TX Text Control

Class Library Programmer's Guide

Version 7.0

TX Text Control 7.0

Information in this document is subject to change without notice and does not represent a
commitment on the part of The Imaging Source Europe GmbH. The software described in
this document is furnished under alicense agreement. The software may only be used or
copied in accordance with the terms of this agreement.

Copyright 1991-2000 The Imaging Source Europe GmbH. All rights reserved.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

INtrodUCtionoovviiii e,
System ReqUIremMents ..o 5
How this Manual is Organizedc.cccooooeviiiiiiiiiiiennee, 5
The Files You WOrk With ... 6
Distributing your ApplicationS.......ccccceeveiiiiiiiiiceviiee e, 6

Class Library User's Guideccccoeevveiiinnnnnne,
Creating a Simple Word Processor......cccccooeeeeviiiiiiieeeenn, 9

Step 1: Usethe Visual C++ AppWizard to Create a Project 10
Step 2: Add Text Control's Include Filesto Your Project 11
Step 3: Add Text Control's Import Librariesto Y our Project.......... 11
Step 4: Enable Runtime Type Information (RTTI)ccevvvvveecienene 12
Step 5: Copy Text Control's DLL FleScoccvevvveiecceve e 13
Step 6: Derive Your View Class from CTXVIiewcccecevvveeciennene 13
Step 7: Derive Your Document Class from CTXDoC........cc.ccceveuen. 14
Step 8: Add Codeto Load and Save Documents..........cocceeevereenens 14
Step 9: Add Codeto Print DOCUMENESccccveeeevieiieeierie e 14
Step 10: Compile and Run Your Applicationcccccevevvveeciennnns 15
Extending Your Application's Menusccccceeeeeevivinnnnnn. 15
Add Text Control's Predefined RESOUICESccoeveerenerienieeniens 15
Copy the HEIP MENU ..ot 16
Load the Copied TooIbarccccveeeveieeese e 17
Add an Additional Menu Commandccceererererieniesenesienenens 17
Compile and Run Your AppliCationccccceveeevesesieseseseeieniens 18
Adding a Button Bar and a Status Barccccccceennnnn. 18
Add Member Variablesto CMainFramec.ccocevevvieninenenienens 19
Add NEW RESOUICES ..ottt 19

Create the Button Bar and the Status Bar Windowccceevveeenans 20

Enable the Display of Menu Command Descriptions..................... 22
Compileand Run Your Applicationcccceeveevieveeieeiese s eeeeenns 22
Working with File Formatscccoooevviiiiiiiiiieiiee e, 23
Define the Application's Document Format............cccccevevveceennennene. 23
Load and Save Additional Text FOrmatscccccevvevveeveseseeceennnn 24
Compileand Run Your Applicationcccoeeveevieveeieeieeseseeeeeenns 24
ReferencCe ...,
Using the Text Control Class Libraryccccevvviiiieennns 25
Headers and FOOLErS.......ccov it s 25
JLIE: o] =S 28
Marked Text FIEASce v e e 30
INserting OLE ODJECLSccvoviieieererieee e 34
RESOUICES ...ttt ettt e e e snee e e e ennes 36
Text Control ClasSesovvviiiiiiii e 39
CTXBUONBAScocviiiieieeiiiesieesieesieesieesiessiesssessassee e s s ense s 39
(O 1) B Lo oSS 42
(O3)4\ (0] 11 Y F= 1o | = 44
CTXRUIEIBA ..ottt e 59
CTXSAUSBAESccvviiveiiieiiie ettt sree e snne s 62
CTXTEXICONLIOLc.eeeeeiectiee ettt s 66
CTXTOOICONLAINESc.eeveiveeeesieeeeiesteseeee e see e sre e 163
CTXVIBW ittt 165
Data StrUCTUIESiieii e 169
INAEX ..o

Make Your CMainFrame a CTXToolContaiNerccoeeeveevererrnne 21

Introduction

Page 5

Introduction

This programmer's guide contains the information necessary to use the
Text Control Class Library. The Text Control Class Library is a set of
C++ classes that encapsulate the functionality necessary to use Text
Control in applications written with the Microsoft Foundation Class
Library. Using Text Control, you can create all kinds of text-based
applications with highly sophisticated formatting and display
capabilities which are normally the exlusive domain of large word
processing packages.

System Requirements

Using the Text Control Class Library requires the following minimum
configuration:

Windows 95/98, Windows NT 4.0 or Windows 2000.
Microsoft Visual C++ 6.0.
The Microsoft Foundation Class Library 6.0.

How this Manual is Organized

*

Part 1 of this manual, "Class Library User's Guide", isatutorial that

can be used to learn how to use the Text Control Class Library. It covers

the following topics:

. A step-by-step guide creating a simple word processor

. Adding additional Text Control features like headers and footers
or hypertext links.

. How to create your own modified version of the Text Control
Class Library.

Part 2, "Class Library Reference", contains more detailed information

of al the classes member functions and how these functions work

together. It also covers the following topics:

. Information about how the Text Control Classes are integrated in
the Microsoft Foundation Classes.

Page 6

Introduction

. Several articles describing how the Text Control Class Library
realizes the more advanced Text Control features.

The Files You Work With

After Text Control has successfully been installed you can find all
required filesin the following sub-directories under the main
installation directory:
\BIN contains all DLL files of the Text Control Classlibrary and the
Text Control kernel. The Class Library DLL is contained in the
following versions:
. TXCLASSES.DLL

Retail version using the ANSI character format

. TXCLASSESD.DLL

Debug version using the ANSI character format
. TXCLASSESU.DLL

Retail version using the Unicode character format
. TXCLASSESDU.DLL

Debug version using the Unicode character format
\HELP contains the Text Control online help files.
\TXCLASSES\INC contains the Class Library'sinclude files. More
information about how to integrate these files can be found in the next
chapter.
\TXCLASSES\LIB contains the import library files of the Class
Library. More information about how to link your appliction with these
files can be found in the next chapter.
\TXCLASSES\SRC contains the source files of the Class Library. For
more information on how to modify and compile the Class Library see
"Building Your Own Class Library".

Distributing your Applications

The following table shows all the files necessary for Text Control to
operate properly. Y ou must ensure that these files exist on your client's

Introduction

Page 7

machine and they are the correct version. If your client's machine has
older versions of these files, you should update them.

1 TXCLASSES.DLL

2 TX32.DLL
TXTLS32.DLL
WNDTLS32.DLL
TXOBJ32.DLL
IC32.DLL
[C32.INI
TX_BMP32.FLT
TX_TIF32.FLT
TX_WMF32.FLT
TX_RTF32.DLL
TX_HTM32.DLL
TX_WORD.DLL

3 MFC42.DLL (6.00.8447.0)

4 TX_GIF32.FLT

Thefirst file (group 1) isthe DLL file containing the Text Control Class
Library. Thisfile should be installed in the same directory as your
application's executable file. If your application is based on the Unicode
character format, you must distribute the Unicode version
(TXCLASSESU.DLL).

Thefiles listed in the second group are the Text Control kernel DLL
files. They must be installed in the same directory asthe
TXCLASSES.DLL. You must alwaysinstall all of them.

Y ou should also verify that the Microsoft Foundation Class Library
(group 3) isinstalled on your client's computer. This file must be
installed in the Windows system directory. Please refer to Microsoft's
redistribution policy if you need to redistribute them. If your application

Page 8

Introduction

is based on the Unicode character format you must distribute the Uni-
code version (MFC42U.DLL).

Thelast file (group 4) is afilter to use the GIF image format with Text
Control. Unisys Corporation holds patent rights to the LZW technology
used in thisfilter. If a customer wants to use the GIF file format, heis
required to obtain alicense from Unisys and send a copy of the license
agreement to The Imaging Source Europe GmbH. We will then send
him the GIF filter free of charge.

ClassLibrary User's Guide Page 9

Class Library User's Guide

In thistutorial, you will learn how to use Microsoft Visual C++ to build
a Text Control based word processor with the Text Control Class
Library working together with the Microsoft Foundation Class Library.
It is assumed that you have some knowledge of C++ and of
programming with the Microsoft Foundation Class Library.

Thetutorial isdivided into several parts each of which covers a number
of Text Control features:

. Part 1, "Creating a Smple Word Processor", begins with a 10 step tour
how to create a simple word processor with Visual C++'s Application
Wizard.

. Part 2, "Extend Your Application's Menus', shows how to add Text
Control's predefined menus, how to create an own menu command and
how to access the Text Control.

. Part 3, "Adding A Button Bar and a Satus Bar", shows how to add a
Button Bar and a Status Bar to the application's frame window.

. Part 4, "Working with File Formats', shows how to enable your
application to load and save al the file formats that Text Control
supports.

Each of the tutorial's parts adds more features to the starter application
created in part 1. The resulting program is the TXWords demo program
distributed with Text Control. The source code of each part can be
found in the Samples\Visual C\TXWordsl ... n sub-directories.

Creating a Simple Word Processor

This chapter shows you how to create a simple word processor from
scratch with just afew lines of code. It will be able to load and save
files, use the clipboard and will have dialog boxes for character and
paragraph formatting, aruler and afull keyboard and mouse
interface. The following step-by-step instructions cover the following
topics:

Page 10 Class Library User's Guide

. Creating the starter application.
. Performing Visual C++ project settings.
. Adding the Text Control Class Library.

. Using the MFC document/view architecture.

Step 1: Use the Visual C++ AppWizard to Create a Project
Start Application Wizard:
. From the Visual C++ File menu select New.
. Make sure you' re on the Projects tab.
. Select MFC AppWizard (exe).

. In the Location box enter the desired project base directory (e.g.
C:\Projects).

. Enter the name of your Project in the Project Name box (This tutorial
assumes TXWords as the project name)

Fien Pl | wosspson | Db Dacansses |

AL DD iz “--ﬁ S Libaary Frgeet pars:.

ik A psimince: Tvpe Wita o I"""""-"\-"

Cori by iz inane]

Dababaas Pt Legakon

ey Eotchn i by II: WPressct’, Leiioach ;J

Edlerded Stomd Proc Wioed
15461 £ shorren wewd
Hikatia F Cyustw raw sk s
HY_ foien Lakeksmad m
I Aapttorand | 1 r
M dapfforared | I ;I
4% ey [et '
§ Lulp Pt
WL Al
AL C ol Sl s b
o WAL Do Lk Loy

il | X

. Click on OK.

Proceed in the following dialogs as follows:

Class Library User's Guide Page 11

On page 1 don't change the default settings. Click on Next.
On page 2 don't change the default settings. Click on Next.
On page 3 deselect support for ActiveX Controls.Click on Next.

A WD P

On page 4 deselect Initial status bar, because Text Control hasits own
status bar. Click on Next.

On page 5 don't change the default settings. Click on Next.

o

On page 6 don't change the default settings. Click on Finish.

Now adialog box appears, summarizing al the settings made in the
previous steps. Click on OK to start the code generation process.

Step 2: Add Text Control's

Include Files to Your s EH
Project Edbor | Tabe | Detug | Compaibdy | Eukd Diecioses | | [1]¥]
InVisual C++, Elatom B cheioes for
select Tools - J'wir2 2| firchaefles =
Options from the [wecione: [o
menu, Sela:t the [\Woual Sluda B MYC3SWNCLLUIDE |
Directoriestab, and | | &S mursutcuce
add the Ve Corb T s 1
\TXClasses\Inc
subdirectory to the
list of include paths. =
(i.e. if your Text
Control installation [or] coees |
directory is

C:\TextControl, add C:\TextControl\TXClasses\Inc to the list of include
paths). Close this dialog by clicking on OK.

Step 3: Add Text Control's Import Libraries to Your Project
. From the Project menu select Settings.
. Select the Link tab.

Page 12

Class Library User's Guide

Under Category select Input.

In the Object/Library modules text field enter the following depending
on the configuration you selected under Settings For:

For this configuration Add thisto Object/Library modules
Win32 Debug TXClassesD.lib
Win32 Release TXClasses.lib

(Use TXClassesU.lib and TXClassesDU.lib instead, when you develop
an application based on the Unicode character format.)

Select Settings for: All configurations.

In the Additional library path text field, enter the \TXClasses\Lib
subdirectory, i.e. enter C:\TextControl\TXClasses\Lib if your Text
Control installation directory is C:\TextControl.

Fing@el SeHfnga EilE
Seteg: P ip.:,,aww._ =] | Genesl | Debng | CoCee | Lk | Ao]3]
: CHEREY [ingt =] fuaet |
Do R iyt
|
| preare e [Ve g0 debudl Basias
|
Frus ypanbul refeiprcss:
|
Hughdiional ibasry path
I'.'-'I:r [T |
C orwron [psars
fnologe Ssubryshervandows Smschane: | 36 ;I
Mspathc T STt CandaolP TEDlsea L™
I
[o | cowa |

Step 4: Enable Runtime Type Information (RTTI)

While still in the Project Settings dialog, select Settings for: All
configurations.

On the C++ tab select the C++ Language category.

Class Library User's Guide Page 13

. Select the Enable Run-Time Type Information (RTTI) check box.
. Close the Project Settings dialog by clicking on OK.

Note: If you forget this last step, you will get an error while compiling
your TXWords project. RTTI is absolutely necessary for the TX Classes
DLL towork properly.

Step 5: Copy Text Control's DLL Files

Before running your program make sure the Text Control DLL files are
in the output directory of your project. The Text Control DLL files can
be found in the \Bin subdirectory of the Text Control installation
directory. For more information see "Introduction - The Files You Work
With".

If you build an application based on the ANSI character format:
. Copy TXCLASSES.DLL to C:\Projects\TXWords\Release.
. Copy TXCLASSESD.DLL to C:\Projects\TXWords\Debug.
If you build an application based on the Unicode character format:
. Copy TXCLASSESU.DLL to C:\Projects\TXWords\Release.
. Copy TXCLASSESUD.DLL to C:\Projects\TXWords\Debug.

Copy all other Text Control DLL filesto both directories. A complete
list can be found in "Introduction - Distributing your Applications".

Step 6: Derive Your View Class from CTXView
In TXWordsView.h:
. Add the following before the declaration of the class CTXWordsView:
#i ncl ude "TXVi ew. h"
. Derive your CTXWordsView classfrom CTXView:
class CTXWordsView : public CTXVi ew
In TXWordsView.cpp:

. Replace every occurrence of CView with CTXView.

Page 14 Class Library User's Guide

Step 7: Derive Your Document Class from CTXDoc

In TXWordsDoc.h:
. Add the following before the declaration of the class CTXWordsDoc:
#i ncl ude " TXDoc. h"
. Derive your CTXWordsDac class from CTXDoc:
cl ass CTXWrdsDoc : public CTXDoc
In TXWordsDoc.cpp:
. Replace every occurrence of CDocument with CTXDaoc.

Step 8: Add Code to Load and Save Documents

In TXWordsDac.cpp add the following line to
CTXWordsDoc:: Serialize() (the added line is marked with):

voi d CTXWordsDoc: : Seri al i ze(CArchi ve& ar)

{
EY CTXDoc: : Serialize(ar);

if (ar.1sStoring())

{
/1 TODG add storing code here

}

el se

{
/] TODO add | oading code here

}
}

Step 9: Add Code to Print Documents

In TXWordsView.cpp change CTXWordsView::OnPrepar ePrinting.
The function's code should look like the following:

BOOL CTXWor dsVi ew. : OnPrepar ePri nting(CPrintlnfo* plnfo)
{

}

return CTXVi ew. : OnPrepar ePrinting(pl nfo);

Class Library User's Guide Page 15

Step 10: Compile and Run Your Application

. Verify that you have completed all steps exactly as they are documented
here. (The sub-directory Samples\Visual C\TXWordsl contains the code
created in this chapter.)

. Hit F7 (or select Build TXWords.exe from the Build menu) to start the
compilation process.

After compilation, you can run the application with Visual C++'s Build -
Execute TxWords.exe command. When TXWords runs, an MDI
application window appears with a menu bar containing File, Edit,
View, Window and Help menus and a default toolbar. The application
window contains one open document window with aruler at its top.

Y ou can typein text, copy and pasteit viathe clipboard and save and
load the text using the File - Open and the File - Save menus. Y ou can
aso print the document or view the printing output with the print
preview command.

Extending Your Application's Menus

In addition to the generic file and edit commands you have seen in the
previous chapter, Text Control's view class contains predefined
command handlers that can change font and paragraph attributes and
insert tables, images and OLE objects.

In this part you will add predefined resources to access Text Control's
predefined command handlers. Y ou will aso create your own command
handler to learn how to extend the predefined menus.

Add Text Control's Predefined Resources

Text Control's predefined resources are located in the \TXClasses\Res
subdirectory. (i.e. if your Text Control installation directory is
C:\TextContral, the resource directory is
C:\TextControl\TXClasses\Res). The subdirectories contain the
resources for different languages. The currently available languages are
English U.S. (\enu) and German (\deu).

Page 16 Class Library User's Guide

To add the resources perform the following steps:
. In the Workspace window select the ResourceView tab.

. With File - Open open the TXClasses resourcefile (i.e.
\TXClasses\Res\enu\TXClasses.rc).

. Double-click on the menu resource of TXClasses.rc and select the menu
with the identifier TX_IDR_TXVIEW. Pressthe CTRL key and drag
and drop this menu in your project's Workspace window.

. Perform the same operation with the TX_IDD_TABLEINSERT dialog
box and the tool bar (TX_IDR_TXVIEW).

. Double-click the string table in TXClasses.rc, choose Edit - Select All
and then Edit - Copy. Then double-click your application's string table
in the Workspace window and choose Edit - Paste.

Y our application's resources now should contain an additional menu
(TX_IDR_TXVIEW), an additional dialog box
(TX_IDD_TABLEINSERT), an additiona toolbar and additional
strings in your application’s string table.

Note: All the resource identifiers of Text Control are prefixed with TX .

. Close TXClasses.rc. Leaving TXClasses.rc open resultsin a conflict
with Resource.h.

Copy the Help Menu

The menu previously created with the Application Wizard
(IDR_TXWORDTY PE) isno longer required, as the
TX_IDR_TXVIEW menu isyour new menu. Before deleting it, you
should copy your application's help menu:

. Double-click the old menu and select the help menu. Choose Edit -
Copy.

. Double-click the new menu and choose Edit - Paste. The help menu
now appears at rightmost submenu of the TX_IDR_TXVIEW menu.

Class Library User's Guide Page 17

Load the Copied Toolbar

The CMainFrame class which implements the application's main frame
window, by default loads the toolbar created through the Application
Wizard. To make the copied toolbar available perform the following:

In CMainFrame::OnCr eate change

m wndTool Bar . LoadTool Bar (| DR_MAI NFRANVE)
to

m wndTool Bar . LoadTool Bar (TX_| DR_TXVI EW

Add an Additional Menu Command

The following shows you how to extend the previously inserted
predefined menu with an additional menu command. Y ou should be
familiar with Application Studio and Class Wizard to add a menu entry
and a corresponding command handler. The following steps add a new
View - Whitespace menu command:

. In the Workspace Window double-click the TX_IDR_TXVIEW menu.

. Double-click the new entry field at the bottom of the View sub-menu.
The Menu Item Properties dialog box appears. Enter
ID_VIEW_WHITESPACE as D, Whitespace as caption and View
Whitespace as prompt.

. Choose View - Class Wizard and associate the View menu with the
CTxwordsView class.

. For the new ID_VIEW_WHITESPACE command select the Command
message and click Add Function. Accept the default function name
OnViewWhitespace.

. Click Edit Code. Class Wizard creates the handler function and opens
the TXWordsView.cpp file.

The remaining steps are to fill the empty handler function with code that
accesses the Text Control. To access the Text Control use the member
function CTXView::GetTextControl and to view the whitespace

Page 18

Class Library User's Guide

characters use the member function CT XTextControl::SetMode. The
following steps add the necessary code:

Fill the command handler with the following line of code:

voi d CTxwor dsVi ew. : OnVi ewhi t espace()

{
Get Text Cont r ol () - >Set Mode(TF_SHOWAH TESPACE) ;

}

To be ableto usethe CTXTextControl class add the following include
statement at the top of TXWordsView.cpp:

#i ncl ude " TXText Control . h"

Compile and Run Your Application

*

Verify that you have completed all steps exactly as they are documented
here. (The sub-directory Samples\Visual C\TXWords2 contains the code
created in this chapter.)

Hit F7 (or select Build TXWords.exe from the Build menu) to start the
compilation process.

After starting the application you should now be able to format your
inserted text with font and paragraph attributes and to insert tables,
images and OL E objects. The View menu contains several commands
for changing the zooming factor and the page view, the Edit menu has
entries for searching and replacing text. Y ou can also view whitespace
characters with you manually inserted menu command.

Adding a Button Bar and a Status Bar

In this part you will add code to the starter application that is necessary
to integrate Text Control's toolbars. With Text Control's Button Bar you
can set text formatting attributes, like fonts and their size and styles.
Text Control's Status Bar shows the state of several keyboard keys and
information text like menu command descriptions.

Class Library User's Guide Page 19

Add Member Variables to CMainFrame

. At thetop of MainFrm.h add the following two #include statements:
#incl ude " TXBBBar . h"
#i ncl ude "TXSBBar . h"

. In the CMainFrame class declaration below add two protected
members:

pr ot ect ed:
CTXButt onBar m wndBB;
CTXSt at usBar m wndSB;
Add New Resources
Create two new resource | Ds for the two bars;

. Select View->Resource

Symbols from the Hesowoe Ggmbols KIE
menu, and click on “::uwmm{ ":‘; ol U".. | e |
New. In the dialog box DF_SOCKETS_IMIT_FAILED 104 v Ll
that appears, enter TR = e |
IDW_TXBUTTONBAR pow_rxutionsan DsEE07 Change.._ |
as the name and |
O0xE801 asthe value.

. Repeat those StepSfor @ = g imadarky syrbese
new resource symbol Lo b
with the name el used
IDW_TXSTATUSBAR
and the value OxXEB802.

(Y ou can choose any
values for the resource symbols, aslong asthey are in the range
OxES800...0xE8FF.)

. Close the Resource Symbols dialog by clicking Close.
Add anew string to the application’s string table:
. In the Workspace window select the ResourceView tab.
. Expand the TXWor ds Resources folder and the String Table folder.

Page 20 Class Library User's Guide

. Double click on Sing Progeres
the Sring Table R Genea |
entry (not the
folder), and create 0 [05sBerFORNAT 5]

anew string Cagtion: [Fage: “dubolire: SakARCa: B4 =]
resource by
double-clicking on =]

the last (empty)
entry in the list of existing strings.

. Name the new string resource IDS SBAR_FORMAT and giveit the
value:

Page: %tu\nLi ne: %t u\nCol: %lu

Create the Button Bar and the Status Bar Window

In CMainFrame::OnCreate() add statements to create a button bar
and a status bar. The resulting code should look like this (added lines
are marked with X):

i nt CMai nFrame: : OnCr eat e(LPCREATESTRUCT | pCreat eSt ruct)
{
if (CVDI FrameWid: : OnCreate(l pCreateStruct) == -1)
return -1,

i f (!mwndTool Bar. Creat eEx(this, TBSTYLE FLAT,
WS_CHI LD| W5_WI Sl BLE| CBRS_TOP| CBRS_GRI PPER
| CBRS_TOCLTI PS| CBRS_SI ZE_DYNAM C)
|| ''mwndTool Bar. LoadTool Bar (TX_| DR_TXVI EW)
{
TRACEO("Failed to create tool bar\n");
return -1; /] fail to create

}

[/ TODO. Delete these three lines if you don't
/1 want the tool bar to be dockabl e

m wndTool Bar . Enabl eDocki ng(CBRS_ALI GN_ANY) ;
Enabl eDocki ng(CBRS_ALI GN_ANY) ;

DockCont r ol Bar (&m wndTool Bar) ;

Class Library User's Guide Page 21

Y I IIIIII I I I I

}

if (!mwndBB. Create(this,
| DW TXBUTTONBAR, W5_CHI LD} W5_W SI BLE| CBRS_TCP,
BBS_FLAT | BBS_FLATBUTTONS))
{
TRACEO("Fail ed to create button bar\n");
return -1, /] fail to create

}

m wndBB. Set Def aul t Stri ngs();
m wndBB. Set Bar St yl e(m wndBB. Get Bar St yl e()
| CBRS_TOOLTIPS | CBRS_FLYBY);

/1l get format string for page, |ine and col um
CString strSBFornat;
st r SBFor mat . LoadSt ri ng(|1 DS_SBAR FORVAT) ;

if (!mwndSB. Create(this,
| DW TXSTATUSBAR, W5_CHI LD} W5_VI SI BLE
| CBRS_SI ZE_FI XED| CBRS_ALI GN_BOTTOM
STS_LEFTALI GN| STS_NOBORDER, str SBFornat, NULL))

{
TRACEO("Fail ed to create status bar\n");
return -1; // fail to create

}

return O;

Make Your CMainFrame a CTXToolContainer
In MainFrm.h implement the following:

At the top add the following #include statement:
#i ncl ude "TXTool Cont ai ner. h"

In addition to CM DI FrameWnd, derive CM ainFrame from
CTXToolContainer:

class CMai nFrame : public CVDI FrameWhd , public
CTXTool Cont ai ner

Page 22

Class Library User's Guide

Add the declarations of the CTXToolContainer virtual methods to the
class CMainFrame:
public:
CTXButtonBar* Get ButtonBar();
CTXSt atusBar* Get StatusBar();
At the bottom of MainFrm.h add the inline implementation of the
CTXToolContainer virtual methods:
inline
CTXBut t onBar * CMai nFrane: : Get But t onBar ()
{

}

return &m wndBB;

inline
CTXSt at usBar* CMai nFrane: : Get St at usBar ()
{

}

return &m wndSB;

Enable the Display of Menu Command Descriptions

Add the following declaration to MainFrm.h (put it in one of the public
sections):

virtual Cwhd* Get MessageBar();

Add the following code to MainFrm.cpp:
Cwhd* CMai nFrane: : Get MessageBar ()

{

}

return (mwndSB. Get Saf eHand() ? &m wndSB : NULL);

Compile and Run Your Application

*

Verify that you have completed all steps exactly as they are documented
here. (The sub-directory Samples\Visual C\TXWords3 contains the code
created in this chapter.)

Class Library User's Guide Page 23

. Hit F7 (or select Build TXWords.exe from the Build menu) to start the
compilation process.

Working with File Formats

Each application needs its own format to save its own application-
specific data. In addition the most applications support other formats to
load or exchange data with other applications. In this part of the tutorial
you will add code that enables the application to load and save its data
initsown format and in all the text formats that Text Control supports.

Define the Application's Document Format

In part 1 of thistutorial, Step 8, you added aline of code in the
CTXWordsDoc:: Serialize function. This added line loads or saves the
text and its formatting attributes of your documents. This function can
be further extended to load and save additional datathat is specific to
your application. The Application Wizard has created TODO comments
to show where to add storing and loading code.

Currently when you use the File Open and File Save dialog boxes your
documents have no type description and no file extension. To give your
documents a type description and afile extension perform the following

steps:
. In the Workspace window select the ResourceView tab. Open the string
table and double-click the IDR_TXWORDTY PE entry.

Thisisthe document type string consisting of seven substrings,
seperated through \n characters. See CDocTemplate::GetDocString in
the MFC documentation for more information about the meanings of
these substrings.

. Extend this string to the following:

\ nTXWor d\ nTXWr d\ nTX Words Format (*.txw)\n.txwn
TXWor ds. Docurent \ nTXWor d Docurnent

Page 24

Class Library User's Guide

Now your document's type description is TX Words Format (*.txw) and
your document's file extension is .txw. This description string now
appears in the File Open and File Save dialog boxes.

Load and Save Additional Text Formats

Text Control currently supports six text formats:
Its own native format (*.TX).

Plain text (*.TXT).

Plain Unicode text (*. TXT).

Rich Text Format (*.RTF).

Hyper Text Markup Language (* . HTM, *.HTML).
Microsoft Word Format (.DOC).

To load and save documents using one of these formats, perform the
following step:

In CTXWordsApp::Initinstance() add the following line of code
before the document's template is created:

CTXDoc: : Enabl eFi | eFor mat s(this);

To support for example only Rich Text Format, perform the following
steps:

At the top of TXWords.cpp add the following include statement:

#incl ude "TXFi | eFormats. h"

In CTXWordsApp::Initlnstance() add the following line of code:
CTXDoc: : Enabl eFi | eFormat s(t hi s, FORMAT_RTF) ;

Compile and Run Your Application

*

Verify that you have completed all steps exactly as they are documented
here. (The sub-directory Samples\Visual C\TXWords4 contains the code
created in this chapter.)

Hit F7 (or select Build TXWords.exe from the Build menu) to start the
compilation process.

Using the Text Control Class Library Page 25

Reference

Using the Text Control Class Library

Headers and Footers
Using Headers and Footers

Headers and footers can only be used when a page size has been set
with CTXTextControl:: SetPageSize. Headers and footers are only
visible on the screen if one of the page view modes (TF_PAGEVIEW or
TF_EXTPAGEVIEW) has been selected. View modes can also be set
with CTXTextControl:: SetPageSize.

Headers and/or footers must be enabled with
CTXTextControl::HFEnable. This function specifies whether headers
and footers, only headers or only footers are to be used. Additionally
special headers and/or footers for the first page can be specified. To edit
an inserted header or footer, it must be activated either with
CTXTextControl:: HFActivate or with a built-in mouse interface. An
activated header or footer gets the input focus and its border is shown
with a dotted frame. When a header or footer is activated, the main text
is displayed gray, otherwise a header's or footer's text is displayed gray.
Text Control sends TN_HF ACTIVATED and
TN_HF_DEACTIVATED notification messages to inform its parent
window about activation or deactivation of headers or footers. Override
CTXNotifyHandler::OnTnHFActivated and
CTXNotifyHandler::OnTnHFDeActivated to handle these
notifications.

CTXTextControl::HFEnable allows the following style settings:
1. Activation can be performed with mouse click and/or with mouse
double-click.

2. The border of an activated header or footer can be solid, dotted or
unframed.

Page 26

Using the Text Control Class Library

The default style setting is a dotted frame and a mouse interface that
activates a header or footer with double-clicks.

By default the top of a header has a distance of one centimeter from the
top of the page and the bottom of afooter has a distance of one
centimeter from the bottom of the page. With
CTXTextControl::HFGetPosition and
CTXTextControl::HFSetPosition these values can be changed. The
height of a header or footer depends on the header's or footer's current
text.

When a document is loaded or converted from another format,
contained headers and footers are automatically displayed.
CTXTextControl::HFGetEnabled can be used to get the information
about which headers and/or footers the current document contains.

To delete a header or footer or to disable a certain style setting, use
CTXTextControl::HFDisable.

Programming Headers and Footers

Headers and footers are seperate text parts which are independent of the
main text. When the user alters the text or the text format, for example
with a connected Button Bar, Text Control uses the current input focus,
to determine whether the text format of a header, afooter or the main
text is changed. The same occurs when the text is manipul ated from
programming code. For example when atable isinserted from a menu
with CTXTextControl::Tablel nsert, the current input focus
determines whether the table isinserted in a header's or footer's text or
in the main text.

In addition to this default selection a programmer can use
CTXTextControl::HFSelect to use a certain message for a certain text
part. For example the following code returns the length of a header's
text:

LONG | Text Si ze;

HFSel ect (TF_HF_HEADER) ;

| Text Si ze = Get Text Lengt h();

HFSel ect (TF_HF_AUTO) ;

Using the Text Control Class Library Page 27

Thefirst line selects the header, independent of the current input focus,
the second line gets the length of the header's text and the third line
returns to the default selection mode. There can be more than one
message call between the two HFSelect calls.

Almost all member functions of the CTXTextControl class can be used
in this way with some exceptions. The following isa complete list of
these exceptions:

1. Thefollowing functions cannot be used with headers and footers:

- dl functions that handle scrolling

- operations with headers and footers

- printing operations

- operations with chains of linked Text Controls

2. The following member functions of CT XTextControl aways affect
all text parts (main text, headers and footers), independent of the
currently selected part. These functions are:

- Get/SetBackgroundColor

- Get/SetL anguage

- Get/SetCar etExt

- Get/SetM ode

- GetSupportedFonts

- GetSupportedSizes

- GetDevice

- SetDevicePrinter/Screen/Standar d
- Get/SetZoom

3. The following member functions of CTXTextControl can only be
used with headers and footers after selection with HFSelect:

- LoadFile

- LoadFromMemory
- ResetContents

- SaveFile

- SaveToMemory

Page 28 Using the Text Control Class Library

Tables
Using Tables

Tables can be inserted into a Text Control either with
CTXTextControl::Tablel nsert or as part of adocument formatted
with the RTF, HTML or Microsoft Word formats. Text Control treats a
table as a number of cells organized in rows and columns. Each cell can
have as many lines and paragraphs as required. Paragraph formatting is
performed in relation to a cell's borders. Each cell has a position and an
extension in the document, within this area a cell's frames and text are
drawn along with its paragraph and character formatting attributes.
There can be a distance between the frame and the text.

Text can be selected either within asingle cell or in steps of complete
cells or rows. When a selection is deleted inside atable only the text is
deleted. To delete one or more complete rows use
CTXTextControl::TableDeletel ines. Tables can be copied to the
clipboard and pasted from the clipboard. When atable isinserted at the
first position of another table or immediately behind another table and
both tables have the same number of columns they are combined into a
single table. The insertion of one table inside another tableis not
possible.

A tabl€e's attributes are its frame width, distance between frame and
formatted text, and background color. To alter the attributes of atable or
part of atable, cells must be selected. Then a built-in dialog box can be
opened with the CTXTextControl::TableAttr Dialog. When the
selection extends over severa tables or tables mixed with text, attributes
cannot be changed. To get information about whether attributes can be
changed or tables can be inserted or deleted, for example to implement a
menu, use CTXTextControl::Tablel sPossible. A second way to
change atable's attributesisto use CTXTextControl:: TableGetAttr
and CTXTextControl::TableSetAttr. These functions need atable
identifier and a row and column number as parameters.

When the current input position isinside atable, the ruler shows the
positions of all the cellsin atable's row and the formatting attributes of

Using the Text Control Class Library Page 29

the cell to which the input position belongs.Then the cells' positions and
extensions can be changed with a built-in mouse interface.

Programming with Table Identifiers

Like OLE objects, images and marked text fields each table has an
unique identifier which is set by Text Control. This identifier is returned
from CTXTextControl::Tablel nsert. A programmer can select an own
identifier for each table with the nTablelD parameter of
CTXTextControl::Tablel nsert. Selecting an own identifier is not
necessary but recommended when atable's text or attributes are to be
changed from the programmer instead from an end-user. The user-
defined identifier need not to be unique and remainsvalid if atableis
saved and reloaded.

When atable or a part of atable isinserted inside another table the
inserted table becomes part of the existing table and the inserted table's
identifier islost.

When atable with a user-defined identifier isinserted outside of al
existing tables a new table is created and the table's identifier remains
valid. Text Control informsits parent window with a
TN_TABLE_CREATED notification message that a new table has been
created. Override CTXNotifyHandler::OnTnTableCreated to define
anew user-defined table identifier for this new table.

When atable is inserted from another application which meansit cannot
have an user-defined identifier, Text Control sends an own-selected
identifier with the TN_TABLE_CREATED notification. These
identifiers can also be changed with
CTXNotifyHandler::OnTnTableCreated.

When tables are imported with CTXTextControl::L cadFile or
CTXTextControl::LoadFromMemory, TN TABLE CREATED
notifications are sent only when the bReplaceSel parameter is set to
TRUE or when an imported table has no user-defined identifier.
Otherwise when atable with an user-defined identifier is saved and
reloaded no notification is sent.

Page 30

Using the Text Control Class Library

When atable is completely deleted Text Control informs its parent with
aTN_TABLE DELETED notification message. Override
CTXNotifyHandler::OnTnTableDeleted to perform actionsin this
case.

Several member functions of the CTXTextControl class accept table
identifiers. These identifiers can be either Text Control defined or user-
defined. If more than one table with a certain identifier exists, these
functions perform the operation with the originally inserted table. In
chains of linked windows these functions can be called for any Text
Contral in the chain regardless of which Text Control currently contains
the table.

Marked Text Fields
Using Marked Text Fields

A set of member functions of the CTXTextControl class has been
implemented to define areas in the text of a Text Control called marked
text fields. These fields can be used to create hypertext features, to
realize database embedding while text of different datasets can be
included into the text or to combine severa fields with formulasasin
spreadsheet applications.

An application can use CTXTextControl::Fieldlnsert to define a
marked text field. The whole communication works with the unique
numbers returned by this function. The current text can be changed or
retrieved with CT XTextControl::FieldChangeT ext and
CTXTextControl::FieldGetText,
CTXTextControl::FieldGetPosition retrieves the current text position
of afield. Specia attributes can be selected with
CTXTextControl::Field HasAttr and
CTXTextControl::FieldSetAttr. These attributes can prevent afield
from being deleted or the text of afield from being changed. Further
attributes which help the end-user to edit the field's contents are
described in the next chapter.

With different notification messages Text Control informs the
application about special conditions. The notification messages

Using the Text Control Class Library Page 31

TN_FIELD_CLICKED and TN_FIELD_DBLCLICKED inform the
application about mouse clicks; TN_FIELD_ENTERED and
TN_FIELD_LEFT indicate whether the current input position has been
moved into or from amarked text field. TN_FIELD SETCURSOR can
be used to define the cursor when it is moved over afield. The default
cursor isthe up-arrow cursor. The notification message
TN_FIELD_CHANGED is sent if the text of afield has been altered,
and the notification messages TN_FIELD_DELETED and
TN_FIELD_CREATED are sent if fields have been deleted or created
while inserting or deleting text with the keyboard or the clipboard. If the
text and format data of a Text Control which contains marked text fields
are saved and then reloaded all field identifiers remain the same. All of
these notification messages can be handled by overriding the
appropriate CTXNotifyHandler member function OnTnFieldxxx.

Editing Marked Text Fields

When marked text fields are used in an editable Text Control and these
fields are editable, the end-user can alter the contents of the field like
any other text. Because it is not always unique whether the current input
position is or is not inside afield, some field attributes have been
implemented to help the end-user to edit fields. These attributes can be
used in any combination and can be defined with
CTXTextControl::Fieldlnsert or can be altered with
CTXTextControl::FieldSetAttr.

When the current input position isin front of or behind afield, the next
inserted character can either belong to the field or to the text outside the
field. In normal editing mode an inserted character has the attributes of
its preceding character which means that inserted text just behind afield
belongs to the field and inserted text in front of afield does belong to
the text in front of the field. To solve these problems an extended edit
mode can be defined for every field with the TF_ EXTEDITMODE
setting that implements a second input position at the beginning and the
end of the field. The end-user can switch between the two positions with
the left and right arrow keys. Thisis especialy important when a
marked text field is at the beginning or the end of the complete text. For
example when afield is at the end of the text the end-user can press

Page 32

Using the Text Control Class Library

CTRL+END to reach the text end. When this position is also the end of
amarked text field the right arrow key must be pressed first when the
next inserted character should not belong to the field.

To help the end-user to find the correct position the
TF_USEFIELDCARET and TF_SHOWCURFIELDGRAY attributes
can be used either stand alone or in combination.
TF_USEFIELDCARET defines an attribute that changes the caret's
width when it isinside a marked text field. This width can be defined
with CTXTextControl::SetCaretExt. TF_ SHOWCURFIELDGRAY
defines an attribute that displays the complete text of afield with agray
background when the current input position isinside thisfield.

Each of the described attributes can be defined for asingle field in any
combination which means that different kinds of marked text fields can
be implemented in asingle Text Control.

Relating data to a marked text field

For each marked text field Text Control can store any data that can be
set with CTXTextControl::FieldSetData. For example, when a Text
Control is used to show the contents of a database, a marked text field
can be created for each database field. The database's field names can
then be related to the Text Control's marked text fields using
CTXTextControl::FieldSetData.

Other parts of the program can use CTXTextControl::FieldGetDatato
retrieve the name of the database field to which a marked text field is
linked. For example, when the user has clicked on a marked text field,
CTXTextControl::FieldGetData can be used with the field identifier,
which has been sent withthe TN_FIELD_CLICKED notification
message. CTXTextControl::FieldGetData then retrieves the name of
the database field the user has clicked on.

Data entries can also be numbersinstead of strings. When a marked text
field is copied viathe clipboard or saved to afile the data belonging to
thefield is also copied or saved. The usage of
CTXTextControl::FieldSetData does not change the current text

Using the Text Control Class Library Page 33

contents of a marked text field. When new datais set, al previously set
datais overwritten independently of the kind of datainvolved.

Special Types of Marked Text Fields

Special types of marked text fields are fields that display the current
page number and that provide support for hypertext links. These fields
can be inserted with CTXTextControl::1nsertPageNumber,
CTXTextControl::InsertLink, and CTXTextControl::InsertTar get.
CTXTextControl:: FieldGetType returns atype identifier for these
fields. The following types are possible:

Type Description
FT_EXTERNALLINK Thisfield defines the source of a hypertext
link to alocation outside of the document.

FT_INTERNALLINK Thisfield defines the source of a hypertext
link to alocation in the same document.

FT_LINKTARGET Thisfield defines the target of a hypertext
link.

FT_PAGENUMBER Thisfield displays the current page number. It
can only be used in headers or footers.

All of these fields have the same general properties as standard marked
text fields with the following exceptions. Fields of the type
FT_LINKTARGET define text positions in a document. Therefore as
they have no visible text they cannot be edited and have no extended
edit mode. Fields of thetype FT_PAGENUMBER can only be used in
headers or footers.

For fields which are inserted with CT XTextControl::InsertLink
(types FT_EXTERNALLINK and FT_INTERNALLINK), Text Control
manages the information to where the link points. This can be an
address or afile name and/or the name of atarget in a document. With
CTXTextControl::Changel ink the target of alink can be altered,
CTXTextControl::GetLinkL ocation retrieves the information to
where the link points.

Targetsin documents can be inserted with
CTXTextControl::InsertTarget. These fields have the type

Page 34

Using the Text Control Class Library

FT_LINKTARGET and are identified through names.
CTXTextControl::ChangeTar get alters this name and
CTXTextControl::GetTargetName asks for the name of a certain
target.

When the user clicks on afield of thetype FT_EXTERNALLINK or
FT_INTERNALLINK aTN_FIELD_LINKCLICKED notification is
sent. CTXNotifyHandler::OnTnFieldLinkClicked informs the
application about the type of hypertext link (external or internal) and
about the information to where the link points.

CTXTextControl::FieldGoto can be used to scroll to an internal link
position and CTXTextControl::FieldGetNext can be used to
enumerate all fields of a certain type.

Inserting OLE Objects

Insertion

OLE objects can beinserted into a Text Control document with
CTXTextControl::InsertOleObject, CTXTextControl::
InsertOleProgl D, CTXTextControl::InsertOleFile or
CTXTextControl::InsertOleLinkFile.

CTXTextControl::InsertOleObject opens the OLE built-in Insert
Object dialog box where the user can select one of the system-registered
OLE servers. Depending on the specified insertion mode, the new OLE
object isinserted either at a fixed position or as a character and is
immediately in-place activated.

The Insert Object dialog box allows the user to insert newly created or
existing objectsinto a Text Control document. It also allows the user to
choose to display the object as an icon and enables the Change Icon
command button. The dialog box is normally displayed when the user
chooses Insert Object from the Edit menu of a OLE container
application. Because objects in Text Control can be inserted either at
fixed positions or as charactersit is useful to expand the Edit menu with
a second entry, for example Insert Object as character.

Using the Text Control Class Library Page 35

User Interface

Clipboard

Aninserted OLE object can be in any one of the following states:

1. Deselected state

In this state the object’ s contents are displayed with a solid, thin border
indicating an embedded object. The object has this state when either
another object is selected or the Text Control has been clicked so that
the user can enter text.

2. Selected state

An object has the selected state after it has been clicked. In this mode
resize handles are displayed so that it can be moved and resized. When
the object isresized in this state its contents are scaled. A programmer
can get the new scaling factors with CTXTextControl::ObjGetAttr.
When a scaled object is activated in-place it displays its contents either
scaled or, when scaling is not supported, it shows scrollbars.

3. In-place activated state

An object isin-place activated after it has been double-clicked. In this
mode the object can be edited. It is displayed with a hatched border
including resize handles. When an object is resized or edited in this
state the object’ s natural size can be changed. After editing and
deactivating (selected or deselected) the Text Control adapts the object
toits new natural size. Scaling factors remain the samein this case. Text
Control does not support the exchanging of menus and control bars.

4. Open state

An object’ s server application is fully opened when the object is double-
clicked whilst pressing the CTRL key. The object’s contents are then
overlayed with a hatched pattern. After the server has been closed the
object is updated with the new contents and adapted to its new natural
size.

When an OLE object isin selected state it can be copied to the
clipboard in standard formats such as metafile, and in OLE formats.
When an ‘as character’ inserted object is selected in combination with
text it isintegrated into the Text Control’s text format. When an OLE

Page 36

Using the Text Control Class Library

object is pasted from the clipboard it is aways inserted as a character at
the current input position. If an object is being pasted while another
object is selected the selected object is replaced.

Loading and Saving

Printing

Zooming

Undo

Resources

OLE objects are integrated into the Text Control’ s text format like any
other objects. Therefore all functions that support loading and saving
can be used without changes.

Text Control prints an object’s current contents viaits metefile. This
metafile is "played” on the printer device context which is specified
with CTXTextControl::PrintPage.

When a Text Control is zoomed integrated OLE objects are also
zoomed. In the selected, deselected and open states, zooming is realized
by stretching the object’s metafile. When a zoomed object isin-place
activated, whether its contents are zoomed or not depends on the object.
When an object does not support zooming the smaller client site set by
the Text Control makes it necessary to show scrollbars to indicate that
the content’ s natural size islarger than the object’s client site.

When an OLE object is part of ablock of text, the undo function is fully
supported as with any other object. When an object has been selected
stand alone and is then deleted or replaced, undo is not supported.

Text Control has several built-in resources like information strings,
error messages and dialog boxes. These resources are availablein
different languages. When a new control is created Text Control selects
the current set system language as the default one. With
CTXTextControl::SetL anguage this setting can be altered
independent of the system language. The documentation of
CTXTextControl::SetLanguage lists al currently available built-in

Using the Text Control Class Library Page 37

languages. To alter the language of the Button Bar and Status Bar use
CTXButtonBar::SetL anguage and CT X StatusBar:: SetL anguage.

To display resources in additional languages external resource libraries
can be built and then set with CT X TextContral:: SetL anguage through
its file name. A resource library isadynamic link library that only
contains resources and an entry point. The SAMPLES\TXRES
subdiretory contains the basic files to create such aDLL file. The
following isalist of thesefiles:

TXRES.C Containsthe DLL's entry point.
TXRES.RC Contains Text Control's resources in English.
TXRES.H Contains the definitions of all resource identifiers.

Furthermore Microsoft Visual C++ project files are contained and can
be used to build the resource library.

The TXRES.RC file has the following contents:

Dialog boxes Dialog box templates for the built-in dialog
boxes which can be displayed with
CTXTextControal::FontDialog,
CTXTextControl::ParagraphDialog and
CTXTextControal:: TableAttr Dialog.

String tables The string tables contain information strings
and error messages and the status strings of
the Status Bar. Strings must not be larger than
255 characters.

Bitmaps Bitmaps for the bold, italic and underline
buttons of the Button Bar. The bitmap files are
in the TXRES\BMP subdirectory.

To avoid conflicts with other programs that also use their own resources
or with future versions of Text Control the following points are
important:

1. The resource library should have a unique file name. The TXRES
sample buildsaDLL file named TXRES.DLL. This nhame should be
changed.

Page 38

Using the Text Control Class Library

2. The resource library should be placed in the same directory as the
final application. Get the full path name of the application's executable
file at run time and use the file name of the resource library including
this path with CT XTextControl:: SetL anguage.

At runtime Text Control determines resources in the following way:

1. When CTXTextControl::SetlL anguage is not used Text Control
uses the system default language. If the system language is not built-in,
Text Control displays English resources.

2. When CTXTextControl:: SetL anguage has been called with an
identifier of a built-in language Text Control displays resourcesin this
language independent of the system language.

3. When CTXTextControl::SetL anguage has been called with afile
name of aresource library Text Control tries to load the resources from
thislibrary. Previously set language identifiers are ignored. When the
resource library does not contain a needed resource or when the
specified file could not be found Text Control displays English
resources without reporting an error.

4. Setting aresource library for a Text Control does not automatically
set the same library for a connected Button Bar or Status Bar. This must
be performed with the appropriate functions of these classes.

Text Control Classes Page 39

Text Control Classes

CTXButtonBar
#include <T XBBBar.h>

The CTXButtonBar class provides the functionality of Text Control's
Button Bar. Thisis a seperate child window that can be created in the
client area of any parent window. It provides buttons and combo boxes
for setting font and paragraph attributes. A button bar can be specified
as a parameter of a Ruler Bar's Create function. This Ruler Bar then
uses the tabulator type settings of the specified Button Bar.

To show or change the font and paragraph attributes of a certain Text
Control with a Button Bar, the Button Bar must be connected with this
Text Control. To perform this, use TXTextControl::ConnectToolBar.
The Button Bar then displays the settings of the connected Text Control
after the Text Control has obtained the input focus. Several Text
Controls can be connected with a single Button Bar. To disconnect a
Button Bar use CT X TextControl::DisconnectToolBar.

To create a Button Bar, first call the constructor CT XButtonBar to
construct the CT XButtonBar object, then call the Create member
function to create the window and attach it to the CT XButtonBar
object.

Member Functions

CTXButtonBar::Create

Description: This member function creates a Button Bar child window. Button Bar
child windows must be created in two steps. First call the constructor
which creates the CT XButtonBar object. Then call Create, which
creates the Button Bar child window and attaches it to CT XButtonBar .

ntax: reat n P arent s nip,

Sy BOOL Create(CWnd* pParentwid, UINT niD
DWORD dwStyle= WS _CHILD | WS VISIBLE | CBRS TOP,
DWORD dwButtonBarStyle = BBS FLAT | BBS_ FLATBUTTONS);

Page 40 Text Control Classes
Parameter Description
pParent\Whd Specifies the Button Bar's parent window. It
must not be NULL.
niD Specifies the Button Bar's identifier. This
identifier must be in the range
IDW_CONTROLBAR_FIRST+1to
IDW_CONTROLBAR_LAST. See Microsoft
Technical Note 31 for more information.
dwStyle Specifies the Button Bar's window styles.
dwButtonBar Style Specifies additional Button Bar styles. See the
following Values section for possible settings.
Return Value The function returns TRUE if the Button Bar window could be created,
otherwise it returns FAL SE.
Values: The following list contains possible values for the dwButtonBar Style
parameter:
Style Meaning
BBS 3D Paints the Button Bar with three-dimensional
effects.
BBS FLAT Paints the Button Bar without visual effects.
BBS 3DBUTTONS Paints the Button Bar's buttons with three-
dimensional effects.
BBS FLATBUTTONS Paintsthe Button Bar's buttons without visual
effects.
See also: CTXButtonBar::CTXButtonBar

CTXButtonBar::CTXButtonBar

Constructs a CT XButtonBar object.
CTXButtonBar::Create

Description:
See also:

Text Control Classes Page 41

CTXButtonBar::SetLanguage

Description: This member function sets the language which the Button Bar uses to
display its buttons. The language is specified either through an identifier
or through the filename of aresource library.

Syntax: BOOL SetLanguage(UINT nLang);
BOOL SetlL anguage(const CString& strLang);

Parameter Description

nLang Specifies alanguage identifier. For possible values see
CTXTextControl::SetL anguage.
strLang Specifies the filename including its full path of a

resource library. See the chapter Using the Text Control
Class Library - Resources for more information about
creating aresource library.

Return Value Thereturn valueis FAL SE if an error has occurred or if the specified
language has already been set, otherwiseitis TRUE.

Page 42

Text Control Classes

CTXDoc

#include <TXDoc.h>

The CT XDoc class provides the basic functionality for user-defined
document classes in applications using Text Control and the TXView
class. The CTXDoc class provides all the standard operations available
through MFC's document/view architecture. Additionally it supports
loading and saving the document's text in other text formats like RTF,
HTML or Microsoft Word. To implement a Text Control document in a
typical application, perform the following:

Derive aclassfrom CTXDoc.
Define member variables for your application-specific data.

Overwrite the CObject:: Serialize function in your document class to
write and read the application-specific data.

In your document's Serialize function, call the base class's
implementation CTXDoc:: Serialize to write and read the text contained
in the Text Control of the associated CT XView class.

Member Functions

CTXDoc::

Description:

Syntax:

EnableFileFormats

This member function enables all the text formats that Text Control
supports. These formats can then be accessed through the File Open and
File Save dialog boxes.

BOOL EnableFileFormats(CWinApp* pApp, DWORD
dwFormatMask = FORMAT _ALL);

Parameter Description

PApPpP Points to the single CWinApp object for the
application.

dwFormatMask Specifies the text formats that the application

wants to support. See the following Values
section for possible values.

Text Control Classes Page 43

Return Value

Values;

The function returns TRUE if the specified text formats could be
enabled. Otherwise it returns FAL SE.

The following lists possible values for the dwFormatMask parameter:

Value Meaning

FORMAT_TX Text Control's native format (*.TX)
FORMAT_ANSI Plain text (*.TXT)
FORMAT_UNICODE Plain Unicode text (*.TXT)
FORMAT_RTF Rich Text Format (*.RTF)
FORMAT_DOC Microsoft Word Format (*.DOC)
FORMAT_HTM Hyper Text Markup Language (*.HTM)

FORMAT_ALL All supported formats.

Page 44 Text Control Classes

CTXNotifyHandler
#include <TXNotifyHandler .h>

The CTXNotifyHandler classimplements a member function for each
notification message that a Text Control windows sendsto its parent
window. Derive your handler from this class and overwrite the functions
that belong to the notification you want to handle. A pointer to the
derived handler can be specified as a parameter of
CTXTextControl::Create.

All of the following member functions have the same first parameter
which is apointer to the CT X TextControl object that causes the
notification. All member functions also have the same boolean return
value. If afunction returns FAL SE, which is a handler's default
implementation, further processing continues. Otherwise, if a function
returns TRUE further processing stops.

CTXNotifyHandler Class Members

General Notifications

OnTnChanged Called after the contents of a Text Control
has been changed.

OnTnDoubleClicked Cadlled after a Text Control has been
double-clicked.

OnTnErrCode Cadlled after an error has occurred.

OnTnHExpand Called after a Text Control has
automatically expanded its window width.

OnTnHMoved Cadled after a Text Control's window has

been moved horizontally relativeto its
parent window.

OnTnHScroll Called after the horizontal scroll position
has been changed.

OnTnKeyStateChanged Called after the character insertion mode

or after the state of the NUMLOCK or
CAPSLOCK key has been changed

Text Control Classes

Page 45

OnTnKillFocus
OnTnM odeChanged
OnTnParaChanged
OnTnPosChanged
OnTnSetFocus

OnTnVExpand

OnTnVScroll

OnTnZoomed

Formatting Changes

Called after the Text Control has lost the
input focus.

Called after one of the modes has been
changed.

Called after the character input position
has been moved to another paragraph.
Called after the character input position
has been moved to another position.
Called after a Text Control has obtained
the input focus.

Called after a Text Control has
automatically expanded its window
height.

Called after the vertical scroll position has
been changed.

Called after a Text Control has been
zoomed.

OnTnCharFormatChanged Called after character attributes of the

currently selected text have been changed.

OnTnPageFormatChanged Called after page attributes have been

changed.

OnTnParaFormatChanged Called after paragraph attributes of the

currently selected text have been changed.

Image, Window and OLE Object Notifications

OnTnObjClicked
ONnTnObjCreated

OnTnObjDbIClicked

OnTnObjDeleted
OnTnObjMoved

Called after an object has been clicked.

Called after anew object has been pasted
from the clipboard.

Called after an object has been double-
clicked.

Called after an object has been deleted.
Called after an object has been moved.

Page 46

Text Control Classes

OnTnObjSized

Called after an object has been sized.

Marked Text Field Notifications

OnTnFieldChanged
OnTnFieldClicked
OnTnFieldCreated
OnTnFieldDblClicked
OnTnFieldDeleted

OnTnFieldEntered

OnTnFieldL eft

OnTnFieldSetCur sor

Called after the text of a marked text field
has been changed.

Called after auser has clicked on a
marked text field.

Called after a new marked text field has
been pasted from the clipboard.

Called after auser has double-clicked on
amarked text field.

Called after amarked text field has been
deleted.

Called after the current input position has
been moved to a position that belongsto a
marked text field.

Called after the current input position has
been moved to a position that does not
belong to the marked text field at the
previous input position.

Called when the cursor is being moved
over amarked text field.

Hypertext Link Notifications

OnTnFieldLinkClicked

Table Notifications

Called after the user has clicked on a
marked text field that represents the
source of a hypertext link.

OnTnTableCreated

OnTnTableDeleted

Called after after a new table has been
pasted from the clipboard.

Called after atable has been deleted.

Header and Footer Notifications

OnTnHFActivated

Called after a header or footer has been
activated.

Text Control Classes Page 47

OnTnHFDeActivated Called after a header or footer has been
deactivated.

Member Functions

CTXNotifyHandler::OnTnChanged

Description: The specified Text Control calls this member function after its contents
have been changed.
Syntax: BOOL OnTnChanged(CTXTextControl* pTX);

CTXNotifyHandler::OnTnCharFormatChanged

Description: The specified Text Control calls this member function after character
attributes of its currently selected text have been changed.
Syntax: BOOL OnTnCharFormatChanged(CTXTextControl* pTX);

CTXNotifyHandler::OnTnDoubleClicked

Description: The specified Text Control calls this member function after it has been
double-clicked.
Syntax: BOOL OnTnDoubleClicked(CTXTextControl* pTX);

CTXNotifyHandler::OnTnErrCode

Description: The specified Text Control calls this member function after an error has
occurred.
Syntax: BOOL OnTnErrCode(CTXTextControl* pTX, WORD wModule,

WORD wErrCode, WORD wGroupCode);

Parameter Description

wModule Specifies amodule number. It can be one of the
following values:

Value Meaning:

Page 48

Text Control Classes

Values:

01 The error has occurred in TX32.DLL or one of
the text filters.

03 The error has occurred in IC32.DLL.

04 The error has occurred in an image filter
module.

05 The error has occurred in TXOBJ32.DLL.

wErrCode
values.

Specifies an error code. See Error Codes for possible

wGroupCode Specifies agroup code. Possible group codes are listed
in the following val ues section.

Thefollowing isalist of possible error group codes:

Code (Value)

Description

DBS E_UNGROUPED (00)

DBS E_ OUTOFMEMORY (01)

A special error condition has
occurred. See the description of
the error code for more
information.

Not enough storage is available to
complete the operation.

DBS_ E_NOMEMORYACCESS (02) Invalid accessto a memory

DBS_E_UNEXPECTED (03)
DBS_E_FILEIO (04)

DBS_E_CLIPBOARD (06)

DBS_E_DLLNOTLOADED (07)

location.
Unexpected failure.

A file read/write operation cannot
be performed.

A clipboard operation cannot be
performed. The clipboard cannot
be opened or emptied or
clipboard data cannot be
accessed.

An operation cannot be
performed because a helper DLL
or filter needed for the operation
cannot be found or |oaded.

Text Control Classes Page 49

DBS E DLLINCOMPATIBLE (08) An operation cannot be
performed because a helper DLL
or Filter needed for the operation
istoo old.

DBS_E_DLLOBSOLETE (09) A helper DLL or Filter DLL

needed for the operation is
obsolete but can be used for the

operation.

DBS E INVALIDARG (0A) One or more arguments are
invalid.

DBS _E_NOTIMPL (0B) The feature is not implemented.

DBS E_INVALIDFORMAT (0C) An operation cannot be
performed because data has an
invalid format.

CTXNotifyHandler::OnTnFieldChanged

Description: The specified Text Control calls this member function after the text of a
marked text field has been changed.

Syntax: BOOL OnTnFieldChanged(CTXTextControl* pTX, UINT
nFieldiD);
Parameter Description

nFieldlD Isthe identifier of the field the text of which has been
changed.

CTXNotifyHandler::OnTnFieldClicked

Description: The specified Text Control calls this member function after a user has
clicked on amarked text field.
Syntax: BOOL OnTnFieldClicked(CTXTextControl* pTX, UINT nFieldID);

Parameter Description
nFieldiD Istheidentifier of the field that has been clicked.

Page 50

Text Control Classes

CTXNotifyHandler::OnTnFieldCreated

Description:

Syntax:

The specified Text Control calls this member function after a new
marked text field has been pasted from the clipboard.

BOOL OnTnFieldCreated(CTXTextControl* pTX, UINT nFieldID);

Parameter Description
nFieldiD Istheidentifier of the field that has been created.

CTXNotifyHandler::OnTnFieldDblClicked

Description:

Syntax:

The specified Text Control calls this member function after a user has
double-clicked on a marked text field.

BOOL OnTnFieldDbIClicked(CTXTextControl* pTX, UINT
nFieldiD);
Parameter Description

nFieldlD Istheidentifier of the field that has been double-
clicked.

CTXNotifyHandler::OnTnFieldDeleted

Description:

Syntax:

The specified Text Control calls this member function after a marked
text field has been deleted. It does not call the function when the field is
deleted because the window is completely destroyed or because the
complete text contents are exchanged.

BOOL OnTnFieldDeeted(CTXTextControl* pTX, UINT nFieldID);

Parameter Description
nFieldiD Isthe identifier of the field that has been deleted.

CTXNotifyHandler::OnTnFieldEntered

Description:

The specified Text Control calls this member function after its current
input position has been moved to a position that belongs to a marked

Text Control Classes Page 51

Syntax:

text field. The function isonly called if the current input position has
been moved using the keyboard. If the current input position has been
moved with the mouse CTXNotifyHandler::OnTnFieldClicked is
caled.

BOOL OnTnFieldEntered(CTXTextControl* pTX, UINT nFieldID);

Parameter Description
nFieldlD Isthe identifier of the field that has been entered.

CTXNotifyHandler::OnTnFieldLeft

Description:

Syntax:

The specified Text Control calls this member function after its current
input position has been moved to a position that does not longer belong
to the marked text field at the previous input position.

BOOL OnTnFieldLeft(CTXTextControl* pTX, UINT nFieldID);

Parameter Description
nFieldiD Isthe identifier of the field that has been left.

CTXNotifyHandler::OnTnFieldLinkClicked

Description:

Syntax:

The specified Text Control calls this member function after the user has
clicked on amarked text field that represents the source of a hypertext
link.

BOOL OnTnFieldLinkClicked(CTXTextControl* pTX, UINT
nFieldiD, UINT nFieldType, const CString& strLink);

Parameter Description

nFieldlD Isthe identifier of the field that has been clicked.

nFieldType Specifiesthe type of the clicked marked text field. It can
be one of the following values:

Type Description

Page 52 Text Control Classes

FT_EXTERNALLINK Thefield isthe source of a
hypertext link to alocation
outside of the document.

FT_INTERNALLINK Thefield isthe source of a
hypertext link to alocation in
the same document.

strLink Specifies the location to where the link points.

CTXNotifyHandler::OnTnFieldSetCursor

Description: The specified Text Control calls this member function while the cursor
ismoved over a marked text field.
Syntax: BOOL OnTnFieldSetCursor (CTXTextControl* pTX, UINT

nFieldiD, BOOL & bCursorSet);

Parameter Description

nFieldiD Istheidentifier of the field over which the cursor is
moved.

bCursor Set If this parameter retrieves FAL SE, which is the default
value, Text Control setsthe cursor to the vertical arrow
cursor. Otherwise if this parameter retrieves TRUE the
Text Control does not set a cursor.

CTXNotifyHandler::OnTnHExpand

Description: The specified Text Control calls this member function after it has
automatically expanded its window width.
Syntax: BOOL OnTnHExpand(CTXTextControl* pTX);

CTXNotifyHandler::OnTnHFActivated

Description: The specified Text Control calls this member function after a header or
footer has been activated.

Text Control Classes Page 53

Syntax:

BOOL OnTnHFActivated(CTXTextControl* pTX, UINT
nHeader Footer);

Parameter Description

nHeader Footer Specifies which kind of header or footer has been
activated. It can be one of the following values:

Value Description

TF HF HEADER A header has been activated.

TF_HF_1STHEADER The specia header for the first
page has been activated.

TF_ HF FOOTER A footer has been activated.

TF_HF _1STFOOTER The specid footer for the first
page has been activated.

CTXNotifyHandler::OnTnHFDeActivated

Description:

Syntax:

The specified Text Control calls this member function after a header or
footer has been deactivated.

BOOL OnTnHFDeActivated(CTXTextControl* pTX, UINT
nHeader Footer);
Parameter Description

nHeader Footer Specifies which kind of header or footer has been
deactivated. It can be one of the following values:

Value Description

TF_HF_ HEADER A header has been
deactivated.

TF_HF_1STHEADER The specia header for the first
page has been deactivated.

TF_ HF FOOTER A footer has been deactivated.

TF_HF_1STFOOTER The specia footer for the first
page has been deactivated.

Page 54 Text Control Classes

CTXNotifyHandler::OnTnHMoved

Description: The specified Text Control calls this member function after its window
has been moved horizontally relative to its parent window.
Syntax: BOOL OnTnHMoved(CTXTextControl* pTX);

CTXNotifyHandler::OnTnHScroll

Description: The specified Text Control calls this member function after its
horizontal scroll position has been changed.
Syntax: BOOL OnTnHScroll(CTXTextControl* pTX);

CTXNotifyHandler::OnTnKeyStateChanged

Description: The specified Text Control calls this member function after the
character insertion mode or after the state of the NUMLOCK or
CAPSLOCK key has been changed.

Syntax: BOOL OnTnKeyStateChanged(CTXTextControl* pTX);

CTXNotifyHandler::OnTnKillFocus

Description: The specified Text Control calls this member function after it has lost
the input focus.
Syntax: BOOL OnTnKillFocus(CTXTextControl* pTX);

CTXNotifyHandler::OnTnModeChanged

Description: The specified Text Control calls this member function after one of its
modes has been changed. See CTXTextControl::SetMode for alist of
possible modes.

Syntax: BOOL OnTnModeChanged(CTXTextControl* pTX);

Text Control Classes Page 55

CTXNotifyHandler::OnTnObjClicked

Description: The specified Text Control calls this member function after one of its
inserted images, windows or OLE objects has been clicked.

Syntax: BOOL OnTnObjClicked(CTXTextControl* pTX, UINT nObjID);
Parameter Description
nObjID Isthe identifier of the object that has been clicked.

CTXNotifyHandler::OnTnObjCreated

Description: The specified Text Control calls this member function after a new
image, window or OLE object has been pasted from the clipboard.
Syntax: BOOL OnTnObjCreated(CTXTextControl* pTX, UINT nObjID);
Parameter Description
nObjID Isthe identifier of the object that has been created.

CTXNotifyHandler::OnTnObjDblIClicked

Description: The specified Text Control calls this member function after one of its
inserted images, windows or OLE objects has been double-clicked.

Syntax: BOOL OnTnObjDbIClicked(CTXTextControl* pTX, UINT
nObjID);
Parameter Description

nObjID Istheidentifier of the object that has been double-
clicked.

CTXNotifyHandler::OnTnObjDeleted

Description: The specified Text Control calls this member function after one of its
inserted images, windows or OL E abjects has been deleted.

Syntax: BOOL OnTnObjDeleted(CTXTextControl* pTX, UINT nObjID);

Page 56 Text Control Classes

Parameter Description
nObjID Isthe identifier of the object that has been deleted.

CTXNotifyHandler::OnTnObjMoved

Description: The specified Text Control calls this member function after one of its
inserted images, windows or OL E objects has been moved relative to its
client area.

Syntax: BOOL OnTnObjMoved(CTXTextControl* pTX, UINT nObjlD);

Parameter Description
nObjID Istheidentifier of the object that has been moved.

CTXNotifyHandler::OnTnObjSized

Description: The specified Text Control calls this member function after one of its
inserted images, windows or OL E objects has been sized.

Syntax: BOOL OnTnObjSized(CTXTextControl* pTX, UINT nObjID);
Parameter Description
nObjID Istheidentifier of the object that has been sized.

CTXNotifyHandler::OnTnPageFormatChanged

Description: The specified Text Control calls this member function after page
attributes have been changed.
Syntax: BOOL OnTnPageFormatChanged(CTXTextControl* pTX);

CTXNotifyHandler::OnTnParaChanged

Description: The specified Text Control calls this member function after its character
input position has been moved to another paragraph.

Text Control Classes Page 57

Syntax: BOOL OnTnParaChanged(CTXTextControl* pTX);

CTXNotifyHandler::OnTnParaFormatChanged

Description: The specified Text Control calls this member function after the
paragraph attributes of its currently selected text have been changed.
Syntax: BOOL OnTnParaFormatChanged(CTXTextControl* pTX);

CTXNotifyHandler::OnTnPosChanged

Description: The specified Text Control calls this member function after its character
input position has been moved.
Syntax: BOOL OnTnPosChanged(CTXTextControl* pTX);

CTXNotifyHandler::OnTnSetFocus

Description: The specified Text Control calls this member function after it has
obtained the input focus.
Syntax: BOOL OnTnSetFocus(CTXTextControl* pTX);

CTXNotifyHandler::OnTnTableCreated

Description: The specified Text Control calls this member function after a new table
has been pasted from the clipboard.

Syntax: BOOL OnTnTableCreated(CTXTextControl* pTX, UINT&
nTablel D);

Parameter Description

nTablelD Istheidentifier of the table that has been created. It can
be changed to a user-defined value. This value must be
between 10 and Ox7FFF.

Page 58 Text Control Classes

CTXNotifyHandler::OnTnTableDeleted

Description: The specified Text Control calls this member function after a table has
been deleted.

Syntax: BOOL OnTnTableDeleted(CTXTextControl* pTX, UINT
nTablelD);
Parameter Description
nTablelD Istheidentifier of the table that has been deleted.

CTXNotifyHandler::OnTnVExpand

Description: The specified Text Control calls this member function after it has
automatically expanded its window height.
Syntax: BOOL OnTnVExpand(CTXTextControl* pTX);

CTXNotifyHandler::OnTnVScroll

Description: The specified Text Control calls this member function after its vertical
scroll position has been changed.
Syntax: BOOL OnTnVScroll(CTXTextControl* pTX);

CTXNotifyHandler::OnTnZoomed

Description: The specified Text Control calls this member function after it has been
zoomed.

Syntax: BOOL OnTnZoomed(CTXTextControl* pTX);

Text Control Classes Page 59

CTXRulerBar
#include <T XRLBar .h>

The CTXRulerBar class provides the functionality of the Ruler Bar.
Thisis a seperate child window that can be created in the client area of
any parent window. It provides aruler with handles to change paragraph
indents or table borders. Tabulators can be set or deleted. To define
types for tabulators, the Ruler Bar can be connected with a Button Bar
that contains buttons for tabulator types.

To show or change the paragraph attributes of a certain Text Control
with a Ruler Bar, the Ruler Bar must be connected with this Text
Control. To perform this, use CTXTextControl::ConnectToolBar.
The Ruler Bar then displays the settings of the connected Text Control
after the Text Control has obtained the input focus. Several Text
Controls can be connected with a single Ruler Bar. To disconnect a
Ruler Bar use CT XTextControl::DisconnectToolBar .

To create a Ruler Bar, first call the constructor CT XRulerBar to
construct the CT XRuler Bar object, then call the Create member
function to create the window and attach it to the CTXRuler Bar object.

The CTXView class automatically creates a Text Control with a
connected Ruler Bar.

Member Functions

CTXRulerBar::Create

Description: This member function creates a Ruler Bar child window. Ruler Bar
child windows must be created in two steps. First call the constructor
which creates the CT XRulerBar object. Then call Create, which
creates the Ruler Bar child window and attaches it to CTXRulerBar.

Syntax: BOOL Create(CWnd* pParentWnd, UINT nID,
DWORD dwXtyle=WS CHILD | WS _VISIBLE | CBRS TOP,
CTXButtonBar* pButtonBar = NULL,
DWORD dwRulerBarSyle= RS ALLPARTYS);

Page 60 Text Control Classes
Parameter Description
pParent\Whd Specifies the Ruler Bar's parent window. It
must not be NULL.
niD Specifies the Ruler Bar's identifier. This
identifier must be in the range
IDW_CONTROLBAR_FIRST+1to
IDW_CONTROLBAR_LAST. See Microsoft
Technical Note 31 for more information.
dwStyle Specifies the Ruler Bar's window styles.
pButtonBar Specifies a Button Bar. The Ruler Bar uses the
tabulator style stetting of this Button Bar to
select the tabulator style of a newly created
tabulator. If pButtonBar is zero all newly
created tabulators are left-aligned.
dwRulerBar Style Specifies additional Ruler Bar styles. See the
following Values section for possible settings.
Return Value: Thefunction returns TRUE if the Ruler Bar window could be created,
otherwise it returns FAL SE.
Values: The following list contains possible values for the dwRulerBar Style

parameter:

Style

Meaning

RS_ALLPARTS
RS_FIRSTINDENT

RS_INDENTS
RS LEFTINDENT
RS POSITION

RS RIGHTINDENT
RS TABLECOL

RS_TABULATORS

The Ruler Bar displays al its elements.

The Ruler Bar displays amark for the
additional indent of the first line.

The Ruler Bar displays marks for al indents.
The Ruler Bar displays aleft indent mark.

The Ruler Bar displays the current position
when moving a tabulator or an indent mark.

The Ruler Bar displays aright indent mark.

The Ruler Bar displaystable columnsif the
current input position isin atable.

The Ruler Bar displays tabulator settings.

Text Control Classes

Page 61

See also; CTXRulerBar::CTXRulerBar

CTXRulerBar::CTXRulerBar

Description: Constructs a CT XRuler Bar abject.

See also; CTXRulerBar::Create

Page 62

Text Control Classes

CTXStatusBar
#include <T XSBBar.h>

The CTXStatusBar class provides the functionality of Text Control's
Status Bar. Thisis a seperate child window that can be created in the
client area of any parent window. It provides arow of text output panes
that show the status of the NUM LOCK and CAPS LOCK keys, the
character insertion mode, the current zooming factor and the page, line
and column number of the current text input position. Furthermore, it
can display message lines for example menu hel p-message lines that
briefly explain a selected menu command.

To display the status of a certain Text Control, a Status Bar must be
connected with this Text Control. To perform this use
CTXTextControl::ConnectToolBar. The Status Bar then displays the
status of the connected Text Control after this Text Control has obtained
the input focus. Severa Text Controls can be connected with asingle
Status Bar. To disconnect a Status Bar use
CTXTextControl::DisconnectToolBar.

To create a Status Bar, first call the constructor CT X StatusBar to
construct the CT X StatusBar object, then call the Create member
function to create the window and attach it to the CT X StatusBar
object.

Member Functions

CTXStatusBar::Create

Description:

Syntax:

This member function creates a Status Bar child window. Status Bar
child windows must be created in two steps. First call the constructor
which creates the CT X StatusBar object. Then call Create, which
creates the Status Bar child window and attaches it to CT X StatusBar .

BOOL Create(CWnd* pParentWhd, UINT nID,
DWORD dwStyle=WS CHILD |[WS_VISIBLE |
CBRS _SIZE_FIXED | CBRS _ALIGN_BOTTOM,
DWORD dwStatusBarStyle= STS LEFTALIGN |

Text Control Classes Page 63

Return Value:

Remarks:

STS NOBORDER,
const CString& strFormat="",
CFont* pFont = NULL);

Parameter Description

pParent\Wnd Specifies the Status Bar's parent window. It
must not be NULL.

niD Specifies the Status Bar's identifier. This

identifier must be in the range
IDW_CONTROLBAR_FIRST+1to
IDW_CONTROLBAR_LAST. See Microsoft
Technical Note 31 for more information.

dwSyle Specifies the Status Bar's window styles.

dwSatusBar Style Specifies additional Status Bar styles. See the
following Values section for possible settings.

strFormat Specifies aformat string. The Status Bar gets

the information from this string how to display
the page, line and column number of the
current text input position. See the following
Remarks section for more information. If an
empty string is specified the Status Bar
displays only the numbers.

pFont Specifies afont object. The Status Bar uses
this font to display its information.

The function returns TRUE if the Status Bar window could be created,
otherwise it returns FAL SE.

The string specified through strFormat must have the following form:
[ptext] %for mat\n[Itext] %for mat\n[ctext] %for mat

The partsin brackets are optional, al other parts are required. The
various parts have the following meanings:

Part Meaning

ptext Text for the Status Bar pane that displays the page
number of the current text input position.

Page 64 Text Control Classes

Itext Text for the Status Bar pane that displays the line
number of the current text input position.

ctext Text for the Status Bar pane that displays the column
number of the current text input position.

%format A format string in the same form as used for the

wsprintf function contained in the Windows SDK. The
Status Bar uses this format to display the number.

Values: The following list contains possible values for the dwStatusBar Style
parameter:
Style Meaning

STS LEFTALIGN Positions the text output panes on the left side
of the client area.

STS RIGHTALIGN Positions the text output panes at the right side
of the client area.

STS _NOPAGE Suppresses the page number.
STS NOLINE Suppresses the line number.

STS NOCOLUMN Suppresses the column number.
STS_NOZOOM Suppresses the zooming factor.

STS NOKEYSTATES Suppresses the character insertion mode and
the CAPSLOCK and NUMLOCK keystates.

See also: CTXStatusBar::CT XStatusBar

CTXStatusBar::CTXStatusBar

Description: Constructs a CT X StatusBar object.
See also: CTXStatusBar::Create

CTXStatusBar::SetLanguage

Description: This member function sets the language which the Status Bar uses to
display text in some of its text panes. The language is specified either
through an identifier or through the filename of aresource library.

Text Control Classes Page 65

Syntax:

Return Value

BOOL SetLanguage(UINT nLang);
BOOL SetL anguage(const CString& strLang);

Parameter Description

nLang Specifies alanguage identifier. For possible values see
CTXTextControl::SetL anguage.
strLang Specifies the filename including its full path of a

resource library. See the chapter Using the Text Control
Class Library - Resources for more information about
creating aresource library.

Thereturn valueis FAL SE if an error has occurred or if the specified
language has already been set, otherwiseitis TRUE.

Page 66 Text Control Classes

CTXTextControl
#include <TXTextControl.h>

The CTXTextControl class provides the functionality of a Text
Control. A Text Control can be created either from a dialog template or
directly in your code. In both cases, first call the constructor
CTXTextControl to construct the CTXTextControl object, then call
the Create member function to create the window and attach it to the
CTXTextControl object.

Construction can be a one-step process in a class derived from
CTXTextControl. Write a constructor for the derived class and call
Create from within the constructor. CTXTextControl inherits
significant functionality from CWnd.

If you want to handle Windows notification messages sent by a Text
Control you can use either a Text Control notification handler or MFC's
ON_NOTIFY message map entry. The Text Control notification
handler is implemented through the CT XNotifyHandler class. This
class has a member function for each possible notification. Derive your
handler from this class and override the functions that belong to the
notification you want to handle. A pointer to the derived handler can be
specified as parameter of CT XTextControl::Create.

CTXTextControl Class Members
Construction and I nitialization

CTXTextControl Constructs a CT X TextControl object.

Create Creates and initializes the child window
associated with the CT XTextControl object.

Selection Operations

Clear Deletes the current selection (if any).

GetSe Retrieves the position of the current selection.
GetSel Text Returns selected text.

GetText Retrieves the text in a generic text format.

GetTextLength Returns the number of characters.

Text Control Classes

Page 67

ReplaceSel
SetSel

L oading and Saving

Replaces the current selection with new text.
Sets a new text selection.

LoadFile
L oadFromMemory

ResetContents
SaveFile
SaveToMemory

Clipboard Operations

Loads formatted or unformatted text from a
file.

Loads formatted or unformatted text from a
memory buffer.

Deletes all contentsin a Text Control.
Saves formatted or unformatted text into afile,

Saves formatted or unformatted text in a
memory buffer.

CanCopy
CanPaste

Copy
Cut
Paste

Undo Operations

Determines if a part of a Text Control
document can be copied to the clipboard.

Determines if the contents of the clipboard can
be pasted.

Copies the current selection to the clipboard.
Cuts the current selection to the clipboard.
Inserts data from the clipboard.

CanRedo
CanUndo

EmptyUndoBuffer
Redo
Undo

Printing Operations

Determines if an undone editing operation can
be restored.

Determinesif an editing operation can be
undone.

Resets the undo buffer.
Restores the last undone edit operation.
Undoes the last edit operation.

PrintControl

Prints the contents of a Text Control that is
used without built-in scroll interface.

Page 68

Text Control Classes

PrintPage

Prints asingle page.

Sear ch and Replace Functions

FindText
ReplaceT ext

Searches for atext string.

Finds and replaces text within the Text
Control's contents.

Character Formatting Operations

EnlargeFont

FontDialog
GetBaselLine
GetFont
GetFontAttr
GetTextColor

ReduceFont

SetBasel ine
SetFont
SetFontAttr
SetTextColor
SetTextBkColor

Enlarges the pointsizes of al fontsin the
current selection.

Opens Text Control's built-in font dialog box.
Returns the baseline alignment.

Retrieves font name and size.

Returns font attributes.

Retrieves the text color and the text
background color.

Reduces the pointsizes of all fontsin the
current selection.

Sets a new baseline alignment.
Sets a new font with anew size.
Sets font attributes.

Sets anew text color.

Sets a new text background color.

Paragraph Formatting Operations

GetL ineSpacing
GetParaAlignment
GetPar aFor matFlags

GetParaFrame
GetParal ndents
GetTabs

Retrieves the line spacing.
Returns the paragraph alignment.

Informs about advanced paragraph formatting
attributes.

Retrieves paragraph frame attributes.
Retrieves paragraph indents.
Retrieves tab positions and types.

Text Control Classes

Page 69

ParagraphDialog

SetLineSpacing
SetPar aAlignment
SetPar aFormatFlags

SetParaFrame
SetPar al ndents
SetTabs

Opens Text Control's built-in paragraph
attributes dialog box.

Sets anew line spacing.

Sets a new paragraph alignment.

Sets new advanced paragraph formatting
options.

Sets new attributes for paragraph frames.
Sets new paragraph indents.

Sets new tab positions and types.

Page and Document Operations

GetDevice
GetPageCount
GetPageM ar gins
GetPageSize

GetSupportedFonts
GetSupportedSizes
GetT X ScrollPos

I nsertPageNumber

SetDevicePrinter

Returns the current formatting device.
Returns the number of pagesin the document.
Retrieves the page margins.

Retrieves the page size and the current view
settings.

Retrieves all fonts the current device supports.
Retrieves all sizes of a certain font.

Returns the scroll position.

Inserts a marked text field displaying the
current page number.

Sets a printer as formatting device.

SetDeviceScreen Sets the screen as formatting device.

SetDeviceStandard Sets the standard printer as formatting device.

SetPageM ar gins Sets new page margins.

SetPageSize Sets a new page size and/or anew view
Setting.

SetT X ScrollPos Sets anew scroll position.

General Operations

GetBackgroundColor Retrieves the current background color.

GetCaretExt

Returns the current caret extension.

Page 70

Text Control Classes

GetL anguage
GetLineAndCol

GetMode
GetTextSize
GetZoom

I nputPosFromPoint

SetBackgroundColor
SetCar etExt

SetlL anguage
SetLineAndCol

SetM ode
SetZoom

Line Operations

Returns the current language setting.

Retrieves page, line and column number of the
current input position.

Informs about all current mode settings.
Retrieves width and height of the text.
Returns the zooming factor.

Returns the character position at a given
geometric position.

Sets a new background color.

Sets the width of the caret.

Sets anew language.

Sets a new text input position from a page,
line and column number.

Sets one or more of Text Control's modes.
Sets a new zooming factor.

GetBasel inePos
GetLineCount
GetLineRect
LineFromChar
LineFromPoint
Linelndex

Returns a line's baseline position.

Returns the number of text lines.

Retrieves aline's rectangular area.
Returnsthe line at a given character position.
Returnsthe line at a given geometric position.
Returns aline's character index.

Inserted Images, Windows and OL E Objects

GetlmageFilters
Insertlmage
InsertOleFile
InsertOleLinkFile
I nsertOleObject
InsertOleProgl D

Informs about supported image filters.

Inserts an image.

Inserts an embedded OLE object from afile.
Inserts alinked OLE object from afile.

Opens adialog box and inserts an OLE object.

Inserts an OLE object viaits programmatic
identifier.

Text Control Classes

Page 71

I nsertWindow
ObjDelete

Obj GetAttr
ObjGetl Dispatch

Obj GetNext
ObjOleCance
Obj SetDistances

ObjSetMovable
Obj SetScaling
Obj SetSizeable

Inserts awindow through its window handle.
Deletes an inserted object.
Retrieves an inserted object's attributes.

Retrieves an inserted object's dispatch
interface pointer.

Enumerates inserted objects.
Deactivates an inserted OLE object.

Sets distances between an inserted object and
the text.

Sets the movable state of an inserted object.
Sets the scaling factors of an inserted object.
Sets the sizeable state of an inserted object.

Marked Text Field Functions

FieldChangeT ext
FieldDelete
FieldFromCaretPos
FieldGetData
FieldGetNext
FieldGetPosition

FieldGetText
FieldGetType
FieldGoto
FieldHasAttr
Fieldlnsert
FieldSetAttr
FieldSetData

Altersthe text of amarked text field.

Deletes a marked text field.

Returns the field at the current input position.
Retrieves related data.

Enumerates marked text fields.

Retrieves the starting and the ending character
position of a marked text field.

Retrieves the text of a marked text field.
Retrieves the type of a marked text field.
Scrollsto a marked text field.

Informs about afield's attributes.

Inserts a marked text field.

Sets afield's attributes.

Relates datato a marked text field.

Hypertext Link Support

ChangelL ink

Changes the target to where a hypertext link
points.

Page 72

Text Control Classes

ChangeTar get
GetLinkL ocation

GetTargetName
InsertLink
InsertTarget

Table Functions

Changes the name of a hypertext target.

Retrieves the location to where a hypertext
link points.

Retrieves the name of a hypertext target.
Inserts a hypertext link.
Inserts a hypertext target.

TableAttrDialog

TableDeletel ines
TableFromCaretPos

TableGetAttr
TableGetCellPosition

TableGetCellText
TableGetNext

Opens Text Control's built-in dialog box for
setting table attributes.

Deletes table lines.

Returns the table with the current input
position.

Retrieves table attributes.

Retrieves the starting and ending character
position of atable cell.

Retrieves atable cell's text.
Enumerates tables.

TableGetRowsAndCols Retrieves the number of rows and columns.

Tablelnsert
Tablel sPossible

TableSetAttr
TableSetCell Text

Inserts atable.

Retrieves information whether a table can be
inserted or changed.

Sets tabl e attributes.
Sets atable cell's text.

Operations with Header s and Footers

HFActivate
HFDisable

HFEnable
HFGetEnabled

Activates a header or afooter.

Deletes a header or afooter or disables
settings.

Inserts a header or afooter or enables settings.

Informs about which header or footer is
enabled.

Text Control Classes

Page 73

HFGetPosition

HFSelect

HFSetPosition

Returns a header's or afooter's position on the
page.

Enables the programmer to manipulate the
contents of a header or footer.

Sets a header's or afooter's position on the
page.

Operationswith Chains of Linked Text Controls

GetLinkWnd
GetLinkWndCount

Returns a certain window in achain.
Returns the number of windowsin achain.

GetLinkWndFromOffset

GetLinkWndNumber
GetLinkWndOffset

SetLinkWnd
Tool Bar Support

Returns the window belonging to a certain
character offset.

Returns the number of a certain window in the
chain.

Returns the character offset of acertain
window's first character.

Sets a new successor Text Control.

ConnectToolBar
Disconnect T oolBar

Member Functions

Connects a Tool Bar with this Text Control.

Disconnects a Tool Bar from this Text
Control.

CTXTextControl::CanCopy

Description: This member function informs whether a part of a Text Control's
document has been selected and can be copied to the clipboard.

Syntax: BOOL CanCopy();

Return Value Thereturn valueis TRUE if something can be copied to the clipboard.

Otherwiseitis FAL SE.

Page 74 Text Control Classes

CTXTextControl::CanPaste

Description: This member function informs whether the clipboard contains a format
that can be pasted into a Text Control's document.

Syntax: BOOL CanPaste();

Return Value Thereturn value is TRUE if something can be pasted. Otherwiseitis
FALSE.

CTXTextControl::CanRedo

Description: This member function informs whether an previously undone edit
operation can be restored.
Syntax: BOOL CanRedo(DWORD& dwRes=dwNULL);
Parameter Description
dwRes Informs what kind of operation can be restored. It can
be one of the following values:
Value: M eaning:
REDO_INSERT The next redo operation restores
inserted text.
REDO _DELETE The next redo operation deletes
restored text.

REDO_FORMAT The next redo operation restores
the last formatting operation.

Return Value Thereturn valueis TRUE if an undone operation can be restored.
Otherwiseitis FAL SE.

CTXTextControl::CanUndo

Description: This member function informs whether an edit operation can be undone.
Syntax: BOOL CanUndo(DWORD& dwRes=dwNULL);

Text Control Classes Page 75

Parameter Description

dwRes Informs what kind of operation can be undone. It can be
one of the following values:
Value: M eaning:
UNDO_INSERT The next undo operation deletes
inserted text.
UNDO_DELETE The next undo operation inserts
deleted text.

UNDO_FORMAT The next undo operation resets
the last formatting operation.

Return Value Thereturn valueis TRUE if an edit operation can be undone. Otherwise
itisFALSE.

CTXTextControl::ChangeLink

Description: This member function changes the target to where a hypertext link
points.
Syntax: BOOL ChangeLink(UINT nFieldID, const CString& strLinkTarget,

BOOL bExternal = TRUE);

Parameter Description

nFieldiD Istheidentifier of the marked text field that defines the
hypertext link in the text.

strLinkTarget Specifies the location to where the hypertext link points.
This can be an address or afile name if the link point to
an external location. If the link points to alocation
inside the same document it must be the name of a
target field.

bExternal Must be set to TRUE if strLinkTarget defines alocation
outside of the document, otherwise this parameter must
be set to FAL SE.

Return Value: Thereturn value is TRUE if the function was successful, otherwiseitis
FALSE.

Page 76 Text Control Classes

See also: CTXTextControl::ChangeTarget, CTXTextControl::InsertLink,
CTXTextControl::InsertTarget

CTXTextControl::ChangeTarget

Description: This member function changes the name of a hypertext target.

Syntax: BOOL ChangeTarget(UINT nFieldID, const CString&
strTargetName);
Parameter Description
nFieldlD Istheidentifier of the marked text field that defines the

hypertext target in the text.
strTargetName Specifies the target's new name.

Return Value Thereturn valueis TRUE if the target's name could be changed,
otherwiseitis FAL SE.

CTXTextControl::Clear

Description: This member function deletes the text of the current selection, if any.
Syntax: void Clear();

CTXTextControl::ConnectToolBar

Description: This member function connects one of the Text Control's tool bars with
this Text Control. The connected Button Bar, Ruler Bar or Status Bar
shows this Text Control's current state only if it has the input focus.

ntax: onnect T ool Bar uttonBar* pButtonBar);

Sy BOOL C ToolBar (CTXB Bar* pB Bar)
BOOL ConnectToolBar (CTXRulerBar* pRulerBar);
BOOL ConnectToolBar (CTXStatusBar* pSatusBar);

Return Value Thereturn value is TRUE if the tool bar could be connected, otherwise
itisFALSE.

See also: CTXTextControl::DisconnectToolBar

Text Control Classes Page 77

CTXTextControl::Copy

Description:

Syntax:

This member function copies the text of the current selection (if any) to
the clipboard.

void Copy();

CTXTextControl::Create

Description:

Syntax:

Return Value:

See also;

This member function creates a Text Control child window. Text
Control child windows must be created in two steps. First call the
constructor which creates the CT XTextControl object. Then call
Create, which creates the Text Control child window and attaches it to
CTXTextControl.

BOOL Create(CWnd* pParentWhd, UINT nID, const CRect&
rcSze, CTXNotifyHandler* pHandler = NULL, LPLOGFONT
IpLogFont = NULL);

Parameter Description

pParentWhd Specifiesthe Text Control's parent window. It must not

be NULL.

niD Specifies the Text Control's identifier.

rcSze Specifies the Text Control's size and position in client
area coordinates of its parent window.

pHandler Points to a notification handler object. This parameter

can be zero if you do not want to handle notifications or
if you want to use MFC's message map entries to handle
notifications. See "Notifications" for more information.

IpLogFont Pointsto aL OGFONT data structure which defines the
logical font the Text Control will use.

The function returns TRUE if the Text Control window could be
created, otherwise it returns FAL SE.

CTXTextControl::CTXTextControl

Page 78 Text Control Classes

CTXTextControl::CTXTextControl

Description: Constructs a CT X TextControl abject.
See also: CTXTextControl::Create

CTXTextControl::Cut

Description: This member function deletes the text of the current selection (if any)
and copies the deleted text to the clipboard.
Syntax: void Cut();

CTXTextControl::DisconnectToolBar

Description: This member function disconnects a previously connected tool bar from
this Text Control.
Syntax: BOOL DisconnectToolBar (CTXButtonBar* pButtonBar);

BOOL DisconnectToolBar (CTXRulerBar* pRulerBar);
BOOL DisconnectToolBar (CT X StatusBar* pStatusBar);

Return Value Thereturn valueis TRUE if the tool bar could be disconnected,
otherwiseit is FALSE.

See also: CTXTextControl::ConnectToolBar

CTXTextControl::EmptyUndoBuffer

Description: This member function clears the undo flag of a Text Control. The undo
flag is set whenever an operation within the Text Control can be
undone.

Syntax: void EmptyUndoBuffer();

Text Control Classes Page 79

CTXTextControl::EnlargeFont

Description:

Syntax:

Return Value:

This member function enlarges the pointsizes of all fontsin the current
selection.

BOOL EnlargeFont(CSize& szMin = szNULL);

Parameter Description

szMin Text Control fills this variable with its new minimum
window size (in pixels). It is only useful if the Text
Control is used without the built-in scroll-interface.

Thereturn valueis TRUE, if the font sizes could be enlarged.
Otherwise it returns FAL SE.

CTXTextControl::FieldChangeText

Description:
Syntax:

Return Value:

This member function alters the text of a marked text field.

BOOL FieldChangeText(UINT nFieldID, const CString&
strNewText);

Parameter Description

nFieldiD Istheidentifier of the marked text field.
strNewText Specifies the marked text field's new text.

Thereturn valueis FAL SE if an error has occurred or if the specified
field identifier does not exist. Otherwiseit is TRUE.

CTXTextControl::FieldDelete

Description:

Syntax:

This member function deletes a marked text field. The field is deleted
independent of its attributes.

BOOL FieldDelete(UINT nFieldiD, BOOL bDeleteText = FAL SE);

Parameter Description

nFieldiD Istheidentifier of the marked text field.

Page 80

Text Control Classes

Return Value

Remarks:

bDeleteText If this parameter is TRUE, the field is deleted including
itstext. Otherwise the field's text is not deleted.

Thereturn valueis FAL SE if an error has occurred or if the specified
field identifier does not exist. Otherwiseit is TRUE.

If amarked text field is deleted with this function, the Text Control does
not send aTN_FIELD_DEL ETED notification message.

CTXTextControl::FieldFromCaretPos

Description:

Syntax:
Return Value

This member function returns the field identifier of the field containing
the current input position.

UINT FieldFromCaretPos();

Thereturn value is the identifier of the field containing the input
position. Zero is returned when the input position is not inside afield.

CTXTextControl::FieldGetData

Description:

Syntax:

Return Value

This member function retrieves the data, previously related to a marked
text field with FieldSetData.

BOOL FieldGetData(UINT nFieldID, CString& strData);
BOOL FieldGetData(UINT nFieldID, DWORD& dwData);
BOOL FieldGetData(UINT nFieldID, CByteArray& arBuf);

Parameter Description

nFieldiD Isthe identifier of the marked text field.

strData Retrieves string data from the marked text field.
dwData Retrieves a 4-byte value from the marked text field.
arBuf Retrieves byte-data from the marked text field.

Thereturn valueis FAL SE if an error has occurred or if the specified
field does not exist. Otherwise it is TRUE.

Text Control Classes

Page 81

CTXTextControl::FieldGetNext

Description:

Syntax:

Return Value

Values:

This member function returns the identifier of a marked text field that
follows the specified field in the Text Control's current text.

UINT FieldGetNext(WORD wFieldType, UINT nFieldID = 0);

Parameter Description

wFieldType Specifies the group of fields. It can be a combination of
any of the values described in the following Values
section. If wFieldTypeis zero, all fields are handled.

nFieldiD Specifies afield'sidentifier. If this parameter is zero,
thefirst field's identifier is returned.

The return value is the identifier of the field which follows the specified
field in the Text Control's text. It is zero if no following fields exist.

The wFieldType parameter can be a combination of the following

values.

Value Meaning

FGN_EXTERNALLINK Returns only identifiers of fields that
have the type

FGN_HIGHLIGHT
FGN_INTERNALLINK
FGN_LINKTARGET
FGN_PAGENUMBER

FGN_TOPIC

FT_EXTERNALLINK.

Returns only identifiers of fields that
havethetype FT_HIGHLIGHT.

Returns only identifiers of fields that
havethetype FT_INTERNALLINK.
Returns only identifiers of fields that
havethetype FT_LINKTARGET.

Returns only identifiers of fields that
have the type FT_PAGENUMBER.

Returns only identifiers of fields that
have the type FT_TOPIC.

FGN_CHANGEANDDELETEABLEONLY

Returns only identifiers of fields
which are changeable and deleteable.

Page 82

Text Control Classes

FGN_UNCHANGEABLEONLY Returns only identifiers of fields
which are unchangeable.

FGN_UNDELETEABLEONLY Returns only identifiers of fields
which are undeleteable.

CTXTextControl::FieldGetPosition

Description:

Syntax:

Return Value

Remarks:

This member function retrieves the start and end character positions of a
marked text field.

BOOL FieldGetPosition(UINT nFieldiD, DWORD& dwPosStart,
DWORD& dwPosEnd);

Parameter Description

nFieldlD Istheidentifier of the marked text field.

dwPosSart Receives the field's start position.

dwPosEnd Receives the field's start position.

Thereturn valueis FAL SE if an error has occurred or if the specified
field identifier does not exist, otherwiseitis TRUE.

The start position is the one-based character position of the first
character associated with the field. The end position is the one-based
character position of the last character associated with the field. If a
marked text field contains no text the end position is one less than the
start position.

CTXTextControl::FieldGetText

Description:
Syntax:

This member function retrieves the text of a marked text field.
BOOL FieldGetText(UINT nFieldID, CString& strBuffer);

Parameter Description
nFieldiD Isthe identifier of the marked text field.
strBuffer Isabuffer receiving the field's text.

Text Control Classes Page 83

Return Value

Thereturn valueis FAL SE if an error has occurred or if the specified
field identifier does not exist, otherwiseit is TRUE.

CTXTextControl::FieldGetType

Description:
Syntax:

Return Value

This member function retrieves the type of a marked text field.
BYTE FieldGetType(UINT nFieldID);

Parameter Description
nFieldiD Istheidentifier of the marked text field.

Thereturn value is the type of the specified marked text field. It can be
one of the following values:

Type Description

FT_EXTERNALLINK Thefield isthe source of a hypertext link to a
location outside of the document.

FT_INTERNALLINK Thefield isthe source of a hypertext link to a
location in the same document.

FT_LINKTARGET Thefield is a position in adocument which is
the target of a hypertext link.

FT_PAGENUMBER Thefield displays the current page number.

FT_STANDARD Thefield is a standard marked text field
without a special type.

CTXTextControl::FieldGoto

Description:

Syntax:

This member function sets the current input position at the beginning of
the specified marked text field and scrolls the text so that this position is
at the top of the Text Control's client area.

BOOL FiedGoto(UINT nFieldID);
BOOL FieldGoto(const CString& strTargetname);

Page 84 Text Control Classes

Parameter Description

nFieldiD Specifies the identifier of the marked text field to which
should be scrolled.

strTargetname Specifies the name of the marked text field to which
should be scrolled if the field is a hypertext target

Return Values Thereturn value is FAL SE if the specified field does not exist.
Otherwiseitis TRUE.

CTXTextControl::FieldHasAttr

Description: This member function returns TRUE if amarked text field has the
specified attributes.

Syntax: BOOL FieldHasAttr (UINT nFieldID, DWORD dwAttr);
Parameter Description

nFieldiD Istheidentifier of the marked text field.

dwAttr Specifies one or more field attributes. See
TXTextControl::Fieldlnsert for more information
which attributes are possible.

Return Value Thereturn valueis TRUE if the field has the specified attributes.
Otherwiseitis FAL SE.

See Also: TXTextControl::FieldSetAttr

CTXTextControl::FieldInsert

Description: This member function inserts a new marked text field at the current
input position or defines selected text as amarked text field.
Syntax: UINT FieldInsert(const CString& strFieldText =", DWORD dwAttr

= 0, UINT nReserved = 0);

Parameter Description

strFieldText Specifiesthe field's text. If text is selected Text Control
defines this text as the field's field.

Text Control Classes Page 85
dwAttr Specifies one or more attributes described in the
following Values section.
nReserved A reserved parameter for future use.

Return Value:

Values;

Thereturn valueisthe identifier for the newly created field. It is zero if

an error has occurred.

The dwAttr parameter can be a combination of the following values:

Value

Meaning

TF_DELETEABLE
TF_UNDELETEABLE
TF_CHANGEABLE
TF_UNCHANGEABLE

TF_EXTEDITMODE

TF_NORMALEDITMODE

TF_SHOWCURFIELDGRAY

Set if the marked text field can be
deleted.

Set if the marked text field cannot be
deleted.

Set if the text of amarked text field
can be changed.

Set if the text of amarked text field
cannot be changed.

Set if the specified marked text field
can be edited with a second input
position at the beginning and the end
of afield.

Set if the specified marked text field
is edited in norma mode.

Set if the specified marked text field
is displayed with a gray background
when it contains the current
character input position.

TF_SHOWCURFIELDNORMAL Set if the specified marked text field

TF_USEFIELDCARET

is not displayed with agray
background.

Set if the caret for marked text fields
isused in the specified field. This
caret can be defined with
CTXTextControl::SetCaretExt.

Page 86 Text Control Classes

TF_USETEXTCARET Set if the normal text caret isused in
the specified field.
TF_ENABLEDBLCLICKS Set if normal double-click

processing is performed inside
marked text fields, which starts a
wordwise selection.

TF_DISABLEDBLECLICKS Set if the normal double-click
processing inside marked text fields
is disabled.

The attributes are grouped. The following attributes cannot be used
together:

TF_DELETEABLE and TF_UNDELETEABLE
TF_CHANGEABLE and TF_UNCHANGEABLE
TF_NORMALEDITMODE and TF_EXTEDITMODE
TF_SHOWCURFIELDNORMAL and TF_SHOWCURFIELDGRAY
TF_USETEXTCARET and TF_USEFIELDCARET
TF_DISABLEDBLCLICKSand TF_ENABLEDBLCLICKS

The default attributes for a newly created field are TF_DELETEABLE,
TF_CHANGEABLE, TF_ NORMALEDITMODE,
TF_SHOWCURFIELDNORMAL, TF_USETEXTCARET and
TF_DISABLEDBLCLICKS

If afield is undeleteable or unchangeable and the user tries to delete or
to change that field, the Text Control beeps.

If a Text Control is destroyed or the text is completely exchanged, the
field attributes are ignored and all fields are deleted. In that case
TN_FIELD_DELETED notifications are not sent.

CTXTextControl::FieldSetAttr

Description: This member function sets attributes for the specified marked text field.
Changing one attribute does not alter other attributes.

Syntax: BOOL FieldSetAttr (UINT nFieldiD, DWORD dwAittr);

Text Control Classes Page 87

Return Value:

Parameter Description
nFieldlD Istheidentifier of the marked text field.

dwAttr Specifies one or more field attributes. See
TXTextControl::Fieldlnsert for more information
which attributes are possible.

Thereturn value is FAL SE if the new attributes could not be set or if
the specified field identifier does not exist. Otherwise it is TRUE.

CTXTextControl::FieldSetData

Description:

Syntax:

Return Value:

This member function can be used to relate any datato a marked text
field. The datais stored independently of its contents.

BOOL FieldSetData(UINT nFieldID, const CString& strData);
BOOL FieldSetData(UINT nFieldiD, DWORD dwData);
BOOL FieldSetData(UINT nFieldID, LPBY TE pBuf, DWORD
dwDataSze);

Parameter Description

nFieldiD Istheidentifier of the marked text field.

strData Stores string data.

dwData Stores a4-byte value.

pBuf Points to a buffer containing general byte-data.

dwDataSze Specifiesthe number of bytes stored in the buffer pBuf
points to.

Thereturn valueis FAL SE if the specified field does not exist or when
the data could not be stored. Otherwiseitis TRUE.

CTXTextControl::FindText

Description:

This member function opens the system-defined model ess search dialog
box (first prototype) or searches for a specified text string (second
prototype). This makesit possible for the user to find text within a Text
Control's contents.

Page 88 Text Control Classes
Syntax: void FindText();
UINT FindText(const CString& strFindwhat, DWORD dwFlags =
TXFR_MATCHCASE, LONG ISart = 0);
Parameter Description
strFindWhat ~ Specifies the string to search for.
dwFlags Specifies a combination of the following flags:
Value Description
TXFR_MATCHCASE Indicates case-sensitive
searches.
TXFR_NOHIGHLIGHT Determinesif amatch
appears highlighted.
TXFR_NOMESSAGEBOX Suppresses the built-in
message boxes which
inform the user that a
match could not be found.
TXFR_SEARCHUP Determines the direction of
searches through a
document. If thisflagis
used, the search direction
isup; if theflag is not
used, the search direction
isdown.
|Sart Specifies a character index that determines where to
begin the search. Thefirst character of text in the
control has an index of 0. When this parameter is set to
-1, the search begins at the current input position.
Return Value Thereturn value isthe index of the first character of the match if the

text, searched for isfound. If the specified text is not found, the return

valueis-1.

Text Control Classes Page 89

CTXTextControl::FontDialog

Description:

Syntax:

Return Value

This member function opens amodal dialog box which contains all
available fonts and pointsizes for the currently selected printer. Font
attributes and values for subscript and superscript can also be set.

BOOL FontDialog(CSize& szMin = szZNULL, BOOL & bChanged =
bNULL);

Parameter Description

szMin Text Control fills this variable with its new minimum
window size (in pixels). It is only useful if the Text
Control is used without the built-in scroll-interface.

bChanged Retrieves TRUE if the dialog box has been left with Ok.
Otherwise it retrieves FAL SE.

Thereturn valueis FAL SE if an error has occurred. Otherwiseit is
TRUE.

CTXTextControl::GetBackgroundColor

Description:

Syntax:

Return Value:

This member function retrieves a RGB value for the background color
of the Text Control.

BOOL GetBackgroundColor (COLORREF& colBack, BOOL &
blsSysColor = bNULL);

Parameter Description

colBack Retrieves the background color.

blsSysColor Retrieves TRUE if colBack is the system color for the
window background. Otherwiseit retrieves FAL SE.

The return valueis FAL SE if an error has occurred. Otherwiseit is
TRUE.

Page 90

Text Control Classes

CTXTextControl::GetBaseLine

Description:

Syntax:

Return Value

This member function returns the baseline alignment value of the
currently selected text.

WORD GetBaselL ine(WORD& wBaseAlign = wNULL);

Parameter Description

wBaseAlign Retrieves the baseline alignment value in twips. Nothing
isretrieved if the return valueis FA_NOCOMMONS.

Thereturn value is one of the following values:

Value Meaning

FA_NOCOMMONS The current selection contains different
subscript and superscript values.

FA_STANDARD The common baseline alignment value is zero.
FA_SUPERSCRIPT The common baseline align is superscript.
FA_SUBSCRIPT The common baseline align is subscript.

CTXTextControl::GetBaseLinePos

Description:

Syntax:

Return Value

This member function returns the baseline position of the specified
line. The dimensions are given in twips with an origin at the upper left
corner of the text. The relationship between the upper left corner of the
text and the upper left corner of the Text Control's client area can be
obtained with GetT X ScrollPos.

DWORD GetBasel inePos(L ONG lIndex);

Parameter Description

I1ndex Specifies the index of the line which baseline position
should be returned. The index of thefirst lineis zero.

The return value specifies the requested baseline position in twips.

Text Control Classes Page 91

CTXTextControl::GetCaretExt

Description: This member function returns the current extension of the caret in pixel.
Syntax: CSize GetCaretExt();

Return Value Specifies the caret extension in pixels.

CTXTextControl::GetDevice

Description: This member function returns the device for which the text is currently
formatted (screen, standard device or printer).

Syntax: DWORD GetDevice(CString& strDevName, WORD wMaxChar =
255);

Parameter Description

strDevName Retrieves the device name if thereturn valueis
TF_PRINTER.

wMaxChar Specifies the device name's maximum length.

Return Value. Thereturn value is one of the following values:

Value Meaning
TF_SCREEN The deviceis the screen.
TF_STANDARD The device is the standard device, specified in
the [windows] section of the WINL.INI file.
TF_PRINTER The deviceisaprinter.
Remarks: The name of the printer is copied in the same format as that used in the

WIN.INI file, for example:
Post Scri pt Printer, PSCRI PT, LPT1:

CTXTextControl::GetFont

Description: This member function retrieves the common fontname and size of all
currently selected fonts.

Syntax: UINT GetFont(CString& strFont, BOOL bPoints = TRUE);

Page 92 Text Control Classes

Parameter Description

strFont Retrieves the typeface string. The string is set to an
empty string if no common typeface exists.
bPoints When set to TRUE the returned pointsize isin points,

otherwise it isreturned in twips.

Return Value Thereturn value isthe common pointsize. It is zero if no common
pointsize exists.

CTXTextControl::GetFontAttr

Description: This member function returns a bitmask of the font attributes for all
fonts in the current selection.
Syntax: DWORD GetFontAttr();

Return Value The return value is zero if an error has occurred. Otherwiseit is one or
more of the following values, indicating the common attributes:

Value Meaning
FA_NOCOMMONS No common font attributes.
FA_BOLD Each font is bold.
FA_STANDARD Each font isnormal.
FA_ITALIC Each font isitalic.
FA_UNDERLINE Each font is underlined.
FA_STRIKEOUT Each font is struck out.

FA_ UL _DOUBLE Each font is doubled underlined.
FA_UL_WORDSONLY Words are underlined, word gaps are omitted.
FA_UL_REDZIGZAG Eachfontisunderlined with ared zigzag line.

CTXTextControl::GetlmageFilters

Description: This member function retrieves pairs of null-terminated strings
specifying image filters. Thefirst string in each pair isadisplay string
that describes the filter (for example, ,, Windows Bitmap*), and the

Text Control Classes Page 93

Syntax:

Return Value:

second string specifies the filter pattern (for example, ,* .BMP*). Thisis
the same format as described in the Windows SDK for the IpstrFilter
member of an OPENFILENAM E structure and therefore the strings
can be used to initialize the GetOpenFileName dialog box.

BOOL GetlmageFilters(CString& strFilters);

Parameter Description

strFilters Retrieves the pairs of strings. The last pair ends with
two terminating zero characters.

Thereturn valueis FAL SE if an error has occurred. Otherwiseitis
TRUE.

CTXTextControl::GetLanguage

Description:

Syntax:

Return Value

This member function returns the current language identifier for the
language which the Text Control is using to display information strings,
warnings or dialog boxes.

UINT GetLanguage();

Thereturn value is the language identifier. See
CTXTextControl::SetL anguage for possible values.

CTXTextControl::GetLineAndCol

Description:

Syntax:

This member function retrieves page, line and column number of the
current input position. All values are one-based. Text Control's status
bar uses this function to display the page, line and column number.

BOOL GetLineAndCol(DWORD& dwLine, DWORD& dwCal,
UINT& nPage);

Parameter Description

dwLine Retrieves the line number.
dwCol Retrieves the column number.
nPage Retrieves the page number.

Page 94

Text Control Classes

Return Value

The return valueis FAL SE if an error has occurred, otherwiseit is
TRUE.

CTXTextControl::GetLineCount

Description:

Syntax:
Return Value:

This member function returns the number of text linesin the Text
Control.

long GetLineCount();

The return value is the number of text lines.

CTXTextControl::GetLineRect

Description:

Syntax:

This member function retrieves the rectangular area covered by aline of
text. The rectangle does not include the external leading area, additional
linespacing or indents. The dimensions are given in twips with an origin
at the upper left corner of the Text Control's complete text. The
relationship between the upper |eft corner of the complete text and the
upper left corner of the Text Control's client area can be obtained with
CTXTextControl::GetTXScrollPos.

void GetLineRect(L ONG ILinelndex, CRect& rcLine);

Parameter Description

ILinelndex Specifies the index of the line whose rectangle is to be
retrieved. The index of the first lineis zero.

rcLine Retrieves the line's rectangle.

CTXTextControl::GetLineSpacing

Description:

Syntax:

This member function retrieves the line spacing of all selected
paragraphs.

void GetL ineSpacing(WORD& wLineSpace, WORD& wPercent =
wWNULL);

Text Control Classes Page 95

Parameter Description

wLineSpace Retrievestheline spacing in twips. It is set to zero if
there is no common value.

wPercent Retrieves the line spacing as a percentage of the font
size. It is set to zero if there is no common value.

CTXTextControl::GetLinkLocation

Description: This member function retrieves the location to where a hypertext link
points.

Syntax: BOOL GetLinkLocation(UINT nFieldID, CString& strText);
Parameter Description
nFieldiD Istheidentifier of amarked text field.
strText Retrieves the location to where the link points.

Return Value. Thereturn value is FAL SE if an error has occurred or if the specified
marked text field does not represent the source of a hypertext link.
Otherwise it returns TRUE.

CTXTextControl::GetLinkWnd

Description: This member function searches for the handle of awindow that is part
of achain of Text Control windows.
Syntax: HWND GetLinkWnd(DWORD dwLnkWhd);

Parameter Description

dwLnkWnd Specifies the relationship between the window for
which this function is called and the returned window.
Possible values are listed in the following Values
section.

Return Value: Thereturn value is the handle of the requested window. It iszero if the
window could not be found.

Values; Possible values for dwLnkWhd are;

Page 96

Text Control Classes

Value Meaning
GWTX_HWNDFIRST Returns the first window of achain
of linked windows.
GWTX_HWNDLAST Returns the last window of a chain
of linked windows.
GWTX_HWNDNEXT Returns the window that follows the
specified window.
GWTX_HWNDPREV Returns the previous window of a
chain of linked windows.
GWTX_HWNDFIRSTSEL Returns the first window of achain
of linked windows that contains
selected text.
GWTX_HWNDLASTSEL Returns the last window of achain
of linked windows that contains
selected text.

CTXTextControl::GetLinkWndCount

Description:

Syntax:
Return Value

This member function returns the total number of windows that belong
to achain of linked windows.

UINT GetLinkWndCount();

| s the number of windows in the chain.

CTXTextControl::GetLinkWndFromOffset

Description:

Syntax:

Return Value

This member function returns the window of a chain of linked Text
Controls that contains the specified one-based character offset.

HWND GetLinkWndFromOffset(LONG |0ffset);

Parameter Description
| Offset Specifies a one-based character offset.

The return value is the window containing the character offset, or zero if
the window could not be found.

Text Control Classes Page 97

CTXTextControl::GetLinkWndNumber

Description: This member function returns the chain position of awindow within a
chain of linked Text Controls. The first window is assigned position
one.

Syntax: UINT GetLinkWndNumber ();

Return Value: Specifies the position number.

CTXTextControl::GetLinkWndOffset

Description: This member function returns the one-based character offset of this
window's first character relative to the complete text in a chain of linked
Text Controls.

Syntax: LONG GetLinkWndOffset();
Return Value: The return value is the offset of this window's first character in the
chain.

CTXTextControl::GetMode

Description: This member function returns all the Text Control's current mode
settings.
Syntax: DWORD GetMode(DWORD& dwModeEx = dwNULL, CSize&

szMax = szNULL);

Parameter Description

dwModeEx Retrieves extended mode settings. Extended mode
settings are described in the following Values section.

szMax This parameter is only useful when the Text Control
operates in autoexpand mode. It isfilled with the
current maximum window size to which the window
can expand (in pixels).

Return Value Thereturn value specifies Text Control's current mode settings. It can
be a combination of the following values:

Page 98

Text Control Classes

Values:

Value

Meaning

TF_AUTOEXPAND

TF_FIXED
TF_FRAMED
TF_NOTFRAMED
TF_SHOWSELNA
TF_HIDESELNA

TF_SHOWWHITESPACE
TF_HIDEWHITESPACE
TF_OVERWRITE

TF_INSERT
TF_REPLACESEL

TF_KEEPSEL

TF_OPAQUE
TF_TRANSPARENT

The Text Control's window will be
automatically expanded when text insertion
or format changes result in text that does
not fit into the Text Control anymore.

The Text Control's window sizeisfixed
and is not automatically expanded.

The Text Control window is drawn with a
frame of 1 pixel width.

The Text Control window is drawn without
aframe.

A text selection remains visible when the
control looses the input focus.

A text selection is hidden when the control
looses the input focus.

Control characters are made visible.
Control characters are hidden.

Newly inserted characters overwrite
existing characters.

Newly inserted characters are inserted.

The text of a current selection is deleted
before new text isinserted.

The text of a current selection is not
deleted before new text is inserted.

The control's background is opague.
The control's background is transparent.

The dwModeEx parameter retrieves the following extended mode

settings:

Value Meaning

TF_DISPLAY Text Control only displays text.
TF_READONLY Text control displays text and the

user can select and copy it.

Text Control Classes

Page 99

TF_EDIT

TF_NOWAITCURSOR

TF_WAITCURSOR

TF_TOPINDENTFIRSTPG
TF_NOTOPINDENTFIRSTPG
TF_ERRORBOXES
TF_NOERRORBOXES
TF_SHOWGRIDLINES

TF_HIDEGRIDLINES

Text Control displaystext and the
user can select and edit it.

Text Control does not change the
cursor to an hourglass during long
time operations.

Text Control changes the cursor to
an hourglass during long time
operations.

Text Control allows atop indent for
the first paragraph in the text.

Text Control suppresses atop indent
of the first paragraph.

Text Control displays error message
boxes.

Text Control suppresses all error
message boxes.

Text Control shows grid linesin
tables.

Text Control hides grid linesin
tables.

CTXTextControl::GetPageCount

Description: This member function returns the current number of pages.
Syntax: UINT GetPageCount(LONG IHeight);

Parameter Description

IHeight Specifies the height of the page in twips. This parameter
isignored if Text Control operatesin page view mode.

Return Value Thereturn value is the number of pages.

Page 100 Text Control Classes

CTXTextControl::GetPageMargins

Description: This member function retrieves the current page margins.
Syntax: BOOL GetPageM ar gins(CRect& rcMargins);

Parameter Description
rcMargins Retrieves the page margins in twips.

Return Value Thereturn valueis FAL SE if an error has occurred. Otherwiseitis
TRUE.

CTXTextControl::GetPageSize

Description: This member function retrieves the document's page size and view
settings.

Syntax: BOOL GetPageSize(CSize& szText, UINT& nViewMode, UINT&
nscrolllnterface);
Parameter Description
szText Retrieves the document's page size without

page margins. A value of zero indicates that a
page size has not been set. In this case the text
is formatted in the borders of the Text
Control'sclient area.

nViewMode Retrieves the current view mode. See
CTXTextControl:: SetPageSize for possible
values.

nScrolllnterface Retrieves the current scroll interface settings.

See CTXTextControl::SetPageSize for
possible values.

Return Value The return valueis FAL SE if an error has occurred. Otherwiseit is
TRUE.

Text Control Classes Page 101

CTXTextControl::GetParaAlignment

Description:

Syntax:

Return Value

This member function returns the paragraph alignment value of the
currently selected paragraphs.

DWORD GetParaAlignment();

The return value is zero if an error has occurred. Otherwise it is one of
the following values:

Value Meaning

TF_LEFT Text isleft-aligned.
TF RIGHT Text isright-aligned.
TF_CENTER Text is centered.
TF_BLOCK Text is block formatted.

TF_NOCOMMONS No common text alignment.

CTXTextControl::GetParaFormatFlags

Description:

Syntax:

Return Value

This member function returns advanced formatting attributes of all
selected paragraphs.

DWORD GetParaFor matFlags();

Thereturn value is a combination of the formatting attributes. Possible
values are listed in the Vaues section of
CTXTextControl:: SetParaFormatFlags.

CTXTextControl::GetParaFrame

Description:

Syntax:

This member function retrieves the appearance, style, line width and
text distance for the frames of all selected paragraphs.

DWORD GetParaFrame(WORD& wWidth, WORD& wDistance);

Page 102

Text Control Classes

Return Value

Parameter Description

wWidth Retrieves the paragraph frame's line width in twips.
Zero indicates that the selected paragraphs have
different frame widths.

wDistance Retrieves the distance between frame and text in twips.
A value of -1 indicates that the selected paragraphs have
different distances.

Thereturn value is a combination of frame appearance and style flags.
The following values are possible:

Value Meaning

BF _LEFTLINE The frame has aleft line.

BF RIGHTLINE The frame has aright line.

BF_TOPLINE The frame has atop line.

BF BOTTOMLINE The frame has a bottom line.

BF_BOX The frame is a complete box.

BF TABLINES The frame includes vertical lines at each
tabulator position.

BF_TABLE The frame is a complete box including vertical
lines at each tabulator position.

BF _SINGLE Thelines are single lines.

BF DOUBLE Thelines are doubled lines.

BF BOXCONNECT Theframeis connected with the frames of the
neighbouring paragraphs.

CTXTextControl::GetParalndents

Description:

Syntax:

This member function retrieves the paragraph indents of all selected
paragraphs.

BOOL GetParalndents(CRect& rcindents, int& iFirstindent,
CSize& szMaxNew = szNULL);

Text Control Classes

Page 103

Parameter

Description

rclndents

iFirstlndent

szMaxNew

Retrieves the paragraphs indent values. If avalue
contains TR_IGNORED, no common value of this
indent exists for the selected paragraphs.

Retrieves an additional |eft indent of thefirst line. This
value can be negative indicating that the left indent of
the first line is smaller than the left indent of the
following lines. TR_IGNORED isretrieved if no
common value exists for all paragraphs.

Retrieves maximum values for a combination of new
indents that can be set with SetPar al ndents. The x-
value is the maximum value for the sum of |eft indent,
right indent and additional indent of the first line. The
y-value is the maximum value for the top indent and the
bottom indent. These values become invalid if the size
of the Text Control is changed.

Return Value: Thereturn valueis FAL SE if an error has occurred. Otherwiseitis

TRUE.

CTXTextControl::GetSel

Description: This member function retrieves the starting and ending positions of the
current text selection.

Syntax: BOOL GetSel(long& |Sart, long& |End);
Parameter Description
[Sart Specifies the zero-based text input position where the

|[End

user has started the current text selection.

Specifies the zero-based input position where the user
has ended the current text selection.

Return Value: The return valueis FAL SE if an error has occurred, otherwiseit is

TRUE.

Page 104 Text Control Classes

CTXTextControl::GetSelText

Description: This member function returns currently selected text.
Syntax: CString GetSelText();
Return Value: Thereturn value is a string variable containing the selected text.

CTXTextControl::GetSupportedFonts

Description: This member function retrieves all the font names which are supported
by the current output device.

Syntax: BOOL GetSupportedFonts(CStringArray& arFonts);
Parameter Description
arFonts Retrieves the font names.

Return Value Thereturn valueis FAL SE if an error has occurred. Otherwiseitis
TRUE.

CTXTextControl::GetSupportedSizes

Description: This member function retrieves all point sizes which are supported for a
certain font by the current output device.
Syntax: BOOL GetSupportedSizes(const CString& strFontName,

CStringArray& arSzes);

Parameter Description

strFontName Specifies the name of the font, the sizes of which areto
be retrieved.

arSzes Retrieves the font sizes.

Return Value Thereturn valueis FAL SE if an error has occurred. Otherwiseitis
TRUE.

Text Control Classes Page 105

CTXTextControl::GetTabs

Description: This member function retrieves common tab positions and types for all
selected paragraphs.
Syntax: BOOL GetTabs(LPTABSCT pTabs, BOOL bTwips = TRUE);
Parameter Description
pTabs Points to an array of type TABSCT and size NTABS.
See Data Structures for a description of the TABSCT
structure.
bTwips When this parameter is set to TRUE theretrieved
position values are in twips, otherwise they arein
pixels.

Return Value The return valueis FAL SE if an error has occurred. Otherwiseit is
TRUE.

CTXTextControl::GetTargetName

Description: This member function retrieves the name of a hypertext target.
Syntax: BOOL GetTargetName(UINT nFieldID, CString& strText);
Parameter Description
nFieldiD Isthe identifier of a marked text field.
strText Retrieves the name of a hypertext target.

Return Value Thereturn valueis FAL SE if an error has occurred or if the specified
marked text field does not represent the target of a hypertext link.
Otherwise it returns TRUE.

CTXTextControl::GetText

Description: This member function retrieves the Text Control's text. Thetextisin
Text Control's generic text format and can be used to work with
functions that use character indices like CTXTextControl::SetSel or
CTXTextControl::LineFromChar. To get the text in aWindows

Page 106

Text Control Classes

Syntax:

Return Value

compatible generic text format, for example to exchange it with a
Windows Edit Control, use CTXTextControl::SaveT oM emory with
the format identifier set to TF_FORMAT_ANSI or
TF_FORMAT_UNICODE.

BOOL GetText(CString& strText, DWORD dwCount = 0);
Parameter Description

strText Retrieves the text.

dwCount Specifies the maximum number of charactersto be
copied, including the terminating zero character. If
dwCount is zero the complete text is retrieved.

Thereturn valueis TRUE if text isretrieved. Otherwiseit is FAL SE.

CTXTextControl::GetTextColor

Description:

Syntax:

Return Value

This member function retrieves RGB values for the text color and the
text background color of the currently selected text.

DWORD GetTextColor (COLORREF& colFG, COLORREF&
colBG);

Parameter Description

colFG Retrieves the text color.

colBG Retrieves the text background color.

The low-order word of the return value informs about the type of the
text color. It can contain one of the following values:

Value Meaning

CV_UNDEFINED The current selection contains more than one
text color.

CV_TEXTDEFAULT Thetext color isthe system color for the
window text.

CV_TEXTUSER The text color is auser-defined value.

The high-order word of the return value informs about the type of the
text background color. It can contain one of the following values:

Text Control Classes Page 107

Value Meaning

CV_UNDEFINED The current selection contains more than one
color for the text background.

CV_BKDEFAULT The text background color is the system color
for the window background.

CV_BKCONTROL The text background color is the Text
Control's background color, set with
CTXTextControl::SetBackgroundColor.

CV_BKUSER The text background color is a user-defined
value.

CTXTextControl::GetTextLength

Description: This member function returns the length of the text in characters.
Syntax: DWORD GetTextLength();

CTXTextControl::GetTextSize

Description: This member function retrieves the dimensions of the text in twips.
Syntax: BOOL GetTextSize(CSize& szText);

Parameter Description

szText Retrieves the width and the height of the text the Text

Control currently contains.

Return Value: Thereturn value is TRUE if the function is successful. Otherwiseit is
FALSE.

CTXTextControl::GetTXScrollPos

Description: This member function returns the current scroll position.
Syntax: DWORD GetT X ScrollPos(WORD wDir);

Page 108 Text Control Classes

Parameter Description

wDir Specifies the direction. It can be one of the following
values:
Value Meaning
TF_HSCROLL Returns the horizontal scroll
position.
TF VSCROLL Returns the vertical scroll
position.

Return Value Thereturn value is the current scroll position of the client area's upper
left corner in twips.

CTXTextControl::GetZoom

Description: This member function returns the current zoom factor in percent.
Syntax: UINT GetZoom();

CTXTextControl::HFActivate

Description: This member function activates or deactivates a header or afooter.
During activation the current input focusis set in the header or footer
area, so that the user can alter the text and/or the format. During
deactivation the input focus is set back to the main text.

Syntax: BOOL HFActivate(LONG IWhat);
Parameter Description
[What When this parameter is zero the currently activated

header or footer is deactivated. Otherwise it specifies
the header or footer to activate and can be one of the
following values:

Value Description

TF_ HF HEADER Activates the header area.

TF_HF _1STHEADER Activates the header areafor
the first page.

Text Control Classes Page 109

TF_ HF FOOTER Activates the footer area.
TF_HF _1STFOOTER Activatesthe footer areafor
the first page.

Return Value: Thereturn value is TRUE if the header or footer could be activated.
Otherwiseit is FAL SE.

CTXTextControl::HFDisable

Description: This member function disables certain parts of the header and footer
functionality.

Syntax: BOOL HFDisable(L ONG IWhat);
Parameter Description
[What When this parameter is zero, al currently enabled

header and footer functionality is disabled and all
allocated memory is freed. Other possible values are
described in Values.

Return Valuee Thereturn valueis TRUE if at least one header, footer or style setting
has been disabled. Otherwise it is FAL SE.

Values: [What can be a combination of the following values:

Value Description

TF_HF_HEADER Disables headers.

TF HF _1STHEADER Disables a special header for the first
page.

TF_ HF FOOTER Disables footers.

TF HF _1STFOOTER Disables a special footer for the first
page.

TF_HF_ MOUSECLICK Disables activation through single
mouse clicks.

TF_HF_ NOMOUSEDBLCLK Enables activation through mouse
double-clicks.

Page 110

Text Control Classes

TF_HF_SOLIDFRAME Enables activation through mouse
double-clicks.
TF_ HF_UNFRAMED Resets the border to framed.

CTXTextControl::HFEnable

Description:

Syntax:

Return Value

Values:

This member function enables the usage of headers and footers. Headers
and footers can only be used when a user-defined page size has been set
with CTXTextControl::SetPageSize.

This message can only be used to add a certain header or footer or a
certain style setting. To disable a certain functionality use
CTXTextControl::HFDisable. For example when activation with
mouse clicksis enabled, calling this function with
TF_HF_SOLIDFRAME displays an activated header or footer with a
solid frame. Activation with mouse clicks remains active.

BOOL HFEnable(L ONG IWhat);

Parameter Description

IWhat Specifies what to enable. See the following Vaues
section for possible values.

Thereturn valueis FAL SE if an error has occurred. Otherwiseitis
TRUE.

IWhat can be a combination of the following values:

Value Description

TF HF_STANDARD Enables headers and footerswith a
special header and footer on the first
page. Headers and footers can be
activated through mouse double-
clicks. An activated header or footer
has a dotted border to indicate its
size.

TF_HF_HEADER Enables headers only.

Text Control Classes

Page 111

TF_HF_1STHEADER

TF_HF_FOOTER
TF_HF_1STFOOTER

TF_HF_MOUSECLICK

TF_HF_NOMOUSEDBLCLK

TF_HF_SOLIDFRAME

TF_HF_UNFRAMED

Enables only a special header for the
first page.

Enables footers only.

Enables only a specia footer for the
first page.

Headers and footers can be activated
through single mouse clicks.

Headers and footer cannot be
activated through mouse double-
clicks.

An activated header or footer has a
solid border to indicate its size.

An activated header or footer has no
border.

CTXTextControl::HFGetEnabled

This member function returns which headers and/or footers are enabled

Description:

Syntax:
Return Value

for the current document.
DWORD HFGetEnabled();

The return value is a combination of the following values:

Value Description

TF HF HEADER Headers are enabled.

TF_HF_1STHEADER A special header for the first page is enabled.
TF_HF_FOOTER Footers are enabled.

TF_HF_1STFOOTER A specia footer for the first page is enabled.

CTXTextControl::HFGetPosition

This member function returns a header's or footer's position. For headers
the position value is the distance between the top of the header and the
top of the page. For footers the position value is the distance between

Description:

Page 112 Text Control Classes

the bottom of the footer and the bottom of the page. All values arein
twips. The default value is 567 twips= 1 cm.

Syntax: DWORD HFGetPosition(LONG |What);
Parameter Description
IWhat Specifies the header or footer the position of whichis
regquested. It can be one of the following values:
Value Meaning
TF_ HF HEADER Returns the header's position.

TF_HF _1STHEADER Returnsthe position of the
specia header for the first
page.

TF HF FOOTER Returns the footer's position.

TF_HF_1STFOOTER Returnsthe position of the
special footer for the first
page.

Return Value Thereturn value is the requested position in twips. It is-1, if an error
has occured.

CTXTextControl::HFSelect

Description: This member function defines, whether a certain Text Control function
handles a header, afooter or the main text. The Text Control's button
bar, ruler and status bar need the default automatic mode for correct
working. Therefore when atext part selection is not longer needed it
should be reset to the default automatic mode.

Syntax: BOOL HFSelect(LONG IWhat);
Parameter Description
[What Specifies the text part to select. It can be one of the
following values:
Value Meaning

TF_ HF HEADER Selects the header.

Text Control Classes Page 113

TF_ HF _1STHEADER Selectsthe special header for

the first page.

TF_ HF FOOTER Selects the footer.

TF_HF _1STFOOTER Selectsthe special footer for
the first page.

TF_ HF_AUTO Selects the automatic mode. A

function call handles the text
part with the current input
position. Thisis the default
setting.

TF_ HF MAINTEXT Sdlectsthe main text.

Return Value: Thereturn value is TRUE if the selection was successful. Otherwise, it
isFALSE.

CTXTextControl::HFSetPosition

Description: This member function sets a new position for a header or footer. For
headers the position value is the distance between the top of the header
and the top of the page. For footers the position value is the distance
between the bottom of the footer and the bottom of the page. All values
arein twips. The default valueis 567 twips=1 cm.

Syntax: BOOL HFSetPosition(LONG IWhat, LONG |Pos);
Parameter Description
[What Specifies the header or footer the position of which isto
be set. It can be one of the following values:
Value M eaning
TF HF HEADER Sets the header's position.

TF_HF _1STHEADER Setsthe position of the special
header for the first page.

TF_ HF FOOTER Sets the footer's position.

TF_HF _1STFOOTER Setsthe position of the special
footer for the first page.

Page 114

Text Control Classes

Return Value

IPos Specifies the new position.

Thereturn valueis TRUE if the position could be set, otherwiseit is
FALSE.

CTXTextControl::InputPosFromPoint

Description:

Syntax:

Return Value

This member function returns the text input position belonging to a
certain geometric position. The text input position is relative to the
beginning of the text and the geometric position is a position in the
visible part of the text.

long InputPosFromPoint(const CPoint& ptPos, BOOL bTwips =

TRUE);

Parameter Description

ptPos Specifies the geometric position.

bTwips When this parameter is set to TRUE the position values
arein twips, otherwise they arein pixels.

The return value specifies the text input position beginning with zero for
the position in front of the first character. The return valueis-1, if atext
position could not be found.

CTXTextControl::Insertimage

Description:
Syntax:

This member function inserts an image in a Text Control's document.

UINT Insertlmage(

const CString& strFileName,

WORD wimageFlags = O,

UINT nFilterindex = 0,

LONG ITextPos = -1,

WORD winsertMode = EOM_INSERTASCHAR,
BOOL bMoveable = TRUE,

BOOL bSzeable= TRUE,

const CPoint& ptPos = CPoint(0, 0),

const CSize& szScale = CSize(100, 100),

Text Control Classes

Page 115

const CRect& rcDistances= CRect(0, 0, 0, 0),
WORD& wError = wNULL);

Parameter

Description

strFileName
wlmageFlags

nFilterIndex

| TextPos

wlnsertMode

Specifies the image's filename.
Specifies mode settings for the image. The following
values are possible:

Value M eaning
ICF_GRAYED Theimageis displayed in fast
display mode.

ICF_SAVEASDATA Text Control savesthe image
using its datainstead of its
filename.

ICF_ BKGNDIMAGE Inserts animage that can serve
as a background for other
sibling transparent controls.

Specifies an image filter as an index of the string pairs
retrieved through CT X TextControl::Getl mageFilters.
Thefirst pair of strings has the index value 1. If the
string pairs are used to initialize the IpstrFilter member
of an OPENFILENAME structure, another member of
that structure, nFilterIndex, can be used to initialize this
parameter. See the Windows SDK for more information
about the OPENFILENAME structure. If nFilterIndex
isset to 0, the Text Control automatically tries to select
afilter.

Specifies the text position where to insert the image. If
ITextPosis -1 theimage isinserted at the current input
position.

Specifies how theimage is handled when the text is
formatted. See the following Values section for possible
values.

Page 116

Text Control Classes

Return Value

Values:

bMoveable

bSzeable

ptPos

szScale
rcDistances
wError

The image can be moved by depressing the ALT key
and then dragging it with the mouse when this
parameter is TRUE.

The image can be sized with the mouse (by depressing
the ALT key) when this parameter is TRUE.

Specifies the position where to insert the image. The
position values must be in twips with an origin at the
upper left corner of the compl ete text.

The relationship between the upper left corner of the
complete text and the upper |eft corner of the Text
Control's client area can be obtained with
CTXTextControl::GetTXScrollPos.

Specifies scaling factors.
Specifies distances between the image and the text.

Retrieves an error code. This parameter is set only when
the function returns zero. It can be one of the following
values:

Value Meaning

0 General error.

The file does not exist or cannot be opened.
Thefileis of an unknown type.

The file contains an unsupported compression
scheme.

The file contains an unsupported version.
The file contains an unsupported style.
The filter cannot be found.

7 The filter uses an unknown interface.

w N

o 01 A

The return value is the image's object identifier when the function was
successful. Otherwise it is zero.

The following insertion modes are possible for the winsertMode

parameter:

Text Control Classes

Page 117

Value

Meaning

EOM_INSERTASCHAR

EOM_DISPLACELINE

EOM_DISPLACEWORD

Theimageis handled like asingle
character in the text. In this case the ptPos
and the rcDistances parameters are
ignored.

Thetext flow stops at the top border of the
image and continues at the bottom border.
Empty areason the left or right side of the
object are not filled. In this case the

| TextPos parameter isignored.

Same as EOM_DISPLACELINE but
empty areas on the left or right side of the
image are filled with text so that aline's
text isinterrupted by the object. In this
case the I TextPos parameter isignored.

CTXTextControl::InsertLink

This member function inserts a hypertext link in the document.

UINT InsertLink(const CString& strLinkText, const CString&
strLinkTarget, BOOL bExternal = TRUE);

Description:
Syntax:

Return Value:

Parameter Description

strLinkText Specifiesthe link's textual representation.

strLinkTarget Specifies the location to where the hypertext link points.
This can be an address or afile name if the link point to
an external location. If the link points to alocation
inside the same document it must be the name of a

target field.

bExternal Must be set to TRUE if strLinkTarget defines alocation
outside of the document, otherwise this parameter must
be set to FAL SE.

Thereturn valueis the identifier of the newly created marked text field
field which defines the hypertext link. See

Page 118

Text Control Classes

See Also:

CTXTextControl::Fieldl nsert for more information about this
identifier.

CTXTextControl::ChangeLink, CTXTextControl::InsertTar get,
CTXTextControl::FieldGoto

CTXTextControl::InsertOleFile

Description:

Syntax:

Return Value

This member function inserts a newly created embedded OL E object
from afilein a Text Control's document.

UINT InsertOleFilg(

const CString& strFileName,

LONG ITextPos = -1,

WORD winsertMode = EOM_INSERTASCHAR,
BOOL bMoveable = TRUE,

BOOL bSzeable= TRUE,

const CPoint& ptPos = CPoint(0, 0),

const CSize& szScale = CSize(100, 100),

const CRect& rcDistances = CRect(0, 0, 0, 0));

Parameter Description
strFileName Specifies the filename.

For a description of all other parameters see
CTXTextControal::InsertOleObject.

The return value is the object's identifier when the function was
successful. Otherwise it is zero.

CTXTextControl::InsertOleLinkFile

Description:

Syntax:

This member function inserts a newly created linked OLE object from a
filein a Text Control's document.

UINT InsertOleLinkFile(

const CString& strFileName,

LONG ITextPos = -1,

WORD winsertMode= EOM_INSERTASCHAR,

Text Control Classes Page 119

Return Value:

BOOL bMoveable = TRUE,

BOOL bSzeable= TRUE,

const CPoint& ptPos = CPoint(0, 0),

const CSize& szScale = CSize(100, 100),

const CRect& rcDistances = CRect(0, 0, 0, 0));

Parameter Description
strFileName Specifies the filename.

For adescription of all other parameters see
CTXTextControl::InsertOleObject.

The return value is the object's identifier when the function was
successful. Otherwise it is zero.

CTXTextControl::InsertOleObject

Description:

Syntax:

This member function opens the system-defined OLE Insert dialog box
and inserts the chosen OLE object in a Text Control's document.

UINT InsertOleObject(

LONG ITextPos = -1,

WORD winsertMode = EOM_INSERTASCHAR,
BOOL bMoveable= TRUE,

BOOL bSzeable= TRUE,

const CPoint& ptPos = CPoint(0, 0),

const CSize& szScale = CSize(100, 100),

const CRect& rcDistances = CRect(0, 0, 0, 0));

Parameter Description

| TextPos Specifies the text position where to insert the object. If
ITextPosis -1 the object isinserted at the current input
position.

winsertMode Specifies how the object is handled when the text is
formatted. See the Values section of
CTXTextControl::Insertlmage for possible values.

bMoveable The abject can be moved with the mouse when this
parameter is TRUE.

Page 120 Text Control Classes

bSzeable The abject can be sized with the mouse when this
parameter is TRUE.
ptPos Specifies the position where to insert the object. The

position values must be in twips with an origin at the
upper left corner of the compl ete text.

The relationship between the upper left corner of the
complete text and the upper |eft corner of the Text
Control's client area can be obtained with
CTXTextControl::GetTXScrollPos.

szScale Specifies scaling factors.
rcDistances Specifies distances between the object and the text.

Return Value: Thereturn value is the object's identifier when the function was
successful. Otherwise it is zero.

CTXTextControl::InsertOleProgID

Description: This member function inserts an OLE object given through its
programmatic identifier. The programmeatic identifier is stored under the
ProglID key in the registration database. For example the programmatic
identifier of the Text Control ActiveX is TX.TextControl.110.

Syntax: UINT InsertOleProgl D(
const CString& strProglD,
LONG ITextPos = -1,
WORD winsertMode = EOM_INSERTASCHAR,
BOOL bMoveable = TRUE,
BOOL bSzeable= TRUE,
const CPoint& ptPos = CPoint(0, 0),
const CSize& szScale = CSize(100, 100),
const CRect& rcDistances = CRect(0, 0, 0, 0));

Parameter Description
strProglD Specifies the OLE object's programmatic identifier.

For adescription of all other parameters see
CTXTextControl::InsertOleObject.

Text Control Classes Page 121

Return Value Thereturn value is the object's identifier when the function was
successful. Otherwise it is zero.

CTXTextControl::InsertPageNumber

Description: This member function function inserts a marked text field that displays
the current page number.
Syntax: UINT InsertTarget(DWORD dwReserved);

Parameter Description

dwReserved A reserved parameter for future use. It must be set to
zero.

Return Value Thereturn value is the identifier of the newly created marked text field.

CTXTextControl::InsertTarget

Description: This member function function inserts a hypertext target in the
document.
Syntax: UINT InsertTarget(const CString& strTargetName);

Parameter Description
strTargetName Specifies the target's name.

Return Value: Thereturn value is the identifier of the newly created marked text field
field which defines the hypertext target. See
CTXTextControl::Fieldlnsert for more information about this
identifier.

See Also: CTXTextControl::ChangeTarget, CTXTextControl::InsertLink,
CTXTextControl::FieldGoto

CTXTextControl::InsertWindow

Description: This member function inserts an externally created window like a
Windows button in a Text Control's document. The child window
identifier of this window must not be larger than Ox7FFF.

Page 122

Text Control Classes

Syntax:

Return Value

UINT InsertWindow(

HWND hwhd,

LONG ITextPos = -1,

WORD winsertMode= EOM_INSERTASCHAR,
BOOL bMoveable = TRUE,

BOOL bSzeable= TRUE,

const CPoint& ptPos = CPoint(0, 0),

const CSize& szScale = CSize(100, 100),

const CRect& rcDistances= CRect(0, 0, 0, 0));

Parameter Description
hwnd Specifies avalid window handle.

For adescription of all other parameters see
CTXTextControl::InsertOleObject.

The return value is the object's identifier when the function was
successful. Otherwise it is zero.

CTXTextControl::LineFromChar

Description:

Syntax:

Return Value

This member function returns the line number of the line which contains
the character with the specified character position.

long LineFromChar (long IChar);

Parameter Description
IChar Specifies a zero-based character index.

Thereturn value is aline index, started with O for the first line. The
return valueis-1if an error has occurred.

CTXTextControl::LineFromPoint

Description:

Syntax:

This member function returns the number of the line which contains a
given point. The point must be specified in pixels with an origin at the
top left corner of the Text Control's client area.

long LineFromPoint(const CPoint& ptPos);

Text Control Classes Page 123

Return Value:

Parameter Description
ptPos Specifies a geometric position in pixels.

Thereturn value is aline index, started with O for the first line. The
return valueis-1if an error has occurred.

CTXTextControl::Linelndex

Description:

Syntax:

Return Value:

This member function returns the character index of agiven line. The
character index is the number of characters from the beginning of the
Text Control to the specified line.

long Linel ndex(long ILine);

Parameter Description
ILine Specifies a zero-based line index.

The return value is the character index of the specified line.

CTXTextControl::LoadFile

Description:
Syntax:

This member function loads formatted or unformatted text from afile.

BOOL L oadFilg(
CFile& fFile,
WORD wFormat = TF_ FORMAT _TX,
BOOL bReplaceSel = FAL SE,
DWORD& dwBytesRead = dwNULL);
BOOL L oadFilg(
const CString& strFilename,
WORD wFormat = TF_ FORMAT _TX,
BOOL bReplaceSel = FAL SE,
DWORD& dwBytesRead = dwNULL);

Parameter Description

fFile Specifies afile from which the text is loaded.

strFilename Specifies the name of afile from which the text is
loaded.

Page 124 Text Control Classes
wFormat Specifies the text format. Possible values are listed in
the following Values section.
bReplaceSel The loaded text replaces the current selection or inserts
the text at the current input position when this
parameter is TRUE. Otherwise the loaded text replaces
the complete contents of the Text Control.
dwBytesRead Retrieves the number of read bytes.
Return Value Thereturn value is FALSE if an error has occurred. Otherwiseitis
TRUE.
Values: Thefollowingisalist of all text formats that Text Control supports. The

identifiers TF_FORMAT_TEXT and TF_FORMAT_TX are
implemented as ANSI (TF_FORMAT_TEXTA and
TF_FORMAT_TXA) and Unicode versions (TF_FORMAT_TEXTW
and TF_FORMAT_TXW). Depending on whether Unicode is defined
or not either the A- or the W-version is used.

Value Meaning

TF_FORMAT_ANS Text only in ANSI format (Windows
compatible).

TF_FORMAT_UNICODE Text only in Unicode format (Windows
compatible).

TF_FORMAT_TEXT Text only in ANSI or Unicode format
(Text Control compatible), depending on
whether UNICODE is defined or not
before TX.H isincluded. To enforce a
certain format use TF_FORMAT_TEXTA
or TF_ FORMAT_TEXTW explicitly.

TF_FORMAT_TX Text and formatting attributes using Text
Control'stext format. Text is stored in
ANSI or Unicode format, depending on
whether UNICODE is defined or not
before TX.H isincluded. To enforce a
certain format use TF_FORMAT_TXA or
TF_FORMAT_TXW explicitly.

Text Control Classes Page 125

TF_ FORMAT _HTML HTML (Hypertext Markup Language).
TF_FORMAT_RTF RTF (Rich Text Format).

TF_FORMAT_WORD Microsoft Word format. Text Control
supports the formats of Word 6 (WordPad),
Word 95, Word 97 and Word 2000.

CTXTextControl::LoadFromMemory

Description: This member function loads formatted or unformatted text from a
buffer.
Syntax: BOOL L oadFromMemory(

LPBYTE IpBuf,

WORD wFormat = TF_FORMAT_TX,
BOOL bReplaceSdl = FAL SE,
DWORD& dwBytesRead = dwNULL);

Parameter Description

[pBuf Points to a buffer containing the text to load. For text-
based formats the buffer must be zero-terminated.
wFormat Specifies the text format. Possible values are listed in

the Values section for CT XTextControl::L oadFile.

bReplaceSel The loaded text replaces the current selection or inserts
the text at the current input position when this
parameter is TRUE. Otherwise the loaded text replaces
the compl ete contents of the Text Control.

dwBytesRead Retrieves the number of read bytes.

Return Value: Thereturn value is FALSE if an error has occurred. Otherwiseitis
TRUE.

CTXTextControl::ObjDelete

Description: This member function deletes an inserted image, OLE object or
window.

Page 126 Text Control Classes

Syntax: BOOL ObjDeete(UINT nObjID = 0);
Parameter Description
nObjID Specifies the object's identifier. If this parameter is zero

the currently selected object is deleted.

Return Value The return valueis FAL SE if an error has occurred or if either an
invalid identifier is specified or no object is currently selected.
OtherwiseitisTRUE.

See Also: CTXTextControl::Insertimage, CTXTextControl::InsertOlexxx,
CTXTextControl::InsertWindow.

CTXTextControl::ObjGetAttr

Description: This member function retrieves information about the attributes of an
inserted object like insertion mode, position or scaling factors.
Syntax: BOOL ObjGetAttr(
UINT nObjID,

LONG& ITextPos,
WORD& winsertMode,
BOOL & bMoveable,
BOOL & bSzeable,
CPoint& ptPos,
CSize& szScale,
CRect& rcDistances);

Parameter Description

nObjID Specifies the object's identifier. If this parameter is zero
information about the currently selected object is
retrieved.

I TextPos Retrieves the object's character position in the text. This

parameter is only useful when the object's insertion
modeis EOM_INSERTASCHAR.

winsertMode Retrieves the object's insertion mode. See the Values
section of CTXTextContral::Insertlmage for possible
values.

Text Control Classes

Page 127

Return Value:

See Also;

bMoveable
bSzeable

ptPos

szScale
rcDistances

Retrieves TRUE if the object can be moved with the
mouse.

Retrieves TRUE if the object can be sized with the
mouse.

Retrieves the object's geometric position. This
parameter is only useful if the object's insertion mode is
EOM_DISPLACELINE or EOM_DISPLACEWORD.

Retrieves the object's scaling factors.

Retrieves the distances between the object and the text.
This parameter is only filled when the object's insertion
modeisEOM_DISPLACELINE or
EOM_DISPLACEWORD.

Thereturn valueis FAL SE if an error has occurred or if either an
invalid identifier is specified or no object is currently selected.
OtherwiseitisTRUE.

CTXTextControl::Insertimage, CTXTextContral::InsertOlexxx,
CTXTextControl::InsertWindow.

CTXTextControl::ObjGetIDispatch

This member function returns a pointer to an inserted object's dispatch
interface. It can be used to call properties and methods for an object.

BOOL ObjGetI Dispatch(UINT nObjID, L PDISPATCH* pDisp);

Description:

Syntax:

Return Value:

Parameter Description
nObjID Specifies the object's identifier.
pDisp Retrieves the dispatch interface pointer. Text Control

callsthe AddRef method for the abject before
returning, so the calling application must call the
Release method when it is done with the object.

Thereturn value is FAL SE if the object has no dispatch interface.
Otherwiseitis TRUE.

Page 128

Text Control Classes

CTXTextControl::ObjGetNext

Description: This member function returns the identifier of an inserted object that
follows the specified object in the Text Control's internal list of objects.
This function can be used to enumerate inserted objects.

Syntax: UINT ObjGetNext(UINT nObjID = 0, DWORD dwFlags = 0);
Parameter Description
nObjID Specifies the object's identifier.
dwFlags Specifies certain types of abjects. See the following

Values section for possible values. When this parameter
is zero all objects are enumerated.

Return Value Thereturn value is the identifier of the object which follows the
specified object. It is zero if there is no following object.

Values: The following lists possible values for the dwklags parameter:

Value

Meaning

OGN_ASCHARONLY

OGN_FIXEDONLY

OGN_IMAGESONLY

OGN_EXTERNALSONLY

OGN_OLEOBJECTSONLY

Returns only identifiers of objects
that act as single characters
(insertion mode:
EOM_INSERTASCHAR).

Returns only identifiers of objects
which have been inserted with the
EOM_DISPLACELINE or
EOM_DISPLACEWORD insertion
mode.

Returns only identifiers of objects
which have been inserted with
CTXTextControl::Insertlmage.

Returns only identifiers of objects
which have been inserted with
CTXTextControl::InsertWindow.

Returns only identifiers of OLE
objects.

Text Control Classes Page 129

See Also: CTXTextControl::Insertimage, CTXTextContral::InsertOlexxx,
CTXTextControl::InsertWindow.

CTXTextControl::ObjOleCancel

Description: This member function deactivates an OLE object and changesiits state
from in-place activated to selected. This function can be used to
implement the standard action for the ESCAPE key in a OLE container
application.

Syntax: void ObjOleCancel();

CTXTextControl::ObjSetDistances

Description: This member function sets new distances between the text and an
inserted object. This function can only be used for objects inserted with
the insertion mode EOM_DISPLACELINE or
EOM_DISPLACEWORD.

Syntax: BOOL ObjSetDistances(UINT nObjID = 0, const CRect&
rcDistances = CRect(0, 0, 0, 0));
Parameter Description

nObjID Specifies the object's identifier. If this parameter is zero
the currently selected object is used.

rcDistances Specifies new distances between the object and the text.

Return Value: The return valueis TRUE if the new distances could be set. Otherwise
itisFALSE.

See Also; CTXTextControl::Insertimage, CTXTextControl::InsertOlexxx,
CTXTextControl::InsertWindow.

CTXTextControl::ObjSetMovable

Description: This member function changes the movable state of an inserted object.

Page 130 Text Control Classes
Syntax: BOOL ObjSetMovable(UINT nObjlD = 0, BOOL bMoveable =
TRUE);
Parameter Description
nObjID Specifies the object's identifier. If this parameter is zero
the currently selected object is used.
bMovable When this parameter is TRUE the object can be moved
with the mouse. Otherwise it cannot be moved.
Return Value: Thereturn valueis TRUE if the new state could be set. Otherwise it is
FALSE.
See Also: CTXTextControl::Insertimage, CTXTextControl::InsertOlexxx,

CTXTextControl::InsertWindow.

CTXTextControl::ObjSetScaling

Description:
Syntax:

Return Value

See Also:

This member function sets new scaling factors for an inserted object.

BOOL ObjSetScaling(UINT nObjID = 0, const CSize& szScale =
CSize(100, 100));

Parameter Description

nObjID Specifies the object's identifier. If this parameter is zero
the currently selected object is used.
szScale Specifies new scaling factors.

Thereturn valueis TRUE if the new scaling factors could be set.
Otherwiseitis FALSE.

CTXTextControl::Insertimage, CTXTextControl::InsertOlexxx,
CTXTextControl::InsertWindow.

CTXTextControl::ObjSetSizeable

Description:
Syntax:

This member function changes the sizeable state of an inserted object.

BOOL ObjSetSizeable(UINT nObjID = 0, BOOL bSzeable =
TRUE);

Text Control Classes Page 131

Parameter Description

nObjID Specifies the object'sidentifier. If this parameter is zero
the currently selected object is used.

bSzeable When this parameter is TRUE the object can be sized
with the mouse. Otherwise it cannot be sized.

Return Value: Thereturn valueis TRUE if the new state could be set. Otherwiseitis
FALSE.

See Also: CTXTextControl::Insertimage, CTXTextContral::InsertOlexxx,
CTXTextControl::InsertWindow.

CTXTextControl::ParagraphDialog

Description: This member function opens a modal dialog box which can be used to
set attributes for all currently selected paragraphs. The attributes are
linespacing, alignment, indents and the distance to the previous and the
following paragraph.

Syntax: BOOL ParagraphDialog(BOOL & bChanged = bNULL);

Parameter Description

bChanged Retrieves TRUE if the dialog box has been left with Ok.
Otherwise it retrieves FAL SE.

Return Value The return valueis FAL SE if an error has occurred. Otherwiseit is
TRUE.

CTXTextControl::Paste

Description: This member function inserts data from the clipboard at the current
input position. Dataisinserted only if the Text Control has the input
focus and if the clipboard contains data in a recognized format.

Syntax: void Paste();

Page 132 Text Control Classes

CTXTextControl::PrintControl

Description: This member function prints the contents of a Text Control that is used
without built-in scroll interface. The contents are printed on the printer's
paper with the same offset, the Text Control window has relative to the
client area of its parent window. Use this function to print several
controls that cover different small text areas on asingle page.

Syntax: BOOL PrintControl(HDC hDC);
Parameter Description
hDC Specifies a printer's device context.

Return Value Thereturn valueis FAL SE if an errror has occurred. Otherwiseit is
TRUE.

CTXTextControl::PrintPage

Description: This member function prints a single page. It can only be used when the
TextControl operatesin the page view mode.

Syntax: BOOL PrintPage(
HDC hDC,
UINT nPage,

const CPaint& ptOffset = CPoint(0, 0),
DWORD dwOptions = 0,
WORD wScale = 100);

Parameter Description

hDC Specifies a printer device context.

nPage Specifies the number of the page to print. Thefirst page
has the number one.

ptOffset Specifies an additional printing offset. Text Control

adds this offset to the currently set page margins. The
values can be negative to print to a position less than the
page margins.

Text Control Classes Page 133

Return Value:

dwOptions Specifies print options. It must contain
TF_PRINTCOLORSIf text colors are to be printed. If
dwOptions contains zero, text is printed in black.

wScale Specifies a scaling factor in percent. This value can
range from 10 to 400.

Thereturn valueis FAL SE if an errror has occurred. Otherwiseit is
TRUE.

CTXTextControl::Redo

Description:
Syntax:

Return Value

This member function restores the last undone edit operation.
BOOL Redo();

Thereturn valueis FAL SE if the redo operation fails. Otherwiseitis
TRUE.

CTXTextControl::ReduceFont

Description:

Syntax:

Return Value

This member function reduces the pointsizes of all fontsin the current
selection.

BOOL ReduceFont(CSize& szMin = szNULL);

Parameter Description

szMin Text Control fills this variable with its new minimum
window size (in pixels). It is only useful if the Text
Control is used without the built-in scroll-interface.

Thereturn valueis TRUE, if the font sizes could be reduced. Otherwise
it returns FAL SE.

CTXTextControl::ReplaceSel

Description:

Syntax:

This member function replaces the currenet selection with the specified
text.

BOOL ReplaceSel(const CString& strText);

Page 134

Text Control Classes

Return Value

Parameter Description
strText Specifies the replacement text.

Thereturn valueis FAL SE if an error has occurred. Otherwiseitis
TRUE.

CTXTextControl::ReplaceText

Description:

Syntax:

This member function opens the system-defined model ess dialog box
which makes it possible for the user to find and replace text within the
Text Control's contents.

void ReplaceText();

CTXTextControl::ResetContents

Description:

Syntax:
Return Value

This member function del etes the complete contents of a Text Control
including tables, objects, marked text fields and headers and footers.

BOOL ResetContents();

Thereturn valueis TRUE if everything could be deleted. Otherwise it
isFALSE.

CTXTextControl::SaveFile

Description:
Syntax:

This member function saves formatted or unformatted text into afile.

BOOL SaveFilg(

CFile& fFile,

WORD wFormat,

BOOL bCurSel = FALSE,

DWORD& dwBytesWritten = dwNULL);
BOOL SaveFilg(

const CString& strFilename,

WORD wFormat,

BOOL bCurSel = FALSE,

DWORD& dwBytesWritten = dwNULL);

Text Control Classes

Page 135

Parameter

Description

fFile
strFilename

wFormat

bReplaceSa

Specifies afile into which the text will be written.
Specifies the name of afile into which the text will be
written.

Specifies the text format. Possible values are listed in
the Values section for CTXTextControl::LoadFile.

When this parameter is TRUE the currently selected
text is saved. Otherwise the Text Control's complete
text is saved.

dwBytesWritten Retrieves the number of written bytes.

Return Value The return valueis FAL SE if an error has occurred. Otherwiseit is

TRUE.

CTXTextControl::SaveToMemory

Description: This member function saves formatted or unformatted text in a memory
buffer.

Syntax: BOOL SaveToMemory(CByteArray& arBuf, WORD wFormat,
BOOL bCurSel = FAL SE);
Parameter Description
arBuf Retrieves the saved text.
wFormat Specifies the text format. Possible values are listed in

the Values section for CTXTextControl::LoadFile.

bCurd When this parameter is TRUE the currently selected

text is saved. Otherwise the Text Control's complete
text is saved.

Return Value: Thereturn valueis FAL SE if an error has occurred. Otherwiseitis

TRUE.

Page 136 Text Control Classes

CTXTextControl::SetBackgroundColor

Description: This member function sets a new background color. The Text Control
uses this color to paint the background in TF_OPAQUE mode. The
default value for the background color is the system color for the
window background.

ntax: ackgroundColor olor,

Sy BOOL SetBack dColor (BOOL bSysColor, COLORREF
newColor);
Parameter Description
bSysColor Indicates if the background color should be set to the

system color for the window background. If thisvalueis
TRUE, newColor isignored.

newColor Specifies a RGB value that identifies the new
background color.

Return Value Thereturn valueis FAL SE if an error has occurred. Otherwiseitis
TRUE.

CTXTextControl::SetBaseLine

Description: This member function sets a new baseline alignment value for the
currently selected text.
Syntax: BOOL SetBasel ing(WORD wFlag = FA_STANDARD, LONG
IBaseAlign = 0);
Parameter Description
wFlag Specifies the type of aignment:
Value Meaning

FA_STANDARD Thenew alignment is set to zero.
FA_SUPERSCRIPT The new alignment is superscript.
FA_SUBSCRIPT The new alignment is subscript.

Text Control Classes Page 137

Return Value

IBaseAlign Specifies the new baseline alignment value in twips. It
islimited to 48 pt = 960 twips.

The return valueis FAL SE if an error has occurred. Otherwiseit is
TRUE.

CTXTextControl::SetCaretExt

Description:

Syntax:

Return Value:

This member function sets the width of the caret. The caret's height
depends on the current font.

BOOL SetCaretExt(UINT nWidth, BOOL bTextCaret = TRUE);

Parameter Description

nWidth Specifies the caret's new width in pixels. A value of
zero resets the width to its default value which is the
system-defined window-border width in standard text
sections and 2 pixelsin marked text fields. The
maximum width is 255 pixels.

bTextCaret When this parameter is TRUE the new width is set for
the caret in standard text sections. When this parameter
is FAL SE the new width is set for the caret in marked
text fields.

Thereturn valueis FAL SE if an error has occurred. Otherwiseitis
TRUE.

CTXTextControl::SetDevicePrinter

Description:

Syntax:

This member function sets a new device to which the text of the Text
Control is formatted.

BOOL SetDevicePrinter (const CString& strPrinter, BOOL&
bChanged = bNULL, CSize& szMin= szNULL);
Parameter Description

strPrinter Specifies the name of the new device. This name must
be in the same format as that used in the WINL.INI file,

Page 138

Text Control Classes

Return Value

bChanged

szMin

for example:
PostScript Printer, PSCRIPT,LPT1:

Retrieves TRUE if the device has been changed and
settings like fontnames have been adapted. Otherwise it
retrieves FAL SE if the specified device is the same as
the current device.

Text Control fills this variable with its new minimum
window size (in pixels) if the new device could not be
set because the Text Control's client area was too small
to display the text with adapted fonts. It is only useful if
the Text Control is used without the built-in scroll-
interface.

Thereturn valueis FAL SE if an error has occurred. Otherwiseitis

TRUE.

CTXTextControl::SetDeviceScreen

This member function sets the screen as the formatting device.

BOOL SetDeviceScreen(BOOL & bChanged = bNULL, CSize&
szMin = szNULL);

Description:
Syntax:

Return Value

Parameter Description

bChanged Retrieves TRUE if the device has been changed and
settings like fontnames have been adapted. Otherwise it
retrieves FAL SE if the specified device is the same as
the current device.

szMin Text Control fills this variable with its new minimum

window size (in pixels) if the new device could not be
set because the Text Control's client area was too small
to display the text with adapted fonts. It is only useful if
the Text Control is used without the built-in scroll-
interface.

The return value is FAL SE if an error has occurred. Otherwiseit is

TRUE.

Text Control Classes

Page 139

CTXTextControl::SetDeviceStandard

Description:

Syntax:

Return Value

This member function sets the system-defined standard device, specified
in the [windows] section of the WIN.INI file.

BOOL SetDeviceStandard(BOOL& bChanged = bNULL, CSize&
szMin= szNULL);

Parameter Description

bChanged Retrieves TRUE if the device has been changed and
settings like fontnames have been adapted. Otherwise it
retrieves FAL SE if the specified device is the same as
the current device.

szMin Text Control fills this variable with its new minimum

window size (in pixels) if the new device could not be
set because the Text Control's client area was too small
to display the text with adapted fonts. It is only useful if
the Text Control is used without the built-in scroll-
interface.

The return valueis FAL SE if an error has occurred. Otherwiseit is

TRUE.

CTXTextControl::SetFont

Description:

Syntax:

This member function sets a new font with anew size for all selected

fonts.

BOOL SetFont(const CString& strFont, WORD wFontSze = O,
BOOL bPoints= TRUE, CSize& szMin = szNULL);

Parameter Description

strFont Specifies the name of the new font.

wFontSze Specifies anew font size. If this parameter is set to null,
only the nameis set and all sizesremain the same.

bPoints If set to TRUE wFontSize specifies points. Otherwise it

specifies twips.

Page 140

Text Control Classes

Return Value

szMin Text Control fills this variable with its new minimum
window size (in pixels). It is only useful if the Text
Control is used without its built-in scroll-interface.

The return valueis FAL SE if an error has occurred, otherwiseit is
TRUE.

CTXTextControl::SetFontAttr

Description:

Syntax:

Return Value

Values:

This member function sets or resets font attributes for all fonts of the
selected text.

BOOL SetFontAttr (DWORD dwFlags, CSize& szMin = szNULL);

Parameter Description

dwFlags Can contain one or more of the valueslisted in the
following Values section.
szMin Text Control fills this variable with its new minimum

window size (in pixels). It is only useful if the Text
Control is used without its built-in scroll-interface.

Thereturn valueis FAL SE if an error has occurred. Otherwiseitis
TRUE.

The following are the possible font attributes:

Value Meaning

FA_STANDARD Resets all attributes of al fonts.

FA BOLD Sets each font to bold.

FA_ITALIC Sets each font to italic.
FA_UNDERLINE Sets each font to underline.
FA_STRIKEOUT Sets each font to strike out.
FA_NOBOLD Resets the bold attribute of each font.
FA_NOITALIC Resets the italic attribute of each font.

FA_NOUNDERLINE Resets each underlined font.
FA_NOSTRIKEOUT Resets each struck out font.

Text Control Classes

Page 141

FA_UL_DOUBLE
FA_UL_REDZIGZAG

FA_UL_WORDSONLY

FA_UL_NODOUBLE

FA_UL_NOREDZIGZAG

Sets each font to doubled underline.

Adds ared zigzag line to each font. This
underline attribute does not reset other
underline attributes.

Words are underlined, word gaps are
omitted. Thisvalue can only be used in
combination with FA_UNDERLINE or
FA_UL_DOUBLE.

Resets the doubled underline attribute of
each font.

Resets the red zigzag line attribute of each
font.

FA_UL_NOWORDSONLY Resets each font that has the words only

FA_TOGGLE

attribute. This value can only be used in
combination with FA_NOUNDERLINE or
FA_UL_NODOUBLE.

Toggles the specified attributes instead of
adding or resetting them. This flag can be
set with any combination. Toggling an
attribute results in deleting this attribute if
wFlags contains the same value as all fonts
of the current selection.

CTXTextControl::SetLanguage

Description:

Syntax:

resource library.

This member function sets the language which Text Control uses to
display informations strings, warnings or dialog boxes. The language is
specified either through an identifier or through the filename of a

BOOL SetLanguage(UINT nLang);
BOOL SetlL anguage(const CString& strLang);

Page 142 Text Control Classes

Parameter Description

nLang Specifies alanguage identifier. The following
identifiers are possible:
L anguage Identifier
English 01
French 33
Spanish 34
[talian 39
German (Switzerland) 41
German (Austria) 43
German 49
Japanese 8l
strLang Specifies the filename including its full path of a

resource library. See the chapter Using the Text Control
Class Library - Resources for more information about
creating a resource library.

Return Value. Thereturn value is FAL SE if an error has occurred or if the specified
language has aready been set, otherwise it is TRUE.

CTXTextControl::SetLineAndCol

Description: This member function sets a new text input position from a page, line
and column number. All values start with number 1.

Syntax: BOOL SetLineAndCol (UINT nLine, UINT nCol, UINT nPage = 0);
Parameter Description
nLine Specifies the line number.
nCol Specifies the column number.
nPage Specifies the page number. When Text Control worksin

aview mode that does not display pages, this parameter
isignored and should be set to zero.

Text Control Classes Page 143

Return Value

Thereturn valueis TRUE if the specified input position could be set.
Otherwiseitis FAL SE.

CTXTextControl::SetLineSpacing

Description:

Syntax:

Return Value:

Remarks:

This member function sets a new linespacing for al currently selected
paragraphs.

BOOL SetLineSpacing(WORD wLineSpace, BOOL bTwips =
TRUE);

Parameter Description

wLineSpace Specifies anew linespacing value.

bTwips If this parameter is set to TRUE, wLineSpace must be a
valuein twips. If set to FAL SE, wLineSpace must be a
value in percent of the font size.
Before setting the linespacing in twips,
CTXTextControl:: SetPar aFor matFlags can be used
to specify whether the linespacing is used as a
minimum, or as an absolute value.

The return valueis FAL SE if an error has occurred. Otherwiseit is
TRUE.

To realize double linespacing, wLineSpace must contain 200 and
bTwips must be FAL SE.

Minimum and maximum values are;
10% to 400% or 57 to 5669 twips (1 to 100 mm).

CTXTextControl::SetLinkWnd

Description:

This member function informs this Text Control about awindow that is
to beits successor in a chain of linked windows. The Text Control sends
overflowing text to that window or fills deleted text with text from that
window. The caret moves to the following window if it reaches the
bottom of a Text Control. It moves to the previous window if the top of

Page 144 Text Control Classes

aText Contral isreached. Chains of linked windows can only be built
with Text Controls that work without their built-in scroll.interfaces.

Syntax: BOOL SetLinkWnd(HWND hWhd);
Parameter Description
hwnd Specifies the window handle of the successor window.

Create anew Text Control window and use
CTXTextControl.m_hWnd for this parameter.

If this parameter is zero, Text Control disconnectsits
successor window.

Return Value Thereturn value is FAL SE if the windows could not be linked.
Otherwiseitis TRUE.

CTXTextControl::SetMode

Description: This member function sets Text Control's different working modes.
Changing one mode does not alter the other mode settings.

ntax: 0 wNewMode,
BOOL SetM ode(DWORD dwNewMod
DWORD dwMaxAutoSze = 0, DWORD dwNewModeEx = 0);

Parameter Description

dwNewMode Specifies one or more mode settings. See the
following Values section for possible values.

dwMaxAutoS ze This parameter isfor the TF_ AUTOEXPAND
mode only. It specifies maximum values for
the Text Control's window size (in pixels). If
the window is expanded and these values are
reached, the automatic expansion stops. The
maximum width isin the low-order word and
the maximum height isin the high-order word.

dwNewModeEx Specifies one or more extended mode settings.
See also the following Values section for
possible values.

Text Control Classes

Page 145

Return Value

Values;

The return value is FALSE if one of the new modes could not be set.

Otherwiseitis TRUE.

The following modes can be set with the dwNewMode parameter:

Value

Meaning

TF_AUTOEXPAND

TF_FIXED
TF_FRAMED
TF_NOTFRAMED
TF_SHOWSELNA
TF_HIDESELNA

TF_SHOWWHITESPACE
TF_HIDEWHITESPACE
TF_OVERWRITE

TF_INSERT
TF_REPLACESEL

TF_KEEPSEL

TF_OPAQUE
TF_TRANSPARENT

The Text Control's window will be
automatically expanded when text insertion
or format changes result in text that does
not fit into the Text Control anymore.

The Text Control's window sizeisfixed
and is not automatically expanded.

The Text Control window is drawn with a
frame of 1 pixel width.

The Text Control window is drawn without
aframe.

A text selection remains visible when the
control looses the input focus.

A text selection is hidden when the control
looses the input focus.

Control characters are made visible.
Control characters are hidden.

Newly inserted characters overwrite
existing characters.

Newly inserted characters are inserted.

The text of a current selection is deleted
before new text isinserted.

The text of a current selection is not
deleted before new text is inserted.

The control's background is opague.
The control's background is transparent.

The following modes can be set with the dwNewModeEx parameter:

Page 146

Text Control Classes

Value Meaning

TF _DISPLAY Text Control only displays text.

TF_READONLY Text Control displaystext and the
user can select and copy it.

TF_EDIT Text Control displaystext and the

TF_NOWAITCURSOR

TF_WAITCURSOR

TF_TOPINDENTFIRSTPG
TF_NOTOPINDENTFIRSTPG
TF_ERRORBOXES
TF_NOERRORBOXES
TF_SHOWGRIDLINES

TF_HIDEGRIDLINES

user can select and edit it.

Text Control does not change the
cursor to an hourglass during long
time operations.

Text Control changes the cursor to
an hourglass during long time
operations.

Text Control alows atop indent for
the first paragraph in the text.

Text Control suppresses a top indent
of the first paragraph.

Text Control displays error message
boxes.

Text Control suppresses al error
message boxes.

Text Control shows grid linesin
tables.

Text Control hides grid linesin
tables.

CTXTextControl::SetPageMargins

Description:
Syntax:

This member function sets new page margins.
BOOL SetPageMargins(const CRect& rectMargin, BOOL

bReformat = FAL SE);

Parameter Description

rectMargin

Specifies the new margins.

Text Control Classes

Page 147

Return Value

Remarks:

bRefor mat If this parameter is TRUE the Text Control reformats
the complete text. Otherwise the text is not reformatted.
If thisfunction is combined with
CTXTextControl::SetPageSize, it should be called
first with bFormat set to FAL SE to avoid doubled
reformatting.

The return valueis FAL SE if an error has occurred. Otherwiseit is

TRUE.

Page margins are only shown on the screen if the Text Control operates
in one of the page view modes. See CTXTextControl::SetPageSize for

more information.

CTXTextControl::SetPageSize

This member function sets the document's page size and view settings.
BOOL SetPageSize(const CSize& szText, UINT nViewMode, UINT

Description:
Syntax:

Return Value

n<crolllnterface);

Parameter Description

szText Specifies the document's page size without
page margins. A value of zero meansthat the
text is formatted in the borders of the Text
Control's client area.

nViewMode Specifies aview mode. See the following

nScrolllnterface

Values section for possible values. This
parameter has only effect when the sizes set
through szZText are non-zero.

Specifies scroll interface settings. See the
following Values section for possible values.
The settings of this parameter has only effect
when the sizes set through szText are non-
zero.

The return valueis FAL SE if an error has occurred. Otherwiseit is

TRUE.

Page 148

Text Control Classes

Values:

Thefollowingisalist of Text Control's document view modes:

Value

Meaning

TF_NORMALVIEW
TF_PAGEVIEW

TF_EXTPAGEVIEW

Text Control displays the text without
pages and margins.

Text Control displays pages with margins,
borders and a gray background.

Text Control displays three-dimensional
pages which are centered in the windows
visible area.

Thefollowing isalist of Text Control's scroll interface settings:

Value

Meaning

TF_HSCROLL

TF_NOHSCROLL
TF_VSCROLL
TF_NOVSCROLL
TF_THUMBTRACK

TF_THUMBPOSITION

Displays a horizontal scroll bar if
necessary.

Displays no horizonta scroll bar.
Displays a vertical scroll bar if necessary.
Displays no vertical scroll bar.

Text Control updatesits client area whilst
moving the scrollbar's scroll box (thumb).

Text Control updatesits client area when
the scrollbar's scroll box (thumb) has
reached a new position.

CTXTextControl::SetParaAlignment

This member function sets a new paragraph alignment value for al

Description:

Syntax:

selected paragraphs.

BOOL SetParaAlignment(WORD wAlignment);

Parameter Description

wAlignment Specifies one of the following values:

Value

TF_LEFT

Meaning
Set |eft-aligned paragraphs.

Text Control Classes Page 149

TF_RIGHT Set right-aligned paragraphs.
TF_CENTER Set centered paragraphs.
TF_BLOCK Set to block formatted
paragraphs.
Return Value: Thereturn valueis FAL SE if an error has occurred. Otherwiseit is

TRUE.

CTXTextControl::SetParaFormatFlags

Description: This member function sets advanced paragraph formatting attributes.
Syntax: BOOL SetParaFormatFlags(DWORD dwFlags);

Parameter Description

dwFlags Specifies the new formatting. Possible values are listed

in the following Values section.

Return Value: Thereturn valueis FAL SE if an error has occurred. Otherwiseitis

TRUE.
Values: The following are the advanced attributes:
Value Meaning

TF_ATLEASTLINESPACING If aspecified line spacing is too
small to show all the lin€'s contents,
Text Control enlargestheline
spacing between lines accordingly,
so that nothing is cropped.

TF_EXACTLINESPACING A specified line spacing is used as
exact value, regardless of whether
larger characters or images are being
cropped.

TF_PAGEBREAKNOTALLOWED A page break is not allowed
within a paragraph.

TF_PAGEBREAKALLOWED Page breaks are allowed within a
paragraph.

Page 150

Text Control Classes

CTXTextControl::SetParaFrame

Description:

Syntax:

Return Value

Values:

This member function sets appearance flags, frame width and frame
distance values for all paragraphs of the current selection.

BOOL SetParaFrame(WORD wFlags, WORD wWidth = 0, WORD

wDistance = -1);

Parameter Description

wFlags Specifies the appearance and the style of the paragraph
frame. It can be a combination of the valueslisted in the
following Values section.

wWidth Specifies the paragraph frame's line width in twips. If
this parameter is set to zero it isignored.

wDistance Specifies the distance between the frame and the text in
twips. If this parameter is set to -1 it isignored.

The return valueis FAL SE if an error has occurred. Otherwiseit is

TRUE.

For a paragraph frame's appearance and styles the following values are

possible:

Value Meaning

BF _LEFTLINE Draws aleft frame part.

BF RIGHTLINE Draws aright frame part.

BF_TOPLINE Draws atop frame part.

BF_BOTTOMLINE Draws a bottom frame part.

BF_BOX Draws a complete box.

BF TABLINES Draws avertical line at each tabulator
position.

BF TABLE Draws a complete box including vertical lines
at each tabulator position.

BF_SINGLE Drawsasingleline.

BF_DOUBLE Draws adoubled line.

BF_NOLEFTLINE

Resets an existing left part.

Text Control Classes Page 151

BF NORIGHTLINE Resets an existing right part.

BF NOTOPLINE Resets an existing top part.
BF NOBOTTOMLINE Resets an existing bottom part.
BF_NOTABLINES Resets existing tabulator lines.

BF_BOXCONNECT Connectstwo sequential boxesto form a
single box.

CTXTextControl::SetParalndents

Description: This member function sets new indent values for all currently selected
paragraphs.
Syntax: BOOL Setlndents(const CRect& rclndents, int iFirstindent, BOOL &

bChanged = bNULL);

Parameter Description
rcindents Specifies the paragraphs new indents.

iFirstindent ~ Specifies an additional |eft indent for the first line. This
value can be negative indicating that the left indent of
the first line is smaler than the left indent of the
following lines.

bChanged Retrieves TRUE if the new values could not be accepted

because they are too large for the currently set page
Size.

Return Value The return valueis FAL SE if an error has occurred. Otherwiseit is
TRUE.

CTXTextControl::SetSel

Description: This member function sets a new text selection.
Syntax: BOOL SetSe(long ISart, long IEnd);

Page 152 Text Control Classes
Parameter Description
|Sart Specifies the zero-based text input position where the
new selection starts.
IEnd Specifies the zero-based text input position where the
new selection ends.
Return Valuee Thereturn value is FAL SE if an error has occurred. Otherwiseitis
TRUE.
Remarks: If the start position is zero and the end position is -1 the entire text is

selected.

CTXTextControl::SetTabs

Description:
Syntax:

Return Value

This member function sets new tab positions and types.
BOOL SetTabs(LPTABSCT pTabs, BOOL bTwips= TRUE);

Parameter Description

pTabs Points to an array of type TABSCT and size NTABS.
See Data Structures for a description of the TABSCT
structure.

bTwips When this parameter is set to TRUE all tab position
values must be in twips, otherwise they must bein
pixels.

The return valueis FAL SE if an error has occurred. Otherwiseit is
TRUE.

CTXTextControl::SetTextBkColor

Description:

Syntax:

This member function sets a new text background color for the currently
selected text.

BOOL SetTextBkColor(DWORD dwDefColor, COLORREF
newColor);

Text Control Classes Page 153

Parameter Description
dwDefColor Specifies one of the following values:
Value Meaning
CV_BKDEFAULT The new text background color is

the system color for the window
background.

CV_BKCONTROL The new text background color is
Text Control's background color.

CV_BKUSER The new text color is specified
through newColor.

newCol or Specifies a RGB value that identifies the new text
background color.

Return Value The return valueis FAL SE if an error has occurred. Otherwiseit is
TRUE.

Remarks: If the Text Control's background modeis TF_TRANSPARENT and the
dwDefColor parameter contains CV_BKDEFAULT or
CV_BKCONTROL thetext background color is not drawn.

CTXTextControl::SetTextColor

Description: This member function sets a new text color for the currently selected
text.
Syntax: BOOL SetTextColor (BOOL bSysColor, COLORREF newColor);
Parameter Description
bSysColor Indicates if the text color should be set to the system
color for window text. If thisvalueis TRUE, newColor
isignored.

newCol or Specifies a RGB value that identifies the new text color.

Return Value: Thereturn valueis FAL SE if an error has occurred. Otherwiseitis
TRUE.

Page 154 Text Control Classes

CTXTextControl::SetTXScrollPos

Description: This member function sets a new scroll position.
Syntax: BOOL SetTXScrollPos(\WORD wDir, DWORD dwPos);
Parameter Description
wDir Specifies the direction. It can be one of the following
values:
Value Meaning
TF HSCROLL Sets the horizontal scroll
position.
TF_VSCROLL Sets the vertical scroll position.
dwPos Specifies the new scroll position in twips. The text

associated with this position is displayed at the top of
the Text Control's client area.

Return Value The return valueis FAL SE if an error has occurred. Otherwiseit is
TRUE.

CTXTextControl::SetZoom

Description: This member function sets a new zooming factor for the Text Control.
Thisfactor is given as a percentage. A value of 100 means the original
size.

Syntax: BOOL SetZoom(UINT nNewZoom, BOOL bUpdate = FAL SE);

Parameter Description

wNewZoom Specifies the new zooming factor in percent. It must be
between 10 and 400.

bUpdate Updates the appropiate portion of the parent window's
client area, if set to TRUE.

Return Value Thereturn valueis FAL SE if the window could not be zoomed or if the
specified zooming factor has already been set. Otherwise it is TRUE.

Text Control Classes Page 155

CTXTextControl::TableAttrDialog

Description: This member function opens a built-in dialog box for setting table
attributes such as frames and distances between frame and text.
Syntax: BOOL TableAttrDialog(BOOL & bChanged = bNULL);

Parameter Description

bChanged Retrieves TRUE if the dialog box has been left with Ok.
Otherwise it retrieves FAL SE.

Return Value: Thereturn valueis FAL SE if an error has occurred. Otherwiseit is
TRUE. Thereturn value also is FALSE if the selection contains no
table, or more than one table, or if the selected table is mixed with other
text. When this function is called as areaction to a menu, use
CTXTextControl::Tablel sPossible to get the information whether or
not table attributes can be set.

CTXTextControl:: TableDeleteLines

Description: This member function deletes the currently selected table lines or the
table line at the current input position.
Syntax: BOOL TableDeletel ines();

Return Value: Thereturn valueis FAL SE if an error has occurred, if no tablelineis
selected, or if the current input position is not within atable. Otherwise
itisTRUE.

CTXTextControl::TableFromCaretPos

Description: This member function retrieves the identifier and the number of row and
column of the table with the current input position. The retrieved values
are set to zero when the input position is not inside a table or when more
than one table cell is selected.

Syntax: UINT TableFromCaretPos(WORD& wRow = wNULL, WORD&
wCol = wNULL);

Page 156 Text Control Classes

Parameter Description
wRow Retrieves a table row number.
wCol Retrieves a table column number.

Return Value Thereturn value is the identifier of the table with the current input
position.

CTXTextControl:: TableGetAttr

Description: This member function retrieves information about the attributes of one
or more table cells.

Syntax: BOOL TableGetAttr(
UINT nTablelD,
WORD wRow,
WORD wCaol,
CRect& rcFrameWidth,
CRect& rcDistances,
COLORREF& crBkColor = dwNULL,
long& IxPos=INULL,
long& IXExt = INULL);

Parameter Description
nTablelD Specifies atable's identifier.

wRow Specifiesarow in thistable. If this parameter is zero the
attributes of all rows are retrieved.
wCol Specifies acolumn in thistable. If this parameter is zero

the attributes of all columns are retrieved.
rcFrameWidth Retrieves the width of the cell'sframe linesin twips.

rcDistances Retrieves the distances between the céell's frame and the
cell'stext in twips.

crBkColor Retrieves the cell's background color as an RGB value.
IxPos Retrieves the cell's horizontal position in twips.
IXExt Retrieves the cell'swidth in twips.

Text Control Classes Page 157

Return Value

Remarks:

Thereturn valueis FAL SE if an error has occurred or if the table or the
specified cell in thistable does not exist. Otherwise it returns TRUE.

If the specified cells are formatted differently, the appropriate parameter
for a certain attribute retrieves - 1.

CTXTextControl::TableGetCellPosition

Description:

Syntax:

Return Value

Remarks:

This member function retrieves the indexes (one-based) of atable cell's
first and last character.

BOOL TableGetCellPosition(UINT nTablelD, WORD wRow,
WORD wCol, DWORD& dwStart, DWORD& dwEnd);

Parameter Description
nTablelD Specifies atable's identifier.

wRow Specifiesarow in thistable.

wCol Specifies acolumn in this table.

dwStart Retrieves the index of thetable cell'sfirst character.
dwEnd Retrieves the index of the table cell's last character.

Thereturn valueis FAL SE if an error has occurred or if the specified
table identifier does not exist, otherwise it is TRUE.

If tables are used in chains of linked Text Controls the position values
are relative to the beginning of the text that is the first character in the
first window of the chain. To get the window which contains the table
and the character position of the table in this window use
CTXTextControl::GetLinkWndFromOffset and
CTXTextControl::GetLinkWndOffset.

CTXTextControl:: TableGetCell Text

Description:
Syntax:

This member function retrieves the text of atable cell.

BOOL TableGetCellText(UINT nTablelD, WORD wRow, WORD
wCoal, CString& strText);

Page 158 Text Control Classes
Parameter Description
nTablelD Specifies atable's identifier.
wRow Specifiesarow in thistable.
wCol Specifies acolumn in this table.
strText Retrieves the text of the specified cell.
Return Valuee Thereturn value is FAL SE if an error has occurred. Otherwiseit is

TRUE.

CTXTextControl:: TableGetNext

Description:

Syntax:

Return Value

This member function returns an enumeration number of atable that
follows the specified table in the Text Control's current text. It can be
used to enumerate dl tables. In alist of linked Text Controls the tables
in all windows are enumerated.

UINT TableGetNext(UINT nEnum= 0, UINT& nTablelD =
UiNULL);

Parameter Description

nEnum Specifies an enumeration number. The function returns
the enumeration number of the table that follows the
table with this number. If this parameter is zero the first
table's enumeration number is returned.

nTablelD Retrieves the table'sidentifier. Thisis the same value
set with CT XTextControl:: Tablel nsert.

The return value is the enumeration number of the next table. It can be
used for the next TableGetNext function call. Thereturn valueis zero
when the last table has been reached or when the specified enumeration
number wasinvalid.

CTXTextControl:: TableGetRowsAndCols

Description:

This member function returns the number of rows and columns for the
specified table.

Text Control Classes Page 159

Syntax: UINT TableGetRowsAndCols(WORD& wRows, WORD& wCals,
UINT nTablelD = 0);

Parameter Description

wRows Retrieves the number of rows.
wCols Retrieves the number of columns.
nTablelD Specifies atable'sidentifier. If this parameter is zero the

function retrieves the number of rows and columns for
the table at the current text input position.

Return Value: Thereturn value isthe table'sidentifier. Thisis the same value as
specified through nTablel D or the identifier of the table with the current
input position. The return value is zero if an error has occurred or if the
current input position is not inside atable and nTablel D has been set to
zero.

CTXTextControl::Tablelnsert

Description: This member function inserts a new table into the text.

Syntax: UINT Tablelnsert(WORD wRows, WORD wCals,
UINT nTablelD = 0);

Parameter Description
wRows Specifies the number of rows in the new table.
wCols Specifies the number of columnsin the new table.

nTablelD Specifies the table identifier for the new table. It must
be avalue between 10 and Ox7FFF. If this parameter is
0, Text Control chooses its own identifier for the new
table.

Return Value: Thereturn value isthe table's identifier. It is either the specified
identifier or an identifier choosed through Text Control. The return
valueis zero if the new table could not be created.

Page 160

Text Control Classes

CTXTextControl:: TablelsPossible

Description:
Syntax:

Return Value

Values:

This member function returns TRUE if the specified action is possible.

BOOL Tablel sPossible(UINT nAction =
TF_TABLE_CANINSERT);
Parameter Description

nAction Specifies the action to perform. Possible values are
listed in the Values section.

Thereturn valueis TRUE if the specified action can be performed.
Otherwiseitis FALSE.

The following actions can be requested:

Value Meaning

TF_TABLE_CANINSERT TRUE isreturned if atable can be
inserted at the current input position.
FAL SE isreturned if a section of
text has been selected or the current
input position isinside atable.

TF_TABLE CANDELETELINES TRUE isreturned if selected
table lines can be deleted. FALSE is
returned if no tablelineis selected or
if the current input position is
outside atable.

TF_TABLE _CANCHANGEATTR TRUE isreturned if the attributes
of selected table lines can be dtered.
FAL SE isreturned if the selection is
not completely within asingle table.

CTXTextControl::TableSetAttr

Description:
Syntax:

This member function sets new attributes for one or more table cells.

BOOL TableSetAttr(
UINT nTablelD,

Text Control Classes

Page 161

WORD wRow,

WORD wCal,

CRect& rcFrameWidth = CRect(-1, -1, -1, -1),
CRect& rcDistances= CRect(-1, -1, -1, -1),
COLORREF& crBkColor = -1,

long IXPos = -1,

long IXExt = -1);

Parameter Description

nTablelD Specifies atable's identifier.

wRow Specifiesarow in thistable. If this parameter is zero the
attributes of al columns are changed.

wCol Specifies acolumn in thistable. If this parameter is zero
the attributes of all columns are changed.

rcFrameWidth Setsthe width of the cell's frame lines in twips. Each
value set to -1 isignored.

rcDistances Sets the distances between the cell's frame and the cell's
text in twips. Each value set to -1 isignored.

crBkColor Sets the cell's background color. The following values
are possible:
Value Meaning
RGB(r, g, b) Specifies an RGB color value.
CV_SYS COLOR Thecolor is set to the system

color for the window background.
CV_CTL_COLOR Thecolor is set to the currently
defined control background.

-1 The parameter isignored.

IxPos Sets the cell's horizontal position in twips. If setto -1
this parameter isignored.

IXExt Setsthe cell'swidth in twips. If set to -1 this parameter

isignored.

Page 162 Text Control Classes

Return Value Thereturn valueis FAL SE if an error has occurred or if the table or the
specified cell in thistable does not exist. Otherwise the return value is
TRUE.

CTXTextControl:: TableSetCell Text

Description: This member function alters the text of atable cell.

Syntax: BOOL TableSetCellText(UINT nTablelD, WORD wRow, WORD
wCaol, const CString& strText);

Parameter Description
nTablelD Specifies atable's identifier.

wRow Specifiesarow in thistable.
wCol Specifies acolumn in this table.
strText Specifies the new text for the given cell.

Return Value Thereturn valueis FAL SE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::Undo

Description: This member function undoes the last edit operation.

Syntax: BOOL Undo();

Return Value: Thereturn value is FAL SE if the undo operation fails. Otherwiseitis
TRUE.

Remarks: Use CTXTextControl::CanUndo to determine whether an operation

can be undone. If this function is called although there is no operation
that can be undone the Text Control beeps.

Text Control Classes Page 163

CTXToolContainer

#include <T XToolContainer.h>

The CTXToolContainer classis abase class that can be used with
classes that have embedded objects of the type CTXButtonBar,
CTXRulerBar and/or CT XStatusBar. To use this class, derive the
class which contains embedded tool bars from CTXToolContainer and
override the member functions associated with the contained tool bars.

For example if a CFrameWnd derived class, called CMainFrame, has
an embedded object of the type CT XButtonBar, derive CMainFrame
from CTXToolContainer and override
CTXToolContainer::GetButtonBar.

The CTXView class looks for atool container and uses the tool
container's member functions to connect the tool bars with its embedded
Text Control.

CTXToolContainer Class Members

Overridables

GetButtonBar Retrieves a CT XButtonBar object.
GetRulerBar Retrievesa CTXRulerBar object.

GetStatusBar Retrieves a CT X StatusBar object.

Member Functions

CTXToolContainer::GetButtonBar

Description:

Syntax:

Return Value

This member function retrieves a CT XButtonBar object associated
with the class used as tool container. If the tool container has a Button
Bar override this function and return a pointer to this CT XButtonBar
object. The default implementation returns zero to indicate that thereis
no Button Bar.

CTXButtonBar* GetButtonBar ();

Thereturn value is a pointer to a CTXButtonBar object or zero if there
is no Button Bar.

Page 164

Text Control Classes

CTXToolContainer::GetRulerBar

Description:

Syntax:
Return Value

This member function retrieves a CT XRuler Bar object associated with
the class used astool container. If the tool container has a Ruler Bar
override this function and return a pointer to this CT XRuler Bar object.
The default implementation returns zero to indicate that thereis no
Ruler Bar.

CTXRulerBar* GetRulerBar();

The return value pointsto a CT XRuler Bar object or zero if thereis no
Ruler Bar.

CTXToolContainer::GetStatusBar

Description:

Syntax:
Return Value

This member function retrieves a CT X StatusBar object associated with
the class used astool container. If the tool container has a Status Bar
override this function and return a pointer to this CT X StatusBar

object. The default implementation returns zero to indicate that thereis
no Status Bar.

CTXStatusBar* GetStatusBar ();

The return value pointsto a CT X StatusBar object or zero if thereisno
Status Bar.

Text Control Classes Page 165

CTXView

#include <T XView.h>

The CTXView class, with CTXDaoc, provides the functionality of a
Text Control within the context of MFC's document view architecture.
Each instance of this class contains an embedded Text Control object.
CTXView::GetTextControl provides access to the embedded Text
Contral. In addition to the functionality provided through the embedded
Text Control the CTXView class has command handler functions for
predefined menu resources.

To be able to handle notification messages sent by the embedded Text
Control, the CTXView classisimplemented as a Text Control notify
handler. Therefore the view contains all the overridable member
functions described for the CTXNotifyHandler class. Override al the
functions associated with the notification messages you want to handle.

CTXView Class Members

Attributes

GetTextControl Retrieves the Text Control associated with the
view.

GetRulerBar Retrieves the Ruler Bar associated with the
view.

GetButtonBar Retrieves the Button Bar connected with the
view.

GetStatusBar Retrieves the Status Bar connected with the
view.

Overridables

CreateTextControl Creates the embedded Text Control.

GetDefaultM ode Retrieves the default mode settings for the
embedded Text Control.

GetDefaultM odeEx Retrieves the default extended mode settings
for the embedded Text Control.

Page 166

Text Control Classes

Member Functions

CTXView:

Description:

Syntax:

Return Value

CTXView:

Description:

Syntax:
Return Value

CTXView:

Description:

:CreateTextControl

This member function is called by the view to create its associated Text
Control. Override this function if you want to alter the default creation
mechanism. The view calls this function with itself as parent window
and as notify handler.

CTXTextControl* CreateT extControl(CWnd* pParentWnd, UINT
niD, const CRect& rcSze, CTXNotifyHandler* pNotifyHandler);
Parameter Description

pParentWwWhd Specifies the Text Control's parent window.

niD Specifies the Text Control's identifier.

rcSze Specifies the Text Control's size and position in client
area coordinates of its parent window.

pNotifyHandler Points to a notification handler object.

Thereturn value is a pointer to the created CTXTextControl abject.
This pointer is retrieved through following
CTXView::GetTextControl calls.

-GetButtonBar

This member function retrieves the CTXButtonBar object connected
with this CTXView abject.

CTXButtonBar* GetButtonBar ();

Thereturn valueisa CTXButtonBar object. It iszero if thereisno
connected Button Bar.

:GetDefaultMode

This member function is called by the view to get default mode settings
for its embedded Text Control. Mode settings are documented for the

Text Control Classes Page 167

dwNewMode parameter of the CT X TextControl::SetM ode function.
The default implementation of this function retrieves TF_OPAQUE,
TF_FIXED, TF_SHOWSELNA, TF_NOTFRAMED, TF_INSERT,
TF_REPLACESEL and TF_HIDEWHITESPACE. Override this
function to use other mode settings as default.

Syntax: DWORD GetDefaultM ode();

Return Valuee Thereturn value is a combination of the default mode settings.

CTXView::GetDefaultModeEx

Description: This member function is called by the view to get default extended
mode settings for its embedded Text Control. Extended mode settings
are documented for the dwNewModeEx parameter of the
CTXTextControl::SetM ode function. The default implementation of
thisfunction retrieves TF_EDIT, TF WAITCURSOR,
TF_NOTOPINDENTFIRSTPG, TF_ERRORBOXES and
TF_SHOWGRIDLINES. Override this function to use other extended
mode settings as default.

Syntax: DWORD GetDefaultM odeEx();

Return Value: Thereturn value is a combination of the default extended mode settings.

CTXView::GetRulerBar

Description: This member function retrieves the CTXRuler Bar object associated
with this CTXView object.
Syntax: CTXRulerBar* GetRulerBar();

Return Value Thereturn valueisa CTXRulerBar object. It is zero if thereisno
associated Ruler Bar.

Page 168

Text Control Classes

CTXView:

Description:

Syntax:
Return Value

CTXView:

Description:

Syntax:
Return Value:

‘GetStatusBar

This member function retrieves the CT X StatusBar object connected
with this CTXView abject.

CTXStatusBar* GetStatusBar ();

Thereturn valueisa CTXStatusBar object. It iszero if thereisno
connected Status Bar.

:GetTextControl

This member function retrieves the CT XTextContr ol object associated
with this CTXView abject.

CTXTextControl* GetTextControl();

Thereturn valueisthe CTXTextControl object for thisview. It is zero
if thereis no associated Text Control.

Data Structures Page 169

Data Structures

TABSCT

The TABSCT structure defines the attributes of a tab stop.
t ypedef struct tagTABSCT {

BYTE nTabFl ag;

WCRD wTabPos;
} TABSCT;

The TABSCT structure has the following fields:

Field Description

nTabFlag Specifies the type of the tabstop. It can be any one of
the following values:

Value Meaning

LEFTTAB Thetab position is at the left side
of text.

RIGHTTAB Thetab position is at the right
side of text.

CENTERTAB Thetext is centered on the tab
position.

DECIMALTAB The system-defined decimal sign
islocated at the tab position.

wTabPos Specifies the x-coordinate of the tab position.

Page 170

Index

| ndex

C

CanCopy 67, 73
CanPaste 67, 74
CanRedo 67, 74
CanUndo 67, 74
ChangeLink 33, 71, 75
ChangeTarget 34, 72, 76
Clear 66, 76
ConnectToolBar 39, 73, 76
Copy 67, 77
Create

CTXButtonBar 39

CTXRulerBar 59

CTXStatusBar 62

CTXTextControl 66, 77
CreateTextControl 165, 166
CTXButtonBar 39
CTXDoc 42
CTXNotifyHandler 31, 44
CTXRulerBar 59
CTXStatusBar 62
CTXTextControl

Class 66

Constructor 66, 78
CTXToolContainer 163
CTXView 165
Cut 67, 78

D
DisconnectToolBar 73, 78
E

EmptyUndoBuffer 67, 78
EnableFileFormats 42
EnlargeFont 68, 79

F

FieldChangeText 30, 71, 79
FieldDelete 71, 79
FieldFromCaretPos 71, 80
FieldGetData 32, 71, 80
FieldGetNext 34, 71, 81
FieldGetPosition 30, 71, 82
FieldGetText 30, 71, 82
FieldGetType 71, 83
FieldGoto 34, 71, 83
FieldHasAttr 71, 84
Fieldinsert 30, 71, 84
FieldSetAttr 30, 71, 86
FieldSetData 32, 71, 87
FindText 68, 87
FontDialog 68, 89

G

GetBackgroundColor 69, 89
GetBaseLine 68, 90
GetBaseLinePos 70, 90
GetButtonBar
CTXToolContainer 163
CTXView 165, 166
GetCaretExt 69, 91
GetDefaultMode 165, 166
GetDefaultModeEx 165, 167
GetDevice 69, 91
GetFont 68, 91
GetFontAttr 68, 92
GetlmageFilters 70, 92
GetLanguage 70, 93
GetLineAndCol 70, 93
GetLineCount 70, 94
GetLineRect 70, 94
GetLineSpacing 68, 94
GetLinkLocation 33, 72, 95
GetLinkWnd 73, 95
GetLinkWndCount 73, 96
GetLinkWndFromOffset 73, 96
GetLinkWndNumber 73, 97
GetLinkWndOffset 73, 97

Index

Page 171

GetMode 70, 97
GetPageCount 69, 99
GetPageMargins 69, 100
GetPageSize 69, 100
GetParaAlignment 68, 101
GetParaFormatFlags 68, 101
GetParaFrame 68, 101
GetParalndents 68, 102
GetRulerBar
CTXToolContainer 163, 164
CTXView 165, 167
GetSel 66, 103
GetSelText 66, 104
GetStatusBar
CTXToolContainer 163, 164
CTXView 165, 168
GetSupportedFonts 69, 104
GetSupportedSizes 69, 104
GetTabs 68, 105
GetTargetName 34, 72, 105
GetText 66, 105
GetTextColor 68, 106
GetTextControl 165, 168
GetTextLength 66, 107
GetTextSize 70, 107
GetTXScrollPos 69, 107
GetZoom 70, 108

H

HFActivate 25, 72, 108
HFDisable 26, 72, 109
HFEnable 25, 72, 110
HFGetEnabled 26, 72, 111
HFGetPosition 26, 73, 111
HFSelect 26, 73, 112
HFSetPosition 26, 73, 113

InputPosFromPoint 70, 114
Insertimage 70, 114
InsertLink 33, 72, 117
InsertOleFile 34, 70, 118

InsertOleLinkFile 34, 70, 118
InsertOleObject 34, 70, 119
InsertOleProglD 34, 70, 120
InsertPageNumber 33, 69, 122
InsertTarget 33, 72, 122
InsertWindow 71, 121

L

LineFromChar 70, 122
LineFromPoint 70, 122
Linelndex 70, 123

LoadFile 29, 67, 123
LoadFromMemory 29, 67, 125

o

ObjDelete 71, 125

ObjGetAttr 35, 71, 126
ObjGetIDispatch 71, 127
ObjGetNext 71, 128
ObjOleCancel 71, 129
ObjSetDistances 71, 129
ObjSetMovable 71, 129
ObjSetScaling 71, 130
ObjSetSizeable 71, 130
OnTnChanged 44, 47
OnTnCharFormatChanged 45, 47
OnTnDoubleClicked 44, 47
OnTnErrCode 44, 47
OnTnFieldChanged 46, 49
OnTnFieldClicked 46, 49
OnTnFieldCreated 46, 50
OnTnFieldDbIClicked 46, 50
OnTnFieldDeleted 46, 50
OnTnFieldEntered 46, 50
OnTnFieldLeft 46, 51
OnTnFieldLinkClicked 34, 46, 51
OnTnFieldSetCursor 46, 52
OnTnHExpand 44, 52
OnTnHFActivated 25, 46, 52
OnTnHFDeActivated 25, 47, 53
OnTnHMoved 44, 54
OnTnHScroll 44, 54

Page 172

Index

OnTnKeyStateChanged 44, 54
OnTnKillFocus 45, 54
OnTnModeChanged 45, 54
OnTnObjClicked 45, 55
OnTnObjCreated 45, 55
OnTnObjDbIClicked 45, 55
OnTnObjDeleted 45, 55
OnTnObjMoved 45, 56
OnTnObjSized 46, 56
OnTnPageFormatChanged 45, 56
OnTnParaChanged 45, 56
OnTnParaFormatChanged 45, 57
OnTnPosChanged 45, 57
OnTnSetFocus 45, 57
OnTnTableCreated 29, 46, 57
OnTnTableDeleted 30, 46, 58
OnTnVExpand 45, 58
OnTnVScroll 45, 58
OnTnZoomed 45, 58

P

ParagraphDialog 69, 131
Paste 67, 131
PrintControl 67, 132
PrintPage 36, 68, 132

R

Redo 67, 133
ReduceFont 68, 133
ReplaceSdl 67, 133
ReplaceText 68, 134
ResetContents 67, 134

S

SaveFile 67, 134
SaveToMemory 67, 135
SetBackgroundColor 70, 136
SetBaseline 68, 136
SetCaretExt 32, 70, 137
SetDevicePrinter 69, 137
SetDeviceScreen 69, 138
SetDeviceStandard 69, 139

SetFont 68, 139
SetFontAttr 68, 140
Setl anguage
CTXButtonBar 37, 41
CTXStatusBar 37, 64
CTXTextControl 36, 70, 141
SetLineAndCol 70, 142
SetLineSpacing 69, 143
SetLinkWnd 73, 143
SetMode 70, 144
SetPageMargins 69, 146
SetPageSize 25, 69, 147
SetParaAlignment 69, 148
SetParaFormatFlags 69, 149
SetParaFrame 69, 150
SetParalndents 69, 151
SetSel 67, 151
SetTabs 69, 152
SetTextBkColor 68, 152
SetTextColor 68, 153
SetTXScrollPos 69, 154
SetZoom 70, 154

T

TableAttrDialog 28, 72, 155
TableDeleteLines 28, 72, 155
TableFromCaretPos 72, 155
TableGetAttr 28, 72, 156
TableGetCellPosition 72, 157
TableGetCellText 72, 157
TableGetNext 72, 158
TableGetRowsAndCols 72, 158
Tablelnsert 28, 29, 72, 159
TablelsPossible 28, 72, 160
TableSetAttr 28, 72, 160
TableSetCellIText 72, 162

U
Undo 67, 162

	Contents
	Introduction
	System Requirements
	How this Manual is Organized
	The Files You Work With
	Distributing your Applications
	Class Library User's Guide
	Creating a Simple Word Processor
	Step 1: Use the Visual C++ AppWizard to Create a Project
	Step 2: Add Text Control's Include Files to Your Project
	Step 3: Add Text Control's Import Libraries to Your Project
	Step 4: Enable Runtime Type Information (RTTI)
	Step 5: Copy Text Control's DLL Files
	Step 6: Derive Your View Class from CTXView
	Step 7: Derive Your Document Class from CTXDoc
	Step 8: Add Code to Load and Save Documents
	Step 9: Add Code to Print Documents
	Step 10: Compile and Run Your Application
	Extending Your Application's Menus
	Add Text Control's Predefined Resources
	Copy the Help Menu
	Load the Copied Toolbar
	Add an Additional Menu Command
	Compile and Run Your Application
	Adding a Button Bar and a Status Bar
	Add Member Variables to CMainFrame
	Add New Resources
	Create the Button Bar and the Status Bar Window
	Make Your CMainFrame a CTXToolContainer
	Enable the Display of Menu Command Descriptions
	Compile and Run Your Application
	Working with File Formats
	Define the Application's Document Format
	Load and Save Additional Text Formats
	Compile and Run Your Application
	Reference
	Using the Text Control Class Library
	Headers and Footers
	Tables
	Marked Text Fields
	Inserting OLE Objects
	Resources
	Text Control Classes
	CTXButtonBar
	CTXDoc
	CTXNotifyHandler
	CTXRulerBar
	CTXStatusBar
	CTXTextControl
	CTXToolContainer
	CTXView
	Data Structures
	Index

