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Chapter 1

Installation and compilation

1.1 Introduction

Welcome to GPMath, a mathematical package for GNU Pascal (GPC). This
chapter explains how to install this library and how to compile a program
which uses it.

1.2 Unpacking the archive

Extract the archive gpmat[...].zip (where [...] stands for version number)
in a given directory.

Be sure to preserve the directory structure. For instance, if you use
pkunzip, add the option -d (i. e. pkunzip -d gpmat[...].zip).

1.3 Compilation of a program

GPMath is comprised of several units, which are stored in the units subdi-
rectory of the installation directory.

A list of the units and the procedures which they contain is provided in
the file filelist.txt which is also located in the units subdirectory.

To use these units in your program, simply add their names to the uses
clause of the program.

To compile the program, the path to the units must be passed on the
command line by means of the ——unit-path option. For instance, under
Windows, assuming that you have installed the library in C:\GPMath:

gpc prog.pas -o prog.exe -02 -s --automake --unit-path=C:\GPMath\units
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1.4 Using graphics

Graphics are provided by means of GPC’s emulation of the Borland graph
unit. This unit is part of the GRX library (http://www.grx.gnu.de/). You
must therefore install this library first.

For legal reasons, the font files (*.chr) are not included in GRX or GP-
Math. You must get them from one of the free Turbo Pascal distributions, e.
g. TP7 (http://pascal.developpez.com/compilateurs/tp7/) and place
them in a convenient directory, e. g. C:\GPMath\chr

12



Chapter 2

Numeric precision

This chapter explains how to set the mathematical precision for the compu-
tations involving real numbers.

2.1 Numeric precision

GPMath allows you to use three floating point types Single (4-byte real,
about 6 significant digits), Double (8-byte real, about 15 significant digits),
or Extended (12-byte real, about 18 significant digits).

The choice of a given type is done by defining a compilation symbol:
SINGLEREAL, DOUBLEREAL or EXTENDEDREAL.

The symbol may be defined on the command line, using the -D option (e.
g. gpc prog.pas -DEXTENDEDREAL ... ).

If no symbol is defined, then type Double will be automatically selected.
It is therefore the default type.

Also, if you wish to compare the results given by a GPMath program with
those of a reference program written in another language (e. g. Fortran),
be sure that the two programs have been compiled with the same numeric
precision.

13



2.2 Type Float

A type Float is defined in unit utypes. It corresponds to Single, Double
or Extended, according to the compilation options.

So, a program which uses real variables should begin with something like:

uses

utypes;
var

X : Float;

2.3 Machine-dependent constants

The following constants are defined in unit utypes :

Constant Meaning

MachEp  The smallest real number such that (1.0 + MachEp) has a
different representation (in the computer memory) than 1.0;
it may be viewed as a measure of the numeric precision
which can be reached within the given floating point type.

MaxNum The highest real number which can be represented.

MinNum The lowest positive real number which can be represented.

MaxLog The highest real number X for which Exp (X)
can be computed without overflow.

MinLog  The lowest (negative) real number X for which Exp (X)
can be computed without underflow.

MaxFac The highest integer for which the factorial can be computed.

MaxGam The highest real number for which the Gamma function
can be computed.

MaxLgm  The highest real number for which the logarithm
of the Gamma function can be computed.

2.4 Demo program
The program testmach.pas located in the demo\fmath subdirectory checks
that the machine-dependent constants are correctly handled by the computer.

This program lists the sizes of the integer and floating point types, to-
gether with the values of the machine-dependent constants, and computes
the following quantities:
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Exp(MinLog) Should be approximately equal to MinNum

Ln(MinNum) Should be approximately equal to MinLog
Exp (MaxLog) Should be approximately equal to MaxNum
Ln (MaxNum) Should be approximately equal to MaxLog
Fact (MaxFac)

Gamma (MaxGam) Should be computed without overflow.
LnGamma (MaxLgm)

The following results were obtained with GPC 20070904 in double preci-
sion:

Integer (4 bytes)
LongInt (8 bytes)
Double (8 bytes)

Complex (16 bytes)

Integer type

Long Integer type
Floating point type
Complex type

MachEp = 2.220446049250313e-16
MinNum = 2.225073858507202e-308
Exp(MinLog) = 2.225073858507263e-308
MinLog = -7.083964185322641e+02
Ln (MinNum) = -7.083964185322641e+02
MaxNum = 1.797693134862315e+308
Exp (MaxLog) = 1.797693134862273e+308
MaxLog = 7.097827128933840e+02
Ln (MaxNum) = 7.097827128933840e+02
MaxFac = 170

Fact (MaxFac) = 7.257415615308283e+306
MaxGam = 1.716243769563020e+02
Gamma (MaxGam) = 1.797693134862315e+308
MaxLgm = 2.556348000000000e+305
LnGamma (MaxLgm) = 1.795136671459441e+308
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Chapter 3

Elementary functions

This chapter describes the mathematical constants and elementary mathe-
matical functions available in GPMath.

3.1 Constants

The following mathematical constants are defined in unit utypes :

Constant Value Meaning
Pi 3.14159... T
Ln2 0.69314... In 2

Lni0 2.30258... In 10
LnPi 1.14472... Inm
InvLn2 1.44269... 1/In2
InvLniO | 0.43429... 1/In10
TwoPi 6.28318... o
PiDiv2 1.57079... /2
SqrtPi 1.77245... NZa
Sqrt2Pi | 2.50662... V27

InvSqrt2Pi | 0.39894... 1/v/2m
LnSqrt2Pi | 0.91893... In 27
Ln2PiDiv2 | 0.91893... (In27)/2
Sqrt2 1.41421... V2
Sqrt2Div2 | 0.70710... V2/2
Gold 1.61803... | Golden Ratio = (1 ++/5)/2
CGold 0.38196... 2 - Gold

Note : The constants are stored with 20 to 21 significant digits. So, they
will match the highest degree of precision available (i.e. type Extended).
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3.2 Error handling

The function MathErr () (also defined in utypes) returns the error code from

the last function evaluation. It must be checked immediately after a function
call:

Y := £f(X); { f is one of the functions of the library }
if MathErr = FOk then ...

If an error occurs, a default value is attributed to the function. The
possible error codes are the following;:

Error code | Value Meaning
FOk 0 No error
FDomain -1 Argument domain error
FSing -2 Function singularity
FOverflow -3 Overflow range error
FUnderflow | -4 Underflow range error
FTLoss -5 Total loss of precision
FPLoss -6 Partial loss of precision

3.3 Sign and exchange

The following functions are defined in unit usign :

e Function Sgn(X) returns 1if X >0, -1if X <0.
e Function Sgn0(X) returns 1 if X >0, 0if X =0, -1 if X <0.

e Function DSgn(A, B) transfers the sign of B to A. It is therefore
equivalent to: Sgn(B) * Abs(A)

The following functions are defined in unit uswap :

e Function FSwap (X, Y) exchanges two real numbers X, Y.

e Function ISwap(X, Y) exchanges two integer numbers X, Y.

18



3.4 Rounding functions

These functions are defined in unit uround :

e Function RoundN(X, N) will round X to /N decimal places. N must be
between 0 and 16.

e Function Floor (X) returns the lowest integer > X

e Function Ceil (X) returns the highest integer < X

3.5 Logarithms and exponentials

These functions are defined in unit umath.

The functions Expo and Log may be used instead of the standard functions
Exp and Ln, when it is necessary to check the range of the argument. The
new function performs the required tests and calls the standard function if
the argument is within the acceptable limits (for instance, X > 0 for Ln(X));
otherwise, the function returns a default value and MathErr() will return
the appropriate error code.

Calling these functions is more time-consuming than calling the standard
Exp and Ln, because each function involves several tests and two procedure
calls (one to the function itself and another to the standard Exp or Ln).
Hence, if the program must compute lots of logarithms or exponentials, it
may be more efficient to use the standard functions Exp and Ln. In this case,
however, the error handling must be done by the main program.

The same remark applies to the other logarithmic and exponential func-
tions defined in the library:

Function | Definition Pascal code
Exp2(X) 2% Exp(X * Ln2)
Exp10(X) 10% Exp(X * Ln10)
Log2(X) log, X Ln(X) * InvLn2
Log10(X) log;p X | Ln(X) * InvLnilO
LogA(X, A) | logy X Ln(X) / Ln(A)

Here, too, it may be more efficient to use the Pascal code inline rather
than calling the GPMath function, but the error control will be lost.
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3.6 Trigonometric functions

In addition to the standard GPC functions Sin, Cos, ArcSin, ArcCos, ArcTan,

GPMath provides the following functions in unit utrigo :

Function

Definition

Tan (X)
Pythag(X, Y)
ArcTan2(Y, X)

FixAngle(Theta)

sin X
cos X

X #@2k+1)T
VXTI YE

Y .
arctan %, result in [—, 7]

Returns the angle Theta in the range [—, 7]

Note: If (X,Y) are the cartesian coordinates of a point in the plane, its

polar coordinates are:

R := Pythag(X, Y);
Theta

:= ArcTan2(Y, X)

3.7 Hyperbolic functions

The following functions are defined in unit uhyper :

Function Definition

Sinh (X) (e —e)

Cosh (X) s(eX+e %)

Tanh (X) AN
ArcSinh(X) | In(X + VX2 +1)
ArcCosh(X) | In(X 4+ VX2 — 1) X >1
ArcTanh (X) %ln% -1<X <1

In addition, the subroutine SinhCosh(X, SinhX, CoshX) computes the
hyperbolic sine and cosine simultaneously, saving the computation of one
exponential.

20



3.8 Demo programs

These program are located in the demo\fmath subdirectory.

3.8.1 Function accuracy

Program testfunc.pas checks the accuracy of the elementary functions.
For each function, 20 random arguments are picked, then the function is
computed, the reciprocal function is applied to the result, and the relative
error between this last result and the original argument is computed. This
error should be around 107'° in double precision.

3.8.2 Computation speed

Program speed.pas measures the execution time of the built-in mathemat-
ical functions, as well as the additional functions provided in GPMath. The
results are printed on the screen and saved in a text file named speed.out.
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Chapter 4

Special functions

This chapter describes the special functions available in GPMath. Most of
them have been adapted from C codes in the Cephes library by S. Moshier
(http://www.moshier.net).

4.1 Factorial

Function Fact(N), defined in unit ufact, returns the factorial of the non-
negative integer N, also noted N! :

Nl=1x2x---xN ol=1

The constant MaxFac defines the highest integer for which the factorial
can be computed (See chapter 2, p. 14).

4.2 Gamma function and related functions

4.2.1 Gamma function

The following functions are defined in unit ugamma :

e Function Gamma(X) returns the Gamma function, defined by:
NX)= / t* e tat
0
This function is related to the factorial by:
N'=T(N+1)
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The Gamma function is indefinite for X = 0 and for negative integer
values of X. It is positive for X > 0. For X < 0 the Gamma function
changes its sign whenever X crosses an integer value. More precisely, if
X is an even negative integer, I'(X) is positive on the interval | X, X +1],
otherwise it is negative.

e Function SgnGamma(X) returns the sign of the Gamma function for a
given value of X.

e Function LnGamma(X) returns the natural logarithm of the Gamma
function.

e Function Stirling(X) approximates Gamma (X) with Stirling’s formula,
for X > 30.

e Function StirLog(X) approximates LnGamma(X) with Stirling’s for-
mula, for X > 13.

The constants MaxGam and MaxLgm define the highest values for which
the Gamma function and its logarithm, respectively, can be computed (See
chapter 2, p. 14).

4.2.2 Incomplete Gamma function
The following functions are defined in unit uigamma :

e Function IGamma(A, X) returns the incomplete Gamma function, de-

fined by:
1 XAt
— t dt A>0,X>0
P(A)/o e >0,X >

e Function JGamma (A, X) returnsthe complement of the incomplete Gamma

function, defined by:
1 A1
r(A)/X e

Although formally equivalent to 1.0 - IGamma(A, X), this function
uses specific algorithms to minimize roundoff errors.

4.2.3 Inverse of incomplete Gamma function

Function InvGamma(A, Y), defined in unit uinvgam, returns X such that
IGamma(A, X) =Y
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4.3 Polygamma functions

The polygamma function of order n, denoted v,,(x), is the n-th derivative of
the logarithm of the gamma function:

Un(z) = InT(x)

dx™

The cases n = 1 and n = 2 are implemented in GPMath as DiGamma (X)
and TriGamma(X). These functions are defined in unit udigamma.

4.4 Beta function and related functions

e Function Beta(X, Y), defined in unit ubeta, returns the Beta function,
defined by:

1
B(X,Y) :/0 N1 - )Y dt =

(Here B denotes the uppercase greek letter ‘Beta’ !)

e Function IBeta(A, B, X), defined in unit uibeta, returns the incom-
plete Beta function, defined by:

1
B(A, B)

X
/t”%b%ﬁ”ﬁ A>0,B>0,0<X <1
0

e Function InvBeta(A, B, Y), defined in unit uinvbeta, returns X such
that IBeta(A, B, X) =

4.5 Error function

The following functions are defined in unit uigamma :

e Function Erf (X) returns the error function, defined by:

erf(X exp(—t°)dt

=ik

e Function Erfc (X) returns the complement of the error function, defined
by:

erfe(X) = \/2% /XOO exp(—t?)dt
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4.6 Lambert’s function

Lambert’s W function is the reciprocal of the function xe®. That is, if y =
W(z), then x = ye¥. Lambert’s function is defined for x > —1/e, with
W(—1/e) = —1. When —1/e < x < 0, the function has two values; the value
W (x) > —1 defines the upper branch, the value W (z) < —1 defines the lower
branch.

The function LambertW (X, UBranch, Offset), defined in unit ulambert,
computes Lambert’s function.

e X is the argument of the function (must be > —1/e)

e UBranch is a boolean parameter which must be set to True for com-
puting the upper branch of the function and to False for computing
the lower branch.

e Offset is a boolean parameter indicating if X is an offset from —1/e.
In this case, W(X —1/e) will be computed (with X > 0). Using offsets
improves the accuracy of the computation if the argument is near —1/e.

The code for Lambert’s function has been translated from a Fortran pro-
gram written by Barry et al (http://www.netlib.org/toms/743).

4.7 Demo programs

e Program specfunc.pas, located in the demo\fmath subdirectory, checks
the accuracy of the functions Fact, Binomial, Gamma, IGamma, Erf,
Erfc, Beta, IBeta, DiGamma and TriGamma

Most of the data come from Numerical Recipes (http://www.nr.com),
but the reference values have been re-computed to 20 significant dig-
its with the Maple software (http://www.maplesoft.com) and the
Gamma values for negative arguments have been corrected.

Each program computes the values of a given function for a set of
predefined arguments and compares the results to the reference values.
Then it displays the number of correct digits found. This number
should be between 14 and 16 in double precision.
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e Program testw.pas checks the accuracy of the Lambert function.

The program computes Lambert’s function for a set of pre-defined ar-
guments and compares the results with reference values. It displays
the number of exact digits found. This number should correspond with
the numeric precision used (14-16 digits in double precision).

This program has been translated from a Fortran program written by
Barry et al (http://www.netlib.org/toms/743).
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Chapter 5

Probability distributions

This chapter describes the functions available in GPMath to compute prob-
ability distributions. Most of them are applications of the special functions
studied in chapter 4.

5.1 Binomial distribution

Binomial distribution arises when a trial has two possible outcomes: ‘failure’
or ‘success’. If the trial is repeated N times, the random variable X is the
number of successes.

e Function Binomial (N,K), defined in unit ubinom, returns the binomial
coefficient (%), which is defined by:

N N!
= <K<N
(K) Kv—fkn  UshS

e Function PBinom(N, P, K), also defined in ubinom, returns the proba-
bility of obtaining K successes among N repetitions, if the probability
of success is P.

N

Prob(X = K) = (K

)PKQN‘K with Q =1—P

e Function FBinom(N, P, K), defined in unit uibtdist, returns the prob-
ability of obtaining at most K successes among N repetitions, i. e.
Prob(X < K). This is called the cumulative probability function and
is defined by:

K
k=0
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where Iz denotes the incomplete Beta function.

The mean of the binomial distribution is y = NP, its variance is 02 =
NPQ. The standard deviation is therefore o = /N PQ).

5.2 Poisson distribution

The Poisson distribution can be considered as the limit of the binomial dis-
tribution when N — oo and P — 0 while the mean p = N P remains small
(say N > 30, P <0.1, NP < 10)

e Function PPoisson(Mu, K), defined in unit upoidist, returns the prob-
ability of observing the value K if the mean is p. It is defined by:

K
—u M
= e K _—

Prob(X = K) 7

e Function FPoisson(Mu, K), defined in unit uigmdist, gives the cumu-
lative probability function, defined by:

K k
Prob(X < K) =) e * == =1—-Ir(K+1,p)
k=0

where It denotes the incomplete Gamma function.

5.3 Standard normal distribution

The normal distribution (a. k. a. Gauss distribution or Laplace-Gauss
distribution) corresponds to the classical bell-shaped curve. It may also be
considered as a limit of the binomial distribution when N is sufficiently ‘large’
while P and @ are sufficiently different from 0 or 1. (say N > 30, NP > 5,
NQ@ > 5).

The normal distribution with mean p and standard deviation o is denoted
N(u,0) with 4 = NP and 0 = /NPQ. The special case N (0,1) is called
the standard normal distribution.

e Function DNorm(X), defined in unit unormal, returns the probability
density of the standard normal distribution, defined by:

) = e ()

The graph of this function is the bell-shaped curve.
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e Function FNorm(X), defined in unit uigmdist, returns the cumulative
probability function:

b's

®(X) = Prob(U < X) = /

—00

e[t (x2)]

where U denotes the standard normal variable and erf the error func-
tion.

e Function PNorm(X), also defined in uigmdist, returns the probability
that the standard normal variable exceeds X in absolute value, i. e.

Prob(|U| > X).

e Function InvNorm(P), defined in unit uinvnorm, returns the value X
such that ®(X) = P.

5.4 Student’s distribution

Student’s distribution is widely used in Statistics, for instance to estimate
the mean of a population from a sample taken from this population. The
distribution depends on an integer parameter v called the number of degrees
of freedom (in the mean estimation problem, v = n — 1 where n is the
number of individuals in the sample). When v is large (say > 30) the Student
distribution is approximately equal to the standard normal distribution.

e Function DStudent (Nu, X), defined in unit ugamdist, returns the prob-
ability density of the Student distribution with Nu degrees of freedom,
defined by:

where B denotes the Beta function.

e Function FStudent (Nu, X), defined in unit uibtdist, returns the cu-
mulative probability function:

N .
®,(X) =Prob(t < X) = /Oofu(ﬂf)dl" = { {/_2 1/2 1£§ §8

where t denotes the Student variable and [ = Iy (%, %, ” +”XQ)

e Function PStudent (Nu, X), also defined in uibtdist, returns the prob-
ability that the Student variable t exceeds X in absolute value, i. e.

Prob(|t| > X).
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Function InvStudent(Nu, P), defined in unit uinvbeta, returns the
value X such that ¢,(X) = P.

5.5 Khi-2 distribution

The x? distribution is a special case of the Gamma distribution (see below).
It depends on an integer parameter v which is the number of degrees of
freedom.

Function DKhi2(Nu, X), defined in unit ugamdist, returns the proba-
bility density of the x? distribution with Nu degrees of freedom, defined
by:

1

fu(X) = m X

X3 exp (—2> (X >0)

Function FKhi2(Nu, X), defined in unit uigmdist, returns the cumu-
lative probability function:

®,(X) =Prob(x* < X) = /OX fo(@)dx = Ir <Z’ )2(>

where It denotes the incomplete Gamma function.

Function PKhi2(Nu, X), also defined in uigmdist, returns the proba-
bility that the x? variable exceeds X, i. e. Prob(x* > X).

Function InvKhi2(Nu, P), defined in unit uinvgam, returns the value
X such that ¢,(X) = P.

5.6 Snedecor’s distribution

The Snedecor (or Fisher-Snedecor) distribution is used mainly to compare
two variances. It depends on two integer parameters v; and v, which are the
degrees of freedom associated with the variances.

e Function DSnedecor (Nul, Nu2, X), defined in unit ugamdist, returns

the probability density of the Snedecor distribution with Nul and Nu2
degrees of freedom, defined by:

1 vy . _V1+V2
funlX) = s (27 x# (14 2x) T (x>0
(?,7) 2 2
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e Function FSnedecor (Nul, Nu2, X), defined in unit uibtdist, returns
the cumulative probability function:

X
®,, ,,(X) =Prob(F < X) :/0 Forn(@)dr = 1—1I; (Vz 121 Vo >

2 ’ 57 vy + VlX
where F' denotes the Snedecor variable.

e Function PSnedecor (Nul, Nu2, X), also defined in uibtdist, returns
the probability that the Snedecor variable F' exceeds X, i. e. Prob(F >
X).

e Function InvSnedecor (Nul, Nu2, P), defined in unit uinvbeta, re-
turns the value X such that @, ,,(X) = P.

5.7 Exponential distribution
The exponential distribution is used in many applications (radioactivity,
chemical kinetics...). It depends on a positive real parameter A.

The following functions are defined in unit uexpdist :

e Function DExpo (A, X) returns the probability density of the exponen-
tial distribution with parameter A, defined by:

F4(X) = Aexp(—AX) (X >0)
e Function FExpo(A, X) returns the cumulative probability function:

2A(X) = [ fale)dr =1~ exp(~AX)

5.8 Beta distribution

The Beta distribution is often used to describe the distribution of a random
variable defined on the unit interval [0, 1]. It depends on two positive real
parameters A and B.

e Function DBeta(A, B, X), defined in unit ugamdist, returns the prob-
ability density of the Beta distribution with parameters A and B, defined
by:

1

BB XA (1= X)B 0<X<1)

fap(X) =
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e Function FBeta(A, B, X), defined in unit uibtdist, returns the cu-
mulative probability function:

X
O p(X) = /0 Fan(@)dzr = I5(A, B, X)

5.9 Gamma distribution

The Gamma distribution is often used to describe the distribution of a ran-
dom variable defined on the positive real axis. It depends on two positive
real parameters A and B.

e Function DGamma (A, B, X),defined in unit ugamdist, returns the prob-
ability density of the Gamma distribution with parameters A and B,
defined by:

fap(X) = - X471 exp(—BX) (X >0)

'(4)

e Function FGamma (A, B, X), defined in unit uigmdist, returns the cu-
mulative probability function:

O p(X) = /0 Y fap(@)dz = In(A, BX)

The x? distribution is a special case of the Gamma distribution, with
A=v/2and B=1/2.
5.10 Demo program

Program binom.pas, located in the demo\proba subdirectory, compares the
cumulative probabilities of the binomial distribution, estimated by function
FBinom, with the values obtained by summing up the individual probabilities.
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Chapter 6

Matrices and linear equations

This chapter describes the procedures and functions available in GPMath to
perform vector and matrix operations, and to solve systems of linear equa-
tions.

6.1 Using vectors and matrices

Vectors and matrices are standard Pascal arrays. Arrays of variable sizes are
passed to procedures by means of the ‘conformant array’ mechanism. For
instance, a procedure using a matrix A and a vector X could be declared as
follows:

procedure Proc(var A : array[Lbl..Ubl : Integer;
Lb2..Ub2 : Integer] of Float;
var X : array[Lb..Ub : Integer] of Float);

where Lb stands for ‘lower bound’ and Ub for ‘upper bound’.

We can use macros to simplify the code:

{$define Vector array[Lb..Ub : Integer] of Float}
{$define Matrix array[Lbl..Ubl : Integer; Lb2..Ub2 : Integer] of Float}

procedure Proc(var A : Matrix; var X : Vector);

However, it must be noted that these macros work merely as text replace-
ments, not as type declarations.
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6.2 Error codes

The following error codes are defined in unit utypes :

Error code | Value Meaning
MatOk 0 No error
MatNonConv -1 Non-convergence of an iterative procedure
MatSing -2 Quasi-singular matrix
MatErrDim -3 Non-compatible dimensions
MatNotPD -4 Matrix not positive definite

6.3 Gauss-Jordan elimination

6.3.1 General case

If B(nxn) and C(n xm) are two real matrices, the Gauss-Jordan elimination
can compute the inverse matrix B~!, the solution X to the system of linear
equations BX = C, and the determinant of B.

This algorithm is implemented in GPMath as procedure GaussJordan,
defined in unit ugausjor :

GaussJordan (A, Det)

where:

e On input, A[Lb..Ubl, Lb..Ub2] is the global matrix [B|C], which
means that:

— the first n columns of A contain the matrix B

— the other columns of A contain the matrix C

e On output, A is transformed into the global matrix [B~!|X], which
means that:

— the first n columns of A contain the inverse matrix B~

— the other columns of A contain the solution matrix X
e Det is the determinant of B

Notes:
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e C may be a vector, in this case m = 1 and X is also a vector.

e The original matrix A is overwritten by the procedure. If necessary,
the calling program must save a copy of it.

After a call to GaussJordan, the function MathErr will return the error
code:

e MatOk if no error
e MatErrDim if Ubl > Ub2

e MatSing if B is quasi-singular

6.3.2 Special case

Procedure LinEq(A, B, Det), defined in unit ulineq, solves the system
AX = B, where A is a square matrix and B a vector, by the Gauss-Jordan
elimination method. In this case, the inverse matrix is returned in A and the
solution vector X is returned in B.

6.4 LU decomposition

The LU decomposition algorithm factors the square matrix A as a product
LU, where L is a lower triangular matrix (with unit diagonal terms) and U
is an upper triangular matrix.

The linear system AX = B is then solved by:
LY =B (6.1)
Uux =Y (6.2)

System 6.1 is solved for vector Y, then system 6.2 is solved for vector X.
The solutions are simplified by the triangular nature of the matrices.

GPMath provides the following procedures in unit ulu :

e procedure LU Decomp(A) performs the LU decomposition of matrix
A[Lb..Ub, Lb..Ub].

The matrices L and U are stored in A, which is therefore destroyed.

After a call to LU Decomp, the function MathErr will return one of the
following error codes:
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— MatOQOk if no error
— MathErrDim if the matrix dimensions do not match
— MatSing if A is quasi-singular
e procedure LU_Solve(A, B, X) solves the system AX = B, where X

and B are real vectors, once the matrix A has been transformed by
LU_Decomp.

6.5 QR decomposition

This method factors a matrix A as a product of an orthogonal matrix Q by
an upper triangular matrix R.:

A =QR
The linear system AX = B then becomes:
QRX =B

Denoting the transpose of Q by Q' and left-multiplying by this transpose,
one obtains:

Q'QRX =Q'B
or:
RX=Q'B
since the transpose of an orthogonal matrix is equal to its inverse.

The last system is solved by making advantage of the triangular nature
of matrix R.

Note : The QR decomposition may be applied to a rectangular matrix
n x m (with n > m). In this case, Q has dimensions n x m and R has
dimensions m x m. For a linear system AX = B, the solution minimizes the
norm of the vector AX - B. It is called the least squares solution.

GPMath provides the following procedures in unit uqr :

e procedure QR Decomp(A, R) performs the QR decomposition on the
input matrix A[Lb..Ubl, Lb..Ub2].

The matrix Q is stored in A, which is therefore destroyed.

After a call to QR_Decomp, the function MathErr will return one of the
following error codes:
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— MatO0k if no error
— MatErrDim if Ub2 > Ubl

— MatSing if A is quasi-singular

e procedure QR_Solve(Q, R, B, X) solves the system QRX = B.

6.6 Singular value decomposition
Singular value decomposition (SVD) factors a matrix A as a product:
A=UsV'

where U et V are orthogonal matrices. S is a diagonal matrix. Its diagonal
terms 5;; are all > 0 and are called the singular values of A. The rank of A
is equal to the number of non-null singular values.

e If A is a regular matrix, all S; are > 0. The inverse matrix is given
by:

A= (USVH ' = (V) !ST'U ! =V x diag(1/S;) x UT
since the inverse of an orthogonal matrix is equal to its transpose.

So the solution of the system AX = B is given by X = A~'B

e [f A is a singular matrix, some S;; are null. However, the previous
expressions remain valid provided that, for each null singular value,
the term 1/S;; is replaced by zero.

It may be shown that the solution so calculated corresponds:

— in the case of an under-determined system, to the vector X having
the least norm.

— in the case of an impossible system, to the least-squares solution.
Note : Just like the QR decomposition, the SVD may be applied to a
rectangular matrix n x m (with n > m). In this case, U has dimensions

n x m, S and V have dimensions m x m. For a linear system AX = B, the
SVD method gives the least squares solution.

GPMath provides the following procedures in unit usvd :
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e procedure SV_Decomp(A, S, V) performs the singular value decompo-
sition on the input matrix A[Lb..Ub1l, Lb..Ub2].

The matrix U (such that A = USV ") is stored in A, which is therefore
destroyed.

After a call to SV Decomp, the function MathErr will return one of the
following error codes:

— MatOQk if no error
— MatErrDim if Ub2 > Ubl

— MatNonConv if the iterative process does not converge

e procedure SV_SetZero(S, Tol) sets to zero the singular values S; which
are lower than a fraction Tol of the highest singular value. This proce-
dure may be used when solving a system with a near-singular matrix.

e procedure SV_Solve(U, S, X, V, B) solves the system USV X = B.

e procedure SV_Approx(U, S, V, A) approximates a matrix A by the
product USV T, after the lowest singular values have been set to zero
by SV_SetZero.

6.7 Cholesky decomposition

The symmetric matrix A is said to be positive definite if, for any nonzero
vector x, the product x" Ax is > 0.

For such matrices, it is possible to find a lower triangular matrix L such
that:
A=LL"

L can be viewed as a kind of ‘square root” of A.

Subroutine Cholesky(A, L), defined in unit ucholesk, performs the
Cholesky decomposition on A[Lb..Ub, Lb..Ub]. After a call to the sub-
routine, function MathErr returns the error code:

e MatOk if there is no error.
e MatErrDim if the matrix dimensions do not match.

e MatNotPD if A is not positive definite.
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6.8 Eigenvalues and eigenvectors

6.8.1 Definitions

A square matrix A is said to have an eigenvalue \, associated to an eigen-
vector V, if and only if:
A V=)V

A symmetric matrix of size n has n distinct real eigenvalues and n or-
thogonal eigenvectors.

A non-symmetric matrix of size n has also n eigenvalues but some of them
may be complex, and some may be equal (they are said to be degenerate).

6.8.2 Symmetric matrices

e Procedure EigenSym(A, V, Lambda), defined in unit ueigsym, com-
putes the eigenvalues and eigenvectors of the real symmetric positive
definite matrix A[Lb..Ub, Lb..Ub] by singular value decomposition.
For such matrices, all eigenvalues are real and positive.

The eigenvectors are returned in matrix V; the eigenvalues are returned
in vector Lambda.

The eigenvectors are stored along the columns of V. They are normal-
ized, with their first component always positive.

The error codes are those of the SV_Decomp procedure.

e Procedure Jacobi(A, MaxIter, Tol, V, Lambda), defined in unit ujacobi,

computes the eigenvalues and eigenvectors of the real symmetric ma-
trix A[Lb..Ub, Lb..Ub], using the iterative method of Jacobi. The
eigenvalues and eigenvectors are ordered and normalized as with the
previous procedure.

MaxIter is the maximum number of iterations, Tol is the required
precision on the eigenvalues.

After a call to Jacobi, function MathErr returns one of two error codes:

— MatOk if all goes well.
— MatErrDim if the matrix and vector dimensions do not match.

— MatNonConv if the iterative process does not converge.

These procedures destroy the original matrix A.
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6.8.3 General square matrices

e procedure EigenVals (A, Lambda), defined in unit ueigval, computes
the eigenvalues of the real square matrix A[Lb..Ub, Lb..Ub].

Eigenvalues are stored in the complex vector Lambda. The real and
imaginary parts of the i'” eigenvalue are stored in Re (Lambda[i]) and
Im(Lambdal[i]), respectively. The eigenvalues are unordered, except
that complex conjugate pairs appear consecutively with the value hav-
ing the positive imaginary part first.

Function MathErr returns the following error codes:

e ( if no error

e (-i) if an error occurred during the determination of the i eigen-
value. The eigenvalues should be correct for the indices > i.

This procedure destroys the original matrix A.

e procedure EigenVect (A, Lambda, V), defined in unit ueigvec, com-
putes the eigenvalues and eigenvectors of the real square matrix A[Lb. .Ub,
Lb..Ub].

Eigenvalues are stored in the complex vector Lambda, just like with
EigenVals.

Eigenvectors are stored along the columns of the real matrix V.

If the i*" eigenvalue is real, the i column of V contains its eigenvector.
If the i"* eigenvalue is complex with positive imaginary part, the it?
and (i+1)" columns of V contain the real and imaginary parts of its
eigenvector. The eigenvectors are unnormalized.

Function MathErr returns the same error codes than EigenVals. If the
error code is not null, none of the eigenvectors has been found.

This procedure destroys the original matrix A.

6.9 Demo programs

These programs are located in the demo\matrices subdirectory.

42



6.9.1 Determinant and inverse of a square matrix

Program detinv.pas computes the determinant and inverse of a square ma-
trix. The inverse matrix is re-inverted and the result (which should be equal
to the original matrix) is printed. The determinant of the inverse matrix is
also evaluated and the product of the two determinants (which should be -1)
is displayed.

The example matrix is:

1 20 -1
-1 4 3 —-0.5
A= 2 21 -3
00 3 —4
The inverse is:
_41 4 1 5 7
21 21 7 7
6 1 _5 1
21 21 4 14
Al =
40 8 8 3
21 21 7T 7
10 2 6 4
L~ 7 7 7 7

or, in approximate form:

—1.9523 0.1905  1.5714 —0.7143

0.7619 0.0476 —0.3571  0.0714
—1.9048 0.3810  1.1429 —0.4286
—1.4286 0.2857  0.8571 —0.5714

Al x

The determinant is -21.
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6.9.2 Hilbert matrices

Program hilbert.pas tests the Gauss-Jordan method by solving a series of
Hilbert systems of increasing order. Such systems have matrices of the form:

i 1 1 1 .. 17
L3 3 1 N
1 1 1 1 R
2 3 1 5 N1l
1 1 1 1 R
A=1| 3 4 5 6 N+2
1 1 1 1 R
i 5 6 7 N+3
FER U U U
| N N+1 N+2 N+3 aN—1 J

Each element of the constant vector (stored in the (N + 1) column of
matrix A) is equal to the sum of the terms in the corresponding line of the
matrix :

N
Ainy1 = Z Ay
J=1

The solution of such a system is [1,1,1,---1]

The determinant of the Hilbert matrix tends towards zero when the order
increases. The program stops when the determinant becomes too low with
respect to the numerical precision of the floating point numbers. This occurs
at order 13 in double precision.

6.9.3 Gauss-Jordan method: single constant vector

Program lineql.pas solves the linear system AX = B. After a call to
LinEq, A contains the inverse matrix and B contains the solution vector.

The example system matrix is:

2 1 5 —8
7 6 2 2
A=1_1 3 _10 4
2 2 2 1
The constant vector is:
0
17
B = —10
7
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The solution vector is:

—_ = = =

The determinant is -135

6.9.4 Gauss-Jordan method: multiple constant vectors

Program lineqm.pas solves a series of linear systems with the same system
matrix and several constant vectors. The system matrix is stored in the
first n columns of matrix A; the constant vectors are stored in the following
columns. After a call to GaussJordan, the first n columns of A contain the
inverse matrix and the following columns contain the solution vectors.

The example system matrix from the previous program is used. The
matrix of constant vectors is:

0 -15 14 -13 5
17 50 1 8 30
-10 -5 —-12 -51 -—15
717 1 37 10

The solution matrix is:

12 140
15 -1 55
10 160
13 -1 70

6.9.5 LU, QR and SV decompositions

The demo programs test_lu.pas, test_qr.pas and test_svd.pas solve the
linear system used by lineql.pas (paragraph 6.9.3) with the LU, QR, and
singular value decompositions, respectively.

6.9.6 Cholesky decomposition

Program cholesk.pas performs the Cholesky decomposition of a positive
definite symmetric matrix. The matrix is decomposed then the program
computes the product LL T which must give the original matrix.
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The example matrix is:

60 30 20
30 20 15
20 15 12

>
|

Its Cholesky factor is:

24/15
L=| V15
2\/15

E
S o

or, in approximate form:

7.745967 0 0
L~ | 3.872983 2.236068 0
2.581989 2.236068 0.577350

6.9.7 Eigenvalues of a symmetric matrix

Program eigensym.pas computes the eigenvalues and eigenvectors of Hilbert
matrices (see program hilbert.pas) by the SVD or Jacobi methods. Such
matrices are very ill-conditioned, which can be seen from the high ratio be-
tween the highest and lowest eigenvalues (the condition number).

6.9.8 Eigenvalues of a general square matrix

Program eigenval . pas computes the eigenvalues of a general square matrix.

The example matrix from the detinv.pas program is used. It has two
real and two complex (conjugate) eigenvalues:

-1.075319 + 1.709050 * i
-1.075319 - 1.709050 * i
-1.000000
5.150639

6.9.9 Eigenvalues and eigenvectors of a general square
matrix

Program eigenvec.pas computes both the eigenvalues and eigenvectors of

a general square matrix. The same example matrix is used.

The eigenvectors are stored columnwise in a matrix V. In order to retrieve
the eigenvectors associated with complex eigenvalues, the program takes into
account the following properties:
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e Complex conjugate pairs of eigenvalues are stored consecutively in vec-
tor Lambda, with the value having the positive imaginary part first.

e If the i"* eigenvalue is complex with positive imaginary part, the i‘®
and (i+1)™ columns of matrix V contain the real and imaginary parts
of its eigenvector.

e Figenvectors associated with complex conjugate eigenvalues are them-
selves complex conjugate.

Hence the algorithm:

if Im(Lambda[I]) = 0.0 then
{ Eigenvector is in column I of V }
else if Im(Lambdal[I]) > 0.0 then
{ Real and imag. parts of eigenvector are in columns I and (I+1)
For component K: real part = V[K, I]
imag. part = V[K, I+1] }
else
{ Real and imag. parts of eigenvector are in columns (I-1) and I
For component K: real part = V[K, I-1],
imag. part = - V[K, I] }

The results obtained with the example matrix are the following:

Eigenvalue:
-1.075319 + 1.709050 * i
Eigenvector:

-0.220224 + 0.394848 * i
0.078289 - 0.303345 * i
0.029348 + 0.787594 * i
0.374358 + 0.589119 * i

Eigenvalue:
-1.075319 - 1.709050 * i
Eigenvector:
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-0.220224
0.078289
0.029348
0.374358

Eigenvalue:
-1.000000
Eigenvector:

2.605054
-1.042021
3.126065
3.126065

Eigenvalue:
5.150638

Eigenvector:
0.345194
0.788801

0.441744
0.144823

+

0.394848
0.303345
0.787594
0.589119

% ¥ Xx *
He e e .
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Chapter 7

Function minimization

This chapter describes the procedures and functions available in GPMath to
minimize functions of one or several variables. Only deterministic optimizers
are considered here. Stochastic optimization will be studied in chapter 12.

7.1 Functions of one variable

Let Func be a function of a real variable X. In GPMath such a function is
declared as:

function Func(X : Float) : Float;

There is a special type TFunc declared in unit utypes for this kind of
functions.

The problem is to find the real Xmin for which Func(X) is minimal.

Procedure GoldSearch(Func, A, B, MaxIter, Tol, Xmin, Ymin), de-
fined in unit ugoldsrc, performs the minimization by the ‘golden search’
method. This means that, at each iteration, the number Xmin is ‘bracketed’
by a triplet (A, B, C) such that:

e A<B<C(C

e A B,(C are within the golden mean ¢, i.e.

B-A C—-A | 1++5

e Func(B) < Func(A) and Func(B) < Func(C).
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The user must provide two numbers A and B which define the ‘unit vector’
on the X axis. The number C is found by the program itself. It is not
necessary that the interval [A, B] contains the minimum.

The user must also provide:
e the maximum number of iterations MaxIter

e the tolerance Tol with which the minimum must be located. This value
should not be higher than the square root of the machine precision
(MachEp'/? =~ 1.5 x 1078 in double precision)

The procedure returns the coordinates (Xmin, Ymin) of the minimum.

After a call to GoldSearch, function MathErr () will return one of two
error codes:

e Opt0k if no error occurred

e OptNonConv (non-convergence) if the number of iterations exceeds the
maximum value MaxIter

The determination of the bracketing triplet A, B, C is performed within
GoldSearch by a call to the procedure MinBrack, defined in unit uminbrak.
This procedure may be called independently. Its syntax is:

MinBrack(Func, A, B, C, Fa, Fb, Fc)
The user must provide the first two numbers A and B. The number C

is found by the procedure. The corresponding values of the function are
returned in Fa, Fb, Fc.

7.2 Functions of several variables

Let Func be a function of a real vector x such that x = [z1,29,--+]. In
GPMath such a function is declared as:

function Func(var X : array[Lb..Ub : Integer] of Float) : Float;

There is a special type TFuncNVar declared in unit utypes for this kind
of functions.

The problem is to find the vector X for which Func(X) is minimal.
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7.2.1 Minimization along a line

If x° is a starting point and dx is a constant vector, minimizing f from x°

along the direction specified by dx is equivalent to finding the number r such
that g(r) = f(x°+ r - 6x) is minimal.

The following procedure:
LinMin(Func, X, DeltaX, R, MaxIter, Tol, F_min)

which is declared in unit ulinmin, will minimize function Func from point
X[Lb..Ub] in the direction specified by vector DeltaX[Lb..Ub]. R is the
initial step in that direction, expressed as a fraction of the norm of DeltaX.
If R is set to O or a negative value, the procedure will use the default value R
= 1. The user must also provide the maximum number of iterations MaxIter
and the tolerance Tol, as for procedure GoldSearch.

On output, LinMin returns:

e the coordinates of the minimum in X()
e the step corresponding to the minimum in R

e the function value at the minimum in F_min

After a call to LinMin, function MathErr will return one of the error codes
Opt0k or OptNonConv, as with GoldSearch.

7.2.2 Newton-Raphson method

The Newton-Raphson method starts with an approximation x" for the coor-
dinates of the minimum and generates a new approximation x by using the
second-order Taylor series expansion of function f around x°:

Fx) = fx) + (x=x")" - g(x") + S(x—x")" - Hx) - (x —x°)  (7.1)

g denotes the gradient vector (vector of first partial derivatives) and H de-
notes the hessian matrix (matrix of second partial derivatives). For instance,
for a fonction of two variables f(z1, ) :

of

g(x") = ,
DL (29, 29)
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f(n0 0
8:5% (3717 xQ) 311812

92 92
(9:1628];:1 <x(1)’ .238) f( 9 0)

By differentiating eq. (1) we obtain the gradient of f at point x:
g(x) = g(x") + H(x’) - (x — x’) (7.2)
If x is sufficiently close to the minimum, g(x) ~ 0 so:
x=x0 — H(x") - g(x")

In practice, it is better to determine the step k& which minimizes the
function in the direction specified by —H*(x°) - g(x):

x=x"-k -H ' gx°

The determination of & is performed by line minimization.

The following procedure:
Newton(Func, HessGrad, X, MaxIter, Tol, F_min, G, H_inv, Det)

which is defined in unit unewton, minimizes function Func by the Newton-
Raphson method.

The user must provide a procedure HessGrad to compute the gradient G

and the hessian H of the function at point X. This procedure is declared as:

procedure HessGrad(var X, G : array[Lb..Ub : Integer] of Float;
var H : array[Lbl..Ubl : Integer;

Lb2..Ub2 : Integer] of Float);

which corresponds to type THessGrad defined in unit utypes.
MaxIter and Tol have their usual meaning.

On output, Newton returns:

the coordinates of the minimum in X

the function value at the minimum in F_min

the gradient at the minimum in G (should be near 0)

the inverse hessian matrix at the minimum in H_inv
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e the determinant of the hessian matrix at the minimum in Det

After a call to Newton, function MathErr will return one of three error
codes:

e OptOk if no error occurred
e MatErrDim if the dimensions of vectors and matrices do not match.

e OptNonConv (non-convergence) if the number of iterations exceeds the
maximum value MaxIter

e OptSing if the hessian matrix is quasi-singular

Approximate gradient and hessian

Although it is recommended to compute the gradient and hessian from an-
alytical derivatives, approximate values may be found using finite difference
approximations:

of .\ _ flwi+hi)— flzi — h)
Pl flait+hi)+ flw = hi) = 2f(2:)
92 = 2
O’ f (x) ~ J(xi+ hixj + hy) — f(xi + by x5) — f(@g, 25 + hy) + f(2i,25)
&'Biaxj x) = hzhj

The increment h; is such that h; = n | x; | where 1 is a constant which
should not be less than the cube root of the machine epsilon (MachEp'/? a
6.06 x 107% in double precision).

This method is illustrated in the demo programs testnewt.pas and
testmarq.pas (see paragraph 7.3).

7.2.3 Marquardt method

This method is a variant of the Newton-Raphson method, in which each
diagonal term of the hessian matrix is multiplied by a scalar equal to (14 \),
where A is the Marquardt parameter. This parameter is initialized at some
small value (e.g. 1072) at the beginning of the iterations, then it is decreased
by a factor 10 if the iteration leads to a decrease of the function, otherwise
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it is increased by a factor 10. If the method converges, A is set to zero and
an additional iteration (equivalent to a Newton-Raphson step) is performed.

This procedure is implemented in unit umarq as:

Marquardt (Func, HessGrad, X, MaxIter, Tol, F_min, G, H_inv, Det)

It is used like Newton, except that an additional error code, OptBigLambda,
may be returned by MathErr if the Marquard parameter increases beyond a
predefined value (10? in this implementation).

7.2.4 BFGS method

The BFGS (Broyden-Fletcher-Goldfarb-Shanno) method is another variant
of the Newton method in which the hessian matrix does not need to be
computed explicitly. It is said a quasi-Newton method.

The BFGS algorithm uses the following formula to construct the inverse
hessian matrix iteratively:
ox-ox"  (H;'-bg)- (H;'-dg)’
oxT - 6g og’ -H; ' ig

Hi =H' + +(0g' -H;'-dg) - u-u

with:

o ox H ' ig
- ox!-ég  ogT-H'.og

0X = Xjy1 — X; 0g = g(xiy1) — 8(xi) u
The algorithm is usually started with the identity matrix (Hy' = I).

This procedure is implemented in unit ubfgs as:

BFGS (Func, Gradient, X, MaxIter, Tol, F_min, G, H_inv)

The user must provide a procedure Gradient to compute the gradient G
of the function at point X. This procedure is declared as:

procedure Gradient(var X, G : array[Lb..Ub : Integer] of Float);

which corresponds to type TGradient declared in unit utypes.

The other parameters have the same meaning than in Newton.
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Approximate gradient

It is possible to estimate the gradient of function Func by finite difference
approximations, as described for the Newton method. Here the relative in-
crement 7 should not be less than the square root of the machine epsilon
(about 1.5 x 1078 in double precision).

See demo program testbfgs.pas for an example.

As usual, it is recommended to use analytical derivatives whenever pos-

sible.

7.2.5 Simplex method

Unlike previous methods, the simplex method of Nelder and Mead does not
use derivatives to locate the minimum. Instead it constructs a geometrical
figure (the ‘simplex’) having (n + 1) vertices, if n is the number of variables.
For instance, in the two-dimensional space (n = 2), the simplex would be
a triangle. Depending on the function values at the vertices, the simplex is
reduced or expanded until it comes close to the minimum.

This method is implemented in unit usimplex as:
Simplex(Func, X, MaxIter, Tol, F_min)

where the parameters have their usual meaning.

7.2.6 Log files

It is possible to create ‘log files” which save the progress of the iterations. If
the algorithm terminates abnormally, checking these files may help finding
the error. For each method (Newton, Marquard, BFGS, Simplex) there is a
Save... procedure which creates the log file. Each procedure accepts the
name of the file as its parameter (e.g. SaveBFGS(’bfgs.txt’)). The file is
automatically closed when the optimization procedure ends.

See the demo programs for examples using such files.

7.3 Demo programs

These programs are located in the demo\optim subdirectory.
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7.3.1 Function of one variable

Program minfunc.pas performs the golden search minimization on the func-
tion:
fla)= e — e

The minimum is at (In2, —1/4).

The minimum found by GoldSearch is compared with the true minimum.

7.3.2 Minimization along a line

Program minline.pas applies line minimization to the function of 3 variables
(taken from the Numerical Recipes example book) :

f(zy,m9,23) = (11 — 1) + (22 — 1)? + (23 — 1)?

The minimum is f(1,1,1) =0, i. e. for a step r = 1 from x = [0,0, 0] in
the direction 6x = [1, 1, 1].

The program tries a series of directions:

LT . . T .
0x = {\/5(:03 (220> . V/2sin <220> ,1} i=1..10

For each pass, the location of the minimum, and the value of the function
at the minimum, are printed. The true minimum is found at ¢ = 5.

7.3.3 Newton-Raphson method

Program testnewt . pas uses the Newton-Raphson method to minimize Rosen-
brock’s function (H. Rosenbrock, Comput. J., 1960, 3, 175):

fla,y) =100(y — 2*)* + (1 — 2)”
for which the gradient and hessian are:

| —400(y — a®)x — 24 22
g(r,y) = l 200y — 20022

[ 120022 — 400y +2 —400z
H(z,y) = l — 400z 200 ]

and the determinant of the hessian is:

det H(z, %) = 80000(z* — y) + 400
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The minimum is f(1,1) = 0, where:

s - o]

_ 1
H 1(1a1) = [ 401 ]
200

— D=

det H(1,1) = 400

In the demo program, the gradient and hessian are computed analyti-
cally. You can compare with the numerical computations by including file
numhess. inc in the program.

7.3.4 Other programs

Programs testmarq.pas, testbfgs.pas and testsimp.pas minimize Rosen-
brock’s function with the Marquardt, BFGS and Simplex methods, respec-
tively.
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Chapter 8

Nonlinear equations

This chapter describes the procedures available in GPMath to solve nonlinear
equations in one or several variables. Only general methods are considered
here. Polynomial equations will be studied in the next chapter.

8.1 Equations in one variable

The goal is to solve the nonlinear equation f(z) = 0, or, in other terms, find
a root of function f.

8.1.1 Bisection method

Procedure Bisect (Func, X, Y, MaxIter, Tol, F),defined in unit ubisect,
finds a root of function Func by the bisection method. At each iteration, the
root is bounded by two numbers (X, Y) such that the function has opposite
signs. Then, a new approximation to the root is generated by taking the
mean of these numbers.

The function Func must be declared as:
function Func(X : Float) : Float;

The user must provide initial values for X and Y. It is not necessary that
the interval [X, Y] contains the root.

The user must also provide:

e the maximum number of iterations MaxIter

e the tolerance Tol with which the root must be located.
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The procedure returns the refined values of X and Y and the function
value Func(X) in F.

After a call to Bisect, function MathErr will return one of two error

codes:

e OptOk if no error occurred

e OptNonConv (non-convergence) if the number of iterations exceeds the
maximum value MaxIter

If the starting interval [X, Y] does not contain the root, Bisect will
expand it by calling a procedure RootBrack, also defined in ubisect. This
procedure may be called independently. Its syntax is:

RootBrack(Func, X, Y, FX, FY)

The user must provide initial values for the two numbers X and Y, which
will be refined by the procedure. The corresponding function values are
returned in FX and FY.

8.1.2 Secant method

The secant method also starts with two approximations x and y and generates
a new approximation z from the formula:

o) —yf@)
fly) = f(z)
z is the intersection of the Ox axis with the line connecting the points

(x, f(x)) and (y, f(y)), i. e. the secant.

This method is implemented in unit usecant as:

Secant (Func, X, Y, MaxIter, Tol, F)

The parameters and error codes are the same than in Bisect. Here too,
it is not necessary that the interval [X, Y] contains the root.

8.1.3 Newton-Raphson method

The Newton-Raphson method starts with an approximate root 2° and gener-
ates a new approximation x by using the first-order Taylor series expansion
of function f around z°:

f@) = f(@") + f'(2") - (z —a")
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If x is sufficiently close to the root, f(x) = 0 so:

0 __ f(2%)
f'(x0)

This method is implemented in unit unewteq as:

r =2

NewtEq(Func, Deriv, X, MaxIter, Tol, F)

where Func and Deriv are the procedures which compute the function
and its derivative, respectively (they have the same syntax). The user must
provide the initial approximation X.

After a call to NewtEq, function MathErr will return one of three error
codes:

e Opt0Ok if no error occurred

e OptNonConv (non-convergence) if the number of iterations exceeds the
maximum value MaxIter

e OptSing if the derivative becomes zero

8.2 Equations in several variables

The goal is to solve a system of n nonlinear equations in n unknowns xy, s, - - - T,:

or, in matrix notation:

where f is a function vector.

8.2.1 Newton-Raphson method

The Newton-Raphson method starts with an approximate root x° and gener-
ates a new approximation x by using the first-order Taylor series expansion
of function f around x°:

f(x) ~ f(x) + DY) - (x — x?)
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D denotes the jacobian matrix (matrix of first partial derivatives). For in-
stance, for a system of 2 equations in two variables:

fi(x1,22) =0
fo(w1,22) =0

the jacobian matrix is:

D(x") =

If x is sufficiently close to the root, f(x) ~ 0 so:
x=x"-D1x°) f(x")

In practice, it is better to determine a step k in the direction specified by
D 1(x%) - f(xY):
x=x"—k -D'x°) - f(x")
The determination of k is performed by line minimization applied to the
sum of squared functions:

This method is implemented in unit unewteqgs as:
NewtEgs (Equations, Jacobian, X, F, MaxIter, Tol)

where Equations and Jacobian are the procedures which compute the
function vector and the jacobian matrix, respectively. Their syntaxes are:

procedure Equations(var X, F : array[Lb..Ub : Integer] of Float);

procedure Jacobian(var X : array[Lb..Ub : Integer] of Float;
var D : array[Lbl..Ubl : Integer;
Lb2..Ub2 : Integer] of Float);

They correspond to types TEquations and TJacobian, defined in unit
utypes.

The user must provide the initial approximations to the roots in vector
X[Lb..Ub]. After refinement by the procedure, the corresponding function
values are returned in vector F.

The possible error codes returned by MathErr are:
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e OptOk if no error occurred

e OptNonConv (non-convergence) if the number of iterations exceeds the
maximum value MaxIter

e OptSing if the jacobian matrix is quasi-singular

Approximate jacobian

Approximate values of the jacobian matrix may be computed using finite
difference approximations:

Ofi .\ _ filw; +hy) — filz; — hy)
8xj (X) - Qh]

The increment h; is such that h; = n | z; | where 7 is a constant which
should not be less than the square root of the machine epsilon (MachEp'/2).

The demo program testnr.pas gives an example of using such a proce-
dure.

As usual, it is recommended to use analytical expressions for the deriva-
tives whenever possible.

8.2.2 Broyden’s method

This method is similar to the BFGS method of function minimization. It
can also be viewed as a multidimensional version of the secant method.

Broyden’s algorithm uses the following formula to construct the inverse
jacobian matrix iteratively:

(6x —D;'-6f)- x| - D;!
oxT -D; ' of

D, =D +

with:
0X = Xi+1 — X of = f(X/L'Jrl) - f(Xl)

The algorithm is usually started with the identity matrix (Dy*' = I).

This method is implemented in unit ubroyden as:
Broyden(Equations, X, F, MaxIter, Tol)

where the parameters have the same significance than in NewtEgs.

The possible error codes returned by MathErr are OptOk and OptNonConv.
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8.3 Demo programs

These programs are located in the demo\equation directory.

8.3.1 Equations in one variable

The demo programs testbis.pas, testsec.pas and testnrl.pas demon-
strate the bisection, secant and Newton-Raphson methods, respectively, on

the equation:
f(z)=xlnz—-1=0

for which the derivative is:
flx)=Inz+1

The true solution is x = 1.763222834...

8.3.2 Equations in several variables

The demo programs testnr.pas and testbrdn.pas demonstrate the Newton-
Raphson and Broyden methods, respectively, on the following system (taken
from the Numerical Recipes example book) :

flay)=a"+y*—2=0

gla,y) =exp(r —1) +y* —2=0

for which the jacobian is:

2x 2y

D(z,y) = exp(z —1) 3y?

The true solution is (z,y) = (1, 1).
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Chapter 9

Polynomials

This chapter describes the procedures and functions related to polynomials
and rational fractions.

9.1 Polynomials

Function Poly (X, Coef, Deg), defined in unit upolynom, evaluates the poly-
nomial:

P(X) = Coef[0] + Coef[1] - X + Coef[2] - X* + - - - + Coef[Deg] - X

9.2 Rational fractions

Function RFrac(X, Coef, Degl, Deg?2), also defined in upolynom, evalu-
ates the rational fraction:

~ Coef[0] + Coef[1] - X + - - - + Coef[Degl] - XPe&!

1+ Coef[Degl + 1] + - - - + Coef[Degl + Deg2] - XPee2

F(X)

9.3 Roots of polynomials

Analytical methods can be used to compute the roots of polynomials up to
degree 4. For higher degrees, iterative methods must be used.

9.3.1 Analytical methods

Functions RootPoln(Coef, Z), with n = 1,2, 3,4, solve the equation:

Coef[0] + Coef[1] - X + Coef[2] - X%+ --- + Coef[N] - XN =0
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These functions are defined in their respective units urtpoln.
The roots are stored in the complex vector Z.

If no error occurs, the function returns the number of real roots, otherwise
it returns (-1) if the root is undetermined or (-2) if there is no solution.

9.3.2 General method

Function RootPol(Coef, Deg, Z),defined in unit urootpol, solves the poly-
nomial equation:
ap + a1z + agx® + -+ + aya” =0

The previous analytical methods are used for n < 4. For higher degrees
the method of the companion matriz is used.

The companion matrix A is defined by:

_fn-1  __Gn-2 . _ a1 _ 4o

171 O’VL o O’(l O’ﬂ

A=| 0 1 - 0 0
0 0 - 1 0 |

It may be shown that the eigenvalues of this matrix are equal to the roots
of the polynomial (Eigenvalues are treated in § 6.8).

The coefficients of the polynomial are passed in vector Coef, such that
Coef [0] = ag, Coef [2] = a; etc. The degree of the polynomial is passed in
Deg. The roots are returned in the complex vector Z.

If no error occurred, the function returns the number of real roots.

If an error occurred during the search for the i'” root, the function returns
(-1). The roots should be correct for indices (i+1)..Deg. The roots are
unordered.

9.4 Ancillary functions

Two procedures have been added in unit upolutil to facilitate the handling
of polynomials roots:

e Function SetRealRoots(Deg, Z, Tol) allows to set the imaginary
part of a root to zero if it is less than a fraction Tol of the real part.
The function returns the total number of real roots.
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Due to roundoff errors, some real roots may be computed with a very
small imaginary part, e.g. 1+ 107%. The function SetRealRoots tries
to correct this problem.

e Procedure SortRoots(Deg, Z) sort the roots such that:

1. The N real roots are stored in elements 1..N of vector Z, in in-
creasing order.

2. The complex roots are stored in elements (N + 1) ..Deg of vector
Z and are unordered.

9.5 Demo programs

These programs are located in the demo\polynom subdirectory.

9.5.1 Evaluation of a polynomial

Program evalpoly.pas evaluates a polynomial for a series of user-specified
values. Entering 0 stops the program.

9.5.2 Evaluation of a rational fraction

Program evalfrac.pas performs the same task as the previous program,
but with a rational fraction.

9.5.3 Roots of a polynomial

Program polyroot.pas computes the roots of a polynomial with real coef-
ficients. Analytical methods are used up to degree 4, otherwise the method
of the companion matrix is used.

The example polynomial is:
2% — 212° 4+ 1752 — 7352% + 16242 — 1764z + 720

for which the roots are 1, 2 ... 6
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Chapter 10

Numerical integration and
differential equations

This chapter describes the procedures available in GPMath to integrate a
function of one variable, and to solve systems of differential equations.

10.1 Integration

10.1.1 Trapezoidal rule

The trapezoidal rule approximates the integral I of a tabulated function by

the formula:
N—-1

Z xz—f—l - 171 yl+1 + yz)
=0

[\3\>—t

where (z;,;) are the coordinates of the i** point.

This procedure is implemented in unit utrapint as function TrapInt (X,
Y). Note that the lower bound of the arrays must be 0.

10.1.2 Gauss-Legendre integration

This method approximates the integral of a function f in an interval [a, b]

by:
/: f(z)dz ~

b—a b+a
_|_

Yi =
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The abscissae x; and weights w; are predefined values for a given number
of points N.

This method is implemented in unit ugausleg as function GausLeg(Func,
A, B) for N = 16. Function Func must be declared as:

function Func(X : Float) : Float;

For the special case A = 0 there is a variant GausLeg0 (Func, B).

10.2 Convolution

The convolution product of two functions f and g is defined by:

(F)®) = [ flu)glt — u)du

This product is often used to describe the ouput of a linear system when
f(t) is the input signal (function of time) and g(¢) is the impulse response of
the system.

e Function Convol(Funcl, Func2, T), defined in unit ugausleg, ap-
proximates the convolution product of the two functions Funcl and
Func2 at time T by the Gauss-Legendre method. The functions must
be declared as above.

e Procedure ConvTrap(Funcl, Func2, T, Y),defined in unit utrapint,
approximates the convolution product of the two functions Func1 and
Func?2 over a range of equally spaced times T[0. .N] by the trapezoidal
rule. The results are returned in Y[O. .N].

10.3 Differential equations

The Runge-Kutta-Fehlberg (RKF) method allows to compute numerical so-
lutions to systems of first-order differential equations of the form:

() = flt (), (), -]
Yo(t) = folt, yn(8), (1), -]

where the f; are known functions and the y; are to be determined.
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The RKF procedure is an extension of the classical Runge-Kutta method.
For instance, in the case of a single differential equation

y'(t) = flt,y(®)]
this method generates a sequence {t,,y,} which approximates the function
y(t).
The order of the method corresponds to the number of points used in

the interval [t,,t,.1]. For instance, the sequence generated by the 4-th order
Runge-Kutta method is defined by:

B ki ko ks kg
yn+1—yn+€+§+§+€

with:

h k1
ko =h-f(ta+= ue

ot D+ 2
n 2ayn 2

with h = tyy1 — by

In the RKF method, the step size h is automatically varied so as to
maintain a given level of precision on the estimated y values.

The implementation used in GPMath (in unit urkf) is a translation of
a Fortran program by H. A. Watts and L. F. Shampine (http://www.csit.
fsu.edu/~burkardt/f_src/rkf45/rkf45.£90). It is intermediate between
the 4-th and 5-th order Runge-Kutta methods, hence the name RKF45.

In order to use RKF45 you must:

1. Define the following constant and variables (the names are optional):

const
Negn = ... { Number of equations }

var
Y, Yp : array[l..Negqn] of Float; { Functions and derivatives }

var
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Tstart, Tstop : Float; { Integration interval }
Nstep : Integer; { Number of steps }

StepSize : Float; { Step size }

AbsErr, RelErr : Float; { Abs. and relative errors }
Flag : Integer; { Error flag }

T, Tout : Float; { Integration times }

I : Integer; { Loop variable }

2. Define a procedure for computing the system of differential equations:

procedure DiffEq(T : Float;
var Y, Yp : array([Lb..Ub : Integer] of Float);
begin
Yp~[1] := Y~ [2];
Yp~[2] := - Y~ [1];
end;

(There is a special type TDiffEqs defined in unit utypes for such pro-
cedures)

3. Initialize variables, compute the step size and call RKF45 for each
integration step (the initial values are given as examples, except for
Flag which must be initialized to 1):

begin
Y[1] :=1; { Initial conditions }
Y[2] := 0;
Tstart := O;
Tstop := 2 * Pi;
Nstep = 12;
StepSize := (Tstop - Tstart) / Nstep;
AbsErr := 1.0E-6;
RelErr := 1.0E-6;
Flag := 1;
T := Tstart;
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for I := 1 to Nstep do
begin
Tout := T + StepSize;
RKF45(DiffEq, Negn, Y, Yp, T, Tout, RelErr, AbsErr, Flag);
T := Tout;
end;
end.

Upon return from RKF45:

e Y, Yp contain the values of the functions and their first derivatives at
Tout

e Flag contains an error code:

: N0 error
: too small RelErr value

: too much function evaluations needed

: the requested accuracy could not be achieved

2
3
4

* 5 : too small AbsErr value
6
7 : the method was unable to solve the problem
8

. invalid input parameters

If an error occurs, it should be possible in most cases to restart the com-
putation, using the values returned by the subroutine in RelErr and AbsErr.

Note : RKF45 may be used to compute a definite integral:

between a and b, with the initial condition specified by f(a).
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10.4 Demo programs

These programs are located in the demo\integral subdirectory.

e Program trap.pas applies the trapezoidal rule to a tabulated function.

T

The example function f(x) = e™* is tabulated for x = 0 to 1 by steps

of 0.1. The integral is:

1
/ e Tdr = 1 — e !~ 0.6321
0

e Program gauss.pas demonstrates the Gauss-Legendre integration method.

The example function is f(z) = xe~*. The integral is:
/ FO)dt =1— (z+1)e®
0

e Program conv.pas computes the convolution of two functions by the
Gauss-Legendre method.

T

The example functions are f(z) = xe™® and g(z) = ¢ 2*. The convo-

lution product is:
(fxg)(z) = / flw)g(x —u)du = e_%/ uetdu = (x — 1)e™" — e 2"
0 0
e Program convtrap.bas computes the same convolution product by the
trapezoidal rule.

e Program test_rkf.pas solves 3 systems of differential equations by the
RKF method:

1. A single nonlinear equation:
y'(t) = 0.25 - y(t) - [1 — 0.05 - y(¢)]
with the initial condition y(0) = 1.

The analytic solution is:

20

1) =
V) = T 9 exp(—0.250)
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2. A system of two linear equations:

Yo(t) = —u1(t)
with the initial conditions y;(0) = 1,42(0) = 0.

The analytic solution is:
y1(t) = cost y2(t) = —sint

3. A system of 5 equations with one nonlinear:

Y1 (t) = ya(t)
Yo (t) = ys(t)
Y3 (t) = ya(t)
yu(t) = ys(t)
() =45 30(0) 3(0) - 0s(6) ~ g

with initial conditions y;(0) =1 Vi

The program prints the numeric solution, and, if possible, the analytic
one.
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Chapter 11

Fast Fourier Transform

11.1 Introduction

Fourier transform is a mathematical method which allows to determine the
frequency spectrum of a given signal (for instance a sound). The mathemat-
ical definition is the following :

o0

y(f) = /OO x(t) exp(2mi ft)dt :/ x(t)(cos 2w ft +isin2n ft)  (11.1)

—0o0 —00

where z(t) is the input signal (function of time), f the frequency, and i
the complex number such that 2 = —1. y is the Fourier transform of .

The input signal may have real or complex values. However, the Fourier
transform is always a complex number. For each frequency f, the modulus
of y(f) represents the energy associated with this frequency. A plot of this
modulus as a function of f gives the frequency spectrum of the input signal.

If the input signal is sampled as a sequence of n values xg, 1, ..., T, 1,
taken at constant time intervals, the Fourier transform is a sequence of com-
plex numbers g, ¥1, ..., Yn_1, Such that:

n—1
Yp =D T [Cos (27rkp> + i sin (27Tkp>] (11.2)
= n n

This formula allows, in principle, to compute the transform y, at any
point. In practice, a faster algorithm called the Fast Fourier Transform
(FFT) is used.
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11.2 Programming

11.2.1 Array dimensioning

The FFT algorithm requires that the number of points n is a power of 2.
Moreover, the arrays must be dimensioned from 0 to (n — 1). For instance:

const
NumSamples = 512; { Buffer size must be power of 2 }
MaxIndex = NumSamples - 1; { Max. array index }

var

InArray, OutArray : array[0..MaxIndex] of Complex;

The maximal value of n = 2P depends on the size of the Complex type,
according to the formula:

p = Trunc(Ln(MaxInt / SizeOf (Complex)) / Ln(2.0));

For GPC in double precision, p = 26, thus allowing 2% = 67108864 (64
mega) points.

11.2.2 FFT procedures

These procedures are defined in unit ufft.

e Procedure FFT(InArray, OutArray) calculates the Fast Fourier Trans-
form of the array of complex numbers InArray to produce the output
complex numbers in OutArray.

e Procedure IFFT(InArray, OutArray) calculates the Inverse Fast Fourier
Transform of the array of complex numbers represented by InArray to
produce the output complex numbers in OQutArray.

In other words, this procedure reconstitutes the input signal from its

FFT.

e Procedure FFT_Integer(Realln, ImagIn, OutArray) computes the
Fast Fourier Transform on integer data. Here the real and imaginary
parts of the data are stored in two integer arrays RealIn and Imagln,
while the results are stored in the complex array OutArray.

e Procedure FFT_Integer Cleanup clears the memory after a call to
FFT_Integer.
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e Procedure CalcFrequency(FrequencyIndex, InArray, FT) calculates
the complex frequency sample at a given index directly, by means of eq.
11.2. The answer is returned in the complex variable FT. Use this in-
stead of FFT when you only need one or two frequency samples, not the
whole spectrum. It is also useful for calculating the Fourier Transform
of a number of data which is not an integer power of 2. For example,
you could calculate the transform of 100 points instead of rounding up
to 128 and padding the extra 28 array slots with zeroes.

11.3 Demo programs
These programs are located in demo\fourier subdirectory.

e Program testfft.pas generates a time signal consisting of a large 200
Hz sine wave added to a small 2000 Hz cosine wave, which is graphed on
the screen. Next, it performs the FFT and graphs the resulting complex
frequency samples. Results are stored in the output file testfft.txt

The sampling frequency SamplingRate is 22050 Hz, the number of
points NumSamples is 512 (= 2%). These two numbers determine the
time and frequency units:

DT :
DF :

1 / SamplingRate; { Time unit (s) }
SamplingRate / NumSamples; { Frequency unit (Hz) }

so that the entry InArray[I] in the input array of procedure FFT
corresponds to the signal value at time I * DT, and that the entry
OutArray[I] in the output array corresponds to the Fourier transform
at frequency I * DF.

The FFT plot shows two peaks, corresponding to the 5-th and 46-th
entries in OutArray (as seen from the file testfft.txt). The corre-
sponding frequencies are:

22050

=~ 215H
H X 1o 5 Hz

22050

46 x 2220
* 7512

~ 1981 Hz

The high peak corresponds to the main signal and the small peak to
the parasite.
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The highest frequency which may be detected is equal to SamplingRate/2
and is called Nyquist’s frequency. Hence, only the first half of array
OutArray needs to be plotted (the second half contains symmetric val-
ues).

Program filter.pas performs the FF'T of the same signal and filters
out all frequency components above 1000 Hz in the transformed data.
Finally, it performs the inverse transform to get a filtered time signal,
which is graphed. Results are stored in the output file filter.txt

To filter the high frequencies, the program sets to zero all the FFT
values corresponding to the frequencies higher than 1000 Hz, according
to the following code:

FreqIndex := Trunc(1000.0 / DF);
SymIndex := NumSamples - Freqlndex;

for I := Freqlndex to SymIndex do
OutArray[I] := Cmplx(0.0, 0.0);

Note that the two halves of the output array, on either side of Nyquist’s
frequency, must be treated.

The program then calls procedure IFFT to compute the inverse Fourier
transform of the modified data and plots the result, showing that the
parasite has been removed, at the expense of a slight distorsion of the
main signal.

Program freq.pas performs a direct computation of the Fourier trans-
form of a set of random complex values, using function CalcFrequency,
and stores the results in the output file freq.txt, for comparison with
the FFT computed on the same data.

30



Chapter 12

Random numbers

This chapter describes the procedures and functions available to generate
random numbers and perform stochastic simulation and optimization.

12.1 Random numbers

12.1.1 Random number generator (RNG)

GPMath provides the ‘Mersenne Twister’ (MT) random number genera-
tor of Takuji Nishimura and Makoto Matsumoto (http://www.math.sci.
hiroshima-u.ac.jp/~m-mat/MT/emt.html).

This RNG has a long period (about 10°°%?) and produces uncorrelated
numbers in 623 dimensions.

12.1.2 Types

The following types are defined in unit utypes :

e RNG_IntType : 32-bit unsigned integer, equivalent to Cardinal

e RNG_LongType : 64-bit unsigned integer, equivalent to LongCard
In addition, unit urandom defines the following array type :

MTKeyArray = array[0..623] of RNG_LongType
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12.1.3 Initialization

The following functions are defined in unit urandom :

e Subroutine InitMT (Seed) initializes the MT generator with a RNG_IntType
integer.

e Subroutine InitMTbyArray(InitKey, KeyLength) initializes the MT
generator with an array InitKey[0. . (KeyLength - 1)] of type MTKeyArray,
with KeyLength < 624.

The default initialization performed corresponds to the array ($123,
$234, $345, $456).

12.1.4 Uniform random numbers

The following functions are defined in unit urandom :

Function Type Bits Interval
IRanGen RNG_IntType 32 [0, 4294967295]
IRanGen31 RNG IntType 31 [0, 2147483647]

RanGenl Float 32 [0, 1]
RanGen2 Float 32 0, 1)
RanGen3 Float 32 (0, 1)
RanGen53 Float 53 0, 1)

12.1.5 Gaussian random numbers
Normal distribution

The following functions are defined in unit urangaus :

e Function RanGaussStd generates a random number from the standard
normal distribution.

The Box-Muller algorithm is used: if z; and x5 are two uniform random
numbers € (0, 1), the two numbers y; and y, defined by:

Y = \/THZL]COS 27TI2 Yo = \/Tnxlsin 27T.1:2

follow the standard normal distribution.

e Function RanGauss(Mu, Sigma) generates a random number from the
normal distribution with mean Mu and standard deviation Sigma.
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Multinormal distribution

The following procedures are defined in unit uranmult :

e Subroutine RanMult(M, L, X) generates a random vector X from a
multidimensional normal distribution. M[Lb. .Ub] is the mean vector,
L[Lb..Ub, Lb..Ub] is the Cholesky factor of the variance-covariance
matrix.

To simulate the n-dimensional multinormal distribution N (m, V), where
m is the mean vector and V the variance-covariance matrix, the fol-
lowing algorithm is used:

1. Let u be a vector of n independent random numbers following the
standard normal distribution,

2. Let L be the lower triangular matrix resulting from the Cholesky
factorization of matrix V,

3. Vector x = m+Lu follows the multinormal distribution N'(m, V).

e Subroutine RanMultIndep(M, S, X) generates a random number from
an uncorrelated multidimensional distribution. Here S is simply the
vector of standard deviations.

12.2 Markov Chain Monte Carlo

It is not always possible to simulate the distribution of a random variable
with a direct algorithm such as the ones used for normal or multinormal
distributions.

However, there exist iterative algorithms which generate a sequence of
random variables for which the distribution tend towards the desired distri-
bution, after starting from a standard distribution (e. g. uniform).

These random sequences are known as Markov chains and the itera-
tive simulation method is therefore known as Markov chain Monte-Carlo

(MCMC).

There are several MCMC variants. Here we will present the Metropolis-
Hastings method.

Let X a vector of random variables and P(X) its probability density
function (p.d.f.), which is to be simulated. The classical formulation of the
Metropolis-Hastings algorithm is the following:
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1. Choose an initial parameter vector Xq

2. At iteration n:

(a) Draw a vector u from the multinormal distribution NV(X,,_1, V)
where V is the variance-covariance matrix

(b) If r = P(u)/P(X,,—1) > 1, set X, =u
otherwise if Random(0,1) < r, set X,, =u
where Random(0,1) denotes a uniform random number in the
interval [0,1]

3. Set n =n+ 1; goto 2

It is convenient to introduce a function F'(X) such that:

P(X) =Cexp l_F<TX)] = F(X) = —TlnP(CX) (12.1)

where C' and T' are positive constants. By analogy with statistical ther-
modynamics, 1" is known as the temperature.

From this equation, it may be seen that:

where

AF = F(u) — F(X,_)

so, the Metropolis-Hastings algorithm may be rewritten as:
1. Choose an initial parameter vector X

2. At iteration n:

(a) Draw a vector u from the multinormal distribution NV(X,,_1, V)
Set AF = F(u) — F(X,,_1)

(b) if AF <0, set X,, =u
otherwise if Random(0,1) < exp(—AF/2), set X,, = u

3. Set n =n+ 1; goto 2
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The initial variance-covariance matrix V may be diagonal and its ele-
ments may be given large values, so that the initial distribution spans a
relatively large space. When the iterations progress, the matrix converges to
the variance-covariance matrix of the simulated distribution. It is often use-
ful to perform several cycles of the algorithm, with the variance-covariance
matrix being re-evaluated at the end of each cycle.

The vector X corresponding to the lowest value of F' is recorded; hence,
the algorithm may be used as a stochastic optimization algorithm for min-
imizing the function F'. The advantage of such an algorithm is that it can
‘escape’ from a local minimum (with a probability equal to e=2F/T) and has
therefore more chances to reach the global minimum, unlike the determinis-
tic optimizers studied in chapter 7, for which only decreases of the function
are acceptable. This application is however restricted by the fact that the
function F' must be linked to a p.d.f. by means of eq. (12.1).

This method is implemented in GPMath with the following procedure:
Hastings(Func, T, X, V, Xmat, X_min, F_min)

which is defined in unit umcmc.

The user must provide :

e the function Func to be minimized (defined as in paragraph 7.2, p. 50)

the temperature T

a starting vector X[Lb. .Ub]

a starting variance-covariance matrix V[Lb..Ub, Lb..Ub].

On output, Hastings returns:

the mean of the simulated distribution in X

e its variance-covariance matrix in V

a matrix of simulated vectors in Xmat (one vector by line)

the vector which minimizes the function in X_min

the value of the function at the minimum in F_min (corresponds to the
mode of the simulated distribution).
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The behavior of the algorithm can be controlled with the following pro-
cedure:

InitMHParams (NCycles, MaxSim, SavedSim)
where:

e NCycles is the number of cycles (default = 10)

e MaxSim is the maximum number of simulations at each cycle (default
= 1000)

e SavedSim is the number of simulated vectors which are saved in matrix
Xmat. Only the last SavedSim vectors from the last cycle are saved.
(default = 1000)

The current values of these parameters can be retrieved with the proce-
dure GetMHParams (NCycles, MaxSim, SavedSim).

After a call to Hastings, function MathErr will return one of the following
codes:

e OptOk if no error occurred

e MatNotPD if the variance-covariance matrix is not positive definite

The random number generator is re-initialized at the start of the algo-
rithm, so that a different result will be obtained for each call of the subrou-
tine.

12.3 Simulated Annealing

Simulated annealing (SA) is an extension of the Metropolis-Hastings algo-
rithm which tries to find the global minimum of any function (not necessarily
a p.d.f.). Here the temperature starts from a high value and is progressively
decreased as the algorithm progresses towards the minimum. The optimized
parameters may then be refined with a local optimizer (chapter 7).

The implementations used in GPMath is a modification of a Fortran
program written by B. Goffe (http://www.netlib.org/simann).

With the notations:
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F(X) : function to be minimized

0X : range of X

Foin  : minimum of F(X)

T . temperature

Nr : number of loops at constant T’

Ng : number of loops before adjustement of 6X
Ry . temperature reduction factor

Nu. : number of accepted function increases

the algorithm may be described as follows:

e initialize T, X, X
e repeat

o repeat Np times

* repeat Ng times

for each parameter X; :

o pick a random value X/ in the interval X; + §X;

o compute F(X))

o accept or reject X! according to Metropolis criterion
o update Ny,

o update F,,;, if necessary

* adjust step length 6.X; so as to maintain an acceptance ratio
of about 50%

o T+ T-Rr

o until Nyee =0 0r T < Ty OF | Frpin| < €

The threshold values T),;,, and € are fixed at 1073% in our implementation.

At the beginning of the iterations, while we are away from the minimum,
it makes sense to choose a high probability of acceptance, for instance p = %
It is then possible to perform a given number of random drawings and to
compute the median M of the increases of function F', from which the initial
temperature Ty is deduced by:

M 1 M
T0> h = b=

p=ee(g) =3 i

This procedure is implemented in the following subroutine:
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SimAnn (Func, X, Xmin, Xmax, F_min)

which is defined in unit usimann

e Func is the function to be minimized (defined as in paragraph 7.2, p.
50)

e X[Lb..Ub] is the parameter vector

e Xmin, Xmax are the bound values of X

The optimized parameters are returned in X and the corresponding func-
tion value in F_min

The user must provide reasonable values of Xmin and Xmax as well as a
starting value for X. It is convenient to pick a random value in the range
specified by Xmin and Xmax.

The behavior of the algorithm can be controlled with the following pro-
cedure:

InitSAParams(NT, NS, NCycles, RT)
where:

e NT, NS, RT correspond to the variables Ny, Ng and Ry in the algo-
rithm. Default values are 5, 15 and 0.9 respectively.

e NCycles is the number of cycles (default = 1).

In some difficult situations, it may be useful to perform several cycles of
the algorithm. Each cycle will start with the optimized parameters X from the
previous cycle and the temperature will be re-initialized (the bound values
Xmin, Xmax remaining the same).

It is possible to record the progress of the iterations in a log file. This file
is created with:

SA_CreateLogFile(LogFileName)

If the file is created, the following information will be stored:
e iteration number (each iteration corresponds to a single temperature)

e temperature value
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e lowest function value obtained at this temperature
e number of function increases

e number of accepted increases

The file will be automatically closed upon return from SimAnn.

12.4 (Genetic Algorithm

Genetic Algorithms (GA) are another class of stochastic optimization meth-
ods which try to mimick the law of natural selection in order to optimize a
function F(X).

There are several implementations of these algorithms. We use a method
described by E. Perrin et al. (Recherche operationnelle / Operations Re-
search, 1997, 31, 161-201). In this version, the vector X is considered as the
‘phenotype’ of an ‘individual’ belonging to a ‘population’. This phenotype is
determined by two ‘chromosomes’ C; and C, and a vector of ‘dominances’
D such that:

A population is defined by a matrix P, such that each row of the matrix

corresponds to a vector X.

The population is initialized by taking vectors C; and Cy at random in
a given interval, vector D at random in (0,1) then applying eq. (12.2) to
obtain the corresponding X vectors.

At each step (‘generation’) of the algorithm:
1. The function values F(X) are computed for each vector X and the

Ng individuals having the lowest function values (the ‘survivors’) are
selected.

2. The remaining individuals are discarded and replaced by new ones,
generated as follows:

(a) Two ‘parents’ are chosen at random in the selected sub-population
and a ‘child’ is generated by:

e taking the vectors C; and C, at random from the parents

e generating a new vector D
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e computing the new X according to eq. (12.2)

This process is repeated until the function value for the child is
lower than the lowest function value of the two parents.

(b) The child is ‘mutated’ (i. e. its vectors are reinitialized at random)
with a probability Mg

(c¢) The child is made ‘homozygous’ (i. e. its vectors C; and C, are
made identical to its vector X) with a probability Hg

This procedure is implemented in the following subroutine:
GenAlg(Func, X, Xmin, Xmax, F_min)
which is defined in unit ugenalg

The parameters have the same meaning as in SimAnn.

The behavior of the algorithm can be controlled with the following pro-
cedure:

InitGAParams (NP, NG, SR, MR, HR)
where:
e NP is the population size (default = 200)
e NG is the number of generations (default = 40)
e SR is the survival rate (default = 0.5)

e MR is the mutation rate (default = 0.1)

HR is the probability of homozygosis (default = 0.5)

A log file may also be created with:
GA_CreateLogFile(LogFileName)

The file will contain the iteration (generation) number and the optimized
function value for this generation.

12.5 Demo programs

These programs are located in the demo\random subdirectory.
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12.5.1 Test of MT generator

Program testmt.pas writes 1000 integer numbers and 1000 real numbers
from functions IRanGen and RanGen2, using the default initialization.

The output of this program should be similar to the contents of file mt . txt

12.5.2 File of random numbers

Program randfile.pas generates a binary file of 32-bit random integers to
be used as input for the DIEHARD program. The user must specify the
number of random integers to be generated (default is 3,000,000).

12.5.3 (Gaussian random numbers

Program testnorm.pas picks a random sample of size N from a gaussian
distribution with known mean and standard deviation (SD), estimates mean
(m) and SD (s) from the sample, and computes a 95% confidence interval
for the mean (i.e. an interval which has a probability of 0.95 to include the
true mean), using the formula:

S

VN

m—1.96—— m + 1.96

VN
This formula is valid for N > 30.

12.5.4 Multinormal distribution

Program ranmul .pas simulates a multi-normal distribution. The example is
a 3-dimensional distribution with the following means, standard deviations,
and correlation matrix:

1 0.1 1025 0.5
m=| 2 s=1 0.2 R= 025 1 —0.25
3 0.3 0.5 —0.25 1

These data are stored in the input file ranmul .dat. The results of the
simulation are stored in file ranmul . out

12.5.5 Multi-lognormal distribution

A vector x is said to follow a multi-lognormal distribution LN (m, V) if the
vector x° defined by:
x; = In(z;)
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follows a multinormal distribution N (m°, V°)
It may be shown that:

me = In(z,) - Vg

Vo=In (1 + VJ)
m;m;
So, if x° is a random vector drawn from A(m°, V°), x = exp(x°) will be
a vector from LN (m, V)

Program ranmull.pas simulates a multi-lognormal distribution. The ex-
ample is a 2-dimensional distribution with the following means, standard
deviations, and correlation coefficient:

B [ 17.4178 ] . l 6.1259

5.3173 2.5158 ] r=0.5672

These data are stored in the input file ranmull.dat. The results of the
simulation are stored in file ranmull.out

12.5.6 Markov Chain Monte-Carlo

Although MCMC methods are best suited when there is no direct simulation
algorithm available, we will use the Metropolis-Hastings method to simulate
the previous multinormal distribution (program testmcmc.pas).

First, we have to define the function to be optimized. The probability
density for a n-dimensional normal distribution N (m, V) is:

1 1 TV-1(X - m
P(X)—Wexp[—Z(X—m) V(X — m)

So, according to eq. 12.1, T'= 2 and:
F(X)=(X-m) VX —m)

Then, we have to define a starting vector X,;,, and variance-covariance
matrix Vg,,. In order to show that the algorithm can converge from a point
chosen relatively far away from the optimum, we have chosen Xg;,, = 3m
and Vg, = diag(10V};).

With the default initializations (10 cycles of 1000 simulations each), the
results of a typical run were:

1.01 0.099 A 1 0.286 0467
m=| 2.02 §= 0.210 R = 0.286 1 —-0.299
3.01 0.320 0.467 —0.299 1
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12.5.7 Simulated Annealing and Genetic Algorithm

Program testsaga.pas uses simulated annealing or genetic algorithm to
minimize a set of 10 notoriously difficult functions (most of them presenting
multiple minima). Several successive runs of the program may be neces-
sary to have all functions minimized (the random number generator being
reinitialized at each call of the minimizer).
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Chapter 13

Statistics

This chapter describes some of the statistical functions available in GPMath.
The specific problem of curve fitting will be considered in subsequent chap-
ters.

13.1 Descriptive statistics
13.1.1 Minimum, maximum, mean and standard devi-
ation
The following functions are available in unit umeansd :
e Function MinVal (X) returns the minimum of sample X[Lb. .Ub]
e Function MaxVal (X) returns the maximum of sample X[Lb. .Ub]

e Function Mean (X) returns the mean of sample X[Lb. .Ub], defined by:
1 n
Nz

where n is the size of the sample.

e Function StDev (X, M) returns the estimated standard deviation of the
population from which sample X is extracted, M being the mean of the
sample. This standard deviation is defined by:

s:$ ! :(xi—m)Q

n—1¢

These estimated standard deviations are used in statistical tests.
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e Function StDevP (X, M) returns the standard deviation of X, considered
as a whole population. This standard deviation is defined by:

13.1.2 Median

Function Median (X, Sorted), defined in unit umedian, returns the median
of X, i. e. the number x,,.q which has equal numbers of values above it and
below it. If the array X has been sorted, the median is:

Tmed =  Tng (n odd)

1
Timed = 3 (:cg + :z:gﬂ) (n even)

The parameter Sorted indicates if array X has been sorted before calling
function Median. If not, it will be sorted within the function (the array X
will therefore be modified).

Sorting (in ascending order) is performed by calling a procedure QSort (X),
defined in unit ugsort, which implements the ‘Quick Sort’ algorithm. Of
course, this procedure may be called outside function Median. There is also
a procedure DQSort for sorting in descending order.

13.1.3 Correlation coefficient

Function Correl(X, Y), defined in unit ucorrel, returns the correlation
coefficient between X and Y:

i1 (@i — my)(ys —my)
\/Zz (@i —mg)? 300 (g — my)?

r =

where m, and m, denote the means of the samples.

13.1.4 Skewness and kurtosis

The following functions are defined in unit uskew :
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e Function Skewness (X, M, Sigma) returns the skewness of X, with mean
M and standard deviation Sigma. This parameter is defined by:

1 & 3
71:@;(%—”1)

Skewness is an indicator of the symmetric nature of the distribution.
It is zero for a symmetric distribution (e. g. Gaussian), and positive
(resp. negative) for an assymetric distribution with a tail extending
towards positive (resp. negative) x values.

e Function Kurtosis(X, M, Sigma) returns the kurtosis of X, with mean
M and standard deviation Sigma. This parameter is defined by:

1 & B
72:@;(%_7”) -3

Kurtosis is an indicator of the flatness of the distribution. It is zero for a
Gaussian distribution, and positive (resp. negative) if the distribution
is more (resp. less) ‘sharp’ than the Gaussian.

13.2 Comparison of means

13.2.1 Student’s test for independent samples

We have 2 independent samples with sizes ni,ne, means mq, my, standard
deviations s, so. It is assumed that the samples are taken from gaussian
populations with means gy, 1o and equal variances. The sample means are
compared by computing the ¢-statistic:

my —Mma

sy/1/ny 4+ 1/n9

where s? is the estimation of the common variance:

t =

&2 (ny —1)s7 + (ng — 1)s3

n1+n2—2

If n; > 30 and ny > 30, the conditions of normality and equal variances
are no longer required and the formula becomes:

my —Mma
\/51/n1 + 83/ns
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The null hypothesis is (Hy) : 1 = po
The alternative hypothesis (H;) depends on the test:

One-tailed test  (Hy) : pg > po = reject (Hy) if t > 1,
(Hy) @ < po = reject (Hy) if t < t1_4
Two-tailed test (Hy) : py # e = reject (Hy) if [t] > t1_q/0

where t;_,, is the value of the Student variable such that the cumulative
probability function ®,(t) =1 — « at v = n; + ny — 2 d.o.f. (cf. chap. 5).

If Hy is rejected, the difference of the means is considered significant at
risk «

This test is implemented in the following procedure (defined in unit
ustudind) :
StudIndep(N1, N2, M1, M2, S1, S2, T, DoF)

where (N1, N2) are the sizes of the samples, (M1, M2) their means and
(S1, S2) the estimated standard deviations (computed with StDev). The
procedure returns Student’s ¢ in T and the number of degrees of freedom in
DoF.

13.2.2 Student’s test for paired samples
If the samples are paired (e. g. the same patients before and after a treat-
ment), the t-statistic becomes:

t="4/n

Sd

where my and sy are, respectively, the mean and standard deviations of the
differences (z1; — x9;) between the paired values in the two samples, and n is
the common size of the samples.

Apart from this, the test is carried out as with the independent case, with
(n—1)d. o. f.

This test is implemented in the following procedure (defined in unit
ustdpair) :
StudPaired(X, Y, T, DoF)

where X[Lb..Ub], Y[Lb..Ub] are the two samples. The procedure re-
turns Student’s ¢ in T and the number of degrees of freedom in DoF.

After a call to this procedure, function MathErr returns one of the fol-
lowing error codes:
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e FOk (0) if no error occurred

e FSing (-2) if 54, =0

13.2.3 One-way analysis of variance (ANOVA)

We have k independent samples with sizes n;, means m;, standard deviations
s;. It is assumed that the samples are taken from gaussian populations with
means j; and equal variances. The goal is to compare the k£ means.

The following equation holds:

S8, = 555 + S8, (13.1)
with:
k n; k k
SSy=3> (ziy—2)°  SSy=) mi(mi—12)* S8, =) (ni—1)s}
i=1 j=1 i=1 =1

e 7 is the global mean:
k k
' i=1

e 5SS, is the total sum of squares; it has (n — 1) degrees of freedom
e 5SS} is the factorial sum of squares; it has (k — 1) degrees of freedom.

e 5SS, is the residual sum of squares; it has (n — k) degrees of freedom

Note that the degrees of freedom (d.o.f.) are additive, just like the sums
of squares:
m—1)=(k—-1)4+(n—Fk)
The variances are defined by dividing each sum of squares by the corre-
sponding number of d.o.f.

SS, S8y S8,
Vi=e—1 VY TuTk

These are the total, factorial, and residual variances, respectively. Note
that the variances, unlike the sum of squares, are not additive!

V. =
|

The comparison of means is performed by computing the F-statistic:
V
F=1
V.
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The null hypothesis is (Hg) : 1 = pg = -+ = g

(Hyp) is rejected if F' > Fy_,, where F_,, is the value of the Fisher-Snedecor
variable such that the cumulative probability function ®,, ,,(F) =1 — « at
vy =Fk—1and v, =n—k d.of. (cf. chap. 5).

This algorithm is implemented in the following procedure (defined in unit
uanoval) :

AnQVal(N, M, S, V_f, V_r, F, DoF_f, DoF_r)

where N[1..k] are the sizes of the samples, M[1..k] their means and
S[1..k] the estimated standard deviations (computed with StDev).

The procedure returns the factorial and residual variances in V_f and V_r,
their ratio in F and their numbers of d. o. f. in DoF_f and DoF_r.

After a call to this procedure, function MathErr returns one of the fol-
lowing error codes:

e FOk (0) if no error occurred
e FSing (-2) ifn —k <0

e MatErrDim (-3) if the arrays have non-compatible dimensions

13.2.4 Two-way analysis of variance

We assume here that the means of the samples depend on two factors A and
B, such that the sample corresponding to the i-th level of A and the j-th
level of B has mean m;; and standard deviation s;;.

It is also assumed that all samples are taken from gaussian populations
with equal variances, and that they have the same size n.

The previous equations become:

1 P q

Z Z ey

npq =1 =1

T

3 N D) MU CERSS

i=1j=1 i=1j=1 =17

(n—l)sfj

P q q
=1

with npg — 1, pg — 1, and (n — 1)pq d.o.f., respectively.

In addition, the factorial sum of squares can be splitted into three terms:

p
SS4=qn z:(mZ —z)> ; (p—1)dof.

=1
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q
SSp=pnd> (m;—2)> ; (¢—1)dof.

Jj=1

SSAB =N

p
1=

q
(mij —ms. —m;+2)* 5 (p—1)(g—1) dof.
=1

1j

where m; and m ; are the conditional means:
1 q 1 p
mi == mi my==3 mi
7= Pz

that is, the means of the lines and columns of matrix [m;;]

These sums of squares represent, respectively, the influence of factor A,
the influence of factor B, and the interaction of the two factors (that is, the
fact that the influence of one factor depends on the level of the other factor).

The variances are computed as before:

V= SS4 Vy = SSp Vig = SSap V= SS,
p—1 q—1 (p—1(g—1) (n—1)pg
There are three null hypotheses:
(Hp)a : The populations means do not depend on factor A
(Ho)p : The populations means do not depend on factor B
(Ho)ap : There is no interaction between the two factors

Each hypothesis is tested by computing the corresponding F'-statistic
(for instance, F'y = V4 /V, for testing (Hp)4) and comparing with the critical
value Fi_,

Special case: n = 1. If there is only one observation per sample, the
residual variance is zero. The null hypotheses (Hp)a and (Hg)p are tested
with Fiy = V4 /Vap and Fg = Vi /Vap. The interaction of the factors cannot
be tested.

This algorithm is implemented in the following procedure (defined in unit
uanova2) :

AnOVa2(Nobs, M, S, V, F, DoF)

where Nobs is the common number of observations, M[1..p, 1..q] the
matrix of means and S[1..p, 1..q] the matrix of standard deviations, such
that the rows correspond to factor A and the columns to factor B.
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The procedure returns the variances in vector V[1..4] = [V, Vg, Vag, V],
the variance ratios in F[1..3] = [Fa, F, Fapl, and the degrees of freedom
in DoF[1..4]. If Nobs = 1, the last element of each vector disappears.

After a call to this procedure, function MathErr returns one of the fol-

lowing error codes:

e FOk (0) if no error occurred

e MatErrDim (-3) if the arrays have non-compatible dimensions.

13.3 Comparison of variances

13.3.1 Comparison of two variances

We have 2 independent samples with sizes nq, no, standard deviations s1, ss.

It is assumed that the samples are taken from gaussian populations with

variances o3, 03.

Snedecor’s test uses the following statistic:

max (s, s3)
k= min(s?, s3)
1522

which is compared with the critical value Fi_, /o (two-tailed test).

This test is implemented in the following procedure (defined in unit
usnedeco) :

Snedecor (N1, N2, S1, S2, F, DoF1, DoF2)

where (N1, N2) are the sizes of the samples and (S1, S2) the estimated
standard deviations. The procedure returns the variance ratio in F and the
numbers of d. o. f. in DoF1 and DoF2.

13.3.2 Comparison of several variances

We have k independent samples with sizes n;, standard deviations s;. It is
assumed that the samples are taken from gaussian populations with variances
o?. The goal is to compare the k variances.

Bartlett’s test uses the following statistic:

1 k
B:X (n—k)InV, => (n;—1)Ins;
i=1
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1 LI | 1
:1 —_—
A=lt a0 | X

Z.:1ni—1_n—kz

where n = Y- n; and V, is the residual variance, as defined previously (§
13.2.3).

The null hypothesis is:
(HO)O'%:O';:..:O']%

Under (Hy), B follows approximately the x? distribution with (k — 1) d.
o. f. The hypothesis is tested by comparing B with the value x?_, such that
the cumulative probability function ®,(x?) =1 —«a at v = k — 1 d.o.f. (cf.
chap. 5).

This test is implemented in the following procedure (defined in unit
ubartlet) :

Bartlett(N, S, Khi2, DoF)

where N[1..k] are the sizes of the samples and S[1..k] the estimated
standard deviations. The procedure returns Bartlett’s statistic in Khi2 and
the number of d. o. f. in DoF. The error codes are the same than for An0Val

13.4 Non-parametric tests

Non-parametric tests are used when the assumptions needed by the classical
tests (gaussian populations with equal variances) are not fulfilled. They are
also called rank tests because they work with the ranks of the values, rather
than the values themselves.

13.4.1 Mann-Whitney test

This test compares the means of two independent samples. It is the non-
parametric analog of Student’s test for independent samples.

The test uses the following statistic:
U = min(uy, ug)

with:

ni(ng +1 na(ng + 1
u1:n1n2—|—M—r1 ; uQ:nlnz_}_M_rQ
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where (nq,ny) are the sample sizes, (r1,72) the sums of the ranks of the
two samples.

If n; > 20 and ny > 20, the variable:
_U~—p

g

€

with:

_mne \/nmz(nl +n+1)
2 ’ B 12
follows the standard normal distribution under (Hj).
This test is implemented in the following procedure (defined in unit
unonpar) :

Mann_Whitney (N1, N2, X1, X2, U, Eps)

where N1 and N2 are the sample sizes, X1[1..N1] and X2[1..N2] are the
two samples. The procedure returns Mann-Whitney’s statistic in U and the
associated normal variable in Eps.

13.4.2 Wilcoxon test

This test compares the means of two paired samples. It is the non-parametric
analog of Student’s test for paired samples.

The test uses the following statistic:
T =min(T,,T")
where 7T, and T are the sums of the ranks of the positive and negative
differences between the values of the two samples.
If the sample size is N > 25, the variable:

_T—n
- g

€

with:

N:N(NJrl) ; U:\/N(N+1)(2N+1)

4 24
follows the standard normal distribution under (Hj).

This test is implemented in the following procedure (also defined in unonpar)

104



Wilcoxon(X, Y, Ndiff, T, Eps)

where X[Lb..Ub] and Y[Lb..Ub] are the two samples. The procedure
returns the number of non-zero differences in Ndiff, Wilcoxon’s statistic in
T and the associated normal variable in Eps.

13.4.3 Kruskal-Wallis test

This test compares the means of several independent samples. It is the non-
parametric analog of one-way ANOVA.

The test uses the following statistic:

12 k op2
Hzizﬂ—:a(nﬂ)

n(n+1) = ni

where £ is the number of samples, n; the size of sample 7, r; the sum of
the ranks for sample ¢ and n the total size.

If n; > 5 Vi, H follows the x? distribution with k — 1 d.o.f.

This test is implemented in the following procedure (also defined in unonpar):
Kruskal_Wallis(N, X, H, DoF)

where N[1..k] is the vector of sizes and X the sample matrix (with the
samples as columns). The procedure returns the Kruskal-Wallis statistic in
H and the number of d. o. f. in DoF.

13.5 Statistical distribution

A statistical distribution is generated by binning data into a set of statistical
classes |z;, x;11]. Each class is characterized by the following parameters:

e its bounds z;, ;41

e the number of values n; contained in the class

e the frequency f; = n;/N where N is the total number of values
e the density d; = fi/(zi41 — ;)

This structure is implemented in GPMath by means of the following type,
defined in unit utypes :
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type StatClass = record { Statistical class }

Inf : Float; { Lower bound }
Sup : Float; { Upper bound }
N : Integer; { Number of values }
F : Float; { Frequency }
D : Float; { Density }
end;

A distribution is generated with the following procedure, defined in unit
udistrib:

Distrib(X, A, B, H, C)
where X [Lb. .Ub] is the original set of values, A and B the lower and upper

bounds of the distribution and H the common width of the classes, according
to the following scheme:

C[1] c[2] CM]

The distribution is returned in C which is an array of type StatClass.

13.6 Comparison of distributions

13.6.1 Observed and theoretical distributions

An observed distribution may be compared to a theoretical one by using the
following statistics:

e Pearson’s x? :

2 (O —C")2
2 i i
X =
e Woolf’'s G :
P .
GZQZ:OZlngZ



where O; and C; denote the observed and theoretical numbers of values
in class 7, and p the number of classes.

The null hypothesis is (Hy): the observed distribution conforms to the
theoretical one (it is a test for conformity)

Under (Hy), both statistics follow the x? distribution with (p — 1 — N,)
d. o. f., where N, is the number of parameters which have been estimated
to compute the C; values (e. g. N, = 2 if the mean and standard deviation
of the distribution have been estimated).

(Hp) is rejected if the chosen statistic is higher than the critical value
X3_,, for the chosen risk a.

Pearson’s statistic is an approximation of Woolf’s statistic. It is usually
recommended to use it only if C; > 5 Va.

These procedures are implemented in unit ukhi2 as:

Khi2_Conform(Obs, Calc, N_estim, Khi2, DoF)
Woolf_Conform(Obs, Calc, N_estim, G, DoF)

where Obs[1..p] and Calc[1..p] are the observed and theoretical dis-
tributions, and N_estim the number of estimated parameters. The statistic
is returned in Khi2 or G and the number of d. o. f. in DoF.

13.6.2 Several observed distributions

To compare several observed distributions, we can group them into a contin-
gency table O such that O;; denotes the number of values for class 7 in the
J-th distribution.

The Pearson and Woolf statistics may then be computed as:

=1 7=1
p_4q O,
G=2 Z Z O;;ln =2
i=1j=1 Cij

where p the number of classes, ¢ the number of distributions, and Cj; the
theoretical value of O;;, computed as:




where NN; is the sum of terms in line ¢, IV ; is the sum of terms in column 7,
and N the global sum of all terms in the matrix (N = >, N;, = >3; N ;).

The null hypothesis is (Hp): the observed distributions come from the
same population (it is a test for homogeneity or independence).

Under (Hy), both statistics follow the x? distribution with (p —1)(¢ — 1)
d. o. f.

These procedures are also implemented in ukhi2 as:
Khi2_Indep(0Obs, Khi2, DoF)
Woolf_Indep(Obs, G, DoF)

where Obs[1..p, 1..q] is the matrix of observed distributions. The
statistic is returned in Khi2 or G and the number of d. o. f. in DoF.

13.7 Demo programs

These programs are located in the demo\stat subdirectory of the GPMath
directory.

13.7.1 Descriptive statistics, comparison of means and
variances

Program stat.pas performs a statistical analysis of hemoglobin concentra-

tions in two samples of 30 men and 30 women. The computed parameters

are the mean, standard deviation, skewness and kurtosis. The means are

compared by Student’s test (two-tailed) and Mann-Whitney’s test, and the
variances are compared by Snedecor’s test.

13.7.2 Student’s test for paired samples

Program student.pas compares the means of two paired samples, using
Student’s and Wilcoxon’s two-tailed tests.

13.7.3 One-way analysis of variance

Program avl.pas compares the means of 5 independent samples, each with
12 observations, using one-way ANOVA and the Kruskal-Wallis test. In
addition, the variances of the samples are compared with Bartlett’s test.
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13.7.4 Two-way analysis of variance

e Program av2.pas compares the means of 4 samples, depending on two
factors, using two-way ANOVA. Each sample contains 12 observations.

e Program av2a.pas performs two-way ANOVA with one observation
per sample.

13.7.5 Statistical distribution

Program histo.pas uses the hemoglobin data from program stat.bas to
generate a statistical distribution.

The first step determines a suitable range for the data. This is done by
calling a procedure Interval, defined in unit uinterv :

Interval (X[1], X[N], 5, 10, XMin, XMax, XStep);

The arguments 5 and 10 represent the minimal and maximal number of
classes which is desired.

The second step generates the distribution, using the ranges determined
in the previous step:

Ncls := Round((Xmax - Xmin) / XStep);

var C : array[1l..Ncls] of StatClass;
var Obs : arrayl[l..Ncls] of Integer;
var Calc : array[l..Ncls] of Float;

Distrib(X, XMin, XMax, XStep, C);

This distribution is then compared with the normal distribution, using
both x? and Woolf’s tests. The theoretical C; values are computed from the
cumulative probability function for the normal distribution having the same
mean and standard deviation than the observed distribution.

The program plots an histogram of the observed distribution, together
with the curve corresponding to the normal distribution. This curve is gen-
erated from the probability density function:

function PltFunc(X : Float) : Float;
begin

Pl1tFunc := DNorm((X - M) / S) / S;
end;
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where M, S are the mean and standard deviation of the observed distribu-
tion, and DNorm is the probability density of the standard normal distribution
(see chapter 5). Note that the histogram is constructed with the class densi-
ties as ordinates, so that a comparison with the plotted curve can be made.

13.7.6 Comparison of distributions

Program khi2.pas performs both y? and Woolf’s tests, first to compare an
observed distribution with a theoretical one, and then to analyse a contin-
gency table.
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Chapter 14

Linear regression

This chapter describes the routines available in GPMath for fitting a straight
line by linear regression. Other types of curve fitting will be described in
subsequent chapters.

14.1 Straight line fit

The problem is to determine the equation of the line which comes closest to
a set of points.

The model is defined by the equation:
y=a+bx
e 1 is the independent (or ‘explicative’) variable

e y is the dependent (or ‘explained’) variable

e a and b are the model parameters

Assume that the n points (x1,41), (T2,¥2), - - (T, yn) are perfectly lined,
so that each of them verifies the equation of the straight line:

Y1 = a + bxy
Yo = a + bxoy
Yn = a + bxy,



Or in matrix form:

y = X3 = y—X5=0

where:

U1 1 x

S S B I S

Yn Ly

In the general case, the points are not exactly lined, so that:
y—Xg=r
where r is the vector of residuals:
r=[r,r-m] =y —§

where y = X[
It is possible to compute /3 so that || r || is minimal (least squares crite-
rion).

n

I lP=rir=ritri+- =3 rf =3 (y =) =55
=1 =1

where 1; = a + bx; and S.S, is the sum of squared residuals.

Several methods allow the determination of § under the least squares
criterion. The QR and SVD algorithms have been described previously. Here
we will study the method of normal equations.

It may be shown that (8 is the solution of the system:
A =c

with:
A=X"X c=X"y

SO:
B=Alc=X"X)'X"y)

The matrices may be expressed in terms of statistical sums:

- n o Xx; - i
A= [in Zx?] €= [Exiyi]
Afl _ 1 EQ?? —ZZEZ
oYz - (Bx)? | —Xx; n

- n¥a? — (Sz;)? | XXy + nXay;
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14.2 Analysis of variance
The following equation holds:
SS, = SS. + S8, (14.1)

with:

n n n

SS=> (-9 SSe=>(Gi—9> SS=> (vi—u)

=1 =1 1=1

y is the mean of the y values:

SS; is the total sum of squares; it has (n — 1) degrees of freedom

SS. is the explained sum of squares; it has 1 degree of freedom.

S, is the residual sum of squares; it has (n — 2) degrees of freedom

Note that the degrees of freedom (d.o.f.) are additive, just like the sums
of squares:
(n—1)=1+(n—-2)

The variances are defined by dividing each sum of squares by the corre-
sponding number of d.o.f.

v, = SS V. = S8, V= SS,

These are the total, explained, and residual variances, respectively. Note
that the variances, unlike the sum of squares, are not additive!

The following quantities are derived from the above equations:

e the coefficient of determination r?2

2 _ SS.
SS;
r? represents the percentage of the variations of y which are ‘explained’

by the independent variable. It is always comprised between 0 and 1.
A value of 1 indicates a perfect fit.

r
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e the correlation coefficient r
It is the square root of the coefficient of determination, with the sign
of the slope b. It is therefore comprised between -1 and 1.

e the residual standard deviation s,

It is the square root of the residual variance (s, = /V.). It is an esti-
mate of the error made on the measurement of the dependent variable
y. It should be 0 for a perfect fit.

e the variance ratio F

It is the ratio of the explained variance to the residual variance (F' =
Ve/V;). Tt should be infinite for a perfect fit.

14.3 Precision of parameters

The matrix:
V=V, A=V - (X'X)!

is called the variance-covariance matrix of the parameters. It is a sym-
metric matrix with the following structure:

v:[ Var(a) Cov(a,b)]

Cov(a,b)  Var(b)

The diagonal terms are the variances of the parameters, from which the
standard deviations are computed by:

sq = 1/ Var(a) sp =/ Var(b)

The off-diagonal term is the covariance of the two parameters, from which
the correlation coefficient r,, is computed by:

14.4 Probabilistic interpretation

It is assumed that the residuals (y; — y;) are identically and independently
distributed according to a normal distribution with mean 0 and standard
deviation o (estimated by s,).
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It may be shown that the regression parameters (a,b) are distributed
according to a Student distribution with (n —2) d.o.f.

It is therefore possible to compute a confidence interval for each param-

eter, for instance:

[a — tl_a/g *Sa a—+ tl_a/g . Sa:|

where t;_ /5 is the value of the Student variable corresponding to the chosen
probability a (usually o = 0.05). This interval has a probability (1 — «) to
contain the ‘true’ value of the parameter.

It is also possible to compute a ‘critical’ value Fj_, from the Fisher-
Snedecor distribution with 1 and (n — 2) d.o.f . The fit is considered satis-
factory if the variance ratio F' exceeds 4 times the critical value.

2
Note : for the straight line fit, F7_, = (tl_a/Q)

14.5 Weighted regression

It is assumed here that the variance v; = o2 of the measured value y; is not
constant.

The sums of squares become:
S8 = sz(yz —y) SS. = sz@z — ) 5SS, = sz(yz —4;)°
i=1 i=1 i=1

where w; denotes the ‘weight’, equal to 1/v;, and § denotes the weighted
mean:
E?:l wlyz
E?:l w;

N

The regression parameters b are estimated by:
b= (X"WX) X "Wy)

where W is the diagonal matrix of weights:

w, 0 -+ 0
W = diag(wy,wy, - w)= | 0 200
0 0 0 w,
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The values of ry, s, and F', as well as the variance-covariance matrix, are
computed as above (§ 14.2). The normalized residual for the i-th observation
Is:

Yi — Ui .
= (% - yi)\/wi

0;

These normalized residuals should follow the standard normal distribution.

14.6 Programming

14.6.1 Regression procedures
The following subroutines are available in unit ulinfit :
e LinFit(X, Y, B, V) for unweighted linear regression
e WLinFit(X, Y, S, B, V) for weighted linear regression

e SVDLinFit(X, Y, SVDTol, B, V)

Same than LinFit but uses singular value decomposition instead of
normal equations. SVDTol is the threshold under which a singular value
is considered zero. It is expressed as a fraction of the highest singular
value (see paragraph 6.6 for details).

e WSVDLinFit(X, Y, S, SVDTol, B, V)

Same than WLinFit but uses singular value decomposition.
The input parameters are:

e X[Lb..Ub], Y[Lb..Ub] : coordinates of points

e S[Lb..Ub] : standard deviations of Y values (noted o; in paragraph
14.5)

The output parameters are:

e B[0..1] : regression parameters

e V[0..1, 0..1] : inverse of the matrix of normal equations (noted A~*
in paragraph 14.3). This is not the variance-covariance matrix. This
one will be computed by the routines described in the next paragraph.

After a call to one of these procedures, function MathErr returns one of
the following error codes:
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e MatQk if no error occurred
e MatErrDim if the array dimensions do not match

e MatSing if the matrix of normal equations is quasi-singular

14.6.2 Quality of fit

The parameters used to test the quality of the fit are grouped in a user-defined
type (defined in unit utypes) :

type
TRegTest = record { Test of regression }
Vr : Float; { Residual variance }
R2 : Float; { Coefficient of determination }
R2a : Float; { Adjusted coeff. of determination }
F : Float; { Variance ratio (explained/residual) }
Nul, Nu2 : Integer; { Degrees of freedom }

end;
They are computed by the following subroutines, defined in unit uregtest:

e RegTest(Y, Ycalc, V, Test) for unweighted regression

e WRegTest (Y, Ycalc, S, V, Test) for weighted regression
The input parameters are:

e Y[Lb..Ub] : ordinates of points

e Ycalc[Lb..Ub] : Y values computed from the regression equation,
using the fitted parameters B. This computation must be done before
calling RegTest or WRegTest.

e V[LbV..UbV, LbV..UbV] : the inverse matrix of the normal equations,
as returned by the regression procedures.

The output parameters are:
e V : the variance-covariance matrix of the fitted parameters

e Test : variable of type TRegTest, as defined above.
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14.7 Demo programs

These programs are located in the demo\curfit subdirectory of the GPMath
directory.

14.7.1 Unweighted linear regression

Program reglin.pas performs the least squares fit of a straight line, accord-
ing to the following equation:

Y = B(0) + B(1) * X

The program calls procedure LinFit, then computes the theoretical Y
values:

for I := 1 to N do
Ycalc[I] := B[0] + B[1] * X[I];
Note that this computation must be done before calling procedure RegTest
The critical values of Student’s t and Snedecor’s F' are computed for the

chosen probability Alpha by using the functions from chapter 5.

Tc :
Fc :

InvStudent(N - 2, 1 - 0.5 * Alpha);
InvSnedecor(l, N - 2, 1 - Alpha);

The ouput shows the standardized residuals, equal to (y; — ;) /o, where
o is estimated by s,. They should be distributed according to the standard
normal distribution.

14.7.2 Weighted linear regression

Program wreglin.bas performs the weighted least squares fit of a straight
line. Here the standard deviations o; of the observed y values are stored in
a vector S defined by the user.

The computations involve the same steps as with the previous program,
except that procedures WLinFit and WRegTest are used, and that the stan-
dardized residuals are computed as (y; — 9;)/0;

The plot shows the error bars, corresponding to y; + o; for each point.
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Chapter 15

Multilinear regression and
principal component analysis

This chapter describes the routines available in GPMath for multilinear re-
gression, polynomial regression and principal component analysis.

15.1 Multilinear regression

15.1.1 Normal equations
The regression model is:
y=a+bry +cro+---

where the x; are m independent variables.

The method of normal equations, studied in chapter 14, is still applicable
with:

1z x2 - 1y
X — 1 o1 xee -+ @y
1 Tpl Tp2 - Tnm

There are p = m + 1 parameters. The number of observations n must be
such that n > p.

Special case: The z; may be functions of another variable x, as long as
these functions do not contain parameters.

Examples:

e Polynomial: y = a + bz + ca® + - -
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e Fourier series: y = a + bsinx + csin2z + - - -

In such cases, the matrix X, the matrix of normal equations A = XX
and the constant vector ¢ = Xy will have special forms. For instance with
polynomial regression, if d is the degree of the polynomial:

1z 22 ... 2
2 d
X 1z x5 -+ 25
2 d
1z, x -
n Y, Y2 oo Yad
A Yo, a2 Xz ... Nadt!
Yad Lzttt Nadt? ... ¥
XY
c— 2Ty
d
2 Yi

It is possible to use these special forms to simplify the computations. For
instance, only the first line and the last column of the above matrix A need
to be computed; the others terms are deduced by shifting.

15.1.2 Analysis of variance
Equation 14.1 still holds with the following modifications:
e the explained sum of squares SS, has (p — 1) degrees of freedom.

e the residual sum of squares SS, has (n — p) degrees of freedom

Note that the degrees of freedom are still additive:

(n=1)=(@-1)+(—p)
The explained and residual variances become:

V= SS. V= S,
p—1 n—p

The quantities r2, s,, F' are derived as in § 14.1, but here the correlation
coefficient r is always positive.
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In multilinear regression, the use of 72 may be misleading because it is
always possible to artificially increase its value by adding more independent
variables or using a higher degree polynomial. To overcome this drawback,
the adjusted coefficient of determination may be used instead:

n—1
n—p

r2=1-(1-1%

15.1.3 Precision of parameters

The variance-covariance matrix V is computed as in chapter 14. Itisa pxp
symmetric matrix such that:

e the diagonal term Vj; is the variance of the i-th parameter

o the off-diagonal term V;; is the covariance of the i-th and j-th param-
eters

The correlation coefficient r;; is computed by:

Y

e v ViV

15.1.4 Probabilistic interpretation

Assuming that the residuals are identically and independently distributed
according to a normal distribution, the regression parameters are distributed
according to a Student distribution with (n — p) d.o.f. Confidence intervals
may be computed as in chapter 14.

The ‘critical’ value Fi_, is computed from the Fisher-Snedecor distribu-

tion with (p—1) and (n—p) d.o.f. However, the relationship F;_, = (tl_a/g)Z
does not hold if p > 2.

15.1.5 Weighted regression

Weighted multilinear regression may be performed as for the simple linear
case (chap. 14).

121



15.1.6 Programming
Multilinear regression

The following procedures are available in unit umulfit :

e MulFit(X, Y, Nvar, ConsTerm, B, V) for unweighted multilinear re-
gression

X[Lb..Ub, 1..Nvar] isthe matrix of independent variables, Y [Lb. .Ub]
is the vector of dependent variable, and ConsTerm is a boolean param-
eter which indicates the presence of a constant term by. The regression
parameters are returned in B and the inverse matrix in V.

e WMulFit(X, Y, S, Nvar, ConsTerm, B, V) for weighted multilinear
regression

The additional parameter S is a vector containing the standard devia-
tions of the observations.

Two alternative procedures are available in unit usvdfit for using singu-
lar value decomposition instead of normal equations:

e SVDFit(X, Y, ConsTerm, SVDTol, B, V)

e WSVDFit(X, Y, S, ConsTerm, SVDTol, B, V)

Polynomial regression
The following procedures are available in unit upolfit :

e PolFit(X, Y, Deg, B, V) for unweighted polynomial regression

Here X[Lb..Ub] and Y[Lb..Ub] are the point coordinates and Deg is
the degree of the polynomial.

e WPolFit(X, Y, S, Deg, B, V) for weighted polynomial regression

e SVDPolFit(X, Y, Deg, SVDTol, B, V)

Same than PolFit but uses singular value decomposition.

e WSVDPolFit(X, Y, S, Deg, SVDTol, B, V)

Same than WPolFit but uses singular value decomposition.

After a call to one of these procedures, function MathErr returns one of
the following error codes:
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e MatQOk if no error occurred
e MatSing if the matrix of normal equations is quasi-singular

e MatErrDim if the array dimensions do not match

15.2 Principal component analysis

15.2.1 Theory

The goal of Principal Component Analysis (PCA) is to replace a set of m
variables x1, X, - - - X,,,, Which may be correlated, by another set £, f5,---f,,,
called the principal components or principal factors. These factors are inde-
pendent (uncorrelated) variables.

Usually, the algorithm starts with the correlation matrix R which is a
m X m symmetric matrix such that R;; is the correlation coefficient between
variable x; and variable x;.

The eigenvalues Aj, Ay, - -+ A, (in decreasing order) of matrix R are the
variances of the principal factors. Their sum Y7, \; is equal to m. So, the
percentage of variance associated with the i-th factor is equal to \;/m.

If C is the matrix of eigenvectors of R, the correlation coefficient between
variable x; and factor f; (sometimes called loading) is:

R, = Cijy/\i

The coordinates of the principal factors (sometimes called scores) are
such that:
F=7ZC

where Z denotes the matrix of scaled original variables:

X —m;
Zz‘j =49 J
Sj
where m; and s; are the mean and standard deviation of the j-th variable.
Note that the reduced variables have means 0 and variances 1, while the

principal factors have means 0 and variances ;.

In most cases, a limited number of principal factors represent the most
part of the total variance. It is therefore possible to neglect the other factors
and to replace the m original (partially correlated) variables by a smaller set
of independent variables. These variables can then be used in a regression
analysis instead of the original ones (orthogonalized regression).
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15.2.2 Programming

The following subroutines are available in unit upca :

e VecMean(X, M) computes the mean vector M[1..Nvar] from matrix
X[Lb..Ub, 1..Nvar].

e VecSD(X, M, S) computes the standard deviations S[1..Nvar] from
matrix X and mean vector M.

e ScaleVar(X, M, S, Z) computes the scaled variables Z[Lb. .Ub, 1..Nvar]

from the original variables X, the means M and the standard deviations
S.

e MatVarCov(X, M, V) computes the variance-covariance matrix V[1..Nvar,

1..Nvar] from matrix X and mean vector M.

e MatCorrel(V, R) computes the correlation matrix R[1..Nvar, 1..Nvar]

from the variance-covariance matrix V.

e PCA(R, Lambda, C, Rc) performs the principal component analysis
of the correlation matrix R, which is destroyed. The eigenvalues are
returned in vector Lambdal[1..Nvar], the eigenvectors in the columns
of matrix C[1..Nvar, 1..Nvar]. The matrix Rc[1..Nvar, 1..Nvar]
contains the correlation coefficients (loadings) between the original vari-
ables (rows) and the principal factors (columns).

e PrinFac(Z, C, F) computes the principal factors (scores) F[Lb. .Ub,
1. .Nvar] from the scaled variables Z and the matrix of eigenvectors C.

After a call to these procedures, function MathErr returns one of the
following error codes:

e MatOk if no error occurred
e MatErrDim if the array dimensions do not match

e MatNonConv if the iterative procedure (SVD method) did not converge
in subroutine PCA

15.3 Demo programs

Unless otherwise noted, these programs are located in the demo\curfit sub-
directory of the GPMath directory.
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15.3.1 Multilinear regression

Program regmult.pas performs a multilinear least squares fit with Nvar =
4 independent variables, according to the following equation:

Y = B(0) + B(1) * X1 + B(2) * X2 + B(3) * X3 + B(4) * X4

The data are stored in a matrix X and a vector Y.

The parameter vector and variance-covariance matrix are declared as:

var B : array[0..Nvar] of Float;
var V : array[0..Nvar, 0..Nvar] of Float;

The program calls procedure MulFit or SVDFit, then computes the the-
oretical Y values:

for I :=1 to N do
begin
Ycalc[I] := B[0];
for J := 1 to Nvar do
Ycalc[I] := Ycalc[I] + B[J] * X[I,J];
end;

Note that this computation must be done before calling procedure RegTest

The critical values of Student’s ¢ and Snedecor’s F' are computed for the
chosen probability Alpha by using the functions from chapter 5.

Tc :
Fc :

InvStudent (Test.Nu2, 1 - 0.5 * Alpha);
InvSnedecor(Test.Nul, Test.Nu2, 1 - Alpha);

where Test.Nul and Test.Nu2 are the numbers of d.o.f., returned by
procedure RegTest.

The ouput shows the standardized residuals, equal to (y; — ¢;)/o, where
o is estimated by s,. They should be distributed according to the standard
normal distribution.

Due to the multi-dimensional nature of the relationship, a plot of y as
a function of the x’s is not possible. Rather, the program plots a diagram
of the observed and computed values of y, together with the theoretical line

U=1y.
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15.3.2 Polynomial regression

Program regpoly.pas performs a polynomial least squares fit. The structure
of the program is very similar to the previous one, with the degree of the
polynomial (Deg) playing the role of the number of variables (Nvar).

Here, only a vector X is needed to store the values of the independent
variable, since the powers of x are computed by the polynomial regression
routine PolFit.

The theoretical Y values are computed by means of function Poly, studied
in chapter 9.

The program plots the fitted curve by calling the plotting subroutine
PlotFunc. The function which is passed to this subroutine is defined as:

function PltFunc(X : Float) : Float;
begin

P1tFunc := Poly(X, B, Deg);
end;

15.3.3 Principal component analysis

Program testpca.pas (located in the demo\matrices subdirectory) per-

forms a principal component analysis on a set of 4 variables (Example taken

from: P. DAGNELIE, Analyse statistique a plusieurs variables, Presses Agronomiques
de Gembloux, Belgique, 1982). The program prints:

e The mean vector and variance-covariance matrix of the original vari-
ables

e The correlation coefficients between the original variables
e The eigenvalues and eigenvectors of the correlation matrix

e The correlation coefficients between the principal factors and the orig-
inal variables

e The values of the principal factors for each point
It may be seen that:

e High correlations exist between the original variables, which are there-
fore not independent
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According to the eigenvalues, the last two principal factors may be
neglected since they represent less than 11 % of the total variance. So,
the original variables depend mainly on the first two factors

The first principal factor is negatively correlated with the second and
fourth variables, and positively correlated with the third variable

The second principal factor is positively correlated with the first vari-
able

The table of principal factors show that the highest scores are usually
associated with the first two principal factors, in agreement with the
previous results
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Chapter 16

Nonlinear regression

This chapter describes the routines available in GPMath for fitting mod-
els which are nonlinear with respect to their parameters. For instance, the

exponential model y = ae** is nonlinear with respect to the parameter b.

16.1 Theory

The regression model is:
y = flz;a,b--)
where f is a nonlinear function of the parameters a,b- - -

Assume that we have a first estimate (a®,0°---) of the parameters. Let
us write the Taylor series expansion of y in the vicinity of this estimate:

y=1y"+y,-(a—a)+y, - (b—0")+---

where:

A gﬁ(w; a’, b’
/o % 0 10
yb - ab (x?a‘ 7b )

The equation may be rewritten as:
y—y’ =y (a—a’) +yp- (b—0") +--
which corresponds to the linear regression problem:

z=J-0
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with:

0 / /
yi—y Y Y e
o — 1 Vo U - oo
7 — 2 2 J = a2 b2 5 = h—po
Yn — U5 Yon  Ybn

where J is the Jacobian matriz, such that y., = df(z;;a°,b°---)/0a etc.

Application of the linear regression relationships leads to:
=0T ") (16.1)

Knowing the correction vector 9, it is possible to compute better estimates
a and b of the parameters. The process is repeated until convergence of the
parameter estimates.

The method so described is known as the Gauss-Newton method. It is
usually combined with nonlinear optimization, usually Marquardt’s method,
in order to minimize the sum of squared residuals:

In this case, the gradient vector g and hessian matrix H of function ® are
computed by the following relationships:

g=-J'z H=J"J (16.2)
so that the Gauss-Newton formula (16.1) becomes equivalent to the Newton-
Raphson formula for nonlinear optimization (p. 51).

Note that, in the previous formula:

1. g and H are scaled by a factor 1/2 since this factor cancels during the
computations.

2. The expression of H is only approximate, since a factor containing the
term (y; —¥;) is neglected during the computation of the second partial
derivatives:

9*P z": 99: 99 ) 00
da Ob da ob Y50 b

=1
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The residual variance is:
SS,

n—p

where p is the number of parameters in the model.

V. =

It is still possible to compute r? and F, as well as confidence intervals,
but their interpretation is less straightforward since the ANOVA relationship
(§ 14.1) does not hold for nonlinear models. In this case, r* may be > 1!
Moreover, the distribution of the parameters is only approximately described
by the Student distribution.

16.2 Monte-Carlo simulation

The distribution of the regression parameters may be simulated by the MCMC
method discussed in § 12.2 (p. 83).

Let 8 denote the vector of model parameters. According to Bayes’ the-
orem, the posterior probability density 7(3) of these parameters is given

by:
_ LBPB)  _ LBPE)
JL(B)P(B)dp N
where P(f) denotes the prior probability density of the parameters and

L(3) denotes the likelihood, i.e. the probability of observing the experimental
results (z;,y;) given the parameters.

()

The integral which appears in the denominator is usually too complex to
be calculated and is therefore treated as a normalizing constant N.

Assuming that, for a given [, the residuals (y; — ;) are identically and
independently distributed according to a normal distribution with variance
o2, the likelihood is given by:

-l 25)

=1 \oV2m

If we choose a uniform prior probability P(3) over an interval B, the
posterior probability becomes:

m(B)=C ﬁ exp

2
i=1 20

ot

where C' is a constant.

131



In order to use the Metropolis-Hastings algorithm, as described in chapter
12.2, we define the function:

2™ =" (g —3)? ifBeB
F(B) = (16.3)

00 otherwise

It is the same objective function than for the nonlinear regression algo-
rithm, except that it is bounded on the interval B.

16.3 Regression procedures

These procedures are defined in unit unlfit.

16.3.1 Optimization methods

GPMath offers three deterministic optimizers: Marquardt, Simplex and BFGS
(see chapter 7) and two stochastic optimizers: Simulated Annealing and Ge-
netic Algorithm (see chapter 12)

The Marquardt method is selected by default. This selection can be
changed with the statement SetOptAlgo(Algo) where Algo may have one
of the following values:

NL_MARQ for Marquardt

NL_SIMP for Simplex

NL BFGS for BFGS

NL_SA for Simulated Annealing
NL_GA for Genetic Algorithm

The current algorithm is returned by function GetOptAlgo

16.3.2 Maximal number of parameters

The maximal index for a regression parameter is set to 20 in unit unlfit.
The parameter vector B[LbB. .UbB] should therefore be such that LbB > 0
and UbB < 20.

16.3.3 Parameter bounds

It is assumed that each regression parameter varies within an interval [a, b].
By default, this interval is set to [—10°, 10°] which is way too large for most
applications. It is possible to change this interval with the statement:
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SetParamBounds (I, ParamMin, ParamMax)

where I is the index of the parameter and ParamMin and ParamMax are
the bounds.

Defining realistic intervals for the parameters is essential when using
stochastic optimizers.

16.3.4 Check of parameters

Function NullParam(B) returns True if at least one of the components of
vector B is null. This function can be used to check if the parameters heve
been initialized properly.

16.3.5 Nonlinear regression

Nonlinear regression is performed by the two procedures:

e NLFit(RegFunc, DerivProc, X, Y, MaxIter, Tol, B, V) for unweighted
regression

e WNLFit(RegFunc, DerivProc, X, Y, S, MaxIter, Tol, B, V) for weighted
regression

where:

e RegFunc is the function to be fitted, defined as:

function RegFunc( X : Float;
var B : array[LbB..UbB : Integer] of Float) : Float;

where X is the independent variable and B the vector of regression pa-
rameters. This function is of type TRegFunc.

e DerivProc is the procedure used to compute the partial derivatives of
the regression function with respect to the parameters. It is defined as:

procedure DerivProc( X, Y : Float;
var B, D : array[LbB..UbB : Integer] of Float);

where D is the vector of derivatives at point (X, Y) (one row of the
Jacobian). This procedure is of type TDerivProc.
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e X[Lb..Ub], Y[Lb..Ub] are the point coordinates and S[Lb..Ub] are
the standard deviations

e MaxIter is the maximum number of iterations for the optimization
procedure

e Tol is the required precision for the regression parameters
e B[LbB..UbB] is the vector of fitted parameters

e V[LbB..UbB, LbB..UbB] is the inverse matrix (J7J) "

16.3.6 Monte-Carlo simulation

The statistical distribution of the regression parameters is simulated by the
following procedures:

e SimFit(RegFunc, X, Y, B, V) for unweighted regression

e WSimFit (RegFunc, X, Y, S, B, V) for weighted regression
where the parameters have the same meaning than in the nonlinear re-
gression procedures, except that here V is the variance-covariance matrix.

The results of the last simulation cycle are saved in an ASCII file. The
name of this file may be defined by the statement SetMCFile(FileName).
The default file name is mcmc. txt

16.4 Demo programs

These programs are located in the demo\curfit subdirectory.

16.4.1 Nonlinear regression

Program regnlin.pas performs a nonlinear least squares fit of the exponen-

tial model:

Yy = ae "

The partial derivatives used to compute the Jacobian are:

@ — B_bz @ — —axe_bx
da ob
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Initial estimates of the parameters B are obtained by linearization:
Iny =Ina — bx

However, this transformation modifies the standard deviations of the in-
dependent variables:

d
o(lny) ~dlny = yy ~ 7y)

Y

It is therefore recommended to use weighted linear regression for this step.

Subroutine ApproxFit selects the data points for which the transforma-
tion is appropriate (i. e. ¥ > 0) and stores the transformed coordinates and
their standard deviations in 3 vectors X1, Y1, S1 which are passed to the
weighted linear regression subroutine WLinFit. The fitted parameters are
returned in vector A[0..1]. They are then transformed back to the original
form of the model:

B[1]
B[2]

Exp(A[0]);
- A[1];

Marquardt’s method is then used to perform nonlinear minimization of
the residual sum of squares, by means of subroutine NLFit. Function RegFunc
and procedure DerivProc are defined as follows:

function RegFunc(X : Float; var B : Vector) : Float;
begin

RegFunc := B[1] * Exp(- B[2] * X);
end;

procedure DerivProc(X, Y : Float; var B, D : Vector);

begin
D[1] := Exp(- B[2] * X);
D[2] := - B[1] * X * D[1];
end;

where the symbol Vector is defined by a macro:

{$define Vector array[Lb..Ub : Integer] of Float}
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Since the parameter lists of these procedures cannot be modified, the
other variables which they must access are made global.

The results of the minimization are printed as with the linear regression
programs, except that the correlation coefficients are shown only if r» < 1.

The program may be adapted to another regression model by changing
the following parts:

e the function name (constant FuncName)

e the dimensions of arrays B and V which must correspond with the num-
ber of parameters

the subroutine ApproxFit which computes the initial estimates of the
parameters

the definition of the regression model in function RegFunc

the definition of derivatives in subroutine DerivProc

16.4.2 Monte-Carlo simulation

Program mcsim.pas simulates the posterior distribution of the regression
parameters for the previous exponential model.

The settings for the MCMC procedure are defined as follows:

const
NCycles = 10; { Number of cycles }
MaxSim = 1000; { Max nb of simulations at each cycle }
SavedSim = 1000; { Nb of simulations to be saved }
MCFile = 'mcsim.txt’; { File for storing simulation results }

Proper intervals are defined for the two parameters:

SetParamBounds (1, 100, 1000);
SetParamBounds (2, 0.1, 1);

The algorithm is initialized with:

InitMHParams (NCycles, MaxSim, SavedSim);
SetMCFile (MCFile);

The SimFit procedure is then called. After the computation is done, the
program plots a graph showing the distribution of the parameters.
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Chapter 17

Library of nonlinear regression
models

GPMath has a set of predefined nonlinear regression models which can be
fitted just like the polynomial or multilinear models.

At this time, the following models are implemented:
e Rational fractions

e Sums of exponentials

e Increasing exponential

e Exponential + linear

e Logistic equations

e Power function

e Gamma distribution

e Michaelis equation

e Integrated Michaelis equation
e Hill equation

e Acid-base titration curve
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17.1 Common features

17.1.1 Procedures

For each model, two fitting procedures are provided, for unweighted and
weighted regression:

e <model>Fit(X, Y, [...], MaxIter, Tol, B, V)
e W<model>Fit(X, Y, S, [...], MaxIter, Tol, B, V)
where:

e <model> stands for model name

X[Lb..Ub], Y[Lb..Ub] are the point coordinates and S[Lb..Ub] are
the standard deviations

e [...] stands for the additional parameters required by some models

MaxIter is the maximum number of iterations for the optimization
procedure

Tol is the required precision for the regression parameters
e B is the vector of fitted parameters

e V is the inverse matrix

In addition, there exists a function <model>Fit_Func(X, B) which re-
turns the value of the fitted function at point X, given the parameters B. This
function should be called after the model has been fitted.

17.1.2 Optimization methods and initial parameters

As with the general nonlinear regression procedures studied in the previ-
ous chapter, the specific procedures can use the three local optimizers (Mar-
quardt, BFGS, simplex) and the two global ones (simulated annealing and ge-
netic algorithm), according to the choice performed by procedure SetOptAlgo.

Moreover, the parameter bounds can be modified by using procedure
SetParamBounds, as described in the previous chapter.

If a local optimizer is selected, the fitting procedure will look at the
current values of the regression parameters B. If all these values are non-
zero, they will be used to start the algorithm. Otherwise, a built-in specific

138



procedure will be called to generate approximate starting values (most often,
using a linearized form of the model).

If a global optimizer is selected, the initial parameters will be randomly
chosen within the parameter bounds.

17.2 Regression models

17.2.1 Rational fractions
The model has the form:

_ Po+pix+ por® + - 4 pgah
L+ quz + ga? + -+ + ga, %

The fitted parameters are:
By = po By =m By = po Ba1 = pa,

Bd1+1 = Bd1+2 = Q2 toe Bd1+d2 = qds

where d; and dy are the degrees of the numerator and denominator, respec-
tively.

The fitting procedures are defined in unit ufracfit:
e FracFit(X, Y, Degl, Deg2, ConsTerm, MaxIter, Tol, B, V)

e WFracFit(X, Y, S, Degl, Deg2, ConsTerm, MaxIter, Tol, B, V)

where Degl, Deg2 are the degrees of the numerator and denominator,
and ConsTerm is a boolean indicator which flags the presence of the constant
term pyg.

The regression function is FracFit Func (X, B)

17.2.2 Sums of exponentials

The model has the form:
y=Yo+ Are” " + Agem ™" 4 - -

The fitted parameters are:
By =Yy
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Byi1 = A By = a; 1= 1-'Ne:rp
where N, is the number of exponentials.
The fitting procedures are defined in unit vexpfit:

e ExpFit(X, Y, Nexp, ConsTerm, MaxIter, Tol, B, V)

e WExpFit(X, Y, S, Nexp, ConsTerm, MaxIter, Tol, B, V)

where Nexp is the number of exponentials, and ConsTerm is a boolean
indicator which flags the presence of the constant term Yj.

The regression function is ExpFit_Func(X, B)

17.2.3 Increasing exponential

The model has the form:
Y = Yyin + A(l — ™)
The fitted parameters are:

By = Yin B =A By =k

The fitting procedures are defined in unit uiexpfit:

e IncExpFit(X, Y, ConsTerm, MaxIter, Tol, B, V)

e WIncExpFit(X, Y, S, ConsTerm, MaxIter, Tol, B, V)

where ConsTerm is a boolean indicator which flags the presence of the
constant term Y,,;,.

The regression function is IncExpFit _Func(X, B)
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17.2.4 Exponential 4+ Linear
The model has the form:

y=A(l —e™*) + Ba
The fitted parameters are:

B():A Blzk BQZB

The fitting procedures are defined in unit uex1fit:
e ExpLinFit(X, Y, MaxIter, Tol, B, V)

e WExpLinFit(X, Y, S, MaxIter, Tol, B, V)

The regression function is ExpLinFit _Func(X, B)

17.2.5 Logistic functions

The model has the form:
B-—A

y:A+1_e—ax+b

The fitted parameters are:
BOIA BlzB BQICL Bgzb

The generalized logistic function has the form:

B-A

— Ay o
Y + (1 _ efax+b>n

with the additional parameter By = n
The fitting procedures are defined in unit ulogifit:
e LogiFit(X, Y, ConsTerm, General, MaxIter, Tol, B, V)
e WLogiFit(X, Y, S, ConsTerm, General, MaxIter, Tol, B, V)

where ConsTerm is a boolean indicator which flags the presence of the
constant term A, and General is a boolean indicator which selects the gen-
eralized logistic.

The regression function is LogiFit_Func(X, B)
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17.2.6 Power function

The model has the form:
y = Ax"

The fitted parameters are:
B() =A B1 =N

The fitting procedures are defined in unit upowfit:

e PowFit(X, Y, MaxIter, Tol, B, V)

e WPowFit(X, Y, S, MaxIter, Tol, B, V)

The regression function is PowFit _Func(X, B)

17.2.7 Gamma distribution

The model has the form:

B1:a Bgzb BgZC B4:d

The fitting procedures are defined in unit ugamfit:

e GammaFit (X, Y, MaxIter, Tol, B, V)

e WGammaFit(X, Y, S, MaxIter, Tol, B, V)

The regression function is GammaFit_Func (X, B)
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17.2.8 Michaelis equation

The model has the form:
Ymax‘r

V= Ktz

The fitted parameters are:
BO = Yma:c Bl = Km

where K,, is the Michaelis constant.

This equation is widely used in enzyme kinetics, with x being the sub-
strate concentration and y the reaction rate. Therefore, Y., is the maximal
velocity, such that Y,,.. = kcu€o Where k. is the catalytic constant and eg
the total enzyme concentration.

The fitting procedures are defined in unit umichfit:
e MichFit(X, Y, MaxIter, Tol, B, V)

e WMichFit(X, Y, S, MaxIter, Tol, B, V)
The regression function is MichFit Func (X, B)

17.2.9 Integrated Michaelis equation

The integrated Michaelis equation is the solution to the differential equation:
CLP _ Yinaz(S0 — p)
dt K, +Ssy—p

with the initial condition: p =0 at ¢t = 0.

It is also used in enzyme kinetics, with p being the product concentration
at time ¢t and sqg the initial substrate concentration.

The solution is expressed in terms of Lambert’s W-function, studied in
chapter 4:
K. W S0 S0 — kcate(]t
=50 — K ex
p 0 K, p K,

The independent variable may be t, sq or eg.

The fitting procedures are defined in unit umintfit:

e MintFit(X, Y, MintVar, Fit_SO, MaxIter, Tol, B, V)
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e WMintFit(X, Y, S, MintVar, Fit_SO, MaxIter, Tol, B, V)

where:

e MintVar denotes the independent variable (may be Var_T, Var_S or
Var E)

e Fit_SO indicates if so must be fitted (for Var_T or Var_E only)

So, the fitted parameters are as follows:

Indep. var. | MintVar | By | By Bs
t Var_T so | K | Yiaz
So Var_S K, | Yot
€ Var_E so | K | keart

The regression function is MintFit_Func(X, B)

17.2.10 Hill equation

The Hill equation can be viewed as an extension of the Michaelis equation:

Ymaa:xn

:K—i—x”

Y

The fitted parameters are:
BOZYmam BIZK B2:n
The fitting procedures are defined in unit uhillfit:

e HillFit(X, Y, MaxIter, Tol, B, V)

e WHillFit(X, Y, S, MaxIter, Tol, B, V)

The regression function is HillFit_Func (X, B)
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17.2.11 Acid-base titration curve
The model has the form:

B—A
A28
Y= At T ke

The fitted parameters are:

B():A BlzB Bgsza

It is used in chemistry, where x is the pH, y is some property (e.g. ab-
sorbance) which depends on the ratio of the acidic and basic forms of a
compound, A is the property for the pure acidic form, B is the property for
the pure basic form and pK, is the acidity constant.

The fitting procedures are defined in unit upkfit:

e PKFit(X, Y, MaxIter, Tol, B, V)

e WPKFit(X, Y, S, MaxIter, Tol, B, V)
The regression function is PKFit_Func (X, B)

17.3 Demo programs

17.3.1 Examples

There are several programs in the demo\regmodel subdirectory:

Program Model Data files Ref.
regfrac.pas Rational fraction frac.dat ©
regexpo.pas Sum of exponentials iv2.dat )

orall.dat (%)

oral2.dat (%)
regiexpo.pas Increasing exponential iexpo.dat (1)
regexlin.pas Exponential + linear exlin.dat  (!)
reglogi.pas Logistic function logist.dat (3)
regmich.pas Michaelis equation michael.dat (1)
regmint.pas Integrated Michaelis equation michint.dat (1)
reghill.pas Hill equation hill.dat )

The data were taken from the following references:
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1. Enzyme kinetic data from the author’s laboratory

2. Pharmacokinetic data from M. GIBALDI & D. PERRIER, Pharma-
cokinetics, 2nd edition, Dekker 1982

3. Biochemical data from S. HUET et al., Statistical Tools for Nonlinear
Regression, Springer 1996

Each program reads the data file, then sets the indices of the parameters.
For instance, for the rational fraction:

if ConsTerm then FirstPar := O else FirstPar := 1;
LastPar := Degl + Deg2;

where FirstPar and LastPar are the indices of the first and last regres-
sion parameters.

The program also sets the bounds of the parameters and initializes the
parameters to zero in order to force the computation of the initial values:
For instance, for the rational fraction:

for I := FirstPar to LastPar do

begin
SetParamBounds (I, -1000, 1000);
B[I] := 0.0;

end;

The program then fits the model and plots the resulting curve.
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Chapter 18

String functions

Some string functions have been added in unit ustrings, mainly to help
printing results.

It is assumed that the strings have a capacity of 255 characters. Indeed
a special type is declared in unit utypes as:

type
Str255 = String(255);

However, type String may be used instead since the default capacity is
255, but this will result in a compiler warning.

18.1 Miscellaneous functions

e Function LTrim(S) removes the leading blanks in string S

e Function RFill(S, L) returns string S completed with trailing blanks
for a total length L

e Function LFill(S, L) returns string S completed with leading blanks
for a total length L

e Function CFill(S, L) returns string S completed with leading blanks
so as to center the string on a total length L

e Function StrChar (N, C) returns a string made of character C repeated
N times

e Procedure Replace(S, C1, C2) replaces in string S all the occurences
of character C1 by character C2
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18.2 Parsing

e Function Extract(S, Index, Delim) extracts a field from string S.
Index is the position of the first character of the field. Delim is the
character used to separate fields (e.g. blank, comma or tabulation).
Blanks immediately following Delim are ignored. Index is updated to
the position of the next field.

e Procedure Parse(S, Delim, Field, N) parses string S into its con-
stitutive fields. Delim is the field separator. The number of fields is
returned in N. The fields are returned in Field[Lb..Ub]. Field must
be dimensioned in the calling program.

18.3 Formatting functions
These functions allow to convert numbers to strings.

e Procedure SetFormat (NumLength, MaxDec, FloatPoint, NSZero) de-
fines the numeric format, according to the following parameters:

NumLength : Length of numeric field (default 10)

MaxDec : Max. number of decimal places (default 4)
FloatPoint : Select floating point notation (default False)
NSZero : Write non significant zero’s (default True)

e Function FloatStr (X) converts the real number X to a string according
to the numeric format specified by SetFormat

e Function IntStr(N) converts the integer N to a string.

e Function CompStr(Z : Complex) converts the complex number Z to a
string.
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Chapter 19

Graphic functions

19.1 Introduction

GPMath provides some graphic routines to help plotting curves. They are
available in two versions :

e a BGI version (unit uplot), based on GPC emulation of Borland’s
Graph unit by means of the GRX library (http://grx.gnu.de/).

The BGI fonts (*.chr files) are not distributed with GPMath. They
must be obtained from one of the Borland compilers which are freely
available on the Internet, for instance Turbo Pascal 7: http://pascal.
developpez.com/compilateurs/tp7/

e a IXTEX version (unit utexplot), which uses the pstricks extension
to allow the creation of PostScript files.

19.2 BGI graphics

19.2.1 Initializing graphics

e Function InitGraphics(Pilot, Mode, BGIPath) will place the com-
puter in the graphic mode defined by the parameters Pilot (which
corresponds to the graphic driver) and Mode. BGIPath is a string defin-
ing the directory in which the font files are stored.

The function returns True if the initialization is successful.

Example : InitGraphics(9, 2, ’C:\GPMath\chr’)
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e Procedure SetWindow(X1, X2, Y1, Y2, GraphBorder) defines the size
of the graphic window.
X1, X2, Y1, Y2 are the window coordinates in %
GraphBorder is a boolean parameter which must be set to True for
plotting a border around the window.

This function must be called after InitGraphics

Example : SetWindow(15, 85, 15, 85, True)

19.2.2 Coordinate axes

GPMath allows to plot curves in either linear or logarithmic coordinates.
The type of scale may be selected by using the predefined symbols LinScale
or LogScale

For each axis, the scale is specified by:

e SetOxScale(Scale, 0xMin, OxMax, OxStep)
e SetOyScale(Scale, OyMin, OyMax, OyStep)
where Scale may be either LinScale or LogScale, and the other param-

eters define the bounds and step on the axis.

Default values are: linear scale from 0 to 1 with a step of 0.2. These
values will be used automatically if the calls to Set0xScale or SetOyScale
are omitted.

An automatic scale, suitable for plotting all the values in a vector X, may
be determined by the following procedure (defined in unit uinterv) :

AutoScale(X, Scale, XMin, XMax, XStep)

where Scale defines the type of scale. The results are returned in XMin,
XMax, XStep.

Note that, for a logarithmic scale, the bounds must be powers of 10 and
the step is always 10.

Once the scales have been specified, the axes may be plotted with the
statements PlotOxAxis and PlotOyAxis.

In addition, a grid may be plotted with PlotGrid(Grid) where Grid
may be: HorizGrid (horizontal lines only), VertiGrid (vertical lines only)
or BothGrid (horizontal and vertical lines).
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The current scale parameters can be retrieved for each axis with the
procedures:

e GetOxScale(Scale, 0xMin, 0xMax, 0xStep)

e GetOyScale(Scale, OyMin, OyMax, OyStep)

19.2.3 Titles and fonts

The default titles are ‘X’ and Y’ for the axes, and none for the main graph.
This may be changed with the statements:

e SetOxTitle(Title)
e SetOyTitle(Title)

e SetGraphTitle(Title)

where Title is the relevant string.

The current titles are returned by the corresponding functions: Get0xTitle,
GetOyTitle, GetGraphTitle.

The fonts used to print the titles and axis labels are the BGI fonts (*. chr
files). The default font is the small font. It can be changed with the following
procedures:

SetTitleFont (FontIndex, Width, Height) for main graph
SetOxFont (FontIndex, Width, Height) for Ox axis
SetOyFont (FontIndex, Width, Height) for Oy axis
SetLgdFont (FontIndex, Width, Height) for curve legends

FontIndex is the index of the font, as specified by the Graph unit (e. g.
2 for the small font). Width and Height define the font size. In the case of
the axes, these settings will affect both the titles and labels.

Plotting the axes will automatically print the titles and labels. For the
main graph title, the statement WriteGraphTitle should be used.

19.2.4 Clipping

Procedure SetClipping(Clip), where Clip is a boolean parameter, is used
to decide if the subsequent graphics will be clipped to the boundaries of the
current viewport (defined by SetWindow).
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19.2.5 Curves

Curve properties

Each curve is comprised of:

e a set of points, defined by their coordinates (x;,y;)

e a line connecting the points

It is possible to plot the points only, the line only, or both.
The points have the following properties:

e Symbol : index of the symbol to be plotted, according to the following
convention:

: point (1 pixel)
: solid circle

. open circle

. solid square

. open square

. solid triangle
: open triangle
: plus (+)

: multiply (%)

© 00 N O Ot s W NN = O

: star (x)
e Size : size in pixels (will have no effect if Symbol = 0)

e Color : index of color, according to the current palette

The lines have the following properties:
e Style : line style, according to the Graph unit

0 : none
1 : solid
2 : dotted
3

: centered
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4 : dashed
e Width : line width, according to the Graph unit

1 : normal

3 : thick
e Color : index of color
The curves have two additional properties :

e a legend (30 characters max.)

e a step, which defines how many points will be plotted (plot 1 point
every step points)

By default, 9 curves may be plotted, with the following default parame-
ters:

e symbol = index of curve
e point size = 2

e line style = 1 (solid)

e line width = 1 (normal)
e legend = ‘Y1, ‘Y2, ...
o step =1

e color set for a 16-color palette (VGA mode)

Curve index Color index Color

1 12 LightRed

2 14 Yellow

3 10 LightGreen

4 9 LightBlue

5 11 LightCyan

6 13 LightMagenta
7 4 Red

8 2 Green

9 1 Blue
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The maximal number of curves may be changed with SetMaxCurv (NCurv)
where NCurv is a number between 1 and 255. The current number of curves
is returned by function GetMaxCurv.

The settings for the curve CurvIndex may be changed with the following
procedures:

e SetPointParam(CurvIndex, Symbol, Size, Color)
e SetLineParam(CurvIndex, Style, Width, Color)
e SetCurvLegend(CurvIndex, Legend)

e SetCurvStep(CurvIndex, Step)

The current settings are retrieved by the two procedures:

e GetPointParam(CurvIndex, Symbol, Size, Color)

e GetLineParam(CurvIndex, Style, Width, Color)
and the two functions:

e GetCurvLegend(CurvIndex)

e GetCurvStep(CurvIndex)

Plotting curves

e Procedure PlotCurve(X, Y, CurvIndex) plots a curve defined by the
point coordinates X [Lb. .Ub], Y[Lb..Ub], according to the parameters
of curve #CurvIndex. The coordinates are expressed in user units (not
in pixels).

e PlotCurveWithErrorBars(X, Y, S, Ns, CurvIndex) plotsthe curve
and adds a vertical error bar to each point. The individual errors (usu-
ally expressed as standard deviations) are stored in vector S[Lb. .Ub].
Ns is an integer such that the total height of the bar is 2 * Ns * S[I]
(e. g. set Ns to 3 for plotting 6 standard deviations).

e Procedure PlotPoint (Xp, Yp, CurvIndex) plots a single point. Here
the coordinates Xp, Yp must be in pizels. This procedure is mainly
used internally by the two previous ones.
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19.2.6 Function plot

Procedure PlotFunc(Func, X1, X2, CurvIndex) plots the graph of func-
tion Func from X1 to X2 according to the parameters of curve #CurvIndex.

Func is of type TFunc and is declared as:

function Func(X : Float) : Float;

19.2.7 Legends

Procedure WriteLegend (NCurv, ShowPoints, ShowLines) draws a box at
the right side of the screen, with the legends of the plotted curves. NCurv is
the number of curves. ShowPoints and ShowLines are boolean parameters
selecting which symbols are displayed to identify the curves.

19.2.8 Contour plots

Procedure ConRec (X, Y, Z, F) generates a contour plot of a two-dimensional
function f(x,y). The algorithm is adapted from Paul Bourke (http://
local.wasp.uwa.edu.au/~pbourke/papers/conrec/)

The point coordinates (in pixels) are stored in vectors X[0..Nx] and
Y[0..Ny], where Nx and Ny are the number of steps on Ox and Oy. The
contour levels (in increasing order) are stored in vector Z[0..(Nc - 1)],
where Nc is the number of levels. The function values are stored in matrix
F[0..Nx, 0..Ny], such that F[I,J] is the function value at point (X[I],
Y[JD).

19.2.9 Coordinate conversion

Functions Xpixel(X) and Ypixel(Y) convert the user coordinates X and Y
to the corresponding screen coordinates (pixels). Functions Xuser (X) and
Yuser(Y) do the inverse.

19.2.10 Leaving graphics

Procedure LeaveGraphics quits the graphic mode and returns to the text
mode.
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19.3 ETgEX graphics

Most graphic statements have a KTEX counterpart with a name beginning
with ‘TeX’; e.g. TeX_InitGraphics.

However, colors and fonts are not handled at this time. So, the resulting

plot will be black and white and all labels will be printed with the default
font.

19.3.1 Initializing graphics

e Function TeX_InitGraphics(FileName, PgWidth, PgHeight, Header)
initializes the KIEX file.

— FileName is the name of the KTEX file (e. g. *figure.tex’)
— PgWidth, PgHeight are the dimensions of the graphic area in cm

— Header is a boolean parameter which allows to create a new file
and write the following preamble:

\documentclass[12pt,adpaper]{article}
\usepackage{pst-plot}
\pagestyle{empty}

\begin{document}

If Header is False, no preamble will be written.

Symmetrically, the statement TeX_LeaveGraphics has a boolean pa-
rameter Footer which allows to print the \end{document} section and
close the file.

So, you can place several plots in a single document by calling the two
procedures with the relevant boolean parameters. For instance, the
following sequence will place two plots on the same page:

{ Create new file and write preamble }
if TeX_InitGraphics(’figure.tex’, 15, 10, True) then
begin
TeX_SetWindow (10, 90, 10, 90, True);

(* Close file but don’t write the ’\end{document}’ section *)
TeX_LeaveGraphics(False) ;
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end;

{ Append to existing file and don’t write preamble }
if TeX_InitGraphics(’figure.tex’, 15, 10, False) then
begin
TeX_SetWindow(10, 90, 10, 90, True);

(* Close file and write the ’\end{document}’ section *)
TeX_LeaveGraphics(True) ;
end;

e Procedure TeX_SetWindow behaves as its BGI equivalent.

19.3.2 Axes and titles
The following procedures behave as their BGI equivalents:
e TeX Set0xScale
e TeX_SetOyScale
o TeX SetGraphTitle
e TeX SetOxTitle
o TeX SetOyTitle
e TeX PlotOxAxis
o TeX PlotOyAxis
e TeX PlotGrid

e TeX WriteGraphTitle

19.3.3 Curves

e The curves have the same properties than in the BGI version, except
that:

— there is no Color parameter;

— there is an additional boolean property Smooth which indicates if
the curve must be smoothed.
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These properties are set with the following procedures:

— TeX_SetPointParam(CurvIndex, Symbol, Size)

— TeX SetLineParam(CurvIndex, Style, Width, Smooth)

e The following procedures behave as their BGI equivalents:

— TeX_SetMaxCurv

TeX_SetCurvLegend

— TeX_SetCurvStep

TeX_PlotCurve

— TeX_PlotCurveWithErrorBars

TeX_WriteLegend
— TeX_ConRec

e Procedure TeX_PlotFunc(Func, X1, X2, Npt, CurvIndex) hasan ad-
ditional parameter Npt which denotes the number of points to be plot-

ted.

19.3.4 Other functions

Functions Xem(X) and Yem(Y) convert the user coordinates X and Y to their

equivalent in cm.

19.4 Demo programs

19.4.1 BGI programs

The following programs are provided for BGI graphics. Most of them have
already been described in the previous chapters.

Directory Program Description Chapter
demo\curfit *.pas Curve fit 14-16
demo\fmath contour.pas Contour plot

plot.pas Function plot
demo\fourier | testfft.pas Fast Fourier Transform 11
demo\regmodel *.pas Library of regression models 17
demo\stat histo.pas Histogram 13

158




19.4.2 KTIEXprogram

Program texdemo.pas, placed in the demo\fmath directory, creates a EIEX
file figure.tex which plots a Fourier series:

Fy =0.75(1 + cos ¢)
Fy =2.5[1 + cos(2¢ — )]
Fs=F+ F

This function is used in chemistry to describe the torsional energy of an
amide bond.

The resulting file must be processed with latex. The graphics can be
converted to PostScript by the dvips utility:

latex figure
dvips figure

159



160



Chapter 20

Expression evaluation

GPMath provides a math parser for evaluating expressions at run time. The
expression is a character string which may contain numbers, operators, paren-
theses, variables and functions as described below.

20.1 Numbers

Integers (32-bit, signed) and reals (Float type) must be entered in decimal.
The exponential notation (e. g. 6.62E-34) is not accepted. You must write
6.62 * 10~ (- 34).

20.2 Operators

+ addition, unary plus
subtraction, unary minus
multiplication
division

integer division
modulus operator
exponentiation

shift bit right

shift bit left

bitwise AND
bitwise OR

bitwise XOR
bitwise NOT
bitwise IMP

bitwise EQV

I ®
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Operator precedence

bitwise NOT (highest precedence, evaluated first)
bitwise AND

bitwise OR

bitwise XOR

bitwise EQV

bitwise IMP

exponentiation

+ - unary plus, unary minus

« / multiplication, division

\ integer division

%  modulus operator

<> shift bit left, shift bit right

+ - addition, subtraction (lowest precedence, evaluated last)

ORI S

20.3 Parentheses

Parentheses can be used to override operator precedence, but within paren-
theses operator precedence is used.

20.4 Variables

There are 26 variables from A to Z

20.5 Functions

Function arguments must be enclosed within parentheses. These parentheses
must be present even if there is no argument passed to the function.

A maximum of 26 arguments is allowed for each function.

There are 30 built-in functions available. Most of them are described in
the GPMath documentation. There are, however, some differences which are
documented below.

e Standard functions : Abs(X), Sgn(X), Int(X), Sqrt(X), Exp(X),
Ln(X), LoglO(X), Fact(X), Rnd()

Rnd () returns a 32-bit real random number in [0, 1) from the ‘Mersenne
Twister’ generator (see chapter 12).
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e Trigonometric functions : Deg(X), Rad(X), Sin(X), Cos(X), Tan(X),
ArcSin(X), ArcCos(X), ArcTan(X), ArcTan2(Y, X)

Deg(X) and Rad(X) convert their argument to degrees and radians,
respectively.

e Hyperbolic functions : Sinh(X), Cosh(X), Tanh(X), ArcSinh(X),
ArcCosh(X), ArcTanh(X)

e Special functions : Gamma(X), IGamma(A, X), Beta(X, Y), IBeta(A,
B, X), Erf(X), LambertW(X)

LambertW(X) returns only the upper branch of the Lambert function.

20.6 Exported functions

20.6.1 InitEval

This function initializes the built-in functions and returns their number. It
also re-initializes the random number generator. It is mandatory to call this
function before using any of the built-in functions.

var
N : Integer;
begin
N := InitEval;
Writeln(N, ’ functions initialized’);
20.6.2 Eval

This function evaluates an expression passed as a character string and returns
its value.

var
X : Float;
S : String;
begin
InitEval;
Write(’Enter an expression : ’);
Readln(S);
X := Eval(S);
Writeln(’ =, X);
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20.6.3 SetVariable

This procedure assigns a value to a variable. The name of the variable is
case-insensitive.

SetVariable(’x’, 1);

20.6.4 SetFunction

This procedure adds a new function to the library. Up to 20 functions can
be added. The function declaration must conform to the internal type:

type TWrapper =
function( ArgC : TArgC;
var ArgV : array([Lb..Ub : Integer] of Float) : Float;

where ArgC is the argument count, TArgC denotes the interval 1. .26 and
ArgV contains the argument values, from ArgV[1] to ArgV[ArgC].

function Average( N : TArgC;
var X : array[Lb..Ub : Integer] of Float) : Float;
var
I : Integer;
S : Float;
begin
S :=0.0;
for I :=
S =38
Average :
end;

to N do
X[11;
S/ N;

+

begin
SetFunction(’Average’, Average);
Writeln(Eval(’Average(1, 2, 3)’));

20.7 Demo programs

e Program evall.pas (in demo\fmath) evaluates a mathematical expres-
sion entered at run time.

e Program eval2.pas (in demo\fmath) demonstrates the math parser
and shows how to add variables and functions at run time.
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