈ [0..π]), such that cos θ = cosVal.
Returns arccos(cosVal) if cosVal ∈ [-1,1].
Returns the error code -5 otherwise.

pure function ArcSin (cosVal : real) : real; The inverse function of
sin. Calculates (approximates) the angle θ ∈ [−π/2..π/2]), such that sin θ =
sinVal.
Returns arcsin(sinVal) if sinVal ∈ [-1,1].
Returns the error code -5 otherwise.

pure function arcTan(x:Real):Real;

procedure assign(var f:file;var fname:string); Associates a file name with a
file. It does not open the file.

4.6. THE SYSTEM UNIT 53

procedure blockread(var f:file;var buf;count:integer; var resultcount:integer);
Trys to read count bytes from the file into the buffer. Resultcount contains the
number actually read.

procedure blockwrite(var f:file;var buf;count:integer; var resultcount:integer);
Write count bytes from the buffer. Resultcount gives the number actually read.

procedure chdir(path:pchar); Has the effect of executing cd on command line.

function chr(i:integer):char Converts an integer to the corresponding Unicode
character.

procedure close(var f:file); Closes a file.

procedure closedir(d:pdir);external; Pascal declaration for the C runtime library
function.

pure function cmplx(realpart,imag:real):complex; Function to build com-
plex numbers.

function complex_2_string (A:Complex):string; Converts a complex number to
a printable form.

procedure delay (DTime: integer); Wait for DTime milliseconds.

function eof(var f:file):boolean; True if we are at the end of file f.

procedure erase(var f:file); Delete file f.

function eoln(var f:file):boolean; True if at the end of a line.

function exp(d:real):real; Return ex

function filesize(var f: fileptr):integer; Return number of bytes in a file.

function filepos(var f:fileptr):integer; Return current position in a file.

procedure fillchar(var x;count :integer; value:integer); The function copies
value into the first count characters of buffer x, it is useful for intializing a
section of memory to some value.

pure function floor(a:double):integer; if a <0.0 then floor returns - trunc(0.0-
a)-1 otherwisee it returns trunc(a)

pure function frac(x:real):real; Return fractional part of floating point value.

procedure freemem(var p:pointer; num:integer); Free num bytes of heap store.
Called by dispose.

procedure getmem(var p:pointer; num:integer); Allocate num bytes of heap. Called
by new.

procedure gettime(var hour,min,sec,hundredth:integer); Return time of day.

procedure halt(errornum:integer); Stop program execution.

pure function im(c:complex):real; Return the imaginary part of a complex
number.

procedure inc(var i:integer); Increments i.

pure function int(r:real):real;Return the integer part of r as a real.

54 CHAPTER 4. PROGRAMS, UNITS AND LIBRARIES

function ioresult:integer; Returns a code indicating if the previous file operation
completed ok. Zero if no error occurred.

function isdir(path:pchar):boolean; Return true if the null terminated string is a
directory.

function length(var s:string):integer; Returns the length of s.

procedure move(var source;var dest; len:integer); Copy len bytes from source
to dest.

pure function odd(i:integer):boolean;True if i is odd.

function opendir(path :pchar):pdir; Posix function The opendir() function opens
a directory stream corresponding to the directory name, and returns a pointer to
the directory stream. The stream is positioned at the first entry in the directory.

procedure page(var t:text); Generates a page throw in the file of char t.

function paramcount:integer; Number of parameters with which program was called

function paramstr(i:integer):textline; Retrieve parameters with which pro-
gram was called.

procedure pascalexit(code:integer); Terminate the program with code.

function random:integer; Returns a random integer.

procedure randomize; Assign a new time dependent seed to the random number gener-
ator.

pure function re(c:complex):real; Return the real part of a complex number.

function readdir(d:pdir):pdirentry; The Posix readdir() function returns a pointer
to a dirent structure representing the next directory entry in the directory stream
pointed to by dirp. It returns Nil on reaching the end of the directory stream
or if an error occurred.

procedure reset(var f:file); Open a file for reading.

procedure rewrite(var f :file); Open a file for writing.

function secs:double; Time in 1/100 seconds since program started.

function seek(var f:fileptr;pos,mode:integer):integer; Seek sets the file-
pointer for file F to record Nr. Count. The first record in a file has Count=0. F
can be any file type, except Text.

function StrPas(Src: PChar): textline; Convert a C style null terminated string
to a Pascal one.

function strlen(s:pchar):integer; Return the length of a C style null terminated
string

pure function sqr(x:double):double; Squares the number. It is usually more
efficient to do x*x.

function substring(s:string;i,j:integer):string; Creates a string made up of
s[i..j].

function trunc(r:real):integer; Truncates a real to an integer.

4.7. LIBRARIES, STATIC AND DYNAMIC 55

procedure unicodestring2ascii(s:string;var asciibuffer); This converts a Pas-
cal string which will be in Unicode to a string of 8 bit characters in asciibuffer.
It does not perform conversion to UTF-8 it simply copies over the bottom 7 bits
of each unicode character, so it will only work if the original string contains
only characters with an ASCII equivalent.

procedure Val(S:string ; var V; var Code: integer); Val converts the value
represented in the string S to a numerical value and stores this value in the vari-
able V, which can be of type Integer, Real or Double. If the conversion isn’t
succesfull, then the parameter Code contains the index of the character in S
which prevented the conversion.

4.6.1 System unit constants

BLANK =’ ’;
maxint = 2147483647;
pi = 3.1415926535897932385;
MAXSTRING =255;
MAXREAL =3.4E38;
MINREAL =1.18E-38;
mindiv =$80000;
EPSREAL =1.0/mindiv;
MAXDOUBLE :double=1.79E308;
MINDOUBLE :double=2.23E-308;

MAXCHAR =chr(65535);
MINCHAR =chr(0);

NILSTR =’’;
MAXLSTR = 10000;
MAXLOG = 8.8029691931113054295988E1; { log(2**127) }
MINLOG = -8.872283911167299960540E1; { log(2**-128) }
LOG2E = 1.4426950408889634073599; { 1/log(2) }

SEEK_SET =0;
SEEK_CUR =1;
SEEK_END =2;
minint64 =-9223372036854775807;
maxint64 =9223372036854775807;
PIO2 = 1.57079632679489661923; { pi/2 }

PIO4 = 7.85398163397448309616E-1; { pi/4 }
SQRT2 = 1.41421356237309504880; { sqrt(2) }

4.7 Libraries, static and dynamic

4.7.1 Linking to external libraries

It is possible to specify to which external libraries - that is to say libraries written in another
languge, a program should be linked by placing in the main program linkage directives. For
example

{$linklib ncurses}

would cause the program to be linked to the ncurses library.

56 CHAPTER 4. PROGRAMS, UNITS AND LIBRARIES

4.7.2 The export of procedures from libraries.

If a compilation unit is prefixed by the reserved word library rather than the words
program or unit, then the procedure and function declarations in its interface part are
made accessible to routines written in other languages.

4.7.3 Creating libraries

Depending on the linking that you do these Vector Pascal libraries can either be staticly
linked into a C program, or can form a Dynamic Link Library (DLL) which can be linked
at runtime to the C code. What follows are two examples of how to do this.

Static Libraries

Static libraries can be used in either Linux or Windows systems. Building and using a
library involves several stages and should be controlled by the use of make files.

Here is an example library:

library examplelib;
interface

procedure exampleproc;

implementation

procedure exampleproc;
begin
writeln(’ procedure in library called’);

end;
end.

and here is an example C program that calls the library:

#include<stdio.h>
main(argc, argv)
{
extern void examplelib_exampleproc();
printf("start of C program \n");
initfs(); /* initialise the pascal runtime library

for the dll version call initdll()*/
examplelib_exampleproc(); /* call the library procedure */
printf("end of C program\n");

}

In order to use the library from C we must do the following:

1. Compile the library to assembler language.

2. Use the gnu tools to assemble this to an object file.

3. Create an object file version of the pascal runtime library.

4. Link both of these with the C program that is going to use the library.

The steps could be performed by the following makefile:

4.7. LIBRARIES, STATIC AND DYNAMIC 57

CFLAGS=-g

all: uselib
uselib

examplelib.s: examplelib.pas
vpc examplelib -S -Aexamplelib.s -cpugnuPentium

complile the library to assembly language

examplelib.o: examplelib.s
gcc $(CFLAGS) -c examplelib.s

rtl.o: rtl.c
gcc $(CFLAGS) -DLIBRARY -c rtl.c

compile it in a form suitable for use in a library

rtl.c: ../../mmpc/rtl.c
cp ../../mmpc/rtl.c rtl.c

get a copy of the pascal run time library
from wherever we have installed the vector pascal system

uselib: uselib.c examplelib.o rtl.o
gcc $(CFLAGS) uselib.c rtl.o examplelib.o -o uselib

link the C program with the examplelib

DLLs

DLLs or Dynamic Link Libraries are a type of Windows file that can be linked to at runtime.
Building them is more complex than a static library as one needs to write a .def file which
defines which functions are to be exported from the DLL, and one must also build a stub
library to which the main program can be linked. One can use the gnu dlltool to build
the stub library.

We illustrate the process with a similar example. First the C program:

#include<stdio.h>
main(argc, argv)
{
printf("start\n");
dllinit();
exampledll_exampleproc();
}

Next the example DLL in Pascal:

library exampledll;
interface
procedure exampleproc;

implementation
procedure exampleproc;
begin
writeln(’ procedure in dll called’);

end;
end.

58 CHAPTER 4. PROGRAMS, UNITS AND LIBRARIES

We now provide a file exampledll.def file which tells the gnu dlltool which functions we
want to export:

EXPORTS
exampledll_exampleproc
dllinit

Finally the make file:

CFLAGS=-mno-cygwin
specify that cygwin gcc is to rely on the windows built in C libraries

all: usedll.exe exampledll.dll
usedll

exampledll.s: exampledll.pas
vpc exampledll -S -Aexampledll.s -U -cpugnuPentium

exampledll.o: exampledll.s
gcc $(CFLAGS) -DBUILD_DLL -c exampledll.s

rtl.o: rtl.c
gcc $(CFLAGS) -DBUILD_DLL -c rtl.c

compile it in a form suitable for use in a dll

rtl.c: ../../mmpc/rtl.c
cp ../../mmpc/rtl.c rtl.c

get a copy of the pascal run time library

exports.o: exampledll.a

exampledll.a: exampledll.def makefile
dlltool -v -e exports.o -l exampledll.a -d exampledll.def -D exampledll.dll exampledll.o rtl.o

Note that you must use the -D option to tell dlltool the name of the dll you will build
this also reads in the .def file it produces exampledll.a with which
you statically link your c program (it contains stubs to the real dynamic fns)

exampledll.dll: exports.o rtl.o exampledll.o
gcc $(CFLAGS) -shared exports.o rtl.o exampledll.o -o exampledll.dll

build the dll using the export spec produced by dlltool

usedll.o: usedll.c
gcc $(CFLAGS) -c usedll.c

compile the c program to an object file

usedll.exe: usedll.o exampledll.a
gcc $(CFLAGS) usedll.c exampledll.a -o usedll

link the c program with the exampledll stub library

4.7.4 Cross Language Parameter Passing
When calling Pascal from C observe the following rules:

• Atomic values of type integer and real can be passed as value parameters. Pascal
type real corresponds to C type float.

• Composite values such as records arrays or strings should be passed as pascal var
parameters, and in C call the address of the composite item must be passed.

• Strings in Vector Pascal are stored in 16 bit unicode preceded by a 16 bit length word.
C strings are stored as arrays ASCII of bytes. If a Pascal procedure requires a string
parameter, then the C code calling it must pack the string into an array of short.

Thus a Pascal procedure exported from library mylib and declared as follows

4.7. LIBRARIES, STATIC AND DYNAMIC 59

type intarray=array[0..99] of integer;
procedure foo(var s:string; r:real; var f:intarray);

would have the C prototype

extern void mylib_foo(short *, float, int *);

60 CHAPTER 4. PROGRAMS, UNITS AND LIBRARIES

Chapter 5

Implementation issues

The compiler is implemented in java to ease portability between operating systems.

5.1 Using Unicode with Vector Pascal

ISO Pascal is defined using an alphabet of symbols all of which can be represented with
ASCII. Vector Pascal uses Unicode to permit a wider range of symbols to be used in pro-
grams.
Programs should be submitted to the compiler in UTF-8 encoded Unicode. Since the 7 bit
ASCII is a subset of UTF-8, all valid ASCII encoded Vector Pascal programs are also valid
UTF-8 programs.

5.1.1 Letter based Identifiers

ISO Pascal allows the Latin letters A-Z to be used in identifiers. Vector Pascal extends this
by allowing letters from the Greek, Cyrillic, Katakana and Hiragana character sets.

Treatment of identifiers is case indifferent, in that upper case and lower case versions of a
given letter are treated as equivalent. Thus the identifier δ may also be written ∆. Identifiers
drawn from these alphabets can be strings of letters or digits starting with a letter.

5.1.2 Ideographic identifiers

Vector Pascal allows the use of Ideographs drawn from the unified Chinese, Japanese and
Korean sets (Unicode range 4e00-9fff) to act as identifiers.

61

62 CHAPTER 5. IMPLEMENTATION ISSUES

5.1.3 Special Symbols
When using Unicode certain mathematical operations that are encoded as a sequence of
ASCII characters can be represented as a single Unicode character.

Operation ASCII form Extended
form

Unicode

Set membership in ∈ 2208
Assignment := ← 2190
Integer division div ÷ 00f7
Nary summation \+ ∑ 2211
Nary product * ∏ 220f
Square root sqrt √ 221a
Less than or equal <= ≤ 2264
Greater than or
equal

>= ≥ 2265

Not equal < > 6= 2260
Negation not ¬ 00ac
Logical and and ∧ 2227
Logical or or ∨ 2228
Multiplication * × 2715
Index generation iota ı 2373

Example The following shows the use of Unicode operators in place of the Ascii ones
used on early releases of Vector Pascal.
Program proddemo;
{ prints the product and square root of the integers 1..5 }
Var a:array[1..5] of Integer; Y:integer;
Begin

{ unicode version}
a← ı 0; { form integers from 1 to 5 }
Writeln(a);
Y←∏ a; { get their product }
Writeln(y, √y);
{ now using ascii }
a:= iota 0;
writeln(a);
y:= * a;
writeln (y, sqrt(y));

End.

Characters The built in char type in Pascal is represented with 16 bits in Vector Pascal.
This allows any Unicode character to be handled.

Strings Strings are held as arrays of char with a length word held in the first character.
This is a simple extension of the mechanism used in Turbo Pascal. It potentially allows
strings to be up to 65535 characters long. The type STRING written without a length
specification stands for a string of length MAXSTRING.

Read When reading strings or characters from a text file, conversion is automatically
performed from utf-8 to Unicode format.

Write When characters or strings are output to a text file, they are converted from the
internal Unicode format to the utf-8 format.

5.2. INVOKING THE COMPILER 63

5.2 Invoking the compiler
The compiler is invoked with the command

vpc filename

where filename is the name of a Pascal program or unit. For example

vpc test

will compile the program test.pas and generate an executable file test, (test.exe under
windows).

The command vpc is a shell script which invokes the java runtime system to execute a
.jar file containing the compiler classes. Instead of running vpc the java interpreter can
be directly invoked as follows

java -jar mmpc.jar filename

The vpc script sets various compiler options appropriate to the operating system being
used.

5.2.1 Environment variable
The environment variable mmpcdir must be set to the directory which contains the mmpc.jar
file, the runtime library rtl.o and the system.pas file.

5.2.2 Compiler options
The following flags can be supplied to the compiler :

-Afilename Defines the assembler file to be created. In the absence of this option the
assembler file is p.asm.

-BOEHM Causes the program to be linked with the Boehm conservative garbage collec-
tor.

-coresn generate code for n cores executing in parallel.

-cpuCGFLAG Specifies the code generator to be used. Currently the code generators shown
in table 5.1 are supported. Note that late model Intel processors operating in
64 bit mode can also accept code compiled with the Opteron instructionset.

-ddirname Defines the directory in which to find rtl.o and system.pas.

-D<symbol> Define compiler pre-processor flag for conditional compilation

-fFORMAT Specifies the object format to be generated by the assembler. The object for-
mats currently used are elf when compiling under Unix or when compiling
under windows using the cygwin version of the gcc linker, or coff when us-
ing the djgpp version of the gcc linker. for other formats consult the NASM
documentation.

-help print out details of command usage.

-inter generate an intermediate ilc file for the syntax tree.

-L Causes a latex listing to be produced of all files compiled. The level of detail
can be controled using the codes -L1 to -L3, otherwise the maximum detail
level is used.

64 CHAPTER 5. IMPLEMENTATION ISSUES

-nobalance switches off cannonical re-ordering of expression trees.

-nolink switches off linking so that a .o file is generated .

-NOVPWORDS Allows Vector Pascal reserved words that do not occur in Turbo or in Ex-
tended Pascal to be used as identifiers. This may be useful for backward com-
patibility.

-OPTn Sets the optimisation level attempted. -OPT0 is no optimisation, -OPT3 is the
maximum level attempted. The default is -OPT1.

-oexefile Causes the linker to output to exefile instead of the default output of p.exe.

-S Suppresses assembly and linking of the program. An assembler file is still
generated.

-T Run in training mode, do not load any of the pre-learned code generation tac-
tics stored in the .vwu file

-U Defines whether references to external procedures in the assembler file should
be preceded by an under-bar ’_’. This is required for the coff object format but
not for elf.

-V Causes the code generator to produce a verbose diagnostic listing to foo.lst
when compiling foo.pas.

-switchonn..m switch on verbose mode between lines n and m in source when generating
code.

5.2.3 Dependencies
The Glasgow Pascal Compiler depends upon a number of other utilities which are usually
pre-installed on Linux systems, and are freely available for Windows systems.

NASM The net-wide assembler. This is used to convert the output of the code genera-
tor to linkable modules. It is freely available on the web for Windows. For the
Pentium processor it is possible to use the as assembler instead.

gcc The GNU C Compiler, used to compile the run time library and to link modules
produced by the assembler to the run time library.

java The java virtual machine must be available to interpret the compiler. There are
number of java interpreters and just in time compilers are freely available for
Windows.

nvcc The nvidia CUDA compiler, required if compiling for an Nvidia GPU. Part of
the free Nvidia toolkit download.

5.3 Procedure and function mechanism

5.3.1 Requirements
1. Must be able to call C routines as well as Pascal ones.

2. Must establish a name correspondence with C routines that we call externally.

3. Must pass parameters appropriately

4. Must get results back from C routines

5.3. PROCEDURE AND FUNCTION MECHANISM 65

Table 5.1: Code generators supported
CGFLAG description

C generates C output for gcc
IA32 generates code for the Intel 486 instruction-set

uses the NASM assembler
Pentium generates code for the Intel P6 with MMX instruction-set

uses the NASM assembler
gnuPentium generates code for the Intel P6 with MMX instruction-set

using the as assembler in the gcc package
K6 generates code for the AMD K6 instruction-set, use for Athlon

uses the NASM assembler
P3 generates code for the Intel PIII processor family

uses the NASM assembler
P4 generates code for the Intel PIV family and Athlon XP

uses the NASM assembler
gnuP4 generates code for the Intel PIV family and Athlon XP

uses the gas assembler
AVX32 generates 32 bit code for the AVX instructionset

uses the NASM assembler
AVX64 generates 64 bit code for the AVX instructionset

uses the NASM assembler
EE for Sony PS2 Emotion Engine (cross compiler)
PPE for Sony PS3 Cell - needs Linux

Opteron generates code for the AMD64 family
uses the gas assembler

nvidia generates code for an Intel CPU with an nvidia GPU
(compute 3.0 and above). Not thread safe.

MIC generates code for an Intel XeonPhi
needs cross assembler.

66 CHAPTER 5. IMPLEMENTATION ISSUES

Name correspondance

name correspondence with the C routine
Issues here

1. Case of the names

2. allowed characters

3. how are these passed in assembler

Characters and significance

Case is significant both in C, but this is not the case of all languages.
Pascal for instance makes case insignificant, and requires that externals where the case

is significant be given a name in quotes for example:

procedure close (var f:fileptr);
external name ’pasclose’;

This allows the external routine to have a different name to the internal representation of
it. The allowed characters in a name in Hi are limited to the letters, that means we can not
call and C routine with an _ or a digit in its name unless we were to extend the syntax for
externals along the above lines.

Assembler representation

In the assembler file, the compiler must list all the externals as follows (note this is the
Nasm syntax, it will be different for other assemblers):

extern vconcat
extern iota
extern putChar
extern getNum
extern getChar
extern putNum

Then we can call them just as if they were declared within this file.

call vconcat

Underscores

Most 32-bit C compilers share the convention used by 16-bit compilers, that the names of
all global symbols (functions or data) they define are formed by prefixing an underscore to
the name as it appears in the C program.

However, not all of them do: the ‘ELF’ specification states that C symbols do not have
a leading underscore on their assembly-language names.

Thus if you are producing code for Linux, which uses ELF, do not use underscores.
In Vector Pascal the -U flag on the command line selects whether leading underscores

are to be generated.

5.3. PROCEDURE AND FUNCTION MECHANISM 67

5.3.2 The C calling convention
Before explaining the Vector Pascal function calling technique we present, the simpler
technique used in C and that could be used in Pascal if there were no nesting of procedures.
The convention used in diagrams in this section is that low addresses are show at the top of
the page and high addresses at the bottom.

To call a C function, whether from C or from Pascal the following must be done.

1. The caller pushes the function’s parameters on the stack, one after another, in reverse
order (right to left, so that the first argument specified to the function is pushed last).

2. The caller then executes a near ‘CALL’ instruction to pass control to the callee.

3. The callee receives control, and typically (although this is not actually necessary, in
functions which do not need to access their parameters) starts by saving the value of
‘ESP’ in ‘EBP’ so as to be able to use ‘EBP’ as a base pointer to find its parameters
on the stack. However, the caller was probably doing this too, so part of the calling
convention states that ‘EBP’ must be preserved by any C function. Hence the callee,
if it is going to set up ‘EBP’ as a frame pointer, must push the previous value first.

4. The callee may then access its parameters relative to ‘EBP’. The doubleword at
‘[EBP]’ holds the previous value of ‘EBP’ as it was pushed; the next doubleword, at
‘[EBP+4]’, holds the return address, pushed implicitly by ‘CALL’. The parameters
start after that, at ‘[EBP+8]’. The leftmost parameter of the function, since it was
pushed last, is accessible at this offset from ‘EBP’; the others follow, at successively
greater offsets. Thus, in a function such as ‘printf’ which takes a variable number of
parameters, the pushing of the parameters in reverse order means that the function
knows where to find its first parameter, which tells it the number and type of the
remaining ones.

5. The callee may also wish to decrease ‘ESP’ further, so as to allocate space on the
stack for local variables, which will then be accessible at negative offsets from ‘EBP’.

6. The callee, if it wishes to return a value to the caller, should leave the value in ‘AL’,
‘AX’ or ‘EAX’ depending on the size of the value. Floating-point results are typically
returned in ‘ST0’.

7. Once the callee has finished processing, it restores ‘ESP’ from ‘EBP’ if it had allo-
cated local stack space, then pops the previous value of ‘EBP’, and returns via ‘RET’
.

8. When the caller regains control from the callee, the function parameters are still on
the stack, so it typically adds an immediate constant to ‘ESP’ to remove them (instead
of executing a number of slow ‘POP’ instructions). Thus, if a function is accidentally
called with the wrong number of parameters due to a prototype mismatch, the stack
will still be returned to a sensible state since the caller, which _knows_ how many
parameters it pushed, does the removing.

consider the Pascal code:

var zot:record x,y:integer; z:double; end;
function foo(x,y:integer; z:double):integer;begin foo:=x+y end;
procedure bar;
var x, y:integer;

z:double ;
begin

x:=foo(1,2,3.0);
end

68 CHAPTER 5. IMPLEMENTATION ISSUES

Figure 5.1: Stacks and records

The memory allocation, if nested functions did not exist in Pascal, could be implemented
as shown in figure 5.1.

Note that the addresses of parameters and variables can be specified relative either to a
special register called the frame pointer or to the stack pointer. If your code does not
dynamically push things onto the stack or if your compiler keeps track of the stack position,
then the SP register may be prefered. In Vector Pascal however, as is conventional with
most other Pascal compilers we use the Frame Pointer register to access parameters and
variables.

Key points:

1. If you address via the frame pointer (EBP on a Pentium) then the parameters have
+ve addresses and the locals have -ve addresses.

2. If you address using the stack pointer they all have +ve addresses.

3. If you use the SP (ESP on a Pentium) the compiler has to take into account tempo-
raries that are pushed on the stack.

5.3.3 Var Params

We have been assuming value parameters.
If we have var parameters (parameters which, when assigned to, change the value of the

actual parameter) then the address of the parameter rather than the value of the parameter
has to be passed on the stack. The compiler then places and extra level of indirection onto
the addressing of the parameter.

5.3. PROCEDURE AND FUNCTION MECHANISM 69

5.3.4 Nested Functions

The existence of nesting of functions and procedures generates complexities that force us to
use a more elaborate calling method than C. Consider the following Pascal example where
we allow function nesting.

type vec1 = array[1..10] of integer;
scalar = integer;

function sum(var v:vec1);scalar;
function total(i:scalar):scalar;
begin

total:=if i<1 then 0 else v[i]+total(i-1);
end
total(length(v))

Total recurses on i, but each invocation accesses the same copy of v.
Can we use the d-link to access v?
No
Consider the situation below

At this point we can access v at mem[dlink+8], but what happens on the next recursion?

if we use mem[dlink+8] we get the previous version of i, v is now at mem[mem[dlink]+8]
We need an alternative approach. There are 3 practical alternatives:

• Displays

• Static Links

• Lambda Lifting

70 CHAPTER 5. IMPLEMENTATION ISSUES

We have chosen to use displays since Intel hardware provides support for these. They do
place slight restrictions on function parameters1, but it was felt that the simplicity of display
implementation, and the ability to use the same calling mechanism as C outweighed this.

Displays

These can use the Intel Enter instruction defined as:

enter storage,level
push ebp
temp:=esp
if level>0
then

repeat (level-1) times
ebp:=ebp-4
push dword[ebp]

end repeat
push temp

fi
ebp:=temp
esp:=esp - storage

For machines other than the Intel family, you, as a compiler modifier, have to generate
sequences of simpler instructions to emulate the Intel Enter instruction.

Up to now we have assumed procedures use

enter xxx,0

Consider the effect of using enter 0,1 for sum and enter 0,2 for total :

1A functions f may not be an actual parameter to procedure or function g, if the scope of g outer to that of f

5.3. PROCEDURE AND FUNCTION MECHANISM 71

Figure 5.2: Full stack frame layout

All variables are now addressed as a pair (lexlevel,offset), where an outer level function is
lexical level 1, the first nested function is lexical level 2 etc.

A parameter can now be addressed as

mem[display[lexlevel]+offset]

The display is an array in memory at the start of the current frame. Using this notation,
parameter i is always addressed as

mem[display[2]+8]= mem[mem[fp-8]+8]

and v is always at

mem[display[1]+8]

hh

Optimisations FP always points to the current lexical level so at lexical level 2 we have

mem[display[2]+8]
= mem[mem[fp-8]+8]
= mem[fp+8]

Likewise we can chose to cache other display values in registers so avoiding repeated deref-
erencing of the display on stack.

Other registers sometimes have to be saved because of the definition of the ABI of the
processor. If this is the case then they are saved after space has been reserved for local
variables as shown in Figure 5.2.

5.3.5 Detail of calling method used on the Pentium

Procedure parameters are passed using a modified C calling convention to facilitate calls
to external C procedures. Parameters are pushed on to the stack from right to left. Value
parameters are pushed entire onto the stack, var parameters are pushed as addresses.

72 CHAPTER 5. IMPLEMENTATION ISSUES

Example

program callconv;
type t1= record a,b:integer end;
var

x,y:t1;
procedure foo(var a:t1; b:t1; c:integer);
begin
end;

function bar:t1;
begin bar:=y;end;

begin
x:=bar;
foo(x,y,3);

end.

This would generate the following code for the procedure foo.

; procedure generated by code generator class ilcg.tree.PentiumCG;0
label114b8f429f3a:;0
; foo;0
; entering a procedure at lexical level 1;0
enter spaceforfool1-4*1,1; create display and variable space

push ebx; save registers as demanded by Linux ABI
push esi;
push edi;

; ------------------ Code for Foo would go here if
;------------------- it were not a null procedure

spaceforfool1 equ 4; declare space needed this is done here
; because the code generation may cause
; new temporary vars to be needed so
; we dont know the space required to here

fool1exit:;2
pop edi; restore saved registers
pop esi;0
pop ebx;0

leave; restore old stack frame
ret 0; pop return address into PC

and the calling code is

push DWORD 3; right most parameter 3
lea esp,[esp+ -8]; create space for y on stack
movq MM4, [PmainBase+ -16]; fetch y
movq [esp],MM4; store on the stack
push DWORD PmainBase+ -8; push the address of x
EMMS ; clear mmx status flags
call label114b8f429f3a; call the procedure

add esp, 16; restore the stack

5.4. MULTI-CORE PARALLELISM 73

Function results

Function results are returned in registers for scalars following the C calling convention for
the operating system on which the compiler is implemented. Records, strings and sets are
returned by the caller passing an implicit parameter containing the address of a temporary
buffer in the calling environment into which the result can be assigned. Given the following
program

The call of bar in the previous example would generate

push DWORD PmainBase+ -24; pass the address of a result buffer
call label114b8f429f712; call the function
add esp, 4; restore the stack
movq MM4, [PmainBase+ -24]; get the result buffer in MM4
movq [PmainBase+ -8],MM4; store in x

5.4 Multi-core Parallelism
SIMD vectorisation works for one dimensional data, or on the last dimension for arrays
stored in row major order, because the hardware has to work on adjacent words. SIMD
gives considerable acceleration on image data, and worthwhile accelerations on floating
point and integer data. Future machines like the Larrabee will have considerably wider
SIMD registers, increasing the benefits of SIMD code. But newer chips also have multiple
cores. For these, the recent versions of the Glasgow Pascal Compiler will parallelise across
multiple cores if the arrays being worked on are of rank 2. The Pascal source code of
the program remains the same independently of whether it is being targeted at a simple
sequential machine, a SIMD machine or a multi-core SIMD machine. Targeting is done by
flags passed to the compiler:

vpc sub2dex -cpu486

would compile sub2dex.pas using purely sequential 32 bit instructions.

vpc sub2dex -cpuOpteron

would compile the same file targeted to a 64 bit Opteron with 1 core using the SIMD
instructions in the Opteron instructionset.

vpc sub2dex -cpuOpteron -cores2

would compile the file to a 64 bit Opteron with 2 cores and SIMD instructions. The
compiler is implemented in Java so the selection of code generators and compilation strate-
gies is achieved by dynamically loading appropriate compiler and code generator classes.

Let us now look at the transformations required to achieve this using a trivial rank 2
array example in Algorithm 5.1. The example is not intended to be realistic or useful, only
illustrative. We assume that the code has been compiled for a dual core Opteron.

Two threads are dispatched to process the work using a fork - rejoin paradigm. The
run time library is built on top of pthreads. For a two core machine, two server threads
are initiated at program start up. These wait on a semaphore until post_job passes them
the address of a procedure and a stack frame context within which the procedure is to be
executed.

The statement x:=y-z is translated into a procedure that can run as a separate task, the
ILCG has been simplified for comprehensibility in Algorithm 5.2.

74 CHAPTER 5. IMPLEMENTATION ISSUES

Algorithm 5.1 Example of combined mult-core and SIMD parallelism.
procedure sub2d;
type range=0..127;
var x,y,z:array[range,range] of real;
begin

x:=y-z;
end;

This translates into ILCG as follows when compiled for a dual core Opteron

procedure(sub2d,
procedure (label12 ... see Algorithm 5.2)
post_job[label12,^(%rbp),1]; /* send to core 1 */
/* Note that %rbp is the Opteron stack frame pointer */
post_job[label12,^(%rbp),0]; /* send to core 0 */
wait_on_done[0];
wait_on_done[1];
)

Algorithm 5.2 The function performing nested loops.
procedure (label12 /* internal label*/ ,
for(mem(+(^(%rbp),-24)),^(mem(+(^(%rbp),16))),127 , 2,

/*iota [0] task number limit step*/
var(mem(+(^(%rbp),-32))),/* iota[1] */
for(mem(+(^(%rbp),-32)), 0 ,127, 4 ,

/*iota [1] start limit step*/
mem(ref ieee32 vector (4), /* x[iota[0],iota[1]] */

+(+(*(^(mem(+(^(%rbp),-24))),512),
+(*(^(mem(+(^(%rbp),-32))), 4),-131072)),

^(mem(+(^(%rbp),-8))))):=
-(^(mem(ref ieee32 vector (4),/* y[iota[0],iota[1]] */

+(+(*(^(mem(+(^(%rbp),-24))),512),
+(*(^(mem(+(^(%rbp),-32))), 4),-196608)),

^(mem(+(^(%rbp),-8)))))),
^(mem(ref ieee32 vector (4),/* z[iota[0],iota[1]] */

+(+(*(^(mem(+(^(%rbp), -24))),512),
+(*(^(mem(+(^(%rbp), -32))), 4),-262144)),

^(mem(+(^(%rbp),-8))))))))),

)

5.4. MULTI-CORE PARALLELISM 75

The basic structure of the task procedure is two nested for loops, one for each dimension
of the arrays.

The outer loop or row index steps by 2 to ensure that each task will process every 2nd
row, starting at the row given by the task number. Thus task 0 will process rows 0,2,4,6,...
Task 1 will proocess rows 1,3,5,7,... If there are 4 cores available each task will process
every 4th row, etc.

The inner loop, for the column indices, advances by 4 since the Opteron has SIMD
registers capable of handling 4 floating point numbers at a time.

5.4.1 The PURE Function Extension
We define a pure function to be such that does not have any side effects, i.e. it does not
update any global, or shared, states outside of its own scope. If the other functions are
called from the body of the function, these also have to be pure even if not marked as such.
This definition of pure functions is consistent with the definition used in FORTRAN 95.
Given the absence of explicit multi-threading constructs in the given language, the above
property of pure functions implies thread safety. A function can be labeled as pure by
prepending the keyword pure in front of every declaration or definition of the function.
This means that if, for example, a function is declared as pure in the interface section of
the programme, it must be also declared as pure anywhere else in the code, e.g. in the
subsequent definition of the function body. Any inconsistency in the declared purity of a
function is spotted by the compiler and treated as a syntactic error.

pure function next(i : integer): integer;
begin

next := i+1;
end;

Above function next operates only on the parameter passed to it, thus it is appropriate to
declare it as pure. The keyword pure does not bare any semantic value, other than it serves
as a hint to the compiler which may then generate multi-threaded code. Multi-threaded
code will be generated if -coresn flag is passed to the compiler specifying more than one
core, and hence the number of threads, available to the programme and if the function is
then invoked as part of an assignment statement.

5.4.2 Task Parallelism and Block Structure
The technique of procedurising code shown in Algorithms 5.1 and 5.2 is well established
when parallelising loops in Open-MP. There are two significant differences. First, and
least significantly, in Vector Pascal the loop is implicit rather than the explicit loops used in
Open-MP. But secondly Open-MP is targeted at C and FORTRAN which are flat languages.
Pascal is a block structured language which makes the access to variables by spawned tasks
somewhat more complex. Consider Algorithm 5.4.2 which illustrates the use of nested
blocks in Pascal. This has a main program nestpar and embedded within that a procedure
emap which takes a matrix a as a parameter and replaces each ai, j with escale.ai, j where scale
is a global variable. The exponential function is approximated by a Taylor series

ex = 1+
1
1!

x1 +
1
1!

x1 +
1
2!

x2 +
1
3!

x3 + ...

using the function Taylor. The Taylor series is evaluated as
Taylor← ∑ (coefs × x ι0) ;
where ι0 = 0,1,2,3... using the line

Taylor:= \+ (coefs * x pow iota[0]);

76 CHAPTER 5. IMPLEMENTATION ISSUES

Algorithm 5.3 Taylor series example.
program nestpar;
type t = array[1..3,1..2] of real;

coef=array[0..5] of real;
{ tabulate inverse factorials }

const expc:coef=(1,1,1/2,1/6,1/24,1/(5*24));
var scale:real;B:t;
procedure emap(var a:t);
{ for each a[i,j] replace with a[i,j]+exp(scale*a[i,j]) }
var coefs:coef;
pure function Taylor(x:real):real;
begin

Taylor:= \+ (coefs * x pow iota[0]);
end;

begin
coefs:= expc;
a := Taylor(a*scale);

end;
begin

scale:=0.1;
B:= iota[0]*iota[1];
write(B);
emap(B);
write(B);

end.

Output Produced

1.00000 2.00000
2.00000 4.00000
3.00000 6.00000

1.10517 1.22140
1.22140 1.49182

1.34986 1.82205

The coefs vector has been initialised in the main program to contain the inverse factorial
series as required.

There are a number of references from inner to outer scopes: Taylor uses the vector
coefs, and emap uses the variable scale. There are three well known techniques for
implementing this in normal procedural code: λlifting, static chaining or display vectors.
Since Intel provide direct hardware support for display vectors in the procedure ENTER
and LEAVE instructions we have chosen to use displays. Figure 5.3 illustrates how the
stack would be organised during execution of Taylor when the program is compiled for
a single core machine. Observe how Taylor can access variables in the enclosing stack
frames using the display vector. But if the code is to run on a dual core machine there will
be not one but three stacks as shown in Figure 5.4: one for the main program and one each
for the child tasks. The original function emap will have been written to ILCG equivalent
to:

procedure emap(var a:t);
var coefs:coef;
pure function Taylor(x:real):real;
begin

Taylor:= \+ (coefs * x pow iota[0]);
end;
procedure dummy(start:int);
var iota:array[0..1] of integer;
begin

iota[0]:=start;
while iota[0]<=3 do
begin

5.4. MULTI-CORE PARALLELISM 77

Figure 5.3: Stack for nestpar in single core mode.

for iota[1]:=1 to 2 do
a[iota[0],iota[1]]:=Taylor(a[iota[0],iota[1]]*scale);

iota[0]:=iota[0]+2;
end;

end;
begin

coefs:= expc;
post_job(dummy,1);post_job(dummy,0);
wait_on_done(0);wait_on_done(1);

end;

The function dummy has to run on a task stack and yet have access to the variable a in
emap and scale in the main program, both of which are executing on the main stack. It
then has to call Taylor in such a way as to ensure that Taylor can access the global scale.
Provided that the displays can be set up as shown in Figure 5.4, this will work, but it is
impossible to set up the displays this way when using standard intel call conventions along
with the pthreads library. Whenever a function is executed within a thread it is allocated
a new stack that does not contain display pointers, hence variables from containing scopes
cannot be accessed.

In order to support sharing of the global stack amongst multiple tasks, we have imple-
mented an assembly routine taskexecute, which corresponds to the following C function
signature:

void taskexecute(struct threadblock *);

As can be seen, the function expects a single parameter which is a pointer to a structure
of type struct threadblock defined as

struct threadblock{

char * savedframepointer;
char * savedcodepointer;
int threadnumber;

}

Above, savedframerpointer is the pointer to the original stack in which the displays
are already setup, savedcodepointer is the pointer to the function that is being paral-
lelised, and threadnumber is a number in the range0..n−1 for a programme running onn

78 CHAPTER 5. IMPLEMENTATION ISSUES

Figure 5.4: The 3 stacks used by nestpar in dual core mode.

cores.. The following assembly code implements taskexecute on the Pentium architec-
ture.

Assembly code sequence required to implement the task execute

.globl taskexecute
taskexecute:
on entry we have a pointer in %esp to the task block
this task block has the C definition
struct threadblock{
char * savedframepointer;
char * savedcodepointer;
int threadnumber;}
the first thing we do is save the framepointer on entry
push %ebp
next get the address of the stored frame pointer in the task block
mov 8(%esp) , %eax

#we load the frame pointer into the hardware frame pointer (ebp)
mov 0(%eax), %ebp
get the task number
push 8(%eax)
make the call on the task
call * 4(%eax)
unwind stack pointer
add $4,%esp
restore framepointer we were called with
pop %ebp
ret

The essence of this form of implementation is that the pthread is setup to execute
taskexecute which is passed threadblock from the calling environment that contains
the stack pointer used by the calling environment. taskexecute substitutes the stack al-
located by the pthread library with the above stack before executing the code sequence
contained in the savedcodepointer. The effect of substituting the stack pointer is undone
once the called code sequence halts to ensure a clean exit of the wrapper.

5.5. EXAMPLE PROGRAMS 79

5.5 Example Programs

5.5.1 Image convolution

The first example we will look at is the use of a seperable convolution kernel to blur an
image. Convolution of an image by a matrix of real numbers can be used to smooth or
sharpen an image, depending on the matrix used. If A is an output image, K a convolution
matrix, then if B is the convolved image

By,x = ∑
i

∑
j

Ay+i,x+ jKi, j

A separable convolution kernel is a vector of real numbers that can be applied indepen-
dently to the rows and columns of an image to provide filtering. It is a specialisation of the
more general convolution matrix, but is algorithmically more efficient to implement. We
can do a seperable convolution provided that the kernel is formed by the outer product of
two vectors a,b. A symmetric separable convolution can be done if a = b.

If k is a symmetric separable convolution vector, then the corresponding matrix K is
such that Ki, j = kik j.

Given a starting image A as a two dimensional array of pixels, and a three element
kernel c1,c2,c3, the algorithm first forms a temporary array T whose whose elements are
the weighted sum of adjacent rows Ty,x = c1Ay−1,x + c2Ay,x + c3Ay+1,x. Then in a second
phase it sets the original image to be the weighted sum of the columns of the temporary
array: Ay,x = c1Ty,x−1 + c2Ty,x + c3T y,x+1.

Clearly the outer edges of the image are a special case, since the convolution is defined
over the neighbours of the pixel, and the pixels along the boundaries a missing one neigh-
bour. A number of solutions are available for this, but for simplicity we will perform only
vertical convolutions on the left and right edges and horizontal convolutions on the top and
bottom lines of the image. A Vector Pascal routine to do this is given below. The source
has been pretty printed in the latex format that is automatically generated by the compiler
is listing enabled. An equivalent sequential C routine is given in Algorithm 5.4.

In comparing the C and Vector Pascal, note two features which give performance ad-
vantages to the Vector Pascal form of the algorithm.

1. The support for fixed point 8 bit arithmetic with the pixel type. This allows a higher
level of parallelism to be achieved since a P4 or AMD64 can in principle operate on
16 ×8 bit numbers with a single instruction. Lacking these types, the C algorithm
has to use 32 bit floats. The pixel type automatically uses saturated arithmetic.

2. The data parallel form of expression of the Vector Pascal allows more efficient opti-
misation of the code.

Vector Pascal convolution algorithm

type
plane(rows,cols:integer)= array [0..rows ,0..cols] of pixel ;

var
Let T , l ∈ˆplane;
Let i ∈ integer;
begin

Allocates a temporary buffer to hold a plane, and 3 temporary buffers to hold the convolu-
tion co-ordinates as lines of pixels.

80 CHAPTER 5. IMPLEMENTATION ISSUES

new (T ,im .maxrow ,im .maxcol);
new (l ,3,im .maxcol);
l↑[0]← c1;
l↑[1]← c2;
l↑[2]← c3;

Perform convolution on each of the planes of the image. This has to be done with an explicit
loop as array maps only works with functions not with procedures.

for i← 0 to im.maxplane do convpar (imi, l↑, T↑); { see section 5.5.1}

This sequence frees the temporary buffers used in the convolution process.

dispose (l);
dispose (T);

end ;

convpar

procedure convpar (var p ,l ,T :plane);

This convolves a plane by applying the vertical and horizontal convolutions in turn.

var
Let r , c ∈ integer;

begin

This sequence performs a vertical convolution of the rows of the plane p and places the
result in the temporary plane T . It uses the lines of pixels l[i] as convolution weights. Use
of lines of pixels rather than the floating point numbers for the kernel weights allows the
computation to proceed 8 pixels at a time in parallel. The lines T 0← p0; and T r← pr; deal
with the top and bottom rows of the picture which are left unchanged.

{$r-}{disable range checks}
r← p.rows;
T 1..r−1← p0..r−2 × l0 + p1..r−1 × l1 + p2..r × l2;
T 0← p0;
T r← pr;

Now perform a horizontal convolution of the plane T and place the result in p.

c← p.cols;
p0..r,1..c−1← T 0..r,0..c−2 × l0 + T 0..r,2..c × l2 + T 0..r,1..c−1 × l1;
p0..r,0← T 0..r,0;
p0..r,c← T 0..r,c;

5.6. ARRAY REPRESENTATION 81

{$r+}{enable range checks}

end ;

5.6 Array representation
The maximum number of array dimensions supported in the compiler is 5.

A static array is represented simply by the number of bytes required to store the array
being allocated in the global segment or on the stack.

A dynamic array is always represented on the heap. Since its rank is known to the
compiler what needs to be stored at run time are the bounds and the means to access it.
For simplicity we make the format of dynamic and conformant arrays the same. Thus for
schema

s(a,b,c,d:integer)= array[a..b,c..d] of integer
whose run time bounds are evaluated to be 2..4,3..7 we would have the following struc-

ture:

address field value
x base of data address of first integer in the array

x+4 a 2
x+8 b 4

x+12 step 20
x+16 c 3
x+20 d 7

The base address for a schematic array on the heap, will point at the first byte after the
array header shown. For a conformant array, it will point at the first data byte of the array
or array range being passed as a parameter. The step field specifies the length of an element
of the second dimension in bytes. It is included to allow for the case where we have a
conformant array formal parameter

x:array[a..b:integer,c..d:integer] of integer
to which we pass as actual parameter the range
p[2..4,3..7]
as actual parameter, where p:array[1..10,1..10] of integer
In this case the base address would point at @p[2,3] and the step would be 40 - the

length of 10 integers.

5.6.1 Range checking
When arrays are indexed, the compiler plants run time checks to see if the indices are
within bounds. In many cases the optimiser is able to remove these checks, but in those
cases where it is unable to do so, some performance degradation can occur. Range checks
can be disabled or enabled by the compiler directives.

{$r-} { disable range checks }
{$r+} { enable range checks }
Performance can be further enhanced by the practice of declaring arrays to have lower

bounds of zero. The optimiser is generally able to generate more efficient code for zero
based arrays.

82 CHAPTER 5. IMPLEMENTATION ISSUES

Algorithm 5.4 C version of the convolution routine.
#include <stdlib.h>
conv(char *im, int planes, int rows,int cols,float c1,float c2,float c3)
/* C version of a convolution routine */
{
int i,j,p,temp;
int planestep=rows*cols;
char * plane, * buffplane;
char * buff = malloc(rows*planes*cols);
for (p=0;p<planes;p++){
plane = &im[p*planestep];
buffplane= &buff[p*planestep];
/* convolve horizontally */
for(i=0;i<rows;i++){
for(j=1;j<(cols-1);j++) {
temp= plane[i*cols+j-1]*c1+plane[i*cols+j]*c2+plane[i*cols+j+1]*c3;
if (temp<0){temp=0;}
else if (temp>255) { temp=255;} ;
buffplane[i*cols+j]=temp;

}
buffplane[i*cols]=plane[i*cols];
buffplane[i*cols+cols-1]=plane[i*cols+cols-1];

}
/* convolve vertically */
for(j=0;j<cols;j++) {
for(i=1;i<rows-1;i++){
temp= buffplane[(i-1)*cols+j]*c1+buffplane[i*cols+j]*c2+buffplane[(1+i)*cols+j]*c3;
if(temp<0){temp=0;}
else if (temp>255) { temp=255;} ;
plane[i*cols+j]=temp;

}
plane[j]=buffplane[j];
plane[(rows-1)*cols+j]=buffplane[(rows-1)*cols+j];

}
}
free(buff);
}

Index

’.pas’, 51
(*, 10
*), 10
**, 35
+, 36
+:, 36
-, 36
-:, 36
-Afilename, 63
-BOEHM, 63
-Ddirname, 63
-S, 64
-U, 64
-V, 64
-cores, 43, 63
-cpuCGFLAG, 63
-fFORMAT, 63
-fastforloop, 45
-oexefile, 64
:=, 42
><, 36

abs, 30, 52
addr, 30
alias, 20, 52
AMD, 7, 65
and, 30, 36
APL, 7
append, 52
arccos, 52
arcsin, 52
arctan, 52
array, 18, 19, 26, 30, 34, 43, 81
array assignment, 40
array constant, 14
array context, 43
array, conformant, 81
array, dynamic, 19, 81
array, static, 18, 81
as, 65
assign, 52
assignment, 42

basis, 17
begin, 44

binary, 16
block, 50
blockread, 53
blockwrite, 53
boolean, 16, 30
bounds, 81
byte, 16, 30
bytes, 31

C, 7
cardinal, 16
case, 45
cast, 38
char, 16
character, 31
charmax, 16
chdir, 53
chr, 30, 53
class, 22
close, 53
closedir, 53
cmplx, 34, 53
comment, 10
compiler, 51
complement, 37
Complex, 34
complex, 16
complexone, 14
complexzero, 14
concatenate, 37
conformant, 81
constant, 14
constants, 14
cos, 30

declaration, 13
declarations, 50
Delphi, 7
dimension, 34
dimensional, 17
dimensioned, 17
dimensions, 43
dispose, 21
div, 30, 36
double, 16

83

84 INDEX

downto, 45
Dynamic, 19
dynamic, 19
dynamic array, 19

else, 44
end, 44
eof, 53
eoln, 53
epsreal, 14
erase, 53
evaluated, 40
Exit, 44
exp, 53
Expressions, 29

Factor, 35
false, 16
Field, 27
filepos, 53
filesize, 53
fillchar, 53
fixed, 16
flags, 63
floor, 53
for, 45
formal parameter, 27
formating, 47
Fortran, 7
frac, 53
fractions, 16
freemem, 53
function, 30

garbage collection, 63
getmem, 53
gettime, 53
goto, 14, 44

halt, 53
hazards, 40
heap, 81
hexadecimal, 10
high, 21

IA32, 65
identifier, 10, 17
IEEE, 16
if, 44
im, 53
implementation, 50
implicit indices, 33, 43
in, 37
inc, 53
index, 18, 31

indices, 25, 33, 43
int, 53
int64, 16
integer, 10, 15, 16, 29, 31
Intel, 65
interface, 49
ioresult, 54
iota, 30, 32
is, 37
isdir, 54
iteration, 45

J, 7
Java, 7

K6, 7, 65

label, 14, 44
length, 54
library, 49
literal, 11
ln, 30
longint, 16
loop, 43
low, 21

matrix, 31
max, 36, 37
maxchar, 14
maxdouble, 14
maxint, 14
maxreal, 14
maxstring, 14
media, 11
min, 36, 37
mindouble, 14
minreal, 14
mmpc, 63
mmpcdir, 63
mod, 30, 36
monadic, 33
move, 54
multi-core, 46

NASM, 65
ndx, 32
not, 30

octal, 10
odd, 54
opendir, 54
operator, 37, 42
operator, overloadin, 37
operators, 13
or, 30, 36

INDEX 85

ord, 30

P3, 65
page, 54
parallel, 40, 46
parallelise, 73
paramcount, 54
parameter, 44, 81
parameters, 26
paramstr, 54
Pascal, 8
Pascal90, 19
pascalexit, 54
pchar, 16
Pentium, 65
perm, 33
pi, 14
pixel, 16, 29, 30
pixels, 11
point, 16
pointer, 19, 31
polymorphism, 50, 51
pow, 35
prallelise, 43
pred, 30
procedure, 13, 44
program, 13, 49
pthreads, 73
pure, 75

random, 54
randomize, 54
range, 26, 81
rank, 34, 43, 81
rdu, 34
re, 54
read, 47
readdir, 54
readln, 47
real, 11, 15, 29, 31
reals, 29
record, 18, 45
reduction, 33
repeat, 46
reset, 54
rewrite, 54
round, 30

saturated, 37
scalar, 15, 16, 18, 30
schema, 81
schematic, 26
secs, 54
seek, 54

semaphore, 73
set, 19, 30
shl, 36
shortint, 16
shr, 36
SIMD, 7, 8
sin, 30
sizeof, 31
source, 40, 51
sqr, 54
sqrt, 30
static, 18, 19, 81
string, 18
strings, 11, 25
strlen, 54
strpas, 54
subrange, 16, 18
Subranges, 26
substring, 54
succ, 30
suffix, 51
System, 13

tan, 30
then, 44
thread, 73
to, 45
trans, 30, 33
true, 16
Turbo Pascal, 49
type, 14, 15, 17, 18

unit, 13
units, 49

Variables, 24, 27
variant, 18
vector, 31
vectorise, 43, 73
vpc, 63

while, 46
with, 45
word, 16
write, 47
writeln, 47

86 INDEX

Bibliography

[1] 3L Limited, Parallel C V2.2, Software Product Description, 1995.

[2] Advanced Micro Devices, 3DNow! Technology Manual, 1999.

[3] Aho, A.V., Ganapathi, M, TJiang S.W.K., Code Generation Using Tree Matching and
Dynamic Programming, ACM Trans, Programming Languages and Systems 11, no.4,
1989, pp.491-516.

[4] Blelloch, G. E., NESL: A Nested Data-Parallel Language, Carnegie Mellon Univer-
sity, CMU-CS-95-170, Sept 1995.

[5] Burke, Chris, J User Manual, ISI, 1995.

[6] Cattell R. G. G., Automatic derivation of code generators from machine descriptions,
ACM Transactions on Programming Languages and Systems, 2(2), pp. 173-190, April
1980.

[7] Chaitin. G., Elegant Lisp Programs, in The Limits of Mathematics, pp. 29-56,
Springer, 1997.

[8] Cheong, G., and Lam, M., An Optimizer for Multimedia Instruction Sets, 2nd SUIF
Workshop, Stanford University, August 1997.

[9] Cherry, G., W., Pascal Programming Structures, Reston Publishing, Reston, 1980.

[10] Cockshott, Paul, Direct Compilation of High Level Languages for Multi-media
Instruction-sets, Department of Computer Science, University of Glasgow, Nov 2000.

[11] Ewing, A. K., Richardson, H., Simpson, A. D., Kulkarni, R., Writing Data Parallel
Programs with High Performance Fortran, Edinburgh Parallel Computing Centre, Ver
1.3.1.

[12] Formella, A.; Obe, A.; Paul, W.; Rauber, T. & Schmidt, D. The SPARK 2.0 system-a
special purpose vector processor with a VectorPASCAL compiler System Sciences,
1992. Proceedings of the Twenty-Fifth Hawaii International Conference on, 1992, 1,
547-558.

[13] Susan L. Graham, Table Driven Code Generation, IEEE Computer, Vol 13, No. 8,
August 1980, pp 25..37.

[14] Intel, Intel Architecture Software Developers Manual Volumes 1 and 2, 1999.

[15] Intel, Willamette Processor Software Developer’s Guide, February, 2000.

[16] ISO, Extended Pascal ISO 10206:1990, 1991.

[17] ISO, Pascal, ISO 7185:1990, 1991.

87

88 BIBLIOGRAPHY

[18] K. E. Iverson, A Programming Language, John Wiley & Sons, Inc., New York (1962),
p. 16.

[19] Iverson, K. E. . Notation as a tool of thought. Communications of the ACM, 23(8),
444-465, 1980.

[20] Iverson K. E, A personal View of APL, IBM Systems Journal, Vol 30, No 4, 1991.

[21] Iverson, Kenneth E., J Introduction and Dictionary, Iverson Software Inc. (ISI),
Toronto, Ontario, 1995. 4, pp 347-361, 2000.

[22] Jensen, K., Wirth, N., PASCAL User Manual and Report, Springer 1978.

[23] Johnston, D., C++ Parallel Systems, ECH: Engineering Computing Newsletter, No.
55, Daresbury Laboratory/Rutherford Appleton Laboratory, March 1995,pp 6-7.

[24] Knuth, D., Computers and Typesetting, Addison Wesley, 1994.

[25] Krall, A., and Lelait, S., Compilation Techniques for Multimedia Processors, Interna-
tional Journal of Parallel Programming, Vol. 28, No. 4, pp 347-361, 2000.

[26] Lamport, L., LATEXa document preparation system, Addison Wesley, 1994.

[27] Leupers, R., Compiler Optimization for Media Processors, EMMSEC 99/Sweden
1999.

[28] Metcalf, M., and Reid., J., The F Programming Language, OUP, 1996.

[29] Peleg, A., Wilke S., Weiser U., Intel MMX for Multimedia PCs, Comm. ACM, vol
40, no. 1 1997.

[30] Shannon, C., A Mathematical Theory of Communication, The Bell System Technical
Journal, Vol 27, pp 379-423 and 623-656, 1948.

[31] Snyder, L., A Programmer’s Guide to ZPL, MIT Press, Cambridge, Mass, 1999.

[32] Srereman, N., and Govindarajan, G., A Vectorizing Compiler for Multimedia Exten-
sions, International Journal of Parallel Programming, Vol. 28, No. 4, pp 363-400,
2000.

[33] Strachey, C., Fundamental Concepts of Programming Languages, University of Ox-
ford, 1967.

[34] Étienne Gagnon, SABLECC, AN OBJECT-ORIENTED COMPILER FRAME-
WORK, School of Computer Science McGill University, Montreal, March 1998.

[35] Texas Instruments, TMS320C62xx CPU and Instruction Set Reference Guide, 1998.

[36] Turner, T. Vector Pascal: a computer programming language for the FPS-164 array
processor Iowa State Univ. of Science and Technology, Ames (USA), 1.

[37] Wirth, N., Recollections about the development of Pascal, in History of Programming
Languages-II, ACM-Press, pp 97-111, 1996.

