
What's New Page 1

TX Text Control
DLL Reference Manual

Version 7.0

What's NewPage 2

TX Text Control 7.0

Information in this document is subject to change without notice and does not represent a
commitment on the part of The Imaging Source Europe GmbH. The software described in
this document is furnished under a license agreement. The software may only be used or
copied in accordance with the terms of this agreement.

Copyright 1991-1999 The Imaging Source Europe GmbH. All rights reserved.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

What's New Page 3

Contents
What's New in Version 7.0 since Version 6.0 6

New Features 6
Changes and Extensions 6
New and Extended Messages and Data Structures 7

What's New in Version 7.0 since Version 5.2 9

New Features 9
Changes and Extensions 10
New and Extended Messages 10

1. Introduction 12

1.1 What is TX Text Control 12
1.2 The Library Files 12
1.3 The Source Files 13
1.4 Creating and Programming a Text Control Window 14
1.5 Text Formatting and Views 15
1.6 Headers and Footers 19
1.7 Tables 21
1.8 Marked Text Fields 23
1.9 Image Processing 28
1.10 Integrating OLE Objects 28
1.11 Integrating External Windows 32
1.12 Using Chains of linked Windows 33
1.13 Using Metafiles 34
1.14 ANSI and Unicode 35
1.15 Resources 38

2. Mouse and Keyboard Interface 40

2.1 Mouse Assignment 40
2.2 Keyboard Assignment 40

3. Function Directory 42

4. Message Overview 44

4.1 Processed Windows Messages 44
4.2 Font Messages 46
4.3 Paragraph Messages 46
4.4 Text Manipulation Messages 47

What's NewPage 4

4.5 Messages to Adapt Formatted Text to a new Output Device 48
4.6 Print Messages 48
4.7 File IO Messages 49
4.8 Information Messages 49
4.9 Messages to Process Images 51
4.10 Messages to Handle Chains of Linked Windows 51
4.11 Messages to Handle Marked Text Fields 51
4.12 Messages to Perform Undo Operations 52
4.13 Messages to Handle Integrated Objects 52
4.14 Messages to Handle the Internal Scroll Interface 53
4.15 Messages to Handle Find and Replace Features 53
4.16 Table Messages 53
4.17 Messages to Handle Headers and Footers 54
4.18 Additional Features 55
4.19 Notification Messages 56
4.20 Obsolete Messages 58

5. Message Directory 60

6. Notification Messages 174

7. Data Structures 185

8. Obsolete Messages and Functions 207

Appendix A 216

The TX Text Control Text Format 216
Format Example 224

Appendix B 227

Group Codes 227
Error Code Table (TX kernel module) 228
Error Code Table (OLE module) 240

Appendix C 241

Development of a Text Filter 241

Appendix D 249

Status Bar Control 249
Functions 250
Messages 253

Appendix E 255

What's New Page 5

Button Bar Control 255
Functions 256
Messages 259

Appendix F 262

Ruler Control 262
Functions 263
Messages 265

Appendix G 267

Debugging Functions 267
Error Code Table (Expansion for Debugging functions) 268

Appendix H 271

Object Window Messages 271

IC Image Control 275

1. Introduction 283

1.1 What is IC 283
1.2 The Library Files (16 bit version) 283
1.3 The Library Files (32 bit version) 283
1.4 The Source Files 284
1.5 How to use the Image Control 284
1.6 How to use Images with a Text Control 285
1.7 Filter Selection 285
1.8 ANSI and Unicode 286

2. Function Directory 287

3. Message Overview 289

4. Message Directory 291

5. Notification Messages 301

Appendix A 303

Error Code Table (Image Control module) 303
Error Code Table (graphics import filter) 304

Appendix B 306

The IC Image Control File Format 306

What's NewPage 6

What's New in Version 7.0 since Version 6.0

New Features

Text Control supports headers and footers. Several messages have been added for
this feature. See chapter 1.6 "Headers and Footers" for more information about
these messages and how headers and footers can be used and programmed.

Text Control supports several special types of marked text fields like source and
destination fields for hypertext links or fields that display the current page number.
The new messages TX_FIELD_GETTYPE and TX_FIELD_SETTYPE set or
retrieve the type for a marked text field including additional data depending on this
type.

Text Control offers an additional page view that centers the document in the
window's client area and displays three-dimensional pages with shadows. This
mode can be set with the TF_EXTPAGEVIEW setting of the
TX_SETTEXTAREA message.

The new message TX_SETLINEANDCOL can be used to specify a new text input
position through a page, line and column number.

The new message TX_RESETCONTENTS can be used to delete the complete
contents of a Text Control.

The new message TX_INPUTPOSFROMPOINT can be used to calculate a text
positon belonging to a certain geometric position.

The new message TX_OBJ_GETDISPINTERFACE can be used to get a pointer to
the dispatch interface of an inserted object. This pointer can be used to set an
object's properties or to call an object's methods.

Changes and Extensions

The Text Control text format has been changed to supports headers and footers and
special types of marked text fields. The text format is fully compatible to prior
formats. Furthermore all prior formats can be loaded. The new format version
number is 700. More information about how headers and footers are integrated can
be found in Appendix A of this manual.

What's New Page 7

New and Extended Messages and Data Structures

Message Description

TX_FIELD_FROMCARETPOS Returns the field identifier of the field
containing the current input position.

TX_FIELD_GETNEXT Additionally supports the special field types.

TX_FIELD_GETTYPE Returns the type of a marked text field.

TX_FIELD_GOTO Sets the current input position to the beginning
of a marked text field.

TX_FIELD_SETTYPE Defines a marked text field of a special type.

TX_GET/SETTEXTAREA Supports an additional page view that centers
the document in the Text Control's client area
and displays three-dimensional pages with
shadows.

TX_HF_ACTIVATE Activates or deactivates a header or footer.

TX_HF_DISABLE Disables the usage of headers and/or footers.

TX_HF_ENABLE Enables the usage of headers and/or footers.

TX_HF_GETENABLED Returns the currently enabled headers and/or
footers.

TX_HF_GETPOSITION Returns a header's or footer's position on the
page.

TX_HF_SELECT Selects a header or footer for message routing.

TX_HF_SETPOSITION Sets a header's or footer's position on the page.

TX_INPUTPOSFROMPOINT Returns the text input position belonging to a
given point in the Text Control window's visible
area.

TX_OBJ_GETDISPINTERFACE Returns a pointer to an object's dispatch
interface.

TX_RESETCONTENTS Deletes the complete contents of the Text
Control.

What's NewPage 8

TX_SETLINEANDCOL Sets a new text input position, given through a
page, line and column number.

Notification Description

TN_FIELD_LINKCLICKED Occurs when a field has been clicked on that is
the source of a hypertext link.

TN_HF_ACTIVATED Informs about header or footer activation.

TX_HF_DEACTIVATED Informs about header or footer deactivation.

Data Structure Description

FIELDDATA The lReserved parameter has been changed.
One byte now indicates the type of the field, the
remaining three bytes are still reserved.

FONTBLOCK The reserved parameter has been changed to
nFieldType. It stores the type of the marked text
field.

TXFILTERIO The lpImagePath member has been changed to
lpAbsPath. The lpreserved member has been
changed to lpBasePath. The member
lpDocPath has been added. The reserved[256]
has been changed to reserved[252].

What's New Page 9

What's New in Version 7.0 since Version 5.2

New Features

The 32 bit version of Text Control has been extended to support Unicode, the
character set for all languages. All messages and functions with string parameters
have been implemented twice, one version for ANSI and one version for Unicode.
See the new chapter 1.14 "ANSI and Unicode" for more information and a
complete list of the extended messages and functions and how to use them. Unicode
support is available on Windows NT and Windows 95/98.

The 32 bit version of Text Control now supports Far Eastern writing systems (Input
Method Editors) and can process double-byte character sets. Internal dialog boxes
and user messages are available in Japanese. This also is supported on Windows
NT and Windows 95/98.

The TX_DATAIN and TX_DATAOUT messages support loading and storing
Unicode text either as text only or integrated in the Text Control's text format.

The TX_FINDTEXT message has been extended so that text can be searched for
without using dialog boxes.

The new messages TX_TABLE_GETATTROFCELL and
TX_TABLE_SETATTROFCELL can be used to handle attributes of table cells
like border widths, text distances and background color.

The new message TX_TABLE_GETCELLPOSITION retrieves the indexes of the
first and the last character in a table cell.

The new message TX_TABLE_GETNEXT returns the identifier of a table which
follows a specified table. It can be used to construct a loop of all tables a Text
Control contains.

The TX_SETLANGUAGE message accepts the file name of a resource library
which Text Control loads when resources are needed. This can be used to display
information strings and dialog boxes in other than the built-in languages. See the
new chapter 1.15 "Resources" for more information.

A new Tabulator type has been implemented. This type acts like a right-aligned
tabulator but its position is always the rightmost text position. This tabulator type
can only be set with the TX_SETTABS message.

What's NewPage 10

Changes and Extensions

In table cells with a single decimal tabulator text is automatically formatted. It is
not necessary to type a tabulator character.

The Text Control's text format has been extended to support Unicode. The
following extensions have been made:

1. Text is stored either in ANSI or in Unicode format depending on the
TX_DATAOUT message settings. The dwTextSize member of the textblock
structure stores the Unicode character size of 2 bytes in its high-order word when
the following text is in Unicode format. International applications should store the
text in Unicode format.

2. The fAddData member of the textblock structure indicates additional data
following the FieldData byte array.

3. An array of TXLOGFONTEX data structures follows the FieldData byte array.
These structures contain additional font data.

Several integral data types of the message and function parameters and data
structure members have been changed to support Unicode. See the new chapter
1.14 "ANSI and Unicode" for a complete list. All changes are fully compatible to
prior versions of Text Control.

User-developed 32 bit filters must be extended to process Unicode. The 32 bit
version of Text Control 6.0 works only with filters that can handle Text Control's
text format with text formatted as Unicode. Filters must provide the additional
function GetFilterInfo that informs about the capabilities of a text filter. See
appendix C for more information about this function.

New and Extended Messages

Message Description

TX_DATAIN / TX_DATAOUT Provides the new format identifier
TF_FORMAT_UNICODE.

TX_FINDTEXT Can now be used without displaying a
dialogbox.

TX_GETTABS / TX_SETTABS Provides the new tabulator type
RIGHTBORDERTAB.

What's New Page 11

TX_SETLANGUAGE Accepts the filename of a resource library.

TX_TABLE_GETATTROFCELL Retrieves information about the attributes of
one or more table cells.

TX_TABLE_GETCELLPOSITION Retrieves the indexes of the first and the last
character in a table cell.

TX_TABLE_GETNEXT Returns the identifier of a table following a
specified table.

TX_TABLE_SETATTROFCELL Alters one or more attributes of one or more
table cells.

Page 12 Introduction

1. Introduction

1.1 What is TX Text Control

TX Text Control is an efficient programming tool for Microsoft Windows. It
enables the software developer to realize software projects with sophisticated text
processing features, in a fraction of the time normally required.

A complete object oriented approach is realized. All of the following features are
accesible through messages:

- Keyboard interface.

- Mouse interface.

- File I/O.

- Clipboard operations with formatted text.

- Text formatting with all the fonts that are supported by the output device.

- Paragraph formatting which includes tabs and adjustment of line setting.

- Dialog boxes for convenient selection of fonts and adjustment of line spacing.

- Image processing.

- table processing.

- OLE support.

Even for actions like printing or file manipulation knowledge about the internal
storage structures is not required.

1.2 The Library Files

TX32.DLL The dynamic link library of the Text Control module.

TX.H The Text Control's include file for your application.

TX32.LIB The import library file to be linked with your object files.

TX_RTF32.DLL The text import/export filter for Rich Text Format.

Introduction Page 13

TX_HTM32.DLL The text import/export filter for HTML Format (Hypertext
Markup Language).

TX_WORD.DLL The text import/export filter for Microsoft WORD.

TXTLS32.DLL The dynamic link library containing the Text Control tools,
such as status bar, ruler and button bar.

TXTLS32.LIB The import library file for the Text Control tools.

TXTOOLS.H The include file for the Text Control tools.

WNDTLS32.DLL The dynamic link library for moving and sizing objects.

WNDTLS32.LIB The import library file for the Text Control tools.

TXOBJ32.DLL The dynamic link library for OLE support.

TX.HLP This manual's Windows Help file.

WMXMSG.H An additional include file for handling external objects.

1.3 The Source Files

If your version contains the source code, the following directories contain the
various source and make files:

\TX Contains the source files for the Text Control module.

\RTF Contains the source files for the import/export filter
TX_RTF.DLL.

\TX_HTML Contains the source files for the import/export filter
TX_HTML.DLL.

\TX_WORD Contains the source files for the import/export filter
TX_WORD.DLL.

\TXTOOLS Contains the source files for the Text Control tools.

\WNDTOOLS Contains the source files for the move and size tool.

\TXOBJ Contains the source files for the OLE module.

\INC Contains all include files.

\LIB Contains all import library files.

\DLL Contains all executeable files.

Page 14 Introduction

Both versions, 16 and 32 bit, can be compiled from the same source files. For the
32 bit versions each directory contains a Visual C++ 4.0 project file *.MDP. For
the 16 bit versions makefiles are available for the MAKE utility from Turbo C and
for the NMAKE utility from Microsoft C. Each directory contains four
subdirectories to receive the object files as debug and retail version. The executable
files are automatically be copied in the \DLL directory, the include files in the \INC
directory and the import library files in the \LIB directory.

1.4 Creating and Programming a Text Control Window

First include the file TX.H into the source code of your application. The object files
must be linked with TX.LIB. The dynamic link libraries must be in the current
directory or in a directory that is included in the PATH environment variable.

Now you can create a window by calling CreateTextControl. Windows of this
type are referred to as Text Control in the following text. Save the returned window
handle because it is needed for communication with the Text Control. The
communication is completley handled with functions like PostMessage,
SendMessage or the window manager functions. All features of the Text Control
are accessible through messages. The Text Control is established as a child of the
controlling window. More than one Text Control can be established at different
positions on the parent window. This can be used to simulate a page, where only
certain areas can show or receive text. If the background mode is set to transparent,
then even the background of one Text Control can be another Text Control .

After its creation, a text control has to be made visible with a call to ShowWindow.
The behaviour of a child window is further described in the SDK reference. If the
Text Control is to be able to receive keyboard input every time the controlling
window is activated, call SetFocus with the Text Control handle as a parameter
when the application receives a WM_ACTIVATE message.

When calling RegisterClass for the parent window, the STYLE field of the
WNDCLASS structure should not contain CS_HREDRAW and CS_VREDRAW
to avoid unnecessary redrawing.

Furthermore a Text Control can be used as part of a dialogbox. In the resource file
the CONTROL statement can be used with the class field set to »TX«, the Text
Control class name. Then the dialog box processing code can use the functions
GetDlgItemText, GetDlgItemInt , SetDlgItemText and SetDlgItemInt.

Introduction Page 15

The Text Control informs the parent window about special conditions with several
notification messages. The parent window receives these messages which are
described in chapter 6 through the lParam parameter of a WM_COMMAND
message. To avoid message queue overflow frequently used notifications messages
like TN_POSCHANGED are sent with SendMessage instead of PostMessage. An
application can therefore use the notification messages to change its own data
structures or to get information from the Text Control but must be careful when
changing the Text Control's current contents. In this case it is safer when the
application implements a delay of its own, by for example sending a message to
itself with PostMessage. In this way it can be ensured that the Text Control has
finished the process which causes the notification message.

1.5 Text Formatting and Views

Text Control offers several ways, in which text may be formatted and viewed as
described in the following list:

1. Control view:
The area for text formatting is the Text Control window's client area. This is the
default setting after creating a Text Control.

2. Control view with autoexpand:
The area for text formatting is the Text Control window's client area, but the Text
Control's window size is automatically expanded when the text exceeds the
window's size.

3. Control view and linked Text Controls:
The area for text formatting is the Text Control window's client area, but text
automatically flows to a following linked Text Control when it exceeds the
window's size.

4. Normal View:
The formatting width has been specified by the programmer and invisible text can
be shown with a built-in scroll interface with or without scroll-bars. The vertical
scrolling amout depends on the text.

5. Page View:
The formatting width and height has been specified by the programmer. Text
Control has a built-in scroll interface and displays pages with gaps, borders,
margins and a gray background. The number of pages depends on the text.

Page 16 Introduction

6. Extended Page View:
This view works in the same way as the page view, but Text Control displays three-
dimensional pages which are centered in the window's client area.

Control View

The formatting area, which is the area Text Control uses to perform line breaks, is
the client area of the Text Control's window. This means that every time the
window is resized, the text is newly formatted.

A line break is automatically performed when the current input position reaches the
window's right border. When the window's right border is reached without having a
break character in a line, no line break is performed and Text Control indicates
overflowing text with a vertical mark. This mark is displayed at the window's left or
right border, depending on the paragraph alignment setting. When the number of
lines exceed the window's height, overflowing text is indicated with a plus mark at
the bottom of the window. The current input position, indicated by the caret, can
never leave the window's client area. If the user tries to move the caret to
overflowing text, the Text Control beeps.

When the Text Control is zoomed, the current window's size is also zoomed to
adapt the formatting area to the new zooming factor. Its position in relation to its
parent window is also zoomed.

The formatting area must always be large enough to fully display the largest
character currently contained in the text. Information about the dimensions of this
minimum window size can be obtained by the minimum tracking size retrieved
through the WM_GETMINMAXINFO message.

Autoexpanding and window linking are possible only in this view. In
autoexpanding mode the window size is automatically expanded to the current text
amout. This mode can be set through the TX_SETMODE message. After Text
Control has expanded its window size it sends TN_HEXPAND and/or
TN_VEXPAND notification messages. The window linking feature is described in
chapter 1.12.

Because the control view has no built-in scroll interface, Text Control sends several
notification messages, to enable a programmer to implement an external scroll
interface. This can be important for example when linked Text Controls are used to
form a document with several pages. The TN_CARETOUTBOTTOM,
TN_CARETOUTLEFT, TN_CARETOUTRIGHT and TN_CARETOUTTOP

Introduction Page 17

notifications are sent, when the current input position has been moved outside the
Text Control window's visible part. The TN_CARETOUT notification is sent,
when the current input position has been moved to a completely invisible Text
Control and the TN_AUTOSCROLL notification is sent during extension of a text
selection with the mouse. All of these notification messages are only possible in the
control view.

Normal View

With the TX_SETTEXTAREA message the formatting area can be changed by the
programmer. This is necessary to realize a text editor that formats the text
accordingly to a certain page width. The page width is specified through the low-
oder word of the lParam parameter, the high-order word must be set to -1 for this
view, which indicates that the formatting height depends on the current amount of
text.

When the formatting width and/or height is greater than the current window size
and the caret reaches the Text Control window's border, scrolling is performed
automatically to make the new input position visible. Additionally a horizontal and/
or a vertical scroll-bar can be used to scroll to text parts outside of the client area
without changing the current input position. Scroll-bars can be used only when
TF_HSCROLL and/or TF_VSCROLL has been specified with
TX_SETTEXTAREA.

If the Text Control's window is sized the text is not newly formatted and if the Text
Control is zoomed, the window's size and position are not changed. If the window
is resized visible scroll-bars are automatically hidden when they are no longer
needed. Conversely previously hidden scroll-bars are automatically shown when
the window's size becomes smaller. To get the information as to whether a specific
scrollbar is visible or not, use the GetWindowLong function with the
GWL_STYLE flag.

Page View

A programmer can also specify a page height through the lParam's high-order word
when calling the TX_SETTEXTAREA message (instead of -1). Text Control then
shows pages with margins and borders. The number of pages depends on the amout
of text.

Page 18 Introduction

Text Control interprets the formatting area specified through the lParam parameter
of the TX_SETTEXTAREA message as the area that can be filled with text. Page
margins are added to these values to form a page. Page margins have a default
value of 2 cm and can be changed through the TX_SETPAGEMARGINS message.

Extended Page View

With the TF_EXTPAGEVIEW setting of TX_SETTEXTAREA, pages are
displayed in three dimensions with borders and shadows and they are centered in
the window's client area. The TF_PAGEVIEW setting returns to the two-
dimesional page view.

like for many other extension settings, Text Control uses twentieths of a point for
defining the formatting area. This unit is often used in combination with text
processing applications or fonts and is called TWIP. One TWIP is a 1/1440th of an
inch.

In the normal view and both page views Text Control has a built-in scroll interface.
Text Control sends TN_HSCROLL and TN_VSCROLL notification messages
when it scrolls automatically. The current scroll positions can be obtained with the
TX_GETSCROLLPOS message or set with the TX_SETSCROLLPOS message.

With the page view and the extended page view headers and footers can be used.
For more information how to handle headers and footers see "Headers and
Footers".

Mixed Views

The control view and the normal view can be mixed, when either the formatting
width or height is set to zero. For example when specifying a width of zero and a
height of -1, the text is formatted depending on the current window's width but the
text is not limited to the window's height.

Introduction Page 19

1.6 Headers and Footers

Using Headers and Footers

Headers and footers can only be used when a formatting area has been set with the
TX_SETTEXTAREA message. Headers and footers are only visible on the screen
when page view or extended page view has been selected (see chapter 1.5 "Text
Formatting and Views" for more information).

Headers and/or footers must be enabled with the TX_HF_ENABLE message. This
message specifies whether headers and footers, only headers or only footers are to
be used. Additionally special headers and/or footers for the first page can be
specified. To edit an inserted header or footer, it must be activated either with the
TX_HF_ACTIVATE message or with a built-in mouse interface. An activated
header or footer gets the input focus and its border is shown with a dotted frame.
When a header or footer is activated, the main text is displayed gray, otherwise a
header's or footer's text is displayed gray. Text Control sends
TN_HF_ACTIVATED and TN_HF_DEACTIVATED notification messages to
inform its parent window about activation or deactivation of headers or footers.

The TX_HF_ENABLE message allows the following style settings:
1. Activation can be performed with mouse click and/or with mouse double-click.
2. The border of an activated header or footer can be solid, dotted or unframed.
The default style setting is a dotted frame and a mouse interface that activates a
header or footer with double-clicks.

By default the top of a header has a distance of one centimeter from the top of the
page and the bottom of a footer has a distance of one centimeter from the bottom of
the page. With the TX_HF_GETPOSITION and TX_HF_SETPOSITION
messages these values can be changed. The height of a header or footer depends on
the header's or footer's current text.

When a document is loaded or converted from another format, contained headers
and footers are automatically displayed. The TX_HF_GETENABLED message can
be used to get the information about which headers and/or footers the current
document contains.

To delete a header or footer or to disable a certain style setting, the
TX_HF_DISABLE message can be used.

Page 20 Introduction

Programming Headers and Footers

Headers and footers are seperate text parts which are independent of the main text.
When the user alters the text or the text format, for example with a connected
button bar, Text Control uses the current input focus, to determine whether the text
format of a header, a footer or the main text is changed. The same occurs when the
text is manipulated from programming code. For example when a table is inserted
from a menu with the TX_TABLE_INSERT message, the current input focus
determines whether the table is inserted in a header's or footer's text or in the main
text.

In addition to this default selection a programmer can use the TX_HF_SELECT
message to use a certain message for a certain text part. For example the following
code returns the size of a header's text:

LONG lTextSize;
SendMessage(hwndTX, TX_HF_SELECT, 0, TF_HF_HEADER);
lTextSize = SendMessage(hwndTX, TX_GETTEXTSIZE, 0, 0L);
SendMessage(hwndTX, TX_HF_SELECT, 0, TF_HF_AUTO);

The first line selects the header, independent of the current input focus, the second
line gets the size of the header's text and the third line returns to the default
selection mode. There can be more than one message call between the two
TX_HF_SELECT calls.

Almost all messages can be used in this way with some exceptions. The following
is a complete list of these exceptions:

1. The following messages cannot be used with headers and footers:

- all messages that handle scrolling
- all messages that handle headers and footers
- all messages that handle printing
- all messages that handle chains of linked windows
- TX_GETRECT
- all obsolete messages

2. The following messages are handled for all text parts (main text, headers and
footers) in the same way, independent of the currently selected part. These
messages are:

- TX_DEVMODECHANGE
- TX_GET/SETBKGNDCOLOR
- TX_GET/SETLANGUAGE

Introduction Page 21

- TX_GET/SETCARETEXT
- TX_GET/SETMODE
- TX_GET/SETMODEEX
- TX_GETSUPPORTEDFONTS
- TX_GETSUPPORTEDSIZES
- TX_GET/SETDEVICE
- TX_GETZOOM/TX_ZOOM
- TX_SETWORDDIVISION

3. The following messages can only be used with headers and footers in
conjunction with the TX_HF_SELECT message:

- TX_GETDATASIZE
- TX_DATAIN
- TX_DATAOUT
- TX_COPYDATA
- TX_LOAD
- TX_PASTEDATA
- TX_SAVE

1.7 Tables

Using Tables

Tables can be inserted into a Text Control either with the message
TX_TABLE_INSERT or as part of a document formatted with the RTF or HTML
formats. Text Control treats a table as a number of cells organized in rows and
columns. Each cell can have as many lines and paragraphs as required. Paragraph
formatting is performed in relation to a cell's borders. Each cell has a position and
an extension in the document, within this area a cell's frames and text are drawn
along with its paragraph and character formatting attributes. There can be a
distance between the frame and the text.

Text can be selected either within a single cell or in steps of complete cells or rows.
When a selection is deleted inside a table only the text is deleted. To delete one or
more complete rows use the TX_TABLE_DELETELINES message. Tables can be
copied to the clipboard and pasted from the clipboard. When a table is inserted at
the first position of another table or immediately behind another table and both

Page 22 Introduction

tables have the same number of columns they are combined into a single table. The
insertion of one table inside another table is not possible.

A table's attributes are its frame width, distance between frame and formatted text,
and background color. To alter the attributes of a table or part of a table, cells must
be selected. Then either the messages TX_TABLE_GETATTR and
TX_TABLE_SETATTR messages can be used or a built-in dialog box can be
opened with the TX_TABLE_ATTRDIALOG message. When the selection
extends over several tables or tables mixed with text, attributes cannot be changed.
To get information about whether attributes can be changed or tables can be
inserted or deleted, for example to implement a menu, the message
TX_TABLE_ISPOSSIBLE can be used.

When the current input position is inside a table, the ruler shows the positions of all
the cells in a table's row and the formatting attributes of the cell the input position
belongs to.Then the cells' positions and extensions can be changed with a built-in
mouse interface. This can also be performed with the messages
TX_TABLE_GETPOSITIONS and TX_TABLE_SETPOSITIONS.

Programming with Table Identifiers

Like objects and marked text fields each table has an unique identifier which is set
by Text Control. This identifier is returned from the TX_TABLE_INSERT
message. A programmer can change this identifier with the
TX_TABLE_CHANGEID message. Changing the identifier is not necessary but
recommended when a table's text or attributes are to be changed from the program
instead from an end-user. The user-defined identifier need not to be unique and
remains valid if a table is saved and reloaded.

When a table or a part of a table is inserted inside another table the inserted table
becomes a part of the existing table and the inserted table's identifier is lost.

When a table with a user-defined identifier is inserted outside of all existing tables
a new table is created and the table's identifier remains valid. Text Control informs
its parent window with a TN_TABLE_CREATED notification message that a new
table has been created. The programmer can change the identifier sent with the
notification by setting the return value of the notification message.

When a table is inserted from another application which means it cannot have an
user-defined identifier, Text Control sends an own-selected identifier with the
TN_TABLE_CREATED notification so that the program can change it.

Introduction Page 23

When tables are imported with one of the data import messages
TN_TABLE_CREATED notifications are sent only when text is inserted into an
existing document or when an imported table has no user-defined identifier.
Otherwise when a table with an user-defined identifier is saved and reloaded no
notification is sent.

When a table is completely deleted Text Control informs its parent with a
TN_TABLE_DELETED notification message.

The following messages can be used with table identifiers to get information or to
set table attributes regardless whether the current input position is or is not inside
this table:

Message Description

TX_TABLE_CHANGEID Changes a table's identifier.

TX_TABLE_GETROWSANDCOLS Returns the number of rows and columns in
a table.

TX_TABLE_GETTEXTOFCELL Gets a table cell's text.

TX_TABLE_SETTEXTOFCELL Changes a table cell's text.

When more than one table with a certain identifier exists, these messages perform
the operation with the original inserted table. In chains of linked windows these
messages can be sent to any window in the chain regardless of which window
contains the table.

1.8 Marked Text Fields

Using Marked Text Fields

A set of messages has been implemented to define areas in the text of a Text
Control called marked text fields. These fields can be used to create hypertext
features like those in the Windows Help application, to realize database embedding
while text of different datasets can be included into the text or to combine several
fields with formulas as in spreadsheet applications.

An application can use the TX_FIELD_INSERT message to define a marked text
field. The whole communication works with unique numbers returned by this
message. The current text can be changed or retrieved with the messages

Page 24 Introduction

TX_FIELD_CHANGETEXT and TX_FIELD_GETTEXT, the message
TX_FIELD_GETPOSITION returns the current text position of a field. Special
attributes can be set with the messages TX_FIELD_GETATTR and
TX_FIELD_SETATTR. These attributes can prevent a field from being deleted or
the text of a field from being changed. Further attributes which help the end-user to
edit the field's contents are described in the next chapter.

With different notification messages Text Control informs the application about
special conditions. The notification messages TN_FIELD_CLICKED and
TN_FIELD_DBLCLICKED inform the application about mouse clicks;
TN_FIELD_ENTERED and TN_FIELD_LEFT indicate whether the current input
position has been moved into or from a marked text field.
TN_FIELD_SETCURSOR can be used to define the cursor when it is moved over
a field. The default cursor is the up-arrow cursor. The notification message
TN_FIELD_CHANGED is sent if the text of a field has been altered, and the
notification messages TN_FIELD_DELETED and TN_FIELD_CREATED are
sent if fields have been deleted or created while inserting or deleting text with the
keyboard or the clipboard. If the text and format data of a Text Control which
contains marked text fields are saved and then reloaded all field identifiers remain
the same.

Editing Marked Text Fields

When marked text fields are used in an editable Text Control and these fields are
editable, the end-user can alter the contents of the field like any other text. Because
it is not always unique whether the current input position is or is not inside a field,
some field attributes have been implemented to help the end-user to edit fields.
These attributes can be used in any combination and must be defined with the
TX_FIELD_INSERT message or can be altered with the TX_FIELD_SETATTR
message.

When the current input position is in front of or behind a field, the next inserted
character can either belong to the field or to the text outside the field. In normal
editing mode an inserted character has the attributes of its preceding character
which means that inserted text just behind a field belongs to the field and inserted
text in front of a field does belong to the text in front of the field. To solve these
problems an extended edit mode can be defined for every field with the
TF_EXTEDITMODE setting that implements a second input position at the
beginning and the end of the field. The end-user can switch between the two
positions with the left and right arrow keys. This is especially important when a

Introduction Page 25

marked text field is at the beginning or the end of the complete text. For example
when a field is at the end of the text the end-user can press CTRL+END to reach
the text end. When this position is also the end of a marked text field the right
arrow key must be pressed first when the next inserted character should not belong
to the field.

To help the end-user to find the correct position the TF_USEFIELDCARET and
TF_SHOWCURFIELDGRAY attributes can be used either stand alone or in
combination. TF_USEFIELDCARET defines an attribute that changes the caret's
width when it is inside a marked text field. This width can be defined with the
TX_SETCARETEXT message. TF_SHOWCURFIELDGRAY defines an attribute
that displays the complete text of a field with a gray background when the current
input position is inside this field.

Each of the described attributes can be defined for a single field in any combination
which means that different kinds of marked text fields can be implemented in a
single Text Control.

Relating data to a marked text field

For each marked text field Text Control can store any data that can be set with the
TX_FIELD_SETDATA message. For example, when a Text Control is used to
show the contents of a database, a marked text field can be created for each
database field. The database's field names can then be related to the Text Control's
marked text fields using the TX_FIELD_SETDATA message.

Other parts of the program can use the TX_FIELD_GETDATA message to retrieve
the name of the database field to which a marked text field is linked. For example
when the user has clicked on a marked text field, the TX_FIELD_GETDATA
message can be used with the field identifier, which has been sent with the
TN_FIELD_CLICKED notification message. The message then retrieves the name
of the database field the user has clicked on.

Data entries can also be numbers instead of strings. When a marked text field is
copied via the clipboard or saved to a file the data belonging to the field is also
copied or saved. The usage of TX_FIELD_SETDATA does not change the current
text contents of a marked text field. When new data is set, all previously set data is
overwritten independently of the kind of data involved.

Page 26 Introduction

Special Types of Marked Text Fields

Text Control supports special types of marked text fields that can be defined with
the TX_FIELD_SETTYPE message. The following field types are possible:

Type Description

FT_EXTERNALLINK This field defines the source of a hypertext link to a
location outside of the document.

FT_INTERNALLINK This field defines the source of a hypertext link to a
location in the same document.

FT_LINKTARGET This field defines the target of a hypertext link.

FT_PAGENUMBER This field displays the current page number. It can
only be used in headers or footers.

FT_HIGHLIGHT This field defines a piece of text that can be
highlighted.

FT_TOPIC This field defines a position in a document that is
the beginning of a topic.

All of these fields have the same general properties as standard marked text fields
with the following exceptions: Fields of the type FT_LINKTARGET or FT_TOPIC
define text positions in a document. Therefore as they have no visible text they
cannot be edited and have no extended edit mode. Fields of the type
FT_PAGENUMBER can only be used in headers or footers.

For each of the special field types Text Control handles some additional data,
called type-related data. These data can also be defined with the
TY_FIELD_SETTYPE message and is accessible for a certain field through the
TX_FIELD_GETTYPE message. For the types FT_EXTERNALLINK and
FT_INTERNALLINK these data are the information to where the link points. This
can be an address or a file name and/or the name of a target in a document. Targets
in documents can be realized with marked text fields, which have the type
FT_LINKTARGET. These fields can have a name that is saved as type-related
data. When the user clicks on a field of the type FT_EXTERNALLINK or
FT_INTERNALLINK a TN_FIELD_LINKCLICKED notification is sent. The
application can get the link information with the TX_FIELD_GETTYPE message
and perform the necessary tasks. The TX_FIELD_GOTO message can be used to
scroll to an internal link position and the TX_FIELD_GETNEXT message can be
used to enumerate all fields of a certain type.

Introduction Page 27

To insert a field of a special type from programming code, use the
TX_FIELD_INSERT message first and then set the type and its data. The
following C example inserts a field that represents a link to the Text Control
homepage:

WORD wField;
TXFIELDSETTYPE fst;
TCHAR text[] = _T("visit the Text Control homepage");
TCHAR data[] = _T("http://www.textcontrol.com");

ZeroMemory(&fst, sizeof(TXFIELDSETTYPE));
fst.wStructSize = sizeof(TXFIELDSETTYPE);
fst.nFieldType = FT_EXTERNALLINK;
fst.dwTypeDataSize = (lstrlen(address)+1) * sizeof(TCHAR);
fst.lptypedata = data;

wField = (WORD)SendMessage(hwndTX, TX_FIELD_INSERT, 0,
(LPARAM)(LPTSTR)text);

SendMessage(hwndTX, TX_FIELD_SETTYPE, (WPARAM)wField, (LPARAM)&fst);

When a user clicks on this marked text field, a TN_FIELD_LINKCLICKED
notification is sent. To insert a field of the type FT_LINKTARGET, the created
field must not have text. Change the previous example to:

TCHAR text[] = _T("");
TCHAR data[] = _T("first target");

This creates a field with the name "first target". The TX_FIELD_GOTO message
can be used to scroll to this target:

SendMessage(hWndTX, TX_FIELD_GOTO, FT_LINKTARGET, (LPARAM)data);

When HTML, RTF or Word documents are loaded with the TX_DATAIN message
and the dwUsageFlags member of the TXFILTERIO data structure is set to
FIO_ENABLELINKS, all source and target fields for hypertext links are
automatically created.

Fields of the type FT_HIGHLIGHT can be used to mark pieces of text in a
document that can be highlighted. This is useful, for instance, to highlight
occurrences of a word found during a global search. The color of the highlight is
stored as additional data for these fields. The TX_FIELD_GOTO message enables
the programmer to scroll fom highlight to highlight. When RTF documents are
loaded with the TX_DATAIN message and the dwUsageFlags member of the
TXFILTERIO data structure is set to FIO_ENABLEHIGHLIGHTS, all RTF '\cbN'
keywords are automatically converted to fields of the type FT_HIGHLIGHT. N is
the index of a color in the RTF color table.

Page 28 Introduction

Fields of the type FT_TOPIC are text positions in a document which define the
beginning of a topic. The TX_FIELD_GOTO message can be used to scroll to a
topic with a certain number. When RTF documents are loaded with the
TX_DATAIN message and the dwUsageFlags member of the TXFILTERIO data
structure is set to FIO_ENABLETOPICS, all RTF '\sect' keywords are
automatically converted to fields of the type FT_TOPIC. These topics are
numbered from 1 to n in the order they appear in the RTF document.

1.9 Image Processing

With the help of a second programming tool, the IC Image-Control, the Text
Control can integrate images into the text. Sending a TX_CREATEIMAGE
message to an active Text Control inserts the given image into the text at the
current caret position. The image can be selected by mouse-click or be included
into a text selection. The messages TX_GETIMAGEFORMAT and
TX_SETIMAGEFORMAT can be used to set several attributes like a fast display
mode or a scaling factor.

Images are handled with the Text Control´s file input/output functions just like the
text they are embedded in. They can also be transferred via the clipboard. If the
image is selected with a mouse click and copied to the clipboard, only the raw
image data is copied. If the image is included into a text selection and copied to the
clipboard, the data that describes its relation to the text like the horizontal position
is copied, too.

To delete an image from the text use the BACKSPACE key from the next text
position below the image or send a WM_CLEAR message to the Text Control if an
image has been selected.

1.10 Integrating OLE Objects

Insertion

OLE objects can be inserted into a Text Control document like any other object
with the TX_OBJ_EMBED message. The wParam parameter must be set to
TF_OBJ_OLEOBJECT. This message opens the OLE built-in Insert Object dialog
box where the user can select one of the system-registered OLE servers. Depending

Introduction Page 29

on the embedding mode selected the new OLE object is inserted either at a fixed
position or as a character and is immediately in-place activated.

The Insert Object dialog box allows the user to insert newly created or existing
objects into a Text Control document. It also allows the user to choose to display
the object as an icon and enables the Change Icon command button. The dialog
box is normally displayed when the user chooses Insert Object from the Edit menu
of a OLE container application. Because objects in Text Control can be inserted
either at fixed positions or as characters it is useful to expand the Edit menu with a
second entry, for example Insert Object as character.

User Interface

An inserted OLE object can be in any one of the following states:

1. Deselected state
In this state the object’s contents are displayed with a solid, thin border indicating
an embedded object. The object has this state when either another object is selected
or the Text Control has been clicked so that the user can enter text.

2. Selected state
An object has the selected state after it has been clicked. In this mode resize
handles are displayed so that it can be moved and resized. When the object is
resized in this state its contents are scaled. A programmer can get the new scaling
factors with the TX_OBJ_GETATTR message. When a scaled object is activated
in-place it displays its contents either scaled or, when scaling is not supported, it
shows scrollbars.

3. In-place activated state
An object is in-place activated after it has been double-clicked. In this mode the
object can be edited. It is displayed with a hatched border including resize handles.
When an object is resized or edited in this state the object’s natural size can be
changed. After editing and deactivating (selected or deselected) the Text Control
adapts the object to its new natural size. Scaling factors remain the same in this
case. Text Control does not support the exchanging of menus and controlbars.

4. Open state
An object’s server application is fully opened when the object is double-clicked
whilst pressing the CTRL key. The object’s contents are then overlayed with a
hatched pattern. After the server has been closed the object is updated with the new
contents and adapted to its new natural size.

Page 30 Introduction

Clipboard

When an OLE object is in selected state it can be copied to the clipboard in
standard formats such as metafile, and in OLE formats. When an ‘as character’
inserted object is selected in combination with text it is integrated into the Text
Control’s text format. When an OLE object is pasted from the clipboard it is always
inserted as a character at the current input position. If an object is being pasted
while another object is selected the selected object is replaced.

To realize the menu and keyboard interface the Windows messages WM_PASTE,
WM_CUT, WM_COPY and WM_CLEAR can be used. When the command
routing features of MFC are used, these messages can be called up from the
command handlers of the application’s view class. If MFC is not used and the
standard keyboard keys for clipboard actions CONTROL+V, CONTROL+C,
CONTROL+X and DEL are not implemented via an accelerator table, the keyboard
interface is automatically implemented by Text Control.

Loading and Saving

OLE objects are integrated into the Text Control’s text format like any other
objects. Therefore all messages that support loading, saving and general data
exchange (like TX_LOAD, TX_SAVE, TX_COPYDATA, TX_PASTEDATA,
TX_IMPORTTEXT, TX_EXPORTTEXT, TX_DATAIN and TX_DATAOUT)
can be used without changes.

Printing

Text Control prints an object’s current contents via its metafile. This metafile is
"played" on the printer device context which is sent with the TX_PRINT or
TX_PRINTPAGE message. Therefore no changes are necessary with these
messages. In addition Text Control supports the WM_PAINT message with the
wParam parameter set to a metafile device context, and in the 32 bit version it
supports the new messages WM_PRINT and WM_PRINTCLIENT.

Introduction Page 31

Zooming

When a Text Control is zoomed integrated OLE objects are also zoomed. In the
selected, deselected and open states, zooming is realized by stretching the object’s
metafile. When a zoomed object is in-place activated, whether its contents are
zoomed or not depends on the object. When an object does not support zooming
the smaller client site set by the Text Control makes it necessary to show scrollbars
to indicate that the content’s natural size is larger than the object’s client site.

Undo

When an OLE object is part of a block of text, the undo function is fully supported
as with any other object. When an object has been selected stand alone and is then
deleted or replaced, undo is not supported.

Creating a OLE container application with MFC 4.0

The following describes how to create an OLE container application with Text
Control. The sample program TXCon.exe was created in this way.

1. Use application wizzard to create a new application. Use all default settings in
Steps 1 to 6, Do not select OLE container because this is implemented in Text
Control.

2. In the View class replace CView with CCtrlView .

3. In the view constructor initialize the base-class constructor.

4. In the view’s PreCreateWindow function initialize the Text Control window
class.

5. Include the header file TX.H.

6. In the project Settings dialog box for Link...Object/Library modules add
TX32.LIB.

7. Copy all Text Control library files to the project’s directory containing your
executable file.

8. In the view class add a handler for WM_CREATE and initialize Text Control.

Page 32 Introduction

9. Add two menu entries Insert Object... and Insert Object as character...
including their handlers, and send the TX_OBJ_EMBED message to create
new OLE objects.

10. Add handlers for clipboard, delete, and undo handling and send the
appropriate Text Control messages.

11. Add an accelerator for the ESCAPE key including its handler, and send the
TX_OBJ_OLE_CANCEL message.

12. Add code to the document’s Serialize function (send TX_LOAD and
TX_SAVE) to realize loading and saving.

1.11 Integrating External Windows

Like images, each object represented as an externally created child window, e.g. a
pushbutton, can be integrated into the text. The message TX_OBJ_EMBED
connects such an object with a Text Control which then becomes the parent of the
external window. This object can be either inserted into the text, handled like a
single character, or fixed at a specified position relative to the top left corner of the
text.

In some special situations the Text Control sends messages to the object. If the
object does not respond to the message the Text Control performs a default action,
for example if a Text Control is zoomed it sends a WMX_ZOOM message to the
object. If the object does not react Text Control continues to show the object with
its old dimensions. If the object is a predefined control, e.g. a pushbutton, the
handling of these messages can be implemented by sub-classing.

The following shows a list of possible messages a Text Control can send to an
object window. These messages have the prefix WMX_ and are defined in the
header file "wmxmsg.h":

Message Purpose

WMX_COPYDATA Sent if the object contains data that is to be be
stored in a file or in memory. A Text Control sends
this message if it receives a TX_SAVE or a
TX_COPYDATA message.

WMX_GETDATASIZE Sent to get the buffer size needed for the
WMX_COPYDATA message.

Introduction Page 33

WMX_GETWINDOW This message is not sent to the object but to the
Text Control's parent window. If a Text Control
stores its objects it cannot also save the window
handles representing the objects. Instead it stores
the child window identifier chosen by the object's
creator. During a loading process the Text Control
sends a WMX_GETWINDOW message with the
wParam parameter set to the child window
identifier so that its parent window, e.g. the
application's main window, can create the window.

WMX_GETZOOM Requests for the object's zooming factor.

WMX_PASTEDATA Sent to reload the data stored with the
WMX_COPYDATA message. A Text Control
sends this message if it receives a TX_LOAD or a
TX_PASTEDATA message.

WMX_PRINT A Text Control sends this message whilst its
contents are being printed.

WMX_ZOOM A Text Control sends this message when it is
zoomed.

For more information about the messages' parameters see appendix H.

1.12 Using Chains of linked Windows

Text Controls can be connected to enable text to flow from one window to the next.
The message TX_SETLINKWND connects two Text Controls, and
TX_GETLINKWND returns information about the relationship of linked windows
in a chain.

If text overflows in a Text Control that has a successor, the overflowing text is
automatically copied to that window. If text is deleted, the cleared area at the
bottom of a control is automatically filled with text from a successor. When the
blinking caret reaches the bottom of a Text Control, it jumps to the following
window. When it reaches the top of a Text Control, it jumps to the preceding
window regardless of whether it is moved with the keyboard or the mouse interface.

In a chain of linked windows, each Text Control can contain up to 64 kB of text
while the amount of text in a chain is only limited by the system resources. Text

Page 34 Introduction

selections can extend over several controls. All messages that refer to a text
selection must only be sent to the Text Control that has the input focus. TX passes
these messages on to every Text Control that belongs to the current selection. This
applies to the clipboard messages and to all messages for changing text attributes
like font and paragraph settings.

Other messages that refer to the whole contents of a Text Control, like setting
modes, saving data to or loading data from a file, or printing have to be sent to each
Text Control in a chain. This makes it possible to print, for example, a single page
if the chain of controls realizes a text processing application with several pages.

The TX_REPLACESEL message can be used to import an ASCII string larger than
64 kB. To save the contents of a chain the TX_SAVE or TX_COPYDATA
message has to be sent to every Text Control. To reload the text first create a chain
of controls and then send the TX_LOAD or TX_PASTEDATA message to every
Text Control. The messages TX_IMPORTTEXTBUFFER and
TX_IMPORTTEXTFILE support the insertion of a formatted text greater 64 kB.

To maximize working speed for a chain of linked Text Controls, the window size
should be designed so that a single Text Control does not contain more than 32 kB
of text.

1.13 Using Metafiles

Metafiles can be used with the message WM_PAINT in 16 and 32 bit applications
and additionally with the messages WM_PRINT and WM_PRINTCLIENT in 32
bit applications. The caller must create a metafile device context and send it as the
wParam parameter of these messages. Text Control fills the metafile with function
calls that represent only the visible portion of a Text Control window. By default
the complete client area of the Text Control window is mapped to one inch of the
current output device which is the standard printer or another device set with the
TX_SETDEVICE message. This means when the output device has a resolution of
300 x 300 dpi the metafile bounding rectangle is 0, 0, 300, 300 and the Text
Control's client area is mapped to this rectangle.

With the TX_SETDEVICE message the caller can define a metafile target device
independent of the current output device. The wParam parameter must be set to
TF_METAFILETARGET and the lParam parameter must specify a valid device
context handle identifying the matafile target device. The viewport settings of the
target device context are used as metafile bounding rectangle. The following code
example maps the client area of a Text Control to a bounding rectangle on an

Introduction Page 35

output device specified through hdcTarget. The coordinates of the bounding
rectangle must be in pixels of the output device:

HDC hdcTarget, hdcMetafile;
RECT rcBounds;

// calculate bounding rectangle and create metafile and target device
// context:
...

// prepare the target device context:
SetMapMode(hdcTarget, MM_ANISOTROPIC);

SetViewportOrgEx(hdcTarget, rcBounds.left, rcBounds.top, 0L);
SetViewportExtEx(hdcTarget, rcBounds.right-rcBounds.left,

rcBounds.bottom-rcBounds.top, 0L);

// inform TX about the target device:
SendMessage(hwndTX, TX_SETDEVICE, TF_METAFILETARGET,

(LPARAM)hdcTarget);

// call the TX paint routine:
SendMessage(hwndTX, WM_PAINT, (WPARAM)hdcMetafile, 0L);

...

1.14 ANSI and Unicode

The Text Control 32 bit DLL can be used either from an ANSI or a Unicode
application. The Text Control include file TX.H defines an ANSI and a Unicode
version for each message and function which has string or character parameters.
Like in the Windows 32 bit SDK the letter A (ANSI) or W (wide char) has been
appended to the message or function name, for example the TX_SETFONT
message is available as TX_SETFONTA and as TX_SETFONTW. Depending on
whether UNICODE is defined or not TX_SETFONT is defined as
TX_SETFONTA or as TX_SETFONTW:

#ifdef UNICODE
#define TX_SETFONT TX_SETFONTW
#else
#define TX_SETFONT TX_SETFONTA
#endif

To build a Unicode application using Text Control, simply define UNICODE
before including TX.H and call TX_SETFONT. In this case TX_SETFONTW is
sent to the Text Control and must contain a font name formatted as a Unicode

Page 36 Introduction

string. Because the A-versions have the same numbers as the corresponding
messages in prior Text Control versions the new version is fully compatible.

The following is a complete list of all messages and functions that have two
implementations. The type of the string pointers has been changed from LPSTR to
LPTSTR which is the character format independent form of LPSTR. LPTSTR is a
pointer to a Unicode string (LPWSTR), when UNICODE is defined and a pointer
to an ANSI string (LPSTR), when UNICODE is not defined. ANSI strings can
contain characters from double-byte character sets.

Message: Changes:

TX_CREATEIMAGE lParam changed from LPSTR to LPTSTR

TX_DATAIN/OUT The lpFilterName member of the TXDATAIO
data structure has been changed from LPSTR
to LPCTSTR.
The lpImagePath member of the TXFILTERIO
data structure has been changed from LPSTR
to LPCTSTR and the lfDefFont/lfMonoFont
members have been changed from char to
TCHAR . The buffer identified through
hDocTitle contains either a Unicode or an ANSI
string.

TX_EXPORTTEXT lParam changed from LPSTR to LPTSTR

TX_FIELD_CHANGETEXT lParam changed from LPSTR to LPTSTR

TX_FIELD_GETTEXT lParam changed from LPSTR to LPTSTR

TX_FIELD_INSERT lParam changed from LPSTR to LPTSTR

TX_GETDEVICE lParam changed from LPSTR to LPTSTR

TX_GETFONT lParam changed from LPSTR to LPTSTR

TX_GETIMAGE lParam changed from LPSTR to LPTSTR

TX_GETIMAGEFILTERS The returned data buffer contains Unicode or
ANSI strings.

TX_GETSUPPORTEDFONTS The returned data buffer contains Unicode or
ANSI strings.

Introduction Page 37

TX_GETSUPPORTEDSIZES lParam changed from LPSTR to LPTSTR.
The returned data buffer contains Unicode or
ANSI strings.

TX_GETTEXT lParam changed from LPSTR to LPTSTR

TX_IMPORTTEXTBUFFER lParam changed from LPSTR to LPTSTR

TX_IMPORTTEXTFILE lParam changed from LPSTR to LPTSTR

TX_OBJ_xxx The lpFileName member of the TXOBJECT
data structure has been changed from LPSTR
to LPTSTR.

TX_REPLACESEL lParam changed from LPSTR to LPTSTR

TX_SETDEVICE lParam changed from LPSTR to LPTSTR

TX_SETFONT lParam changed from LPSTR to LPTSTR

TX_SETIMAGE lParam changed from LPSTR to LPTSTR

TX_TABLE_GETTEXTOFCELL The returned data buffer contains a Unicode or
a ANSI string.

TX_TABLE_SETTEXTOFCELL The lpcText member of the SETTEXTOFCELL
data structure has been changed from LPCSTR
to LPCTSTR.

Function: changes:

CreateTextControl The lpLogFont parameter can point to a
LOGFONTA or a LOGFONTW data structure
both defined through the Windows 32 bit SDK.

1.15 Resources

Text Control has several built-in resources like information strings, error messages
and dialog boxes. These resources are available in different languages. When a new
control is created Text Control selects the current set system language as the default
one. With the TX_SETLANGUAGE message this setting can be altered indepen-
dent of the system language. The description of the TX_SETLANGUAGE message
lists all currently available built-in languages. To alter the language of the Button

Page 38 Introduction

Bar and Status Bar the appropriate messages BBM_SETLANGUAGE and
STB_SETLANGUAGE must be used. See the descriptions of these messages in the
appendixes D and E for a list of available languages.

To display resources in additional languages external resource libraries can be built
and then set with the TX_SETLANGUAGE message through its file name. A
resource library is a dynamic link library that only contains resources and an entry
point. The SAMPLES\TXRES subdiretory contains the basic files to create such a
DLL file. The following is a list of these files:

TXRES.C Contains the DLL's entry point.

TXRES.RC Contains Text Control's resources in English.

TXRES.H Contains the definitions of all resource identifiers.

Furthermore Microsoft Visual C++ project files are contained that can be used to
build the resource library.

The TXRES.RC file has the following contents:

Dialog boxes Dialog box templates for the built-in dialog boxes which can
be displayed with the TX_FONTDIALOG,
TX_PARAGRAPHDIALOG and
TX_TABLE_ATTRDIALOG messages.

String tables The string tables contain information strings and error
messages and the status strings of the status bar. Strings must
not be larger than 255 characters.

Bitmaps Bitmaps for the bold, italic and underline buttons of the button
bar. The bitmap files are in the TXRES\BMP subdirectory.

To avoid conflicts with other programs that also uses own resources or with future
versions of Text Control the following points are important:

1. The resource library should have a unique file name. The TXRES sample builds
a DLL file named TXRES.DLL. This name should be changed.

2. The resource library should be placed in the same directory as the final
application. Get the full path name of the application's executable file at run time
and send the file name of the resource library including this path with the
TX_SETLANGUAGE message.

At runtime Text Control determines resources in the following way:

Introduction Page 39

1. When the TX_SETLANGUAGE message is not used Text Control uses the
system default language. If the system language is not built-in, Text Control
displays English resources.

2. When TX_SETLANGUAGE has been sent with an identifier of a built-in
language Text Control displays resources in this language independent of the
system language.

3. When TX_SETLANGUAGE has been sent with a file name of a resource library
Text Control tries to load the resources from this library. Previously sent language
identifiers are ignored. When the resource library does not contain a needed
resource or when the specified file could not be found Text Control displays
English resources without reporting an error.

4. Setting a resource library for a Text Control does not automatically set the same
library for a connected Button Bar or Status Bar. This must be performed with the
appropriate messages of these windows.

Page 40 Mouse and Keyboard Interface

2. Mouse and Keyboard Interface

2.1 Mouse Assignment

Mouse Action Reaction of Text Control

Click Moves cursor to point of click or selects an image.

Shift+Click Extends the selection to the point of click.

Double-click Selects the word that is clicked on or opens a mo-
dal dialog box to select an image alignment.

Drag Selects text from point of button down to point
where button is released.

Double-click and drag Extends the selection from word to word.

Triple-click and drag Extends the selection from row to row.

2.2 Keyboard Assignment

Moving the input position while SHIFT is pressed extends the current selection to
the new caret position.

Key type Reaction of Text Control

DEL Deletes selected text.

END Moves the caret to the end of the line.

HOME Moves the caret to the beginning of the line.

PAGEUP Scrolls the height of the current client area upwards
and moves the caret to the same screen position.
This key is only available once an internal scroll-
interface has been set with the
TX_SETTEXTAREA message.

Page 41Mouse and Keyboard Interface

PAGEDOWN Scrolls the height of the current client area
downwards and moves the caret to the same screen
position. This key is only available once an internal
scroll-interface has been set with the
TX_SETTEXTAREA message.

(Left Arrow) Moves the caret one character to the left.

(Right Arrow) Moves the caret one character to the right.

(Up Arrow) Moves the caret one line up.

(Down Arrow) Moves the caret one line down.

CTRL+(Left Arrow) Moves the caret to the beginning of the current
word.

CTRL+(Right Arrow) Moves the caret to the beginning of the next word.

CTRL+HOME Moves the caret to start of text.

CTRL+END Moves the caret to end of text.

CTRL+ENTER Inserts a new page.

CTRL+(-) Inserts an end-of-line hyphen.

CTRL+INS Copies selected text to the clipboard.

CTRL+(Backspace) Deletes the previous word.

SHIFT+ENTER Creates a line feed.

SHIFT+DEL Copies selected text to the clipboard and deletes
the selection.

SHIFT+INS Inserts text from the clipboard.

CTRL+SHIFT+(Spacebar) Inserts a non-breaking space.

CTRL+'C' Copies selected text to the clipboard.

CTRL+'V' Inserts text from the clipboard.

CTRL+'X' Copies selected text to the clipboard and deletes
the selection.

CTRL+'Z' Undos the last operation.

Page 42 Function Directory

3. Function Directory

CreateTextControl

Syntax HWND CreateTextControl(hWndParent, wChildID, lpRect, lpLogFont)

This function creates a Text Control child window.

Parameter Type/Discription

hWndParent HWND Identifies the parent window of the Text
Control window being created.

wChildID WORD Is the child window identifier.

lpRect LPRECT Points to a RECT data structure that contains
the position and size of the Text Control window in client
area coordinates of the parent window.

lpLogFont LPLOGFONT Points to a LOGFONT data structure
which defines the logical font the Text Control will use.
The Text Control matches this font with an existing
physical font of the currently selected printer. If no printer
is present, the nearest physical screen font is used. If
lpLogFont is 0L, the Text Control uses a default font.

If lpLogFont specifies a valid TX window handle, the
function uses the font and paragraph attributes and all
mode settings of that window for initialization. The TX
window handle must be placed in the low-order word of
lpLogFont, the high order word must be zero.

Return Value The return value identifies the new Text Control window. It is zero if an error has
occured.

Page 43Function Directory

Comments Height and width values in the LOGFONT data structure must be specified in
terms of twentieths of a point.

TXGetErrorCode

Syntax LONG TXGetErrorCode(void)

This function returns an internal error code, and can be called if the parent window
has received a TN_ERRCODE notification or after a Text Control function has
failed.

Return Value The return value contains an error number in the low-order word and a module
number and a group code in the high-order word. The module number is 1 for the
programming tool described in this manual, but it can also be the number of other
modules the Text Control uses for special purposes.

The error numbers and group codes belonging to the Text Control kernel module
are described in the error code table in appendix B. For a description of error codes
that belong to other module numbers, see the corresponding reference manuals of
these modules.

Comments To split the error code use the following syntax:

lResult = TXGetErrorCode();
ErrorNumber = LOWORD(lResult);
Module = LOBYTE(HIWORD(lResult));
GroupCode = HIBYTE(HIWORD(lResult));

TXGetVersion

Syntax LONG TXGetVersion(void)

This function returns the current version number. The version number can be
different from the text format number explained in appendix A.

Return Value The return value contains the version number in its low-order word. For example,
for the release TX Text Control 4.0 the version number is 400.

Page 44 Message Overview

4. Message Overview

4.1 Processed Windows Messages

Message Description

WM_CHAR Evaluates keyboard input.

WM_CLEAR Clears the selection or a selected image.

WM_COMMAND Processes notifications messages sent by Image-
Control windows.

WM_COPY Copies text and format data of the current
selection to the clipboard.

WM_CREATE Initialises internal data structures.

WM_CUT Cuts selected text including format data to the
clipboard.

WM_DESTROY Deletes the internal data structures.

WM_DESTROYCLIPBOARD Deletes internally saved data.

WM_ERASEBKGND Prevents default background painting.

WM_GETDLGCODE Returns a code which makes it possible to use a
Text Control as a dialog box control.

WM_GETMINMAXINFO Retrieves minimum and maximum values for
the Text Control's window size.

WM_GETTEXT Copies the text contained by the Text Control.
If wParam contains zero the Text Control
copies the whole text to the buffer lParam
points to. In this case the buffer must be of the
size returned by WM_GETTEXTLENGTH
plus one byte for the terminating zero.

WM_GETTEXTLENGTH Retrieves the amount of text (in bytes)
contained by the Text Control.

Message Overview Page 45

WM_HSCROLL Scrolls the Text Control's client area
horizontally.

WM_KEYDOWN Evaluates keyboard input.

WM_KILLFOCUS Frees the caret and hides a current selection.

WM_LBUTTONDBLCLK Handles special features of the mouse interface.

WM_LBUTTONDOWN Sets the focus and starts the mouse interface.

WM_LBUTTONUP Ends the mouse interface.

WM_MOUSEMOVE Handles special features of the mouse interface.

WM_MOVE Moves the window to a new position.

WM_NCPAINT Prevents default frame painting.

WM_PASTE Inserts data from the clipboard.

WM_RENDERFORMAT Copies text in RTF format to the clipboard.

WM_RENDERALLFORMATS Copies text in RTF format to the clipboard.

WM_SETFOCUS Shows the caret and displays a hidden selection.

WM_SETTEXT Sets the text of a Text Control. The return value
is TR_ERR if an error has occured.

WM_SIZE Formats the text for the new window size.

WM_TIMER Handles special features of the mouse interface.

WM_VSCROLL Scrolls the Text Control's client area vertically.

WM_WINDOWPOSCHANGING Prevents the Text Control's formatting area
from becoming too small to show at least one
character.

All other windows messages are handled by DefWindowProc.

Additional messages have been implemented to access the Text Control´s special
features. An overview of these messages is presented in the following chapters.

Page 46 Message Overview

4.2 Font Messages

Message Description

TX_ENLARGEFONT Enlarges or reduces the pointsize of all fonts in
the current selection.

TX_FONTDIALOG Opens a modal dialog box to select a font, its
size and its attributes for the current selection.
The fonts and sizes that belong to the current
standard output device are displayed.

TX_GETBASELINE Returns the current baseline alignment value.

TX_GETFONT Retrieves the common typeface and pointsize of
all currently selected fonts.

TX_GETFONTATTR Returns a bit mask that contains font attribute
information for the current selection. Can be
used to place checkmarks for menu items
concerning font attributes.

TX_GETTEXTCOLOR Returns the current text color value.

TX_SETBASELINE Sets a new baseline alignment.

TX_SETFONT Sets a new typeface and pointsize for all
currently selected fonts.

TX_SETFONTATTR Sets new font attributes.

TX_SETTEXTCOLOR Sets a new text color for the currently selected
text.

4.3 Paragraph Messages

Message Description

TX_GETFORMAT Returns the text alignment of the current
selection. Can be used to place checkmarks for
menu items concerning paragraph attributes.

TX_GETINDENTS Retrieves indent values.

TX_GETLINESPACING Returns the linespacing value.

Message Overview Page 47

TX_GETPARAFORMATFLAGS Returns a bit-field indicating special paragraph
formats.

TX_GETPGFRAME Returns paragraph frame attributes.

TX_GETTABS Retrieves common tab types and positions of all
selected paragraphs.

TX_PARAGRAPHDIALOG Opens a modal dialog box for setting paragraph
attributes.

TX_SETFORMAT Sets the text alignment of all selected
paragraphs.

TX_SETINDENTS Sets new indent values for all selected
paragraphs.

TX_SETLINESPACING Sets a new line spacing value for all selected
paragraphs.

TX_SETPARAFORMATFLAGS Sets special paragraph formats.

TX_SETPGFRAME Defines frame attributes for all selected
paragraphs.

TX_SETTABS Sets a new tablist for all selected paragraphs.

4.4 Text Manipulation Messages

These messages can be used to manipulate the text and format data of a text
control.

Message Description

TX_CANCOPY Returns TRUE when something can be copied
to the clipboard.

TX_CANPASTE Returns TRUE when something can be pasted
from the clipboard.

TX_COPYDATA Copies the data of a Text Control into a buffer.

TX_GETDATASIZE Returns the size of all formatting and text data.
This is needed to allocate the buffer before
sending the TX_COPYDATA message.

Page 48 Message Overview

TX_GETTEXT Retrieves text in the Text Control's text format
without formatting information.

TX_GETTEXTSIZE Returns the size of the current text in the Text
Control's text format.

TX_PASTEDATA Sets the data of a Text Control that was
previously saved with the TX_COPYDATA
message.

TX_REPLACESEL Replaces the currently selected text with text
out of a global buffer.

4.5 Messages to Adapt Formatted Text to a new Output Device

Message Description

TX_DEVMODECHANGE Adjusts the font information of a Text Control.
This message has to be sent to all existing Text
Controls as a reaction to receiving a
WM_DEVMODECHANGE or a
WM_WININICHANGE message.

TX_GETDEVICE Retrieves the name of the currently set device
for which the text has been formatted.

TX_SETDEVICE Registers a new device for which the text will
be formatted.

4.6 Print Messages

Message Description

TX_GETPAGECOUNT Returns the current number of pages.

TX_PRINT Prints a specified portion of the text.

TX_PRINTPAGE Prints a single page.

Message Overview Page 49

4.7 File IO Messages

Message Description

TX_DATAIN Inserts text data into a Text Control.

TX_DATAOUT Retrieves text data from a Text Control.

TX_LOAD Fills the buffer of an empty Text Control with
formatted text out of a file. The text must have
previously been saved by sending a TX_SAVE
message.

TX_RESETCONTENTS Deletes the complete contents of the Text
Control.

TX_SAVE Stores all the formatted text of a Text Control to
a file.

4.8 Information Messages

Message Description

TX_GETBASELINEPOS Returns the position of the baseline for a
specified line number.

TX_GETBKGNDCOLOR Returns the background color.

TX_GETCARETEXT Returns the caret size.

TX_GETCARETPOS Returns the caret position. Together with the
caret notifications it can be used to implement
auto scrolling.

TX_GETLANGUAGE Returns a language identifier.

TX_GETLINEANDCOL Returns the line and the column of the current
caret position.

TX_GETLINECOUNT Returns the number of text lines.

TX_GETLINERECT Retrieves the size and alignment of the line part,
covered with text.

TX_GETMODE Returns the mode flags.

Page 50 Message Overview

TX_GETMODEEX Returns the expanded mode flags.

TX_GETRECT Returns the size of the Text Control window
regardless of the zoom factor.

TX_GETSEL Returns the selection.

TX_GETSUPPORTEDFONTS Returns information about all supported font
families.

TX_GETSUPPORTEDSIZES Returns information about all supported font
sizes for a specified font family.

TX_GETTEXTEXTENT Returns the size of the smallest bounding
rectangle for the text inside the Text Control.
Can be used to adjust the size of the Text
Control to the text that it contains.

TX_GETTEXTHEIGHT Returns the height of the text.

TX_GETTEXTWIDTH Returns the Text Control's longest line width.

TX_GETZOOM Returns the zooming factor.

TX_INPUTPOSFROMPOINT Returns the text input position belonging to a
given point in the Text Control window's visible
area.

TX_LINEFROMCHAR Returns the line number of the line which
contains the character whose position (indexed
from the beginning of the text) is specified by
the wParam parameter.

TX_LINEFROMPOINT Returns the line number of the line which
contains the given point. The point must specify
pixel coordinates with an origin at the left top
corner of the window.

TX_LINEINDEX Returns the number of characters that preceed
the first character in a given line.

Message Overview Page 51

4.9 Messages to Process Images

Message Description

TX_CREATEIMAGE Inserts a new image at the current caret
position.

TX_GETIMAGE Retrieves the DOS pathname for the image file
registered by the currently selected Image-
Control window.

TX_GETIMAGEFILTERS Returns a buffer containing information about
the available image filters.

TX_SETIMAGE Sets a new image for the currently selected
Image-Control window.

4.10 Messages to Handle Chains of Linked Windows

Message Description

TX_GETLINKWND Searches for a handle of a window that is part of
linked Text Control windows.

TX_SETLINKWND Sets a new following window for a Text Control
window.

4.11 Messages to Handle Marked Text Fields

Message Description

TX_FIELD_CHANGETEXT Alters the text of a marked text field.

TX_FIELD_DELETE Deletes a marked text field.

TX_FIELD_FROMCARETPOS Returns the field identifier of the field
containing the current input position.

TX_FIELD_GETATTR Returns the attributes of a marked text field.

TX_FIELD_GETCURRENT Returns a field identifier.

Page 52 Message Overview

TX_FIELD_GETDATA Retrieves the data related to a marked text field
with the TX_FIELD_SETDATA message.

TX_FIELD_GETNEXT Returns the identifier of the next field from a
given field.

TX_FIELD_GETPOSITION Returns the position of a marked text field.

TX_FIELD_GETTEXT Retrieves the text of a marked text field.

TX_FIELD_GETTYPE Returns the type of a marked text field.

TX_FIELD_GOTO Sets the current input position to the beginning
of a marked text field.

TX_FIELD_INSERT Creates a marked text field.

TX_FIELD_SETATTR Sets the attributes of a marked text field.

TX_FIELD_SETTYPE Defines a marked text field of a special type.

TX_FIELD_SETDATA Relates any data to a marked text field.

4.12 Messages to Perform Undo Operations

Message Description

TX_CANUNDO Returns the information about whether an
operation can be undone or redone.

TX_EMPTYUNDOBUFFER Resets the undo flag.

TX_REDO Restores the last undone operation.

TX_UNDO Undoes the last Text Control operation.

4.13 Messages to Handle Integrated Objects

Message Description

TX_OBJ_DELETE Deletes an integrated object.

TX_OBJ_EMBED Integrates a new object in the text.

TX_OBJ_GETATTR Retrieves attributes of an integrated object.

Message Overview Page 53

TX_OBJ_GETDISPINTERFACE Returns a pointer to an object's dispatch
interface.

TX_OBJ_GETNEXT Returns the identifier of the next object in the
object list.

TX_OBJ_OLE_CANCEL Deactivates an OLE Object.

TX_OBJ_SETATTR Sets an object's attributes.

4.14 Messages to Handle the Internal Scroll Interface

Message Description

TX_GETPAGEMARGINS Retrieves the page margins.

TX_GETSCROLLPOS Returns the current scroll position.

TX_GETTEXTAREA Retrieves the Text Control's formatting area.

TX_SETPAGEMARGINS Sets new page margins.

TX_SETSCROLLPOS Sets a new scroll position.

TX_SETTEXTAREA Sets the text formatting area and/or a scroll
interface.

4.15 Messages to Handle Find and Replace Features

Message Description

TX_FINDTEXT Finds a text string.

TX_REPLACETEXT Replaces a text string.

4.16 Table Messages

Message Description

TX_TABLE_ATTRDIALOG Opens a dialog box for setting new
attributes for the cells of a table.

TX_TABLE_CHANGEID Changes a table's identifier.

Page 54 Message Overview

TX_TABLE_DELETELINES Deletes the currently selected table lines.

TX_TABLE_FROMCARETPOS Retrieves the table identifier and the number
of row and column for the current input
position.

TX_TABLE_GETATTROFCELL Retrieves information about the attributes of
one or more table cells.

TX_TABLE_GETCELLATTR Provides information about the attributes of
all selected table cells.

TX_TABLE_GETCELLPOSITION Retrieves the indexes of the first and the last
character in a table cell.

TX_TABLE_GETCOLPOSITIONS Provides information about the positions of
table columns.

TX_TABLE_GETNEXT Returns the identifier of a table following a
specified table.

TX_TABLE_GETROWSANDCOLS Returns the number of rows and columns in
a table.

TX_TABLE_GETTEXTOFCELL Gets a table cell's text.

TX_TABLE_INSERT Inserts a new table into the text.

TX_TABLE_ISPOSSIBLE Provides information about whether certain
table operations are possible.

TX_TABLE_SETATTROFCELL Alters one or more attributes of one or more
table cells.

TX_TABLE_SETCELLATTR Sets new attributes for all selected table
cells.

TX_TABLE_SETCOLPOSITIONS Sets new column positions within a table.

TX_TABLE_SETTEXTOFCELL Changes a table cell's text.

4.17 Messages to Handle Headers and Footers

Message Description

TX_HF_ACTIVATE Activates or deactivates a header or footer.

Message Overview Page 55

TX_HF_DISABLE Disables the usage of headers and/or footers.

TX_HF_ENABLE Enables the usage of headers and/or footers.

TX_HF_GETENABLED Returns the currently enabled headers and/or
footers.

TX_HF_GETPOSITION Returns a header's or footer's position on the
page.

TX_HF_SELECT Selects a header or footer for message routing.

TX_HF_SETPOSITION Sets a header's or footer's position on the page.

4.18 Additional Features

Message Description

TX_LIMITLINE Limits the number of characters that can be
entered into a single line.

TX_LIMITTEXT Limits the number of characters the user can
enter.

TX_SELTEST Checks whether a selection is visible.

TX_SETBKGNDCOLOR Sets a new background color.

TX_SETCARETEXT Defines the width of the caret.

TX_SETLANGUAGE Defines the language for a Text Control.

TX_SETLINEANDCOL Sets a new text input position, given through a
page, line and column number.

TX_SETMODE Sets different mode flags like the background
mode or the character insertion mode.

TX_SETMODEEX Sets expanded mode flags.

TX_SETSEL Sets and displays a new text selection.

TX_SETWORDDIVISION Informs TX that an application-supplied
function should be used to perform word-
division.

TX_ZOOM Sets a new zooming factor.

Page 56 Message Overview

4.19 Notification Messages

A Text Control sends the following notification messages through a
WM_COMMAND message to its parent window to inform the application about
special conditions.

Message Description

TN_AUTOLINK Informs the parent window that a chain of
linked windows have to be expanded.

TN_AUTOSCROLL Can be used to scroll in special cases.

TN_CARETOUTBOTTOM Caret is moved down out of the visible area.

TN_CARETOUTLEFT Caret is moved left out of the visible area.

TN_CARETOUTRIGHT Caret is moved right out of the visible area.

TN_CARETOUTTOP Caret is moved up out of the visible area.

TN_CARETOUT Caret is moved to a Text Control that is
completely outside the visible area.

TN_CHANGED Informs the parent window that the user has
modified the text or the formatting.

TN_CHARFORMATCHANGED Informs the parent window that formatting
attributes of the selected characters have been
changed.

TN_DOUBLECLICKED Informs the parent window that a word has been
doubleclicked and selected.

TN_ERRCODE Informs the parent window that an error has
occured.

TN_FIELD_CHANGED The text of a marked text field has been
changed.

TN_FIELD_CLICKED The user has clicked on a marked text field.

TN_FIELD_CREATED A new marked text field has been created.

TN_FIELD_DBLCLICKED The user has doubleclicked on a marked text
field.

TN_FIELD_DELETED A marked text field has been deleted.

Message Overview Page 57

TN_FIELD_ENTERED The current input position has been moved to a
marked text field.

TN_FIELD_LEFT The current input position has been moved from
a marked text field.

TN_FIELD_LINKCLICKED Occurs when a field has been clicked on that is
the source of a hypertext link.

TN_FIELD_SETCURSOR Enables the application to select its own cursor
to indicate marked text fields.

TN_FORCEUPDATE Is sent when Text Control's tool bars should
update their contents and must be passed on to
connected toolbars.

TN_HEXPAND The Text Control window has been expanded
horizontally.

TN_HF_ACTIVATED Informs about header or footer activation.

TX_HF_DEACTIVATED Informs about header or footer deactivation.

TN_HMOVED The Text Control window has been moved
horizontally.

TN_HSCROLL The Text Control's client area has been scrolled
horizontally.

TN_IMAGECLICKED An Image-Control window has been clicked and
selected.

TN_KEYSTATECHANGED Informs the parent window that the user has
pressed special control characters.

TN_KILLFOCUS The Text Control has lost the input focus.

TN_OBJ_CLICKED Informs the parent window that an embedded
object has been clicked.

TN_OBJ_CREATED Informs the parent window that an embedded
object has been created.

TN_OBJ_DBLCLICKED Informs the parent window that an embedded
object has been doubleclicked.

TN_OBJ_DELETED Informs the parent window that an embedded
object has been deleted.

Page 58 Message Overview

TN_OBJ_MOVED Informs the parent window that an embedded
object has been moved.

TN_OBJ_SIZED Informs the parent window that an embedded
object has been sized.

TN_PAGEFORMATCHANGED Informs the parent window that the page format
settings have been altered.

TN_PGCHANGED Informs the parent window that the character
input position has been moved to another
paragraph.

TN_PGFORMATCHANGED Informs the parent window that paragraph
formatting attributes of the selected paragraphs
have been changed.

TN_POSCHANGED Informs the parent window that the character
input position has been changed.

TN_SETFOCUS The Text Control has obtained the input focus.

TN_TABLE_CREATED Sent when a new table has been created.

TN_TABLE_DELETED Sent when a new table has been deleted.

TN_VEXPAND The Text Control window has been expanded
vertically.

TN_VSCROLL The Text Control's client area has been scrolled
vertically.

TN_ZOOMED The Text Control has been zoomed.

4.20 Obsolete Messages

TX_ADJUSTCLIPBOARD Adjusts the clipboard´s font information.

TX_EXPORTTEXT Converts text to an external format with the
help of a filter and copies it to a file or to a
buffer.

TX_GETASCIITEXT Retrieves text in a Windows compatible text
format.

Message Overview Page 59

TX_GETASCIITEXTSIZE Returns the size of the current text in a
Windows compatible text format.

TX_GETHANDLE Returns the global handle of a buffer that holds
the text and the format attributes of the Text
Control. Is used to destroy the old buffer of a
Text Control after sending the
TX_SETHANDLE message.

TX_GETIMAGEFORMAT Retrieves formatting parameters for an image.

TX_IMPORTTEXTBUFFER Imports externally formatted text from a buffer,
with the help of a filter.

TX_IMPORTTEXTFILE Imports externally formatted text from a file,
with the help of a filter.

TX_SETHANDLE Sets a new data handle for the Text Control. It
has to be a global handle.

TX_SETIMAGEFORMAT Sets new formatting parameters for an image.

Page 60 Message Directory

5. Message Directory

TX_CANCOPY

This message can be sent to determine whether part of a Text Control’s document
has been selected and can be copied to the clipboard.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is nonzero if something can be copied to the clipboard. Otherwise
it is zero.

TX_CANPASTE

This message can be sent to determine whether the clipboard contains a format that
can be pasted into a Text Control’s document.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is nonzero if something can be pasted. Otherwise it is zero.

TX_CANUNDO

This message returns whether a Text Control operation can be undone or whether
an undone operation can be restored.

Parameter Description

wParam Is not used.

Message Directory Page 61

lParam Is not used.

Return Value The low-order word of the return value is zero if there is no Text Control operation
that can be undone. Otherwise it is one of the following values:

Value Meaning

UNDO_INSERT The next undo operation deletes inserted text.

UNDO_DELETE The next undo operation inserts deleted text.

UNDO_FORMAT The next undo operation resets the last formatting
operation.

The high-order word of the return value is zero if there is no undone operation that
can be restored. Otherwise it is one of the following values:

Value Meaning

REDO_INSERT The next redo operation restores inserted text.

REDO_DELETE The next redo operation deletes restored text.

REDO_FORMAT The next redo operation restores the last formatting
operation.

TX_COPYDATA

This message is used to copy the complete text and all the format information of a
Text Control window to a buffer pointed to by lParam.

Parameter Description

wParam Is not used.

lParam Points to a buffer that is to receive the data.

Return Value The return value is a pointer to the next free position behind the copied data. It is
zero if an error has occurred.

Page 62 Message Directory

Comments This message is implemented to save the data of a Text Control to a global buffer.
For more information on how to restore the data from memory, see the description
of the TX_PASTEDATA message. To save the data to a file, use the TX_SAVE
message. The required buffer size can be obtained with the TX_GETDATASIZE
message. For other applications its format is described in appendix A.

TX_CREATEIMAGE

This message inserts a new image at the current text input position.

Parameter Description

wParam Specifies an image filter as an index into the buffer
returned by the TX_GETIMAGEFILTERS message. The
first pair of strings has an index value of 1. If the buffer
returned by TX_GETIMAGEFILTERS is used to
initialize the lpstrFilter member of an OPENFILENAME
structure, another member of that structure, nFilterIndex,
can be used to initialize this parameter. See the Windows
SDK for more information about the OPENFILENAME
structure. If wParam is set to 0, the Text Control
automatically tries to select a filter.

lParam Points to a null-terminated string that is a full DOS path
name for the file containing the new image.

Return Value The low-order word of the return value is zero if an error has occurred. Otherwise it
is nonzero. If an error has occurred, the high-order word contains an error code
value. For more information about the meaning of this value see the description of
the IC_SETIMAGE message in the IC Image-Control reference.

Comments The IC Image-Control programming tool is needed for this message.

TX_DATAIN

This message inserts text data into a Text Control.

Message Directory Page 63

Parameter Description

wParam Is not used.

lParam Points to the TXDATAIO structure that has been defined for
general data exchange with a Text Control. The following
comments section describes this structure in more detail.

Return Value The return value is zero if an error has occurred. Otherwise it is nonzero.

Comments The TXDATAIO structure is defined as follows:

typedef struct tagTXDATAIO {
WORD wTXVersion;
HFILE hFile;
LPVOID lpreserved;
LPVOID hpInBuffer;
HGLOBAL hOutBuffer;
WORD wFormat;
LPCTSTR lpFilterName;
BOOL bCurSelection;
POINT ptMinSize;
DWORD dwBytesReadWritten;
LONG lReserved;
LPTXFILTERIO lpFilterIO;

} TXDATAIO;

The TXDATAIO structure has the following fields:

Field Description

wTXVersion Specifies the Text Control's current version number in the same
format returned by the TXGetVersion function, e.g. 500. Set this
parameter as a number and not as a TXGetVersion function call.

hFile Identifies a file where the data is to be read from or written to.
The file pointer is moved, and the number of copied bytes is
stored to the dwBytesReadWritten member. When this member is
set to HFILE_ERROR, a pointer to a memory buffer must be
specified with the hpInBuffer member for data input. For data
output the Text Control allocates a buffer and copies the handle
to the hOutBuffer member.

lpreserved Reserved for future use. This member must be set to zero.

hpInBuffer For data input only: points to a buffer containing incoming data

Page 64 Message Directory

and should be set to zero when hFile is specified. The number of
bytes read is copied to the dwBytesReadWritten member.

hOutBuffer For data output only: when hFile is not specified Text Control
creates a buffer with the outgoing data and copies its global data
handle to this variable. The user must use the GlobalFree
function after using the buffer to free it. The amount of data, in
bytes, is copied to the dwBytesReadWritten member.

wFormat Specifies a format identifier. This member is only used when the
lpFiIterName member is set to zero. The identifiers
TF_FORMAT_TEXT and TF_FORMAT_TX are implemented
as ANSI (TF_FORMAT_TEXTA and TF_FORMAT_TXA) and
Unicode versions (TF_FORMAT_TEXTW and
TF_FORMAT_TXW). Depending on whether Unicode is defined
or not either the A- or the W-version is used.
The following values are possible:

Value Meaning

TF_FORMAT_ANSI Text only in ANSI format (Windows
compatible).

TF_FORMAT_UNICODE Text only in Unicode format
(Windows compatible).

TF_FORMAT_TEXT Text only in ANSI or Unicode
format (Text Control compatible),
depending on whether UNICODE is
defined or not before TX.H is
included. To enforce a certain format
use TF_FORMAT_TEXTA or
TF_FORMAT_TEXTW explicitly.

TF_FORMAT_TX Text and formatting attributes using
Text Control's text format. Text is
stored in ANSI or Unicode format,
depending on whether UNICODE is
defined or not before TX.H is
included. To enforce a certain format
use TF_FORMAT_TXA or
TF_FORMAT_TXW explicitly.

Message Directory Page 65

TF_FORMAT_HTML HTML (Hypertext Markup
Language)

TF_FORMAT_RTF RTF (Rich Text Format)

TF_FORMAT_WORD Microsoft WORD format.

TF_FORMAT_USER The lpFilterName parameter must
contain the name of a user-developed
filter. User-developed filters must be
able to process Unicode. The
development of a text filter is
described in appendix C.

lpFilterName Points to a null-terminated character string that specifies the name
of the filter library that is to be used to convert the data. If the
filter library is not in the same directory as the TX library, the
character string must contain the complete path. This parameter is
only used when wFormat contains TF_FORMAT_USER.

bCurSelection When set to TRUE the current selection is replaced or saved.
Otherwise the complete contents of the Text Control are replaced
or saved. When the selection is replaced the new current input
position is behind the inserted data, otherwise it is at the
beginning of the text.

ptMinSize For data input only: the Text Control copies the minimum
window size (in pixels) to this buffer when the control is too
small to display a minimum amout of the text. In this case the
message returns zero to indicate an error. If a text area has been
defined with the TX_SETTEXTAREA message the new
minimum text area is copied in twentieths of a point. The size is
calculated from the font information of the loaded text. If both
values are 0, an error has occurred.

dwBytesReadWritten Text Control fills this member with the number of read or
written bytes. This value is set to zero when an error has occurred
and set to -1 when the value could not be calculated, for example
when a filter does not support this information.

lReserved This member is for future use and should be set to zero.

lpFilterIO Points to a TXFILTERIO structure when additional data is to be
exchanged with the filter. This member is ignored and should be

Page 66 Message Directory

set to zero when no filter is necessary or the additional data is not
needed. A complete description of all members and their usage
can be found in chapter 7 "Data Structures".

Text only is available either Windows compatible or Text Control compatible. To
exchange text with other Windows programs that do not support RTF or HTML the
Windows compatible text only format should be used. Otherwise to work with
selections and lines the Text Control compatible text only format should be used.
Control characters used with the Text Control compatible text only format are listed
in appendix A.

TX_DATAOUT

This message retrieves text data from a Text Control in a certain format.

Parameter Description

wParam Is not used.

lParam Points to a TXDATAIO structure that has been defined for
general data exchange with a Text Control. The Comments
section of the TX_DATAIN message describes this structure in
more detail.

Return Value The return value is zero if an error has occurred. Otherwise it is nonzero.

TX_DEVMODECHANGE

This message adjusts the font information of a Text Control window when the user
changes the standard printer. It must be sent to a Text Control window every time
the application receives a WM_DEVMODECHANGE message from Windows. If
another device as the standard printer has been set with the TX_SETDEVICE
message sending this message is not necessary.

Parameter Description

wParam Is not used.

lParam Points to a POINT data structure. The Text Control copies
the new minimum window size (in pixels) to this buffer.

Message Directory Page 67

This size is calculated from the adjusted fonts. If the
values copied are both 0, an error has occurred.

Return Value The return value is zero if an error has occurred or if a particular printer has been
set with the TX_SETDEVICE message. Otherwise it is nonzero.

Comments The return value is also zero if the window size is too small for the new fonts. After
resizing the window with the minimum values given by lParam, this message can
be sent again.

TX_EMPTYUNDOBUFFER

This message clears the undo flag of a Text Control. The undo flag is set whenever
an operation within the Text Control can be undone.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value This message does not return a value.

Comments The undo flag is automatically cleared whenever the Text Control receives one of
the following messages: TX_LIMITTEXT, TX_LIMITLINE, TX_LOAD,
TX_PASTEDATA, TX_PRINT, TX_PRINTPAGE, TX_SAVE,
TX_SETDEVICE, TX_SETHANDLE, TX_SETLINKWND and WM_SETTEXT.

TX_ENLARGEFONT

Enlarges or reduces the pointsizes of all fonts in the current selection. After
modifying the fonts, the Text Control is correctly updated.

Parameter Description

wParam contains one of the following values:

Page 68 Message Directory

Value Meaning

TF_REDUCE If the fonts are to be reduced by one
pointsize.

TF_ENLARGE If the fonts are to be enlarged by one
pointsize.

lParam Points to a POINT data structure. The Text Control copies the
new minimum window size (in pixels) to this buffer. If a text area
has been defined with the TX_SETTEXTAREA message the new
minimum text area is copied in TWIPS. This size is calculated
from the enlarged or reduced fonts. If the values copied are both
0, an error has occurred.

Return Value The return value is:

Value Meaning

TR_ERR If an error has occurred.

TR_UNCHANGED If no font could be changed because the maximum or
minimum sizes have been reached.

TR_CHANGED Otherwise.

Comments The return value also evaluates TR_ERR if the window size is too small for the
enlarged fonts. After resizing the window with the minimum values given by
lParam, this message can be sent again.

The Text Control updates the modified selection if the window is visible.

TX_FIELD_CHANGETEXT

This message alters the text of a marked text field.

Parameter Description

wParam Specifies a field identifier.

lParam Points to a null-terminated string which is the altered text.

Message Directory Page 69

Return Value The return value is zero if an error has occurred or if the specified field identifier
does not exist. Otherwise it is nonzero.

TX_FIELD_DELETE

This message deletes a marked text field. The field is deleted independent of its
attributes.

Parameter Description

wParam Specifies a field identifier.

lParam If lParam is zero this message removes only the field
property. If lParam is nonzero the field including its text is
deleted.

Return Value The return value is zero if an error has occurred or if the specified field identifier
does not exist. Otherwise it is nonzero.

Comments If a marked text field is deleted with this message, the Text Control does not send a
TN_FIELD_DELETED notification message.

TX_FIELD_FROMCARETPOS

This message returns the field identifier of the field containing the current input
position.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is the identifier of the field containing the input position. Zero is
returned when the input position is not inside a field.

Page 70 Message Directory

TX_FIELD_GETATTR

This message returns the attributes of a marked text field. These attributes are
described in more detail in chapter 1.8 "Marked Text Fields".

Parameter Description

wParam Specifies a field identifier.

lParam Is not used.

Return Value The return value is zero if the specified field does not exist. Otherwise it is a
combination of the following values:

Value Meaning

TF_DELETEABLE Set if the marked text field can be deleted.

TF_UNDELETEABLE Set if the marked text field cannot be deleted.

TF_CHANGEABLE Set if the text of the specified marked text field can
be changed.

TF_UNCHANGEABLE Set if the text of the specified marked text field
cannot be changed.

TF_EXTEDITMODE Set if the specified marked text field can be edited
with a second input position at the beginning and
the end of a field.

TF_NORMALEDITMODE Set if the specified marked text field is edited in
normal mode.

TF_SHOWCURFIELDGRAY Set if the specified marked text field is displayed
with a gray background when it contains the current
character input position.

TF_SHOWCURFIELDNORMAL
Set if the specified marked text field is not
displayed with a gray background.

TF_USEFIELDCARET Set if the caret for marked text fields is used in the
specified field. This caret can be defined with the
TX_SETCARETEXT message.

Message Directory Page 71

TF_USETEXTCARET Set if the normal text caret is used in the specified
field.

TF_ENABLEDBLCLICKS Set if normal double-click processing is performed
inside marked text fields, which starts a wordwise
selection.

TF_DISABLEDBLECLICKS Set if the normal double-click processing inside
marked text fields is disabled.

TX_FIELD_GETCURRENT

This message returns the identifier of a marked text field, when the parent window
has received a notification message for that field.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is the identifier of the marked text field. It is zero if no such field
exists.

Comments For chains of linked windows this message must be sent to the window that has sent
the notification message.

TX_FIELD_GETDATA

This message retrieves the data related to a marked text field with the
TX_FIELD_SETDATA message.

Parameter Description

wParam Specifies a field identifier.

lParam Points to a TXFIELDSETDATA data structure which is
used to retrieve the data. See the description of the
TX_FIELD_SETDATA message for more information
about this data structure.

Page 72 Message Directory

Return Value The return value is zero if the specified field does not exist. Otherwise it is non-
zero. When the specified field exists but no data has been related to the field, the
return value is non-zero; but all members of the TXFIELDSETDATA structure to
which lParam points are set to zero.

TX_FIELD_GETNEXT

This message returns the identifier of a marked text field that follows the specified
field in the Text Control's current text. In a list of linked Text Controls the search is
performed in all windows.

Parameter Description

wParam Specifies a field's identifier. If this parameter is zero, the first
field's identifier is returned.

lParam The low-order word specifies the group of fields. It can be a
combination of any of the values described in the following
Comments section. If lParam is zero the identifiers of all the
fields are returned.

Return Value The return value is the identifier of the field which follows the specified field in the
Text Control's text. It is zero if no following fields exist.

Comments The low-order word of the lParam parameter can be a combination of the following
values:

Value Meaning

FGN_CHANGEANDDELETEABLEONLY Returns only identifiers of fields
which are changeable and deleteable.

FGN_UNCHANGEABLEONLY Returns only identifiers of fields which are
unchangeable.

FGN_UNDELETEABLEONLY Returns only identifiers of fields which are
undeleteable.

FGN_EXTERNALLINK Returns only identifiers of fields that have
the type FT_EXTERNALLINK.

Message Directory Page 73

FGN_HIGHLIGHT Returns only identifiers of fields that have
the type FT_HIGHLIGHT.

FGN_INTERNALLINK Returns only identifiers of fields that have
the type FT_INTERNALLINK.

FGN_LINKTARGET Returns only identifiers of fields that have
the type FT_LINKTARGET.

FGN_PAGENUMBER Returns only identifiers of fields that have
the type FT_PAGENUMBER.

FGN_TOPIC Returns only identifiers of fields that have
the type FT_TOPIC.

Example The following code example uses the TX_FIELD_GETNEXT message to get the
character positions of all the fields a Text Control contains:

DWORD dwPosition[2];
WORD wID = 0;

while (wID = (WORD)SendMessage(hwndTX, TX_FIELD_GETNEXT, wID, 0L)) {
SendMessage(hwndTX, TX_FIELD_GETPOSITION,

(WPARAM)wID, (LPARAM)(LPDWORD)dwPosition);
}

TX_FIELD_GETPOSITION

This message retrieves the start and end character positions of a marked text field.

Parameter Description

wParam Specifies a field identifier.

lParam Points to an array of two DWORD variables. The first
variable receives the start position and the second variable
receives the end position of the field.

Return Value The return value is zero if an error has occurred or if the specified field identifier
does not exist, otherwise it is nonzero.

Page 74 Message Directory

Comments The start position is the one-based character position of the first character
associated with the field. The end position is the one-based character position of the
last character associated with the field. If a marked text field contains no text the
end position is one less than the start position.

If marked text fields are used in chains of linked windows the position values are
relative to the beginning of the text that is the first character in the first window of
the chain. To get the window which contains the field and the alignment of the field
in that window use the TX_GETLINKWND message with the
GWTX_FROMOFFSET and the GWTX_GETOFFSET option.

TX_FIELD_GETTEXT

This message retrieves the text of a marked text field.

Parameter Description

wParam Specifies a field identifier.

lParam Points to the buffer that is to receive the text. The size of
the buffer must be previously calculated with the
TX_FIELD_GETPOSITION message.

Return Value The return value is zero if an error has occurred or if the specified field identifier
does not exist. Otherwise, it is nonzero.

Comments The buffer which lParam points to must be large enough to add a terminating zero.
It can be larger than 64 kB.

Unicode The TX_FIELD_GETPOSITION message retrieves character positions. For
Unicode and double-byte processing applications the character based calculation
must be doubled to get the buffer size in bytes.

TX_FIELD_GETTYPE

This message retrieves the type-related data belonging to a marked text field of a
special type.

Message Directory Page 75

Parameter Description

wParam Specifies a field identifier.

lParam Points to a TXFIELDSETTYPE data structure. This
structure retrieves the type of the field and its type-related
data. See the description of the TX_FIELD_SETTYPE
message for more information about this data structure.

Return Value The return value is zero if the specified field does not exist. Otherwise it is non-
zero.

TX_FIELD_GOTO

This message sets the current input position at the beginning of the specified
marked text field and scrolls the text so that this position is at the top of the
window's client area.

Parameter Description

wParam Specifies the type of the field. The description of the
nFieldType member of the TXFIELDSETTYPE data
structure (TX_FIELD_SETTYPE message) lists all
possible values.

lParam Identifies the marked text field to which should be
scrolled. It must be a valid field identifier. For fields of the
type FT_LINKTARGET this parameter can also be the
name of the field. For fields of the type FT_TOPIC this
parameter can also be a valid topic number.

Return Value The return value is zero if the specified field does not exist. Otherwise it is non-
zero.

TX_FIELD_INSERT

This message inserts a new marked text field at the current input position or defines
selected text as a marked text field.

Page 76 Message Directory

Parameter Description

wParam Specifies attributes for the new field. See the
TX_FIELD_SETATTR message for more information.

lParam Points to a null-terminated string which is the text to be
inserted. If lParam is zero the currently selected text is
defined as the new field. If selected text exists this
parameter is ignored.

Return Value The return value is an identifier for the newly created field. It is zero if an error has
occurred. The return value is also zero if the given string is empty or no selection
exists.

Comments The returned identifier can be used to manipulate the text and the formatting
attributes of the marked text field. The parent window is informed through
notification messages when the user has clicked or doubleclicked a marked text
field or if text is changed or deleted. If the cursor is moved over a field, it changes
to a vertical arrow cursor.

If lParam is zero and the current selection covers an existing field, a new field
cannot be created and the return value is zero.

For chains of linked Text Control windows this message must be sent to the
window containing the current input position.

If the field should be visible for the user, additional attributes like colors or font
attributes can be set. The attributes must be set before sending this message. If
lParam is nonzero the attributes must also be reset after sending this message.

Example The following example inserts a green colored marked text field:

DWORD dwColor;
LONG lReturn;
lReturn = SendMessage(hWndTX, TX_GETTEXTCOLOR, 0,
(LPARAM)(LPDWORD)&dwColor);
SendMessage(hWndTX, TX_SETTEXTCOLOR, 0, RGB(0, 255, 0));
wField = (WORD)SendMessage(hWndTX, TX_FIELD_INSERT, 0,
(LPARAM)(LPSTR)buf);
SendMessage(hWndTX, TX_SETTEXTCOLOR, (WPARAM)(lReturn == 1),
dwColor);

Message Directory Page 77

TX_FIELD_SETATTR

This message sets attributes for the specified marked text field. Changing one
attribute does not alter other attributes. These attributes are described in more detail
in chapter 1.8 "Marked Text Fields".

Parameter Description

wParam Specifies a field identifier.

lParam Specifies new attributes. It can be a combination of the following
values:

Value Meaning

TF_DELETEABLE If the specified field is to be
deleteable.

TF_UNDELETEABLE If the specified field is not to be
deleteable.

TF_CHANGEABLE If the text of the specified field may
be altered.

TF_UNCHANGEABLE If the text of the specified field may
not be altered.

TF_EXTEDITMODE If for the specified field a second
character position is to be
implemented at the beginning and the
end of a field.

TF_NORMALEDITMODE
If the specified field is to be edited in
normal edit mode.

TF_SHOWCURFIELDGRAY
If the specified field is to be
displayed with a gray background
when it contains the current character
input position.

TF_SHOWCURFIELDNORMAL
If the specified field is not to be
displayed with a gray background.

Page 78 Message Directory

TF_USEFIELDCARET If the caret for marked text fields is
to be used in the specified field. This
caret can be defined with the
TX_SETCARETEXT message.

TF_USETEXTCARET If the normal text caret is to be used
in the specified field.

TF_ENABLEDBLCLICKS If normal double-click processing is
to be performed inside marked text
fields, which starts a wordwise
selection.

TF_DISABLEDBLCLICKS
If the normal double-click processing
inside marked text fields is to be
disabled. This is useful when the
TN_FIELD_DBLCLICKED
notification is processed.

The bitwise OR operator can be used to specify more than one
value.

Return Value The return value is zero if the new attributes could not be set or if the specified
field identifier does not exist. Otherwise it is non-zero.

Comments The attributes are grouped. The following attributes cannot be used together:
TF_DELETEABLE and TF_UNDELETEABLE
TF_CHANGEABLE and TF_UNCHANGEABLE
TF_NORMALEDITMODE and TF_EXTEDITMODE
TF_SHOWCURFIELDNORMAL and TF_SHOWCURFIELDGRAY
TF_USETEXTCARET and TF_USEFIELDCARET
TF_DISABLEDBLCLICKS and TF_ENABLEDBLCLICKS
The default attributes for a newly created field with the TX_FIELD_INSERT
message are TF_DELETEABLE, TF_CHANGEABLE,
TF_NORMALEDITMODE, TF_SHOWCURFIELDNORMAL,
TF_USETEXTCARET and TF_DISABLEDBLCLICKS

If a field is undeleteable or unchangeable and the user tries to delete or to change
that field, the Text Control beeps.

If a Text Control is destroyed or the text is completely exchanged, the field

Message Directory Page 79

attributes are ignored and all fields are deleted. In this case TN_FIELD_DELETED
notifications are not sent.

TX_FIELD_SETDATA

This message can be used to relate any data to a marked text field. The data is
stored independently of its contents.

Parameter Description

wParam Specifies the identifier of a field in which the data is to be stored.

lParam Points to a TXFIELDSETDATA data structure that is defined as
follows:

typedef struct tagTXFIELDSETDATA {
LONG lReserved;
DWORD dwData;
DWORD dwDataSize;
LPVOID lpdata;
HGLOBAL hData;

} TXFIELDSETDATA;
typedef TXFIELDSETDATA *PTXFIELDSETDATA;
typedef TXFIELDSETDATA FAR *LPTXFIELDSETDATA;

The TXFIELDSETDATA data structure has the following fields:

Field Description

lReserved A 4 byte value for future use. This value must be
set to zero.

dwData Is a 4-byte value that should be used when the
amount of the data to be stored is 1 to 4 bytes.
When this member is used all other members of
this structure must be set to zero.

dwDataSize Specifies the size of the data when the amount is
larger than 4 bytes. In this case the lpdata member
must be used with TX_FIELD_SETDATA and the
hData member is used with
TX_FIELD_GETDATA.

lpdata This member is for TX_FIELD_SETDATA only. It
specifies the memory address of the data that is to

Page 80 Message Directory

be stored. Text Control copies the data to an
internally created buffer.

hData This member is for TX_FIELD_GETDATA only.
Text Control creates this buffer when the amount of
data to be stored is more than 4 bytes. The caller of
TX_FIELD_GETDATA must free it after using.

To delete all data of a field, all members of this structure must be
set to zero.

Return Value The return value is zero if the specified field does not exist or when the data could
not be stored. Otherwise it is non-zero.

TX_FIELD_SETTYPE

This message defines a marked text field of a special type. Text Control supports
several special types of marked text fields like source and destination fields for
hypertext links or fields that display the current page number. Additional data for
these fields - for example the link information - can also be specified through this
message. See the chapter 1.8 "Marked Text Fields - Special Types of Marked Text
Fields" for more information about these fields and their type-related data.

Parameter Description

wParam Specifies a field identifier.

lParam Points to a TXFIELDSETTYPE data structure that is defined as
follows:

typedef struct tagTXFIELDSETTYPE {
WORD wStructSize;
LONG lReserved;
BYTE nFieldType;
DWORD dwTypeData;
DWORD dwTypeDataSize;
LPVOID lptypedata;
HGLOBAL hTypeData;

} TXFIELDSETTYPE;

The following Comments section describes the members of this
structure.

Message Directory Page 81

Return Value The return value is nonzero if the field type could be set. Otherwise it is zero.

Comments The following describes the TXFIELDSETTYPE data structure. This structure is
used only for the messages TX_FIELD_SETTYPE and TX_FIELD_GETTYPE.
The lptypedata member is for TX_FIELD_SETTYPE only and the hTypeData
member is for TX_FIELD_GETTYPE only.

Field Description

wStructSize Specifies the size of this data structure, in bytes.

lReserved A 4 byte value for future use. This value must be set to zero.

nFieldType Defines the type of the field. It can be anyone of the following
values:

Type Description

FT_EXTERNALLINK Defines the source of a hypertext link
to a location outside of the document.

FT_INTERNALLINK Defines the source of a hypertext link
to a location in the same document.

FT_LINKTARGET Defines a position in a document
which is the target of a hypertext
link.

FT_PAGENUMBER Displays the current page number.

FT_HIGHLIGHT Defines a piece of text that can be
highlighted.

FT_TOPIC Defines a position in a document that
is the beginning of a new topic.

FT_STANDARD Defines a standard marked text field
without a special type. For this value
all of the following structure
members must be set to zero. This
value resets a special field to a
standard field and deletes all additio-
nal data belonging to the special
type.

dwTypeData Specifies the topic number for fields of the type FT_TOPIC and

Page 82 Message Directory

the color of the highlight for fields of the type FT_HIGHLIGHT.
For all other fields this member must be zero.

dwTypeDataSizeSpecifies the size of the buffer, either lptypedata points to or that
is identified through hTypeData.

lptypedata This member is for TX_FIELD_SETTYPE only. It points to a
buffer containing additional data for the field depending on its
type. In all cases lptypedata must point to a zero-terminated
string:

FT_EXTERNALLINK lptypedata specifies the location to
where the hypertext link points. This
can be an address or a file name.

FT_INTERNALLINK Specifies the name of the field to
where the hypertext link points. This
must be a field of the type
FT_LINKTARGET.

FT_LINKTARGET Specifies the field's name.

For all other types this member must be zero. It must also be zero
when this structure is used with the TX_FIELD_GETTYPE
message.

hTypeData This member is for TX_FIELD_GETTYPE only. Text Control
creates a buffer and copies the type-related data for the field to
this buffer depending on the field's type. The caller of
TX_FIELD_GETTYPE must free it with the GlobalFree
function after using. This buffer is only created for fields of the
types FT_EXTERNALLINK, FT_INTERNALLINK and
FT_LINKTARGET. For all other fields it is set to zero.

TX_FINDTEXT

This message searches for a specified text string or opens the system-defined
modeless dialog box which makes it possible for the user to find text within a Text
Control's contents.

Parameter Description

wParam Is not used.

Message Directory Page 83

lParam When this parameter is zero the system-defined modeless dialog
box is opened. Otherwise this parameter must be point to a
TXFINDTEXT structure. See the following comments section for
a complete description.

Return Value The return value has no meaning when the system-defined dialogbox is used.
Otherwise the return value is the index of the first character of the match if the text
searched for is found. If the specified text is not found, the return value is -1.

Comments The TXFINDTEXT structure is defined as follows:

typedef struct tagTXFINDTEXT {
DWORD lStructSize;
DWORD Flags;
LONG lStart;
LPCTSTR lpstrFindWhat;

} TXFINDTEXT;

The TXFINDTEXT structure has the following fields:

Field Description

lStructSize Specifies the size, in bytes, of this data structure.

Flags Specifies a combination of the following flags:

Value: Description:

TXFR_SEARCHUP Determines the direction of searches
through a document. If this flag is
used, the search direction is up; if the
flag is not used, the search direction
is down.

TXFR_MATCHCASE Indicates case-sensitive searches.

TXFR_NOHIGHLIGHT Determines if a match appears
highlighted.

TXFR_NOMESSAGEBOXSuppresses the built-in message
boxes which inform the user that a
match could not be found.

lStart Specifies a character index that determines where to begin the

Page 84 Message Directory

search. The first character of text in the control has an index of 0.
When this parameter is set to -1, the search begins at the current
input position.

lpstrFindWhat Specifies the string to search for.

TX_FONTDIALOG

This message opens a modal dialog box which contains all available fonts and
pointsizes for the currently selected printer. Font attributes and values for subscript
and superscript can also be set.

Parameter Description

wParam Is not used.

lParam Points to a POINT data structure. The Text Control copies
the new minimum window size (in pixels) to this buffer. If
a text area has been defined with the
TX_SETTEXTAREA message the new minimum text
area is copied as twentieths of a point. This size is
calculated from the new fonts and attributes set by this
message. If the values copied are both 0, an error has
occurred.

Return Value The return value is:

Value Meaning

TR_ERR If an error has occurred.

TR_UNCHANGED If the user leaves the dialog box with the CANCEL button.

TR_CHANGED If the user leaves the dialog box with the OK button.

Comments The return value also evaluates TR_ERR if the window size is too small for the
changed fonts. After resizing the window with the minimum values given by
lParam, this message can be sent again.

The Text Control updates the modified selection if the window is visible.

Message Directory Page 85

TX_GETBASELINE

This message returns the baseline alignment value of the currently selected text.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value contains one of the following values in the low-order word:

Value Meaning

FA_NOCOMMONS The current selection contains different subscript and
superscript values

FA_STANDARD The common baseline alignment value is zero

FA_SUPERSCRIPT The common baseline alignment is superscript

FA_SUBSCRIPT The common baseline alignment is subscript

The high-order word of the return value contains the baseline align value in
twentieths of a point.

Comments If the current selection contains different baseline alignment values but all are
subscript, then the low-order word of the return value is FA_SUBSCRIPT and the
high-order word is zero.

TX_GETBASELINEPOS

This message returns the baseline position of the specified line. The dimensions are
given in twentieths of a point with an origin at the upper left corner of the text. The
relationship between the upper left corner of the text and the upper left corner of
the Text Control's client area can be obtained with the TX_GETSCROLLPOS
message.

Parameter Description

wParam Is not used.

lParam Specifies the index of the line for which the baseline

Page 86 Message Directory

position is to be returned. The index of the first line is
zero.

Return Value The return value specifies the requested baseline position in twentieths of a point.

TX_GETBKGNDCOLOR

This message retrieves an RGB value for the background color of the Text Control.

Parameter Description

wParam Is not used.

lParam Points to a long variable that is to receive an RGB value
for the background color.

Return Value The return value is 1 if the retrieved value is the system color for the window
background. Otherwise the return value is 2. The return value is zero, if an error has
occurred.

TX_GETCARETEXT

This message returns the current extension of the caret in pixels.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value contains the caret extension. The width is in the low-order word,
the height is in the high-order word.

TX_GETCARETPOS

This message returns the current caret position as screen coordinates.

Message Directory Page 87

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value contains the caret position. The x-coordinate is in the low-order
word, the y-coordinate is in the high-order word.

TX_GETDATASIZE

This message returns the size of all the data the Text Control currently contains,
including the text.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value contains the datasize. It is TR_ERR if an error has occurred.

Comments This message is nessessary to calculate the size of the buffer for the
TX_COPYDATA message.

TX_GETDEVICE

This message retrieves the name of the device for which the text is currently
formatted.

Parameter Description

wParam Specifies the size of the buffer lParam points to.

lParam Points to a buffer, of a length specified by wParam, which
is to receive the name of the device. This name is only be
copied if the return value is TF_PRINTER.

Return Value The return value is one of the following values:

Page 88 Message Directory

Value Meaning

TF_SCREEN The device is the screen.

TF_STANDARD The device is the standard device, specified in the
[windows] section of the WIN.INI file.

TF_PRINTER The device is a printer.

Comments The name of the device is copied in the same format as that used in the WIN.INI
file, for example:

PostScript Printer,PSCRIPT,LPT1:

Unicode The size specified through wParam is in characters, when UNICODE is defined,
otherwise it is in bytes.

TX_GETFONT

This message retrieves the common typeface and pointsize of all currently selected
fonts.

Parameter Description

wParam Specifies the dimensions of the returned pointsize. If the
high-order bit is set, the pointsize is returned in twetieths
of a point. Otherwise it is returned in points.

lParam Points to a buffer of length LF_FACESIZE which is to
receive the typeface string. The string is set to an empty
string if no common typeface exists.

Return Value The return value identifies the common pointsize in points or twentieths of a point.
It is zero if no common pointsize exists.

Comments The pointsize is calculated from the values of the TEXTMETRIC data structure
retrieved through the EnumFonts function. The following formula is used to
calculate the pointsize:

pointsize = (tm.tmHeight - tm.tmInternalLeading + 10) / 20

The TEXTMETRIC values are given in twentieths of a point.

Message Directory Page 89

Unicode The buffer length is in characters, when UNICODE is defined, otherwise it is in
bytes.

TX_GETFONTATTR

This message returns a bitmask of the font attributes for all fonts in the current
selection.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is one or more of the following values, indicating the common
attributes:

Value Meaning

FA_NOCOMMONS No common font attribute.

FA_BOLD Each font is bold.

FA_STANDARD Each font is normal.

FA_ITALIC Each font is italic.

FA_UNDERLINE Each font is underlined.

FA_STRIKEOUT Each font is struck out.

FA_UL_DOUBLE Each font is double underlined.

FA_UL_WORDSONLY
Words are underlined, word gaps are omitted.

The return value is TR_ERR if an error has occurred.

Comments This message can be used to set the correct checkmarks concerning menu items for
font attributes. It allocates memory and initializes the font manager, so the return
value should always be checked.

Page 90 Message Directory

TX_GETFORMAT

This message returns the paragraph format value of the currently selected
paragraphs.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is one of the following:

Value Meaning

TF_LEFT Text is left aligned

TF_RIGHT Text is right aligned.

TF_CENTER Text is centered.

TF_BLOCK Text is block formatted.

TF_NOCOMMONS No common text alignment.

The return value is TR_ERR if an error occurred.

TX_GETIMAGE

If an image has been selected, then this message retrieves the full DOS path name
of the file that contains the currently registered image of the Image-Control
window.

Parameter Description

wParam Specifies the size of the buffer which lParam points to,
including the null-terminating character.

lParam Points to a buffer which is to receive the path name.

Return Value The return value is the number of bytes copied. It is zero if an error has occurred or
no image is currently selected or registered.

Message Directory Page 91

Comments The IC Image-Control programming tool is needed for this message.

Unicode The size specified through wParam is in characters, when UNICODE is defined,
otherwise it is in bytes.

TX_GETIMAGEFILTERS

This message returns a buffer containing pairs of null-terminated strings specifying
image filters. The format of the buffer has the same form as described for the
lpstrFilter member of an OPENFILENAME structure and can be used to initialize
the GetOpenFileName dialog box. See the description of the OPENFILENAME
structure in Windows SDK for more information.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is a global memory handle identifying the buffer that holds the
strings. Each string ends with a terminating zero, the buffer itself ends with two
terminating zeros. The return value is zero if an error has occurred. If an
application has finished using the buffer it must free it with the GlobalFree
function.

Comments The IC Image-Control programming tool is needed for this message.

TX_GETIMAGEFORMAT

If an image has been selected this message retrieves information about the
formatting of an image. The Text Control sends a TN_IMAGECLICKED
notification message if an image has been selected.

Parameter Description

wParam Is not used.

lParam Points to an IMAGEFORMAT data structure which is defined as
follows:

Page 92 Message Directory

typedef struct tagIMAGEFORMAT {
POINT ptPosition;
POINT ptSize;
POINT ptMaxPosition;
WORD wScale;
WORD wFlags;

} IMAGEFORMAT;

The IMAGEFORMAT structure has the following fields:

Field Description

ptPosition Specifies the image's horizontal position in
twentieths of a point. The y-coordinate of this
POINT structure is not used.

ptSize Specifies the image's unscaled horizontal and
vertical dimensions in twentieths of a point.

ptMaxPosition Specifies the maximum horizontal position in
twentieths of a point. The y-coordinate of this
POINT structure is not used.

wScale Specifies the image's scaling factor in percent.
This is a value between 10 and 250.

wFlags Can contain a combination of the following
flags:

Value Meaning

ICF_GRAYED The image is displayed
in fast mode.

ICF_SAVEASDATA The Text Control saves
the image by its data
instead of its filename.

Return Value The return value is zero if an error has occurred or if no image is currently selected
or registered. Otherwise it is nonzero.

Comments The IC Image-Control programming tool is needed for this message.

Message Directory Page 93

TX_GETINDENTS

This message retrieves the indent values of the currently selected paragraphs.

Parameter Description

wParam Is not used.

lParam Points to an array of five integers which is to receive the
indent values in twentieths of a point. The values are in the
order: left indent, right indent, additional indent of the first
line, top indent and bottom indent. The third value, the
additional indent of the first line, is the only one that can
be negative. If a value contains TR_IGNORED, no
common value of this indent exists for the selected
paragraphs.

Return Value The return value is zero if an error has occurred. Otherwise it contains maximum
values for a combination of new indents that can be set with the
TX_SETINDENTS message. The maximum x-value is in the low-order word and
the maximum y-value is in the high-order word.

The x-value is the maximum value for the sum of the left indent, the right indent
and the additional indent of the first line. The y-value is the maximum value for the
top indent and the bottom indent.

These values become invalid if the size of the Text Control is changed, or a new
font or pointsize is set.

TX_GETLANGUAGE

This message returns the current language identifier for the language which the
Text Control is using to display information strings, warnings or dialog boxes.

Parameter Description

wParam Is not used.

lParam Is not used.

Page 94 Message Directory

Return Value The return value is the language identifier. See the TX_SETLANGUAGE message
for possible values.

TX_GETLINEANDCOL

This message retrieves the line and the column of the current caret position. The
first line and the first column both have the number one.

Parameter Description

wParam Is not used.

lParam Points to an array of two DWORD variables. The first
variable receives the line number and the second variable
receives the column number of the current input position.

Return Value The return value is zero if an error has occurred, otherwise it is a page number if a
page height has been set with the TX_SETTEXTAREA message. In this case the
retrieved line number is relative to the top of this page.

TX_GETLINECOUNT

This message returns the number of text lines in the Text Control.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is the number of text lines in the Text Control.

TX_GETLINERECT

This message retrieves the rectangular area covered by a line of text. The rectangle
does not include the external leading area, additional linespacing or indents. The
dimensions are given in twentieths of a point with an origin at the upper left corner
of the line. The alignment of the origin of the line is given by the return value.

Message Directory Page 95

Parameter Description

wParam Is not used.

lParam Points to a LINERECT data structure which is defined as
followed:

typedef struct tagLINERECT {
LONG lLineIndex;
RECT rLine;

} LINERECT;

The LINERECT structure has the following fields:

Field Description

lLineIndex Specifies the index of the line whose
rectangle is to be retrieved. The
index of the first line is zero.

rLine Specifies a RECT data structure that
is to receive the text rectangle. If an
error has occurred, the rectangle is
set to empty.

Return Value The return value specifies the offset of the line in twentieths of a point with an
origin at the upper left corner of the text. The relationship between the upper left
corner of the text and the upper left corner of the Text Control's client area can be
obtained with the TX_GETSCROLLPOS message.

TX_GETLINESPACING

This message returns the linespacing value of the currently selected paragraphs.

Parameter Description

wParam Is not used.

lParam Is not used.

Page 96 Message Directory

Return Value The return value contains the linespacing value as a percentage of the size of the
currently used font in the low-order word and the linespacing value in twentieths of
a point in the high-order word. The low-order word is zero if no common
percentage value exists. The high-order word is zero if no common absolute
linespacing value exists.

TX_GETLINKWND

This message searches for the handle of a window that is part of a Text Control
window's chain. This message can be sent to any window that belongs to the chain.

Parameter Description

wParam Specifies the relationship between the original window and the
returned window. It can be one of the following values:

Value Meaning

GWTX_HWNDFIRST Returns the first window of a
chain of linked windows.

GWTX_HWNDLAST Returns the last window of a chain
of linked windows.

GWTX_HWNDNEXT Returns the window that follows
the specified window.

GWTX_HWNDPREV Returns the previous window of a
chain of linked windows.

GWTX_HWNDFIRSTSEL Returns the first window of a
chain of linked windows that
contains selected text.

GWTX_HWNDLASTSEL Returns the last window of a chain
of linked windows that contains
selected text.

GWTX_FROMOFFSET Returns the window of a chain that
contains the one-based character
offset specified by lParam.

GWTX_GETCOUNT Returns the total number of

Message Directory Page 97

windows that belong to a chain of
linked windows.

GWTX_GETNUMBER Returns the position of a window
within its chain. The first window
is assigned position one.

GWTX_GETOFFSET Returns the one-based character
offset of the first character of the
window that receives this message
relative to the beginning of the
text.

lParam Depends on the value of wParam. If wParam is
GWTX_FROMOFFSET lParam must specify a one-based
character offset. Otherwise lParam is not used.

Return Value The return value is a value which depends on the wParam parameter. It is zero if
the value could not be found.

TX_GETMODE

This message returns information about different modes of the Text Control, like
the current background mode or the current character insertion mode.

Parameter Description

wParam Is not used.

lParam Points to a POINT structure which becomes filled with
values for the maximum window size (in pixels) when the
TF_AUTOEXPAND mode is set. The width is in the x-
coordinate and the height is in the y-coordinate. If these
values are not needed, lParam can be zero.

Return Value The return value is a combination of the following values:

Value Meaning

TF_AUTOEXPAND Set if the Text Control window is automatically
expanded to prevent text overflows.

Page 98 Message Directory

TF_FIXED Set if the Text Control window has a fixed size.

TF_FRAMED Set if a borderline is drawn on the screen.

TF_HIDESELNA Set if the text selection is hidden in the inactive
window state.

TF_HIDEWHITESPACE Set if whitespace characters are hidden on the
screen.

TF_INSERT Set if the character insertion mode is insert.

TF_KEEPSEL Set if currently selected text is not deleted before
text insertion.

TF_NOTFRAMED Set if the borderline is hidden on the screen.

TF_OPAQUE Set if the background mode is opaque.

TF_OVERWRITE Set if the character insertion mode is overwrite.

TF_REPLACESEL Set if currently selected text is deleted before text
insertion.

TF_SHOWSELNA Set if the text selection remains visible in the
inactive window state.

TF_SHOWWHITESPACE Set if whitespace characters are shown on the
screen.

TF_TRANSPARENT Set if the background mode is transparent.

TX_GETMODEEX

This message returns modes set with the TX_SETMODEEX message.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is a combination of the following values:

Value Meaning

TF_DISPLAY Set if the Text Control can only display text.

Message Directory Page 99

TF_EDIT Set if the Text Control can display and edit text.

TF_NOWAITCURSOR Set if the Text Control does not change the
cursor during long term operations.

TF_WAITCURSOR Set if the Text Control changes the cursor to an
hourglass during long term operations.

TF_TOPINDENTFIRSTPG Set if the Text Control allows a top indent for
the first paragraph.

TF_NOTOPINDENTFIRSTPG Set if the Text Control suppresses a top indent
of the first paragraph.

TF_ERRORBOXES Set when in some important cases error boxes
are shown.

TF_NOERRORBOXES Set when the all error message boxes are
suppressed.

TF_SHOWGRIDLINES Set when grid lines in tables are shown.

TF_HIDEGRIDLINES Set when grid lines in tables are hidden.

TX_GETPAGECOUNT

This message returns the current number of pages.

Parameter Description

wParam Is not used.

lParam Specifies the height of the page in twentieths of a point.

Return Value The return value is the number of pages with the height specified by lParam.

TX_GETPAGEMARGINS

This message retrieves the current page margins.

Page 100 Message Directory

Parameter Description

wParam Is not used.

lParam Points to a RECT data structure. The Text Control copies
the current margin values in twentieths of a point to this
structure.

Return Value The return value is zero if an error has occurred. Otherwise it is either 1L if the
page margins are currently not shown or 2L if the margins are shown on the screen.
Margins are only shown if a text area has been set via the TX_SETTEXTAREA
message with a height value not set to -1. See the chapter 1.8 "Text Area and
Coordinates" for more information about the text area.

Comments If no margins have been set with the TX_SETPAGEMARGINS message, the
default margins of 20mm (1134 TWIPS) are retrieved.

TX_GETPARAFORMATFLAGS

This message returns special formats of the paragraphs currently selected.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is a bit-field and can contain the following values:

Value Meaning

TF_ATLEASTLINESPACING This value specifies that absolute
linespacing values set with the
TX_SETLINESPACING message are to be
used as minimal values. If a line contains
characters or images which would be
cropped with this setting, the linespacing is
enlarged accordingly.

TF_EXACTLINESPACING This value specifies that absolute
linespacing values set with the

Message Directory Page 101

TX_SETLINESPACING message are to be
used as exact values, regardless of whether
larger characters or images are being
cropped.

TF_PAGEBREAKNOTALLOWED A page break is not allowed within a
paragraph.

TF_PAGEBREAKALLOWED Page breaks are allowed within a paragraph.

If no value is set the selected paragraphs are differently formatted.

Comments For future extensions use the bitwise OR operator to get the information from the
return value.

TX_GETPGFRAME

This message returns the appearance, style and line width for the frames of all
selected paragraphs.

Parameter Description

wParam Is not used.

lParam Points to a DWORD variable that receives the line width
in the low-order word and the distance of the frame from
the text in the high-order word. Both values are in
twentieths of a point. The low-order word contains zero if
the selected paragraphs have different width values and the
high-order word contains -1 if the selected paragraphs
have different distance values.

Return Value The return value contains a combination of frame appearance and style flags. It can
be a combination of any of the following values:

Value Meaning

BF_LEFTLINE Set if the frame has a left line.

BF_RIGHTLINE Set if the frame has a right line.

BF_TOPLINE Set if the frame has a top line.

Page 102 Message Directory

BF_BOTTOMLINE Set if the frame has a bottom line.

BF_BOX Set if the frame is a complete box.

BF_TABLINES Set if the frame includes vertical lines at each tabulator
position.

BF_TABLE Set if the frame is a complete box including vertical lines
at each tabulator position.

BF_SINGLE Set if the lines are single lines.

BF_DOUBLE Set if the lines are doubled lines.

BF_BOXCONNECT Set if the frame is connected to its neighbours.

TX_GETRECT

This message retrieves the size of the window rectangle for the Text Control
regardless of the zoom factor. A value of 100 percent is assumed.

Parameter Description

wParam Is not used.

lParam Points to a RECT data structure. The Text Control copies
the window rectangle to this structure.

Comments The dimensions of the rectangle are in client area coordinates of the windows
parent window.

TX_GETSCROLLPOS

This message returns the current scroll position.

Parameter Description

wParam Specifies the direction. It can be one of the following values:

Value Meaning

TF_HSCROLL Returns the horizontal scroll position.

TF_VSCROLL Returns the vertical scroll position.

Message Directory Page 103

lParam Is not used.

Return Value The return value is the current scroll position of the client area's upper left corner in
twentieths of a point.

TX_GETSEL

This message retrieves the start and end character positions of the currently selected
text.

Parameter Description

wParam Is not used.

lParam Points to an array of two DWORD variables. The first
variable receives the start position and the second variable
receives the end position of the selection.

Return Value The return value is zero if an error has occurred, otherwise it is nonzero.

Comments The start position is always the same as the position of the blinking caret.

TX_GETSUPPORTEDFONTS

This message returns a buffer containing strings of all the font family names which
are supported by the currently selected output device.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is a global memory handle identifying the buffer that holds the
strings. Each string ends with a terminating zero, the buffer itself ends with two
terminating zeros. The return value is zero if an error has occurred. If an
application has finished using the buffer it must free it with the GlobalFree
function.

Page 104 Message Directory

TX_GETSUPPORTEDSIZES

This message returns a buffer containing strings of all point sizes which are
supported for a specified font family by the currently selected output device.

Parameter Description

wParam Is not used.

lParam Points to a buffer of length LF_FACESIZE containing the
name of the font family.

Return Value The return value is a global memory handle identifying the buffer that holds the
point sizes as strings. Each string ends with a terminating zero, the buffer itself ends
with two terminating zeros. The return value is zero if an error has occurred. If an
application has finished using the buffer it must free it with the GlobalFree
function.

TX_GETTABS

This message retrieves common tab positions and tab types for all selected
paragraphs.

Parameter Description

wParam Specifies the kind of units of the position values. It can be one of
the following values:

Value Meaning

UF_PIXEL The tab position values are retrieved
in pixels.

UF_TWIPS The tab position values are retrieved
in terms of twentieths of a point.

lParam Points to an array of type TABSCT and size NTABS. The
TABSCT data structure is defined as followed:

typedef struct tagTABSCT {
BYTE nTabFlag;
WORD wTabPos;

} TABSCT;

Message Directory Page 105

The TABSCT structure has the following fields:

Field Description

nTabFlag Specifies the type of tabstop. It can be any one of
the following values:

Value Meaning

LEFTTAB The tab position is at the left
side of the text.

RIGHTTAB The tab position is at the right
side of the text.

RIGHTBORDERTAB The tab position is at
the rightmost text position.
All tabs in a list which follow
a RIGHTBORDERTAB are
ignored.

CENTERTAB The text is centered at the tab
position.

DECIMALTAB The decimal sign installed in
Windows is located at the tab
position.

wTabPos Specifies the x-coordinate of the tab position.
When the nTabFlag member of a tab is set to
RIGHTBORDERTAB this value has no meaning
and should be set to zero.

Return Value The return value is zero if an error has occurred. Otherwise it is nonzero.

Comments If the number of retrieved tabs is less than NTABS, the values of the rest of the tab
list are set to zero.

TX_GETTEXT

This message copies the text belonging to the Text Control into a buffer provided
by the caller. To calculate the size of the buffer required the TX_GETTEXTSIZE

Page 106 Message Directory

message can be used. The buffer must be large enough to accommodate a
terminating zero character.

Parameter Description

wParam Specifies the maximum number of characters to be copied,
including the terminating zero character. If wParam is
zero the complete text contained by the Text Control is
copied.

lParam Points to the buffer that is to receive the text.

Return Value The return value is the number of characters (Unicode) or bytes (otherwise) copied.

Comments The copied text is in the Text Control's text only format and contains only control
characters listed in appendix A. This message should be used to work with other
Text Control messages that use indices like TX_SETSEL or
TX_LINEFROMCHAR. To receive the text in a Windows compatible text format
for example to exchange it with a Windows Edit-Control the message
TX_DATAOUT with the format identifier set to TF_FORMAT_ANSI or
TF_FORMAT_UNICODE should be used.

16 bit This message supports buffers larger than 64 kB of text.

TX_GETTEXTAREA

This message retrieves the text area previously set with the TX_SETTEXTAREA
message.

Parameter Description

wParam Is not used.

lParam Points to a LONG variable which retrieves the size of the
text area. The low-order word specifies the width, the
high-order word specifies the height. A height value of -1
means a variable height depending on the text. A width or
height value of zero specifies that this value is always
equal to the window size.

Message Directory Page 107

Return Value The return value is a combination of flags. See the wParam parameter description
of the TX_SETTEXTAREA message for more information about possible values.

TX_GETTEXTCOLOR

This message retrieves RGB values for the text color and the text background color
of the currently selected text.

Parameter Description

wParam If wParam is zero lParam retrieves the RGB value for
only the text color. If wParam is nonzero, lParam
retrieves values for the text and the text background
colors.

lParam Points to an array of two variables of type COLORREF
which is to receive RGB values for the text color and the
text background color. The text color is in the first varia-
ble and the background color is in the second variable.

Return Value The low-order word of the return value specifies the type of text color. It can
contain one of the following values:

Value Meaning

CV_UNDEFINED If the current selection contains more than one text color.

CV_TEXTDEFAULT If the retrieved text color represents the system color for
the window text.

CV_TEXTUSER If the retrieved text color represents a user-defined value.

The high-order word of the return value specifies the type of text background color.
It can contain one of the following values:

Value Meaning

CV_UNDEFINED If the current selection contains more than one color for
the text background.

CV_BKDEFAULT If the retrieved text background color represents the
system color for the window background.

CV_BKCONTROL If the retrieved text background color represents the Text

Page 108 Message Directory

Control's background color, set with the
TX_SETBKGNDCOLOR message.

CV_BKUSER If the retrieved background color represents a user-defined
value.

TX_GETTEXTEXTENT

This message returns the dimensions of the text contained in the Text Control. It
can only be used if the Text Control does not have a built-in scroll-interface
specified with the TX_SETTEXTAREA message. In this event the
TX_GETTEXTWIDTH or the TX_GETTEXTHEIGHT messages can be used.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value contains the text dimensions in pixels. The width is in the low-
order word and the height is in the high-order word. If the text is larger than the
window size, the window size is returned. The return value is zero if an error has
occurred or if a built-in scroll-interface is set.

Comments This message can be used to create a Text Control with a user-defined width and a
height that will be large enough to show all of a specified text. To achieve this,
create a window with a large height, e.g. 32000 pixels. Load the text and calculate
its dimensions with the TX_GETTEXTEXTENT message. After that reduce the
window’s size to the returned values.

TX_GETTEXTHEIGHT

This message returns the height of the text currently contained in the Text Control
in twentieths of a point. The value is in 100 percent, independent of the zoom factor
currently set.

Parameter Description

wParam Is not used.

lParam Is not used.

Message Directory Page 109

Return Value The return value is the height value.

TX_GETTEXTSIZE

This message returns the length of the text (in characters) associated with the Text
Control.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is the length of the text.

Comments For more information when to use this message see the comments section of the
TX_GETTEXT message.

TX_GETTEXTWIDTH

This message returns the largest line width the Text Control currently contains in
twentieths of a point. The value is in 100 percent, independent of the zoom factor
currently set.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is the width value.

TX_GETZOOM

This message returns the current zooming factor in percent.

Page 110 Message Directory

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value specifies the current zooming factor in percent.

TX_HF_ACTIVATE

This message activates or deactivates a header or a footer. During activation the
current input focus is set in the header or footer area, so that the user can alter the
text and/or the format. During deactivation the input focus is set back to the main
text.

Parameter Description

wParam Is not used.

lParam When this parameter is zero a currently activated header or footer
is deactivated. Otherwise it specifies the header or footer to
activate and can be one of the following values:

Value: Description:

TF_HF_HEADER Activates the header area.

TF_HF_1STHEADER Activates the header area for the first
page.

TF_HF_FOOTER Activates the footer area.

TF_HF_1STFOOTER Activates the footer area for the first
page.

Return Value The return value is nonzero if the header or footer could be activated. Otherwise it
is zero.

TX_HF_DISABLE

This message disables certain parts of the header and footer functionality.

Message Directory Page 111

Parameter Description

wParam Is not used.

lParam When this parameter is zero, all currently enabled header and
footer functionality is disabled and all allocated memory is freed.
Otherwise it can be a combination of the following values:

Value: Description:

TF_HF_HEADER Disables headers.

TF_HF_1STHEADER Disables a special header for the first
page.

TF_HF_FOOTER Disables footers.

TF_HF_1STFOOTER Disables a special footer for the first
page.

TF_HF_MOUSECLICK Disables activation through single
mouse clicks.

TF_HF_NOMOUSEDBLCLK
Enables activation through mouse
double-clicks.

TF_HF_SOLIDFRAME Suppresses a solid border.

TF_HF_UNFRAMED Resets the border to framed.

Return Value The return value is nonzero if at least one header, footer or style setting has been
disabled. Otherwise it is zero.

TX_HF_ENABLE

This message enables the usage of headers and footers. Headers and footers can
only be used when a user-defined formatting area has been set previously with the
TX_SETTEXTAREA message.

Parameter Description

wParam Is not used.

Page 112 Message Directory

lParam Specifies what to enable. It can be a combination of the following
values:

Value: Description:

TF_HF_STANDARD Enables headers and footers with a
special header and footer on the first
page. Headers and footers can be
activated through mouse double-
clicks. An activated header or footer
has a dotted border to indicate its
size.

TF_HF_HEADER Enables headers only.

TF_HF_1STHEADER Enables only a special header for the
first page.

TF_HF_FOOTER Enables footers only.

TF_HF_1STFOOTER Enables only a special footer for the
first page.

TF_HF_MOUSECLICK Headers and footers can be activated
through single mouse clicks.

TF_HF_NOMOUSEDBLCLK
Headers and footer cannot be
activated through mouse double-
clicks.

TF_HF_SOLIDFRAME An activated header or footer has a
solid border to indicate its size.

TF_HF_UNFRAMED An activated header or footer has no
border.

Return Value The return value is zero if an error has occurred. Otherwise it is nonzero.

Comments This message can only be used to add a certain header or footer or a certain style
setting. To disable a certain functionality, the TF_HF_DISABLE message must be
used. For example when activation with mouse clicks is enabled, a message call
with lParam set to TF_HF_SOLIDFRAME, displays an activated header or footer
with a solid frame. Activation with mouse clicks remains active.

Message Directory Page 113

TX_HF_GETENABLED

This message returns which headers and/or footers are enabled for the current
document.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is a bitwise or combination of one or more of the following values:

Value: Description:

TF_HF_HEADER Headers are enabled.

TF_HF_1STHEADER A special header for the first page is enabled.

TF_HF_FOOTER Footers are enabled.

TF_HF_1STFOOTER A special footer for the first page is enabled.

TX_HF_GETPOSITION

This message returns a header's or footer's position. For headers the position value
is the distance between the top of the header and the top of the page. For footers the
position value is the distance between the bottom of the footer and the bottom of
the page. All values are in twips. The default value is 567 twips = 1 cm.

Parameter Description

wParam Specifies the header or footer the position of which is requested.
It can be one of the following values:

Value Meaning

TF_HF_HEADER Returns the header's position.

TF_HF_1STHEADER Returns the position of the special
header for the first page.

TF_HF_FOOTER Returns the footer's position.

Page 114 Message Directory

TF_HF_1STFOOTER Returns the position of the special
footer for the first page.

lParam Is not used.

Return Value The return value is the requested position in twips. It is -1, if an error has occured.

TX_HF_SELECT

This message defines, whether a certain Text Control message is sent to a header,
to a footer or to the main text.

Parameter Description

wParam Is not used.

lParam Specifies the header or footer that is to be selected. It can be one
of the following values:

Value Meaning

TF_HF_HEADER Selects the header.

TF_HF_1STHEADER Selects the special header for the first
page.

TF_HF_FOOTER Selects the footer.

TF_HF_1STFOOTER Enables the special footer for the first
page.

TF_HF_AUTO Selects the automatic mode. A
message is sent to the text part with
the current input position. This is the
default setting.

TF_HF_MAINTEXT Selects the main text.

Return Value The return value is nonzero if the selection was successful. Otherwise, it is zero.

Message Directory Page 115

Comments The Text Control's button bar, ruler and status bar need the default automatic mode
for correct working. Therefore when a selection is not longer needed it should be
reset to the default mode.

Example The following message sequence gets the size of the current header text:

LONG lTextSize;
SendMessage(hwndTX, TX_HF_SELECT, 0, TF_HF_HEADER);
lTextSize = SendMessage(hwndTX, TX_GETTEXTSIZE, 0, 0L);
SendMessage(hwndTX, TX_HF_SELECT, 0, TF_HF_AUTO);

TX_HF_SETPOSITION

This message sets a new position for a header or footer. For headers the position
value is the distance between the top of the header and the top of the page. For
footers the position value is the distance between the bottom of the footer and the
bottom of the page. All values are in twips. The default value is 567 twips = 1 cm.

Parameter Description

wParam Specifies the header or footer the position of which is to be set. It
can be one of the following values:

Value Meaning

TF_HF_HEADER Sets the header's position.

TF_HF_1STHEADER Sets the position of the special
header for the first page.

TF_HF_FOOTER Sets the footer's position.

TF_HF_1STFOOTER Sets the position of the special footer
for the first page.

lParam Specifies the new position.

Return Value The return value is non-zero if the position could be set, otherwise it is zero.

Page 116 Message Directory

TX_INPUTPOSFROMPOINT

This message returns the text input position belonging to a certain geometric
position. The text input position is relative to the beginning of the text and the
geometric position is a position in the visible part of the text.

Parameter Description

wParam Specifies the coordinate system for the position values. It can be
one of the following values:

Value Meaning

UF_PIXEL The position values are in pixels.

UF_TWIPS The position values are in terms of
twentieths of a point.

lParam Points to a POINT variable containing the position values.

Return Value The return value specifies the text input position beginning with zero for the
position in front of the first character. The return value is -1, if a text position could
not be found.

TX_LIMITLINE

This message limits the number of characters one line can contain.

Parameter Description

wParam Contains the new limit value. The value can vary between
1 and 0xffff.

lParam Specifies whether or not the Text Control is to be updated.
If lParam is zero, the Text Control will not be updated. If
lParam is nonzero, the Text Control will be updated.

Comments The default line limit value is 0xffff - 1.

Message Directory Page 117

TX_LIMITTEXT

This message limits the number of characters which may be entered by the user.

Parameter Description

wParam Contains the new limit value which can vary between 1
and 0xffff. If wParam contains zero the amount of text is
unlimited.

lParam Is not used.

Comments The Text Control beeps if the user tries to enter more text than the given limit.

If a Text Control has a following window in a chain of linked windows the amount
of text is always unlimited.

TX_LINEFROMCHAR

This message returns the line number of the line which contains the character
whose position (indexed from the beginning of the text) is specified by the lParam
parameter.

Parameter Description

wParam Is not used.

lParam Contains the zero-based index value for the desired
character in the text.

Return Value The return value is a line number. The first line has the number 1. The return value
is zero if an error has occurred.

TX_LINEFROMPOINT

This message returns the number of the line which contains a given point. The point
must be specified in pixels with an origin at the top left corner of the window's
client area.

Page 118 Message Directory

Parameter Description

wParam Is not used.

lParam Points to a POINT data structure which identifies the
point.

Return Value The return value contains the line number in the low-order word. The first line has
the number 1. The return value is zero if an error has occurred.

TX_LINEINDEX

This message receives a line number. It returns the number of characters in the Text
Control that preceed the first character in that line.

Parameter Description

wParam Is not used.

lParam Is the given line number. The line number of the first line
is zero.

Return Value The return value is the index of the first character of the specified line. The
character index of the first line is always zero. If the line specified is not the first
line and the return value is zero an error has occurred.

TX_LOAD

This message fills the internal data buffers of the Text Control with data stored in a
file. The data must have been previously stored with the TX_SAVE message.

Parameter Description

wParam Contains a DOS file handle. The file pointer must be
positioned at the head of the data.

lParam Points to a POINT data structure. The Text Control copies
the minimum window size (in pixels) to this buffer. If a
text area has been defined with the TX_SETTEXTAREA
message the new minimum text area is copied in

Message Directory Page 119

twentieths of a point. The size is calculated from the font
information of the loaded text. If both values are 0, an
error has occurred.

Return Value The return value is zero if an error has occurred. Otherwise it is nonzero.

Comments The return value is also zero if the window size is too small to show a minimum of
the text. After resizing the window with the minimum values given by lParam the
message can be sent again.

The file pointer is only moved if the return value is nonzero.

Unicode This message does not support Unicode. To load text previously saved in Unicode
format use the TX_DATAIN message.

TX_OBJ_DELETE

This message deletes an embedded object.

Parameter Description

wParam Specifies a unique identifier returned by the
TX_OBJ_EMBED message. If this parameter is zero the
currently selected object is deleted.

lParam Is not used.

Return Value The return value is zero if an error has occurred or if either an invalid identifier is
specified or no object is currently selected. Otherwise it is nonzero.

Comments This message generates a TN_OBJ_DELETED notification message.

TX_OBJ_EMBED

This message embeds a new object or image. Depending on the TXOBJECT
structure member wEmbedMode, the object is either handled like a single character

Page 120 Message Directory

in the text or is fixed at a specified position in the text area and the text then flows
around the object.

Parameter Description

wParam Specifies the kind of object to be integrated. It can be any one of
the following values:

Value Meaning

TF_OBJ_IMAGECONTROL
Creates an Image-Control window
and handles this window internally.

TF_OBJ_OLEOBJECT Creates an OLE object. The type of
object can be selected with the
system embedded OLE Insert dialog
box.

TF_OBJ_OLEPROGID Creates a newly created OLE object.
In this case the Filename parameter
must specify a string which is the
programmatic identifier of the OLE
object to insert.The programmatic
identifier is stored under the ProgID
key in the registration database. For
example the programmatic identifier
of a Text Control 5.0 is
TX.TextControl.110.

TF_OBJ_OLEEMBEDFILE
Inserts a newly created embedded
OLE object from a file. In this case
the Filename parameter must specify
a valid filename.

TF_OBJ_OLELINKFILE Inserts a newly created linked OLE
object from a file. In this case the
Filename parameter must specify a
valid filename.

Otherwise Specifies an externally created
window like a Windows button that
represents the object to be inserted.

Message Directory Page 121

The child identifier for external
windows must be no larger than
0x7FFF.

lParam Points to an TXOBJECT data structure which defines the object's
attributes. A complete description of this data structure can be
found in chapter 7 "Data Structures".

Return Value The low-order word of the return value is zero if an error has occurred. Otherwise it
is a unique identifier that can be used by an application to change the object's
attributes later. See the TX_OBJ_GETATTR and the TX_OBJ_SETATTR
messages for more information.

If an error has occurred, the high-order word contains an error code value if the
inserted object is an Image-Control. For more information about the meaning of
this value see the description of the IC_SETIMAGE message in the IC Image-
Control reference.

Comments The IC Image-Control programming tool is needed for this message if the object is
an image.

If an externally created window is embedded the Text Control automatically
becomes the parent window and sends messages to this window. For more
information see chapter 1.9 "Integrating External Windows" or the message
descriptions in appendix H.

A fixed-positioned object can be moved and sized with an internal mouse interface.
To activate the interface the object must be clicked whilst pressing the ALT key.

If an error has occurred the Text Control destroys the external window.

TX_OBJ_GETATTR

This message retrieves information about the attributes of an embedded object like
embedding mode, position or scaling factor.

Parameter Description

wParam Specifies a unique identifier returned by the TX_OBJ_EMBED
message. If this parameter is zero information about the currently
selected object is retrieved.

Page 122 Message Directory

lParam Points to an TXOBJECT data structure whose members are filled
with the specified object's attributes. A complete description of
this data structure can be found in chapter 7 "Data Structures".
The member lTextPos is only filled for inserted objects (mode
EOM_INSERT) and the members xPosition and lyPosition are
only filled for fixed-positioned objects (other modes). The
following structure's members must be filled by the caller before
sending this message:

Field Description

wTXVersion Must be set to the current Text Control's version
number.

lpFileName Must point to a buffer of length nBufLength.
This member can be set to zero if the object is
represented by an externally created window.

nBufLength Must specify the length, in bytes, of the buffer
lpFileName points to. This member can be set
to zero if the object is represented by an
externally created window.

nFilterIndex This member is not used.

Return Value The return value is zero if an error has occurred or if either an invalid identifier is
specified or no object is currently selected. Otherwise it is nonzero.

Comments The IC Image-Control programming tool is needed for this message if the specified
object is an image.

TX_OBJ_GETDISPINTERFACE

This message returns a pointer to an object's dispatch interface. It can be used to
call properties and methods for an object.

Parameter Description

wParam Specifies a unique identifier returned by the TX_OBJ_EMBED
message.

lParam Is not used.

Message Directory Page 123

Return Value The return value points to an object's dispatch interface. It is zero if such an
interface could not be found.

TX_OBJ_GETNEXT

This message returns the identifier of the embedded object that follows the
specified object in the Text Control's internal list of objects.

Parameter Description

wParam Specifies a unique identifier returned by the TX_OBJ_EMBED
message. If this parameter is zero the first object's identifier is
returned.

lParam The low-order word specifies the kind of object. It can be a
combination of any of the following values:

Value Meaning

OGN_FIXEDONLY Returns only identifiers of fixed
positioned objects.

OGN_ASCHARONLY Returns only identifiers of objects
that act as single characters.

OGN_IMAGESONLY Returns only identifiers of objects
which are internally created by the
Text Control using the Image-
Control module.

OGN_EXTERNALSONLYReturns only identifiers of objects
which are externally created by the
application.

OGN_OLEOBJECTSONLY Returns only identifiers of OLE
objects.

If lParam is zero the identifiers of all the objects are returned.

Return Value The return value is the identifier of the object which follows the specified object. It
is zero if no following object exists.

Page 124 Message Directory

Example The following code example uses the TX_OBJ_GETNEXT message to delete all
the objects a Text Control contains:

WORD wID;

while (wID = (WORD)SendMessage(hTX, TX_OBJ_GETNEXT, 0, 0L)) {
SendMessage(hTX, TX_OBJ_DELETE, (WPARAM)wID, 0L);

}

TX_OBJ_OLE_CANCEL

This message deactivates an OLE object and changes its state from in-place
activated to selected. This message can be used to implement the standard action
for the ESCAPE key in a OLE container application.

Parameter Description

wParam Is not used.

lParam Is not used.

TX_OBJ_SETATTR

This message changes the attributes of an embedded object.

Parameter Description

wParam Specifies a unique identifier returned by the TX_OBJ_EMBED
message. If this parameter is zero the attributes of the currently
selected object are changed.

lParam Points to an TXOBJECT data structure. The following structure's
members can be used to change attributes:

Field Description

wxScale Sets the object's horizontal scaling factor as a
percentage. This must be a value between 10
and 250. If wxScale is zero this parameter is
ignored.

wyScale Sets the object's vertical scaling factor as a
percentage. This must be a value between 10

Message Directory Page 125

and 250. If wyScale is zero this parameter is
ignored.

Distances Specifies the distances between the object and
the text. For objects inserted as a single
character this parameter is ignored.

wFlags Specifies a combination of flags. See the
description of the TX_OBJ_EMBED message
for more information about possible values. The
ICF_BKGNDIMAGE flag cannot be set with
this message.

lpFileName If the specified object is an image this
parameter can contain the filename of a new
image. If this parameter contains zero it is
ignored.

nBufLength Specifies the length, in bytes, of the buffer
lpFileName points to.

nFilterIndex Specifies an image filter for loading the data
contained in the file specified by lpFileName.
See the description of the TX_OBJ_EMBED
message for more information.

Return Value The low-order word of the return value is zero, if an error has occurred or if either
an invalid identifier is specified or no object is currently selected. It is also zero if a
scaling factor has been specified such that the object's window becomes too large
for the Text Control's window size. Otherwise the low-order word is either
TR_UNCHANGED if nothing could be changed or TR_CHANGED if the new
values were set and updated.

If an error occurred during the loading of a new image, the high-order word
contains an error code value. For more information about the meaning of this value
see the description of the IC_SETIMAGE message in the IC Image-Control
reference.

Comments The IC Image-Control programming tool is needed for this message if the specified
object is an image.

Page 126 Message Directory

A complete description of the TXOBJECT data structure can be found in chapter 7
"Data Structures".

TX_PARAGRAPHDIALOG

This message opens a modal dialog box which can be used to set attributes for all
currently selected paragraphs. The attributes are linespacing, alignment, indents and
the distance to the previous and the following paragraphs. All values are set in
millimeters, the value for linespacing can be set either in millimeters or as a
multiple of the font size.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is:

Value Meaning

TR_ERR If an error has occurred.

TR_UNCHANGED If the user leaves the dialog box with the CANCEL button.

TR_CHANGED If the user leaves the dialog box with the OK button.

Comments The Text Control updates the modified selection if the window is visible.

TX_PASTEDATA

This message sets the data of a Text Control previously obtained with the
TX_COPYDATA message. The data contains all the text and format information
the Text Control needs. This message can be used only to set the contents of an
empty Text Control. If a control contains text, this text is deleted.

Parameter Description

wParam Is not used.

lParam Points to a buffer which contains the data.

Message Directory Page 127

Return Value The return value points to the position in the buffer behind the pasted data. It is
zero if an error has occurred.

Comments The font information contained by the data is adjusted for the currently selected
printer. The Text Control returns 0L if the window is too small for at least the first
character.

The Text Control formats the new text but does not update its client area.

Text can be formatted externally and then pasted with this message. The data must
be formatted according to appendix A.

TX_PRINT

This message can be sent to print the contents of the Text Control with the device
identified by the printer-DC.

Parameter Description

wParam Contains a printer device context.

lParam Points to a data structure of type PRINTSCT that is defined as
followed:

typedef struct tagPRINTSCT {
RECT rPage;
RECT rBand;
WORD wOptions;
WORD wZoom;

} PRINTSCT;
typedef PRINTSCT *PPRINTSCT;
typedef PRINTSCT FAR *LPPRINTSCT;

The PRINTSCT data structure has the following fields:

Field Description

rPage Specifies the part of the Text Control window that
covers the page currently printed. The components
of the rectangle must be in millimeters with the
origin at the upper left corner of the Text Control
window.

rBand Specifies the part of the Text Control window that
covers the band currently printed. The coordinates

Page 128 Message Directory

must also be in mm with the origin at the upper left
corner of the Text Control window. If banding is
not used, rBand should contain the same values as
rPage.

wOptions Specifies print options. It can be a combination of
the following values:

Value: Meaning:

TF_PRINTCOLORS Specifies that text
colors are to be
printed. If this flag is
not set the text is
printed in black.

TF_PRINTSCALED Specifies that text to be
printed will be scaled.
The scaling factor is
given through the
structure member
wZoom.

wZoom Specifies a scaling factor in percent. This value is
only be used if the TF_PRINTSCALED option is
set. The value can differ from 10 to 400 percent.

If lParam is zero, the contents of the Text Control is printed with
the same offset, the Text Control window has relative to the client
area of its parent window. This can be used if one page contains
more than one Text Control.

If lParam is nonzero the SetViewPortOrg() function can be used
to realize an additional top or left offset. This offset is added to
the printer offset retrieved by the GETPRINTINGOFFSET
Escape function. To avoid clipping, the size of the TX window
and the dimension given by the rPage rectangle of the
PRINTSCT data structure must be calculated again.

Return Value The low-order word of the return value contains the position next to the last printed
line. This value can be less than the bottom value of the rPage rectangle. The return
value should be used as the top value of the next page.

Message Directory Page 129

The high order word is zero if an errror has occurred. Otherwise it is nonzero.

Comments This message cannot be used if a text formatting area has been set with the
TX_SETTEXTAREA message. In this case the TX_PRINTPAGE message has to
be used.

Example The following code demonstrates the use of this message for printing one or more
pages:

#define TwipsToMM(val) ((int)((val)*254L/14400L))
#define INCH_INTWIPS 1440
#define DINA4_WIDTH 11906
#define DINA4_HEIGHT 16837

static DOCINFO DocInfo;
PRINTSCT printsct;
LONG lReturn, lHeight;
int nTextHeight, nPageHeight;

// get the height of the text and convert it to mm:
lHeight = SendMessage(hTXWnd, TX_GETTEXTHEIGHT, 0, 0L);
nTextHeight = TwipsToMM(lHeight);
nPageHeight = TwipsToMM(DINA4_HEIGHT-2*INCH_INTWIPS);

// init the PRINTSCT data structure:
SetRect(&printsct.rPage,

0, 0,
TwipsToMM(DINA4_WIDTH-2*INCH_INTWIPS),
nPageHeight);

printsct.wOptions = TF_PRINTCOLORS;
printsct.wZoom = 100;

ZeroMemory(&DocInfo, sizeof(DOCINFO));
DocInfo.cbSize = sizeof(DOCINFO);
DocInfo.lpszDocName = (LPTSTR)"Test Application";

if (StartDoc(hPrintDC, &DocInfo) == SP_ERROR) {
goto print_end;

}

// print the pages:
lReturn = 0L;
while ((int)LOWORD(lReturn) < nTextHeight) {

if (StartPage(hPrintDC) <= 0) {
AbortDoc(hPrintDC);
goto print_end;

Page 130 Message Directory

}

// fill the page relative values of the PRINTSCT structure:
printsct.rPage.top = (int)LOWORD(lReturn);
printsct.rPage.bottom = printsct.rPage.top + nPageHeight;
CopyRect(&printsct.rBand, &printsct.rPage);

// print the page:
lReturn = SendMessage(hTXWnd, TX_PRINT, (WPARAM)hPrintDC,

(LONG)(LPPRINTSCT)&printsct);
if (HIWORD(lReturn) == 0) {

AbortDoc(hPrintDC);
goto print_end;

}

if (EndPage(hPrintDC) < 0) {
AbortDoc(hPrintDC);
goto print_end;

}
}

EndDoc(hPrintDC);

print_end:
...

TX_PRINTPAGE

This message prints one page of the Text Control's current contents.

Parameter Description

wParam Specifies a printer device context.

lParam Points to a PRINTPAGE data structure that is defined as follows:

typedef struct tagPRINTPAGE {
WORD wStructSize;
WORD wPageNo;
WORD wZoom;
RECT rPage;
RECT rBand;
WORD wOptions;

} PRINTPAGE;
typedef PRINTPAGE *PPRINTPAGE;
typedef PRINTPAGE FAR *LPPRINTPAGE;

The PRINTPAGE data structure has the following fields:

Message Directory Page 131

Field Description

wStructSize Specifies the size of the PRINTPAGE data
structure in bytes.

wPageNo Specifies the number of the page to print. The first
page has the number one.

wZoom Specifies a scaling factor in percent. This value can
range from 10 to 400.

rPage Specifies the page alignment on the current printer's
paper. The top left corner specifies the printing
offset. The rectangles width specifies the
formatting width of the text. To get WYSIWYG,
this width must be the same as that specified with
the TX_SETTEXTAREA message. The rectangle's
height should be the same as specified for the
TX_GETPAGECOUNT message. All values must
be given in twentieths of a point.

rBand Specifies the alignment of the current printed band.
If banding is not used, rBand should contain the
same values as rPage.

wOptions Specifies print options. It must contain
TF_PRINTCOLORS if text colors are to be
printed. If wOption contains zero, text is printed in
black.

Return Value The return value is zero if an errror has occurred. Otherwise it is nonzero.

Example The following code demonstrates the use of this message for printing one or more
pages:

#define INCH_INTWIPS 1440
#define DINA4_WIDTH 11906
#define DINA4_HEIGHT 16837

static DOCINFO DocInfo;
WORD wPages, wNum;
PRINTPAGE prpage;

Page 132 Message Directory

// set the dimensions of the page and get number of pages:
SetRect(&prpage.rPage, INCH_INTWIPS, INCH_INTWIPS,

DINA4_WIDTH-INCH_INTWIPS,
DINA4_HEIGHT-INCH_INTWIPS);

wPages = (WORD)SendMessage(hWnd, TX_GETPAGECOUNT, 0,
prpage.rPage.bottom-prpage.rPage.top);

prpage.wStructSize = sizeof(PRINTPAGE);
prpage.wZoom = 100;
prpage.wOptions = 0;
CopyRect(&prpage.rBand, &prpage.rPage);

ZeroMemory(&DocInfo, sizeof(DOCINFO));
DocInfo.cbSize = sizeof(DOCINFO);
DocInfo.lpszDocName = (LPTSTR)"Test Application";

if (StartDoc(hPrintDC, &DocInfo) == SP_ERROR) {
goto print_end;

}

for (wNum=1; wNum<=wPages; wNum++) {

if (StartPage(hPrintDC) <= 0) {
AbortDoc(hPrintDC);
goto print_end;

}

prpage.wPageNo = wNum;
if (! SendMessage(hTXWnd, TX_PRINTPAGE,

(WPARAM)hPrintDC, (LPARAM)(LPPRINTPAGE)&prpage)) {
AbortDoc(hPrintDC);
goto print_end;

}
if (EndPage(hPrintDC) < 0) {

AbortDoc(hPrintDC);
goto print_end;

}
}

EndDoc(hPrintDC);

print_end:
...

Message Directory Page 133

TX_REDO

This message restores the last undone Text Control operation.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is zero if the redo operation fails. Otherwise it is nonzero.

Comments The TX_CANUNDO message can be used to determine whether an undone Text
Control operation can be itself be undone. If this message is sent despite there
being no undone operation the Text Control beeps.

TX_REPLACESEL

This message replaces the currently selected text with new text.

Parameter Description

wParam Is not used.

lParam Points to a null-terminated character string which is to
replace the currently selected text.

Return Value The return value is:

Value Meaning:

TR_ERR, If an error has occurred.

TR_CHANGED Otherwise

TX_REPLACETEXT

This message opens the system-defined modeless dialog box which makes it
possible for the user to find and replace text within the Text Control's contents.

Page 134 Message Directory

Parameter Description

wParam Is not used.

lParam Is not used.

TX_RESETCONTENTS

This message deletes the complete contents of a Text Control including tables,
objects, marked text fields and headers and footers.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is non-zero if everything could be deleted. Otherwise it is zero.

TX_SAVE

This message saves all internal text and formatting information, that the Text
Control needs for displaying the text, to a file.

Parameter Description

wParam Contains a DOS file handle.

lParam Is not used.

Return Value The return value is zero if an error has occurred. Otherwise it is nonzero.

Comments The Text Control does not save the size of its window.

The Text Control does not save modes set with the TX_SETMODE message.

Unicode This message does not support Unicode. To save text in Unicode format use the
TX_DATAOUT message.

Message Directory Page 135

TX_SELTEST

This message can be used to check whether a selection is visible and which part is
invisible.

Parameter Description

wParam This parameter must be nonzero if lParam points to an
array of two DWORD variables.

lParam Points to an array of two DWORD variables specifying the
selection to be checked. The start position is in the first
variable and the end position is in the second variable. If
wParam contains zero, lParam can contain the selection
directly packed in its low-order and high-order words. The
start position is in the low-order word and the end position
is in the high-order word.

Return Value The return value is -1 if an error has occurred. Otherwise it contains one of the
following numbers:

The low-order word contains

0 If the selection would be completly invisible.
1 If the end position would be invisible.
2 If the start position would be invisible.
3 If both positions would be visible.

The high-order word contains

0 If the selection would be below the window area.
1 If the selection would be above the window area.

Comments This message can be used to find information about the alignment of a given string
for implementing search and replace features.

TX_SETBASELINE

This message sets a new baseline alignment value for the currently selected text.

Page 136 Message Directory

Parameter Description

wParam Contains one of the following values:

Value Meaning

FA_STANDARD The new baseline alignment is set to
zero

FA_SUPERSCRIPT The new baseline alignment is
superscript

FA_SUBSCRIPT The new baseline alignment is
subscript

lParam Contains the new baseline alignment value. The value must be in
twentieths of a point. For example, to set a baseline alignment
value of 3 pt subscript, lParam must contain 60. If wParam
contains FA_STANDARD, lParam is not used.

Return Value The return value is zero if an error has occurred. Otherwise it is nonzero.

Comments The baseline alignment value is limited to 48 pt.

The Text Control updates the modified selection if the window is visible.

TX_SETBKGNDCOLOR

This message sets a new background color. The Text Control uses this color to
paint the background in TF_OPAQUE mode. The default value for the background
color is the system color for the window background.

Parameter Description

wParam If wParam is nonzero, the new background color is the
system color for the window background. If wParam is
zero, the new background color value is given by lParam.

lParam Specifies an RGB value that identifies the new background
color.

Return Value The return value is zero if an error has occurred. Otherwise it is nonzero.

Message Directory Page 137

Comments The Text Control is refreshed if the window is visible.

TX_SETCARETEXT

This message sets the width of the caret. The caret's height depends on the current
font.

Parameter Description

wParam Contains one of the following values:

Value Meaning

TF_TEXTCARET Sets the caret's width inside standard
text sections.

TF_FIELDCARET Sets the caret's width inside marked
text fields.

lParam Specifies the caret's new width in pixels. This value must be in
the low-order word and the high-order word must be set to zero.
A value of zero resets the width to its default value which is the
system-defined window-border width in standard text sections
and 2 pixels in marked text fields. The maximum width is 255
pixels.

Return Value The return value is zero if an error has occurred. Otherwise it is non-zero.

TX_SETDEVICE

This message sets a new device to which the text of the Text Control is formatted.
If the text is formatted with fonts not supported by the new device these fonts are
adapted.

Parameter Description

wParam Contains one of the following values:

Value Meaning

TF_SCREEN The new device is the screen.

TF_STANDARD The new device is the standard

Page 138 Message Directory

device specified in the [windows]
section of the WIN.INI file.

TF_PRINTER The new device is a printer specified
by the string which lParam points to.

TF_METAFILETARGET Sets a target device for metafile
recording. In this case lParam must
specify a valid device context handle.

lParam Depends on the wParam parameter:
If wParam is TF_PRINTER lParam must point to a buffer
containing a zero-terminated string, which represents the name of
the new device. This name must be specified in the same format
as that used in the WIN.INI file, for example:

PostScript Printer,PSCRIPT,LPT1:

If wParam contains TF_SCREEN or TF_STANDARD this
parameter can be zero.
If wParam contains TF_METAFILETARGET this parameter
must specify a valid device context handle. See chapter 1.13
"Using metafiles" for more information.

Return Value The return value is:

Value Meaning

TR_ERR An error has occurred.

TR_UNCHANGED The specified device is the same as the current device.

TR_CHANGED The new device has been set.

Otherwise The new device could not be set because the Text
Control's client area was too small to display the text with
the adapted fonts. The return value is the minimum
window size the Text Control needs to format the text for
the specified device. The low-order word specifies the
minimum width and the high-order word specifies the
minimum height. The values are in twentieths of a point if
a text-area has been set with the TX_SETTEXTAREA
message, otherwise the values are in pixels.

Message Directory Page 139

Comments If the return value specifies a new minimum window size the application can
enlarge the window and send this message again.

The device given through lParam must be one of the devices specified in the
[devices] section of the WIN.INI file.

The Text Control is updated if the new device was able to be set.

TX_SETFONT

This message sets a new typeface and a new pointsize for all currently selected
fonts.

Parameter Description

wParam Specifies the new pointsize in the lower 15 bits. If the
high-order bit is set this pointsize must be specified in
twentieths of a point. If the high-order bit is not set, it must
be specified in points. If wParam contains zero it is
ignored and only the typeface will be set.

lParam Points to a buffer of length LF_FACESIZE which contains
the new typeface string. If lParam is zero, it is ignored and
only the pointsize will be set.

Return Value The return value contains the new minimum window size (in pixels) that is
calculated by the new font description. If a text area has been defined with the
TX_SETTEXTAREA message, the new minimum text area is returned in TWIPS.
The width is in the low-order word and the height is in the high-order word. The
return value is zero if an error has occurred.

Comments The Text Control does not accept the new font if its window size is too small to
display at least one character of that font. After resizing the window with the
minimum values returned, this message can be sent again.

The Text Control uses only fonts which are supported by the output device
currently selected. If the given typeface or pointsize does not match any supported
font, the Text Control adjusts the given values.

The Text Control does not support GDI’s vector fonts.

Page 140 Message Directory

The Text Control updates the modified selection if the window is visible.

Unicode The buffer length is in characters, when UNICODE is defined, otherwise it is in
bytes.

TX_SETFONTATTR

This message adds the specified font attributes to all the fonts which the current
selection contains.

Parameter Description

wParam Contains one or more of the following values:

Value Meaning

FA_STANDARD Each font is set to normal.

FA_BOLD Each font is set to bold.

FA_ITALIC Each font is set to italic.

FA_UNDERLINE Each font is set to underline.

FA_STRIKEOUT Each font is set to strike out.

FA_NOBOLD Resets each bold font.

FA_NOITALIC Resets each italic font.

FA_NOUNDERLINE Resets each underlined font.

FA_NOSTRIKEOUT Resets each struck out font.

FA_UL_DOUBLE Each font is set to double underline.

FA_UL_WORDSONLY Words are underlined, word gaps are
omitted. This value can only be used
in combination with
FA_UNDERLINE or
FA_UL_DOUBLE.

FA_UL_NODOUBLE Resets each double underlined font.

FA_UL_NOWORDSONLY
Resets each font that has the words

Message Directory Page 141

only bit. This value can only be used
in combination with
FA_NOUNDERLINE or
FA_UL_NODOUBLE.

FA_TOGGLE Toggles the specified attributes
instead of adding them.

The bitwise OR operator can be used to specify more than one
value.

lParam Points to a POINT data structure. The Text Control copies the
new minimum window size (in pixels) to this buffer. If a text area
has been defined with the TX_SETTEXTAREA message the new
minimum text area is copied in TWIPS. This size is calculated
from the new font attributes. If the values copied are both 0, an
error has occurred.

Return Value The return value is zero if an error has occurred. Otherwise it is nonzero.

Comments The FA_TOGGLE flag can be set with any combination.

The toggling of an attribute results in the deletion of this attribute if wParam
contains the same value as all fonts of the current selection.

The return value also evaluates TR_ERR if the window size is too small for the
fonts changed by this message. After resizing the window with the minimum values
given by lParam, this message can be sent again.

The Text Control updates the modified selection if the window is visible.

TX_SETFORMAT

This message sets the paragraph format value for the currently selected paragraphs.

Parameter Description

wParam contains one of the following values:

Value Meaning

TF_LEFT Paragraphs are set to left aligned

Page 142 Message Directory

TF_RIGHT Paragraphs are set to right aligned

TF_CENTER Paragraphs are set to centered text

TF_BLOCK Paragraphs are set to block format

lParam Is not used.

Return Value The return value is zero if an error has occurred. Otherwise it is nonzero.

Comments The Text Control updates the modified selection if the window is visible.

TX_SETIMAGE

This message sets a new image for the currently selected Image-Control window. If
no Image-Control window is selected, the message is ignored.

Parameter Description

wParam Specifies an image filter as an index into the buffer
returned by the TX_GETIMAGEFILTERS message. See
the description of the TX_CREATEIMAGE message for
more information.

lParam Points to a null-terminated string that is a full DOS path
name for the file containing the new image.

Return Value The low-order word of the return value is zero if an error has occurred. Otherwise it
is nonzero. If an error has occurred, the high-order word contains an error code
value. For more information about the meaning of this value see the description of
the IC_SETIMAGE message in the IC Image-Control reference.

Comments The IC Image-Control programming tool is needed for this message.

TX_SETINDENTS

This message sets new indent values for all currently selected paragraphs.

Message Directory Page 143

Parameter Description

wParam Is not used.

lParam Points to an array of five integers which contain the new
indent values in twentieths of a point. The values are in the
order: left indent, right indent, additional indent of the first
line, top indent and bottom indent. The third value, the
additional indent of the first line is the only one that may
be negative. If one or more of the values are to be ignored,
they must contain TR_IGNORED.

Return Value The return value is:

TR_ERR if an error has occurred.

TR_UNCHANGED if the Text Control has not accepted the new values.

TR_CHANGED if the new values have been set.

Comments The Text Control does not accept a combination of values that does not fit within
the Text Control window rectangle. The maximum values are returned by the
TX_GETINDENTS message. For more information see the description of this
message.

The Text Control updates the modified selection if the window is visible.

TX_SETLANGUAGE

This message sets the language which the Text Control uses to display informations
strings, warnings or dialog boxes. The language is specified either through an
identifier or through the filename of a resource library.

Parameter Description

wParam Specifies a language identifier. Languages are identified through
the same numbers used in the WIN.INI file. The default language
is the current WIN.INI setting when the Text Control is created.
Supported languages are:

Language Identifier

English 01

Page 144 Message Directory

French 33

Spanish 34

Italian 39

German (Switzerland) 41

German (Austria) 43

German 49

Japanese 81 (32 bit only)

lParam Points to a zero-terminated character string that specifies the file
name including its full path of a resource library. See the new
chapter 1.15 "Resources" for more information about creating a
resource library. When this parameter is zero, Text Control uses
the built-in language specified through wParam, when this
parameter is non-zero the wParam parameter is ignored.

Return Value The return value is zero if an error has occurred or if the specified language has
already been set, otherwise it is nonzero.

TX_SETLINEANDCOL

This message sets a new text input position from a page, line and column number.

Parameter Description

wParam Is not used.

lParam Points to an array of three DWORD variables. The first variable
specifies the page number, the second specifies the line number
and the third the column number. When Text Control does not
display pages, the first variable is ignored and should be set to
zero.

Return Value The return value is non-zero if the specified input position could be set. Otherwise
it is zero.

Message Directory Page 145

TX_SETLINESPACING

This message sets a new linespacing value for the currently selected paragraphs.

Parameter Description

wParam Contains the new linespacing value

lParam If lParam is zero, wParam must contain a value (in
percent) of the currently used font. If lParam is nonzero,
wParam must contain a value in twips (twentieths of a
point). Before setting the linespacing in twips, a
TX_SETPARAFORMATFLAGS message can be sent to
specify whether the linespacing is used as a minimum, or
as an absolute value.

Return Value The return value is zero if an error has occurred. Otherwise it is nonzero.

Comments To realize double linespacing, wParam must contain 200 and lParam must be zero.

The Text Control updates the modified selection if the window is visible.

Minimum and maximum values are:
10% to 400% for relative values, 57 to 5669 TWIPS (1 to 100 mm) for absolute
values.

TX_SETLINKWND

This message informs the given window about a window that is to be its successor
in a chain of linked windows. The Text Control sends overflowing text to that
window or fills deleted text with text from that window. The caret moves to the
next window if it reaches the bottom of a Text Control. It moves to the previous
window if the top of a Text Control is reached.

Parameter Description

wParam Specifies a handle to the window that should be the
following window. This handle must be a valid Text
Control window handle returned by CreateTextControl.
To disconnect an existing link, wParam can be set to zero.

Page 146 Message Directory

lParam Is not used.

Return Value The return value is zero if the windows could not be linked. Otherwise it is
nonzero.

Comments If a window becomes part of a chain of linked windows, the modes
TF_HIDESELNA and TF_AUTOEXPAND are changed to TF_SHOWSELNA
and TF_FIXED respectively.

Linked Text Control windows can have different parent windows.

While loading a chain of linked windows send this message after sending
TX_LOAD and before showing and updating the window.

TX_SETMODE

This message sets several different modes of the Text Control. Changing one mode
does not alter the other mode settings.

Parameter Description

wParam Is the new mode value. It can be a combination of the following
values:

Value Meaning

TF_AUTOEXPAND If the Text Control window size is to
be expanded automatically when the
text insertion or format changes
results in text that does not fit into
the Text Control anymore.

TF_FIXED If the Text Control window size is to
be fixed.

TF_FRAMED If a borderline is to be drawn on the
screen.

TF_HIDESELNA If the text selection is to be hidden
after the Text Control has lost the
input focus.

Message Directory Page 147

TF_HIDEWHITESPACE If the space and paragraph end
characters are to be hidden.

TF_INSERT If the character insertion mode is to
be set to insert.

TF_KEEPSEL If the selected text is not to be
deleted before character insertion.

TF_NOTFRAMED If the borderline is to be hidden on
the screen.

TF_OPAQUE If the background mode is to be set
to opaque.

TF_OVERWRITE If the character insertion mode is to
be set to overwrite.

TF_REPLACESEL If selected text is to be deleted before
character insertion.

TF_SHOWSELNA If the text selection is to be visible in
the inactive window state.

TF_SHOWWHITESPACE If the space and paragraph end
characters are to be made visible.

TF_TRANSPARENT If the background mode is to be set
to transparent.

The bitwise OR operator can be used to specify more than one
value.

lParam Contains maximum values for the Text Control window size (in
pixels) if the TF_AUTOEXPAND flag is set. If the window is
expanded and these values are reached, the automatic expansion
stops. The maximum width is in the low-order word and the
maximum height is in the high-order word.

Return Value The return value is zero if one of the new modes could not be set. Otherwise it is
nonzero.

Page 148 Message Directory

Comments The Text Control is completley updated if a new background mode is set or the
white space-characters are shown or hidden. White space characters and the
window frame are only shown on the screen, they are not printed.

The mode flags are grouped. The following flags must not be used together:
TF_TRANSPARENT and TF_OPAQUE
TF_OVERWRITE and TF_INSERT
TF_SHOWHITESPACE and TF_HIDEWHITESPACE
TF_SHOWSELNA and TF_HIDESELNA
TF_FRAMED and TF_NOTFRAMED
TF_AUTOEXPAND and TF_FIXED
TF_KEEPSEL and TF_REPLACESEL

The default values are TF_TRANSPARENT, TF_INSERT,
TF_HIDEWHITESPACE, TF_HIDESELNA, TF_NOTFRAMED, TF_FIXED
and TF_REPLACESEL.

The Text Control sends TN_HEXPAND and TN_VEXPAND notification
messages to the parent window if the TF_AUTOEXPAND mode is set and the
window size is changed.

Linked Text Control windows are always set to TF_FIXED and
TF_SHOWSELNA. This modes can not be changed for linked windows.

TX_SETMODEEX

This message is an expansion of the TX_SETMODE message for providing more
mode settings. Changing one mode does not alter other mode settings.

Parameter Description

wParam Is the new mode value. It can be one or more of the following
values:

Value Meaning

TF_DISPLAY This mode can be used to
display text only. Text input
or selecting text with the
mouse or the keyboard is not
possible. The cursor is the
standard arrow cursor.

Message Directory Page 149

TF_READONLY This mode can be used to
display and select text. The
cursor is the standard arrow
cursor.

TF_EDIT This mode can be used to edit
and display text. The cursor is
the text I-beam cursor.

TF_NOWAITCURSOR This mode shows no wait
cursor during a long duration
operation.

TF_WAITCURSOR This mode shows an hourglass
wait cursor during a long
duration operation.

TF_TOPINDENTFIRSTPG This mode allows a top indent
for the first paragraph.

TF_NOTOPINDENTFIRSTPG This mode suppresses the top
indent for the first paragraph.

TF_ERRORBOXES The Text Control displays
error message boxes. Error
message boxes are only
displayed in some important
cases. Most errors are handled
with the TN_ERRCODE
notification message.

TF_NOERRORBOXES The Text Control suppresses
all error message boxes.

TF_SHOWGRIDLINES This mode can be used to
show the grid lines in tables.

TF_HIDEGRIDLINES This mode can be used to hide
the grid lines in tables.

The bitwise OR operator can be used to specify more than one
value.

lParam Is not used.

Page 150 Message Directory

Return Value The return value is zero if the new mode could not be set. Otherwise it is nonzero.

Comments The mode flags are grouped. The following flags cannot be combined:
TF_DISPLAY, TF_READONLY and TF_EDIT
TF_WAITCURSOR and TF_NOWAITCURSOR
TF_TOPINDENTFIRSTPG and TF_NOTOPINDENTFIRSTPG
TF_ERRORBOXES and TF_NOERRORBOXES
TF_SHOWGRIDLINES and TF_HIDEGRIDLINES

The default values are TF_EDIT, TF_WAITCURSOR,
TF_NOTOPINDENTFIRSTPG, TF_ERRORBOXES and
TF_SHOWGRIDLINES.

If the Text Control's display mode is set to TF_DISPLAY or TF_READONLY the
standard arrow cursor can be changed by processing the parent window's
WM_SETCURSOR message.

TX_SETPAGEMARGINS

This message sets the page margins.

Parameter Description

wParam If this parameter is nonzero the Text Control reformats the
complete text. Otherwise the text is not reformatted. If this
message is sent in combination with a
TX_SETTEXTAREA message this message should be
sent first with wParam set to zero to avoid double
reformatting.

lParam Points to a RECT data structure containing the new margin
values. The values must be specified in twentieths of a
point.

Return Value The return value is zero if an error has occurred. Otherwise it is nonzero.

Comments Page margins are only shown on the screen if a text area has been set via the
TX_SETTEXTAREA message with a height value not set to -1.

Message Directory Page 151

TX_SETPARAFORMATFLAGS

This message sets special formats for all paragraphs selected.

Parameter Description

wParam Contains one of the following values:

Value Meaning

TF_ATLEASTLINESPACING This value specifies that
absolute linespacing
values set with the
TX_SETLINESPACING
message are to be used as
minimal values. If a line
contains characters or
images which would be
cropped with this setting,
the linespacing is enlarged
accordingly.

TF_EXACTLINESPACING This value specifies that
absolute linespacing
values set with the
TX_SETLINESPACING
message are to be used as
exact values, regardless of
whether larger characters
or images are being
cropped.

TF_PAGEBREAKNOTALLOWED Within a paragraph a page
break is not allowed.

TF_PAGEBREAKALLOWED Page breaks are allowed
within a paragraph. This is
the default value.

lParam Is not used.

Return Value The return value is zero if an error has occurred. Otherwise it is nonzero.

Page 152 Message Directory

Comments The Text Control updates the modified selection when the window is visible.

Default values are TF_ATLEASTLINESPACING and
TF_PAGEBREAKALLOWED.

TX_SETPGFRAME

This message draws a frame around each of the selected paragraphs.

Parameter Description

wParam Specifies the appearance and the style of the frame. It can be a
combination of the following values:

Value Meaning

BF_LEFTLINE Draws a left frame part.

BF_RIGHTLINE Draws a right frame part.

BF_TOPLINE Draws a top frame part.

BF_BOTTOMLINE Draws a bottom frame part.

BF_BOX Draws a complete box.

BF_TABLINES Draws a vertical line at each
tabulator position.

BF_TABLE Draws a complete box including
vertical lines at each tabulator
position.

BF_SINGLE Draws a single line.

BF_DOUBLE Draws a doubled line.

BF_NOLEFTLINE Resets an existing left part.

BF_NORIGHTLINE Resets an existing right part.

BF_NOTOPLINE Resets an existing top part.

BF_NOBOTTOMLINE Resets an existing bottom part.

BF_NOTABLINES Resets existing tabulator lines.

Message Directory Page 153

BF_BOXCONNECT Connects two sequential boxes to
form a single box.

lParam Specifies the width of the lines in the low-order word and the
distance of the frame from the text in the high-order word. Both
values must be in twentieths of a point. The value in the low-
order word is ignored if it contains zero, whilst the value in the
high-order word is ignored if it contains -1.

Return Value The return value is zero if an error has occurred. Otherwise, it is nonzero.

TX_SETSCROLLPOS

This message sets a new scroll position.

Parameter Description

wParam Specifies the direction. It can be one of the following values:

Value Meaning

TF_HSCROLL Sets the horizontal scroll position.

TF_VSCROLL Sets the vertical scroll position.

lParam Specifies the new scroll position in twentieths of a point. The text
associated with this position is displayed at the top of the Text
Control's client area.

Return Value The return value is nonzero if the scrolling operation was able to be performed.
Otherwise it is zero.

TX_SETSEL

This message sets and displays a new text selection.

Parameter Description

wParam This parameter must be nonzero if lParam points to an
array of two DWORD variables.

Page 154 Message Directory

lParam Points to an array of two DWORD variables specifying the
selection to be set. The start position is in the first variable
and the end position is in the second variable. If wParam
contains zero, lParam can contain the selection directly
packed in its low-order and high-order words. The start
position is in the low-order word and the end position is in
the high-order word.

Return Value The return value is zero if an error has occurred. Otherwise, it is nonzero.

Comments The start position is always the position of the blinking caret.
If the start position is zero and the end position is -1 the entire text is selected.

TX_SETTABS

This message sets a new tab list for the paragraphs currently selected.

Parameter Description

wParam Specifies the units of the position values. It can be one of the
following:

Value Meaning

UF_PIXEL The tab position values are given in
pixels.

UF_TWIPS The tab position values are given in
terms of twentieths of a point.

lParam Points to an array of type TABSCT and size NTABS containing
the new tablist. See the description of the TX_GETTABS
message for more information about the TABSCT structure.

Return Value The return value is zero if an error has occurred. Otherwise it is nonzero.

Comments The Text Control updates the modified paragraphs.

If the number of tabs to set is less than NTABS, the values of the rest of the list
must be set to zero. The first tab position must be a nonzero value.

Message Directory Page 155

TX_SETTEXTAREA

This message defines the text area which is used by the Text Control to perform
line breaking. This area can be more or less than the window size specified by the
CreateTextControl function. Furthermore, this message can be used to set scroll-
bars, scrolling options and view modes.

Parameter Description

wParam Specifies the appearance and the style of the scroll interface that
is necessary for a text area larger than the Text Control's window
size. It can be a combination of the following values:

Value Meaning

TF_HSCROLL Displays a horizontal scroll bar if
necessary.

TF_NOHSCROLL Displays no horizontal scroll bar.

TF_VSCROLL Displays a vertical scroll bar if
necessary.

TF_NOVSCROLL Displays no vertical scroll bar.

TF_THUMBTRACK The Text Control updates its client
area whilst moving the scrollbar's
scroll box (thumb).

TF_THUMBPOSITION The Text Control updates its client
area when the scrollbar's scroll box
(thumb) has reached a new position.

TF_PAGEVIEW Text Control displays pages with
margins, borders and a gray
background. This setting has only
effect when the high-order word of
the lParam parameter is larger than
zero.

TF_EXTPAGEVIEW Text Control displays three-dimen-
sional pages which are centered in
the windows visible area. This setting
has only effect when the high-order

Page 156 Message Directory

word of the lParam parameter is
larger than zero.

The default values are TF_NOHSCROLL, TF_NOVSCROLL
and TF_THUMBPOSITION.

lParam Specifies the width and the height of the text area in twentieths of
a point. The low-order word specifies the width, the high-order
word specifies the height. A height value of -1 specifies a variable
height depending on the text. A width or height value of zero
specifies that this value is always equal to the window size.

Return Value The return value is zero if an error has occurred. Otherwise, it is nonzero.

Comments This message cannot be used in combination with the TF_AUTOEXPAND mode
set with the TX_SETMODE message and in combination with linked windows.

With a height value of -1 the Text Control does not show page margins and page
gaps. This mode can therefore be used to realize a normal display mode instead of a
page display mode.

If the window is sized and the size becomes larger than the specified text width or
height, visible scrollbars are automatically hidden. To get the information about
whether a scrollbar is currently visible or not, use the GetWindowLong function
with the GWL_STYLE flag.

TX_SETTEXTCOLOR

This message sets the text color and the text background color of the currently
selected text to new values.

Parameter Description

wParam If wParam is zero, the new text color value is given by lParam.
Otherwise it can contain a combination of the following values:

Value Meaning

CV_TEXTDEFAULT The new text color is the system
color for the window text. If this
value is specified the first variable
lParam points to is ignored.

Message Directory Page 157

CV_TEXTUSER The new text color is specified by the
first variable lParam points to.

CV_BKDEFAULT The new text background color is the
system color for the window
background. If this value is specified
the second variable lParam points to
is ignored.

CV_BKCONTROL The new text background color is
Text Control's background color. If
this value is specified the second
variable lParam points to is ignored.

CV_BKUSER The new text color is specified by the
second variable lParam points to.

lParam If wParam is zero lParam specifies a RGB value that identifies a
new text color. Otherwise lParam must point to an array of two
DWORD variables. The first variable contains a new text color
value and the second variable contains a new value for the text
background color.

Return Value The return value is zero if an error has occurred. Otherwise it is nonzero.

Comments The Text Control updates the modified selection if the window is visible.

If the Text Control's background mode is TF_TRANSPARENT and the wParam
parameter contains CV_BKCONTROL the text background color is not drawn.

The default text background color setting is CV_BKCONTROL.

TX_SETWORDDIVISION

This message informs the Text Control that an application-supplied word division
function should be used to perform end of line word division. The application-
supplied function defines where TX should devide a word and inserts a hyphen.

Page 158 Message Directory

Parameter Description

wParam If wParam is nonzero, TX calls the word division function
every time it must reformat a line break. If wParam is zero,
TX only calls the word division function to undo the
changes of a previous dividing process.

lParam Is the procedure-instance address of the application-
supplied word-division function. See the following
´Comments´ section for details.

Comments The callback function address, passed as the lParam parameter, must be created by
using the MakeProcInstance function.

The callback function must use the Pascal calling convention and must be declared
FAR.

Callback Function WORD FAR PASCAL WordDivisionFunc (lpWord, wDividePos, wWordLength,
lpChangedWord, bRechange)

LPSTR lpWord;
WORD wDividePos;
WORD wWordLength;
LPSTR lpChangedWord;
BOOL bRechange;

WordDivisionFunc is a placeholder for the application-supplied function name. The
actual name must be exported by including it in an EXPORTS statement in the
application’s module definition file.

Parameter Description

lpWord Points to the word which is to be divided.

wDividePos Specifies the last possible divide position so that the first
word part, from the beginning of the word, to the character
with the position wDevidePos, fits into the current line of
text. The first character has the position 1.

wWordLength Specifies the number of bytes of the word pointed to by
lpWord.

lpChangedWord Points to a buffer of size 2*wWordLength that can be used
to inform TX that the word division has resulted in

Message Directory Page 159

changed characters. For example, in the German laguage
in some cases consonants are doubled, and dividing a »ck«
results in »k-k«. In such cases the whole word, including
altered or additional characters, must be copied to the
buffer pointed to by lpChangedWord. A terminating zero
must be added at the end so that TX can calaculate the
new word length. In normal cases lpChangedWord is not
used.

bRechange If bRechange is TRUE, the function call is used to undo
changes of a previous dividing process. In that case the
buffer that lpWord points to, contains the changed word,
and wDividePos specifies the position that has caused the
change. The original unchanged word must be copied to
the buffer pointed to by lpChangedWord.

Return Value

The return value specifies the character position TX should use to divide the word.
The word is divided and a hyphen is inserted behind the returned position. The first
character has the number 1. If lpChangedWord is used, the return value must
specify a character position in that buffer. If bRechange is TRUE, the return value
is ignored.

TX_TABLE_ATTRDIALOG

This message opens a built-in dialog box for setting table attributes such as frames
and distances.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is:

Value Meaning

TR_ERR If an error has occurred.

Page 160 Message Directory

TR_UNCHANGED If the user has quit the dialog box with the CANCEL
button.

TR_CHANGED If the user has quit the dialog box with the OK button.

Comments The return value also evaluates TR_ERR if the selection contains no table, or more
than one table, or if the selected table is mixed with other text. When this message
is called as a reaction to a menu, the TX_TABLE_ISPOSSIBLE message can be
used to get the information whether or not table attributes can be set.

The Text Control updates the modified selection if the window is visible.

TX_TABLE_CHANGEID

This message can be used to set a user-defined table identifier.

Parameter Description

wParam Specifies the current identifier. When previously no user-
defined value has been set this value must be the identifier
returned from the TX_TABLE_INSERT message.

lParam Specifies a new identifier. It must be a value between 10
and 0x7FFF.

Return Value The return value is zero if the new identifier could not be set. Otherwise it is non-
zero.

TX_TABLE_FROMCARETPOS

This message retrieves the table identifier and the number of row and column for
the current input position. The retrieved values are set to zero when the input
position is not inside a table or when more than one table cell is selected.

Parameter Description

wParam Is not used.

lParam Points to an array of two WORD variables that receive the

Message Directory Page 161

row and column number for the input position. The row
number is in the first variable.

Return Value The return value is the table identifier of the table with the current input position.

TX_TABLE_DELETELINES

This message deletes the currently selected table lines or the table line at the
current input position.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is zero if an error has occurred, if no table line is selected, or if the
current input position is not within a table. Otherwise it is nonzero.

TX_TABLE_GETATTROFCELL

This message retrieves information about the attributes of one or more table cells.

Parameter Description

wParam Specifies a table identifier.

lParam Points to a SETATTROFCELL data structure. See the
TX_TABLE_SETATTROFCELL message for more information
about this structure's members. Before calling this message the
members wStructSize, wRow and wColumn must be initialized.
Text Control fills all other members with information about these
cells. When a common attribute could not be found the
corresponding member is set to TF_TABLEATTRDEFAULT.

Page 162 Message Directory

TX_TABLE_GETCELLATTR

This message returns information about the attributes of all the table cells currently
selected.

Parameter Description

wParam Is not used

lParam Is not used.

Return Value The return value is a global memory handle which identifies a buffer containing the
attributes of the cells. All metric values are in twentieths of a point. The return
value is zero when an error has occurred or when the selection is not completely
within a single table.

The data contained by the buffer is structured in the following form:

WORD wTXVersion;
WORD wRows;
WORD wColumns;
short nMaxXValue;
CELLATTR cellattr[];

These fields have the following meaning:

Field Description

wTXVersion Specifies the Text Control's current version number in the
same format as that returned by the TXGetVersion
function, e.g. 500. Set this parameter as a number and not
as a TXGetVersion function call.

wRows Specifies the number of selected rows.

wColumns Specifies the number of selected columns.

nMaxXValue Specifies a maximum value for frames and distances
between frame and text in horizontal direction. The sum of
the left frame width, the right frame width the left text
distance and the right text distance must not be larger than
nMaxXValue to avoid complete invisible text.

cellattr[] Is an array of CELLATTR data structures containing the
attributes of the cells. The array contains

Message Directory Page 163

wRows*wColumns structures. It starts with the cells of the
first row and continues with the cells of the subsegment
rows. The CELLATTR data structure is described in
chapter 7 "Data Structures".

Comments If an application has finished using the buffer it must free it with the GlobalFree
function.

TX_TABLE_GETCELLPOSITION

This message retrieves the indexes (one-based) of the first and the last character in
a table cell.

Parameter Description

wParam Specifies a table identifier.

lParam Points to an array of four DWORD variables. The first variable
specifies the row number and the second variable specifies the
column number of the table cell. These variables must be filled by
the caller. The third and fourth variable retrieves the character
indexes. The third variable contains the index of the first
character and the fourth variable contains the index of the last
character. These variables are filled by Text Control.

Return Value The return value is zero if an error has occurred or if the specified table identifier
does not exist, otherwise it is nonzero.

Comments If tables are used in chains of linked windows the position values are relative to the
beginning of the text that is the first character in the first window of the chain. To
get the window which contains the table and the alignment of the table in that
window use the TX_GETLINKWND message with the GWTX_FROMOFFSET
and the GWTX_GETOFFSET option.

Page 164 Message Directory

TX_TABLE_GETCOLPOSITIONS

This message returns the horizontal beginning and end positions of the table
columns and text columns for the currently selected table. Within a table the
beginning and end positions of the text differ from the column positions because
table columns can have border widths, and distances between borders and the text.

Parameter Description

wParam Is not used

lParam Is not used.

Return Value The return value is zero when an error has occurred or when the selection does not
lie completely inside of a single table. Otherwise it is a global memory handle
identifying a buffer that contains the positions values. All position values are in
twentieths of a point. The data the buffer contains is structured in the following
form:

WORD wNumOfColumns;
WORD wInputColumn;
COLPOS colpositions[];

typedef struct tagCOLPOS {
LONG lxColumnLeft;
LONG lxColumnRight;
LONG lxTextLeft;
LONG lxTextRight;

} COLPOS;

These fields have the following meaning:

Field Description

wNumOfColumns Specifies the number of columns this buffer describes.
This is also the number of COLPOS structures the
colpositions array contains.

wInputColumn Specifies the number of the column containing the current
input position. The first column has the number 1.

colpositions[] Is an array of COLPOS data structures containing the
position values.

lxColumnLeft Specifies the column's left border.

Message Directory Page 165

lxColumnRight Specifies the column's right border. This value must be
equal to the next column's left border.

lxTextLeft Specifies the left-most position at which text can be
placed. Left paragraph indents are not included.

lxTextRight Specifies the right-most position at which text can be
placed. Right paragraph indents are not included.

Comments If an application has finished using the buffer it must free it with the GlobalFree
function.

TX_TABLE_GETNEXT

This message returns the identifier of a table that follows the specified table in the
Text Control's current text. In a list of linked Text Controls the search is performed
in all windows.

Parameter Description

wParam Specifies a table's identifier. This identifier must not a user-
defined identifier because user-defined identifiers are not unique.
It must be a Text Control identifier that was previously returned
by the TX_TABLE_INSERT message. If this parameter is zero,
the first table's identifier is returned.

lParam Is not used.

Return Value The low-order word of the return value is the identifier of the table which follows
the specified table in the Text Control's text. The high-order word is the
corresponding user-defined identifier of this table or zero, if a user-defined
identifier does not exist. The return value is zero if no following tables exist or if
the specified table identifier was invalid.

Example The following code example uses the TX_TABLE_GETNEXT message to get the
number of rows and columns of all the tables a Text Control contains:

WORD wRowsAndCols[2];
WORD wID = 0;

Page 166 Message Directory

while (wID = LOWORD(SendMessage(hwndTX, TX_TABLE_GETNEXT, wID, 0L)))
{

SendMessage(hwndTX, TX_TABLE_GETROWSANDCOLS,
(WPARAM)wID, (LPARAM)(LPWORD)wRowsAndCols);

}

TX_TABLE_GETROWSANDCOLS

This message returns the number of rows and columns for the specified table.

Parameter Description

wParam Specifies a table identifier. When this parameter is set to zero the
table with the current input position is used.

lParam Points to an array of two WORD variables to receive the number
of rows and columns. The first variable receives the number of
rows, the second receives the number of columns.

Return Value The return value is the table's identifier. This is the same value as specified or the
identifier of the table with the current input position when wParam has been set to
zero. The identifier is either a user-defined value set with the
TX_TABLE_CHANGEID message or a unique identifier selected by Text Control.

The return value is zero if an error has occurred or if the current input position is
not inside a table when wParam has been set to zero.

TX_TABLE_GETTEXTOFCELL

This message retrieves the text of a table cell.

Parameter Description

wParam Specifies a table identifier.

lParam Specifies the row and column number of the cell which text is to
be retrieved. The row number is in the low-order word and the
column number is in the high-order word.

Message Directory Page 167

Return Value The return value is a global data handle containing the text of the cell as a zero-
terminated character string. If the application has finished using the buffer it must
free it with the GlobalFree function.

TX_TABLE_INSERT

This message inserts a new table into the text.

Parameter Description

wParam Specifies the table's description. It can be any one of the
following values:

Value Meaning

TF_AUTOTABLE The table is inserted with default
values. The lParam parameter
contains the number of rows and
columns in the table.

TF_USERTABLE The lParam parameter contains a
complete table description.

lParam When wParam is set to TF_AUTOTABLE this parameter must
contain the number of a table's rows in its low-order word and the
number of columns in its high-order word. Otherwise when
wParam is set to TF_USERTABLE lParam must point to a
buffer containing a complete table description. The data
contained by the buffer must be structured in the following form:

WORD wTXVersion;
LONG lTextPos;
WORD wRows;
WORD wColumns;
CELLDATA tablecells[][];

These fields have the following meaning:

Field Description

wTXVersion Specifies the Text Control's current version
number in the same format as that returned by
the TXGetVersion function, e.g. 500. Set this
parameter as a number and not as a
TXGetVersion function call.

Page 168 Message Directory

lTextPos This parameter specifies the text position where
the table is to be inserted. If lTextPos is -1 the
table is inserted at the current input position.

wRows Specifies how many rows the table has.

wColumns Specifies how many columns the table has.

tablecells[][] Is an array of CELLDATA data structures
containing one structure for each of the table's
cells. The array first describes the cells of the
first row and continues with the cells of the
subsegment rows. The CELLDATA data
structure is described in the following
comments section.

Return Value The return value is:

Value Meaning

TR_ERR An error has occurred or the table could not be inserted.
Tables cannot be inserted inside existing tables or when a
section of text has been selected.

TR_UNCHANGED The new table has been inserted at the top or at the bottom
of an existing table and has been combined with this table.

otherwise A unique table identifier. This identifier can be used with
the TX_TABLE_CHANGEID message to set an user-
defined identifier.

Comments The CELLDATA structure has the following form:

typedef struct tagCELLDATA {
LONG lxPos;
LONG lxExt;
CELLATTR cellattr;

} CELLDATA;

The CELLDATA structure has the following fields:

Field Description

lxPos Specifies the horizontal cell position.

Message Directory Page 169

lxExt Specifies the horizontal cell extension.

cellattr Specifies the cell's attributes. The CELLATTR data
structure is described in Chapter 7 "Data Structures".

TX_TABLE_ISPOSSIBLE

This message returns TRUE when the specified action is possible.

Parameter Description

wParam Specifies the action which is to be performed. It can be any one of
the following values:

Value Meaning

TF_TABLE_CANINSERT A table can be inserted at
the current input position.
This message returns
FALSE when a section of
text has been selected or
the current input position
is inside a table.

TF_TABLE_CANDELETELINES The selected table lines
can be deleted. This
message returns FALSE
when no table line is
selected or if the current
input position is outside a
table.

TF_TABLE_CANCHANGEATTR The attributes of the
selected table lines can be
altered. This message
returns FALSE when the
selection is not completely
within a single table.

lParam Is not used.

Page 170 Message Directory

Return Value The return value is TRUE when the specified action can be performed. Otherwise it
is FALSE.

TX_TABLE_SETATTROFCELL

This message alters one or more attributes of one or more table cells.

Parameter Description

wParam Specifies a table identifier.

lParam Points to a SETATTROFCELL data structure which is defined as
follows:

typedef struct tagSETATTROFCELL {
WORD wStructSize;
WORD wRow;
WORD wColumn;
LONG lxPos;
LONG lxExt;
CELLATTR cellattr;

} SETATTROFCELL;

The SETATTROFCELL structure has the following fields:

Field Description

wStructSize Specifies the size, in bytes, of this data
structure.

wRow Specifies the cell's row. The first row has the
number one. To change the attributes of a
complete column set this member to zero.

wColumn Specifies the cell's column. The first column has
the number one. To change the attributes of a
complete row set this member to zero.

lxPos Specifies the cell's horizontal position.

lxExt Specifies the cell's horizontal extension.

cellattr Specifies the cell's border and color attributes.
The CELLATTR data structure is described in
chapter 7 "Data Structures". Each member of
this structure can be set to

Message Directory Page 171

TF_TABLEATTRDEFAULT to indicate that
this attribute is not to be changed.

Return Value The return value is zero if an error has occurred. Otherwise it is non-zero.

TX_TABLE_SETCELLATTR

This message changes the attributes of all selected table cells.

Parameter Description

wParam Specifies a global data handle containing the cells'
attributes. The data contained by the buffer is structured in
the same way as that described for the
TX_GETCELLATTR message.

lParam Is not used.

Return Value The return value is zero if the new attributes could not be set. Otherwise it is
nonzero.

TX_TABLE_SETCOLPOSITIONS

This message changes the column positions of selected table rows.

Parameter Description

wParam Specifies the number of columns described by the buffer
pointed to by lParam.

lParam Points to an array of COLPOS data structures. The array
size is specified by wParam. For a description of the
COLPOS structure see TX_GETCOLPOSITIONS.

Return Value The return value is zero if the new column positions could not be set. Otherwise it
is nonzero.

Page 172 Message Directory

TX_TABLE_SETTEXTOFCELL

This message alters the text of a table cell.

Parameter Description

wParam Specifies a table identifier.

lParam Points to a SETTEXTOFCELL data structure which is defined as
follows:

typedef struct tagSETTEXTOFCELL {
WORD wRow;
WORD wColumn;
LPCTSTR lpcText;

} SETTEXTOFCELL;

The SETTEXTOFCELL structure has the following fields:

Field Description

wRow Specifies the cell's row.

wColumn Specifies the cell's column.

lpcText points to a character string that is the new text.
The string must be zero-terminated. This
member can be set to zero to delete the cell's
text.

Return Value The return value is zero if an error has occurred. Otherwise it is non-zero.

TX_UNDO

This message undoes the last Text Control operation.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is zero if the undo operation fails. Otherwise it is nonzero.

Message Directory Page 173

Comments The TX_CANUNDO message can be used to determine whether a Text Control
operation can be undone. If this message is sent although there is no operation that
can be undone the Text Control beeps.

TX_ZOOM

This message sets a new zooming factor for the Text Control. This factor is given
as a percentage. A value of 100 means the original size.

Parameter Description

wParam Contains the new zooming factor in percent. The value
must be between 10 and 400.

lParam Is not used.

Return Value The return value is zero if the window cannot be zoomed or if the specified
zooming factor has already been set. Otherwise it is nonzero.

Comments The Text Control is not updated. The InvalidateRect function must be used to
update the appropiate portion of the parent windows´s client area.

Page 174 Notification Messages

6. Notification Messages
The notification messages notify a Text Control's parent window of actions that occur within the
control via the WM_COMMAND message. In 16 and 32 bit programs the parameters of the
WM_COMMAND message have different meanings.

For 16 bit programs the WM_COMMAND message has the following parameters:
id = wParam;
hwndCtl = (HWND)LOWORD(lParam);

wNotifyCode = HIWORD(lParam);

For 32 bit programs the WM_COMMAND message has the following parameters:
id = LOWORD(wParam);
hwndCtl = (HWND)lParam;
wNotifyCode = HIWORD(wParam);

Normally the id parameter specifies the control item identifier. For some Text Control notifications
the id parameter has a different meaning. In this case the description contains a parameters section.

TN_AUTOLINK

This code specifies that text will be inserted into the last control in a chain of linked
windows. The parent window can avoid a text overflow at the end of the chain if it
responds to this notification by an expansion of the chain. This notification is sent
before the text is inserted.

TN_AUTOSCROLL

This code is sent if the cursor leaves the visible portion of a Text Control's client
area whilst a text selection is being expanded with the mouse. This code is only sent
if the cursor movement does not result in a caret movement. This happens if the
cursor is moved outside the client area or if the cursor is moved over parts which
are not covered with text below the last line. In all cases where the cursor
movement results in a caret movement, the Text Control sends
TN_CARETOUTxxx notification messages.

Notification Messages Page 175

TN_CARETOUT

This code specifies that the caret has been moved to or within a Text Control that is
completely out of the visible client area.

TN_CARETOUTBOTTOM

This code specifies that the caret has been moved down out of the visible area of
the Text Control.

TN_CARETOUTLEFT

This code specifies that the caret has been moved to the left out of the visible area
of the Text Control.

TN_CARETOUTRIGHT

This code specifies that the caret has been moved to the right out of the visible area
of the Text Control.

TN_CARETOUTTOP

This code specifies that the caret has been moved up out of the visible area of the
Text Control.

TN_CHANGED

This code specifies that the user has taken an action which may have altered text or
format attributes.

Page 176 Notification Messages

TN_CHARFORMATCHANGED

This code specifies that the formatting attributes of the selected characters have
been changed. Chapter 4.1 lists all messages for manipulating character formatting
attributes. This notification is also sent if font settings have been changed because
the Text Control has adapted fonts to a new output device.

TN_DOUBLECLICKED

This code is sent after a Text Control has been double-clicked. The message is sent
after the double clicked word has been selected.

TN_ERRCODE

This code informs the parent window that an error has occured. Further information
can be obtained by calling GetErrorCode.

TN_FIELD_CHANGED

This code specifies that the text of a marked text field has been changed.

Parameter Description

id Specifies the field identifier of the changed marked text
field.

TN_FIELD_CLICKED

This code specifies that the user has clicked on a marked text field.

Parameter Description

id Specifies the field identifier of the clicked marked text
field.

Notification Messages Page 177

TN_FIELD_CREATED

This code specifies that a new marked text field has been created without using the
TX_FIELD_INSERT message. This can happen if a marked text field is copied
with the clipboard.

Parameter Description

id Specifies the field identifier of the created marked text
field.

TN_FIELD_DBLCLICKED

This code specifies that the user has double-clicked on a marked text field.

Parameter Description

id Specifies the field identifier of the marked text field on
which the user has double-clicked.

TN_FIELD_DELETED

This code specifies that a marked text field has been completely deleted. This
notification is not sent if a marked text field is deleted because a Text Control has
been destroyed or if the text of a Text Control was completely exchanged with the
TX_SETHANDLE message.

Parameter Description

id Specifies the field identifier of the deleted marked text
field.

TN_FIELD_ENTERED

This code specifies that the current input position indicated by the caret has been
moved to a position that belongs to a marked text field. This notification is only
sent if the caret has been moved using the keyboard. If the caret has been moved
with a mouse click the parent window receives a TN_FIELD_CLICKED
notification message.

Page 178 Notification Messages

Parameter Description

id Specifies the field identifier of the marked text field which
has been entered.

TN_FIELD_LEFT

This code specifies that the current input position indicated by the caret has been
moved to a position that does not belong to the marked text field at the previous
input position.

Parameter Description

id Specifies the field identifier of the left marked text field.

TN_FIELD_LINKCLICKED

This code specifies that the user has clicked on a marked text field that represents
the source of a hypertext link. The field must be of the type FT_EXTERNALLINK
or FT_INTERNALLINK. The TX_FIELD_GETTYPE message can be used to get
the information where the link points to.

Parameter Description

id Specifies the field identifier of the clicked marked text
field.

TN_FIELD_SETCURSOR

This code specifies that the cursor is being moved over a marked text field. The
parent window can set the cursor when it receives this notification, in this case it
must return TRUE. If the parent window returns FALSE the Text Control sets the
cursor to the vertical arrow cursor.

Parameter Description

id Specifies the field identifier of the marked text field over
which the cursor has been moved.

Notification Messages Page 179

TN_FORCEUPDATE

This code specifies that connected tool bars must update their contents. It must be
passed on to status bars, button bars and rulers that show or change the contents of
a Text Control. See appendix D, E and F for more information how to pass on
messages to tool bars.

TN_HEXPAND

This code specifies that the Text Control has changed its window size horizontally
in autoexpanding mode.

TN_HF_ACTIVATED

This code specifies that a header or footer has been activated.

Parameter Description

id Specifies which kind of header or footer has been activated. It can
be one of the following values:

Value: Description:

TF_HF_HEADER A header has been activated.

TF_HF_1STHEADER The special header for the first page
has been activated.

TF_HF_FOOTER A footer has been activated.

TF_HF_1STFOOTER The special footer for the first page
has been activated.

TN_HF_DEACTIVATED

This code specifies that a header or footer has been deactivated.

Parameter Description

id Specifies which kind of header or footer has been deactivated.

Page 180 Notification Messages

See the TN_HF_ACTIVATED notification message for possible
values.

TN_HMOVED

This code specifies that the Text Control's window has been moved horizontally
relative to its parent window.

TN_HSCROLL

This code is sent when the horizontal scroll position has been changed. The
TX_GETSCROLLPOS message can be used to get the new position.

TN_IMAGECLICKED

This code is sent if an Image-Control window has been clicked. The
TX_GETIMAGE message can be used to identify this image.

TN_KEYSTATECHANGED

This code is sent after the character insertion mode or when the state of the
NUMLOCK or CAPSLOCK key has been changed.

TN_KILLFOCUS

This code specifies that the Text Control has lost the input focus.

TN_OBJ_CLICKED

This code is sent after the user has clicked on an object contained in the Text
Control. An Object can be any child window inserted or created with the
TX_OBJ_EMBED or the TX_CREATEIMAGE message.

Notification Messages Page 181

Parameter Description

id Specifies an identifier of the object that has been clicked
on. This is the same identifier returned from the
TX_OBJ_EMBED message.

TN_OBJ_CREATED

This code specifies that a new embedded object has been created without using the
TX_OBJ_EMBED or TX_CREATEIMAGE messages. This can happen if an
object is copied using the clipboard.

Parameter Description

id Specifies the identifier of an object that has been created.

TN_OBJ_DBLCLICKED

This code is sent after the user has double-clicked on an object contained in the
Text Control. An object can be any child window inserted, or created with the
TX_OBJ_EMBED or TX_CREATEIMAGE messages.

Parameter Description

id Specifies the identifier of an object that has been double-
clicked on. This is the same identifier returned from the
TX_OBJ_EMBED message.

TN_OBJ_DELETED

This code is sent after an embedded object has been deleted. This code is also
called if the application has deleted the object using the TX_OBJ_DELETE
message.

Parameter Description

wParam Specifies the identifier of an object that has been deleted.
This is the same identifier returned by the

Page 182 Notification Messages

TX_OBJ_EMBED message. The identifier is thereafter
invalid for subsequent message calls.

TN_OBJ_MOVED

This code is sent after an embedded object has been moved via the integrated
mouse interface.

Parameter Description

id Specifies an identifier of the object that has been moved.
This is the same identifier returned by the
TX_OBJ_EMBED message.

TN_OBJ_SIZED

This code is sent after an embedded object has been sized via the integrated mouse
interface.

Parameter Description

id Specifies an identifier of the object that has been sized.
This is the same identifier returned from the
TX_OBJ_EMBED message.

TN_PAGEFORMATCHANGED

This code specifies that the page format settings have been changed.

TN_PGCHANGED

This code indicates that the character input position has been moved to another
paragraph.

Notification Messages Page 183

TN_PGFORMATCHANGED

This code specifies that the paragraph attributes of the selected paragraphs have
been changed. Chapter 4.2 lists all messages for manipulating paragraph attributes.

TN_POSCHANGED

This code specifies that the current character input position has been changed.

TN_SETFOCUS

This code specifies that the Text Control has obtained the input focus.

TN_TABLE_CREATED

This code is sent after a new table has been created as a result of a text insertion via
the clipboard. It is not sent when the table is inserted with the
TX_TABLE_INSERT message or when a previously saved document is reloaded.

Parameter Description

id Specifies an identifier of the table. It is either a user-
defined identifier set with the TX_TABLE_CHANGEID
message or an identifier selected through Text Control.

return value The return value specifies a new user-defined identifier for
the table. It must be a value between 10 and 0x7FFF. It
can be set to zero when the identifier should not be
changed.

TN_TABLE_DELETED

This code is sent after a table has been deleted.

Page 184 Notification Messages

Parameter Description

id Specifies an identifier of the table. It is either a user-
defined identifier set with the TX_TABLE_CHANGEID
message or an identifier selected through Text Control.

TN_VEXPAND

This code specifies that the Text Control has changed its window size vertically in
autoexpanding mode.

TN_VSCROLL

This code is sent when the vertical scroll position has been changed. The
TX_GETSCROLLPOS message can be used to get the new position.

TN_ZOOMED

This code is sent after the Text Control has been zoomed.

Page 185Data Structures

7. Data Structures

CELLATTR

The CELLATTR structure defines the attributes of a table cell. All geometric
values are drawn inside the cell's extension given by the CELLPOSITION
structure. All values are in twentieths of a point.

typedef struct tagCELLATTR {
short leftBorder;
short topBorder;
short rightBorder;
short bottomBorder;
short leftTextDist;
short topTextDist;
short rightTextDist;
short bottomTextDist;
DWORD dwBkColor;

BYTE reserved[8];
} CELLATTR;

The CELLATTR structure has the following fields:

Field Description

leftBorder Specifies the width of the cell's left border.

topBorder Specifies the height of the cell's top border.

rightBorder Specifies the width of the cell's right border.

bottomBorder Specifies the height of the cell's bottom border.

leftTextDist Specifies the distance between the cell's left border and the
text.

topTextDist Specifies the distance between the cell's top border and the
text.

rightTextDist Specifies the distance between the cell's right border and
the text.

Page 186 Data Structures

bottomTextDist Specifies the distance between the cell's bottom border and
the text..

dwBkColor Specifies the cell's background color. This value must be
an RGB value returned by the RGB macro, 0x4000 0000
if the system color for the window background or 0x5000
0000 if the Text Control's background color is to be used.

reserved[8] Reserved field. 8 bytes which are reserved for future use.
They must be set to zero.

CELLPOSITION

The CELLPOSITION structure defines the positions of a table cell. It is always
used in combination with the TXTABLE structure and defines the general data of a
table.

typedef struct tagCELLPOSITION {
WORD wCellStart;
WORD wCellStop;
LONG lxPos;
LONG lxExt;
WORD wAttrRefNum;
BYTE reserved[4];

} CELLPOSITION;

The CELLPOSITION structure has the following fields:

Field Description

wCellStart Specifies the one-based character position in the szText[]
array of the cell's first character.

wCellStop Specifies the one-based character position in the szText[]
array of the cell's last character. This must be a paragraph
end control character 0AH.

lxPos Specifies, in twentieths of a point, the horizontal cell
position.

lxExt Specifies, in twentieths of a point, the horizontal cell
extension.

Page 187Data Structures

wAttrRefNum Specifies the reference number of the cell's attributes. The
reference number is the position of the CELLATTR
structure in the caCellAttr array beginning with the
number one.

reserved[4] Reserved field. 4 bytes which are reserved for future use.
They must be set to zero.

FIELDDATA

The FIELDDATA structure describes a field data entry in the Text Control's text
format.

typedef struct tagFIELDDATA {
WORD wField;
BYTE nFieldType;
BYTE reserved[3];
DWORD dwData;
DWORD dwDataSize;

} FIELDDATA;

The FIELDDATA structure has the following fields:

Field Description

wField Specifies the identifier of the field to which this entry belongs.

nFieldType Specifies the type of the field to which this entry belongs. It can
be anyone of the following values:

Value Meaning

FT_STANDARD The data this entry contains, has been
set by the programmer or user with
the TX_FIELD_SETDATA
message.

FT_EXTERNALLINK The data this entry contains, is the
destination of a hypertext link to a
position outside of the document.

Page 188 Data Structures

FT_INTERNALLINK The data this entry contains, is the
destination of a hypertext link to a
position in this document. It is the
name of a marked text field of the
type FT_LINKTARGET.

FT_LINKTARGET The data this entry contains, is the
name of the field. The field, this
entry belongs to, is the target position
of a hypertext link.

FT_HIGHLIGHT The data this entry contains, is the
color of the highlight as an RGB
value.

FT_TOPIC The data this entry contains, is the
number of the topic.

reserved[3] 3 bytes for future use that must be set to zero.

dwData A 4-byte value which is used when the amount of the data to store
is 1 to 4 bytes. When this member is used the dwDataSize
member must be zero. This parameter is used for
FT_STANDARD, FT_HIGHLIGHT and FT_TOPIC entries.

dwDataSize Specifies the size of the data when the amount is larger than 4
bytes. The data itself follows immediately after this structure.
When this member is used the dwData member must be zero.
This parameter is used for FT_STANDARD,
FT_EXTERNALLINK, FT_INTERNALLINK and
FT_LINKTARGET entries.

FIXEDOBJECT

The FIXEDOBJECT structure is the header structure of a fixed positioned object in
the cFixedObjects[] array. The data of the object follows this structure.

typedef struct tagFIXEDOBJECT {
LONG reserved1;
WORD wID;
WORD wEmbedMode;
short nxPosition;
LONG lyPosition;

Page 189Data Structures

short xSize;
short ySize;
WORD wxScale;
WORD wFlags;
DWORD dwData;
WORD wyScale;
short leftDist;
short topDist;
short rightDist;
short bottomDist;

} FIXEDOBJECT

The FIXEDOBJECT structure has the following fields:

Field Description

reserved1 Reserved field used internally by TX.

wID Specifies a child window identifier if the object is an
externally created window. It contains zero if the object is
an image.

wEmbedMode Specifies the object's embedding mode. See the
TX_OBJ_EMBED message for more information.

nxPosition Specifies the object's horizontal position in twentieths of a
point.

lyPosition Specifies the object's vertical position in twentieths of a
point.

xSize Specifies the object's horizontal size in twentieths of a
point.

ySize Specifies the object's vertical size in twentieths of a point.

wxScale Specifies the object's horizontal scaling factor as a
percentage. It must be between 10 and 250.

wFlags Specifies the object's flags. It can be a combination of the
following values:

Value Meaning

ICF_NOMOVE The object cannot be moved by
the internal mouse interface.

ICF_NOSIZE The object cannot be sized by the
internal mouse interface.

Page 190 Data Structures

ICF_GRAYED The object is an image and
displayed in fast mode.

ICF_SAVEASDATA The object is an image which is
saved by the Text Control using
its data instead of its filename.

dwData Specifies the size, in bytes, of the object's data that follows
this structure. If the object is an image, this data is stored
by the Image-Control programming tool. The format of
this memory block is described in the IC Image-Control
reference. Otherwise if the object is an externally created
window the data depends on the load and save
functionality of this window. See appendix H for more
information about the load and save mechanism for
external windows.

wyScale Specifies the object's vertical scaling factor as a
percentage. It must be between 10 and 250.

leftDist Specifies the distance between the object's left side and the
text.

topDist Specifies the distance between the object's top side and the
text.

rightDist Specifies the distance between the object's right side and
the text.

bottomDist Specifies the distance between the object's bottom side
and the text.

FONTBLOCK

The FONTBLOCK structure defines part of a Text Control's text the contents of
which are displayed with the same font, baseline align and color.

typedef struct tagFONTBLOCK {
WORD wFntNum;
WORD wBlkStart;
WORD wBlkLength;
short nBlAlign;
DWORD dwColor;
WORD wField;

Page 191Data Structures

BYTE fFieldFlags;
BYTE nFieldType;
DWORD dwBkColor;

} FONTBLOCK;

The FONTBLOCK structure has the following fields:

Field Description

wFntNum Specifies the reference number of the font used in this font block.
The reference number is the position of the TXLOGFONT
structure in the lfLogFonts[] array, beginning with the number
one.

wBlkStart Specifies the starting position of the font block in the text. The
first character has the number one.

wBlkLength Specifies the length of the font block (in bytes).

nBlAlign Specifies the distance of the baseline from its normal position in
twentieths of a point. The value is positive for superscript and
negative for subscript and is limited to 48 pts.

dwColor Specifies the text color of the font block. This value must be an
RGB value returned by the RGB macro or 0x4000 0000 if the
system color for window text is to be used.

wField Specifies an identifier for a marked text field. The identifier must
be unique.

fFieldFlags Specifies the attributes of a marked text field. It can be a
combination of the following values:

Value Meaning

TF_ENABLEDBLCLICKS Inside the marked text field normal
double-click processing is
performed.

TF_EXTEDITMODE The marked text field can be edited
with a second input position at the
beginning and the end of the field.

Page 192 Data Structures

TF_HASUSERDATA The marked text field has a user-
defined data entry. This data can be
accessed with the
TX_FIELD_GETDATA and
TX_FIELD_SETDATA messages.
When this bit is set, the marked text
field must have an entry in the
FieldData[] array of the
cTextBlocks[] data block.

TF_SHOWCURFIELDGRAY
The marked text field is displayed
with a gray background when it
contains the current input position.

TF_UNCHANGEABLE The text of a marked text field cannot
be changed.

TF_UNDELETEABLE The marked text field cannot be
deleted.

TF_USEFIELDCARET Inside the field the caret for marked
text fields is used.

nFieldType Specifies the type of the marked text field. It can be anyone of the
following values:

Value Meaning

FT_STANDARD Specifies a standard marked text field
without special features.

FT_EXTERNALLINK The marked text field is the source of
a hypertext link to a location outside
of the document.

FT_INTERNALLINK The marked text field is the source of
a hypertext link to another location in
this document.

FT_PAGENUMBER The marked text field displays page
numbers.

Page 193Data Structures

FT_LINKTARGET The marked text field is a position in
the document that is the target of a
hypertext link.

FT_HIGHLIGHT The marked text field identifies a
piece of text that can be highlighted.

FT_TOPIC The marked text field identifies the
text position of a new topic.

dwBkColor Specifies the text background color of the font block. This value
must be an RGB value returned by the RGB macro, 0x4000 0000
if the system color for the window background or 0x5000 0000 if
the Text Control's background color is to be used.

IMAGEDATA

The IMAGEDATA structure is the header structure of an image in the ImageData[]
array. The data of the image follows this structure.

typedef struct tagIMAGEDATA {
LONG reserved1;
WORD wFlags;
WORD wxScale;
WORD wyScale;
short xSize;
short ySize;
WORD wScale;
DWORD dwData;

} IMAGEDATA

The IMAGEDATA structure has the following fields:

Field Description

reserved1 Reserved field used internally by TX.

wFlags Specifies the alignment of the image and the display mode.
It can be a combination of the following values:

Value Meaning

0x0001 The image is updated in fast display
mode.

Page 194 Data Structures

wxScale Specifies the image's horizontal scaling factor as a
percentage. It must be a value between 10 and 250.

wyScale Specifies the image's vertical scaling factor as a
percentage. It must be a value between 10 and 250.

xSize Specifies the horizontal image size in twentieths of a point.

ySize Specifies the vertical image size in twentieths of a point.

wScale Specifies the image's scaling factor for both directions as a
percentage. It must be between 10 and 250. If this value is
zero the members wxScale and wyScale are used for
scaling.

dwData Specifies the size of the following image data (in bytes).
This data is stored by the Image-Control programming
tool. The format of this memory block is described in the
IC Image-Control reference.

PARAGRAPH

The PARAGRAPH structure defines the attributes of a paragraph.

typedef struct tagPARAGRAPH {
WORD wAlign;
short nLeftInd;
short nRightInd;
short nFirstInd;
short nTopInd;
short nBottomInd;
WORD wLSpace;
WORD wFrameStyles;
WORD wFrameWidth;
WORD wFrameDist;
TABSCT TabList[NTABS];

} PARAGRAPH;

The PARAGRAPH structure has the following fields:

Field Description

wAlign Specifies the text alignment of the paragraph in the upper two
bytes. It can be any one of the following values:

Page 195Data Structures

Value Meaning

0x0000 The text is left aligned

0x4000 The text is right aligned

0x8000 The text is centered

0xC000 The text is justified

The lower bytes contain a bitfield specifying special paragraph
formats. This can be a combination of the following values:

Value Meaning

TF_PAGEBREAKNOTALLOWED A page break is not
allowed within a
paragraph.

TF_EXACTLINESPACING The specified linespacing
is used independent
whether the paragraph
contains characters or
images with a larger
height. This value is only
used when wLSpace
contains an absolute
linespacing.

nLeftInd Specifies a left indent.

nRightInd Specifies a right indent.

nFirstInd Specifies an additional left indent for the first line. This value can
be negative.

nTopInd Specifies an additional top indent for the first line of the
paragraph.

nBottomInd Specifies an additional bottom indent for the last line of the
paragraph. All indent values are given in terms of a twentieth of a
point.

wLSpace Specifies the line spacing value of the paragraph. If the highest bit
is 1, the lower 15 bits specify an absolute value in twentieths of a
point. Otherwise the line spacing is given as a percentage of the
height of the fonts which are currently being used.

Page 196 Data Structures

wFrameStyles Specifies the appearance and styles of a paragraph frame. It can
be a combination of the following values:

Value Meaning

BF_LEFTLINE The frame has a left part.

BF_RIGHTLINE The frame has a right part.

BF_TOPLINE The frame has a top part.

BF_BOTTOMLINE The frame has a bottom part.

BF_TABLINES Vertical lines are drawn at each tabulator
position.

BF_SINGLE The frame is a single line.

BF_DOUBLE The frame is a double line.

BF_BOXCONNECT The frame is connected to its
neighbours.

wFrameWidth Specifies the width of the frame lines in twentieths of a point.

wFrameDist Specifies the distance of the frame from the text in twentieths of a
point.

TabList[NTABS]Is an array of TABSCT structures specifying type and position of
tabulator positions.

PGBLOCK

The PGBLOCK structure defines a text part of the Text Control which identifies a
paragraph.

typedef struct tagPGBLOCK {
WORD wPgNum;
WORD wPgStart;
WORD wPgStop;

} PGBLOCK;

The PGBLOCK structure has the following fields:

Page 197Data Structures

Field Description

wPgNum Specifies the reference number for the paragraph used in
this paragraph block. The reference number is the position
of the PARAGRAPH structure in the pgParagraphs[]
array, beginning with number one.

wPgStart Specifies the starting position of the paragraph block in
the text. The first character has the number one.

wPgStop Specifies the end position of the paragraph block in the
text. This is the position of the paragraph end character
0x0A or the terminating zero in the last paragraph.

TABSCT

The TABSCT structure defines the attributes of a tab stop.

typedef struct tagTABSCT {
BYTE nTabFlag;
WORD wTabPos;

} TABSCT;

The TABSCT structure has the following fields:

Field Description

nTabFlag Specifies the type of the tabstop. It can be any one of the
following values:

Value Meaning

LEFTTAB The tab position is at the left side of
text.

RIGHTTAB The tab position is at the right side of
text.

CENTERTAB The text is centered on the tab
position.

DECIMALTAB The decimal sign installed in
“win.ini” is located at the tab
position.

Page 198 Data Structures

wTabPos Specifies the x-coordinate of the tab position in twentieths
of a point.

TXFILTERIO

The TXFILTERIO structure exchanges data with a text filter. It can be used with
the TX_DATAIN and the TX_DATAOUT message. The meaning and usage of the
structure members depend on whether the operation is a loading or a saving
process. The user can set on function entry values which the filter can use for
saving or as default values for loading. On function exit the filter sets values in a
loading process which the user can then use for further processing.

typedef struct tagTXFILTERIO {
WORD wTXFileFormat;
short nMode;
LPCTSTR lpAbsPath;
LPCTSTR lpBasePath;
DWORD dwDocWidth;
DWORD dwDocHeight;
short nDocMarginLeft;
short nDocMarginTop;
short nDocMarginRight;
short nDocMarginBottom;
HGLOBAL hDocTitle;
COLORREF crDocBkGnd;
LONG lDocTextPos;
COLORREF crText;
COLORREF crTextBkGnd;
COLORREF crLink;
WORD wFontSize;
TCHAR lfDefFont[LF_FACESIZE];
TCHAR lfMonoFont[LF_FACESIZE];
DWORD dwUsageFlags;
DWORD dwOutDataSize;
HGLOBAL hOutData;

LPCTSTR lpDocPath;

BYTE reserved[252];
} TXFILTERIO;

The TXFILTERIO structure members have the following meanings:

Page 199Data Structures

Field Description

wTXFileFormat Is used internally by Text Control. It must be set to zero.

nMode Is used internally by Text Control. It must be set to zero.

lpAbsPath Points to a zero-terminated character string that is used to search
for resources like images or destinations of hypertext links. When
a document is loaded, the filter uses this path to locate a resource.
It is only used for resources which are specified through an
absolute location. In this case the absolute resource location is
completely replaced through the path specified through this
member. When a document is saved, this member is not used.
This member can be zero, when it is not used.

lpBasePath Points to a zero-terminated character string that is used to search
for resources given through a relative location. When a document
is loaded, the filter adds this path to the relative location of a
resource. When a document is saved this member can only be a
file path. The filter saves all files with a location relative to this
path. This member can be zero, when it is not used.

dwDocWidth Specifies the document's width in twentieths of a point including
margins. When a document is loaded and this member is non-
zero, it is used to convert relative width values, for example in
percent, to absolute width values. The filter fills in a value when
contained in the document or zero when the filter does not find a
width. When a document is saved, the filter stores this value as
part of the document when it is non-zero.

dwDocHeight Specifies the document's height in twentieths of a point including
margins. It is used in the same manner as dwDocWidth.

nDocMarginxxx Specifies the document's margins in twentieths of a point. When a
document is loaded, the filter fills in these values. A value is set
to -1 if the document does not contain it. When a document is
saved, the filter stores these values in the document except a
value is set to -1.

Page 200 Data Structures

hDocTitle Specifies a document title. When a document is loaded, the filter
allocates a global memory buffer and copies the document title to
this buffer as a zero-terminated string. The user must free the
buffer with the GlobalFree function after using. When a
document is saved, the user must allocate this buffer when a title
should be saved in the document and free it after calling the save
operation. This structure member is only handled when the
dwUsageFlags member contains the FIO_DOCTITLE setting.

crDocBkGnd Specifies a document background color. When a document is
loaded, the filter fills this member with a color value or with
UNDEF_COLOR if it could not found a value. When a document
is saved, the filter stores this value in the document except when
it is set to UNDEF_COLOR.

lDocTextPos Specifies a text position in the document to where the document's
view should be scrolled. This value is provided by the filter after
a document is loaded.

crText Specifies a default text color. This member is only used as an
initialization value before a document is loaded. Its usage
depends on the settings of the dwUsageFlags member.

crTextBkGnd Specifies a default text background color. This member is only
used as an initialization value before a document is loaded. Its
usage depends on the settings of the dwUsageFlags member.

crLink Specifies a default text color for pieces of text that function as
hypertext links. This member is only used as an initialization
value before a document is loaded. Its usage depends on the
settings of the dwUsageFlags member.

wFontSize Specifies a base font size which is used to convert relative to
absolute size values. This member is only used as an initialization
value before a document is loaded.

lfDefFont Specifies a default proportional font. This member is only used as
an initialization value before a document is loaded. It can be an
empty string.

lfMonoFont Specifies a default mono-spaced font. This member is only used
as an initialization value before a document is loaded. It can be an
empty string.

Page 201Data Structures

dwUsageFlags Is a bit mask specifying the handling of some members. It can be
a combination of any of the following values:

Value Meaning

FIO_TEXTCOLOR The crText color is only used when a
text color is not specified in the
document.

FIO_FIXTEXTCOLOR The crText color overwrites text
colors specified in the document.

FIO_TEXTBKCOLOR The crTextBkGnd color is only used
when a text background color is not
specified in the document.

FIO_FIXTEXTBKCOLOR The crTextBkGnd color overwrites
the text background colors specified
in the document.

FIO_LINKCOLOR The crLink color is only used when a
text color for hypertext links is not
specified in the document.

FIO_FIXLINKCOLOR The crLink color overwrites text
colors for hypertext links specified in
the document.

FIO_LOADIMAGES Images contained in the document
are loaded.

FIO_UNDERLINELINKS Text parts that identify hypertext
links are underlined. This member is
only used as an initialization value
before a document is loaded.

FIO_DOCTITLE The filter fills or saves the hDocTitle
member.

FIO_ENABLELINKS The filter converts source and target
fields of hypertext links to
appropriate marked text fields.

FIO_ENABLEHIGHLIGHTS RTF only. The filter converts
all '\cbN' keywords into marked text
fields of the type FT_HIGHLIGHT.

Page 202 Data Structures

FIO_ENABLETOPICS RTF only. The filter converts all
'\sect' keywords into marked text
fields of the type FT_TOPIC.

dwOutDataSize Is used internally by Text Control.

hOutData Is used internally by Text Control.

lpDocPath Points to a zero-terminated character string specifying the file
path of the loaded or saved document. When a document is
loaded, the filter uses this path to search for resources.

reserved[252] Reserved field. 252 bytes which are reserved for future use. They
must be set to zero.

TXLOGFONT

The TXLOGFONT structure defines the attributes of a font.

typedef struct tagTXLOGFONT {
short lfHeight;
short lfWidth;
short lfEscapement;
short lfOrientation;
short lfWeight;
BYTE lfItalic;
BYTE lfUnderline;
BYTE lfStrikeOut;
BYTE lfCharSet;
BYTE lfOutPrecision;
BYTE lfClipPrecision;
BYTE lfQuality;
BYTE lfPitchAndFamily;
BYTE lfFaceName [LF_FACESIZE];

} TXLOGFONT;

The members of the TXLOGFONT structure have the same meanings as the
members of the LOGFONT structure.

TXLOGFONTEX

The TXLOGFONTEX structure contains additional font information.

typedef struct tagTXLOGFONTEX {

Page 203Data Structures

BYTE Reserved[16];
WCHAR lfUnicodeFaceName[LF_FACESIZE];

} TXLOGFONTEX;

The TXLOGFONTEX structure has the following fields:

Field Description

Reserved[16] A 16-byte array for future use. These values must be zero.

lfUnicodeFaceName Specifies the name of the font formatted as a Unicode
string.

TXOBJECT

The TXOBJECT structure defines the attributes of an object integrated in a Text
Control. This structure is used with the TX_OBJ_EMBED message.

typedef struct tagTXOBJECT {
WORD wTXVersion;
WORD wEmbedMode;
LONG lTextPos;
int xPosition;
LONG lyPosition;
POINT ptSize;
WORD wxScale;
WORD wyScale;
RECT Distances;
WORD wFlags;
LPCTSTR lpFileName;
int nBufLength;
int nFilterIndex;

} TXOBJECT;

The TXOBJECT structure members have the following meanings:

Field Description

wTXVersion Specifies the Text Control's current version number in the same
format returned by the TXGetVersion function, e.g. 420.

wEmbedMode Specifies the embedding mode. It can be one of the following
values:

Value Meaning

EOM_INSERT The object is handled like a single
character in the text.

Page 204 Data Structures

EOM_DISPLACELINE The text flow stops at the top border
of the object and continues at the
bottom border. Empty areas on the
left or right side of the object are not
filled.

EOM_DISPLACEWORD Same as EOM_DISPLACELINE but
empty areas on the left or right side
of the object are filled with text so
that a line’s text is interrupted by the
object.

lTextPos This parameter is only used if wEmbedMode is set to
EOM_INSERT. It specifies the text position where the object is
to be inserted. If lTextPos is -1 the object is inserted at the current
input position.

xPosition Specifies the object's horizontal position in twentieths of a point.
If wEmbedMode is set to EOM_INSERT this parameter is
ignored.

lyPosition Specifies the object's vertical position in twentieths of a point. If
wEmbedMode is set to EOM_INSERT this parameter is ignored.

ptSize Is not used for this message and should be set to zero.

wxScale Specifies a horizontal scaling factor as a percentage. It must be a
value between 10 and 250.

wyScale Specifies a vertical scaling factor as a percentage. It must be a
value between 10 and 250.

Distances Specifies the distances between the object and the text. If
wEmbedMode is set to EOM_INSERT this parameter is ignored.

wFlags Specifies a combination of the following values:

Value Meaning

ICF_NOMOVE The object cannot be moved by the
internal mouse interface.

ICF_NOSIZE The object cannot be sized by the
internal mouse interface.

Page 205Data Structures

If the object is an image these values can additionally be
combined with the following values:

Value Meaning

ICF_GRAYED The image is displayed in fast mode.

ICF_SAVEASDATA The Text Control saves the image
using its data instead of its filename.

ICF_BKGNDIMAGE Inserts an image that can serve as a
background for other sibling transpa-
rent controls.

lpFileName Points to a buffer of length nBufLength specifying the full DOS
path name of a file that contains an image. This parameter can be
zero if wParam specifies an externally created window.

nBufLength Specifies the length of the buffer lpFileName points to (Unicode:
in characters, otherwise: in bytes).

nFilterIndex Specifies an image filter as an index into the buffer returned by
the TX_GETIMAGEFILTERS message. The first pair of strings
has an index value of 1. If the buffer returned by
TX_GETIMAGEFILTERS is used to initialize the lpstrFilter
member of an OPENFILENAME structure, another member of
that structure, nFilterIndex, can be used to initialize this
parameter. See the Windows SDK for more information about the
OPENFILENAME structure.
If nFilterIndex is set to 0, the Text Control automatically tries to
select a filter.
This parameter can be zero if wParam specifies an externally
created window.

TXTABLE

The TXTABLE structure defines a table. It is always used in combination with
CELLPOSITION structures defining the table cells' positions. One
CELLPOSITION structure belongs to each cell, which means that
wRows*wColumns CELLPOSITION structures must follow each TXTABLE
structure.

typedef struct tagTXTABLE {

Page 206 Data Structures

WORD wRows;
WORD wColumns;
WORD wUserID;
BYTE reserved[6];

} TXTABLE;

The TXTABLE structure has the following fields:

Field Description

wRows Specifies how many rows a table has.

wColumns Specifies how many columns a table has.

wUserID Specifies a user-defined identifier set with the
TX_TABLE_CHANGEID message.

reserved[6] Reserved field. 6 bytes which are reserved for future use.
They must be set to zero.

TXTEXTDATAEX

The TXTEXTDATAEX structure contains additional font information.

typedef struct tagTXTEXTDATAEX {
BYTE Reserved[16];
LONG CodePage;

} TXTEXTDATAEX;

The TXTEXTDATAEX structure has the following fields:

Field Description

Reserved[16] A 16-byte array for future use. These values must be zero.

CodePage Specifies the code page that belongs to the text of this text
block when the text is saved in ANSI format.

Page 207Obsolete Message and Functions

8. Obsolete Messages and Functions
The following is a list of obsolete functions and messages. These functions and
messages are provided for compatibility with earlier versions of Text Control.
Newly developed applications should use the appropriate newer messages.

Function Replacement

GetErrorCode TXGetErrorCode

Message Replacement

TX_ADJUSTCLIPBOARD This message is no longer necessary. Therefore
there is no appropriate newer message.

TX_EXPORTTEXT TX_DATAOUT

TX_GETASCIITEXT TX_DATAOUT

TX_GETASCIITEXTSIZE -

TX_GETHANDLE TX_DATAOUT

TX_GETIMAGEFORMAT TX_OBJ_GETATTR

TX_IMPORTTEXTBUFFER TX_DATAIN

TX_IMPORTTEXTFILE TX_DATAIN

TX_SETHANDLE TX_DATAIN

TX_SETIMAGEFORMAT TX_OBJ_SETATTR

GetErrorCode

Syntax LONG GetErrorCode(void)

This function returns an internal error code, and can be called if the parent window
has received a TN_ERRCODE notification.

Page 208 Obsolete Messages and Functions

Return Value The return value contains an error number in the low-order word and a module
number in the high-order word. The module number is 1 for the programming tool
described in this manual but it can also be the number of other modules the Text
Control uses for special purposes.

The error numbers belonging to the Text Control module are described in the error
code table in appendix B. For a description of error codes that belong to other
module numbers see the corresponding reference manuals of these modules.

TX_ADJUSTCLIPBOARD

This message adjusts the font information of the internal clipboard format when the
user changes device-mode settings. It must be sent to the Text Control every time
the application receives a WM_DEVMODECHANGE message or a
WM_WININICHANGE message with the lParam parameter set to section
“windows”.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is zero if an error has occurred. Otherwise it is nonzero.

Comments If the application contains more than one Text Control window, this message is sent
to only one of them.

The application should send a TX_DEVMODECHANGE message to all Text
Control windows. For more information see the description of that message.

TX_EXPORTTEXT

This message exports the selected text of a Text Control in an external format.

Parameter Description

wParam Contains a DOS file handle. The converted data is written
to that file at the current file position. If wParam contains

Page 209Obsolete Message and Functions

HFILE_ERROR, the message returns a global data handle
for a buffer containing the converted data.

lParam Points to a null-terminated character string that specifies
the name of the filter library that shall be used to convert
the data. If the filter library is not in the same directory as
the TX library, the character string must contain the
complete path. Otherwise it must contain the name of the
filter, i.e. TX_RTF.DLL.

Return Value The return value contains a global data handle if no file handle has been specified.
Otherwise it contains a nonzero value. The return value contains zero if an error has
occurred.

If no selection exists, the complete text is exported.

If lParam is set to zero, the return value is a global data handle for a buffer
containing text formatted with the internal format described in appendix A.

The global data handle identifies a global memory block which contains the
exported data. It must be freed with the GlobalFree function when it is not longer
needed.

The selection can extend over several linked Text Controls.

The development of a filter is described in appendix C.

TX_GETASCIITEXT

This message copies the text belonging to the Text Control into a buffer provided
by the caller. The text is copied in a Windows compatible text format for example
to exchange it with a Windows Edit-Control. This message supports buffers larger
than 64 kB of text. To calculate the size of the buffer required the
TX_GETASCIITEXTSIZE message should be used. The buffer must be large
enough to accommodate a terminating zero character.

Parameter Description

wParam Specifies the maximum number of characters to be copied,
including the terminating zero character. If wParam is
zero the complete text contained by the Text Control is
copied.

Page 210 Obsolete Messages and Functions

lParam Points to the buffer that is to receive the text.

Return Value The return value is the number of bytes copied.

Comments For more information when to use this message see the comments section of the
TX_GETTEXT message.

32 bit: This message does not support Unicode.

TX_GETASCIITEXTSIZE

This message returns the length of the text (in bytes) associated with the Text
Control in a Windows compatible text format.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is the length of the text.

Comments 32 bit: This message does not support Unicode.

TX_GETHANDLE

This message returns the data handle for the buffer that holds the text of the Text
Control. It is always a global handle. This message is only supported if the Text
Control contains only a small amount of text up to 10 kB. For larger amounts of
text the WM_GETTEXT message can be used.

Parameter Description

wParam Is not used.

lParam Is not used.

Page 211Obsolete Message and Functions

Return Value The return value specifies the data handle. It is zero if the amount of text is too
large.

Comments 32 bit: The character string identified through the returned data handle is in
Unicode format.

TX_GETIMAGEFORMAT

If an image has been selected this message retrieves information about the
formatting of an image. The Text Control sends a TN_IMAGECLICKED
notification message if an image has been selected.

Parameter Description

wParam Is not used.

lParam Points to an IMAGEFORMAT data structure which is defined as
follows:

typedef struct tagIMAGEFORMAT {
POINT ptPosition;
POINT ptSize;
POINT ptMaxPosition;
WORD wScale;
WORD wFlags;

} IMAGEFORMAT;

The IMAGEFORMAT structure has the following fields:

Field Description

ptPosition Specifies the image's horizontal position in
twentieths of a point. The y-coordinate of this
POINT structure is not used.

ptSize Specifies the image's unscaled horizontal and
vertical dimensions in twentieths of a point.

ptMaxPosition Specifies the maximum horizontal position in
twentieths of a point. The y-coordinate of this
POINT structure is not used.

wScale Specifies the image's scaling factor in percent.
This is a value between 10 and 250.

Page 212 Obsolete Messages and Functions

wFlags Can contain a combination of the following
flags:

Value Meaning

ICF_GRAYED The image is displayed
in fast mode.

ICF_SAVEASDATA The Text Control saves
the image by its data
instead of its filename.

Return Value The return value is zero if an error has occurred or if no image is currently selected
or registered. Otherwise it is nonzero.

Comments The IC Image-Control programming tool is needed for this message.

TX_IMPORTTEXTBUFFER

This message imports text and format data which is given in an external format.
The text is inserted at the current input position.

Parameter Description

wParam Specifies a global data handle. The data to be imported
will be read out of the memory block which is identified
by the data handle.

lParam Points to a null-terminated character string that specifies
the name of the filter library that is to be used to convert
the data. If the filter library is not in the same directory as
the TX library, the character string must contain the
complete path. Otherwise it must contain the name of the
filter, i.e. TX_RTF.DLL. If lParam is zero, the buffer
specified by wParam must contain text formatted with the
Text Control's internal format according to appendix A.

Return Value The return value value is zero if an error has occurred, otherwise it is nonzero.

Comments The development of a filter is described in appendix C.

Page 213Obsolete Message and Functions

TX_IMPORTTEXTFILE

This message imports text and format data, given in an external format, from a file.
The text is inserted at the current input position.

Parameter Description

wParam Specifies a DOS file handle. The data to be imported will
be read from that file at the current file position.

lParam Points to a null-terminated character string that specifies
the name of the filter library which is to be used to convert
the data. If the filter library is not in the same directory as
the TX library, the character string must contain the
complete path. Otherwise it must contain the name of the
filter, i.e. TX_RTF.DLL.

Return Value The return value value is zero if an error has occurred, otherwise it is nonzero.

Comments The development of a filter is described in appendix C.

TX_SETHANDLE

This message sets a new data handle associated with the text contained in the Text
Control. It has to be a global handle. The Text Control does not free the old data
handle. This handle can be obtained using the TX_GETHANDLE message. A new
handle is only set if the TX_GETHANDLE message returns a valid text handle.

Parameter Description

wParam Contains the new handle. The buffer identified by this
handle must contain a null-terminated string. The size of
the buffer is not limited.

lParam Is not used.

Return Value The return value is:

Page 214 Obsolete Messages and Functions

Value Meaning

TR_ERR, An error has occurred.

TR_UNCHANGED, The text is too long. The limit is the current text limit
value set by the TX_LIMITTEXT message.

TR_CHANGED, The new handle has been set.

Comments With this message all format information gets lost. The Text Control uses the first
font of the old text to display the new one. The Text Control is not refreshed.

If the return value is TR_CHANGED the new handle belongs to the Text Control
and can no longer be used by the calling application. The old handle no longer
belongs to the Text Control and must be freed by the calling application.

32 bit: The character string identified through the data handle must be in Unicode
format.

TX_SETIMAGEFORMAT

If an image has been selected this message sets new formatting parameters for the
image. The Text Control sends a TN_IMAGECLICKED notification message if an
image has been selected.

Parameter Description

wParam Is not used.

lParam Points to an IMAGEFORMAT data structure. The
structure members wScale and wFlags can be used to
format the image. All other members are ignored. See the
description of the TX_GETIMAGEFORMAT message for
more information about the IMAGEFORMAT data
structure.

Return Value The return value is:

TR_ERR if an error has occurred or if no image is currently selected
or registered. It is also TR_ERR if a scaling factor is
specified so that the image becomes too large for the Text
Control's window size.

Page 215Obsolete Message and Functions

TR_UNCHANGED if nothing could be changed.

TR_CHANGED if the new values have been set and updated.

Comments The IC Image-Control programming tool is needed for this message.

Page 216 The Text Control Text Format

Appendix A

The TX Text Control Text Format

TX Text Control text format is described as follows. Text Control supports all prior
versions of the format, but, to maximize working speed, the current format should
be used. The data structures used with the text format are described in chapter 7
"Data Structures".

The text and formatting data is structured through several data blocks. The main
data blocks are:
1. Text and formatting data structured in blocks of text
2. Fixed positioned objects
3. Document data

A certain format description must contain at least one block of text. Fixed
positioned objects and document data are optional and exist only if the whole
contents of a Text Control are saved.

The format has the following form:

WORD wVersion;
WORD wTextBlocks;
DWORD dwTBOffset;
WORD wFixedObjects;
DWORD dwFxOffset;
BYTE cTextBlocks[];
BYTE cFixedObjects[];
LONG lReserved;
DWORD dwDocDataSize;
BYTE cDocData[];
WORD wDocSections;
BYTE cDocSections[];

These fields have the following meanings:

Field Description

wVersion Specifies the version number of the text format. Currently
the number is 700.

wTextBlocks Is the number of text blocks the cTextBlocks[] array

Page 217The Text Control Text Format

contains.

dwTBOffset Specifies the offset, in bytes, from the beginning of the
format description to the beginning of the cTextBlocks[]
data block.

wFixedObjects Specifies the number of fixed positioned objects the
cFixedObjects[] data block contains. This value is zero
when the cFixedObjects[] data block is omitted.

dwFxOffset Specifies the offset, in bytes, from the beginning of the
format description to the beginning of the cFixedObjects[]
data block. This value is zero when no cFixedObjects[]
data block exists.

cTextBlocks[] This data block contains the text and formatting data
structured as blocks of text. The number of these blocks is
specified by wTextBlocks. Further information about this
data block's internal structure can be found later on in this
chapter.

cFixedObjects[] This data block contains FIXEDOBJECT data structures
each of which is followed by the object's data. When no
object exists this block is omitted.

lReserved This value is for future use and must be zero. This value
cannot be omitted.

dwDocDataSize Specifies the size, in bytes, of the cDocData[] data block.
This value cannot be omitted and must be zero when the
cDocData[] data block does not exist.

cDocData[] This data block contains general document data. Further
information about this data block's internal structure can
be found later in this chapter.

wDocSections Is the number of document sections the cDocSections[]
array contains. This value cannot be omitted and must be
zero if the cDocSections[] data block does not exist.

cDocSections[] This data block contains the document's section data,
structured as an array of sections. The number of sections
is specified by wDocSections. Further information about
this data block's internal structure can be found later on in
this chapter.

Page 218 The Text Control Text Format

cTextBlocks[]

The cTextBlocks[] data block contains a number of blocks of text, each of which is
structured in the following form:

DWORD dwTextSize;
BYTE szText[];
DWORD dwListSize;
WORD wFontBlocks;
WORD wLogFonts;
WORD wPgBlocks;
WORD wParagraphs;
WORD wImages;
WORD wTables;
WORD wCellAttrEntries;
WORD wFieldDataEntries;
WORD fAddData;
FONTBLOCK fbFontBlocks[];
TXLOGFONT lfLogFonts[];
PGBLOCK pbPgBlocks[];
PARAGRAPH pgParagraphs[];
BYTE ImageData[];
BYTE TableData[];
CELLATTR caCellAttr[];
BYTE FieldData[];
TXLOGFONTEX lfLogFontsEx[];
TXTEXTDATAEX TextDataEx;

This structure has the following fields:

Field Description

dwTextSize The low-order word specifies the size of the following text
string (in characters when text is stored in Unicode format
and in bytes when text is stored in ANSI format) without
the terminating zero. To optimize the time for loading a
text file, the size of the text string should be between
10000 and 20000 characters.
The high-order word contains zero when the following text
string is in ANSI format (single- or double-byte) and it
contains 2 when szText is a Unicode string (2 bytes per
character).
When the text string contains double-byte characters all
offsets in the following format lists are still offsets to
characters and not byte-offsets in this string.

Page 219The Text Control Text Format

szText[] Is a zero-terminated character string containing the text.
The size of the string (Unicode: in characters, otherwise in
bytes) including the terminating zero is
LOWORD(dwTextSize) + 1. The format (Unicode or
ANSI) is specified through the high-order word of the
dwTextSize member.

TX uses the following special character codes:

Code Description

01H Image.

09H Tabulator.

0AH End of paragraph.

0BH Forced end of line (no end of
paragraph).

0CH Forced end of page.

1EH End of line hyphen included with a
user-defined word-division function.

1FH End of line hyphen included with the
keyboard.

A0H Non-breaking space.

dwListSize Specifies the size of the following format data (in bytes)
including the beginning word values.

wFontBlocks Specifies the number of FONTBLOCK structures the
fbFontBlocks[] array contains.

wLogFonts Specifies the number of TXLOGFONT structures the
lfLogFonts[] array contains.

wPgBlocks Specifies the number of PGBLOCK structures the
pbPgBlocks[] array contains.

wParagraphs Specifies the number of PARAGRAPH structures the
pgParagraphs[] array contains.

wImages Specifies the number of images the ImageData[] array
contains.

Page 220 The Text Control Text Format

wTables Specifies the number of TXTABLE structures contained
by the TableData[] block.

wCellAttrEntries Specifies the number of CELLATTR structures contained
by the caCellAttr[] array.

wFieldDataEntries Specifies the number of FIELDDATA structures contained
by the FieldData[] block.

fAddData Is a flag field specifying additional data following the
FieldData byte array. It can be a combination of the
following values:

Code Description

0001H When this bit is set the textblock
structure contains an array of
TXLOGFONTEX structures which
follows the FieldData[] array.

0002H When this bit is set the textblock
structure contains a
TXTEXTDATAEX structure which
follows the lfLogFontsEx[] array.

fbFontBlocks[] Is an array of FONTBLOCK structures.

lfLogFonts[] Is an array of TXLOGFONT structures.

pbPgBlocks[] Is an array of PGBLOCK structures.

pgParagraphs[] Is an array of PARAGRAPH structures.

ImageData[] Is an array of bytes, which contains an array of
IMAGEDATA structures, each of which is followed by
the image data itself. The first image in this list of images
belongs to the first 01H control character in the szText
array, the second image belongs to the second 01H
character and so on.

TableData[] Is an array of bytes, which contains an array of TXTABLE
structures, each of which is followed by CELLPOSITION
structures describing the table cell's positions in the text
and their geometric positions. The table's text is contained
in the szText[] array. Each cell's text must end with a
paragraph end control character (0AH).

Page 221The Text Control Text Format

caCellAttr[] Is an array of CELLATTR structures.

FieldData[] Is an array of bytes which contains FIELDDATA
structures, each of which is followed by the field data
itself.
The entries in this array are in the following order:
The array begins with all entries with user-defined data in
the same order, the fields appear in the text.
The array ends with all entries that contain data belonging
to fields of a special type, for example link information.
These entries are also in the same order as the fields
appear in the text.

lfLogFontsEx[] Is an array of TXLOGFONTEX structures. The size of
this array is given through wLogFonts. This array exists
only when it is specified through fAddData.

TextDataEx Is a data structure containing additional text data. This
structure exists only when it is specified through
fAddData.

cDocData[]

The cDocData[] data block contains general document data and is structured in the
following form:

WORD wDocHeaderSize;
WORD wReserved;
DWORD dwDocWidth;
DWORD dwDocHeight;
short nDocMarginLeft;
short nDocMarginTop;
short nDocMarginRight;
short nDocMarginBottom;
COLORREF crDocBkGnd;
LONG lDocTextPos;
WORD wDocTitleSize;
WORD wDocBasePathSize;
BYTE reserved[16];
BYTE szDocTitle[];
BYTE szDocBasePath[];

This structure has the following fields:

Page 222 The Text Control Text Format

Field Description

wDocHeaderSize Specifies the size of this data block without the variable
byte-arrays at the end.

wReserved 2 bytes reserved for future use. This member must be set
to zero.

dwDocWidth Specifies the width of a document's page in twentieths of a
point including margins. This value is set to zero, if it is
undefined.

dwDocHeight Specifies the height of a document's page in twentieths of
a point - including margins. This value is set to zero, if it is
undefined.

nDocMarginxxx Specifies the margins of a document's page in twentieths
of a point. When a value is undefined it is set to -1.

crDocBkGnd Specifies the document's background color. This value is
set to UNDEF_COLOR, if it is undefined.

lDocTextPos Specifies the document's current input position. The
position zero is the position in front of the first character.

wDocTitleSize Specifies the size, in bytes, of the szDocTitle[] string
including the terminating zero character.

wDocBasePathSize Specifies the size, in bytes, of the szDocBasePath[] string
including the terminating zero character.

reserved[16] 16 bytes reserved for future use, which must be set to zero.

szDocTitle[] Is a zero-terminated string specifying the document's title.
This array exists only, if the wDocTitleSize member
contains a non-zero value. This string is always in Unicode
character format.

szDocBasePath[] Is a zero-terminated string specifying the document's base
path. This array exists only, if the wDocBasePathSize
member contains a non-zero value. This string is always in
Unicode character format.

Page 223The Text Control Text Format

cDocSection[]

The cDocSection[] data block contains a number of document sections, each of
which is structured in the following form:

DWORD dwSectionDataSize;
DWORD dwSectionHeaderSize;
WORD fElements;
DWORD reserved;
short nHeaderTop;
short n1stHeaderTop;
short nFooterBottom;
short n1stFooterBottom;
BYTE cHeaderTextBlock[];
BYTE c1stHeaderTextBlock[];
BYTE cFooterTextBlock[];
BYTE c1stFooterTextBlock[];

This structure has the following fields:

Field Description

dwSectionDataSize Specifies the size, in bytes, of this section's data including
this member.

dwSectionHeaderSizeSpecifies the size, in bytes, of this section's header. The
header starts with the dwSectionDataSize member and
ends with the n1stFooterBottom member.

fElements Is a flag field specifying the elements, that this section
contains. It can be a combination of the following values:

Code Description

TF_HF_HEADER This section's data block has the
cHeaderTextBlock[] array.

TF_HF_1STHEADER This section's data block has the
c1stHeaderTextBlock[] array.

TF_HF_FOOTER This section's data block has the
cFooterTextBlock[] array.

TF_HF_1STFOOTER This section's data block has the
c1stFooterTextBlock[] array.

reserved 4 bytes reserved for future use. This member must be set

Page 224 The Text Control Text Format

to zero.

nHeaderTop Specifies the distance between the top of the header and
top of the page in twentieths of a point. If this value is
undefined, it is set to -1.

n1stHeaderTop Specifies the distance between the top of the first page's
header and the top of the first page in twentieths of a
point. If this value is undefined, it is set to -1.

nFooterBottom Specifies the distance between the bottom of the footer
and the bottom of the page in twentieths of a point. If this
value is undefined, it is set to -1.

n1stFooterBottom Specifies the distance between the bottom of the first
page's footer and the bottom of the first page in twentieths
of a point. If this value is undefined, it is set to -1.

cHeaderTextBlock[] This data block contains the text and formatting data of
this section's header. It is structured in the same form as
one text block of the main text. This block exists only, if
the appropriate bit in fElements is set.

c1stHeaderTextBlock[] This data block contains the text and formatting data of
this section's first page header. This block exists only, if
the appropriate bit in fElements is set.

cFooterTextBlock[] This data block contains the text and formatting data of
this section's footer. This block exists only, if the
appropriate bit in fElements is set.

c1stFooterTextBlock[] This data block contains the text and formatting data of
this section's first page footer. This block exists only, if
the appropriate bit in fElements is set.

Format Example

The following example shows a short formatted text and the text dump of the text
format for this text. The text is written in Arial, character size 12, with a bold and
an underlined part and has a left aligned and a centered paragraph. The text dump
can be obtained with the TX_DATAOUT or the TX_COPYDATA message.

Page 225The Text Control Text Format

Example This simple formatted text contains

two fonts and two paragraphs.

Text Dump Field Value (hexadecimal)

wVersion 2BC

wTextBlocks 1

dwTBOffset E

wFixedObjects 0

dwFxOffset 0

dwTextSize 41

szText[] 54 68 69 73 20 73 69 6D 70 6C 65 20 66 6F 72 6D

61 74 74 65 64 20 74 65 78 74 20 63 6F 6E 74 61

69 6E 73 0A 74 77 6F 20 66 6F 6E 74 73 20 61 6E

64 20 74 77 6F 20 70 61 72 61 67 72 61 70 68 73

2E 00

dwListSize 12E

wFontBlocks 3

wLogFonts 2

wPgBlocks 2

wParagraphs 2

wImages 0

wTables 0

wCellAttrEntries 0

wFieldDataEntries 0

fAddData 0

fbFontBlocks[3] 1 1 C 0 40000000 0 0 0

2 D E 0 40000000 0 0 0

Page 226 The Text Control Text Format

1 1B 27 0 40000000 0 0 0

lfLogFonts[2] FF10 0 0 0 190 0 0 0 0

0 0 02 22 "Arial"

FF10 0 0 0 2BC 0 1 0 0

0 0 02 22 "Arial"

pbPgBlocks[2] 1 1 24

2 25 42

pgParagraphs[2] 0 0 0 0 0 0 64 0 0

0

...(42 bytes: the tablist of paragraph 1)

8000 0 0 0 0 0 64 0 0

0

...(42 bytes: the tablist of paragraph 2)

lReserved 0

dwDocDataSize 0

wDocSections 0

Error Code Table Page 227

Appendix B
This appendix describes the error codes returned by the GetErrorCode or
TXGetErrorCode function. The error codes described here belong to module
number 1 which is the Text Control module number and module number 5 which is
the module handling OLE objects. For information about error codes associated
with other modules see the reference manuals for those modules.

Each code has a group code and a location code. The group code describes a
general error condition for example when the program runs out of memory and the
location code describes the location where the error has been occurred. In most
cases it is sufficient for an application to handle the group code. TXGetErrorCode
returns both the group and the location code while GetErrorCode only returns the
location code.

Group Codes

Code Value Description
DBS_E_UNGROUPED 00 A special error condition has occurred. See the

description of the location code for more
information.

DBS_E_OUTOFMEMORY 01 Not enough storage is available to complete the
operation.

DBS_E_NOMEMORYACCESS 02 Invalid access to a memory location.

DBS_E_UNEXPECTED 03 Unexpected failure.

DBS_E_FILEIO 04 A file read/write operation cannot be
performed.

DBS_E_64K 05 An operation cannot be performed because
needed memory blocks must not be larger than
64 kByte.

DBS_E_CLIPBOARD 06 A clipboard operation cannot be performed.
The clipboard cannot be opened or emptied or
clipboard data cannot be accessed.

DBS_E_DLLNOTLOADED 07 An operation cannot be performed because a
helper DLL or filter needed for the operation
cannot be found or loaded.

Page 228 Error Code Table

DBS_E_DLLINCOMPATIBLE 08 An operation cannot be performed because a
helper DLL or filter needed for the operation is
too old.

DBS_E_DLLOBSOLETE 09 A helper DLL or filter needed for the operation
is obsolete but can be used for the operation.

DBS_E_INVALIDARG 0A One or more arguments are invalid.

DBS_E_NOTIMPL 0B A needed feature is not implemented.

DBS_E_INVALIDFORMAT 0C An operation cannot be performed because data
has an invalid format.

Error Code Table (TX kernel module)

The following location codes are sorted according to its group codes.

DBS_E_UNGROUPED

Code Description
040C Data of fixed positioned object cannot be saved. The WMX_COPYDATA message

failed.

0801 Unable to create a new Image-Control window because the requested window size
is too large.

0A00 Error in CreateTextControl, the given window size is too small.

0A01 Error in CreateTextControl, the given window size is too large.

0B06 Unable to get image data from the Image-Control module.

0C02 Headers and footers are not initialized.

0E00 The requested window size is too small. Use the WM_GETMINMAXINFO
message to obtain information about the minimum window size before resizing.

0E01 Unable to zoom the TX window. The window size cannot be zoomed further.

100A The client area of the Text Control window is too small to display at least one line
of text. Use the WM_GETMINMAXINFO message to obtain information about
minimum sizes.

1408 Error while calling TX_SETDEVICE, device unknown.

Error Code Table Page 229

1901 Text Control windows cannot be linked. The specified window handle is not a Text
Control window handle.

1902 Text Control windows cannot be linked. The selected combination of connections
is not possible.

1903 Full message queue. Text cannot be formatted.

1904 The following window cannot be connected because the specified Text Control has
either a formatting area set with the TX_SETTEXTAREA message or the
TF_AUTOEXPAND mode has been selected.

1D01 Filter error: the text data to be imported has the wrong text format.

1D02 Filter error: bad token in data.

1D03 Filter error: unable to allocate enough memory

1D04 Filter error: unable to read data.

1D05 Filter error: unable to write data.

1D06 Filter error: unable to open file.

1D07 Filter error: input file too big.

1D08 Filter error: unsupported part of data.

1D09 Filter error: internal filter error.

1D0A Filter error: filter too old for the specified format.

1F04 Full message queue. The text operation was too complex. The SetMessageQueue
function can be used to avoid this error.

2800 Zoom operation could not be performed. The Text Control becomes too large.

2B00 Full message queue. WM_CLEAR operation could not be performed.

DBS_E_FILEIO

Code Description
0405 File error, unable to read format data from a file.

0407 File error, unable to write format data into a file.

040E Unexpected error. Invalid data size.

0415 Data cannot completely read from file.

0416 Data cannot completely read from buffer.

3308 Cannot read data formatted in the Text Control's text format from a specified file.

330A Cannot write data to a specified file.

Page 230 Error Code Table

DBS_E_64K

Code Description
0400 Unable to load or paste the given text. The size of the text is more than 64kB for a

single Text Control or the format is unknown to TX.

0B0E Format data part more than 64 kB. Use smaller blocks of text.

1905 The text size of linked windows is limited to 64 kByte per window.

1907 Text cannot be completely inserted. The text of a single Text Control overflows the
64 kB limit.

DBS_E_CLIPBOARD

Code Description
1403 Unable to empty the clipboard during the TX_ADJUSTCLIPBOARD message.

1405 Clipboard data not available, GlobalLock failure.

1407 Unable to allocate enough memory to adjust the clipboard data to a new output
device.

1600 Unable to empty the clipboard.

1601 SetClipboardData failed.

1602 SetClipboardData failed.

1603 OpenClipboard failed, the clipboard is still open.

1604 Clipboard data not available, GlobalLock failure.

1611 The clipboard contains an old TX format. Old clipboard formats are not supported.

1612 OpenClipboard failed.

DBS_E_DLLNOTLOADED

Code Description
0804 The Image-Control module IC.DLL or IC32.DLL could not be loaded.

1B00 Filter not available, LoadLibrary failed.

2C06 The library file TXOBJ32.DLL cannot be found.

2C0E The library file WNDTLS32.DLL or WNDTOOLS.DLL cannot be found.

Error Code Table Page 231

DBS_E_DLLINCOMPATIBLE

Code Description
0803 The Image-Control module IC.DLL or IC32.DLL must be a newer version.

1B01 Unknown filter or filter function not found.

1B04 The specified text filter does not contain the extended interface functions
TX_Ex_Export and TX_Ex_Import .

1B05 Filter too old: GetFilterInfo not available.

1B06 The text filter cannot process Unicode strings.

2C08 The library file TXOBJ32.DLL must be a newer version.

2C09 Invalid library file TXOBJ32.DLL. Function not found.

2C0B The library file WNDTLS32.DLL or WNDTOOLS.DLL must be a newer version.

DBS_E_DLLOBSOLETE

Code Description
0802 The Image-Control module IC.DLL or IC32.DLL is obsolete but can be used.

2C07 The library file TXOBJ32.DLL is obsolete but can be used.

2C0F The library file WNDTLS32.DLL or WNDTOOLS.DLL is obsolete but can be
used.

DBS_E_INVALIDARG

Code Description
0300 The TX_FIELD_SETDATA message has been used with invalid arguments. Either

the dwData member or the dwDataSize and lpdata members of the
FIELDSETDATA data structure must be set to zero.

0308 The TX_FIELD_SETDATA message has been used with invalid arguments. Either
the dwData member or the dwDataSize and lpdata members of the
FIELDSETDATA data structure must be set to zero.

030D TX_FIELD_SETTYPE: invalid parameter. Data size not specified.

030E TX_FIELD_SETTYPE: invalid parameter. Specified data not necessary.

030F TX_FIELD_SETTYPE: invalid parameter. Specified data invalid for specified
field type.

0413 No file or buffer specified.

Page 232 Error Code Table

0900 WM_GETTEXT/TX_GETTEXT messages: The specified buffer is too small.

0901 TX_SETLINEANDCOL message: Invalid page number.

0902 TX_SETLINEANDCOL message: Invalid line number.

0903 TX_SETLINEANDCOL message: Invalid column number.

0C01 The position value for the specified header or footer is invalid.

1400 Invalid new text handle sent with the TX_SETHANDLE message.

1E00 TX_FIELD_GETTEXT message: Invalid buffer length.

1E01 The field text cannot be set to an empty string, as this would result in two empty
fields being at the same text input position.

1E02 Fields of the types FT_LINKTARGET and FT_TOPIC must not contain any text.

1E03 TX_FIELD_SETTYPE: The specified field could not be found.

1E04 TX_FIELD_SETTYPE: Fields of the types FT_LINKTARGET,
FT_PAGENUMBER and FT_TOPIC must not contain any text.

1E05 TX_FIELD_SETTYPE: Fields of the types FT_PAGENUMBER can only be
inserted in headers or footers.

2100 The specified page height for printing is too small. The height must be large enough
for at least one line of text.

2601 The specified text area could not be set because the width is less than the minimum
width.

2602 The specified text area could not be set because the height is less than the minimum
height.

2C01 Fixed positioned object cannot be embedded. Its size is too large.

2C02 Fixed positioned object cannot be embedded. Its size is too large.

2C03 Fixed positioned object cannot be embedded. Its position is outside the Text
Control's client area or page rectangle.

2C04 Fixed positioned object cannot be embedded. Invalid embedding mode.

2C05 External window cannot be inserted as external object. The window must be a child
window.

3300 Invalid parameter specified with the TX_DATAIN message.

3309 Invalid parameter specified with the TX_DATAOUT message.

330B This Text Control version does not support the specified format.

Error Code Table Page 233

DBS_E_NOTIMPL

Code Description
2101 TX_PRINT cannot be used for Text Controls with a set text area. Use the

TX_PRINTPAGE message.

2102 TX_PRINT cannot be used for metafiles. Use the WM_PAINT message and see
chapter 1.13 for more information.

2600 Error while calling the TX_SETTEXTAREA message. The specified Text Control
is either connected to a following window or the TF_AUTOEXPAND mode has
been selected.

2C0C OLE objects cannot be used with the 16 bit Text Control.

DBS_E_INVALIDFORMAT

Code Description
0406 Cannot convert old prior image format.

0410 The text format does not start with a valid version number.

0414 Document data part invalid.

0B12 TF_FORMAT_UNICODE is only supported through the Text Control 32 bit
version.

0B14 A Unicode character string cannot be converted to ANSI.

1B03 TX_IMPORTTEXT* messages: Unable to convert old format, the format is too
old.

1C03 Loading text in Unicode format is only supported through the Text Control 32 bit
version.

2001 Image has no reference in the text buffer.

2004 The 16 bit Text Control does not support Unicode.

2006 A multibyte character string cannot be converted to Unicode.

2009 Format error, unknown format, use a valid TX format.

200B Format error, unknown format. Use a valid TX format.

200C Format error, text different from format data.

3304 Cannot insert data formatted in the Text Control's text format with the
TX_DATAIN message. The format is too old. Use the TX_LOAD message for this
format.

Page 234 Error Code Table

3305 Cannot insert data formatted in the Text Control's text format with the
TX_DATAIN message. The format contains an invalid text size. Use the
DebugTXFormat function and see appendix G for more information.

3306 Cannot insert data formatted in the Text Control's text format with the
TX_DATAIN message. The format contains an invalid format data size. Use the
DebugTXFormat function and see appendix G for more information.

DBS_E_OUTOFMEMORY

Code Description
0100 Unable to allocate enough local memory.

0103 Unable to allocate enough local memory.

0202 Unable to allocate enough memory to save the text.

0204 Unable to create any more paragraphs.

0301 Unable to allocate enough memory to store data for a marked text field.

0304 Unable to allocate enough memory to store data for a marked text field.

030C Unable to allocate enough memory to store data for a marked text field.

0401 Unable to allocate enough memory to load the text from a file or to paste the text
with the TX_PASTEDATA message.

0403 Unable to allocate enough memory to load the format data from a file or to paste
the format data with the TX_PASTEDATA message.

0408 Unable to allocate enough memory to convert an earlier TX format.

040A Unable to allocate enough memory to save fixed positioned objects.

040D Unable to allocate enough memory to load fixed positioned objects.

0412 Unable to allocate enough memory for saving document data.

0503 Unable to allocate local memory for the font manager.

0701 Unable to get data from the font manager during the TX_SETFONT message.

0703 Unable to allocate enough memory to alter font information.

0705 Unable to allocate enough memory to initialize the font manager.

0A03 Unable to expand the global fontlist.

0B00 Unable to allocate enough memory to create data for the internal text format.

0B09 Unable to allocate enough memory.

0B0D Unable to allocate enough memory.

0B0F Unable to allocate enough memory.

Error Code Table Page 235

0B10 Unable to allocate enough memory.

0B13 Unable to allocate enough memory to convert a Unicode string to ANSI.

0C00 Not enough memory available to enable headers and footers.

0D01 Unable to allocate enough memory.

0D04 Unable to allocate enough memory to expand internal data lists.

0F00 Unable to allocate enough memory to expand the list of line parameters.

1002 Unable to allocate enough memory.

1003 Unable to expand the line list buffer.

1004 Unable to allocate enough memory.

1200 Unexpected error, formatting process could not be performed.

1300 Unable to allocate enough local memory.

1401 Unexpected error, invalid local handles.

1406 Unable to allocate enough memory to get data from the clipboard.

1409 Unable to allocate enough local memory.

1A00 Cannot allocate enough memory to switch on word-division.

1B02 TX_IMPORTTEXT* messages: Unable to convert old format, not enough
memory.

1C00 Unable to allocate enough memory to insert a large amout of text.

1C01 Unable to allocate enough memory to convert an ASCII string into the internal text
format.

1C02 Unable to allocate enough memory to save the remainder of the text over 64 kB.

2002 Unable to allocate enough memory to insert format data.

2003 Unable to allocate enough memory.

2005 Unable to allocate enough memory to convert a multibyte character string to
Unicode.

2010 Unable to allocate enough memory to insert format information.

2300 Unable to adjust the character spacing buffer. This can happen if the text is not
formatted correctly.

2303 Unable to allocate enough local memory.

2700 Unable to allocate enough local memory.

2705 Unable to allocate enough memory.

2706 Unable to allocate enough memory.

2707 Unable to allocate enough memory.

Page 236 Error Code Table

2708 Unable to allocate enough memory.

270A Unable to allocate enough memory.

270B Unable to allocate enough memory.

270C Unable to allocate enough memory.

270D Unable to allocate enough memory.

2710 Unable to allocate enough memory.

2711 Unable to allocate enough memory.

2712 Unable to allocate enough memory.

2713 Unable to allocate enough memory.

2715 Unable to allocate enough memory.

2717 Unable to allocate enough memory.

271A Cannot allocate enough memory to perform table operation.

271C Cannot allocate enough memory to perform table operation.

2A00 Unable to allocate enough memory to copy TX data.

2A01 Unable to allocate enough memory to copy TX data.

2A05 Unable to allocate enough memory.

2D05 Unable to allocate enough memory to expand the object reference list.

2F00 Not enough memory available to perform search operation.

2F01 Not enough memory available to perform replace operation.

3100 Unable to allocate enough memory to add a new table.

3200 Cannot allocate enough local memory to insert a new table.

3302 Unable to allocate enough memory to read data from the specified text file.

3307 Cannot insert data formatted in the Text Control's text format with the
TX_DATAIN message. Cannot allocate enough memory to copy the data.

DBS_E_NOMEMORYACCESS

Code Description
0203 Current text not available, GlobalLock failure.

0205 Current text not available, GlobalLock failure.

0302 Field data list not available, GlobalLock failure.

0306 Unexpected error. Field data list not available, GlobalLock failure.

030A Unexpected error. Field data list not available, GlobalLock failure.

Error Code Table Page 237

0402 Allocated memory block not available, GlobalLock failure.

0404 Allocated memory block not available, GlobalLock failure.

040B Allocated memory block not available, GlobalLock failure.

0500 Font information not available, GlobalLock failure.

0501 Unexpected error, invalid local handle.

0506 Invalid image list.

0B01 Unexpected text format data not available, GlobalLock failure.

0B08 Current text not available, GlobalLock failure.

0B0A Memory block not available, GlobalLock failure.

0D02 Allocated memory block not available, GlobalLock failure.

0D03 Unexpected data lists not available, GlobalLock failure.

0D05 Unexpected data lists not available, GlobalLock failure.

0D08 Unexpected data lists not available, GlobalLock failure.

0F01 Line list data not available. GlobalLock failure.

0F02 Line list data not available. GlobalLock failure.

1000 Unexpected display error, data not available.

1001 Unexpected display error, data not available.

1007 Unexpected display error, data not available.

1008 Unexpected display error, data not available.

1009 Unexpected display error, text data not available.

1402 New text not available, GlobalLock failure.

2000 New text to insert not available, GlobalLock failure.

2007 Unable to set format information, GlobalLock failure.

2011 Format information not available. GlobalLock failure.

2301 Character spacing information not available. GlobalLock failure.

2714 Unexpected error, data buffers not available.

2716 Unexpected error, data buffers not available.

2718 Unexpected error, data buffers not available.

2719 Unexpected error, table cell list not available.

271B Unexpected error, table cell list not available.

271D Unexpected error, table cell list not available.

2C00 Unexpected error, global object list not available.

Page 238 Error Code Table

2C0D Unexpected error, global object list not available.

3101 Unexpected error, table cell list not available.

3303 Cannot read from a specified text file.

DBS_E_UNEXPECTED

Code Description
0201 Unexpected error, invalid text handle.

0303 Unexpected error, field identifier mismatch.

0305 Unexpected error, field data list not available.

0307 Unexpected error, field identifier not found.

0309 Unexpected error, field data list not available.

030B Unexpected error, field identifier not found.

0409 Unexpected error, invalid object count.

0504 Unable to get data from the font manager.

0505 Unable to create an inserted font.

0700 Unable to get data from the font manager during the TX_ENLARGEFONT
message.

0702 Unable to get data from the font manager during the TX_SETFONTATTR
message.

0704 Unable to get data from the font manager.

0706 Unable to initialize the font manager.

0707 Unable to get data from the font manager during the TX_GETFONTATTR
message.

0708 Unable to lock local fontlist.

0709 Global fontlist not available.

0800 Unable to create a new Image-Control window.

0A02 Unable to create a new TX window, CreateWindow failed.

0A04 Invalid formatting device.

0A05 Unexpected error, invalid count of fixed positioned objects.

0B02 Unexpected error, invalid local handle.

0B03 Unexpected error, unable to get font data.

0B04 Unexpected error, invalid local handle.

Error Code Table Page 239

0B05 Unexpected error, unable to get paragraph data.

0B07 Unexpected error, invalid text description.

0B0B Unexpected error, table list not available.

0B0C Unexpected error, table attribute list not available.

0B11 Unexpected error, invalid handle.

0D00 Unexpected error, invalid pointer.

0D06 Unexpected error, unknown object.

0D07 Unexpected error, invalid global handle.

1005 General internal error, data lost.

1202 Unexpected error, paragraph data lost.

1205 Unexpected error, paragraph data lost.

1900 Unable to copy text between linked windows.

1F00 Unable to get text that should be copied to the following window in a chain of
linked windows.

1F01 Unable to test whether text needs to be copied to the previous window in a chain of
linked windows.

1F02 Unexpected error while text was being copied to a linked window.

1F03 Text cannot be copied to the previous window in a chain of linked windows.

1F05 Unexpected error, unable to perform the text operation.

1F06 Unexpected error, unable to perform the text operation.

1F07 Unexpected error, unable to perform the text operation.

1F08 Unexpected error, unable to perform the text operation.

2008 Unexpected error, invalid local handle.

200A Unexpected error, invalid local handle.

2302 Unexpected error, paragraph data not available.

2701 Unexpected error, invalid text format.

2702 Unexpected data error.

2703 Unexpected error, invalid text format.

2704 Unexpected error, data buffers not available.

2709 Unexpected error, data buffers not available.

270E Unexpected error, data buffers not available.

270F Unexpected error, data buffers not available.

2900 Error during undo operation: Invalid position value.

Page 240 Error Code Table

2901 Error during undo operation: Invalid undo buffer.

2902 Error during undo operation: Invalid undo buffer.

2903 Error during undo operation: Format could not be restored.

2B01 Invalid object identifier. The object cannot be deleted.

2C0A Object cannot be created. Identifier mismatch.

2E00 Unexpected error, global object list not available.

3102 Unexpected error, table list or table attribute list not available.

Error Code Table (OLE module)

The following error codes belong to module number 5 which is the module
handling the insertion of OLE objects. These codes are only possible in the 32 bit
version.

Group Code Code Description
DBS_E_INVALIDARG 0200 Cannot find the specified programmatic

identifier in the registration database.

DBS_E_UNEXPECTED 0201 Cannot insert the specified OLE object.

DBS_E_CLIPBOARD 0202 Cannot paste an OLE object from the clipboard.

DBS_E_INVALIDARG 0203 OLE object cannot be inserted, the specified
filename may be invalid.

Page 241Development of a Text Filter

Appendix C

Development of a Text Filter

This appendix describes how to develop installable filters that allow word-
processed files in various formats to be placed into a Text Control and, on the
reverse side, text created with a Text Control to be exported in an external format.
The interface is given through the messages TX_DATAIN, TX_DATAOUT,
TX_IMPORTTEXTFILE, TX_IMPORTTEXTBUFFER and TX_EXPORTTEXT.

The developer of a filter is responsible for implementing the C-language routines
that Text Control calls when one of the messages, listed above, are used by an
application. The filter must be built as a Windows library which Text Control can
load dynamically with the LoadLibrary function.

The filter library must export the following functions:

TX_Import @1
TX_Export @2
WEP @3 (16 bit only)
TX_Ex_Import @5 (optional)
TX_Ex_Export @6 (optional)
GetFilterInfo @7 (16 bit: recommended, 32 bit: required)

The TX_Import and TX_Ex_Import functions provide the data translation
necessary to describe a foreign format in terms of the Text Control's internal data
structures. Appendix A contains a description of these internal structures. The
functions are described later in this appendix. TX_Import generates the generic
text and format structures Text Control uses internally. TX_Ex_Import generates
these same structures and additionally data like document settings that can be
exchange with an application via the TX_DATAIN message. When
TX_Ex_Import cannot be found Text Control calls TX_Import .

The TX_Export and TX_Ex_Export functions provide the mechanism by which
data is transformed from the internal Text Control text format into a foreign format.
In addition to the generic text formats TX_Ex_Export recieves document settings

Page 242 Development of a Text Filter

the filter can save in the document. When TX_Ex_Export cannot be found Text
Control calls TX_Export .

The WEP function is required for every Windows 16 bit library. For a description
of the WEP function and how to build a Windows library see the Windows
Programmer's Reference.

The following shows the definitions of the functions which must be provided by the
filter.

GetFilterInfo

Syntax void GetFilterInfo(lpFilterInfo)

This function returns information about the capabilities of the text filter. Text
Control calls this function before calling any other function in the filter.

Parameter Type/Discription

lpFilterInfo LPTXFILTERINFO Points to a TXFILTERINFO structure
which is defined as follows:

typedef struct tagTXFILTERINFO {
DWORD dwTXFilterInfoSize;
DWORD dwMinFileFormat;
DWORD dwMaxFileFormat;
BOOL bIsUnicodeFilter;
BYTE reserved[8];
char reserved1[16];
char reserved2[16];

} TXFILTERINFO;

The TXFILTERINFO structure has the following fields:

Field Description

dwTXFilterInfoSizeSpecifies the size, in bytes, of this data
structure. Text Control initializes this
member before calling the function. The
filter must fill this member before the
function returns.

Page 243Development of a Text Filter

dwMinFileFormat The filter must fill this member with the
version number of the oldest Text Control
text format it can process.

dwMaxFileFormat The filter must fill this value with the
version number of the newest Text Control
text format it can process.

bIsUnicodeFilter The filter must set this member to TRUE
when it can process Unicode strings,
otherwise it must set this value to FALSE.
The 32 bit version of Text Control only uses
filters that can process Unicode strings.

reserved[8] Reserved field. Must be initialized with
zero.

reserved1[16] Reserved field. Must be initialized with
zero.

reserved2[16] Reserved field. Must be initialized with
zero.

Comments This function must be declared with the WINAPI declarator. It must be exported in
the EXPORT section of the filter's module definition file with the ordinal number
@7.

TX_Import

Syntax WORD WINAPI TX_Import(hInData, hFile, lphOutData)

This function transforms data given in an external format into the Text Control's
internal format. The data is either given through a buffer handle or through a file
handle.

Parameter Type/Discription

hInData HGLOBAL Specifies a global data handle that
identifies a buffer containing the data in an external
format. hInData contains zero if the data is given through
the file handle.

Page 244 Development of a Text Filter

hFile HFILE Identifies a file. The data to be transformed is
read from that file at the current file position.

lphOutData HGLOBAL FAR* Points to a variable of type
HGLOBAL. The filter must allocate a global buffer for the
translated data and has to copy the handle that identifies
the buffer to the variable lphOutData points to.

Return Value The return value specifies an error code value. The following error codes are
possible:

Value Meaning

FE_NO_ERROR No error.

FE_NOT_MY_FILE Wrong file type.

FE_BAD_TOKEN Logical error in input file.

FE_NO_MEM Unable to allocate enough global memory.

FE_READ_DATA File read error.

FE_WRITE_DATA File write error.

FE_OPEN_FILE Unable to open file.

FE_FILE_TOO_BIG Input file is too big.

FE_UNSUPP Currently not supported.

FE_INTERNAL Unspecified internal error.

Comments This function must be declared with the WINAPI declarator. It must be exported in
the EXPORT section of the filter's module definition file with the ordinal number
@1.

Page 245Development of a Text Filter

The buffer allocated for the translated data is freed by Text Control.

The Text Control's internal format is described in appendix A. The header file
"tx.h" should be included to have definitions for all the necessary structures and
error codes.

TX_Ex_Import

Syntax WORD WINAPI TX_Ex_Import(hInData, hFile, lpInBuffer, lphOutData,
lpFilterIO, lpdwBytesRead)

This function is an extended version of TX_Import . It transforms data given in an
external format into the Text Control's internal format with the data is either given
through a buffer handle, a buffer pointer or a file handle. Additionally data can be
exchanged defined through the TXFILTERIO structure.

Parameter Type/Discription

hInData HGLOBAL Specifies a global data handle that
identifies a buffer containing the data in an external
format. hInData contains zero if the data is given through
hFile or lpInBuffer.

hFile HFILE Identifies a file. The data to be transformed is
read from that file at the current file position. hFile
contains HFILE_ERROR when the data is given through
hInData or lpInBuffer.

lpInBuffer const BYTE _huge*Points to a memory buffer containing
the data in an external format. lpInBuffer is zero when the
data is given through hInData or hFile.

lphOutData HGLOBAL FAR* Points to a variable of type
HGLOBAL. The filter must allocate a global buffer for the
translated data and has to copy the handle that identifies
the buffer to the variable lphOutData points to.

Page 246 Development of a Text Filter

lpFilterIO TXFILTERIO FAR* points to a TXFILTERIO
structure to exchange additional data. The structure
members contain default values on function entry the filter
can use to resolve relative values. On function exit the
filter fills the structure members with information not
available with the Text Control's text format. See
appendix A for a detailed description of this structure.

lpdwBytesRead DWORD FAR* The filter must copy the number of
read bytes to the variable this parameter points to.

Return Value The return value specifies an error code value. For a list of possible error codes see
the description of the TX_Import function.

Comments This function must be declared with the WINAPI declarator. It must be exported in
the EXPORT section of the filter's module definition file with the ordinal number
@5.

The buffer allocated for the translated data is freed by Text Control.

TX_Export

Syntax WORD WINAPI TX_Export(hInData, hFile, lphOutData)

This function transforms data given in the Text Control's internal format into an
external format.

Parameter Type/Discription

hInData HGLOBAL Specifies a global data handle that
identifies a buffer containing the data in the Text Control's
internal format.

hFile HFILE Identifies a file. The transformed data is written
to that file at the current file position. If hFile contains
HFILE_ERROR, the function has to allocate a global
buffer for the transformed data.

Page 247Development of a Text Filter

lphOutData HGLOBAL FAR* Points to a variable of type
HGLOBAL. If hFile contains HFILE_ERROR, the filter
must allocate a global buffer for the transformed data and
has to copy the handle that identifies the buffer to the
variable pointed to by lphOutData.

Return Value The return value specifies an error code value. For a list of possible error codes see
the description of the TX_Import function.

Comments This function must be declared with the WINAPI declarator. It must be exported in
the EXPORT section of the filter's module definition file with the ordinal number
@2.

The Text Control's internal format is described in appendix A. The header file
"tx.h" should be included to have definitions for all the necessary structures and
error codes.

TX_Ex_Export

Syntax WORD WINAPI TX_Export(hInData, hFile, lphOutData, lpFilterIO,
lpdwBytesWritten)

This function is an extended version of TX_Export . It transforms data given in the
Text Control's internal format into an external format.

Parameter Type/Discription

hInData HGLOBAL Specifies a global data handle that
identifies a buffer containing the data in the Text Control's
internal format.

hFile HFILE Identifies a file. The transformed data is written
to that file at the current file position. If hFile contains
HFILE_ERROR, the function has to allocate a global
buffer for the transformed data.

Page 248 Development of a Text Filter

lphOutData HGLOBAL FAR* Points to a variable of type
HGLOBAL. If hFile contains HFILE_ERROR, the filter
must allocate a global buffer for the transformed data and
has to copy the handle that identifies the buffer to the
variable pointed to by lphOutData.

lpFilterIO TXFILTERIO FAR* points to a TXFILTERIO
structure to exchange additional data. The filter can save
this additional data in the document. See appendix A for a
detailed description of this structure.

lpdwBytesWritten DWORD FAR* The filter must copy the number of
written bytes to the variable this parameter points to.

Return Value The return value specifies an error code value. For a list of possible error codes see
the description of the TX_Import function.

Comments This function must be declared with the WINAPI declarator. It must be exported in
the EXPORT section of the filter's module definition file with the ordinal number
@6.

The Text Control's internal format is described in appendix A. The header file
"tx.h" should be included to have definitions for all the necessary structures and
error codes.

Status Bar Control Page 249

Appendix D

Status Bar Control

A status bar has been designed as a separate module that handles a Status-Bar-
Control window. This window can be created as a child window anywhere within
the client area of its parent window. It shows the current state of a Text Control
window or an information string.

The parent window must pass on the following Text Control notification messages
to the Status-Bar-Control window in order to show the current state:

TN_FORCEUPDATE Sent when the status bar should update its
contents.

TN_KEYSTATECHANGED Sent when the character insertion mode, or the
state of either the NUMLOCK key or
CAPSLOCK key is changed.

TN_KILLFOCUS Sent when a Text Control loses the input focus.

TN_POSCHANGED Sent when the current input position changes.

TN_SETFOCUS Sent when a Text Control receives the input
focus.

TN_ZOOMED Sent when a Text Control is zoomed.

The Status-Bar-Control uses the window handle sent with the notification to ask the
TX window about its current state.

A Status-Bar-Control has two display modes. The first mode shows three areas that
display page number, line number and character position. The second mode shows
an information string. The Status-Bar-Control switches to the first mode if it
receives a TX notification message. It switches to the second mode if it receives a
WM_SETTEXT message, containing the information text. The application can

Page 250 Status Bar Control

send a WM_SETTEXT message whenever it wants the Status-Bar-Control to show
an information string.

The messages WM_GETFONT and WM_SETFONT can be used to alter the font
which the Status-Bar-Control uses to show its contents. All WM_xxx messages are
described in the Windows SDK manuals.

The following describes functions and messages an application can use to create a
Status-Bar-Control window and to alter its appearance:

Functions

CreateStatusBar

#include "txtools.h"

Syntax HWND CreateStatusBar(hWndParent, wChildID, lpRect, lpLogFont, lpszStrings,
dwStyle)

This function creates a Status-Bar-Control child window.

Parameter Type/Description

hWndParent HWND Identifies the parent window of the Status-Bar-
Control window.

wChildID WORD Is the child window identifier.

lpRect LPRECT Points to a RECT data structure which
contains the position and size of the Status-Bar-Control
window in client area coordinates of its parent window.

lpLogFont LPLOGFONT Points to a LOGFONT data structure
that defines a logical font. The Status-Bar-Control window
will use this font to display its contents. If lpLogFont is
NULL, a default font is used.

lpszStrings LPCSTR Points to a buffer containing the strings, that
the Status-Bar-Control will use to display page number,
line number and character position. The string must have

Status Bar Control Page 251

three parts, each terminated with a zero character. Each
part must contain a format description in the form
specified for the wsprintf () function as described in the
Windows SDK. The complete string must end with two
terminating zeros. See the following comments section for
more information.
If lpszStrings is NULL, the Status-Bar-Control displays
only the numbers.

dwStyle DWORD Specifies the style of the Status-Bar-Control
window. This parameter can be one of the following
values:

Style Meaning

STS_LEFTALIGN Positions the text output areas
on the left side of the client
area.

STS_RIGHTALIGN Positions the text output areas
on the right side of the client
area.

STS_NOBORDER Suppresses the Status-Bar-
Control window's border.

STS_NOPAGE Suppresses the page number.

STS_NOLINE Suppresses the line number.

STS_NOCOLUMN Suppresses the column
number.

STS_NOZOOM Suppresses the zooming
factor.

STS_NOKEYSTATES Suppresses the insertion mode
and the CAPSLOCK and
NUMLOCK keystates.

Return Value The return value identifies the Status-Bar-Control window. It is zero if an error has
occured.

Page 252 Status Bar Control

Comments To use this function the header file TXTOOLS.H must be included into the
application's source file and the object files have to be linked with TXTOOLS.LIB.

The string which lpszStrings points to must have the following form:

[ptext]%format\0[ltext]%format\0[ctext]%format\0\0

The parts in brackets are optional, all other parts are required. The various parts
have the following meanings:

Field Meaning

ptext Text for the Status-Bar-Control area that displays the page
number.

ltext Text for the Status-Bar-Control area that displays the line
number.

ctext Text for the Status-Bar-Control area that displays the
character position.

%format A Format string in the same form as used for the
wsprintf () function. The Status-Bar-Control uses that
format to display the number.

\0 Terminating zero characters.

Status Bar Control Page 253

Messages

STB_GETLANGUAGE

This message returns the language that the Status Bar Control uses to display its
status strings. It works in the same way as the TX_GETLANGUAGE message.

STB_SETLANGUAGE

This message sets the language that the Status Bar Control uses to display its status
strings. It works in the same way as the TX_SETLANGUAGE message.

STB_SETSTRINGS

This message changes the strings that the Status-Bar-Control uses to display page
number, line number and character position.

Parameter Description

wParam Specifies whether the Status-Bar-Control is to be redrawn.
A value of TRUE redraws the Status-Bar-Control.

lParam Points to a buffer containing new the strings that the
Status-Bar-Control will use to display page number, line
number and character position. For an explanation of
possible formats, see the description of the
CreateStatusBar function.

Return Value The return value is zero if an error has occured. Otherwise it is nonzero.

Page 254 Status Bar Control

STB_SETSTYLE

This message changes the style of a Status-Bar-Control.

Parameter Description

wParam Specifies whether the Status-Bar-Control is to be redrawn.
A value of TRUE redraws the Status-Bar-Control.

lParam Specifies the new Status-Bar-Control style. For an
explanation of possible styles, see the description of the
CreateStatusBar function.

Return Value The return value is zero if an error has occured. Otherwise it is nonzero.

Button Bar Control Page 255

Appendix E

Button Bar Control

A button bar has been designed as a separate window that is called from here on a
Button-Bar-Control window. This window can be created as a child window
anywhere within the client area of its parent window. It shows the current paragraph
and font settings of the Text Control that has the input focus.

An application must pass on the following notification messages of a Text Control
to the Button-Bar-Control window to update its contents:

TN_CHARFORMATCHANGED Sent when the characters covered by the
current selection are newly formatted.

TN_FORCEUPDATE Sent when the button bar should update its
contents.

TN_KILLFOCUS Sent when a Text Control loses the input
focus.

TN_PGCHANGED Sent when the current input position changes
to another paragraph.

TN_PGFORMATCHANGED Sent when the paragraphs covered by the
current selection are newly formatted.

TN_POSCHANGED Sent when the current input position
changes.

TN_SETFOCUS Sent when a Text Control gets the input
focus.

The button bar saves the Text Control window handle passed on with the
TN_SETFOCUS message and sends font and paragraph messages to that window
when the user clicks an element of the button bar. To disable a button bar, for
example when no Text Control exists, the application can send the WM_ENABLE
message with the wParam parameter set to FALSE. The next TN_SETFOCUS
notification re-enables the button bar automatically.

During creation the application can use the BUTTONINFO data structure to alter
the buttons' default appearing order or to add additional custom buttons.

Page 256 Button Bar Control

The following describes the function to create a Button-Bar-Control window:

Functions

CreateButtonBarControl

#include "txtools.h"

Syntax HWND CreateButtonBarControl (hWndParent, wChildID, lpRect, dwStyle,
wButtons, lpButtonArray)

This function creates a Button-Bar-Control child window.

Parameter Type/Description

hWndParent HWND Identifies the parent window of the Button-Bar-
Control window.

wChildID UINT Specifies the child window identifier.

lpRect LPRECT Points to a RECT data structure which
contains the position and the width of the Button-Bar-
Control window in client area coordinates of its parent
window.

dwStyle DWORD Specifies the style of the Button-Bar-Control
window. See the description of the BBM_SETSTYLE
message for a list of possible values.

wButtons WORD Specifies the number of buttons that the Button-
Bar-Control will display. This parameter can be zero if the
lpButtonArray parameter is not used.

lpButtonArray BUTTONINFO FAR* Points to an array of BUTTON-
INFO structures that contain information about styles and
command IDs for all buttons. The number of structures
this array contains is specified through the wButtons
parameter. The buttons appear visually on the screen in the
same order they appear in this array. For more information
about the BUTTONINFO structure, see the following

Button Bar Control Page 257

comments section. If lpButtonArray is zero the button bar
uses default buttons for font and paragraph settings in a
default order.

Return Value The return value identifies the Button-Bar-Control window. It is zero if an error has
occured.

Comments To use this function the header file TXTOOLS.H must be included into the
application's source file and the object files have to be linked with TXTOOLS.LIB.

The window's height is adapted to the buttons which the button bar contains. To
obtain the height of the window the application should use the GetWindowRect
function.

The BUTTONINFO data structure has the following form:

typedef struct tagBUTTONINFO {
UINT nIDResource;
UINT nIDCommand;
UINT nStyle;
int nPixOffset;

} BUTTONINFO;

The BUTTONINFO structure fields have the following meaning:

Field Description:

nIDResource Specifies either a resource identifier of a bitmap or a
predefined button identifier. If the value is greater than
BBID_MAXBUTTON it is interpreted as a bitmap
resource identifier. The button bar loads that bitmap from
the instance of the module which belongs to the specified
parent window and creates a custom button with that
bitmap. The bitmap must be of the standard size, i.e. 16
pixels wide and 15 pixels high.
Otherwise nIDResource can be one of the following
predefined button identifiers:

Value Meaning:

BBID_FONTS Specifies a Combo-Box to
select a font family.

Page 258 Button Bar Control

BBID_POINTSIZE Specifies a Combo-Box to
select a pointsize.

BBID_BOLD Specifies a button for bold
font style.

BBID_ITALIC Specifies a button for italic
font style.

BBID_UNDERLINE Specifies a button for
underlined fonts.

BBID_PGLEFT Specifies a button for left
paragraph alignment.

BBID_PGRIGHT Specifies a button for right
paragraph alignment.

BBID_PGCENTERED Specifies a button for
centered paragraphs.

BBID_PGJUSTIFIED Specifies a button for justified
paragraphs.

BBID_LEFTTAB Specifies a button for left
aligned tabulators.

BBID_RIGHTTAB Specifies a button for right
aligned tabulators.

BBID_CENTEREDTAB Specifies a button for
centered tabulators.

BBID_DECIMALTAB Specifies a button for decimal
tabulators.

nIDCommand Specifies a command identifier for a user defined button to
associate it with a menu identifier. The button bar sends a
WM_COMMAND message to its parent window if a user
clicks the button. This field must be zero for predefined
buttons. The WM_COMMAND message has the same
form as messages sent from a menu.

nStyle Specifies a button style for a user defined button. It can be
one of the following values:

Button Bar Control Page 259

Value Meaning:

BBBS_BUTTON Specifies a standard push-
button.

BBBS_CHECKBOX Specifies a check-box button.

This value is ignored for predefined buttons.

nPixOffset Specifies in pixels, an offset for the button's horizontal
position. This offset is the distance between the left border
and the right border of the previous button. This value can
be used to group buttons of similar features.

Messages

BBM_GETLANGUAGE

This message returns the language that the Button Bar Control uses to display
resources. It works in the same way as the TX_GETLANGUAGE message.

BBM_SETLANGUAGE

This message sets the language that the Button Bar Control uses to display
resources. It works in the same way as the TX_SETLANGUAGE message.

BBM_GETSTYLE

This message returns a Button Bar Control's styles.

Parameter Description

wParam Is not used.

lParam Is not used.

Page 260 Button Bar Control

Return Value The return value specifies the styles. See the description of the BBM_SETSTYLE
message for a list of possible values.

BBM_SETSTYLE

This message sets new styles for a Button Bar Control.

Parameter Description

wParam Is not used.

lParam Specifies the new styles. It can be a combination of the following
values:

Value Meaning

BBS_3D Paints the Button Bar Control
with three-dimensional
effects.

BBS_FLAT Paints the Button Bar Control
without visual effects.

BBS_3DBUTTONS Paints the Button Bar
Control's buttons with three-
dimensional effects.

BBS_FLATBUTTONS Paints the Button Bar
Control's buttons without
visual effects.

BBS_DBLCLKS The Button Bar Control opens
the Text Control's built-in font
and paragraph dialog boxes if
the user doubleclicks in an
area that does not represent a
button.

BBS_NODBLCLKS The Button Bar Control does
not open the Text Control's
built-in dialog box.

BBS_BORDER Paints the Button Bar Control
with a border.

Button Bar Control Page 261

BBS_NOBORDER Suppresses the Button Bar
Control window's border.

Return Value The return value specifies the previous styles.

Comments The Button Bar Control is refreshed when new styles affect the visual appearance.

The style values are grouped. The following values must not be used together:
BBS_3D and BBS_FLAT
BBS_3DBUTTONS and BBS_FLATBUTTONS
BBS_DBLCLKS and BBS_NODBLCLKS
BBS_BORDER and BBS_NOBORDER

The default values are BBS_FLAT, BBS_3DBUTTONS, BBS_DBLCLKS and
BBS_BORDER.

Page 262 Ruler Control

Appendix F

Ruler Control

A ruler has been designed as a separate window that is called from here on a Ruler-
Control window. This window can be created as a child window anywhere within
the client area of its parent window. It shows a ruler with the current tabulator and
indent settings for the Text Control window which has the input focus.

An application must pass on the following Text Control notification messages to
the Ruler-Control window to update its contents:

TN_FORCEUPDATE Sent when the ruler should update its
contents.

TN_HMOVED Sent after a Text Control has been moved
horizontally.

TN_HSCROLL Sent when the Text Control's client area is
scrolled horizontally.

TN_PAGEFORMATCHANGED Sent when current page format has been
changed.

TN_PGCHANGED Sent when the current input position changes
to another paragraph.

TN_PGFORMATCHANGED Sent when the paragraphs covered by the
current selection are newly formatted.

TN_KILLFOCUS Sent when the Text Control loses the input
focus.

TN_SETFOCUS Sent when a Text Control receives the input
focus.

TN_ZOOMED Sent when the Text Control is zoomed.

The Ruler-Control saves the Text Control window handle passed on with the
TN_SETFOCUS message and sends paragraph messages to that window when the
user alters the tabulator or indent settings. To disable a Ruler-Control, for example
when no Text Control exists, the application can send the WM_ENABLE message
with the wParam parameter set to FALSE. The next TN_SETFOCUS notification

Ruler Control Page 263

re-enables the Ruler-Control automatically. A disabled Ruler-Control shows only
the ruler without any tabulator or indent marks.

The functions and messages which an application can use to create a Ruler-Control
window or to change its appearance are described as follows:

Functions

CreateRulerControl

#include "txtools.h"

Syntax HWND CreateRulerControl (hWndParent, wChildID, lpRect, hWndButtonBar,
dwStyle)

This function creates a Ruler-Control child window.

Parameter Type/Description

hWndParent HWND Identifies the parent window of the Ruler-
Control window.

wChildID UINT Specifies the child window identifier.

lpRect LPRECT Points to the RECT data structure which
contains the position and width of the Ruler-Control
window in the client area coordinates of its parent
window.

hWndButtonBar HWND Identifies a Button-Bar-Control window. The
Ruler-Control uses the tabulator style setting of this button
bar to select the tabulator style of a newly created
tabulator. If hWndButtonBar is zero all newly created
tabulators are left aligned.

dwStyle DWORD Specifies the style of the Ruler-Control
window. This parameter can be a combination of the
following values:

Page 264 Ruler Control

Style Meaning

RS_TABULATORS The Ruler-Control shows
tabulator settings.

RS_LEFTINDENT The Ruler-Control shows a
left indent mark.

RS_FIRSTINDENT The Ruler-Control shows a
mark for the additional indent
of the first line.

RS_RIGHTINDENT The Ruler-Control shows a
right indent mark.

RS_INDENTS The Ruler-Control shows
marks for all indents.

RS_POSITION The Ruler-Control shows the
current position during
moving a tabulator or an
indent mark.

RS_NOBORDER Suppresses the Ruler-Control
window's border.

If dwStyle is zero the Ruler-Control contains all elements.

Return Value The return value identifies the Ruler-Control window. It is zero if an error has
occured.

Comments To use this function the header file TXTOOLS.H must be included into the
application's source file and the object files have to be linked with TXTOOLS.LIB.

The window's height is adapted to the necessary height for the ruler and the
tabulator marks. To obtain the height of the window the application should use the
GetWindowRect function.

Ruler Control Page 265

Messages

RM_SETBUTTONBAR

This message connects a new Button-Bar-Control with a Ruler-Control.

Parameter Description

wParam Identifies a Button-Bar-Control window. The Ruler-
Control uses the tabulator style setting of the button bar to
select the tabulator style of a newly created tabulator. If
wParam is zero all newly created tabulators are left
aligned.

lParam Is not used.

Return Value The return value is zero if the value specified by wParam is not a valid window
handle. Otherwise it is nonzero.

RM_SETUNITS

This message alters the scaling, the number of units and the number of scale lines.

Parameter Description

wParam Contains the scaling of the ruler as a percentage of a
centimeter.

lParam Contains the number of units in the low-order word and
the number of scale lines in the high-order word. The
number of units is the digit the ruler window will display
at the first main scale line. The number of scale lines is the
number of steps the ruler will display between two main
scale lines.

Return Value The return value is zero if an error has occured. Otherwise it is nonzero.

Page 266 Ruler Control

Comments The default setting is a scale with one centimeter steps subdivided into ten smaler
steps.

Example To scale the ruler in inches wParam must contain 254 to indicate that one inch is
254 percent of one centimeter. The low-order word of lParam must contain 1 to
display digits in the range of 0, 1, 2, 3, ...The high-order word of lParam can
contain 4 or 8 to subdivide one inch into 4 or 8 parts.

Page 267Debugging Functions

Appendix G

Debugging Functions

Debugging functions make it easier for developers to integrate the Text Control
library into an application. The only currently supported function tests a buffer that
contains the text and the formatting information in the Text Control's internal
format as described in appendix A. This is important to insert data with the
TX_PASTEDATA message or to develop a filter described in appendix C. For
time optimization this function should only be called during development.

DebugTXFormat

Syntax LONG DebugTXFormat(hFormat, lpdwOffset)

This function checks a text format description according to appendix A. This
function should be used for debugging purposes only.

Parameter Type/Discription

hFormat HGLOBAL Identifies a global memory object that
contains the format description.

lpdwOffset LPWORD Points to a DWORD variable. If an error
has occured the function copies an offset value to that
variable specifying the location of the detected error.
Otherwise if no error has occured the value specifies the
amount of tested data. If lpdwOffset is zero the function
ignores it.

Return Value The return value specifies an internal error code in the same form as returned by the
GetErrorCode function. It is zero if no error has been detected.

Page 268 Debugging Functions

Error Code Table (Expansion for Debugging functions)

Code Description

2400 Discarded global handle.

2401 Invalid global handle, GlobalLock failed.

2402 Invalid buffer size. The buffer size is less than that necessary for an empty
TextControl.

2403 Invalid buffer size. The buffer size is less than the specified text size.

2404 Text contains invalid control characters.

2405 Invalid text size. The real text size is not the same as the specified text size.

2406 The specified size of format data is less than the minimum size of format data.

2407 Invalid buffer size. The buffer size is less than the sum of the specified text and
format data sizes.

2408 Invalid format data size. The specified format data size is not equal to the sum of
the specified structures.

2409 Error in the list of FONTBLOCK structures: Invalid wBlockStart value.

240A Error in the list of FONTBLOCK structures: Invalid wBlockLength value.

240B Error in the list of FONTBLOCK structures: Invalid wFntNum value.

240C Error in the list of FONTBLOCK structures: The wBlockStart value of the
following structure is not equal to wBlockStart + wBlockLength.

240D Error in the list of FONTBLOCK structures: Two following blocks of length zero.

240E Error in the list of FONTBLOCK structures: Invalid wBlockStart value. Value is
less than the wBlockStart value of the previous structure.

Page 269Debugging Functions

240F Error in the list of FONTBLOCK structures: The wBlockLength value of the last
structure does not end at the end of the text.

2410 Error in the list of PGBLOCK structures: The count of PGBLOCK structures is not
equal to the count of paragraphs in the text.

2411 Error in the list of PGBLOCK structures: Invalid wPgStart value.

2412 Error in the list of PGBLOCK structures: Invalid wPgStop value.

2413 Error in the list of PGBLOCK structures: Invalid wPgNum value.

2414 Error in the list of PGBLOCK structures: Invalid wPgStop value. The value does
not specify the position of a paragraph end character in the text.

2415 Error in the list of PGBLOCK structures: Invalid wPgStart value. The value does
not specify the position of the character that follows a paragraph end character.

2416 Error in the list of PGBLOCK structures: The wPgStop value of the last character
does not specify the position of the terminating zero character.

2417 Error in the list of FONTBLOCK structures: Two following blocks have identical
data.

2418 General error: Unable to allocate enough global memory to continue debugging.

2419 Error in list of CELLPOSITION structures: Invalid wCellStart value.

241A Error in list of CELLPOSITION structures: Invalid wCellStop value.

241B Error in list of CELLPOSITION structures: Invalid wAttrRefNum value.

241C Error in list of CELLPOSITION structures: Invalid wCellStop value. The value
does not specify the position of a paragraph end character.

241D Error in list of CELLPOSITION structures: Invalid wCellStart value. The value
does not follow the previous wCellStop value. wCellStart must be wCellStop+1.

241E Error in list of CELLPOSITION structures: Invalid lxPos value. The value must be
lxPos+lxExt of its left neighbour cell.

Page 270 Debugging Functions

241F Error in the list of FIELDDATA structures: The number of FIELDDATA
structures is different from that of the wFieldDataEntries member.

2420 Error in the list of FIELDDATA structures: Invalid value in the wField member.
The number specified here could not be found in the list of FONTBLOCKs.

2421 Error in the list of FIELDDATA structures: Only one of the members dwData and
dwDataSize may contain a non-zero value.

Page 271Object Window Messages

Appendix H

Object Window Messages

WMX_COPYDATA

This message is used to copy the complete data of an object to the buffer pointed to
by lParam. A Text Control sends this message to an object window during the
processing of a TX_COPYDATA message, a TX_SAVE message or for undo
operations.

Parameter Description

wParam Is not used.

lParam Points to the buffer that is to receive the data.

Return Value The return value must be a pointer to the next free position behind the copied data.
It must be set to zero if an error has occured or if there is no data to copy.

Comments This message is not sent if the previously sent WMX_GETDATASIZE message
returns zero, meaning that there is no data to copy.

WMX_GETDATASIZE

This message is used to obtain the size of the buffer used for the
WMX_COPYDATA message. A Text Control sends this message to an object
window during the processing of a TX_COPYDATA message, a TX_SAVE
message or for undo operations.

Parameter Description

wParam Is not used.

lParam Is not used.

Page 272 Object Window Messages

Return Value The return value must contain the data size or zero if there is no data to copy.

Comments This message is sent more than once.

WMX_GETWINDOW

This message is used to obtain an object's window handle. A Text Control sends
this message to its parent window to give the parent the opportunity of creating a
window with the specified child identifier and returning it to the Text Control. A
Text Control sends this message during an undo process or during a loading
operation with the TX_PASTEDATA or the TX_LOAD message.

Parameter Description

wParam Specifies a child window identifier. It is the identifier of
the window connected to a Text Control via the
TX_OBJ_EMBED message.

lParam Specifies the object's identifier.

Return Value The return value should be the window handle of the object. The Text Control
automatically becomes the parent window.

WMX_GETZOOM

This message is used to obtain the object's current zooming factor.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value specifies the object's zooming factor.

Page 273Object Window Messages

WMX_PASTEDATA

This message is used to reload the complete data of an object from a buffer pointed
to by lParam. A Text Control sends this message to an object window during an
undo process or during a loading operation using the TX_PASTEDATA or the
TX_LOAD message.

Parameter Description

wParam Is not used.

lParam Points to a buffer that contains the data.

Return Value The return value must point to the buffer position behind the pasted data. It must be
set to zero if an error has occured.

WMX_PRINT

This message submits the contents of an object to the device identified by the
wParam parameter. A Text Control sends this message to an object window during
the processing of a TX_PRINT or a TX_PRINTPAGE message.

Parameter Description

wParam Contains a printer device context.

lParam Points to the RECT data structure that contains the
bounding rectangle of the part of the object to be printed.
This rectangle is given in device pixels with an origin at
the upper left corner of the object window's client area.

Return Value The return value must be set to zero if an error has occured or if there is nothing to
print. Otherwise it must be set to nonzero.

Page 274 Object Window Messages

WMX_ZOOM

This message informs the object about a new zooming factor. A Text Control sends
this message to an object window during the processing of a TX_ZOOM message.

Parameter Description

wParam Contains the new zooming factor as a percentage. This
value is between 10 and 250.

lParam Is not used.

Return Value The return value must be zero if the window cannot be zoomed. Otherwise it must
be nonzero.

Comments The object must adjust its window size and position but to avoid refreshing errors it
need not repaint itself. This is because it receives a WM_PAINT message at a later
date.

Page 275Image Control Release Notes

IC Image Control
Reference Manual

Image Control Release NotesPage 276

IC Image Control 2.2
Information in this document is subject to change without notice and does not represent a
commitment on the part of DBS GmbH. The software described in this document is furnished under a
license agreement. The software may be used or copied only in accordance with the terms of the
agreement.

©Copyright: DBS GmbH, 1991-98. All rights reserved.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Page 277Image Control Release Notes

IC Image Control 2.20 Release Notes

New features:

The 32 bit version of Image Control has been extended to support Unicode, the character set for all
languages. All messages and functions with string parameters have been implemented twice, one
version for ANSI and one version for Unicode. See the new chapter 1.8 "ANSI and Unicode" for
more information and a complete list of the extended messages and functions and how to use them.
Unicode support is available on Windows NT and Windows 95/98.

Update Notes:

The Image Control's file format has been extended to support Unicode. The following extensions
have been made:

- The new format version number is 220.
- An additional array of extended data has been appended. See appendix B "The IC Image

Control File Format" for more information about this array.

Image Control Release NotesPage 278

IC Image Control 1.60 Release Notes

New features:

Images can be displayed scaled. The new messages IC_GETSCALING and IC_SETSCALING
support this feature.

The new mode flags IF_CHANGEABLE and IF_READONLY which can be set via the
IC_SETMODE message are implemented to suppress or to activate the part of the built-in keyboard
interface that alter or delete images.

Update Notes:

The message IC_GETIMAGESIZE has been expanded to support scaling factors.

The Image Control's internal file format has been changed to support the scaling messages. See
appendix B "The IC Image Control File Format" for more information.

Page 279Image Control Release Notes

IC Image Control 1.50 Release Notes

New features:

The new function ICGetVersion returns the Image Control's current version number.

The new message IC_GETZOOM returns the Image Control's zooming factor.

An Image Control window sends the new notification message ICN_CHANGED when its image is
changed via the new implemented keyboard interface.

An Image Control window sends the new notification message ICN_CLEARED when its image is
deleted via the new implemented keyboard interface.

Update Notes:

The messages IC_COPYDATA and IC_SAVE optionally copies or saves the actual image data
instead of the image's filename.

If an Image Control window has the current input focus it reacts to the following keyboard keys:

 Key: Reaction:

DEL Deletes the actual image.

CTRL+INS or CTRL+C Copies the image to the clipboard.

SHIFT+DEL or CTRL+X Copies the image to the clipboard and deletes it.

SHIFT+INS or CTRL+V Inserts an image from the clipboard.

Image Control Release NotesPage 280

IC Image Control 1.20/1.30 Release Notes

New features:

The new function GetFilterStrings returns information about currently available image import
filters. These filters are installed in the private initialization file IC.INI. See the description of the
GetFilterStrings function and the new chapter 1.6 "Filter Selection" for more information.

The new message IC_GETIMAGESIZE can be used to get the size of the currently registered image.

The messages WM_COPY and WM_PASTE have been implemented to paste images from, or to
copy images to, the clipboard.

Update Notes:

The message IC_SETIMAGE has been expanded to support filter selection.

The messages IC_SETIMAGE and IC_GETIMAGE have been expanded to handle images with their
data instead of their filenames.

The Image Control's internal file format has been changed to support multiple filters. The new
version number is 120. See appendix B "The IC Image Control File Format" for more information.

Page 281Image Control Release Notes

IC Image Control 1.12 Release Notes

New features:

This release includes a new graphics import filter for Windows bitmap files stored in DIB format
(device-independent bitmap). The Image Control uses this filter for files with the extension *.BMP.

The newly included filter BMP.DLL supports color palettes. To display colored images the
application has to process the Windows messages WM_PALETTECHANGED and
WM_QUERYNEWPALETTE. The following code shows how to the handle these messages:

static HPALETTE hPalAppl; // application's logical palette
HPALETTE hOldPal; // old palette
HDC hDC;
UINT iChange = 0; // number of changed palette entries

case WM_PALETTECHANGED:
if ((HWND)wParam == hWnd) { // ignore message if this appl. changed

return 0; // the palette
} // else fall through

case WM_QUERYNEWPALETTE: // select application's logical palette

if (hPalAppl) {
hDC = GetDC(hWnd);
hOldPal = SelectPalette(hDC, hPalAppl, FALSE);
iChange = RealizePalette(hDC);
if (hOldPal) {

SelectPalette(hDC, hOldPal, TRUE);
RealizePalette(hDC);

}
ReleaseDC(hWnd, hDC);
if (iChange) {

RepaintAll(hWnd);

}
}
return iChange;

Image Control Release NotesPage 282

IC Image Control 1.10 Release Notes

New features:

The included graphics import filter for images stored in TIFF format can read the following additio-
nal format styles:

- 1-Dimensional Modified Huffman compression (CCITT Group 3).

- LZW compression.

- PackBits compression.

Page 283Image Control Reference

1. Introduction

1.1 What is IC

The IC Image Control is an efficient programming tool from DBS. It contains
functions for image handling and display. It is especially useful in combination with
the editor module TX Text Control because it allows you to insert images into
formatted text.

1.2 The Library Files (16 bit version)

IC.DLL The dynamic link library of the Image Control module.

IC.H The Image Control's include file for your application.

IC.LIB The import library file to be linked with the calling
module.

IC.INI A private initialization file containing all available image
import filters.

TX_TIFF.FLT The import filter for handling TIFF files.

TX_BMP.FLT The import filter for handling bitmap files.

TX_WMF.FLT The import filter for handling Windows Metafiles.

TX_GIF.FLT The import filter for handling GIF files.

Additional filters for various other bitmap and vector image formats are available.
Please contact DBS GmbH for further information.

1.3 The Library Files (32 bit version)

IC32.DLL The dynamic link library of the Image Control module.

IC.H The Image Control's include file for your application.

IC32.LIB The import library file to be linked with the calling
module.

Image Control ReferencePage 284

IC32.INI A private initialization file containing all available image
import filters.

TX_TIF32.FLT The import filter for handling TIFF files.

TX_BMP32.FLT The import filter for handling bitmap files.

TX_WMF32.FLT The import filter for handling Windows Metafiles.

TX_GIF32.FLT The import filter for handling GIF files.

Additional filters for various other bitmap and vector image formats are available.
Please contact DBS GmbH for further information.

1.4 The Source Files

If your version includes the source code of the module, the source files are to be
found in subdirectories: \IC for the Image Control, \IC\TIFF for the TIFF filter,
\IC\WMF for the WMF filter, \IC\GIF for the GIF filter and \IC\BMP for the
bitmap filter. The include, lib and dll files are copied to the \INC, \LIB and \DLL
directories during the make operation.

1.5 How to use the Image Control

The first step is to include the header file IC.H in your application. The file IC.LIB/
IC32.LIB must be linked to the application, the executable library files listed above
must be copied to the application start up directory or to a directory that is included
in the PATH environment variable.

Now you can create a window by calling CreateImageControl. Windows of this
type are referred to as Image Control in the following text. Save the returned
window handle because it is needed for communication with the Image Control.
The communication is completely handled with functions like PostMessage,
SendMessage or the window manager functions. All functions of the Image
Control except window creation and error handling are accessible through
messages. The Image Control is established as a child of the controlling window.

Page 285Image Control Reference

To connect an image with a newly created window send the IC_SETIMAGE
message and use the returned values to contract or expand the window size before
showing the window. The image file name sent with the IC_SETIMAGE message
can be obtained with the Windows common dialog box created by the Windows
function GetOpenFileName. The GetFilterStrings function can be used to
initialize this dialog box with available image filters. The GetFilterStrings
function retrieves all filters installed in the private initialization file IC.INI. In the
case of an existing image the dialog box can also be initialized with the
IC_GETIMAGE message.

1.6 How to use Images with a Text Control

If you are using the Image Control as part of the Text-Control, including the header
file IC.H and linking your application with IC.LIB/IC32.LIB is not necessary.
Instead of creating a window with CreateImageControl, use the message
TX_CREATEIMAGE. To initialize a file selecting dialog box use the messages
TX_GETIMAGE and TX_GETIMAGEFILTERS.

1.7 Filter Selection

The Image Control uses the image import filter specified through the wParam
parameter of the IC_SETIMAGE or TX_CREATEIMAGE message to read the
image data. If this parameter contains zero it uses the filter belonging to the
specified file extension. All possible file extensions are listed in the private
initialization file IC.INI/IC32.INI. The entries in this file have the following format:

<graphics format>=<filter>,<extension>

These fields have the following meaning:

Field Meaning

<graphics format> Name of the graphics format supported by this filter. (for
example, Tagged Image Format).

<filter> Name of the filter executable minus the file extension if
the filter has a .FLT extension (for example, if the filter is
TIFF.FLT, the entry is TIFF, if the filter is TIFF.DLL, the
entry must be TIFF.DLL).

Image Control ReferencePage 286

<extension> File extension of the files which this filter supports. The
string is limited to three characters.

If the Image Control cannot find the specified file extension, it tries to select a filter
automatically. If the file contains an unknown format the Image Control returns an
error code.

1.8 ANSI and Unicode

Like the Text Control module the Image Control can also be used either from an
ANSI or a Unicode application. The Image Control include file IC.H defines an
ANSI and a Unicode version for each message and function which has string or
character parameters. The chapter 1.14 of the Text Control manual gives more
information about how this is implemented.

The following is a complete list of all messages and functions that have two
implementations. ANSI strings can contain characters from double-byte character
sets.

Message: changes:

IC_GETIMAGE lParam changed from LPSTR to LPTSTR

IC_SETIMAGE lParam changed from LPSTR to LPTSTR

Function: changes:

GetFilterStrings The returned data buffer contains Unicode or
ANSI strings.

Page 287Image Control Reference

2. Function Directory

CreateImageControl

Syntax HWND CreateImageControl(hWndParent, wChildID, lpRect)

This function creates an Image Control child window.

Parameter Type/Discription

hWndParent HWND Identifies the parent window of the Image
Control being created.

wChildID WORD Represents the child window identifier.

lpRect LPRECT Points to a RECT data structure containing
the position and size of the Image Control window in
client area coordinates of the parent window.

Return Value The return value identifies the new Image Control window. It is zero if an error has
occured.

GetFilterStrings

Syntax HGLOBAL GetFilterStrings (void)

This function returns a buffer which contains pairs of null-terminated strings
specifying image filters. The format of the buffer has the same form as described

Image Control ReferencePage 288

for the lpstrFilter member of an OPENFILENAME structure and can be used to
initialize the GetOpenFileName dialog box. See the description of the
OPENFILENAME structure in Windows SDK for more information.

Return Value The return value is a global memory handle identifying the buffer that holds the
strings. Each string ends with a terminating zero, the buffer itself ends with two
terminating zeros. The return value is zero if an error has occured. If an application
has finished using the buffer it must free it with the GlobalFree function.

GetICErrorCode

Syntax LONG GetICErrorCode (void)

This function returns an internal error code and can be called if the parent window
has received an IC_ERRCODE notification message.

Return Value The return value contains an error number in the low-order word and a module
number in the high-order word. The module number is 3 or 4 for the programming
tool described in this manual but it can also be the number of other modules used
by the Image Control for special purposes.

The error numbers associated with the Image Control module are described in the
error code table in appendix A. For a description of error codes associated with
other module numbers, refer to the reference manuals of those modules.

ICGetVersion

Syntax LONG ICGetVersion(void)

This function returns the current version number. The version number can be
different from the format version number explained in appendix B.

Return Value The return value contains the Image Control's version number in its low-order
word. For example, for the release IC Image Control 2.2 the version number is 220.

Page 289Image Control Reference

3. Message Overview
The Image Control processes the following Windows messages:

Message Description

WM_CLEAR Deletes the actual image.

WM_COPY Copies image data to the clipboard.

WM_CREATE Initializes the internal data structures.

WM_CUT Copies image data to the clipboard and deletes the
image.

WM_DESTROY Deletes the internal data structures.

WM_ERASEBKGND Paints the background.

WM_KILLFOCUS Hides the selection frame.

WM_LBUTTONDOWN Sends an ICN_CLICKED notification code to the
parent window.

WM_LBUTTONDBLCLK Sends an ICN_DOUBLECLICKED notification
code to the parent window.

WM_MOUSEACTIVATE Prevents the parent window from receiving this
message.

WM_PAINT Paints the contents of the Image Control.

WM_PASTE Exchange an existing image with an image
contained in the clipboard.

WM_RBUTTONDOWN Sends this message to the parent window.

WM_SETFOCUS Shows the selection frame.

The Image Control uses the following private messages:

Message Description

IC_COPYDATA Copies the Image Control data to a buffer.

IC_GETDATASIZE Returns the size of the buffer (in bytes) that is
needed for the IC_COPYDATA message.

Image Control ReferencePage 290

IC_GETIMAGE Returns the image data or the path name of the
image associated with the currently selected image
control window.

IC_GETIMAGESIZE Returns the image size.

IC_GETMODE Returns information about the mode flags currently
set.

IC_GETSCALING Returns the current scaling factors.

IC_GETZOOM Returns the current zooming factor.

IC_LOAD Fills an Image Control with image data from a file.

IC_PASTEDATA Sets the data of an Image Control previously saved
with the IC_COPYDATA message.

IC_PRINT Prints a specific portion of the image.

IC_SAVE Stores the Image Control data in a file.

IC_SETIMAGE Registers a new image for the Image Control.

IC_SETMODE Sets various mode flags.

IC_SETSCALING Sets new scaling factors.

IC_ZOOM Zooms the Image Control window.

The Image Control sends the following notification messages through a
WM_COMMAND message to its parent window to inform the application about
special conditions:

Message Description

ICN_CHANGED Indicates that the Image Control window's image
has been changed.

ICN_CLEARED Indicates that the Image Control window's image
has been deleted.

ICN_CLICKED Indicates that the Image Control has been clicked.

ICN_DOUBLECLICKED Indicates that the user has double-clicked the Image
Control.

ICN_ERRCODE Informs the parent window that an error has
occured.

Page 291Image Control Reference

4. Message Directory

IC_COPYDATA

This message copies the image data and all the format information of an Image
Control window to a buffer pointed to by lParam.

Parameter Description

wParam If wParam contains IF_SAVEASDATA this message
copies the data itself. Otherwise it copies the image's
filename.

lParam Points to a buffer that is to receive the data.

Return Value The return value is a pointer to the next free position behind the copied data. It is
zero if an error has occured.

Comments This message is implemented to save the Image Control data in memory. For more
information on how to retrieve the data from memory see the description of the
IC_PASTEDATA message. To save the data to a file, use the IC_SAVE message.
To get the minimum buffer size in bytes use the IC_GETDATASIZE message with
the same value of the wParam parameter.

The data is formatted according to appendix B.

IC_GETDATASIZE

This message returns the minimum size, in bytes, of a buffer that can be used to
save the contents of the Image Control in memory.

Parameter Description

wParam If wParam contains IF_SAVEASDATA this message
returns the size of the image data. Otherwise it returns the
size of the image's filename.

Image Control ReferencePage 292

lParam Is not used.

Return Value The return value contains the data size. It is zero if an error has occured.

Comments This message is nessessary to calculate the size of the buffer for the
IC_COPYDATA message.

IC_GETIMAGE

This message retrieves the image data or a full DOS path name of the file
containing the image data for the currently registered image.

Parameter Description

wParam Specifies the size of the buffer which lParam points to,
including the null-terminating character. This parameter is
not used if lParam contains zero.

lParam If this parameter is zero the return value is a global data
handle. Otherwise this parameter must point to a buffer
that is to receive the path name.

Return Value If lParam is zero the return value is a global data handle which identifies a buffer
containing the image data. Otherwise the return value is the length, in bytes, of the
copied path name. The return value is zero if an error has occured, if no image is
currently registered or if no path name exists.

Comments If the return value is a global data handle the caller must free it with the
GlobalFree function.

Unicode The size specified through wParam is in characters, when UNICODE is defined,
otherwise it is in bytes.

IC_GETIMAGESIZE

This message returns the size, in pixels, of the currently registered image.

Page 293Image Control Reference

Parameter Description

wParam If this parameter is nonzero the return value contains
scaled sizes according to the currently set scaling factors.
Otherwise the return value contains the original size
values.

lParam Is not used.

Return Value The return value is a long value that contains the size, in pixels, of the current
image. The width is in the low-order word and the height is in the high-order word.
If the low-order word is zero an error has occured or the specified Image Control
window has no registered image.

IC_GETMODE

This message returns information about the different modes of the Image Control
like the current background mode or the current display mode.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value is a combination of the following values:

Value Meaning

IF_CHANGEABLE The image is changeable via the keyboard
interface.

IF_DRAWGRAYRECT If a gray shaded rectangle is drawn instead of the
image.

IF_DRAWIMAGE If the image is drawn on the screen.

IF_FILTERDIALOG If the preference dialog boxes of the image import
filters are to be opened.

IF_FRAMED If a border line is drawn.

Image Control ReferencePage 294

IF_NOFILTERDIALOG If the preference dialog boxes of the image import
filters are to be ignored.

IF_NOTFRAMED If the border line is hidden.

IF_OPAQUE If the background mode is opaque.

IF_READONLY The image is not changeable via the keyboard
interface.

IF_TRANSPARENT If the background mode is transparent.

IC_GETSCALING

This message returns the current scaling factors in percent.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value specifies the current scaling factors in percent. The low-order
word contains the scaling factor in x-direction, the high-order word contains the
scaling factor in y-direction.

IC_GETZOOM

This message returns the current zooming factor in percent.

Parameter Description

wParam Is not used.

lParam Is not used.

Return Value The return value specifies the current zooming factor in percent.

Page 295Image Control Reference

IC_LOAD

This message fills the internal data buffers of the Image Control with data stored in
a file. This data must have been stored with the IC_SAVE message.

Parameter Description

wParam Contains a DOS file handle. The file pointer must be
positioned at the head of the data.

lParam Points to a POINT data structure. The Image Control
copies the size of the image, in pixels, to this buffer. If
lParam is zero, the image size is not copied.

Return Value The return value is zero if an error has occured. Otherwise it is nonzero.

Comments The file pointer is only moved if the return value is nonzero.

The image size retrieved by lParam includes the current zooming factor.

IC_PASTEDATA

This message sets the data of an Image Control previously obtained with the
IC_COPYDATA message. The data contains all image and format information
needed by the Image Control. The data must be formatted according to appendix B.

Parameter Description

wParam Is not used.

lParam Points to a buffer that contains the data.

Return Value The return value points to the buffer position behind the pasted data. It is zero if an
error has occured.

Image Control ReferencePage 296

IC_PRINT

This message submits the contents of the Image Control to the device identified by
the wParam parameter.

Parameter Description

wParam Contains a printer device context.

lParam Points to a RECT data structure that contains the bounding
rectangle of the part of the image to be printed. This
rectangle is given in device pixels with an origin at the
upper left corner of the image. The image must be copied
to the device given by wParam with an origin at (0, 0).

Return Value The return value is zero if an error has occured. Otherwise it is nonzero.

Comments The Image Control is always printed at 100 percent, regardless of the current
zooming factor.

IC_SAVE

This message saves the data of an Image Control in a file.

Parameter Description

wParam Contains a DOS file handle.

lParam If lParam contains IF_SAVEASDATA the actual image
data is stored. Otherwise a reference to the actual image
file is stored.

Return Value The return value is zero if an error has occured. Otherwise it is nonzero.

Comments The Image Control does not save the size of its window.

Page 297Image Control Reference

IC_SETIMAGE

This message registers a new image for the Image Control window.

Parameter Description

wParam The high-order bit indicates the meaning of the lParam
parameter. The lower 15 bits specify an image filter as an
index into the buffer returned by the GetFilterStrings
function. The first pair of strings has an index value of 1.
If the buffer returned by GetFilterStrings is used to
initialize the lpstrFilter member of an OPENFILENAME
structure, another member of that structure, nFilterIndex,
can be used to initialize this parameter. See the Windows
SDK for more information about the OPENFILENAME
structure. If wParam is set to 0, the Image Control
automatically tries to select a filter.

lParam If the high-order bit of the wParam parameter is set,
lParam must be a global data handle which identifies a
buffer containing the image data. Otherwise lParam points
to a null-terminated string which is the full DOS path
name for the file containing the new image.

Return Value The return value is a long value that contains the size, in pixels, of the new image.
The width is in the low-order word and the height is in the high-order word. If the
low-order word is zero an error has occured and the high-order word contains one
of the error code values described in the following list:

Image Control ReferencePage 298

Value Meaning

0 General error, use GetICErrorCode for more information.

1 The given file does not exist or cannot be opened.

2 The given file is of an unknown type.

3 The given import file contains an unsupported compression
scheme.

4 The given import file contains an unsupported version.

5 The given import file contains an unsupported style.

6 The specified filter cannot be found.

7 The specified filter uses an unknown interface.

Comments If no error has occured the image size returned includes the current zooming factor.

IC_SETMODE

This message sets several different modes of the Image Control. Changing one
mode does not alter the other mode settings.

Parameter Description

wParam Is the new mode value. It can be one or more of the following
values:

Value Meaning

IF_CHANGEABLE Activates the part of the keyboard
interface that alters or deletes
images.

IF_DRAWGRAYRECT If a gray shaded rectangle is to be
drawn for fast updating.

IF_DRAWIMAGE If the image is to be drawn on the
screen.

IF_FILTERDIALOG If an image import filter has an
internal dialog box to set preferences
this mode opens this dialog.

Page 299Image Control Reference

IF_FRAMED If a border line is to be drawn.

IF_NOFILTERDIALOG This mode ignores filter dialog boxes
to set preferences.

IF_NOTFRAMED If the border line is to be hidden.

IF_OPAQUE If the background mode is to be set
to opaque.

IF_READONLY Blocks the part of the keyboard
interface that alters or deletes
images.

IF_TRANSPARENT If the background mode is to be set
to transparent.

The bitwise OR operator can be used to specify more than one
value.

lParam Is not used.

Comments The Image Control is completely updated if a new background mode or a new
display mode is set. The gray shaded rectangle is only drawn on the screen, it is not
printed.

The mode flags are grouped. The following groups list mode flags that should not
be used together:
IF_OPAQUE and IF_TRANSPARENT
IF_NOTFRAMED and IF_FRAMED
IF_DRAWIMAGE and IF_DRAWGRAYRECT
IF_NOFILTERDIALOG and IF_FILTERDIALOG
IF_CHANGEABLE and IF_READONLY

The first value of each group is the default value.

IC_SETSCALING

This message sets scaling factors which are used to scale the current image.

Parameter Description

wParam Contains one of the following values:

Image Control ReferencePage 300

Value Meaning

IF_SCALED The scaling factors specified through
the lParam parameter are used to
scale the image.

IF_SCALEDTOWINDOW The current image is scaled so that it
fits into the Image Control's actual
window size.

IF_UNSCALED The actual scaling factors are reset to
unscaled.

lParam Specifies new scaling factors. The low-order word contains the
scaling factor in x-direction, the high-order word contains the
scaling factor in y-direction.

Return Value The return value is zero if the scaling factors could be set. Otherwise it is nonzero.

IC_ZOOM

This message sets a new zooming factor for the Image Control. This factor is stated
in percent. A value of 100 means the original size.

Parameter Description

wParam Contains the new zooming factor in percent. The value
must be between 10 and 250.

lParam Is not used.

Return Value The return value is zero if the window cannot be zoomed. Otherwise it is nonzero.

Comments The Image Control window size is adjusted but the Image Control is not updated.
The InvalidateRect function must be used to update the appropiate portion of the
parent window´s client area.

Page 301Image Control Reference

5. Notification Messages

ICN_CHANGED

This code specifies that the actual contents of an Image Control window have been
changed with the SHIFT+INS or CTRL+V keyboard key. The parent window
receives this code through a WM_COMMAND message from an Image Control.

Parameter Description

wParam Specifies the Image Control ID.

lParam Contains a handle that identifies the Image Control in its
low-order word and the ICN_CHANGED notification
code in its high-order word.

ICN_CLEARED

This code specifies that the actual contents of an Image Control window have been
deleted with the DEL, SHIFT+DEL or CTRL+X keyboard key. The parent window
receives this code through a WM_COMMAND message from an Image Control.

Parameter Description

wParam Specifies the Image Control ID.

lParam Contains a handle that identifies the Image Control in its
low-order word and the ICN_CLEARED notification code
in its high-order word.

Image Control ReferencePage 302

ICN_CLICKED

This code specifies that the user has clicked an Image Control. The parent window
receives this code through a WM_COMMAND message from an Image Control.

Parameter Description

wParam Specifies the Image Control ID.

lParam Contains a handle that identifies the Image Control in its
low-order word and the ICN_CLICKED notification code
in its high-order word.

ICN_DOUBLECLICKED

This code specifies that the user has double-clicked an Image Control. The parent
window receives this code through a WM_COMMAND message from an Image
Control.

Parameter Description

wParam Specifies the Image Control ID.

lParam Contains a handle that identifies the Image Control in its
low-order word and the ICN_DOUBLECLICKED
notification code in its high-order word.

ICN_ERRCODE

This code informs the parent window that an error has occured. The parent window
receives this code through a WM_COMMAND message from an Image Control.
Further information can be obtained by calling the GetICErrorCode function.

Parameter Description

wParam Specifies the Image Control ID.

lParam Contains a handle that identifies the Image Control in its
low-order word and the ICN_ERRCODE notification code
in its high-order word.

Page 303Image Control Reference

Appendix A
This appendix describes the error codes returned by the GetICErrorCode
function. The error codes described here belong to the modules with the numbers 3
(Image Control module) or 4 (graphics import filter).

The following error codes are sorted according to its group codes:

Error Code Table (Image Control module)

DBS_E_OUTOFMEMORY

0101 Unable to allocate enough memory to register a new image.

0301 Unable to allocate enough memory to register the image to be loaded.

0401 Unable to allocate enough memory.

0703 Unable to allocate enough memory.

0902 Unable to allocate enough memory.

0904 Unable to allocate enough memory.

0B00 Unable to allocate enough memory.

DBS_E_UNEXPECTED

0B02 IC_PRINT message: Unexpected error.

DBS_E_FILEIO

0302 File error, unable to read data from file.

0403 File error, unable to write data to file.

0700 File error: cannot create temporary file to import clipboard data.

0701 File error: cannot write to temporary file.

0702 File error: cannot read temporary file data.

Image Control ReferencePage 304

DBS_E_CLIPBOARD

0600 OpenClipboard failed.

0601 Unable to get data from the clipboard.

0602 Clipboard import error: invalid data handle.

0603 Clipboard export error: cannot copy data to the clipboard.

DBS_E_DLLNOTLOADED

0504 The specified graphics import filter cannot be loaded.

DBS_E_DLLINCOMPATIBLE

0505 The specified graphics import filter uses an unknown interface.

DBS_E_INVALIDARG

0900 IC_PASTEDATA message: invalid argument.

0903 IC_COPYDATA message: invalid argument.

0B01 Invalid argument.

DBS_E_INVALIDFORMAT

0901 IC_PASTEDATA message: unsupported data format.

Error Code Table (graphics import filter)

DBS_E_OUTOFMEMORY

010B Unable to allocate enough memory during import operation.

DBS_E_NOMEMORYACCESS

010F Locking memory failed.

Page 305Image Control Reference

DBS_E_UNGROUPED

0101 The specified file does not exist or cannot be opened.

0102 The specified file contains a bitmap or a picture that is too big.

0103 The file contains a bitmap that is completely white.

0107 The specified file is of an unknown type.

0109 Current file data is bad.

010A The import operation has been aborted.

010D The generated metafile is too big.

0129 The import file contains an unsupported compression scheme.

012A The import file contains an unsupported file version.

012B The import file contains an unsupported style.

Image Control ReferencePage 306

Appendix B

The IC Image Control File Format

The following describes the IC Image Control file format. The Image Control
supports all prior versions of the format, but, to maximize working speed, the
current format should be used.

The format has the following form:

WORD wFormatID;
WORD wVersion;
DWORD dwFormatSize;
short nXScale;
short nYScale;
WORD wWinWidth;
WORD wWinHeight;
short nFileNameLength;
short nFilterNameLength;
char szExtension[4];
char szFileName[];
char szFilterName[];
union {

BYTE ImageData[];
ICDITEM ExtData[];

}

These fields have the following meanings:

Field Description

wFormatID Specifies an identifier which supports older version
formats. This value must be zero for version 120 and
higher.

wVersion Specifies the version number of the format. This number is
currently 220.

dwFormatSize Specifies the total size, in bytes, of the format structure.
This value is returned by the IC_GETDATASIZE
message.

Page 307Image Control Reference

nXScale, nYScale Specifies the scaling factors in horizontal and vertical
direction in percent if the scaling mode of the Image
Control is set to IF_SCALED. Otherwise these values
should be set to zero.

wWinWidth Specifies the window width in TWIPS (1/1440 Inch) if the
scaling mode of the Image Control is set to
IF_SCALEDTOWINDOW. Otherwise this value should
be set to zero.

wWinHeight Specifies the window height in TWIPS (1/1440 Inch) if
the scaling mode of the Image Control is set to
IF_SCALEDTOWINDOW. Otherwise this value should
be set to zero.

nFileNameLength Specifies the size, in bytes, of the szFileName[] array
without a terminating zero. If this value is zero the
szFileName[] array does not exist and the image is
specified through the ImageData[] array. Otherwise,
when this value is non-zero, additional data is specified
through the ExtData[] array.

nFilterNameLength Specifies the size, in bytes, of the szFilterName[] array
without a terminating zero.

szExtension[4] Contains the file extension belonging to the filter stored in
the szFilterName[] array.

szFileName[] Contains the full path and file name of the file containing
the image data. If no file name is specified this array must
be given a terminating zero.

szFilterName[] Contains the name of the filter that should be used to read
the image data. If this string contains no path the filter
must be in the same directory as the Image Control
module. If the string contains no extension the .FLT
extension is assumed. If no filter name is specified this
array must be given a terminating zero.

ImageData[] Specifies an array of bytes containing the image data if the
szFileName[] array does not specify a filename. If the
image is specified by a filename the ExtData[] array is
used instead of this array.

Image Control ReferencePage 308

ExtData[] Is an array of ICDITEM structures containing additional
Image Control data. The size of the array must be
determined through the dwSize members of the ICDITEM
structures. This array is an alternative to the ImageData[]
array. See the following comments section for a
description of the ICDITEM structure.

Comments The szFilterName[] array and/or the szExtension[] array can contain empty
strings. In this event the Image Control uses the following algorithm to select a
filter:

- If no filter name is specified, szExtension[] is used to select a filter from the
private initialization file IC.INI/IC32.INI.

- If no extension is specified the extension contained in szFileName[] is used to
select a filter from IC.INI/IC32.INI.

- If szFileName[] contains an unknown extension, the Image Control
automatically tries to select a filter.

The ICDITEM structure is the header structure of an entry in the ExtData[] array.
The data itself follows the header structure and its size is determined through the
dwSize member. ICDITEM has the following form:

typedef struct tagICDITEM {
DWORD dwID;
DWORD dwSize;
DWORD dwReserved;

} ICDITEM;

Field Description

dwID Identifies the data of this item. The following values are possible:

Value Meaning

ICI_END Identifies the end of the data array.

ICI_FILEW The data is a filename formatted as a
zero-terminated Unicode string.

ICI_FILTERW The data is a filtername formatted as
a zero-terminated Unicode string.

ICI_EXTW The data is a file extension formatted
as a zero-terminated Unicode string.

Page 309Image Control Reference

dwSize Determines the amount, in bytes, of the data that follows this
structure.

dwReserved Reserved for future use. Must be set to zero.

