
TX Text Control
Class Library Programmer's Guide

Version 7.0

TX Text Control 7.0

Information in this document is subject to change without notice and does not represent a
commitment on the part of The Imaging Source Europe GmbH. The software described in
this document is furnished under a license agreement. The software may only be used or
copied in accordance with the terms of this agreement.

Copyright 1991-2000 The Imaging Source Europe GmbH. All rights reserved.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Contents

Introduction .. 5
System Requirements .. 5
How this Manual is Organized ... 5
The Files You Work With .. 6
Distributing your Applications... 6

Class Library User's Guide 9
Creating a Simple Word Processor 9

Step 1: Use the Visual C++ AppWizard to Create a Project 10
Step 2: Add Text Control's Include Files to Your Project 11
Step 3: Add Text Control's Import Libraries to Your Project 11
Step 4: Enable Runtime Type Information (RTTI) 12
Step 5: Copy Text Control's DLL Files ... 13
Step 6: Derive Your View Class from CTXView 13
Step 7: Derive Your Document Class from CTXDoc...................... 14
Step 8: Add Code to Load and Save Documents 14
Step 9: Add Code to Print Documents ... 14
Step 10: Compile and Run Your Application 15

Extending Your Application's Menus 15
Add Text Control's Predefined Resources 15
Copy the Help Menu .. 16
Load the Copied Toolbar ... 17
Add an Additional Menu Command .. 17
Compile and Run Your Application .. 18

Adding a Button Bar and a Status Bar 18
Add Member Variables to CMainFrame ... 19
Add New Resources ... 19
Create the Button Bar and the Status Bar Window 20

Make Your CMainFrame a CTXToolContainer 21
Enable the Display of Menu Command Descriptions 22
Compile and Run Your Application .. 22

Working with File Formats ... 23
Define the Application's Document Format 23
Load and Save Additional Text Formats ... 24
Compile and Run Your Application .. 24

Reference .. 25
Using the Text Control Class Library 25

Headers and Footers ... 25
Tables ... 28
Marked Text Fields .. 30
Inserting OLE Objects ... 34
Resources ... 36

Text Control Classes .. 39
CTXButtonBar ... 39
CTXDoc ... 42
CTXNotifyHandler .. 44
CTXRulerBar ... 59
CTXStatusBar .. 62
CTXTextControl .. 66
CTXToolContainer .. 163
CTXView ... 165

Data Structures ... 169

Index .. 170

Page 5Introduction

Introduction
This programmer's guide contains the information necessary to use the
Text Control Class Library. The Text Control Class Library is a set of
C++ classes that encapsulate the functionality necessary to use Text
Control in applications written with the Microsoft Foundation Class
Library. Using Text Control, you can create all kinds of text-based
applications with highly sophisticated formatting and display
capabilities which are normally the exlusive domain of large word
processing packages.

System Requirements
Using the Text Control Class Library requires the following minimum
configuration:

� Windows 95/98, Windows NT 4.0 or Windows 2000.

� Microsoft Visual C++ 6.0.

� The Microsoft Foundation Class Library 6.0.

How this Manual is Organized
� Part 1 of this manual, "Class Library User's Guide", is a tutorial that

can be used to learn how to use the Text Control Class Library. It covers
the following topics:

� A step-by-step guide creating a simple word processor

� Adding additional Text Control features like headers and footers
or hypertext links.

� How to create your own modified version of the Text Control
Class Library.

� Part 2, "Class Library Reference", contains more detailed information
of all the classes' member functions and how these functions work
together. It also covers the following topics:

� Information about how the Text Control Classes are integrated in
the Microsoft Foundation Classes.

IntroductionPage 6

� Several articles describing how the Text Control Class Library
realizes the more advanced Text Control features.

The Files You Work With
After Text Control has successfully been installed you can find all
required files in the following sub-directories under the main
installation directory:

� \BIN contains all DLL files of the Text Control Class library and the
Text Control kernel. The Class Library DLL is contained in the
following versions:

� TXCLASSES.DLL
Retail version using the ANSI character format

� TXCLASSESD.DLL
Debug version using the ANSI character format

� TXCLASSESU.DLL
Retail version using the Unicode character format

� TXCLASSESDU.DLL
Debug version using the Unicode character format

� \HELP contains the Text Control online help files.

� \TXCLASSES\INC contains the Class Library's include files. More
information about how to integrate these files can be found in the next
chapter.

� \TXCLASSES\LIB contains the import library files of the Class
Library. More information about how to link your appliction with these
files can be found in the next chapter.

� \TXCLASSES\SRC contains the source files of the Class Library. For
more information on how to modify and compile the Class Library see
"Building Your Own Class Library".

Distributing your Applications
The following table shows all the files necessary for Text Control to
operate properly. You must ensure that these files exist on your client's

Page 7Introduction

machine and they are the correct version. If your client's machine has
older versions of these files, you should update them.

1 TXCLASSES.DLL

2 TX32.DLL

TXTLS32.DLL
WNDTLS32.DLL
TXOBJ32.DLL
IC32.DLL
IC32.INI
TX_BMP32.FLT
TX_TIF32.FLT
TX_WMF32.FLT
TX_RTF32.DLL
TX_HTM32.DLL
TX_WORD.DLL

3 MFC42.DLL (6.00.8447.0)

4 TX_GIF32.FLT

The first file (group 1) is the DLL file containing the Text Control Class
Library. This file should be installed in the same directory as your
application's executable file. If your application is based on the Unicode
character format, you must distribute the Unicode version
(TXCLASSESU.DLL).

The files listed in the second group are the Text Control kernel DLL
files. They must be installed in the same directory as the
TXCLASSES.DLL. You must always install all of them.

You should also verify that the Microsoft Foundation Class Library
(group 3) is installed on your client's computer. This file must be
installed in the Windows system directory. Please refer to Microsoft's
redistribution policy if you need to redistribute them. If your application

IntroductionPage 8

is based on the Unicode character format you must distribute the Uni-
code version (MFC42U.DLL).

The last file (group 4) is a filter to use the GIF image format with Text
Control. Unisys Corporation holds patent rights to the LZW technology
used in this filter. If a customer wants to use the GIF file format, he is
required to obtain a license from Unisys and send a copy of the license
agreement to The Imaging Source Europe GmbH. We will then send
him the GIF filter free of charge.

Page 9Class Library User's Guide

Class Library User's Guide
In this tutorial, you will learn how to use Microsoft Visual C++ to build
a Text Control based word processor with the Text Control Class
Library working together with the Microsoft Foundation Class Library.
It is assumed that you have some knowledge of C++ and of
programming with the Microsoft Foundation Class Library.

The tutorial is divided into several parts each of which covers a number
of Text Control features:

� Part 1, "Creating a Simple Word Processor", begins with a 10 step tour
how to create a simple word processor with Visual C++'s Application
Wizard.

� Part 2, "Extend Your Application's Menus", shows how to add Text
Control's predefined menus, how to create an own menu command and
how to access the Text Control.

� Part 3, "Adding A Button Bar and a Status Bar", shows how to add a
Button Bar and a Status Bar to the application's frame window.

� Part 4, "Working with File Formats", shows how to enable your
application to load and save all the file formats that Text Control
supports.

Each of the tutorial's parts adds more features to the starter application
created in part 1. The resulting program is the TXWords demo program
distributed with Text Control. The source code of each part can be
found in the Samples\VisualC\TXWords1 ... n sub-directories.

Creating a Simple Word Processor
This chapter shows you how to create a simple word processor from
scratch with just a few lines of code. It will be able to load and save
files, use the clipboard and will have dialog boxes for character and
paragraph formatting, a ruler and a full keyboard and mouse
interface.The following step-by-step instructions cover the following
topics:

Class Library User's GuidePage 10

� Creating the starter application.

� Performing Visual C++ project settings.

� Adding the Text Control Class Library.

� Using the MFC document/view architecture.

Step 1: Use the Visual C++ AppWizard to Create a Project
Start Application Wizard:

� From the Visual C++ File menu select New.

� Make sure you’re on the Projects tab.

� Select MFC AppWizard (exe).

� In the Location box enter the desired project base directory (e.g.
C:\Projects).

� Enter the name of your Project in the Project Name box (This tutorial
assumes TXWords as the project name)

� Click on OK.

Proceed in the following dialogs as follows:

Page 11Class Library User's Guide

1. On page 1 don't change the default settings. Click on Next.

2. On page 2 don't change the default settings. Click on Next.

3. On page 3 deselect support for ActiveX Controls.Click on Next.

4. On page 4 deselect Initial status bar, because Text Control has its own
status bar. Click on Next.

5. On page 5 don't change the default settings. Click on Next.

6. On page 6 don't change the default settings. Click on Finish.

Now a dialog box appears, summarizing all the settings made in the
previous steps. Click on OK to start the code generation process.

Step 2: Add Text Control's
Include Files to Your
Project

In Visual C++,
select Tools -
Options from the
menu, select the
Directories tab, and
add the
\TXClasses\Inc
subdirectory to the
list of include paths.
(i.e. if your Text
Control installation
directory is
C:\TextControl, add C:\TextControl\TXClasses\Inc to the list of include
paths). Close this dialog by clicking on OK.

Step 3: Add Text Control's Import Libraries to Your Project
� From the Project menu select Settings.

� Select the Link tab.

Class Library User's GuidePage 12

� Under Category select Input.

� In the Object/Library modules text field enter the following depending
on the configuration you selected under Settings For:

For this configuration Add this to Object/Library modules

Win32 Debug TXClassesD.lib

Win32 Release TXClasses.lib

(Use TXClassesU.lib and TXClassesDU.lib instead, when you develop
an application based on the Unicode character format.)

� Select Settings for: All configurations.

� In the Additional library path text field, enter the \TXClasses\Lib
subdirectory, i.e. enter C:\TextControl\TXClasses\Lib if your Text
Control installation directory is C:\TextControl.

Step 4: Enable Runtime Type Information (RTTI)
� While still in the Project Settings dialog, select Settings for: All

configurations.

� On the C++ tab select the C++ Language category.

Page 13Class Library User's Guide

� Select the Enable Run-Time Type Information (RTTI) check box.

� Close the Project Settings dialog by clicking on OK.

Note: If you forget this last step, you will get an error while compiling
your TXWords project. RTTI is absolutely necessary for the TXClasses
DLL to work properly.

Step 5: Copy Text Control's DLL Files
Before running your program make sure the Text Control DLL files are
in the output directory of your project. The Text Control DLL files can
be found in the \Bin subdirectory of the Text Control installation
directory. For more information see "Introduction - The Files You Work
With".

If you build an application based on the ANSI character format:

� Copy TXCLASSES.DLL to C:\Projects\TXWords\Release.

� Copy TXCLASSESD.DLL to C:\Projects\TXWords\Debug.

If you build an application based on the Unicode character format:

� Copy TXCLASSESU.DLL to C:\Projects\TXWords\Release.

� Copy TXCLASSESUD.DLL to C:\Projects\TXWords\Debug.

Copy all other Text Control DLL files to both directories. A complete
list can be found in "Introduction - Distributing your Applications".

Step 6: Derive Your View Class from CTXView
In TXWordsView.h:

� Add the following before the declaration of the class CTXWordsView:

#include "TXView.h"

� Derive your CTXWordsView class from CTXView:

class CTXWordsView : public CTXView

In TXWordsView.cpp:

 � Replace every occurrence of CView with CTXView.

Class Library User's GuidePage 14

Step 7: Derive Your Document Class from CTXDoc
In TXWordsDoc.h:

� Add the following before the declaration of the class CTXWordsDoc:

#include "TXDoc.h"

� Derive your CTXWordsDoc class from CTXDoc:

class CTXWordsDoc : public CTXDoc

In TXWordsDoc.cpp:

� Replace every occurrence of CDocument with CTXDoc.

Step 8: Add Code to Load and Save Documents
In TXWordsDoc.cpp add the following line to
CTXWordsDoc::Serialize() (the added line is marked with �):

void CTXWordsDoc::Serialize(CArchive& ar)
{

� CTXDoc::Serialize(ar);

if (ar.IsStoring())
{

// TODO: add storing code here
}
else
{

// TODO: add loading code here
}

}

Step 9: Add Code to Print Documents
In TXWordsView.cpp change CTXWordsView::OnPreparePrinting.
The function's code should look like the following:

BOOL CTXWordsView::OnPreparePrinting(CPrintInfo* pInfo)
{

return CTXView::OnPreparePrinting(pInfo);
}

Page 15Class Library User's Guide

Step 10: Compile and Run Your Application
� Verify that you have completed all steps exactly as they are documented

here. (The sub-directory Samples\VisualC\TXWords1 contains the code
created in this chapter.)

� Hit F7 (or select Build TXWords.exe from the Build menu) to start the
compilation process.

After compilation, you can run the application with Visual C++'s Build -
Execute TxWords.exe command. When TXWords runs, an MDI
application window appears with a menu bar containing File, Edit,
View, Window and Help menus and a default toolbar. The application
window contains one open document window with a ruler at its top.
You can type in text, copy and paste it via the clipboard and save and
load the text using the File - Open and the File - Save menus. You can
also print the document or view the printing output with the print
preview command.

Extending Your Application's Menus
In addition to the generic file and edit commands you have seen in the
previous chapter, Text Control's view class contains predefined
command handlers that can change font and paragraph attributes and
insert tables, images and OLE objects.

In this part you will add predefined resources to access Text Control's
predefined command handlers. You will also create your own command
handler to learn how to extend the predefined menus.

Add Text Control's Predefined Resources
Text Control's predefined resources are located in the \TXClasses\Res
subdirectory. (i.e. if your Text Control installation directory is
C:\TextControl, the resource directory is
C:\TextControl\TXClasses\Res). The subdirectories contain the
resources for different languages. The currently available languages are
English U.S. (\enu) and German (\deu).

Class Library User's GuidePage 16

To add the resources perform the following steps:

� In the Workspace window select the ResourceView tab.

� With File - Open open the TXClasses resource file (i.e.
\TXClasses\Res\enu\TXClasses.rc).

� Double-click on the menu resource of TXClasses.rc and select the menu
with the identifier TX_IDR_TXVIEW. Press the CTRL key and drag
and drop this menu in your project's Workspace window.

 � Perform the same operation with the TX_IDD_TABLEINSERT dialog
box and the tool bar (TX_IDR_TXVIEW).

 � Double-click the string table in TXClasses.rc, choose Edit - Select All
and then Edit - Copy. Then double-click your application's string table
in the Workspace window and choose Edit - Paste.

Your application's resources now should contain an additional menu
(TX_IDR_TXVIEW), an additional dialog box
(TX_IDD_TABLEINSERT), an additional toolbar and additional
strings in your application's string table.

Note: All the resource identifiers of Text Control are prefixed with TX_.

� Close TXClasses.rc. Leaving TXClasses.rc open results in a conflict
with Resource.h.

Copy the Help Menu
The menu previously created with the Application Wizard
(IDR_TXWORDTYPE) is no longer required, as the
TX_IDR_TXVIEW menu is your new menu. Before deleting it, you
should copy your application's help menu:

 � Double-click the old menu and select the help menu. Choose Edit -
Copy.

 � Double-click the new menu and choose Edit - Paste. The help menu
now appears at rightmost submenu of the TX_IDR_TXVIEW menu.

Page 17Class Library User's Guide

Load the Copied Toolbar
The CMainFrame class which implements the application's main frame
window, by default loads the toolbar created through the Application
Wizard. To make the copied toolbar available perform the following:

In CMainFrame::OnCreate change

m_wndToolBar.LoadToolBar(IDR_MAINFRAME)

to

m_wndToolBar.LoadToolBar(TX_IDR_TXVIEW)

Add an Additional Menu Command
The following shows you how to extend the previously inserted
predefined menu with an additional menu command. You should be
familiar with Application Studio and Class Wizard to add a menu entry
and a corresponding command handler. The following steps add a new
View - Whitespace menu command:

� In the Workspace Window double-click the TX_IDR_TXVIEW menu.

� Double-click the new entry field at the bottom of the View sub-menu.
The Menu Item Properties dialog box appears. Enter
ID_VIEW_WHITESPACE as ID, Whitespace as caption and View
Whitespace as prompt.

� Choose View - Class Wizard and associate the View menu with the
CTxwordsView class.

� For the new ID_VIEW_WHITESPACE command select the Command
message and click Add Function. Accept the default function name
OnViewWhitespace.

� Click Edit Code. Class Wizard creates the handler function and opens
the TXWordsView.cpp file.

The remaining steps are to fill the empty handler function with code that
accesses the Text Control. To access the Text Control use the member
function CTXView::GetTextControl and to view the whitespace

Class Library User's GuidePage 18

characters use the member function CTXTextControl::SetMode. The
following steps add the necessary code:

� Fill the command handler with the following line of code:

void CTxwordsView::OnViewWhitespace()
{

GetTextControl()->SetMode(TF_SHOWWHITESPACE);
}

� To be able to use the CTXTextControl class add the following include
statement at the top of TXWordsView.cpp:

#include "TXTextControl.h"

Compile and Run Your Application
� Verify that you have completed all steps exactly as they are documented

here. (The sub-directory Samples\VisualC\TXWords2 contains the code
created in this chapter.)

� Hit F7 (or select Build TXWords.exe from the Build menu) to start the
compilation process.

After starting the application you should now be able to format your
inserted text with font and paragraph attributes and to insert tables,
images and OLE objects. The View menu contains several commands
for changing the zooming factor and the page view, the Edit menu has
entries for searching and replacing text. You can also view whitespace
characters with you manually inserted menu command.

Adding a Button Bar and a Status Bar
In this part you will add code to the starter application that is necessary
to integrate Text Control's toolbars. With Text Control's Button Bar you
can set text formatting attributes, like fonts and their size and styles.
Text Control's Status Bar shows the state of several keyboard keys and
information text like menu command descriptions.

Page 19Class Library User's Guide

Add Member Variables to CMainFrame
� At the top of MainFrm.h add the following two #include statements:

#include "TXBBBar.h"
#include "TXSBBar.h"

� In the CMainFrame class declaration below add two protected
members:

protected:
CTXButtonBar m_wndBB;
CTXStatusBar m_wndSB;

Add New Resources
Create two new resource IDs for the two bars:

� Select View->Resource
Symbols from the
menu, and click on
New. In the dialog box
that appears, enter
IDW_TXBUTTONBAR
as the name and
0xE801 as the value.

� Repeat those steps for a
new resource symbol
with the name
IDW_TXSTATUSBAR
and the value 0xE802.
(You can choose any
values for the resource symbols, as long as they are in the range
0xE800...0xE8FF.)

� Close the Resource Symbols dialog by clicking Close.

Add a new string to the application's string table:

� In the Workspace window select the ResourceView tab.

� Expand the TXWords Resources folder and the String Table folder.

Class Library User's GuidePage 20

� Double click on
the String Table
entry (not the
folder), and create
a new string
resource by
double-clicking on
the last (empty)
entry in the list of existing strings.

� Name the new string resource IDS_SBAR_FORMAT and give it the
value:

Page: %4u\nLine: %4lu\nCol: %4u

Create the Button Bar and the Status Bar Window
In CMainFrame::OnCreate() add statements to create a button bar
and a status bar. The resulting code should look like this (added lines
are marked with �):

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{

if (CMDIFrameWnd::OnCreate(lpCreateStruct) == -1)
return -1;

if (!m_wndToolBar.CreateEx(this, TBSTYLE_FLAT,
WS_CHILD|WS_VISIBLE|CBRS_TOP|CBRS_GRIPPER
|CBRS_TOOLTIPS|CBRS_SIZE_DYNAMIC)

|| !m_wndToolBar.LoadToolBar(TX_IDR_TXVIEW))
{

TRACE0("Failed to create toolbar\n");
return -1; // fail to create

}

// TODO: Delete these three lines if you don’t
// want the toolbar to be dockable
m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
EnableDocking(CBRS_ALIGN_ANY);
DockControlBar(&m_wndToolBar);

Page 21Class Library User's Guide

� if (!m_wndBB.Create(this,
� IDW_TXBUTTONBAR,WS_CHILD|WS_VISIBLE|CBRS_TOP,
� BBS_FLAT | BBS_FLATBUTTONS))
� {
� TRACE0("Failed to create button bar\n");
� return -1; // fail to create
� }
�

� m_wndBB.SetDefaultStrings();
� m_wndBB.SetBarStyle(m_wndBB.GetBarStyle()
� | CBRS_TOOLTIPS | CBRS_FLYBY);
�

� // get format string for page, line and column
� CString strSBFormat;
� strSBFormat.LoadString(IDS_SBAR_FORMAT);
�

� if (!m_wndSB.Create(this,
� IDW_TXSTATUSBAR, WS_CHILD|WS_VISIBLE
� |CBRS_SIZE_FIXED|CBRS_ALIGN_BOTTOM,
� STS_LEFTALIGN|STS_NOBORDER, strSBFormat, NULL))
� {
� TRACE0("Failed to create status bar\n");
� return -1; // fail to create
� }

return 0;
}

Make Your CMainFrame a CTXToolContainer
In MainFrm.h implement the following:

� At the top add the following #include statement:

#include "TXToolContainer.h"

� In addition to CMDIFrameWnd, derive CMainFrame from
CTXToolContainer:

class CMainFrame : public CMDIFrameWnd , public
CTXToolContainer

Class Library User's GuidePage 22

� Add the declarations of the CTXToolContainer virtual methods to the
class CMainFrame:

public:
CTXButtonBar* GetButtonBar();
CTXStatusBar* GetStatusBar();

� At the bottom of MainFrm.h add the inline implementation of the
CTXToolContainer virtual methods:

inline
CTXButtonBar* CMainFrame::GetButtonBar()
{

return &m_wndBB;
}

inline
CTXStatusBar* CMainFrame::GetStatusBar()
{

return &m_wndSB;
}

Enable the Display of Menu Command Descriptions
Add the following declaration to MainFrm.h (put it in one of the public
sections):

virtual CWnd* GetMessageBar();

Add the following code to MainFrm.cpp:

CWnd* CMainFrame::GetMessageBar()
{
 return (m_wndSB.GetSafeHwnd() ? &m_wndSB : NULL);
}

Compile and Run Your Application
� Verify that you have completed all steps exactly as they are documented

here. (The sub-directory Samples\VisualC\TXWords3 contains the code
created in this chapter.)

Page 23Class Library User's Guide

� Hit F7 (or select Build TXWords.exe from the Build menu) to start the
compilation process.

Working with File Formats
Each application needs its own format to save its own application-
specific data. In addition the most applications support other formats to
load or exchange data with other applications. In this part of the tutorial
you will add code that enables the application to load and save its data
in its own format and in all the text formats that Text Control supports.

Define the Application's Document Format
In part 1 of this tutorial, Step 8, you added a line of code in the
CTXWordsDoc::Serialize function. This added line loads or saves the
text and its formatting attributes of your documents. This function can
be further extended to load and save additional data that is specific to
your application. The Application Wizard has created TODO comments
to show where to add storing and loading code.

Currently when you use the File Open and File Save dialog boxes your
documents have no type description and no file extension. To give your
documents a type description and a file extension perform the following
steps:

� In the Workspace window select the ResourceView tab. Open the string
table and double-click the IDR_TXWORDTYPE entry.

This is the document type string consisting of seven substrings,
seperated through \n characters. See CDocTemplate::GetDocString in
the MFC documentation for more information about the meanings of
these substrings.

� Extend this string to the following:

\nTXWord\nTXWord\nTX Words Format (*.txw)\n.txw\n
TXWords.Document\nTXWord Document

Class Library User's GuidePage 24

Now your document's type description is TX Words Format (*.txw) and
your document's file extension is .txw. This description string now
appears in the File Open and File Save dialog boxes.

Load and Save Additional Text Formats
Text Control currently supports six text formats:

� Its own native format (*.TX).

� Plain text (*.TXT).

� Plain Unicode text (*.TXT).

� Rich Text Format (*.RTF).

� Hyper Text Markup Language (*.HTM, *.HTML).

� Microsoft Word Format (.DOC).

To load and save documents using one of these formats, perform the
following step:

� In CTXWordsApp::InitInstance() add the following line of code
before the document's template is created:

CTXDoc::EnableFileFormats(this);

To support for example only Rich Text Format, perform the following
steps:

� At the top of TXWords.cpp add the following include statement:

#include "TXFileFormats.h"

� In CTXWordsApp::InitInstance() add the following line of code:

CTXDoc::EnableFileFormats(this, FORMAT_RTF);

Compile and Run Your Application
� Verify that you have completed all steps exactly as they are documented

here. (The sub-directory Samples\VisualC\TXWords4 contains the code
created in this chapter.)

� Hit F7 (or select Build TXWords.exe from the Build menu) to start the
compilation process.

Using the Text Control Class Library Page 25

Reference
Using the Text Control Class Library

Headers and Footers
Using Headers and Footers

Headers and footers can only be used when a page size has been set
with CTXTextControl::SetPageSize. Headers and footers are only
visible on the screen if one of the page view modes (TF_PAGEVIEW or
TF_EXTPAGEVIEW) has been selected. View modes can also be set
with CTXTextControl::SetPageSize.

Headers and/or footers must be enabled with
CTXTextControl::HFEnable. This function specifies whether headers
and footers, only headers or only footers are to be used. Additionally
special headers and/or footers for the first page can be specified. To edit
an inserted header or footer, it must be activated either with
CTXTextControl:: HFActivate or with a built-in mouse interface. An
activated header or footer gets the input focus and its border is shown
with a dotted frame. When a header or footer is activated, the main text
is displayed gray, otherwise a header's or footer's text is displayed gray.
Text Control sends TN_HF_ACTIVATED and
TN_HF_DEACTIVATED notification messages to inform its parent
window about activation or deactivation of headers or footers. Override
CTXNotifyHandler::OnTnHFActivated and
CTXNotifyHandler::OnTnHFDeActivated to handle these
notifications.

CTXTextControl::HFEnable allows the following style settings:
1. Activation can be performed with mouse click and/or with mouse
double-click.
2. The border of an activated header or footer can be solid, dotted or
unframed.

Page 26 Using the Text Control Class Library

The default style setting is a dotted frame and a mouse interface that
activates a header or footer with double-clicks.

By default the top of a header has a distance of one centimeter from the
top of the page and the bottom of a footer has a distance of one
centimeter from the bottom of the page. With
CTXTextControl::HFGetPosition and
CTXTextControl::HFSetPosition these values can be changed. The
height of a header or footer depends on the header's or footer's current
text.

When a document is loaded or converted from another format,
contained headers and footers are automatically displayed.
CTXTextControl::HFGetEnabled can be used to get the information
about which headers and/or footers the current document contains.

To delete a header or footer or to disable a certain style setting, use
CTXTextControl::HFDisable.

Programming Headers and Footers

Headers and footers are seperate text parts which are independent of the
main text. When the user alters the text or the text format, for example
with a connected Button Bar, Text Control uses the current input focus,
to determine whether the text format of a header, a footer or the main
text is changed. The same occurs when the text is manipulated from
programming code. For example when a table is inserted from a menu
with CTXTextControl::TableInsert, the current input focus
determines whether the table is inserted in a header's or footer's text or
in the main text.

In addition to this default selection a programmer can use
CTXTextControl::HFSelect to use a certain message for a certain text
part. For example the following code returns the length of a header's
text:
LONG lTextSize;
HFSelect(TF_HF_HEADER);
lTextSize = GetTextLength();
HFSelect(TF_HF_AUTO);

Using the Text Control Class Library Page 27

The first line selects the header, independent of the current input focus,
the second line gets the length of the header's text and the third line
returns to the default selection mode. There can be more than one
message call between the two HFSelect calls.

Almost all member functions of the CTXTextControl class can be used
in this way with some exceptions. The following is a complete list of
these exceptions:

1. The following functions cannot be used with headers and footers:

- all functions that handle scrolling
- operations with headers and footers
- printing operations
- operations with chains of linked Text Controls

2. The following member functions of CTXTextControl always affect
all text parts (main text, headers and footers), independent of the
currently selected part. These functions are:

- Get/SetBackgroundColor
- Get/SetLanguage
- Get/SetCaretExt
- Get/SetMode
- GetSupportedFonts
- GetSupportedSizes
- GetDevice
- SetDevicePrinter/Screen/Standard
- Get/SetZoom

3. The following member functions of CTXTextControl can only be
used with headers and footers after selection with HFSelect:

- LoadFile
- LoadFromMemory
- ResetContents
- SaveFile
- SaveToMemory

Page 28 Using the Text Control Class Library

Tables
Using Tables

Tables can be inserted into a Text Control either with
CTXTextControl::TableInsert or as part of a document formatted
with the RTF, HTML or Microsoft Word formats. Text Control treats a
table as a number of cells organized in rows and columns. Each cell can
have as many lines and paragraphs as required. Paragraph formatting is
performed in relation to a cell's borders. Each cell has a position and an
extension in the document, within this area a cell's frames and text are
drawn along with its paragraph and character formatting attributes.
There can be a distance between the frame and the text.

Text can be selected either within a single cell or in steps of complete
cells or rows. When a selection is deleted inside a table only the text is
deleted. To delete one or more complete rows use
CTXTextControl::TableDeleteLines. Tables can be copied to the
clipboard and pasted from the clipboard. When a table is inserted at the
first position of another table or immediately behind another table and
both tables have the same number of columns they are combined into a
single table. The insertion of one table inside another table is not
possible.

A table's attributes are its frame width, distance between frame and
formatted text, and background color. To alter the attributes of a table or
part of a table, cells must be selected. Then a built-in dialog box can be
opened with the CTXTextControl::TableAttrDialog. When the
selection extends over several tables or tables mixed with text, attributes
cannot be changed. To get information about whether attributes can be
changed or tables can be inserted or deleted, for example to implement a
menu, use CTXTextControl::TableIsPossible. A second way to
change a table's attributes is to use CTXTextControl::TableGetAttr
and CTXTextControl::TableSetAttr. These functions need a table
identifier and a row and column number as parameters.

When the current input position is inside a table, the ruler shows the
positions of all the cells in a table's row and the formatting attributes of

Using the Text Control Class Library Page 29

the cell to which the input position belongs.Then the cells' positions and
extensions can be changed with a built-in mouse interface.

Programming with Table Identifiers

Like OLE objects, images and marked text fields each table has an
unique identifier which is set by Text Control. This identifier is returned
from CTXTextControl::TableInsert. A programmer can select an own
identifier for each table with the nTableID parameter of
CTXTextControl::TableInsert. Selecting an own identifier is not
necessary but recommended when a table's text or attributes are to be
changed from the programmer instead from an end-user. The user-
defined identifier need not to be unique and remains valid if a table is
saved and reloaded.

When a table or a part of a table is inserted inside another table the
inserted table becomes part of the existing table and the inserted table's
identifier is lost.

When a table with a user-defined identifier is inserted outside of all
existing tables a new table is created and the table's identifier remains
valid. Text Control informs its parent window with a
TN_TABLE_CREATED notification message that a new table has been
created. Override CTXNotifyHandler::OnTnTableCreated to define
a new user-defined table identifier for this new table.

When a table is inserted from another application which means it cannot
have an user-defined identifier, Text Control sends an own-selected
identifier with the TN_TABLE_CREATED notification. These
identifiers can also be changed with
CTXNotifyHandler::OnTnTableCreated.

When tables are imported with CTXTextControl::LoadFile or
CTXTextControl::LoadFromMemory, TN_TABLE_CREATED
notifications are sent only when the bReplaceSel parameter is set to
TRUE or when an imported table has no user-defined identifier.
Otherwise when a table with an user-defined identifier is saved and
reloaded no notification is sent.

Page 30 Using the Text Control Class Library

When a table is completely deleted Text Control informs its parent with
a TN_TABLE_DELETED notification message. Override
CTXNotifyHandler::OnTnTableDeleted to perform actions in this
case.

Several member functions of the CTXTextControl class accept table
identifiers. These identifiers can be either Text Control defined or user-
defined. If more than one table with a certain identifier exists, these
functions perform the operation with the originally inserted table. In
chains of linked windows these functions can be called for any Text
Control in the chain regardless of which Text Control currently contains
the table.

Marked Text Fields
Using Marked Text Fields

A set of member functions of the CTXTextControl class has been
implemented to define areas in the text of a Text Control called marked
text fields. These fields can be used to create hypertext features, to
realize database embedding while text of different datasets can be
included into the text or to combine several fields with formulas as in
spreadsheet applications.

An application can use CTXTextControl::FieldInsert to define a
marked text field. The whole communication works with the unique
numbers returned by this function. The current text can be changed or
retrieved with CTXTextControl::FieldChangeText and
CTXTextControl::FieldGetText,
CTXTextControl::FieldGetPosition retrieves the current text position
of a field. Special attributes can be selected with
CTXTextControl::Field HasAttr and
CTXTextControl::FieldSetAttr. These attributes can prevent a field
from being deleted or the text of a field from being changed. Further
attributes which help the end-user to edit the field's contents are
described in the next chapter.

With different notification messages Text Control informs the
application about special conditions. The notification messages

Using the Text Control Class Library Page 31

TN_FIELD_CLICKED and TN_FIELD_DBLCLICKED inform the
application about mouse clicks; TN_FIELD_ENTERED and
TN_FIELD_LEFT indicate whether the current input position has been
moved into or from a marked text field. TN_FIELD_SETCURSOR can
be used to define the cursor when it is moved over a field. The default
cursor is the up-arrow cursor. The notification message
TN_FIELD_CHANGED is sent if the text of a field has been altered,
and the notification messages TN_FIELD_DELETED and
TN_FIELD_CREATED are sent if fields have been deleted or created
while inserting or deleting text with the keyboard or the clipboard. If the
text and format data of a Text Control which contains marked text fields
are saved and then reloaded all field identifiers remain the same. All of
these notification messages can be handled by overriding the
appropriate CTXNotifyHandler member function OnTnFieldxxx.

Editing Marked Text Fields

When marked text fields are used in an editable Text Control and these
fields are editable, the end-user can alter the contents of the field like
any other text. Because it is not always unique whether the current input
position is or is not inside a field, some field attributes have been
implemented to help the end-user to edit fields. These attributes can be
used in any combination and can be defined with
CTXTextControl::FieldInsert or can be altered with
CTXTextControl::FieldSetAttr.

When the current input position is in front of or behind a field, the next
inserted character can either belong to the field or to the text outside the
field. In normal editing mode an inserted character has the attributes of
its preceding character which means that inserted text just behind a field
belongs to the field and inserted text in front of a field does belong to
the text in front of the field. To solve these problems an extended edit
mode can be defined for every field with the TF_EXTEDITMODE
setting that implements a second input position at the beginning and the
end of the field. The end-user can switch between the two positions with
the left and right arrow keys. This is especially important when a
marked text field is at the beginning or the end of the complete text. For
example when a field is at the end of the text the end-user can press

Page 32 Using the Text Control Class Library

CTRL+END to reach the text end. When this position is also the end of
a marked text field the right arrow key must be pressed first when the
next inserted character should not belong to the field.

To help the end-user to find the correct position the
TF_USEFIELDCARET and TF_SHOWCURFIELDGRAY attributes
can be used either stand alone or in combination.
TF_USEFIELDCARET defines an attribute that changes the caret's
width when it is inside a marked text field. This width can be defined
with CTXTextControl::SetCaretExt. TF_SHOWCURFIELDGRAY
defines an attribute that displays the complete text of a field with a gray
background when the current input position is inside this field.

Each of the described attributes can be defined for a single field in any
combination which means that different kinds of marked text fields can
be implemented in a single Text Control.

Relating data to a marked text field

For each marked text field Text Control can store any data that can be
set with CTXTextControl::FieldSetData. For example, when a Text
Control is used to show the contents of a database, a marked text field
can be created for each database field. The database's field names can
then be related to the Text Control's marked text fields using
CTXTextControl::FieldSetData.

Other parts of the program can use CTXTextControl::FieldGetData to
retrieve the name of the database field to which a marked text field is
linked. For example, when the user has clicked on a marked text field,
CTXTextControl::FieldGetData can be used with the field identifier,
which has been sent with the TN_FIELD_CLICKED notification
message. CTXTextControl::FieldGetData then retrieves the name of
the database field the user has clicked on.

Data entries can also be numbers instead of strings. When a marked text
field is copied via the clipboard or saved to a file the data belonging to
the field is also copied or saved. The usage of
CTXTextControl::FieldSetData does not change the current text

Using the Text Control Class Library Page 33

contents of a marked text field. When new data is set, all previously set
data is overwritten independently of the kind of data involved.

Special Types of Marked Text Fields

Special types of marked text fields are fields that display the current
page number and that provide support for hypertext links. These fields
can be inserted with CTXTextControl::InsertPageNumber,
CTXTextControl::InsertLink, and CTXTextControl::InsertTarget.
CTXTextControl:: FieldGetType returns a type identifier for these
fields. The following types are possible:

Type Description

FT_EXTERNALLINK This field defines the source of a hypertext
link to a location outside of the document.

FT_INTERNALLINK This field defines the source of a hypertext
link to a location in the same document.

FT_LINKTARGET This field defines the target of a hypertext
link.

FT_PAGENUMBER This field displays the current page number. It
can only be used in headers or footers.

All of these fields have the same general properties as standard marked
text fields with the following exceptions: Fields of the type
FT_LINKTARGET define text positions in a document. Therefore as
they have no visible text they cannot be edited and have no extended
edit mode. Fields of the type FT_PAGENUMBER can only be used in
headers or footers.

For fields which are inserted with CTXTextControl::InsertLink
(types FT_EXTERNALLINK and FT_INTERNALLINK), Text Control
manages the information to where the link points. This can be an
address or a file name and/or the name of a target in a document. With
CTXTextControl::ChangeLink the target of a link can be altered,
CTXTextControl::GetLinkLocation retrieves the information to
where the link points.

Targets in documents can be inserted with
CTXTextControl::InsertTarget. These fields have the type

Page 34 Using the Text Control Class Library

FT_LINKTARGET and are identified through names.
CTXTextControl::ChangeTarget alters this name and
CTXTextControl::GetTargetName asks for the name of a certain
target.

When the user clicks on a field of the type FT_EXTERNALLINK or
FT_INTERNALLINK a TN_FIELD_LINKCLICKED notification is
sent. CTXNotifyHandler::OnTnFieldLinkClicked informs the
application about the type of hypertext link (external or internal) and
about the information to where the link points.

CTXTextControl::FieldGoto can be used to scroll to an internal link
position and CTXTextControl::FieldGetNext can be used to
enumerate all fields of a certain type.

Inserting OLE Objects
Insertion

OLE objects can be inserted into a Text Control document with
CTXTextControl::InsertOleObject, CTXTextControl::
InsertOleProgID, CTXTextControl::InsertOleFile or
CTXTextControl::InsertOleLinkFile.

CTXTextControl::InsertOleObject opens the OLE built-in Insert
Object dialog box where the user can select one of the system-registered
OLE servers. Depending on the specified insertion mode, the new OLE
object is inserted either at a fixed position or as a character and is
immediately in-place activated.

The Insert Object dialog box allows the user to insert newly created or
existing objects into a Text Control document. It also allows the user to
choose to display the object as an icon and enables the Change Icon
command button. The dialog box is normally displayed when the user
chooses Insert Object from the Edit menu of a OLE container
application. Because objects in Text Control can be inserted either at
fixed positions or as characters it is useful to expand the Edit menu with
a second entry, for example Insert Object as character.

Using the Text Control Class Library Page 35

User Interface

An inserted OLE object can be in any one of the following states:

1. Deselected state
In this state the object’s contents are displayed with a solid, thin border
indicating an embedded object. The object has this state when either
another object is selected or the Text Control has been clicked so that
the user can enter text.

2. Selected state
An object has the selected state after it has been clicked. In this mode
resize handles are displayed so that it can be moved and resized. When
the object is resized in this state its contents are scaled. A programmer
can get the new scaling factors with CTXTextControl::ObjGetAttr.
When a scaled object is activated in-place it displays its contents either
scaled or, when scaling is not supported, it shows scrollbars.

3. In-place activated state
An object is in-place activated after it has been double-clicked. In this
mode the object can be edited. It is displayed with a hatched border
including resize handles. When an object is resized or edited in this
state the object’s natural size can be changed. After editing and
deactivating (selected or deselected) the Text Control adapts the object
to its new natural size. Scaling factors remain the same in this case. Text
Control does not support the exchanging of menus and control bars.

4. Open state
An object’s server application is fully opened when the object is double-
clicked whilst pressing the CTRL key. The object’s contents are then
overlayed with a hatched pattern. After the server has been closed the
object is updated with the new contents and adapted to its new natural
size.

Clipboard

When an OLE object is in selected state it can be copied to the
clipboard in standard formats such as metafile, and in OLE formats.
When an ‘as character’ inserted object is selected in combination with
text it is integrated into the Text Control’s text format. When an OLE

Page 36 Using the Text Control Class Library

object is pasted from the clipboard it is always inserted as a character at
the current input position. If an object is being pasted while another
object is selected the selected object is replaced.

Loading and Saving

OLE objects are integrated into the Text Control’s text format like any
other objects. Therefore all functions that support loading and saving
can be used without changes.

Printing

Text Control prints an object’s current contents via its metafile. This
metafile is "played" on the printer device context which is specified
with CTXTextControl::PrintPage.

Zooming

When a Text Control is zoomed integrated OLE objects are also
zoomed. In the selected, deselected and open states, zooming is realized
by stretching the object’s metafile. When a zoomed object is in-place
activated, whether its contents are zoomed or not depends on the object.
When an object does not support zooming the smaller client site set by
the Text Control makes it necessary to show scrollbars to indicate that
the content’s natural size is larger than the object’s client site.

Undo

When an OLE object is part of a block of text, the undo function is fully
supported as with any other object. When an object has been selected
stand alone and is then deleted or replaced, undo is not supported.

Resources
Text Control has several built-in resources like information strings,
error messages and dialog boxes. These resources are available in
different languages. When a new control is created Text Control selects
the current set system language as the default one. With
CTXTextControl::SetLanguage this setting can be altered
independent of the system language. The documentation of
CTXTextControl::SetLanguage lists all currently available built-in

Using the Text Control Class Library Page 37

languages. To alter the language of the Button Bar and Status Bar use
CTXButtonBar::SetLanguage and CTXStatusBar::SetLanguage.

To display resources in additional languages external resource libraries
can be built and then set with CTXTextControl::SetLanguage through
its file name. A resource library is a dynamic link library that only
contains resources and an entry point. The SAMPLES\TXRES
subdiretory contains the basic files to create such a DLL file. The
following is a list of these files:

TXRES.C Contains the DLL's entry point.

TXRES.RC Contains Text Control's resources in English.

TXRES.H Contains the definitions of all resource identifiers.

Furthermore Microsoft Visual C++ project files are contained and can
be used to build the resource library.

The TXRES.RC file has the following contents:

Dialog boxes Dialog box templates for the built-in dialog
boxes which can be displayed with
CTXTextControl::FontDialog,
CTXTextControl::ParagraphDialog and
CTXTextControl::TableAttrDialog.

String tables The string tables contain information strings
and error messages and the status strings of
the Status Bar. Strings must not be larger than
255 characters.

Bitmaps Bitmaps for the bold, italic and underline
buttons of the Button Bar. The bitmap files are
in the TXRES\BMP subdirectory.

To avoid conflicts with other programs that also use their own resources
or with future versions of Text Control the following points are
important:

1. The resource library should have a unique file name. The TXRES
sample builds a DLL file named TXRES.DLL. This name should be
changed.

Page 38 Using the Text Control Class Library

2. The resource library should be placed in the same directory as the
final application. Get the full path name of the application's executable
file at run time and use the file name of the resource library including
this path with CTXTextControl::SetLanguage.

At runtime Text Control determines resources in the following way:

1. When CTXTextControl::SetLanguage is not used Text Control
uses the system default language. If the system language is not built-in,
Text Control displays English resources.

2. When CTXTextControl::SetLanguage has been called with an
identifier of a built-in language Text Control displays resources in this
language independent of the system language.

3. When CTXTextControl::SetLanguage has been called with a file
name of a resource library Text Control tries to load the resources from
this library. Previously set language identifiers are ignored. When the
resource library does not contain a needed resource or when the
specified file could not be found Text Control displays English
resources without reporting an error.

4. Setting a resource library for a Text Control does not automatically
set the same library for a connected Button Bar or Status Bar. This must
be performed with the appropriate functions of these classes.

Text Control Classes Page 39

Text Control Classes

CTXButtonBar
#include <TXBBBar.h>

The CTXButtonBar class provides the functionality of Text Control's
Button Bar. This is a seperate child window that can be created in the
client area of any parent window. It provides buttons and combo boxes
for setting font and paragraph attributes. A button bar can be specified
as a parameter of a Ruler Bar's Create function. This Ruler Bar then
uses the tabulator type settings of the specified Button Bar.

To show or change the font and paragraph attributes of a certain Text
Control with a Button Bar, the Button Bar must be connected with this
Text Control. To perform this, use TXTextControl::ConnectToolBar.
The Button Bar then displays the settings of the connected Text Control
after the Text Control has obtained the input focus. Several Text
Controls can be connected with a single Button Bar. To disconnect a
Button Bar use CTXTextControl::DisconnectToolBar.

To create a Button Bar, first call the constructor CTXButtonBar to
construct the CTXButtonBar object, then call the Create member
function to create the window and attach it to the CTXButtonBar
object.

Member Functions

CTXButtonBar::Create
Description: This member function creates a Button Bar child window. Button Bar

child windows must be created in two steps. First call the constructor
which creates the CTXButtonBar object. Then call Create, which
creates the Button Bar child window and attaches it to CTXButtonBar.

Syntax: BOOL Create(CWnd* pParentWnd, UINT nID,
DWORD dwStyle = WS_CHILD | WS_VISIBLE | CBRS_TOP,
DWORD dwButtonBarStyle = BBS_FLAT | BBS_FLATBUTTONS);

Page 40 Text Control Classes

Parameter Description

pParentWnd Specifies the Button Bar's parent window. It
must not be NULL.

nID Specifies the Button Bar's identifier. This
identifier must be in the range
IDW_CONTROLBAR_FIRST+1 to
IDW_CONTROLBAR_LAST. See Microsoft
Technical Note 31 for more information.

dwStyle Specifies the Button Bar's window styles.

dwButtonBarStyle Specifies additional Button Bar styles. See the
following Values section for possible settings.

Return Value: The function returns TRUE if the Button Bar window could be created,
otherwise it returns FALSE.

Values: The following list contains possible values for the dwButtonBarStyle
parameter:

Style Meaning

BBS_3D Paints the Button Bar with three-dimensional
effects.

BBS_FLAT Paints the Button Bar without visual effects.

BBS_3DBUTTONS Paints the Button Bar's buttons with three-
dimensional effects.

BBS_FLATBUTTONS Paints the Button Bar's buttons without visual
effects.

See also: CTXButtonBar::CTXButtonBar

CTXButtonBar::CTXButtonBar
Description: Constructs a CTXButtonBar object.

See also: CTXButtonBar::Create

Text Control Classes Page 41

CTXButtonBar::SetLanguage
Description: This member function sets the language which the Button Bar uses to

display its buttons. The language is specified either through an identifier
or through the filename of a resource library.

Syntax: BOOL SetLanguage(UINT nLang);
BOOL SetLanguage(const CString& strLang);

Parameter Description

nLang Specifies a language identifier. For possible values see
CTXTextControl::SetLanguage.

strLang Specifies the filename including its full path of a
resource library. See the chapter Using the Text Control
Class Library - Resources for more information about
creating a resource library.

Return Value: The return value is FALSE if an error has occurred or if the specified
language has already been set, otherwise it is TRUE.

Page 42 Text Control Classes

CTXDoc
#include <TXDoc.h>

The CTXDoc class provides the basic functionality for user-defined
document classes in applications using Text Control and the TXView
class. The CTXDoc class provides all the standard operations available
through MFC's document/view architecture. Additionally it supports
loading and saving the document's text in other text formats like RTF,
HTML or Microsoft Word. To implement a Text Control document in a
typical application, perform the following:

� Derive a class from CTXDoc.

� Define member variables for your application-specific data.

� Overwrite the CObject::Serialize function in your document class to
write and read the application-specific data.

� In your document's Serialize function, call the base class's
implementation CTXDoc::Serialize to write and read the text contained
in the Text Control of the associated CTXView class.

Member Functions

CTXDoc::EnableFileFormats
Description: This member function enables all the text formats that Text Control

supports. These formats can then be accessed through the File Open and
File Save dialog boxes.

Syntax: BOOL EnableFileFormats(CWinApp* pApp, DWORD
dwFormatMask = FORMAT_ALL);

Parameter Description

pApp Points to the single CWinApp object for the
application.

dwFormatMask Specifies the text formats that the application
wants to support. See the following Values
section for possible values.

Text Control Classes Page 43

Return Value: The function returns TRUE if the specified text formats could be
enabled. Otherwise it returns FALSE.

Values: The following lists possible values for the dwFormatMask parameter:

Value Meaning

FORMAT_TX Text Control's native format (*.TX)

FORMAT_ANSI Plain text (*.TXT)

FORMAT_UNICODE Plain Unicode text (*.TXT)

FORMAT_RTF Rich Text Format (*.RTF)

FORMAT_DOC Microsoft Word Format (*.DOC)

FORMAT_HTM Hyper Text Markup Language (*.HTM)

FORMAT_ALL All supported formats.

Page 44 Text Control Classes

CTXNotifyHandler
#include <TXNotifyHandler.h>

The CTXNotifyHandler class implements a member function for each
notification message that a Text Control windows sends to its parent
window. Derive your handler from this class and overwrite the functions
that belong to the notification you want to handle. A pointer to the
derived handler can be specified as a parameter of
CTXTextControl::Create.

All of the following member functions have the same first parameter
which is a pointer to the CTXTextControl object that causes the
notification. All member functions also have the same boolean return
value. If a function returns FALSE, which is a handler's default
implementation, further processing continues. Otherwise, if a function
returns TRUE further processing stops.

CTXNotifyHandler Class Members

General Notifications

OnTnChanged Called after the contents of a Text Control
has been changed.

OnTnDoubleClicked Called after a Text Control has been
double-clicked.

OnTnErrCode Called after an error has occurred.

OnTnHExpand Called after a Text Control has
automatically expanded its window width.

OnTnHMoved Called after a Text Control's window has
been moved horizontally relative to its
parent window.

OnTnHScroll Called after the horizontal scroll position
has been changed.

OnTnKeyStateChanged Called after the character insertion mode
or after the state of the NUMLOCK or
CAPSLOCK key has been changed

Text Control Classes Page 45

OnTnKillFocus Called after the Text Control has lost the
input focus.

OnTnModeChanged Called after one of the modes has been
changed.

OnTnParaChanged Called after the character input position
has been moved to another paragraph.

OnTnPosChanged Called after the character input position
has been moved to another position.

OnTnSetFocus Called after a Text Control has obtained
the input focus.

OnTnVExpand Called after a Text Control has
automatically expanded its window
height.

OnTnVScroll Called after the vertical scroll position has
been changed.

OnTnZoomed Called after a Text Control has been
zoomed.

Formatting Changes

OnTnCharFormatChanged Called after character attributes of the
currently selected text have been changed.

OnTnPageFormatChanged Called after page attributes have been
changed.

OnTnParaFormatChanged Called after paragraph attributes of the
currently selected text have been changed.

Image, Window and OLE Object Notifications

OnTnObjClicked Called after an object has been clicked.

OnTnObjCreated Called after a new object has been pasted
from the clipboard.

OnTnObjDblClicked Called after an object has been double-
clicked.

OnTnObjDeleted Called after an object has been deleted.

OnTnObjMoved Called after an object has been moved.

Page 46 Text Control Classes

OnTnObjSized Called after an object has been sized.

Marked Text Field Notifications

OnTnFieldChanged Called after the text of a marked text field
has been changed.

OnTnFieldClicked Called after a user has clicked on a
marked text field.

OnTnFieldCreated Called after a new marked text field has
been pasted from the clipboard.

OnTnFieldDblClicked Called after a user has double-clicked on
a marked text field.

OnTnFieldDeleted Called after a marked text field has been
deleted.

OnTnFieldEntered Called after the current input position has
been moved to a position that belongs to a
marked text field.

OnTnFieldLeft Called after the current input position has
been moved to a position that does not
belong to the marked text field at the
previous input position.

OnTnFieldSetCursor Called when the cursor is being moved
over a marked text field.

Hypertext Link Notifications

OnTnFieldLinkClicked Called after the user has clicked on a
marked text field that represents the
source of a hypertext link.

Table Notifications

OnTnTableCreated Called after after a new table has been
pasted from the clipboard.

OnTnTableDeleted Called after a table has been deleted.

Header and Footer Notifications

OnTnHFActivated Called after a header or footer has been
activated.

Text Control Classes Page 47

OnTnHFDeActivated Called after a header or footer has been
deactivated.

Member Functions

CTXNotifyHandler::OnTnChanged
Description: The specified Text Control calls this member function after its contents

have been changed.

Syntax: BOOL OnTnChanged(CTXTextControl* pTX);

CTXNotifyHandler::OnTnCharFormatChanged
Description: The specified Text Control calls this member function after character

attributes of its currently selected text have been changed.

Syntax: BOOL OnTnCharFormatChanged(CTXTextControl* pTX);

CTXNotifyHandler::OnTnDoubleClicked
Description: The specified Text Control calls this member function after it has been

double-clicked.

Syntax: BOOL OnTnDoubleClicked(CTXTextControl* pTX);

CTXNotifyHandler::OnTnErrCode
Description: The specified Text Control calls this member function after an error has

occurred.

Syntax: BOOL OnTnErrCode(CTXTextControl* pTX, WORD wModule,
WORD wErrCode, WORD wGroupCode);

Parameter Description

wModule Specifies a module number. It can be one of the
following values:

Value: Meaning:

Page 48 Text Control Classes

01 The error has occurred in TX32.DLL or one of
the text filters.

03 The error has occurred in IC32.DLL.

04 The error has occurred in an image filter
module.

05 The error has occurred in TXOBJ32.DLL.

wErrCode Specifies an error code. See Error Codes for possible
values.

wGroupCode Specifies a group code. Possible group codes are listed
in the following values section.

Values: The following is a list of possible error group codes:

Code (Value) Description

DBS_E_UNGROUPED (00) A special error condition has
occurred. See the description of
the error code for more
information.

DBS_E_OUTOFMEMORY (01) Not enough storage is available to
complete the operation.

DBS_E_NOMEMORYACCESS (02) Invalid access to a memory
location.

DBS_E_UNEXPECTED (03) Unexpected failure.

DBS_E_FILEIO (04) A file read/write operation cannot
be performed.

DBS_E_CLIPBOARD (06) A clipboard operation cannot be
performed. The clipboard cannot
be opened or emptied or
clipboard data cannot be
accessed.

DBS_E_DLLNOTLOADED (07) An operation cannot be
performed because a helper DLL
or filter needed for the operation
cannot be found or loaded.

Text Control Classes Page 49

DBS_E_DLLINCOMPATIBLE (08) An operation cannot be
performed because a helper DLL
or Filter needed for the operation
is too old.

DBS_E_DLLOBSOLETE (09) A helper DLL or Filter DLL
needed for the operation is
obsolete but can be used for the
operation.

DBS_E_INVALIDARG (0A) One or more arguments are
invalid.

DBS_E_NOTIMPL (0B) The feature is not implemented.

DBS_E_INVALIDFORMAT (0C) An operation cannot be
performed because data has an
invalid format.

CTXNotifyHandler::OnTnFieldChanged
Description: The specified Text Control calls this member function after the text of a

marked text field has been changed.

Syntax: BOOL OnTnFieldChanged(CTXTextControl* pTX, UINT
nFieldID);

Parameter Description

nFieldID Is the identifier of the field the text of which has been
changed.

CTXNotifyHandler::OnTnFieldClicked
Description: The specified Text Control calls this member function after a user has

clicked on a marked text field.

Syntax: BOOL OnTnFieldClicked(CTXTextControl* pTX, UINT nFieldID);

Parameter Description

nFieldID Is the identifier of the field that has been clicked.

Page 50 Text Control Classes

CTXNotifyHandler::OnTnFieldCreated
Description: The specified Text Control calls this member function after a new

marked text field has been pasted from the clipboard.

Syntax: BOOL OnTnFieldCreated(CTXTextControl* pTX, UINT nFieldID);

Parameter Description

nFieldID Is the identifier of the field that has been created.

CTXNotifyHandler::OnTnFieldDblClicked
Description: The specified Text Control calls this member function after a user has

double-clicked on a marked text field.

Syntax: BOOL OnTnFieldDblClicked(CTXTextControl* pTX, UINT
nFieldID);

Parameter Description

nFieldID Is the identifier of the field that has been double-
clicked.

CTXNotifyHandler::OnTnFieldDeleted
Description: The specified Text Control calls this member function after a marked

text field has been deleted. It does not call the function when the field is
deleted because the window is completely destroyed or because the
complete text contents are exchanged.

Syntax: BOOL OnTnFieldDeleted(CTXTextControl* pTX, UINT nFieldID);

Parameter Description

nFieldID Is the identifier of the field that has been deleted.

CTXNotifyHandler::OnTnFieldEntered
Description: The specified Text Control calls this member function after its current

input position has been moved to a position that belongs to a marked

Text Control Classes Page 51

text field. The function is only called if the current input position has
been moved using the keyboard. If the current input position has been
moved with the mouse CTXNotifyHandler::OnTnFieldClicked is
called.

Syntax: BOOL OnTnFieldEntered(CTXTextControl* pTX, UINT nFieldID);

Parameter Description

nFieldID Is the identifier of the field that has been entered.

CTXNotifyHandler::OnTnFieldLeft
Description: The specified Text Control calls this member function after its current

input position has been moved to a position that does not longer belong
to the marked text field at the previous input position.

Syntax: BOOL OnTnFieldLeft(CTXTextControl* pTX, UINT nFieldID);

Parameter Description

nFieldID Is the identifier of the field that has been left.

CTXNotifyHandler::OnTnFieldLinkClicked
Description: The specified Text Control calls this member function after the user has

clicked on a marked text field that represents the source of a hypertext
link.

Syntax: BOOL OnTnFieldLinkClicked(CTXTextControl* pTX, UINT
nFieldID, UINT nFieldType, const CString& strLink);

Parameter Description

nFieldID Is the identifier of the field that has been clicked.

nFieldType Specifies the type of the clicked marked text field. It can
be one of the following values:

Type Description

Page 52 Text Control Classes

FT_EXTERNALLINK The field is the source of a
hypertext link to a location
outside of the document.

FT_INTERNALLINK The field is the source of a
hypertext link to a location in
the same document.

strLink Specifies the location to where the link points.

CTXNotifyHandler::OnTnFieldSetCursor
Description: The specified Text Control calls this member function while the cursor

is moved over a marked text field.

Syntax: BOOL OnTnFieldSetCursor(CTXTextControl* pTX, UINT
nFieldID, BOOL& bCursorSet);

Parameter Description

nFieldID Is the identifier of the field over which the cursor is
moved.

bCursorSet If this parameter retrieves FALSE, which is the default
value, Text Control sets the cursor to the vertical arrow
cursor. Otherwise if this parameter retrieves TRUE the
Text Control does not set a cursor.

CTXNotifyHandler::OnTnHExpand
Description: The specified Text Control calls this member function after it has

automatically expanded its window width.

Syntax: BOOL OnTnHExpand(CTXTextControl* pTX);

CTXNotifyHandler::OnTnHFActivated
Description: The specified Text Control calls this member function after a header or

footer has been activated.

Text Control Classes Page 53

Syntax: BOOL OnTnHFActivated(CTXTextControl* pTX, UINT
nHeaderFooter);

Parameter Description

nHeaderFooter Specifies which kind of header or footer has been
activated. It can be one of the following values:

Value Description

TF_HF_HEADER A header has been activated.

TF_HF_1STHEADER The special header for the first
page has been activated.

TF_HF_FOOTER A footer has been activated.

TF_HF_1STFOOTER The special footer for the first
page has been activated.

CTXNotifyHandler::OnTnHFDeActivated
Description: The specified Text Control calls this member function after a header or

footer has been deactivated.

Syntax: BOOL OnTnHFDeActivated(CTXTextControl* pTX, UINT
nHeaderFooter);

Parameter Description

nHeaderFooter Specifies which kind of header or footer has been
deactivated. It can be one of the following values:

Value Description

TF_HF_HEADER A header has been
deactivated.

TF_HF_1STHEADER The special header for the first
page has been deactivated.

TF_HF_FOOTER A footer has been deactivated.

TF_HF_1STFOOTER The special footer for the first
page has been deactivated.

Page 54 Text Control Classes

CTXNotifyHandler::OnTnHMoved
Description: The specified Text Control calls this member function after its window

has been moved horizontally relative to its parent window.

Syntax: BOOL OnTnHMoved(CTXTextControl* pTX);

CTXNotifyHandler::OnTnHScroll
Description: The specified Text Control calls this member function after its

horizontal scroll position has been changed.

Syntax: BOOL OnTnHScroll(CTXTextControl* pTX);

CTXNotifyHandler::OnTnKeyStateChanged
Description: The specified Text Control calls this member function after the

character insertion mode or after the state of the NUMLOCK or
CAPSLOCK key has been changed.

Syntax: BOOL OnTnKeyStateChanged(CTXTextControl* pTX);

CTXNotifyHandler::OnTnKillFocus
Description: The specified Text Control calls this member function after it has lost

the input focus.

Syntax: BOOL OnTnKillFocus(CTXTextControl* pTX);

CTXNotifyHandler::OnTnModeChanged
Description: The specified Text Control calls this member function after one of its

modes has been changed. See CTXTextControl::SetMode for a list of
possible modes.

Syntax: BOOL OnTnModeChanged(CTXTextControl* pTX);

Text Control Classes Page 55

CTXNotifyHandler::OnTnObjClicked
Description: The specified Text Control calls this member function after one of its

inserted images, windows or OLE objects has been clicked.

Syntax: BOOL OnTnObjClicked(CTXTextControl* pTX, UINT nObjID);

Parameter Description

nObjID Is the identifier of the object that has been clicked.

CTXNotifyHandler::OnTnObjCreated
Description: The specified Text Control calls this member function after a new

image, window or OLE object has been pasted from the clipboard.

Syntax: BOOL OnTnObjCreated(CTXTextControl* pTX, UINT nObjID);

Parameter Description

nObjID Is the identifier of the object that has been created.

CTXNotifyHandler::OnTnObjDblClicked
Description: The specified Text Control calls this member function after one of its

inserted images, windows or OLE objects has been double-clicked.

Syntax: BOOL OnTnObjDblClicked(CTXTextControl* pTX, UINT
nObjID);

Parameter Description

nObjID Is the identifier of the object that has been double-
clicked.

CTXNotifyHandler::OnTnObjDeleted
Description: The specified Text Control calls this member function after one of its

inserted images, windows or OLE objects has been deleted.

Syntax: BOOL OnTnObjDeleted(CTXTextControl* pTX, UINT nObjID);

Page 56 Text Control Classes

Parameter Description

nObjID Is the identifier of the object that has been deleted.

CTXNotifyHandler::OnTnObjMoved
Description: The specified Text Control calls this member function after one of its

inserted images, windows or OLE objects has been moved relative to its
client area.

Syntax: BOOL OnTnObjMoved(CTXTextControl* pTX, UINT nObjID);

Parameter Description

nObjID Is the identifier of the object that has been moved.

CTXNotifyHandler::OnTnObjSized
Description: The specified Text Control calls this member function after one of its

inserted images, windows or OLE objects has been sized.

Syntax: BOOL OnTnObjSized(CTXTextControl* pTX, UINT nObjID);

Parameter Description

nObjID Is the identifier of the object that has been sized.

CTXNotifyHandler::OnTnPageFormatChanged
Description: The specified Text Control calls this member function after page

attributes have been changed.

Syntax: BOOL OnTnPageFormatChanged(CTXTextControl* pTX);

CTXNotifyHandler::OnTnParaChanged
Description: The specified Text Control calls this member function after its character

input position has been moved to another paragraph.

Text Control Classes Page 57

Syntax: BOOL OnTnParaChanged(CTXTextControl* pTX);

CTXNotifyHandler::OnTnParaFormatChanged
Description: The specified Text Control calls this member function after the

paragraph attributes of its currently selected text have been changed.

Syntax: BOOL OnTnParaFormatChanged(CTXTextControl* pTX);

CTXNotifyHandler::OnTnPosChanged
Description: The specified Text Control calls this member function after its character

input position has been moved.

Syntax: BOOL OnTnPosChanged(CTXTextControl* pTX);

CTXNotifyHandler::OnTnSetFocus
Description: The specified Text Control calls this member function after it has

obtained the input focus.

Syntax: BOOL OnTnSetFocus(CTXTextControl* pTX);

CTXNotifyHandler::OnTnTableCreated
Description: The specified Text Control calls this member function after a new table

has been pasted from the clipboard.

Syntax: BOOL OnTnTableCreated(CTXTextControl* pTX, UINT&
nTableID);

Parameter Description

nTableID Is the identifier of the table that has been created. It can
be changed to a user-defined value. This value must be
between 10 and 0x7FFF.

Page 58 Text Control Classes

CTXNotifyHandler::OnTnTableDeleted
Description: The specified Text Control calls this member function after a table has

been deleted.

Syntax: BOOL OnTnTableDeleted(CTXTextControl* pTX, UINT
nTableID);

Parameter Description

nTableID Is the identifier of the table that has been deleted.

CTXNotifyHandler::OnTnVExpand
Description: The specified Text Control calls this member function after it has

automatically expanded its window height.

Syntax: BOOL OnTnVExpand(CTXTextControl* pTX);

CTXNotifyHandler::OnTnVScroll
Description: The specified Text Control calls this member function after its vertical

scroll position has been changed.

Syntax: BOOL OnTnVScroll(CTXTextControl* pTX);

CTXNotifyHandler::OnTnZoomed
Description: The specified Text Control calls this member function after it has been

zoomed.

Syntax: BOOL OnTnZoomed(CTXTextControl* pTX);

Text Control Classes Page 59

CTXRulerBar
#include <TXRLBar.h>

The CTXRulerBar class provides the functionality of the Ruler Bar.
This is a seperate child window that can be created in the client area of
any parent window. It provides a ruler with handles to change paragraph
indents or table borders. Tabulators can be set or deleted. To define
types for tabulators, the Ruler Bar can be connected with a Button Bar
that contains buttons for tabulator types.

To show or change the paragraph attributes of a certain Text Control
with a Ruler Bar, the Ruler Bar must be connected with this Text
Control. To perform this, use CTXTextControl::ConnectToolBar.
The Ruler Bar then displays the settings of the connected Text Control
after the Text Control has obtained the input focus. Several Text
Controls can be connected with a single Ruler Bar. To disconnect a
Ruler Bar use CTXTextControl::DisconnectToolBar.

To create a Ruler Bar, first call the constructor CTXRulerBar to
construct the CTXRulerBar object, then call the Create member
function to create the window and attach it to the CTXRulerBar object.

The CTXView class automatically creates a Text Control with a
connected Ruler Bar.

Member Functions

CTXRulerBar::Create
Description: This member function creates a Ruler Bar child window. Ruler Bar

child windows must be created in two steps. First call the constructor
which creates the CTXRulerBar object. Then call Create, which
creates the Ruler Bar child window and attaches it to CTXRulerBar.

Syntax: BOOL Create(CWnd* pParentWnd, UINT nID,
DWORD dwStyle = WS_CHILD | WS_VISIBLE | CBRS_TOP,
CTXButtonBar* pButtonBar = NULL,
DWORD dwRulerBarStyle = RS_ALLPARTS);

Page 60 Text Control Classes

Parameter Description

pParentWnd Specifies the Ruler Bar's parent window. It
must not be NULL.

nID Specifies the Ruler Bar's identifier. This
identifier must be in the range
IDW_CONTROLBAR_FIRST+1 to
IDW_CONTROLBAR_LAST. See Microsoft
Technical Note 31 for more information.

dwStyle Specifies the Ruler Bar's window styles.

pButtonBar Specifies a Button Bar. The Ruler Bar uses the
tabulator style stetting of this Button Bar to
select the tabulator style of a newly created
tabulator. If pButtonBar is zero all newly
created tabulators are left-aligned.

dwRulerBarStyle Specifies additional Ruler Bar styles. See the
following Values section for possible settings.

Return Value: The function returns TRUE if the Ruler Bar window could be created,
otherwise it returns FALSE.

Values: The following list contains possible values for the dwRulerBarStyle
parameter:

Style Meaning

RS_ALLPARTS The Ruler Bar displays all its elements.

RS_FIRSTINDENT The Ruler Bar displays a mark for the
additional indent of the first line.

RS_INDENTS The Ruler Bar displays marks for all indents.

RS_LEFTINDENT The Ruler Bar displays a left indent mark.

RS_POSITION The Ruler Bar displays the current position
when moving a tabulator or an indent mark.

RS_RIGHTINDENT The Ruler Bar displays a right indent mark.

RS_TABLECOL The Ruler Bar displays table columns if the
current input position is in a table.

RS_TABULATORS The Ruler Bar displays tabulator settings.

Text Control Classes Page 61

See also: CTXRulerBar::CTXRulerBar

CTXRulerBar::CTXRulerBar
Description: Constructs a CTXRulerBar object.

See also: CTXRulerBar::Create

Page 62 Text Control Classes

CTXStatusBar
#include <TXSBBar.h>

The CTXStatusBar class provides the functionality of Text Control's
Status Bar. This is a seperate child window that can be created in the
client area of any parent window. It provides a row of text output panes
that show the status of the NUM LOCK and CAPS LOCK keys, the
character insertion mode, the current zooming factor and the page, line
and column number of the current text input position. Furthermore, it
can display message lines for example menu help-message lines that
briefly explain a selected menu command.

To display the status of a certain Text Control, a Status Bar must be
connected with this Text Control. To perform this use
CTXTextControl::ConnectToolBar. The Status Bar then displays the
status of the connected Text Control after this Text Control has obtained
the input focus. Several Text Controls can be connected with a single
Status Bar. To disconnect a Status Bar use
CTXTextControl::DisconnectToolBar.

To create a Status Bar, first call the constructor CTXStatusBar to
construct the CTXStatusBar object, then call the Create member
function to create the window and attach it to the CTXStatusBar
object.

Member Functions

CTXStatusBar::Create
Description: This member function creates a Status Bar child window. Status Bar

child windows must be created in two steps. First call the constructor
which creates the CTXStatusBar object. Then call Create, which
creates the Status Bar child window and attaches it to CTXStatusBar.

Syntax: BOOL Create(CWnd* pParentWnd, UINT nID,
DWORD dwStyle = WS_CHILD | WS_VISIBLE |
CBRS_SIZE_FIXED | CBRS_ALIGN_BOTTOM,
DWORD dwStatusBarStyle = STS_LEFTALIGN |

Text Control Classes Page 63

STS_NOBORDER,
const CString& strFormat = "",
CFont* pFont = NULL);

Parameter Description

pParentWnd Specifies the Status Bar's parent window. It
must not be NULL.

nID Specifies the Status Bar's identifier. This
identifier must be in the range
IDW_CONTROLBAR_FIRST+1 to
IDW_CONTROLBAR_LAST. See Microsoft
Technical Note 31 for more information.

dwStyle Specifies the Status Bar's window styles.

dwStatusBarStyle Specifies additional Status Bar styles. See the
following Values section for possible settings.

strFormat Specifies a format string. The Status Bar gets
the information from this string how to display
the page, line and column number of the
current text input position. See the following
Remarks section for more information. If an
empty string is specified the Status Bar
displays only the numbers.

pFont Specifies a font object. The Status Bar uses
this font to display its information.

Return Value: The function returns TRUE if the Status Bar window could be created,
otherwise it returns FALSE.

Remarks: The string specified through strFormat must have the following form:
[ptext]%format\n[ltext]%format\n[ctext]%format
The parts in brackets are optional, all other parts are required. The
various parts have the following meanings:

Part Meaning

ptext Text for the Status Bar pane that displays the page
number of the current text input position.

Page 64 Text Control Classes

ltext Text for the Status Bar pane that displays the line
number of the current text input position.

ctext Text for the Status Bar pane that displays the column
number of the current text input position.

%format A format string in the same form as used for the
wsprintf function contained in the Windows SDK. The
Status Bar uses this format to display the number.

Values: The following list contains possible values for the dwStatusBarStyle
parameter:

Style Meaning

STS_LEFTALIGN Positions the text output panes on the left side
of the client area.

STS_RIGHTALIGN Positions the text output panes at the right side
of the client area.

STS_NOPAGE Suppresses the page number.

STS_NOLINE Suppresses the line number.

STS_NOCOLUMN Suppresses the column number.

STS_NOZOOM Suppresses the zooming factor.

STS_NOKEYSTATES Suppresses the character insertion mode and
the CAPSLOCK and NUMLOCK keystates.

See also: CTXStatusBar::CTXStatusBar

CTXStatusBar::CTXStatusBar
Description: Constructs a CTXStatusBar object.

See also: CTXStatusBar::Create

CTXStatusBar::SetLanguage
Description: This member function sets the language which the Status Bar uses to

display text in some of its text panes. The language is specified either
through an identifier or through the filename of a resource library.

Text Control Classes Page 65

Syntax: BOOL SetLanguage(UINT nLang);
BOOL SetLanguage(const CString& strLang);

Parameter Description

nLang Specifies a language identifier. For possible values see
CTXTextControl::SetLanguage.

strLang Specifies the filename including its full path of a
resource library. See the chapter Using the Text Control
Class Library - Resources for more information about
creating a resource library.

Return Value: The return value is FALSE if an error has occurred or if the specified
language has already been set, otherwise it is TRUE.

Page 66 Text Control Classes

CTXTextControl
#include <TXTextControl.h>

The CTXTextControl class provides the functionality of a Text
Control. A Text Control can be created either from a dialog template or
directly in your code. In both cases, first call the constructor
CTXTextControl to construct the CTXTextControl object, then call
the Create member function to create the window and attach it to the
CTXTextControl object.

Construction can be a one-step process in a class derived from
CTXTextControl. Write a constructor for the derived class and call
Create from within the constructor. CTXTextControl inherits
significant functionality from CWnd.

If you want to handle Windows notification messages sent by a Text
Control you can use either a Text Control notification handler or MFC's
ON_NOTIFY message map entry. The Text Control notification
handler is implemented through the CTXNotifyHandler class. This
class has a member function for each possible notification. Derive your
handler from this class and override the functions that belong to the
notification you want to handle. A pointer to the derived handler can be
specified as parameter of CTXTextControl::Create.

CTXTextControl Class Members

Construction and Initialization

CTXTextControl Constructs a CTXTextControl object.

Create Creates and initializes the child window
associated with the CTXTextControl object.

Selection Operations

Clear Deletes the current selection (if any).

GetSel Retrieves the position of the current selection.

GetSelText Returns selected text.

GetText Retrieves the text in a generic text format.

GetTextLength Returns the number of characters.

Text Control Classes Page 67

ReplaceSel Replaces the current selection with new text.

SetSel Sets a new text selection.

Loading and Saving

LoadFile Loads formatted or unformatted text from a
file.

LoadFromMemory Loads formatted or unformatted text from a
memory buffer.

ResetContents Deletes all contents in a Text Control.

SaveFile Saves formatted or unformatted text into a file.

SaveToMemory Saves formatted or unformatted text in a
memory buffer.

Clipboard Operations

CanCopy Determines if a part of a Text Control
document can be copied to the clipboard.

CanPaste Determines if the contents of the clipboard can
be pasted.

Copy Copies the current selection to the clipboard.

Cut Cuts the current selection to the clipboard.

Paste Inserts data from the clipboard.

Undo Operations

CanRedo Determines if an undone editing operation can
be restored.

CanUndo Determines if an editing operation can be
undone.

EmptyUndoBuffer Resets the undo buffer.

Redo Restores the last undone edit operation.

Undo Undoes the last edit operation.

Printing Operations

PrintControl Prints the contents of a Text Control that is
used without built-in scroll interface.

Page 68 Text Control Classes

PrintPage Prints a single page.

Search and Replace Functions

FindText Searches for a text string.

ReplaceText Finds and replaces text within the Text
Control's contents.

Character Formatting Operations

EnlargeFont Enlarges the pointsizes of all fonts in the
current selection.

FontDialog Opens Text Control's built-in font dialog box.

GetBaseLine Returns the baseline alignment.

GetFont Retrieves font name and size.

GetFontAttr Returns font attributes.

GetTextColor Retrieves the text color and the text
background color.

ReduceFont Reduces the pointsizes of all fonts in the
current selection.

SetBaseLine Sets a new baseline alignment.

SetFont Sets a new font with a new size.

SetFontAttr Sets font attributes.

SetTextColor Sets a new text color.

SetTextBkColor Sets a new text background color.

Paragraph Formatting Operations

GetLineSpacing Retrieves the line spacing.

GetParaAlignment Returns the paragraph alignment.

GetParaFormatFlags Informs about advanced paragraph formatting
attributes.

GetParaFrame Retrieves paragraph frame attributes.

GetParaIndents Retrieves paragraph indents.

GetTabs Retrieves tab positions and types.

Text Control Classes Page 69

ParagraphDialog Opens Text Control's built-in paragraph
attributes dialog box.

SetLineSpacing Sets a new line spacing.

SetParaAlignment Sets a new paragraph alignment.

SetParaFormatFlags Sets new advanced paragraph formatting
options.

SetParaFrame Sets new attributes for paragraph frames.

SetParaIndents Sets new paragraph indents.

SetTabs Sets new tab positions and types.

Page and Document Operations

GetDevice Returns the current formatting device.

GetPageCount Returns the number of pages in the document.

GetPageMargins Retrieves the page margins.

GetPageSize Retrieves the page size and the current view
settings.

GetSupportedFonts Retrieves all fonts the current device supports.

GetSupportedSizes Retrieves all sizes of a certain font.

GetTXScrollPos Returns the scroll position.

InsertPageNumber Inserts a marked text field displaying the
current page number.

SetDevicePrinter Sets a printer as formatting device.

SetDeviceScreen Sets the screen as formatting device.

SetDeviceStandard Sets the standard printer as formatting device.

SetPageMargins Sets new page margins.

SetPageSize Sets a new page size and/or a new view
setting.

SetTXScrollPos Sets a new scroll position.

General Operations

GetBackgroundColor Retrieves the current background color.

GetCaretExt Returns the current caret extension.

Page 70 Text Control Classes

GetLanguage Returns the current language setting.

GetLineAndCol Retrieves page, line and column number of the
current input position.

GetMode Informs about all current mode settings.

GetTextSize Retrieves width and height of the text.

GetZoom Returns the zooming factor.

InputPosFromPoint Returns the character position at a given
geometric position.

SetBackgroundColor Sets a new background color.

SetCaretExt Sets the width of the caret.

SetLanguage Sets a new language.

SetLineAndCol Sets a new text input position from a page,
line and column number.

SetMode Sets one or more of Text Control's modes.

SetZoom Sets a new zooming factor.

Line Operations

GetBaseLinePos Returns a line's baseline position.

GetLineCount Returns the number of text lines.

GetLineRect Retrieves a line's rectangular area.

LineFromChar Returns the line at a given character position.

LineFromPoint Returns the line at a given geometric position.

LineIndex Returns a line's character index.

Inserted Images, Windows and OLE Objects

GetImageFilters Informs about supported image filters.

InsertImage Inserts an image.

InsertOleFile Inserts an embedded OLE object from a file.

InsertOleLinkFile Inserts a linked OLE object from a file.

InsertOleObject Opens a dialog box and inserts an OLE object.

InsertOleProgID Inserts an OLE object via its programmatic
identifier.

Text Control Classes Page 71

InsertWindow Inserts a window through its window handle.

ObjDelete Deletes an inserted object.

ObjGetAttr Retrieves an inserted object's attributes.

ObjGetIDispatch Retrieves an inserted object's dispatch
interface pointer.

ObjGetNext Enumerates inserted objects.

ObjOleCancel Deactivates an inserted OLE object.

ObjSetDistances Sets distances between an inserted object and
the text.

ObjSetMovable Sets the movable state of an inserted object.

ObjSetScaling Sets the scaling factors of an inserted object.

ObjSetSizeable Sets the sizeable state of an inserted object.

Marked Text Field Functions

FieldChangeText Alters the text of a marked text field.

FieldDelete Deletes a marked text field.

FieldFromCaretPos Returns the field at the current input position.

FieldGetData Retrieves related data.

FieldGetNext Enumerates marked text fields.

FieldGetPosition Retrieves the starting and the ending character
position of a marked text field.

FieldGetText Retrieves the text of a marked text field.

FieldGetType Retrieves the type of a marked text field.

FieldGoto Scrolls to a marked text field.

FieldHasAttr Informs about a field's attributes.

FieldInsert Inserts a marked text field.

FieldSetAttr Sets a field's attributes.

FieldSetData Relates data to a marked text field.

Hypertext Link Support

ChangeLink Changes the target to where a hypertext link
points.

Page 72 Text Control Classes

ChangeTarget Changes the name of a hypertext target.

GetLinkLocation Retrieves the location to where a hypertext
link points.

GetTargetName Retrieves the name of a hypertext target.

InsertLink Inserts a hypertext link.

InsertTarget Inserts a hypertext target.

Table Functions

TableAttrDialog Opens Text Control's built-in dialog box for
setting table attributes.

TableDeleteLines Deletes table lines.

TableFromCaretPos Returns the table with the current input
position.

TableGetAttr Retrieves table attributes.

TableGetCellPosition Retrieves the starting and ending character
position of a table cell.

TableGetCellText Retrieves a table cell's text.

TableGetNext Enumerates tables.

TableGetRowsAndCols Retrieves the number of rows and columns.

TableInsert Inserts a table.

TableIsPossible Retrieves information whether a table can be
inserted or changed.

TableSetAttr Sets table attributes.

TableSetCellText Sets a table cell's text.

Operations with Headers and Footers

HFActivate Activates a header or a footer.

HFDisable Deletes a header or a footer or disables
settings.

HFEnable Inserts a header or a footer or enables settings.

HFGetEnabled Informs about which header or footer is
enabled.

Text Control Classes Page 73

HFGetPosition Returns a header's or a footer's position on the
page.

HFSelect Enables the programmer to manipulate the
contents of a header or footer.

HFSetPosition Sets a header's or a footer's position on the
page.

Operations with Chains of Linked Text Controls

GetLinkWnd Returns a certain window in a chain.

GetLinkWndCount Returns the number of windows in a chain.

GetLinkWndFromOffset
Returns the window belonging to a certain
character offset.

GetLinkWndNumber Returns the number of a certain window in the
chain.

GetLinkWndOffset Returns the character offset of a certain
window's first character.

SetLinkWnd Sets a new successor Text Control.

Tool Bar Support

ConnectToolBar Connects a Tool Bar with this Text Control.

DisconnectToolBar Disconnects a Tool Bar from this Text
Control.

Member Functions

CTXTextControl::CanCopy
Description: This member function informs whether a part of a Text Control's

document has been selected and can be copied to the clipboard.

Syntax: BOOL CanCopy();

Return Value: The return value is TRUE if something can be copied to the clipboard.
Otherwise it is FALSE.

Page 74 Text Control Classes

CTXTextControl::CanPaste
Description: This member function informs whether the clipboard contains a format

that can be pasted into a Text Control's document.

Syntax: BOOL CanPaste();

Return Value: The return value is TRUE if something can be pasted. Otherwise it is
FALSE.

CTXTextControl::CanRedo
Description: This member function informs whether an previously undone edit

operation can be restored.

Syntax: BOOL CanRedo(DWORD& dwRes = dwNULL);

Parameter Description

dwRes Informs what kind of operation can be restored. It can
be one of the following values:

Value: Meaning:

REDO_INSERT The next redo operation restores
inserted text.

REDO_DELETE The next redo operation deletes
restored text.

REDO_FORMAT The next redo operation restores
the last formatting operation.

Return Value: The return value is TRUE if an undone operation can be restored.
Otherwise it is FALSE.

CTXTextControl::CanUndo
Description: This member function informs whether an edit operation can be undone.

Syntax: BOOL CanUndo(DWORD& dwRes = dwNULL);

Text Control Classes Page 75

Parameter Description

dwRes Informs what kind of operation can be undone. It can be
one of the following values:

Value: Meaning:

UNDO_INSERT The next undo operation deletes
inserted text.

UNDO_DELETE The next undo operation inserts
deleted text.

UNDO_FORMAT The next undo operation resets
the last formatting operation.

Return Value: The return value is TRUE if an edit operation can be undone. Otherwise
it is FALSE.

CTXTextControl::ChangeLink
Description: This member function changes the target to where a hypertext link

points.

Syntax: BOOL ChangeLink(UINT nFieldID, const CString& strLinkTarget,
BOOL bExternal = TRUE);

Parameter Description

nFieldID Is the identifier of the marked text field that defines the
hypertext link in the text.

strLinkTarget Specifies the location to where the hypertext link points.
This can be an address or a file name if the link point to
an external location. If the link points to a location
inside the same document it must be the name of a
target field.

bExternal Must be set to TRUE if strLinkTarget defines a location
outside of the document, otherwise this parameter must
be set to FALSE.

Return Value: The return value is TRUE if the function was successful, otherwise it is
FALSE.

Page 76 Text Control Classes

See also: CTXTextControl::ChangeTarget, CTXTextControl::InsertLink,
CTXTextControl::InsertTarget

CTXTextControl::ChangeTarget
Description: This member function changes the name of a hypertext target.

Syntax: BOOL ChangeTarget(UINT nFieldID, const CString&
strTargetName);

Parameter Description

nFieldID Is the identifier of the marked text field that defines the
hypertext target in the text.

strTargetName Specifies the target's new name.

Return Value: The return value is TRUE if the target's name could be changed,
otherwise it is FALSE.

CTXTextControl::Clear
Description: This member function deletes the text of the current selection, if any.

Syntax: void Clear();

CTXTextControl::ConnectToolBar
Description: This member function connects one of the Text Control's tool bars with

this Text Control. The connected Button Bar, Ruler Bar or Status Bar
shows this Text Control's current state only if it has the input focus.

Syntax: BOOL ConnectToolBar(CTXButtonBar* pButtonBar);
BOOL ConnectToolBar(CTXRulerBar* pRulerBar);
BOOL ConnectToolBar(CTXStatusBar* pStatusBar);

Return Value: The return value is TRUE if the tool bar could be connected, otherwise
it is FALSE.

See also: CTXTextControl::DisconnectToolBar

Text Control Classes Page 77

CTXTextControl::Copy
Description: This member function copies the text of the current selection (if any) to

the clipboard.

Syntax: void Copy();

CTXTextControl::Create
Description: This member function creates a Text Control child window. Text

Control child windows must be created in two steps. First call the
constructor which creates the CTXTextControl object. Then call
Create, which creates the Text Control child window and attaches it to
CTXTextControl.

Syntax: BOOL Create(CWnd* pParentWnd, UINT nID, const CRect&
rcSize, CTXNotifyHandler* pHandler = NULL, LPLOGFONT
lpLogFont = NULL);

Parameter Description

pParentWnd Specifies the Text Control's parent window. It must not
be NULL.

nID Specifies the Text Control's identifier.

rcSize Specifies the Text Control's size and position in client
area coordinates of its parent window.

pHandler Points to a notification handler object. This parameter
can be zero if you do not want to handle notifications or
if you want to use MFC's message map entries to handle
notifications. See "Notifications" for more information.

lpLogFont Points to a LOGFONT data structure which defines the
logical font the Text Control will use.

Return Value: The function returns TRUE if the Text Control window could be
created, otherwise it returns FALSE.

See also: CTXTextControl::CTXTextControl

Page 78 Text Control Classes

CTXTextControl::CTXTextControl
Description: Constructs a CTXTextControl object.

See also: CTXTextControl::Create

CTXTextControl::Cut
Description: This member function deletes the text of the current selection (if any)

and copies the deleted text to the clipboard.

Syntax: void Cut();

CTXTextControl::DisconnectToolBar
Description: This member function disconnects a previously connected tool bar from

this Text Control.

Syntax: BOOL DisconnectToolBar(CTXButtonBar* pButtonBar);
BOOL DisconnectToolBar(CTXRulerBar* pRulerBar);
BOOL DisconnectToolBar(CTXStatusBar* pStatusBar);

Return Value: The return value is TRUE if the tool bar could be disconnected,
otherwise it is FALSE.

See also: CTXTextControl::ConnectToolBar

CTXTextControl::EmptyUndoBuffer
Description: This member function clears the undo flag of a Text Control. The undo

flag is set whenever an operation within the Text Control can be
undone.

Syntax: void EmptyUndoBuffer();

Text Control Classes Page 79

CTXTextControl::EnlargeFont
Description: This member function enlarges the pointsizes of all fonts in the current

selection.

Syntax: BOOL EnlargeFont(CSize& szMin = szNULL);

Parameter Description

szMin Text Control fills this variable with its new minimum
window size (in pixels). It is only useful if the Text
Control is used without the built-in scroll-interface.

Return Value: The return value is TRUE, if the font sizes could be enlarged.
Otherwise it returns FALSE.

CTXTextControl::FieldChangeText
Description: This member function alters the text of a marked text field.

Syntax: BOOL FieldChangeText(UINT nFieldID, const CString&
strNewText);

Parameter Description

nFieldID Is the identifier of the marked text field.

strNewText Specifies the marked text field's new text.

Return Value: The return value is FALSE if an error has occurred or if the specified
field identifier does not exist. Otherwise it is TRUE.

CTXTextControl::FieldDelete
Description: This member function deletes a marked text field. The field is deleted

independent of its attributes.

Syntax: BOOL FieldDelete(UINT nFieldID, BOOL bDeleteText = FALSE);

Parameter Description

nFieldID Is the identifier of the marked text field.

Page 80 Text Control Classes

bDeleteText If this parameter is TRUE, the field is deleted including
its text. Otherwise the field's text is not deleted.

Return Value: The return value is FALSE if an error has occurred or if the specified
field identifier does not exist. Otherwise it is TRUE.

Remarks: If a marked text field is deleted with this function, the Text Control does
not send a TN_FIELD_DELETED notification message.

CTXTextControl::FieldFromCaretPos
Description: This member function returns the field identifier of the field containing

the current input position.

Syntax: UINT FieldFromCaretPos();

Return Value: The return value is the identifier of the field containing the input
position. Zero is returned when the input position is not inside a field.

CTXTextControl::FieldGetData
Description: This member function retrieves the data, previously related to a marked

text field with FieldSetData.

Syntax: BOOL FieldGetData(UINT nFieldID, CString& strData);
BOOL FieldGetData(UINT nFieldID, DWORD& dwData);
BOOL FieldGetData(UINT nFieldID, CByteArray& arBuf);

Parameter Description

nFieldID Is the identifier of the marked text field.

strData Retrieves string data from the marked text field.

dwData Retrieves a 4-byte value from the marked text field.

arBuf Retrieves byte-data from the marked text field.

Return Value: The return value is FALSE if an error has occurred or if the specified
field does not exist. Otherwise it is TRUE.

Text Control Classes Page 81

CTXTextControl::FieldGetNext
Description: This member function returns the identifier of a marked text field that

follows the specified field in the Text Control's current text.

Syntax: UINT FieldGetNext(WORD wFieldType, UINT nFieldID = 0);

Parameter Description

wFieldType Specifies the group of fields. It can be a combination of
any of the values described in the following Values
section. If wFieldType is zero, all fields are handled.

nFieldID Specifies a field's identifier. If this parameter is zero,
the first field's identifier is returned.

Return Value: The return value is the identifier of the field which follows the specified
field in the Text Control's text. It is zero if no following fields exist.

Values: The wFieldType parameter can be a combination of the following
values:

Value Meaning

FGN_EXTERNALLINK Returns only identifiers of fields that
have the type
FT_EXTERNALLINK.

FGN_HIGHLIGHT Returns only identifiers of fields that
have the type FT_HIGHLIGHT.

FGN_INTERNALLINK Returns only identifiers of fields that
have the type FT_INTERNALLINK.

FGN_LINKTARGET Returns only identifiers of fields that
have the type FT_LINKTARGET.

FGN_PAGENUMBER Returns only identifiers of fields that
have the type FT_PAGENUMBER.

FGN_TOPIC Returns only identifiers of fields that
have the type FT_TOPIC.

FGN_CHANGEANDDELETEABLEONLY
Returns only identifiers of fields
which are changeable and deleteable.

Page 82 Text Control Classes

FGN_UNCHANGEABLEONLY Returns only identifiers of fields
which are unchangeable.

FGN_UNDELETEABLEONLY Returns only identifiers of fields
which are undeleteable.

CTXTextControl::FieldGetPosition
Description: This member function retrieves the start and end character positions of a

marked text field.

Syntax: BOOL FieldGetPosition(UINT nFieldID, DWORD& dwPosStart,
DWORD& dwPosEnd);

Parameter Description

nFieldID Is the identifier of the marked text field.

dwPosStart Receives the field's start position.

dwPosEnd Receives the field's start position.

Return Value: The return value is FALSE if an error has occurred or if the specified
field identifier does not exist, otherwise it is TRUE.

Remarks: The start position is the one-based character position of the first
character associated with the field. The end position is the one-based
character position of the last character associated with the field. If a
marked text field contains no text the end position is one less than the
start position.

CTXTextControl::FieldGetText
Description: This member function retrieves the text of a marked text field.

Syntax: BOOL FieldGetText(UINT nFieldID, CString& strBuffer);

Parameter Description

nFieldID Is the identifier of the marked text field.

strBuffer Is a buffer receiving the field's text.

Text Control Classes Page 83

Return Value: The return value is FALSE if an error has occurred or if the specified
field identifier does not exist, otherwise it is TRUE.

CTXTextControl::FieldGetType
Description: This member function retrieves the type of a marked text field.

Syntax: BYTE FieldGetType(UINT nFieldID);

Parameter Description

nFieldID Is the identifier of the marked text field.

Return Value: The return value is the type of the specified marked text field. It can be
one of the following values:

Type Description

FT_EXTERNALLINK The field is the source of a hypertext link to a
location outside of the document.

FT_INTERNALLINK The field is the source of a hypertext link to a
location in the same document.

FT_LINKTARGET The field is a position in a document which is
the target of a hypertext link.

FT_PAGENUMBER The field displays the current page number.

FT_STANDARD The field is a standard marked text field
without a special type.

CTXTextControl::FieldGoto
Description: This member function sets the current input position at the beginning of

the specified marked text field and scrolls the text so that this position is
at the top of the Text Control's client area.

Syntax: BOOL FieldGoto(UINT nFieldID);
BOOL FieldGoto(const CString& strTargetname);

Page 84 Text Control Classes

Parameter Description

nFieldID Specifies the identifier of the marked text field to which
should be scrolled.

strTargetname Specifies the name of the marked text field to which
should be scrolled if the field is a hypertext target

Return Value: The return value is FALSE if the specified field does not exist.
Otherwise it is TRUE.

CTXTextControl::FieldHasAttr
Description: This member function returns TRUE if a marked text field has the

specified attributes.

Syntax: BOOL FieldHasAttr(UINT nFieldID, DWORD dwAttr);

Parameter Description

nFieldID Is the identifier of the marked text field.

dwAttr Specifies one or more field attributes. See
TXTextControl::FieldInsert for more information
which attributes are possible.

Return Value: The return value is TRUE if the field has the specified attributes.
Otherwise it is FALSE.

See Also: TXTextControl::FieldSetAttr

CTXTextControl::FieldInsert
Description: This member function inserts a new marked text field at the current

input position or defines selected text as a marked text field.

Syntax: UINT FieldInsert(const CString& strFieldText = "", DWORD dwAttr
= 0, UINT nReserved = 0);

Parameter Description

strFieldText Specifies the field's text. If text is selected Text Control
defines this text as the field's field.

Text Control Classes Page 85

dwAttr Specifies one or more attributes described in the
following Values section.

nReserved A reserved parameter for future use.

Return Value: The return value is the identifier for the newly created field. It is zero if
an error has occurred.

Values: The dwAttr parameter can be a combination of the following values:

Value Meaning

TF_DELETEABLE Set if the marked text field can be
deleted.

TF_UNDELETEABLE Set if the marked text field cannot be
deleted.

TF_CHANGEABLE Set if the text of a marked text field
can be changed.

TF_UNCHANGEABLE Set if the text of a marked text field
cannot be changed.

TF_EXTEDITMODE Set if the specified marked text field
can be edited with a second input
position at the beginning and the end
of a field.

TF_NORMALEDITMODE Set if the specified marked text field
is edited in normal mode.

TF_SHOWCURFIELDGRAY Set if the specified marked text field
is displayed with a gray background
when it contains the current
character input position.

TF_SHOWCURFIELDNORMAL Set if the specified marked text field
is not displayed with a gray
background.

TF_USEFIELDCARET Set if the caret for marked text fields
is used in the specified field. This
caret can be defined with
CTXTextControl::SetCaretExt.

Page 86 Text Control Classes

TF_USETEXTCARET Set if the normal text caret is used in
the specified field.

TF_ENABLEDBLCLICKS Set if normal double-click
processing is performed inside
marked text fields, which starts a
wordwise selection.

TF_DISABLEDBLECLICKS Set if the normal double-click
processing inside marked text fields
is disabled.

The attributes are grouped. The following attributes cannot be used
together:

TF_DELETEABLE and TF_UNDELETEABLE
TF_CHANGEABLE and TF_UNCHANGEABLE
TF_NORMALEDITMODE and TF_EXTEDITMODE
TF_SHOWCURFIELDNORMAL and TF_SHOWCURFIELDGRAY
TF_USETEXTCARET and TF_USEFIELDCARET
TF_DISABLEDBLCLICKS and TF_ENABLEDBLCLICKS

The default attributes for a newly created field are TF_DELETEABLE,
TF_CHANGEABLE, TF_NORMALEDITMODE,
TF_SHOWCURFIELDNORMAL, TF_USETEXTCARET and
TF_DISABLEDBLCLICKS

If a field is undeleteable or unchangeable and the user tries to delete or
to change that field, the Text Control beeps.

If a Text Control is destroyed or the text is completely exchanged, the
field attributes are ignored and all fields are deleted. In that case
TN_FIELD_DELETED notifications are not sent.

CTXTextControl::FieldSetAttr
Description: This member function sets attributes for the specified marked text field.

Changing one attribute does not alter other attributes.

Syntax: BOOL FieldSetAttr(UINT nFieldID, DWORD dwAttr);

Text Control Classes Page 87

Parameter Description

nFieldID Is the identifier of the marked text field.

dwAttr Specifies one or more field attributes. See
TXTextControl::FieldInsert for more information
which attributes are possible.

Return Value: The return value is FALSE if the new attributes could not be set or if
the specified field identifier does not exist. Otherwise it is TRUE.

CTXTextControl::FieldSetData
Description: This member function can be used to relate any data to a marked text

field. The data is stored independently of its contents.

Syntax: BOOL FieldSetData(UINT nFieldID, const CString& strData);
BOOL FieldSetData(UINT nFieldID, DWORD dwData);
BOOL FieldSetData(UINT nFieldID, LPBYTE pBuf, DWORD
dwDataSize);

Parameter Description

nFieldID Is the identifier of the marked text field.

strData Stores string data.

dwData Stores a 4-byte value.

pBuf Points to a buffer containing general byte-data.

dwDataSize Specifies the number of bytes stored in the buffer pBuf
points to.

Return Value: The return value is FALSE if the specified field does not exist or when
the data could not be stored. Otherwise it is TRUE.

CTXTextControl::FindText
Description: This member function opens the system-defined modeless search dialog

box (first prototype) or searches for a specified text string (second
prototype). This makes it possible for the user to find text within a Text
Control's contents.

Page 88 Text Control Classes

Syntax: void FindText();
UINT FindText(const CString& strFindWhat, DWORD dwFlags =
TXFR_MATCHCASE, LONG lStart = 0);

Parameter Description

strFindWhat Specifies the string to search for.

dwFlags Specifies a combination of the following flags:

Value Description

TXFR_MATCHCASE Indicates case-sensitive
searches.

TXFR_NOHIGHLIGHT Determines if a match
appears highlighted.

TXFR_NOMESSAGEBOX Suppresses the built-in
message boxes which
inform the user that a
match could not be found.

TXFR_SEARCHUP Determines the direction of
searches through a
document. If this flag is
used, the search direction
is up; if the flag is not
used, the search direction
is down.

lStart Specifies a character index that determines where to
begin the search. The first character of text in the
control has an index of 0. When this parameter is set to
-1, the search begins at the current input position.

Return Value: The return value is the index of the first character of the match if the
text, searched for is found. If the specified text is not found, the return
value is -1.

Text Control Classes Page 89

CTXTextControl::FontDialog
Description: This member function opens a modal dialog box which contains all

available fonts and pointsizes for the currently selected printer. Font
attributes and values for subscript and superscript can also be set.

Syntax: BOOL FontDialog(CSize& szMin = szNULL, BOOL& bChanged =
bNULL);

Parameter Description

szMin Text Control fills this variable with its new minimum
window size (in pixels). It is only useful if the Text
Control is used without the built-in scroll-interface.

bChanged Retrieves TRUE if the dialog box has been left with Ok.
Otherwise it retrieves FALSE.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::GetBackgroundColor
Description: This member function retrieves a RGB value for the background color

of the Text Control.

Syntax: BOOL GetBackgroundColor(COLORREF& colBack, BOOL&
bIsSysColor = bNULL);

Parameter Description

colBack Retrieves the background color.

bIsSysColor Retrieves TRUE if colBack is the system color for the
window background. Otherwise it retrieves FALSE.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

Page 90 Text Control Classes

CTXTextControl::GetBaseLine
Description: This member function returns the baseline alignment value of the

currently selected text.

Syntax: WORD GetBaseLine(WORD& wBaseAlign = wNULL);

Parameter Description

wBaseAlign Retrieves the baseline alignment value in twips. Nothing
is retrieved if the return value is FA_NOCOMMONS.

Return Value: The return value is one of the following values:

Value Meaning

FA_NOCOMMONS The current selection contains different
subscript and superscript values.

FA_STANDARD The common baseline alignment value is zero.

FA_SUPERSCRIPT The common baseline align is superscript.

FA_SUBSCRIPT The common baseline align is subscript.

CTXTextControl::GetBaseLinePos
Description: This member function returns the baseline position of the specified

line. The dimensions are given in twips with an origin at the upper left
corner of the text. The relationship between the upper left corner of the
text and the upper left corner of the Text Control's client area can be
obtained with GetTXScrollPos.

Syntax: DWORD GetBaseLinePos(LONG lIndex);

Parameter Description

lIndex Specifies the index of the line which baseline position
should be returned. The index of the first line is zero.

Return Value: The return value specifies the requested baseline position in twips.

Text Control Classes Page 91

CTXTextControl::GetCaretExt
Description: This member function returns the current extension of the caret in pixel.

Syntax: CSize GetCaretExt();

Return Value: Specifies the caret extension in pixels.

CTXTextControl::GetDevice
Description: This member function returns the device for which the text is currently

formatted (screen, standard device or printer).

Syntax: DWORD GetDevice(CString& strDevName, WORD wMaxChar =
255);

Parameter Description

strDevName Retrieves the device name if the return value is
TF_PRINTER.

wMaxChar Specifies the device name's maximum length.

Return Value: The return value is one of the following values:

Value Meaning

TF_SCREEN The device is the screen.

TF_STANDARD The device is the standard device, specified in
the [windows] section of the WIN.INI file.

TF_PRINTER The device is a printer.

Remarks: The name of the printer is copied in the same format as that used in the
WIN.INI file, for example:
PostScript Printer,PSCRIPT,LPT1:

CTXTextControl::GetFont
Description: This member function retrieves the common fontname and size of all

currently selected fonts.

Syntax: UINT GetFont(CString& strFont, BOOL bPoints = TRUE);

Page 92 Text Control Classes

Parameter Description

strFont Retrieves the typeface string. The string is set to an
empty string if no common typeface exists.

bPoints When set to TRUE the returned pointsize is in points,
otherwise it is returned in twips.

Return Value: The return value is the common pointsize. It is zero if no common
pointsize exists.

CTXTextControl::GetFontAttr
Description: This member function returns a bitmask of the font attributes for all

fonts in the current selection.

Syntax: DWORD GetFontAttr();

Return Value: The return value is zero if an error has occurred. Otherwise it is one or
more of the following values, indicating the common attributes:

Value Meaning

FA_NOCOMMONS No common font attributes.

FA_BOLD Each font is bold.

FA_STANDARD Each font is normal.

FA_ITALIC Each font is italic.

FA_UNDERLINE Each font is underlined.

FA_STRIKEOUT Each font is struck out.

FA_UL_DOUBLE Each font is doubled underlined.

FA_UL_WORDSONLY Words are underlined, word gaps are omitted.

FA_UL_REDZIGZAG Each font is underlined with a red zigzag line.

CTXTextControl::GetImageFilters
Description: This member function retrieves pairs of null-terminated strings

specifying image filters. The first string in each pair is a display string
that describes the filter (for example, „Windows Bitmap“), and the

Text Control Classes Page 93

second string specifies the filter pattern (for example, „*.BMP“). This is
the same format as described in the Windows SDK for the lpstrFilter
member of an OPENFILENAME structure and therefore the strings
can be used to initialize the GetOpenFileName dialog box.

Syntax: BOOL GetImageFilters(CString& strFilters);

Parameter Description

strFilters Retrieves the pairs of strings. The last pair ends with
two terminating zero characters.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::GetLanguage
Description: This member function returns the current language identifier for the

language which the Text Control is using to display information strings,
warnings or dialog boxes.

Syntax: UINT GetLanguage();

Return Value: The return value is the language identifier. See
CTXTextControl::SetLanguage for possible values.

CTXTextControl::GetLineAndCol
Description: This member function retrieves page, line and column number of the

current input position. All values are one-based. Text Control's status
bar uses this function to display the page, line and column number.

Syntax: BOOL GetLineAndCol(DWORD& dwLine, DWORD& dwCol,
UINT& nPage);

Parameter Description

dwLine Retrieves the line number.

dwCol Retrieves the column number.

nPage Retrieves the page number.

Page 94 Text Control Classes

Return Value: The return value is FALSE if an error has occurred, otherwise it is
TRUE.

CTXTextControl::GetLineCount
Description: This member function returns the number of text lines in the Text

Control.

Syntax: long GetLineCount();

Return Value: The return value is the number of text lines.

CTXTextControl::GetLineRect
Description: This member function retrieves the rectangular area covered by a line of

text. The rectangle does not include the external leading area, additional
linespacing or indents. The dimensions are given in twips with an origin
at the upper left corner of the Text Control's complete text. The
relationship between the upper left corner of the complete text and the
upper left corner of the Text Control's client area can be obtained with
CTXTextControl::GetTXScrollPos.

Syntax: void GetLineRect(LONG lLineIndex, CRect& rcLine);

Parameter Description

lLineIndex Specifies the index of the line whose rectangle is to be
retrieved. The index of the first line is zero.

rcLine Retrieves the line's rectangle.

CTXTextControl::GetLineSpacing
Description: This member function retrieves the line spacing of all selected

paragraphs.

Syntax: void GetLineSpacing(WORD& wLineSpace, WORD& wPercent =
wNULL);

Text Control Classes Page 95

Parameter Description

wLineSpace Retrieves the line spacing in twips. It is set to zero if
there is no common value.

wPercent Retrieves the line spacing as a percentage of the font
size. It is set to zero if there is no common value.

CTXTextControl::GetLinkLocation
Description: This member function retrieves the location to where a hypertext link

points.

Syntax: BOOL GetLinkLocation(UINT nFieldID, CString& strText);

Parameter Description

nFieldID Is the identifier of a marked text field.

strText Retrieves the location to where the link points.

Return Value: The return value is FALSE if an error has occurred or if the specified
marked text field does not represent the source of a hypertext link.
Otherwise it returns TRUE.

CTXTextControl::GetLinkWnd
Description: This member function searches for the handle of a window that is part

of a chain of Text Control windows.

Syntax: HWND GetLinkWnd(DWORD dwLnkWnd);

Parameter Description

dwLnkWnd Specifies the relationship between the window for
which this function is called and the returned window.
Possible values are listed in the following Values
section.

Return Value: The return value is the handle of the requested window. It is zero if the
window could not be found.

Values: Possible values for dwLnkWnd are:

Page 96 Text Control Classes

Value Meaning

GWTX_HWNDFIRST Returns the first window of a chain
of linked windows.

GWTX_HWNDLAST Returns the last window of a chain
of linked windows.

GWTX_HWNDNEXT Returns the window that follows the
specified window.

GWTX_HWNDPREV Returns the previous window of a
chain of linked windows.

GWTX_HWNDFIRSTSEL Returns the first window of a chain
of linked windows that contains
selected text.

GWTX_HWNDLASTSEL Returns the last window of a chain
of linked windows that contains
selected text.

CTXTextControl::GetLinkWndCount
Description: This member function returns the total number of windows that belong

to a chain of linked windows.

Syntax: UINT GetLinkWndCount();

Return Value: Is the number of windows in the chain.

CTXTextControl::GetLinkWndFromOffset
Description: This member function returns the window of a chain of linked Text

Controls that contains the specified one-based character offset.

Syntax: HWND GetLinkWndFromOffset(LONG lOffset);

Parameter Description

lOffset Specifies a one-based character offset.

Return Value: The return value is the window containing the character offset, or zero if
the window could not be found.

Text Control Classes Page 97

CTXTextControl::GetLinkWndNumber
Description: This member function returns the chain position of a window within a

chain of linked Text Controls. The first window is assigned position
one.

Syntax: UINT GetLinkWndNumber();

Return Value: Specifies the position number.

CTXTextControl::GetLinkWndOffset
Description: This member function returns the one-based character offset of this

window's first character relative to the complete text in a chain of linked
Text Controls.

Syntax: LONG GetLinkWndOffset();

Return Value: The return value is the offset of this window's first character in the
chain.

CTXTextControl::GetMode
Description: This member function returns all the Text Control's current mode

settings.

Syntax: DWORD GetMode(DWORD& dwModeEx = dwNULL, CSize&
szMax = szNULL);

Parameter Description

dwModeEx Retrieves extended mode settings. Extended mode
settings are described in the following Values section.

szMax This parameter is only useful when the Text Control
operates in autoexpand mode. It is filled with the
current maximum window size to which the window
can expand (in pixels).

Return Value: The return value specifies Text Control's current mode settings. It can
be a combination of the following values:

Page 98 Text Control Classes

Value Meaning

TF_AUTOEXPAND The Text Control's window will be
automatically expanded when text insertion
or format changes result in text that does
not fit into the Text Control anymore.

TF_FIXED The Text Control's window size is fixed
and is not automatically expanded.

TF_FRAMED The Text Control window is drawn with a
frame of 1 pixel width.

TF_NOTFRAMED The Text Control window is drawn without
a frame.

TF_SHOWSELNA A text selection remains visible when the
control looses the input focus.

TF_HIDESELNA A text selection is hidden when the control
looses the input focus.

TF_SHOWWHITESPACE Control characters are made visible.

TF_HIDEWHITESPACE Control characters are hidden.

TF_OVERWRITE Newly inserted characters overwrite
existing characters.

TF_INSERT Newly inserted characters are inserted.

TF_REPLACESEL The text of a current selection is deleted
before new text is inserted.

TF_KEEPSEL The text of a current selection is not
deleted before new text is inserted.

TF_OPAQUE The control's background is opaque.

TF_TRANSPARENT The control's background is transparent.

Values: The dwModeEx parameter retrieves the following extended mode
settings:

Value Meaning

TF_DISPLAY Text Control only displays text.

TF_READONLY Text control displays text and the
user can select and copy it.

Text Control Classes Page 99

TF_EDIT Text Control displays text and the
user can select and edit it.

TF_NOWAITCURSOR Text Control does not change the
cursor to an hourglass during long
time operations.

TF_WAITCURSOR Text Control changes the cursor to
an hourglass during long time
operations.

TF_TOPINDENTFIRSTPG Text Control allows a top indent for
the first paragraph in the text.

TF_NOTOPINDENTFIRSTPG Text Control suppresses a top indent
of the first paragraph.

TF_ERRORBOXES Text Control displays error message
boxes.

TF_NOERRORBOXES Text Control suppresses all error
message boxes.

TF_SHOWGRIDLINES Text Control shows grid lines in
tables.

TF_HIDEGRIDLINES Text Control hides grid lines in
tables.

CTXTextControl::GetPageCount
Description: This member function returns the current number of pages.

Syntax: UINT GetPageCount(LONG lHeight);

Parameter Description

lHeight Specifies the height of the page in twips. This parameter
is ignored if Text Control operates in page view mode.

Return Value: The return value is the number of pages.

Page 100 Text Control Classes

CTXTextControl::GetPageMargins
Description: This member function retrieves the current page margins.

Syntax: BOOL GetPageMargins(CRect& rcMargins);

Parameter Description

rcMargins Retrieves the page margins in twips.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::GetPageSize
Description: This member function retrieves the document's page size and view

settings.

Syntax: BOOL GetPageSize(CSize& szText, UINT& nViewMode, UINT&
nScrollInterface);

Parameter Description

szText Retrieves the document's page size without
page margins. A value of zero indicates that a
page size has not been set. In this case the text
is formatted in the borders of the Text
Control's client area.

nViewMode Retrieves the current view mode. See
CTXTextControl::SetPageSize for possible
values.

nScrollInterface Retrieves the current scroll interface settings.
See CTXTextControl::SetPageSize for
possible values.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

Text Control Classes Page 101

CTXTextControl::GetParaAlignment
Description: This member function returns the paragraph alignment value of the

currently selected paragraphs.

Syntax: DWORD GetParaAlignment();

Return Value: The return value is zero if an error has occurred. Otherwise it is one of
the following values:

Value Meaning

TF_LEFT Text is left-aligned.

TF_RIGHT Text is right-aligned.

TF_CENTER Text is centered.

TF_BLOCK Text is block formatted.

TF_NOCOMMONS No common text alignment.

CTXTextControl::GetParaFormatFlags
Description: This member function returns advanced formatting attributes of all

selected paragraphs.

Syntax: DWORD GetParaFormatFlags();

Return Value: The return value is a combination of the formatting attributes. Possible
values are listed in the Values section of
CTXTextControl::SetParaFormatFlags.

CTXTextControl::GetParaFrame
Description: This member function retrieves the appearance, style, line width and

text distance for the frames of all selected paragraphs.

Syntax: DWORD GetParaFrame(WORD& wWidth, WORD& wDistance);

Page 102 Text Control Classes

Parameter Description

wWidth Retrieves the paragraph frame's line width in twips.
Zero indicates that the selected paragraphs have
different frame widths.

wDistance Retrieves the distance between frame and text in twips.
A value of -1 indicates that the selected paragraphs have
different distances.

Return Value: The return value is a combination of frame appearance and style flags.
The following values are possible:

Value Meaning

BF_LEFTLINE The frame has a left line.

BF_RIGHTLINE The frame has a right line.

BF_TOPLINE The frame has a top line.

BF_BOTTOMLINE The frame has a bottom line.

BF_BOX The frame is a complete box.

BF_TABLINES The frame includes vertical lines at each
tabulator position.

BF_TABLE The frame is a complete box including vertical
lines at each tabulator position.

BF_SINGLE The lines are single lines.

BF_DOUBLE The lines are doubled lines.

BF_BOXCONNECT The frame is connected with the frames of the
neighbouring paragraphs.

CTXTextControl::GetParaIndents
Description: This member function retrieves the paragraph indents of all selected

paragraphs.

Syntax: BOOL GetParaIndents(CRect& rcIndents, int& iFirstIndent,
CSize& szMaxNew = szNULL);

Text Control Classes Page 103

Parameter Description

rcIndents Retrieves the paragraphs' indent values. If a value
contains TR_IGNORED, no common value of this
indent exists for the selected paragraphs.

iFirstIndent Retrieves an additional left indent of the first line. This
value can be negative indicating that the left indent of
the first line is smaller than the left indent of the
following lines. TR_IGNORED is retrieved if no
common value exists for all paragraphs.

szMaxNew Retrieves maximum values for a combination of new
indents that can be set with SetParaIndents. The x-
value is the maximum value for the sum of left indent,
right indent and additional indent of the first line. The
y-value is the maximum value for the top indent and the
bottom indent. These values become invalid if the size
of the Text Control is changed.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::GetSel
Description: This member function retrieves the starting and ending positions of the

current text selection.

Syntax: BOOL GetSel(long& lStart, long& lEnd);

Parameter Description

lStart Specifies the zero-based text input position where the
user has started the current text selection.

lEnd Specifies the zero-based input position where the user
has ended the current text selection.

Return Value: The return value is FALSE if an error has occurred, otherwise it is
TRUE.

Page 104 Text Control Classes

CTXTextControl::GetSelText
Description: This member function returns currently selected text.

Syntax: CString GetSelText();

Return Value: The return value is a string variable containing the selected text.

CTXTextControl::GetSupportedFonts
Description: This member function retrieves all the font names which are supported

by the current output device.

Syntax: BOOL GetSupportedFonts(CStringArray& arFonts);

Parameter Description

arFonts Retrieves the font names.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::GetSupportedSizes
Description: This member function retrieves all point sizes which are supported for a

certain font by the current output device.

Syntax: BOOL GetSupportedSizes(const CString& strFontName,
CStringArray& arSizes);

Parameter Description

strFontName Specifies the name of the font, the sizes of which are to
be retrieved.

arSizes Retrieves the font sizes.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

Text Control Classes Page 105

CTXTextControl::GetTabs
Description: This member function retrieves common tab positions and types for all

selected paragraphs.

Syntax: BOOL GetTabs(LPTABSCT pTabs, BOOL bTwips = TRUE);

Parameter Description

pTabs Points to an array of type TABSCT and size NTABS.
See Data Structures for a description of the TABSCT
structure.

bTwips When this parameter is set to TRUE the retrieved
position values are in twips, otherwise they are in
pixels.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::GetTargetName
Description: This member function retrieves the name of a hypertext target.

Syntax: BOOL GetTargetName(UINT nFieldID, CString& strText);

Parameter Description

nFieldID Is the identifier of a marked text field.

strText Retrieves the name of a hypertext target.

Return Value: The return value is FALSE if an error has occurred or if the specified
marked text field does not represent the target of a hypertext link.
Otherwise it returns TRUE.

CTXTextControl::GetText
Description: This member function retrieves the Text Control's text. The text is in

Text Control's generic text format and can be used to work with
functions that use character indices like CTXTextControl::SetSel or
CTXTextControl::LineFromChar. To get the text in a Windows

Page 106 Text Control Classes

compatible generic text format, for example to exchange it with a
Windows Edit Control, use CTXTextControl::SaveToMemory with
the format identifier set to TF_FORMAT_ANSI or
TF_FORMAT_UNICODE.

Syntax: BOOL GetText(CString& strText, DWORD dwCount = 0);

Parameter Description

strText Retrieves the text.

dwCount Specifies the maximum number of characters to be
copied, including the terminating zero character. If
dwCount is zero the complete text is retrieved.

Return Value: The return value is TRUE if text is retrieved. Otherwise it is FALSE.

CTXTextControl::GetTextColor
Description: This member function retrieves RGB values for the text color and the

text background color of the currently selected text.

Syntax: DWORD GetTextColor(COLORREF& colFG, COLORREF&
colBG);

Parameter Description

colFG Retrieves the text color.

colBG Retrieves the text background color.

Return Value: The low-order word of the return value informs about the type of the
text color. It can contain one of the following values:

Value Meaning

CV_UNDEFINED The current selection contains more than one
text color.

CV_TEXTDEFAULT The text color is the system color for the
window text.

CV_TEXTUSER The text color is a user-defined value.

The high-order word of the return value informs about the type of the
text background color. It can contain one of the following values:

Text Control Classes Page 107

Value Meaning

CV_UNDEFINED The current selection contains more than one
color for the text background.

CV_BKDEFAULT The text background color is the system color
for the window background.

CV_BKCONTROL The text background color is the Text
Control's background color, set with
CTXTextControl::SetBackgroundColor.

CV_BKUSER The text background color is a user-defined
value.

CTXTextControl::GetTextLength
Description: This member function returns the length of the text in characters.

Syntax: DWORD GetTextLength();

CTXTextControl::GetTextSize
Description: This member function retrieves the dimensions of the text in twips.

Syntax: BOOL GetTextSize(CSize& szText);

Parameter Description

szText Retrieves the width and the height of the text the Text
Control currently contains.

Return Value: The return value is TRUE if the function is successful. Otherwise it is
FALSE.

CTXTextControl::GetTXScrollPos
Description: This member function returns the current scroll position.

Syntax: DWORD GetTXScrollPos(WORD wDir);

Page 108 Text Control Classes

Parameter Description

wDir Specifies the direction. It can be one of the following
values:

Value Meaning

TF_HSCROLL Returns the horizontal scroll
position.

TF_VSCROLL Returns the vertical scroll
position.

Return Value: The return value is the current scroll position of the client area's upper
left corner in twips.

CTXTextControl::GetZoom
Description: This member function returns the current zoom factor in percent.

Syntax: UINT GetZoom();

CTXTextControl::HFActivate
Description: This member function activates or deactivates a header or a footer.

During activation the current input focus is set in the header or footer
area, so that the user can alter the text and/or the format. During
deactivation the input focus is set back to the main text.

Syntax: BOOL HFActivate(LONG lWhat);

Parameter Description

lWhat When this parameter is zero the currently activated
header or footer is deactivated. Otherwise it specifies
the header or footer to activate and can be one of the
following values:

Value Description

TF_HF_HEADER Activates the header area.

TF_HF_1STHEADER Activates the header area for
the first page.

Text Control Classes Page 109

TF_HF_FOOTER Activates the footer area.

TF_HF_1STFOOTER Activates the footer area for
the first page.

Return Value: The return value is TRUE if the header or footer could be activated.
Otherwise it is FALSE.

CTXTextControl::HFDisable
Description: This member function disables certain parts of the header and footer

functionality.

Syntax: BOOL HFDisable(LONG lWhat);

Parameter Description

lWhat When this parameter is zero, all currently enabled
header and footer functionality is disabled and all
allocated memory is freed. Other possible values are
described in Values.

Return Value: The return value is TRUE if at least one header, footer or style setting
has been disabled. Otherwise it is FALSE.

Values: lWhat can be a combination of the following values:

Value Description

TF_HF_HEADER Disables headers.

TF_HF_1STHEADER Disables a special header for the first
page.

TF_HF_FOOTER Disables footers.

TF_HF_1STFOOTER Disables a special footer for the first
page.

TF_HF_MOUSECLICK Disables activation through single
mouse clicks.

TF_HF_NOMOUSEDBLCLK Enables activation through mouse
double-clicks.

Page 110 Text Control Classes

TF_HF_SOLIDFRAME Enables activation through mouse
double-clicks.

TF_HF_UNFRAMED Resets the border to framed.

CTXTextControl::HFEnable
Description: This member function enables the usage of headers and footers. Headers

and footers can only be used when a user-defined page size has been set
with CTXTextControl::SetPageSize.

This message can only be used to add a certain header or footer or a
certain style setting. To disable a certain functionality use
CTXTextControl::HFDisable. For example when activation with
mouse clicks is enabled, calling this function with
TF_HF_SOLIDFRAME displays an activated header or footer with a
solid frame. Activation with mouse clicks remains active.

Syntax: BOOL HFEnable(LONG lWhat);

Parameter Description

lWhat Specifies what to enable. See the following Values
section for possible values.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

Values: lWhat can be a combination of the following values:

Value Description

TF_HF_STANDARD Enables headers and footers with a
special header and footer on the first
page. Headers and footers can be
activated through mouse double-
clicks. An activated header or footer
has a dotted border to indicate its
size.

TF_HF_HEADER Enables headers only.

Text Control Classes Page 111

TF_HF_1STHEADER Enables only a special header for the
first page.

TF_HF_FOOTER Enables footers only.

TF_HF_1STFOOTER Enables only a special footer for the
first page.

TF_HF_MOUSECLICK Headers and footers can be activated
through single mouse clicks.

TF_HF_NOMOUSEDBLCLK Headers and footer cannot be
activated through mouse double-
clicks.

TF_HF_SOLIDFRAME An activated header or footer has a
solid border to indicate its size.

TF_HF_UNFRAMED An activated header or footer has no
border.

CTXTextControl::HFGetEnabled
Description: This member function returns which headers and/or footers are enabled

for the current document.

Syntax: DWORD HFGetEnabled();

Return Value: The return value is a combination of the following values:

Value Description

TF_HF_HEADER Headers are enabled.

TF_HF_1STHEADER A special header for the first page is enabled.

TF_HF_FOOTER Footers are enabled.

TF_HF_1STFOOTER A special footer for the first page is enabled.

CTXTextControl::HFGetPosition
Description: This member function returns a header's or footer's position. For headers

the position value is the distance between the top of the header and the
top of the page. For footers the position value is the distance between

Page 112 Text Control Classes

the bottom of the footer and the bottom of the page. All values are in
twips. The default value is 567 twips = 1 cm.

Syntax: DWORD HFGetPosition(LONG lWhat);

Parameter Description

lWhat Specifies the header or footer the position of which is
requested. It can be one of the following values:

Value Meaning

TF_HF_HEADER Returns the header's position.

TF_HF_1STHEADER Returns the position of the
special header for the first
page.

TF_HF_FOOTER Returns the footer's position.

TF_HF_1STFOOTER Returns the position of the
special footer for the first
page.

Return Value: The return value is the requested position in twips. It is -1, if an error
has occured.

CTXTextControl::HFSelect
Description: This member function defines, whether a certain Text Control function

handles a header, a footer or the main text. The Text Control's button
bar, ruler and status bar need the default automatic mode for correct
working. Therefore when a text part selection is not longer needed it
should be reset to the default automatic mode.

Syntax: BOOL HFSelect(LONG lWhat);

Parameter Description

lWhat Specifies the text part to select. It can be one of the
following values:

Value Meaning

TF_HF_HEADER Selects the header.

Text Control Classes Page 113

TF_HF_1STHEADER Selects the special header for
the first page.

TF_HF_FOOTER Selects the footer.

TF_HF_1STFOOTER Selects the special footer for
the first page.

TF_HF_AUTO Selects the automatic mode. A
function call handles the text
part with the current input
position. This is the default
setting.

TF_HF_MAINTEXT Selects the main text.

Return Value: The return value is TRUE if the selection was successful. Otherwise, it
is FALSE.

CTXTextControl::HFSetPosition
Description: This member function sets a new position for a header or footer. For

headers the position value is the distance between the top of the header
and the top of the page. For footers the position value is the distance
between the bottom of the footer and the bottom of the page. All values
are in twips. The default value is 567 twips = 1 cm.

Syntax: BOOL HFSetPosition(LONG lWhat, LONG lPos);

Parameter Description

lWhat Specifies the header or footer the position of which is to
be set. It can be one of the following values:

Value Meaning

TF_HF_HEADER Sets the header's position.

TF_HF_1STHEADER Sets the position of the special
header for the first page.

TF_HF_FOOTER Sets the footer's position.

TF_HF_1STFOOTER Sets the position of the special
footer for the first page.

Page 114 Text Control Classes

lPos Specifies the new position.

Return Value: The return value is TRUE if the position could be set, otherwise it is
FALSE.

CTXTextControl::InputPosFromPoint
Description: This member function returns the text input position belonging to a

certain geometric position. The text input position is relative to the
beginning of the text and the geometric position is a position in the
visible part of the text.

Syntax: long InputPosFromPoint(const CPoint& ptPos, BOOL bTwips =
TRUE);

Parameter Description

ptPos Specifies the geometric position.

bTwips When this parameter is set to TRUE the position values
are in twips, otherwise they are in pixels.

Return Value: The return value specifies the text input position beginning with zero for
the position in front of the first character. The return value is -1, if a text
position could not be found.

CTXTextControl::InsertImage
Description: This member function inserts an image in a Text Control's document.

Syntax: UINT InsertImage(
const CString& strFileName,
WORD wImageFlags = 0,
UINT nFilterIndex = 0,
LONG lTextPos = -1,
WORD wInsertMode = EOM_INSERTASCHAR,
BOOL bMoveable = TRUE,
BOOL bSizeable = TRUE,
const CPoint& ptPos = CPoint(0, 0),
const CSize& szScale = CSize(100, 100),

Text Control Classes Page 115

const CRect& rcDistances = CRect(0, 0, 0, 0),
WORD& wError = wNULL);

Parameter Description

strFileName Specifies the image's filename.

wImageFlags Specifies mode settings for the image. The following
values are possible:

Value Meaning

ICF_GRAYED The image is displayed in fast
display mode.

ICF_SAVEASDATA Text Control saves the image
using its data instead of its
filename.

ICF_BKGNDIMAGE Inserts an image that can serve
as a background for other
sibling transparent controls.

nFilterIndex Specifies an image filter as an index of the string pairs
retrieved through CTXTextControl::GetImageFilters.
The first pair of strings has the index value 1. If the
string pairs are used to initialize the lpstrFilter member
of an OPENFILENAME structure, another member of
that structure, nFilterIndex, can be used to initialize this
parameter. See the Windows SDK for more information
about the OPENFILENAME structure. If nFilterIndex
is set to 0, the Text Control automatically tries to select
a filter.

lTextPos Specifies the text position where to insert the image. If
lTextPos is -1 the image is inserted at the current input
position.

wInsertMode Specifies how the image is handled when the text is
formatted. See the following Values section for possible
values.

Page 116 Text Control Classes

bMoveable The image can be moved by depressing the ALT key
and then dragging it with the mouse when this
parameter is TRUE.

bSizeable The image can be sized with the mouse (by depressing
the ALT key) when this parameter is TRUE.

ptPos Specifies the position where to insert the image. The
position values must be in twips with an origin at the
upper left corner of the complete text.
The relationship between the upper left corner of the
complete text and the upper left corner of the Text
Control's client area can be obtained with
CTXTextControl::GetTXScrollPos.

szScale Specifies scaling factors.

rcDistances Specifies distances between the image and the text.

wError Retrieves an error code. This parameter is set only when
the function returns zero. It can be one of the following
values:

Value Meaning

0 General error.

1 The file does not exist or cannot be opened.

2 The file is of an unknown type.

3 The file contains an unsupported compression
scheme.

4 The file contains an unsupported version.

5 The file contains an unsupported style.

6 The filter cannot be found.

7 The filter uses an unknown interface.

Return Value: The return value is the image's object identifier when the function was
successful. Otherwise it is zero.

Values: The following insertion modes are possible for the wInsertMode
parameter:

Text Control Classes Page 117

Value Meaning

EOM_INSERTASCHAR The image is handled like a single
character in the text. In this case the ptPos
and the rcDistances parameters are
ignored.

EOM_DISPLACELINE The text flow stops at the top border of the
image and continues at the bottom border.
Empty areas on the left or right side of the
object are not filled. In this case the
lTextPos parameter is ignored.

EOM_DISPLACEWORD Same as EOM_DISPLACELINE but
empty areas on the left or right side of the
image are filled with text so that a line's
text is interrupted by the object. In this
case the lTextPos parameter is ignored.

CTXTextControl::InsertLink
Description: This member function inserts a hypertext link in the document.

Syntax: UINT InsertLink(const CString& strLinkText, const CString&
strLinkTarget, BOOL bExternal = TRUE);

Parameter Description

strLinkText Specifies the link's textual representation.

strLinkTarget Specifies the location to where the hypertext link points.
This can be an address or a file name if the link point to
an external location. If the link points to a location
inside the same document it must be the name of a
target field.

bExternal Must be set to TRUE if strLinkTarget defines a location
outside of the document, otherwise this parameter must
be set to FALSE.

Return Value: The return value is the identifier of the newly created marked text field
field which defines the hypertext link. See

Page 118 Text Control Classes

CTXTextControl::FieldInsert for more information about this
identifier.

See Also: CTXTextControl::ChangeLink, CTXTextControl::InsertTarget,
CTXTextControl::FieldGoto

CTXTextControl::InsertOleFile
Description: This member function inserts a newly created embedded OLE object

from a file in a Text Control's document.

Syntax: UINT InsertOleFile(
const CString& strFileName,
LONG lTextPos = -1,
WORD wInsertMode = EOM_INSERTASCHAR,
BOOL bMoveable = TRUE,
BOOL bSizeable = TRUE,
const CPoint& ptPos = CPoint(0, 0),
const CSize& szScale = CSize(100, 100),
const CRect& rcDistances = CRect(0, 0, 0, 0));

Parameter Description

strFileName Specifies the filename.

For a description of all other parameters see
CTXTextControl::InsertOleObject.

Return Value: The return value is the object's identifier when the function was
successful. Otherwise it is zero.

CTXTextControl::InsertOleLinkFile
Description: This member function inserts a newly created linked OLE object from a

file in a Text Control's document.

Syntax: UINT InsertOleLinkFile(
const CString& strFileName,
LONG lTextPos = -1,
WORD wInsertMode = EOM_INSERTASCHAR,

Text Control Classes Page 119

BOOL bMoveable = TRUE,
BOOL bSizeable = TRUE,
const CPoint& ptPos = CPoint(0, 0),
const CSize& szScale = CSize(100, 100),
const CRect& rcDistances = CRect(0, 0, 0, 0));

Parameter Description

strFileName Specifies the filename.

For a description of all other parameters see
CTXTextControl::InsertOleObject.

Return Value: The return value is the object's identifier when the function was
successful. Otherwise it is zero.

CTXTextControl::InsertOleObject
Description: This member function opens the system-defined OLE Insert dialog box

and inserts the chosen OLE object in a Text Control's document.

Syntax: UINT InsertOleObject(
LONG lTextPos = -1,
WORD wInsertMode = EOM_INSERTASCHAR,
BOOL bMoveable = TRUE,
BOOL bSizeable = TRUE,
const CPoint& ptPos = CPoint(0, 0),
const CSize& szScale = CSize(100, 100),
const CRect& rcDistances = CRect(0, 0, 0, 0));

Parameter Description

lTextPos Specifies the text position where to insert the object. If
lTextPos is -1 the object is inserted at the current input
position.

wInsertMode Specifies how the object is handled when the text is
formatted. See the Values section of
CTXTextControl::InsertImage for possible values.

bMoveable The object can be moved with the mouse when this
parameter is TRUE.

Page 120 Text Control Classes

bSizeable The object can be sized with the mouse when this
parameter is TRUE.

ptPos Specifies the position where to insert the object. The
position values must be in twips with an origin at the
upper left corner of the complete text.
The relationship between the upper left corner of the
complete text and the upper left corner of the Text
Control's client area can be obtained with
CTXTextControl::GetTXScrollPos.

szScale Specifies scaling factors.

rcDistances Specifies distances between the object and the text.

Return Value: The return value is the object's identifier when the function was
successful. Otherwise it is zero.

CTXTextControl::InsertOleProgID
Description: This member function inserts an OLE object given through its

programmatic identifier. The programmatic identifier is stored under the
ProgID key in the registration database. For example the programmatic
identifier of the Text Control ActiveX is TX.TextControl.110.

Syntax: UINT InsertOleProgID(
const CString& strProgID,
LONG lTextPos = -1,
WORD wInsertMode = EOM_INSERTASCHAR,
BOOL bMoveable = TRUE,
BOOL bSizeable = TRUE,
const CPoint& ptPos = CPoint(0, 0),
const CSize& szScale = CSize(100, 100),
const CRect& rcDistances = CRect(0, 0, 0, 0));

Parameter Description

strProgID Specifies the OLE object's programmatic identifier.

For a description of all other parameters see
CTXTextControl::InsertOleObject.

Text Control Classes Page 121

Return Value: The return value is the object's identifier when the function was
successful. Otherwise it is zero.

CTXTextControl::InsertPageNumber
Description: This member function function inserts a marked text field that displays

the current page number.

Syntax: UINT InsertTarget(DWORD dwReserved);

Parameter Description

dwReserved A reserved parameter for future use. It must be set to
zero.

Return Value: The return value is the identifier of the newly created marked text field.

CTXTextControl::InsertTarget
Description: This member function function inserts a hypertext target in the

document.

Syntax: UINT InsertTarget(const CString& strTargetName);

Parameter Description

strTargetName Specifies the target's name.

Return Value: The return value is the identifier of the newly created marked text field
field which defines the hypertext target. See
CTXTextControl::FieldInsert for more information about this
identifier.

See Also: CTXTextControl::ChangeTarget, CTXTextControl::InsertLink,
CTXTextControl::FieldGoto

CTXTextControl::InsertWindow
Description: This member function inserts an externally created window like a

Windows button in a Text Control's document. The child window
identifier of this window must not be larger than 0x7FFF.

Page 122 Text Control Classes

Syntax: UINT InsertWindow(
HWND hWnd,
LONG lTextPos = -1,
WORD wInsertMode = EOM_INSERTASCHAR,
BOOL bMoveable = TRUE,
BOOL bSizeable = TRUE,
const CPoint& ptPos = CPoint(0, 0),
const CSize& szScale = CSize(100, 100),
const CRect& rcDistances = CRect(0, 0, 0, 0));

Parameter Description

hWnd Specifies a valid window handle.

For a description of all other parameters see
CTXTextControl::InsertOleObject.

Return Value: The return value is the object's identifier when the function was
successful. Otherwise it is zero.

CTXTextControl::LineFromChar
Description: This member function returns the line number of the line which contains

the character with the specified character position.

Syntax: long LineFromChar(long lChar);

Parameter Description

lChar Specifies a zero-based character index.

Return Value: The return value is a line index, started with 0 for the first line. The
return value is -1 if an error has occurred.

CTXTextControl::LineFromPoint
Description: This member function returns the number of the line which contains a

given point. The point must be specified in pixels with an origin at the
top left corner of the Text Control's client area.

Syntax: long LineFromPoint(const CPoint& ptPos);

Text Control Classes Page 123

Parameter Description

ptPos Specifies a geometric position in pixels.

Return Value: The return value is a line index, started with 0 for the first line. The
return value is -1 if an error has occurred.

CTXTextControl::LineIndex
Description: This member function returns the character index of a given line. The

character index is the number of characters from the beginning of the
Text Control to the specified line.

Syntax: long LineIndex(long lLine);

Parameter Description

lLine Specifies a zero-based line index.

Return Value: The return value is the character index of the specified line.

CTXTextControl::LoadFile
Description: This member function loads formatted or unformatted text from a file.

Syntax: BOOL LoadFile(
CFile& fFile,
WORD wFormat = TF_FORMAT_TX,
BOOL bReplaceSel = FALSE,
DWORD& dwBytesRead = dwNULL);

BOOL LoadFile(
const CString& strFilename,
WORD wFormat = TF_FORMAT_TX,
BOOL bReplaceSel = FALSE,
DWORD& dwBytesRead = dwNULL);

Parameter Description

fFile Specifies a file from which the text is loaded.

strFilename Specifies the name of a file from which the text is
loaded.

Page 124 Text Control Classes

wFormat Specifies the text format. Possible values are listed in
the following Values section.

bReplaceSel The loaded text replaces the current selection or inserts
the text at the current input position when this
parameter is TRUE. Otherwise the loaded text replaces
the complete contents of the Text Control.

dwBytesRead Retrieves the number of read bytes.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

Values: The following is a list of all text formats that Text Control supports. The
identifiers TF_FORMAT_TEXT and TF_FORMAT_TX are
implemented as ANSI (TF_FORMAT_TEXTA and
TF_FORMAT_TXA) and Unicode versions (TF_FORMAT_TEXTW
and TF_FORMAT_TXW). Depending on whether Unicode is defined
or not either the A- or the W-version is used.

Value Meaning

TF_FORMAT_ANSI Text only in ANSI format (Windows
compatible).

TF_FORMAT_UNICODE Text only in Unicode format (Windows
compatible).

TF_FORMAT_TEXT Text only in ANSI or Unicode format
(Text Control compatible), depending on
whether UNICODE is defined or not
before TX.H is included. To enforce a
certain format use TF_FORMAT_TEXTA
or TF_FORMAT_TEXTW explicitly.

TF_FORMAT_TX Text and formatting attributes using Text
Control's text format. Text is stored in
ANSI or Unicode format, depending on
whether UNICODE is defined or not
before TX.H is included. To enforce a
certain format use TF_FORMAT_TXA or
TF_FORMAT_TXW explicitly.

Text Control Classes Page 125

TF_FORMAT_HTML HTML (Hypertext Markup Language).

TF_FORMAT_RTF RTF (Rich Text Format).

TF_FORMAT_WORD Microsoft Word format. Text Control
supports the formats of Word 6 (WordPad),
Word 95, Word 97 and Word 2000.

CTXTextControl::LoadFromMemory
Description: This member function loads formatted or unformatted text from a

buffer.

Syntax: BOOL LoadFromMemory(
LPBYTE lpBuf,
WORD wFormat = TF_FORMAT_TX,
BOOL bReplaceSel = FALSE,
DWORD& dwBytesRead = dwNULL);

Parameter Description

lpBuf Points to a buffer containing the text to load. For text-
based formats the buffer must be zero-terminated.

wFormat Specifies the text format. Possible values are listed in
the Values section for CTXTextControl::LoadFile.

bReplaceSel The loaded text replaces the current selection or inserts
the text at the current input position when this
parameter is TRUE. Otherwise the loaded text replaces
the complete contents of the Text Control.

dwBytesRead Retrieves the number of read bytes.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::ObjDelete
Description: This member function deletes an inserted image, OLE object or

window.

Page 126 Text Control Classes

Syntax: BOOL ObjDelete(UINT nObjID = 0);

Parameter Description

nObjID Specifies the object's identifier. If this parameter is zero
the currently selected object is deleted.

Return Value: The return value is FALSE if an error has occurred or if either an
invalid identifier is specified or no object is currently selected.
Otherwise it is TRUE.

See Also: CTXTextControl::InsertImage, CTXTextControl::InsertOlexxx,
CTXTextControl::InsertWindow.

CTXTextControl::ObjGetAttr
Description: This member function retrieves information about the attributes of an

inserted object like insertion mode, position or scaling factors.

Syntax: BOOL ObjGetAttr(
UINT nObjID ,
LONG& lTextPos,
WORD& wInsertMode,
BOOL& bMoveable,
BOOL& bSizeable,
CPoint& ptPos,
CSize& szScale,
CRect& rcDistances);

Parameter Description

nObjID Specifies the object's identifier. If this parameter is zero
information about the currently selected object is
retrieved.

lTextPos Retrieves the object's character position in the text. This
parameter is only useful when the object's insertion
mode is EOM_INSERTASCHAR.

wInsertMode Retrieves the object's insertion mode. See the Values
section of CTXTextControl::InsertImage for possible
values.

Text Control Classes Page 127

bMoveable Retrieves TRUE if the object can be moved with the
mouse.

bSizeable Retrieves TRUE if the object can be sized with the
mouse.

ptPos Retrieves the object's geometric position. This
parameter is only useful if the object's insertion mode is
EOM_DISPLACELINE or EOM_DISPLACEWORD.

szScale Retrieves the object's scaling factors.

rcDistances Retrieves the distances between the object and the text.
This parameter is only filled when the object's insertion
mode is EOM_DISPLACELINE or
EOM_DISPLACEWORD.

Return Value: The return value is FALSE if an error has occurred or if either an
invalid identifier is specified or no object is currently selected.
Otherwise it is TRUE.

See Also: CTXTextControl::InsertImage, CTXTextControl::InsertOlexxx,
CTXTextControl::InsertWindow.

CTXTextControl::ObjGetIDispatch
Description: This member function returns a pointer to an inserted object's dispatch

interface. It can be used to call properties and methods for an object.

Syntax: BOOL ObjGetIDispatch(UINT nObjID, LPDISPATCH* pDisp);

Parameter Description

nObjID Specifies the object's identifier.

pDisp Retrieves the dispatch interface pointer. Text Control
calls the AddRef method for the object before
returning, so the calling application must call the
Release method when it is done with the object.

Return Value: The return value is FALSE if the object has no dispatch interface.
Otherwise it is TRUE.

Page 128 Text Control Classes

CTXTextControl::ObjGetNext
Description: This member function returns the identifier of an inserted object that

follows the specified object in the Text Control's internal list of objects.
This function can be used to enumerate inserted objects.

Syntax: UINT ObjGetNext(UINT nObjID = 0, DWORD dwFlags = 0);

Parameter Description

nObjID Specifies the object's identifier.

dwFlags Specifies certain types of objects. See the following
Values section for possible values. When this parameter
is zero all objects are enumerated.

Return Value: The return value is the identifier of the object which follows the
specified object. It is zero if there is no following object.

Values: The following lists possible values for the dwFlags parameter:

Value Meaning

OGN_ASCHARONLY Returns only identifiers of objects
that act as single characters
(insertion mode:
EOM_INSERTASCHAR).

OGN_FIXEDONLY Returns only identifiers of objects
which have been inserted with the
EOM_DISPLACELINE or
EOM_DISPLACEWORD insertion
mode.

OGN_IMAGESONLY Returns only identifiers of objects
which have been inserted with
CTXTextControl::InsertImage.

OGN_EXTERNALSONLY Returns only identifiers of objects
which have been inserted with
CTXTextControl::InsertWindow.

OGN_OLEOBJECTSONLY Returns only identifiers of OLE
objects.

Text Control Classes Page 129

See Also: CTXTextControl::InsertImage, CTXTextControl::InsertOlexxx,
CTXTextControl::InsertWindow.

CTXTextControl::ObjOleCancel
Description: This member function deactivates an OLE object and changes its state

from in-place activated to selected. This function can be used to
implement the standard action for the ESCAPE key in a OLE container
application.

Syntax: void ObjOleCancel();

CTXTextControl::ObjSetDistances
Description: This member function sets new distances between the text and an

inserted object. This function can only be used for objects inserted with
the insertion mode EOM_DISPLACELINE or
EOM_DISPLACEWORD.

Syntax: BOOL ObjSetDistances(UINT nObjID = 0, const CRect&
rcDistances = CRect(0, 0, 0, 0));

Parameter Description

nObjID Specifies the object's identifier. If this parameter is zero
the currently selected object is used.

rcDistances Specifies new distances between the object and the text.

Return Value: The return value is TRUE if the new distances could be set. Otherwise
it is FALSE.

See Also: CTXTextControl::InsertImage, CTXTextControl::InsertOlexxx,
CTXTextControl::InsertWindow.

CTXTextControl::ObjSetMovable
Description: This member function changes the movable state of an inserted object.

Page 130 Text Control Classes

Syntax: BOOL ObjSetMovable(UINT nObjID = 0, BOOL bMoveable =
TRUE);

Parameter Description

nObjID Specifies the object's identifier. If this parameter is zero
the currently selected object is used.

bMovable When this parameter is TRUE the object can be moved
with the mouse. Otherwise it cannot be moved.

Return Value: The return value is TRUE if the new state could be set. Otherwise it is
FALSE.

See Also: CTXTextControl::InsertImage, CTXTextControl::InsertOlexxx,
CTXTextControl::InsertWindow.

CTXTextControl::ObjSetScaling
Description: This member function sets new scaling factors for an inserted object.

Syntax: BOOL ObjSetScaling(UINT nObjID = 0, const CSize& szScale =
CSize(100, 100));

Parameter Description

nObjID Specifies the object's identifier. If this parameter is zero
the currently selected object is used.

szScale Specifies new scaling factors.

Return Value: The return value is TRUE if the new scaling factors could be set.
Otherwise it is FALSE.

See Also: CTXTextControl::InsertImage, CTXTextControl::InsertOlexxx,
CTXTextControl::InsertWindow.

CTXTextControl::ObjSetSizeable
Description: This member function changes the sizeable state of an inserted object.

Syntax: BOOL ObjSetSizeable(UINT nObjID = 0, BOOL bSizeable =
TRUE);

Text Control Classes Page 131

Parameter Description

nObjID Specifies the object's identifier. If this parameter is zero
the currently selected object is used.

bSizeable When this parameter is TRUE the object can be sized
with the mouse. Otherwise it cannot be sized.

Return Value: The return value is TRUE if the new state could be set. Otherwise it is
FALSE.

See Also: CTXTextControl::InsertImage, CTXTextControl::InsertOlexxx,
CTXTextControl::InsertWindow.

CTXTextControl::ParagraphDialog
Description: This member function opens a modal dialog box which can be used to

set attributes for all currently selected paragraphs. The attributes are
linespacing, alignment, indents and the distance to the previous and the
following paragraph.

Syntax: BOOL ParagraphDialog(BOOL& bChanged = bNULL);

Parameter Description

bChanged Retrieves TRUE if the dialog box has been left with Ok.
Otherwise it retrieves FALSE.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::Paste
Description: This member function inserts data from the clipboard at the current

input position. Data is inserted only if the Text Control has the input
focus and if the clipboard contains data in a recognized format.

Syntax: void Paste();

Page 132 Text Control Classes

CTXTextControl::PrintControl
Description: This member function prints the contents of a Text Control that is used

without built-in scroll interface. The contents are printed on the printer's
paper with the same offset, the Text Control window has relative to the
client area of its parent window. Use this function to print several
controls that cover different small text areas on a single page.

Syntax: BOOL PrintControl(HDC hDC);

Parameter Description

hDC Specifies a printer's device context.

Return Value: The return value is FALSE if an errror has occurred. Otherwise it is
TRUE.

CTXTextControl::PrintPage
Description: This member function prints a single page. It can only be used when the

TextControl operates in the page view mode.

Syntax: BOOL PrintPage(
HDC hDC,
UINT nPage,
const CPoint& ptOffset = CPoint(0, 0),
DWORD dwOptions = 0,
WORD wScale = 100);

Parameter Description

hDC Specifies a printer device context.

nPage Specifies the number of the page to print. The first page
has the number one.

ptOffset Specifies an additional printing offset. Text Control
adds this offset to the currently set page margins. The
values can be negative to print to a position less than the
page margins.

Text Control Classes Page 133

dwOptions Specifies print options. It must contain
TF_PRINTCOLORS if text colors are to be printed. If
dwOptions contains zero, text is printed in black.

wScale Specifies a scaling factor in percent. This value can
range from 10 to 400.

Return Value: The return value is FALSE if an errror has occurred. Otherwise it is
TRUE.

CTXTextControl::Redo
Description: This member function restores the last undone edit operation.

Syntax: BOOL Redo();

Return Value: The return value is FALSE if the redo operation fails. Otherwise it is
TRUE.

CTXTextControl::ReduceFont
Description: This member function reduces the pointsizes of all fonts in the current

selection.

Syntax: BOOL ReduceFont(CSize& szMin = szNULL);

Parameter Description

szMin Text Control fills this variable with its new minimum
window size (in pixels). It is only useful if the Text
Control is used without the built-in scroll-interface.

Return Value: The return value is TRUE, if the font sizes could be reduced. Otherwise
it returns FALSE.

CTXTextControl::ReplaceSel
Description: This member function replaces the currenet selection with the specified

text.

Syntax: BOOL ReplaceSel(const CString& strText);

Page 134 Text Control Classes

Parameter Description

strText Specifies the replacement text.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::ReplaceText
Description: This member function opens the system-defined modeless dialog box

which makes it possible for the user to find and replace text within the
Text Control's contents.

Syntax: void ReplaceText();

CTXTextControl::ResetContents
Description: This member function deletes the complete contents of a Text Control

including tables, objects, marked text fields and headers and footers.

Syntax: BOOL ResetContents();

Return Value: The return value is TRUE if everything could be deleted. Otherwise it
is FALSE.

CTXTextControl::SaveFile
Description: This member function saves formatted or unformatted text into a file.

Syntax: BOOL SaveFile(
CFile& fFile,
WORD wFormat,
BOOL bCurSel = FALSE,
DWORD& dwBytesWritten = dwNULL);

BOOL SaveFile(
const CString& strFilename,
WORD wFormat,
BOOL bCurSel = FALSE,
DWORD& dwBytesWritten = dwNULL);

Text Control Classes Page 135

Parameter Description

fFile Specifies a file into which the text will be written.

strFilename Specifies the name of a file into which the text will be
written.

wFormat Specifies the text format. Possible values are listed in
the Values section for CTXTextControl::LoadFile.

bReplaceSel When this parameter is TRUE the currently selected
text is saved. Otherwise the Text Control's complete
text is saved.

dwBytesWrittenRetrieves the number of written bytes.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::SaveToMemory
Description: This member function saves formatted or unformatted text in a memory

buffer.

Syntax: BOOL SaveToMemory(CByteArray& arBuf, WORD wFormat,
BOOL bCurSel = FALSE);

Parameter Description

arBuf Retrieves the saved text.

wFormat Specifies the text format. Possible values are listed in
the Values section for CTXTextControl::LoadFile.

bCurSel When this parameter is TRUE the currently selected
text is saved. Otherwise the Text Control's complete
text is saved.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

Page 136 Text Control Classes

CTXTextControl::SetBackgroundColor
Description: This member function sets a new background color. The Text Control

uses this color to paint the background in TF_OPAQUE mode. The
default value for the background color is the system color for the
window background.

Syntax: BOOL SetBackgroundColor(BOOL bSysColor, COLORREF
newColor);

Parameter Description

bSysColor Indicates if the background color should be set to the
system color for the window background. If this value is
TRUE, newColor is ignored.

newColor Specifies a RGB value that identifies the new
background color.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::SetBaseLine
Description: This member function sets a new baseline alignment value for the

currently selected text.

Syntax: BOOL SetBaseLine(WORD wFlag = FA_STANDARD, LONG
lBaseAlign = 0);

Parameter Description

wFlag Specifies the type of alignment:

Value Meaning

FA_STANDARD The new alignment is set to zero.

FA_SUPERSCRIPT The new alignment is superscript.

FA_SUBSCRIPT The new alignment is subscript.

Text Control Classes Page 137

lBaseAlign Specifies the new baseline alignment value in twips. It
is limited to 48 pt = 960 twips.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::SetCaretExt
Description: This member function sets the width of the caret. The caret's height

depends on the current font.

Syntax: BOOL SetCaretExt(UINT nWidth, BOOL bTextCaret = TRUE);

Parameter Description

nWidth Specifies the caret's new width in pixels. A value of
zero resets the width to its default value which is the
system-defined window-border width in standard text
sections and 2 pixels in marked text fields. The
maximum width is 255 pixels.

bTextCaret When this parameter is TRUE the new width is set for
the caret in standard text sections. When this parameter
is FALSE the new width is set for the caret in marked
text fields.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::SetDevicePrinter
Description: This member function sets a new device to which the text of the Text

Control is formatted.

Syntax: BOOL SetDevicePrinter(const CString& strPrinter, BOOL&
bChanged = bNULL, CSize& szMin = szNULL);

Parameter Description

strPrinter Specifies the name of the new device. This name must
be in the same format as that used in the WIN.INI file,

Page 138 Text Control Classes

for example:
PostScript Printer,PSCRIPT,LPT1:

bChanged Retrieves TRUE if the device has been changed and
settings like fontnames have been adapted. Otherwise it
retrieves FALSE if the specified device is the same as
the current device.

szMin Text Control fills this variable with its new minimum
window size (in pixels) if the new device could not be
set because the Text Control's client area was too small
to display the text with adapted fonts. It is only useful if
the Text Control is used without the built-in scroll-
interface.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::SetDeviceScreen
Description: This member function sets the screen as the formatting device.

Syntax: BOOL SetDeviceScreen(BOOL& bChanged = bNULL, CSize&
szMin = szNULL);

Parameter Description

bChanged Retrieves TRUE if the device has been changed and
settings like fontnames have been adapted. Otherwise it
retrieves FALSE if the specified device is the same as
the current device.

szMin Text Control fills this variable with its new minimum
window size (in pixels) if the new device could not be
set because the Text Control's client area was too small
to display the text with adapted fonts. It is only useful if
the Text Control is used without the built-in scroll-
interface.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

Text Control Classes Page 139

CTXTextControl::SetDeviceStandard
Description: This member function sets the system-defined standard device, specified

in the [windows] section of the WIN.INI file.

Syntax: BOOL SetDeviceStandard(BOOL& bChanged = bNULL, CSize&
szMin = szNULL);

Parameter Description

bChanged Retrieves TRUE if the device has been changed and
settings like fontnames have been adapted. Otherwise it
retrieves FALSE if the specified device is the same as
the current device.

szMin Text Control fills this variable with its new minimum
window size (in pixels) if the new device could not be
set because the Text Control's client area was too small
to display the text with adapted fonts. It is only useful if
the Text Control is used without the built-in scroll-
interface.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::SetFont
Description: This member function sets a new font with a new size for all selected

fonts.

Syntax: BOOL SetFont(const CString& strFont, WORD wFontSize = 0,
BOOL bPoints = TRUE, CSize& szMin = szNULL);

Parameter Description

strFont Specifies the name of the new font.

wFontSize Specifies a new font size. If this parameter is set to null,
only the name is set and all sizes remain the same.

bPoints If set to TRUE wFontSize specifies points. Otherwise it
specifies twips.

Page 140 Text Control Classes

szMin Text Control fills this variable with its new minimum
window size (in pixels). It is only useful if the Text
Control is used without its built-in scroll-interface.

Return Value: The return value is FALSE if an error has occurred, otherwise it is
TRUE.

CTXTextControl::SetFontAttr
Description: This member function sets or resets font attributes for all fonts of the

selected text.

Syntax: BOOL SetFontAttr(DWORD dwFlags, CSize& szMin = szNULL);

Parameter Description

dwFlags Can contain one or more of the values listed in the
following Values section.

szMin Text Control fills this variable with its new minimum
window size (in pixels). It is only useful if the Text
Control is used without its built-in scroll-interface.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

Values: The following are the possible font attributes:

Value Meaning

FA_STANDARD Resets all attributes of all fonts.

FA_BOLD Sets each font to bold.

FA_ITALIC Sets each font to italic.

FA_UNDERLINE Sets each font to underline.

FA_STRIKEOUT Sets each font to strike out.

FA_NOBOLD Resets the bold attribute of each font.

FA_NOITALIC Resets the italic attribute of each font.

FA_NOUNDERLINE Resets each underlined font.

FA_NOSTRIKEOUT Resets each struck out font.

Text Control Classes Page 141

FA_UL_DOUBLE Sets each font to doubled underline.

FA_UL_REDZIGZAG Adds a red zigzag line to each font. This
underline attribute does not reset other
underline attributes.

FA_UL_WORDSONLY Words are underlined, word gaps are
omitted. This value can only be used in
combination with FA_UNDERLINE or
FA_UL_DOUBLE.

FA_UL_NODOUBLE Resets the doubled underline attribute of
each font.

FA_UL_NOREDZIGZAG Resets the red zigzag line attribute of each
font.

FA_UL_NOWORDSONLY Resets each font that has the words only
attribute. This value can only be used in
combination with FA_NOUNDERLINE or
FA_UL_NODOUBLE.

FA_TOGGLE Toggles the specified attributes instead of
adding or resetting them. This flag can be
set with any combination. Toggling an
attribute results in deleting this attribute if
wFlags contains the same value as all fonts
of the current selection.

CTXTextControl::SetLanguage
Description: This member function sets the language which Text Control uses to

display informations strings, warnings or dialog boxes. The language is
specified either through an identifier or through the filename of a
resource library.

Syntax: BOOL SetLanguage(UINT nLang);
BOOL SetLanguage(const CString& strLang);

Page 142 Text Control Classes

Parameter Description

nLang Specifies a language identifier. The following
identifiers are possible:

Language Identifier

English 01

French 33

Spanish 34

Italian 39

German (Switzerland) 41

German (Austria) 43

German 49

Japanese 81

strLang Specifies the filename including its full path of a
resource library. See the chapter Using the Text Control
Class Library - Resources for more information about
creating a resource library.

Return Value: The return value is FALSE if an error has occurred or if the specified
language has already been set, otherwise it is TRUE.

CTXTextControl::SetLineAndCol
Description: This member function sets a new text input position from a page, line

and column number. All values start with number 1.

Syntax: BOOL SetLineAndCol(UINT nLine, UINT nCol, UINT nPage = 0);

Parameter Description

nLine Specifies the line number.

nCol Specifies the column number.

nPage Specifies the page number. When Text Control works in
a view mode that does not display pages, this parameter
is ignored and should be set to zero.

Text Control Classes Page 143

Return Value: The return value is TRUE if the specified input position could be set.
Otherwise it is FALSE.

CTXTextControl::SetLineSpacing
Description: This member function sets a new linespacing for all currently selected

paragraphs.

Syntax: BOOL SetLineSpacing(WORD wLineSpace, BOOL bTwips =
TRUE);

Parameter Description

wLineSpace Specifies a new linespacing value.

bTwips If this parameter is set to TRUE, wLineSpace must be a
value in twips. If set to FALSE, wLineSpace must be a
value in percent of the font size.
Before setting the linespacing in twips,
CTXTextControl::SetParaFormatFlags can be used
to specify whether the linespacing is used as a
minimum, or as an absolute value.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

Remarks: To realize double linespacing, wLineSpace must contain 200 and
bTwips must be FALSE.

Minimum and maximum values are:
10% to 400% or 57 to 5669 twips (1 to 100 mm).

CTXTextControl::SetLinkWnd
Description: This member function informs this Text Control about a window that is

to be its successor in a chain of linked windows. The Text Control sends
overflowing text to that window or fills deleted text with text from that
window. The caret moves to the following window if it reaches the
bottom of a Text Control. It moves to the previous window if the top of

Page 144 Text Control Classes

a Text Control is reached. Chains of linked windows can only be built
with Text Controls that work without their built-in scroll.interfaces.

Syntax: BOOL SetLinkWnd(HWND hWnd);

Parameter Description

hWnd Specifies the window handle of the successor window.
Create a new Text Control window and use
CTXTextControl.m_hWnd for this parameter.
If this parameter is zero, Text Control disconnects its
successor window.

Return Value: The return value is FALSE if the windows could not be linked.
Otherwise it is TRUE.

CTXTextControl::SetMode
Description: This member function sets Text Control's different working modes.

Changing one mode does not alter the other mode settings.

Syntax: BOOL SetMode(DWORD dwNewMode,
DWORD dwMaxAutoSize = 0, DWORD dwNewModeEx = 0);

Parameter Description

dwNewMode Specifies one or more mode settings. See the
following Values section for possible values.

dwMaxAutoSize This parameter is for the TF_AUTOEXPAND
mode only. It specifies maximum values for
the Text Control's window size (in pixels). If
the window is expanded and these values are
reached, the automatic expansion stops. The
maximum width is in the low-order word and
the maximum height is in the high-order word.

dwNewModeEx Specifies one or more extended mode settings.
See also the following Values section for
possible values.

Text Control Classes Page 145

Return Value: The return value is FALSE if one of the new modes could not be set.
Otherwise it is TRUE.

Values: The following modes can be set with the dwNewMode parameter:

Value Meaning

TF_AUTOEXPAND The Text Control's window will be
automatically expanded when text insertion
or format changes result in text that does
not fit into the Text Control anymore.

TF_FIXED The Text Control's window size is fixed
and is not automatically expanded.

TF_FRAMED The Text Control window is drawn with a
frame of 1 pixel width.

TF_NOTFRAMED The Text Control window is drawn without
a frame.

TF_SHOWSELNA A text selection remains visible when the
control looses the input focus.

TF_HIDESELNA A text selection is hidden when the control
looses the input focus.

TF_SHOWWHITESPACE Control characters are made visible.

TF_HIDEWHITESPACE Control characters are hidden.

TF_OVERWRITE Newly inserted characters overwrite
existing characters.

TF_INSERT Newly inserted characters are inserted.

TF_REPLACESEL The text of a current selection is deleted
before new text is inserted.

TF_KEEPSEL The text of a current selection is not
deleted before new text is inserted.

TF_OPAQUE The control's background is opaque.

TF_TRANSPARENT The control's background is transparent.

The following modes can be set with the dwNewModeEx parameter:

Page 146 Text Control Classes

Value Meaning

TF_DISPLAY Text Control only displays text.

TF_READONLY Text Control displays text and the
user can select and copy it.

TF_EDIT Text Control displays text and the
user can select and edit it.

TF_NOWAITCURSOR Text Control does not change the
cursor to an hourglass during long
time operations.

TF_WAITCURSOR Text Control changes the cursor to
an hourglass during long time
operations.

TF_TOPINDENTFIRSTPG Text Control allows a top indent for
the first paragraph in the text.

TF_NOTOPINDENTFIRSTPG Text Control suppresses a top indent
of the first paragraph.

TF_ERRORBOXES Text Control displays error message
boxes.

TF_NOERRORBOXES Text Control suppresses all error
message boxes.

TF_SHOWGRIDLINES Text Control shows grid lines in
tables.

TF_HIDEGRIDLINES Text Control hides grid lines in
tables.

CTXTextControl::SetPageMargins
Description: This member function sets new page margins.

Syntax: BOOL SetPageMargins(const CRect& rectMargin, BOOL
bReformat = FALSE);

Parameter Description

rectMargin Specifies the new margins.

Text Control Classes Page 147

bReformat If this parameter is TRUE the Text Control reformats
the complete text. Otherwise the text is not reformatted.
If this function is combined with
CTXTextControl::SetPageSize, it should be called
first with bFormat set to FALSE to avoid doubled
reformatting.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

Remarks: Page margins are only shown on the screen if the Text Control operates
in one of the page view modes. See CTXTextControl::SetPageSize for
more information.

CTXTextControl::SetPageSize
Description: This member function sets the document's page size and view settings.

Syntax: BOOL SetPageSize(const CSize& szText, UINT nViewMode, UINT
nScrollInterface);

Parameter Description

szText Specifies the document's page size without
page margins. A value of zero means that the
text is formatted in the borders of the Text
Control's client area.

nViewMode Specifies a view mode. See the following
Values section for possible values. This
parameter has only effect when the sizes set
through szText are non-zero.

nScrollInterface Specifies scroll interface settings. See the
following Values section for possible values.
The settings of this parameter has only effect
when the sizes set through szText are non-
zero.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

Page 148 Text Control Classes

Values: The following is a list of Text Control's document view modes:

Value Meaning

TF_NORMALVIEW Text Control displays the text without
pages and margins.

TF_PAGEVIEW Text Control displays pages with margins,
borders and a gray background.

TF_EXTPAGEVIEW Text Control displays three-dimensional
pages which are centered in the windows
visible area.

The following is a list of Text Control's scroll interface settings:

Value Meaning

TF_HSCROLL Displays a horizontal scroll bar if
necessary.

TF_NOHSCROLL Displays no horizontal scroll bar.

TF_VSCROLL Displays a vertical scroll bar if necessary.

TF_NOVSCROLL Displays no vertical scroll bar.

TF_THUMBTRACK Text Control updates its client area whilst
moving the scrollbar's scroll box (thumb).

TF_THUMBPOSITION Text Control updates its client area when
the scrollbar's scroll box (thumb) has
reached a new position.

CTXTextControl::SetParaAlignment
Description: This member function sets a new paragraph alignment value for all

selected paragraphs.

Syntax: BOOL SetParaAlignment(WORD wAlignment);

Parameter Description

wAlignment Specifies one of the following values:

Value Meaning

TF_LEFT Set left-aligned paragraphs.

Text Control Classes Page 149

TF_RIGHT Set right-aligned paragraphs.

TF_CENTER Set centered paragraphs.

TF_BLOCK Set to block formatted
paragraphs.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::SetParaFormatFlags
Description: This member function sets advanced paragraph formatting attributes.

Syntax: BOOL SetParaFormatFlags(DWORD dwFlags);

Parameter Description

dwFlags Specifies the new formatting. Possible values are listed
in the following Values section.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

Values: The following are the advanced attributes:

Value Meaning

TF_ATLEASTLINESPACING If a specified line spacing is too
small to show all the line's contents,
Text Control enlarges the line
spacing between lines accordingly,
so that nothing is cropped.

TF_EXACTLINESPACING A specified line spacing is used as
exact value, regardless of whether
larger characters or images are being
cropped.

TF_PAGEBREAKNOTALLOWED A page break is not allowed
within a paragraph.

TF_PAGEBREAKALLOWED Page breaks are allowed within a
paragraph.

Page 150 Text Control Classes

CTXTextControl::SetParaFrame
Description: This member function sets appearance flags, frame width and frame

distance values for all paragraphs of the current selection.

Syntax: BOOL SetParaFrame(WORD wFlags, WORD wWidth = 0, WORD
wDistance = -1);

Parameter Description

wFlags Specifies the appearance and the style of the paragraph
frame. It can be a combination of the values listed in the
following Values section.

wWidth Specifies the paragraph frame's line width in twips. If
this parameter is set to zero it is ignored.

wDistance Specifies the distance between the frame and the text in
twips. If this parameter is set to -1 it is ignored.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

Values: For a paragraph frame's appearance and styles the following values are
possible:

Value Meaning

BF_LEFTLINE Draws a left frame part.

BF_RIGHTLINE Draws a right frame part.

BF_TOPLINE Draws a top frame part.

BF_BOTTOMLINE Draws a bottom frame part.

BF_BOX Draws a complete box.

BF_TABLINES Draws a vertical line at each tabulator
position.

BF_TABLE Draws a complete box including vertical lines
at each tabulator position.

BF_SINGLE Draws a single line.

BF_DOUBLE Draws a doubled line.

BF_NOLEFTLINE Resets an existing left part.

Text Control Classes Page 151

BF_NORIGHTLINE Resets an existing right part.

BF_NOTOPLINE Resets an existing top part.

BF_NOBOTTOMLINE Resets an existing bottom part.

BF_NOTABLINES Resets existing tabulator lines.

BF_BOXCONNECT Connects two sequential boxes to form a
single box.

CTXTextControl::SetParaIndents
Description: This member function sets new indent values for all currently selected

paragraphs.

Syntax: BOOL SetIndents(const CRect& rcIndents, int iFirstIndent, BOOL&
bChanged = bNULL);

Parameter Description

rcIndents Specifies the paragraphs' new indents.

iFirstIndent Specifies an additional left indent for the first line. This
value can be negative indicating that the left indent of
the first line is smaler than the left indent of the
following lines.

bChanged Retrieves TRUE if the new values could not be accepted
because they are too large for the currently set page
size.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::SetSel
Description: This member function sets a new text selection.

Syntax: BOOL SetSel(long lStart, long lEnd);

Page 152 Text Control Classes

Parameter Description

lStart Specifies the zero-based text input position where the
new selection starts.

lEnd Specifies the zero-based text input position where the
new selection ends.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

Remarks: If the start position is zero and the end position is -1 the entire text is
selected.

CTXTextControl::SetTabs
Description: This member function sets new tab positions and types.

Syntax: BOOL SetTabs(LPTABSCT pTabs, BOOL bTwips = TRUE);

Parameter Description

pTabs Points to an array of type TABSCT and size NTABS.
See Data Structures for a description of the TABSCT
structure.

bTwips When this parameter is set to TRUE all tab position
values must be in twips, otherwise they must be in
pixels.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::SetTextBkColor
Description: This member function sets a new text background color for the currently

selected text.

Syntax: BOOL SetTextBkColor(DWORD dwDefColor, COLORREF
newColor);

Text Control Classes Page 153

Parameter Description

dwDefColor Specifies one of the following values:

Value Meaning

CV_BKDEFAULT The new text background color is
the system color for the window
background.

CV_BKCONTROL The new text background color is
Text Control's background color.

CV_BKUSER The new text color is specified
through newColor.

newColor Specifies a RGB value that identifies the new text
background color.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

Remarks: If the Text Control's background mode is TF_TRANSPARENT and the
dwDefColor parameter contains CV_BKDEFAULT or
CV_BKCONTROL the text background color is not drawn.

CTXTextControl::SetTextColor
Description: This member function sets a new text color for the currently selected

text.

Syntax: BOOL SetTextColor(BOOL bSysColor, COLORREF newColor);

Parameter Description

bSysColor Indicates if the text color should be set to the system
color for window text. If this value is TRUE, newColor
is ignored.

newColor Specifies a RGB value that identifies the new text color.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

Page 154 Text Control Classes

CTXTextControl::SetTXScrollPos
Description: This member function sets a new scroll position.

Syntax: BOOL SetTXScrollPos(WORD wDir, DWORD dwPos);

Parameter Description

wDir Specifies the direction. It can be one of the following
values:

Value Meaning

TF_HSCROLL Sets the horizontal scroll
position.

TF_VSCROLL Sets the vertical scroll position.

dwPos Specifies the new scroll position in twips. The text
associated with this position is displayed at the top of
the Text Control's client area.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::SetZoom
Description: This member function sets a new zooming factor for the Text Control.

This factor is given as a percentage. A value of 100 means the original
size.

Syntax: BOOL SetZoom(UINT nNewZoom, BOOL bUpdate = FALSE);

Parameter Description

wNewZoom Specifies the new zooming factor in percent. It must be
between 10 and 400.

bUpdate Updates the appropiate portion of the parent window's
client area, if set to TRUE.

Return Value: The return value is FALSE if the window could not be zoomed or if the
specified zooming factor has already been set. Otherwise it is TRUE.

Text Control Classes Page 155

CTXTextControl::TableAttrDialog
Description: This member function opens a built-in dialog box for setting table

attributes such as frames and distances between frame and text.

Syntax: BOOL TableAttrDialog(BOOL& bChanged = bNULL);

Parameter Description

bChanged Retrieves TRUE if the dialog box has been left with Ok.
Otherwise it retrieves FALSE.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE. The return value also is FALSE if the selection contains no
table, or more than one table, or if the selected table is mixed with other
text. When this function is called as a reaction to a menu, use
CTXTextControl::TableIsPossible to get the information whether or
not table attributes can be set.

CTXTextControl::TableDeleteLines
Description: This member function deletes the currently selected table lines or the

table line at the current input position.

Syntax: BOOL TableDeleteLines();

Return Value: The return value is FALSE if an error has occurred, if no table line is
selected, or if the current input position is not within a table. Otherwise
it is TRUE.

CTXTextControl::TableFromCaretPos
Description: This member function retrieves the identifier and the number of row and

column of the table with the current input position. The retrieved values
are set to zero when the input position is not inside a table or when more
than one table cell is selected.

Syntax: UINT TableFromCaretPos(WORD& wRow = wNULL, WORD&
wCol = wNULL);

Page 156 Text Control Classes

Parameter Description

wRow Retrieves a table row number.

wCol Retrieves a table column number.

Return Value: The return value is the identifier of the table with the current input
position.

CTXTextControl::TableGetAttr
Description: This member function retrieves information about the attributes of one

or more table cells.

Syntax: BOOL TableGetAttr(
UINT nTableID,
WORD wRow,
WORD wCol,
CRect& rcFrameWidth,
CRect& rcDistances,
COLORREF& crBkColor = dwNULL,
long& lxPos = lNULL,
long& lxExt = lNULL);

Parameter Description

nTableID Specifies a table's identifier.

wRow Specifies a row in this table. If this parameter is zero the
attributes of all rows are retrieved.

wCol Specifies a column in this table. If this parameter is zero
the attributes of all columns are retrieved.

rcFrameWidth Retrieves the width of the cell's frame lines in twips.

rcDistances Retrieves the distances between the cell's frame and the
cell's text in twips.

crBkColor Retrieves the cell's background color as an RGB value.

lxPos Retrieves the cell's horizontal position in twips.

lxExt Retrieves the cell's width in twips.

Text Control Classes Page 157

Return Value: The return value is FALSE if an error has occurred or if the table or the
specified cell in this table does not exist. Otherwise it returns TRUE.

Remarks: If the specified cells are formatted differently, the appropriate parameter
for a certain attribute retrieves -1.

CTXTextControl::TableGetCellPosition
Description: This member function retrieves the indexes (one-based) of a table cell's

first and last character.

Syntax: BOOL TableGetCellPosition(UINT nTableID, WORD wRow,
WORD wCol, DWORD& dwStart, DWORD& dwEnd);

Parameter Description

nTableID Specifies a table's identifier.

wRow Specifies a row in this table.

wCol Specifies a column in this table.

dwStart Retrieves the index of the table cell's first character.

dwEnd Retrieves the index of the table cell's last character.

Return Value: The return value is FALSE if an error has occurred or if the specified
table identifier does not exist, otherwise it is TRUE.

Remarks: If tables are used in chains of linked Text Controls the position values
are relative to the beginning of the text that is the first character in the
first window of the chain. To get the window which contains the table
and the character position of the table in this window use
CTXTextControl::GetLinkWndFromOffset and
CTXTextControl::GetLinkWndOffset.

CTXTextControl::TableGetCellText
Description: This member function retrieves the text of a table cell.

Syntax: BOOL TableGetCellText(UINT nTableID, WORD wRow, WORD
wCol, CString& strText);

Page 158 Text Control Classes

Parameter Description

nTableID Specifies a table's identifier.

wRow Specifies a row in this table.

wCol Specifies a column in this table.

strText Retrieves the text of the specified cell.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::TableGetNext
Description: This member function returns an enumeration number of a table that

follows the specified table in the Text Control's current text. It can be
used to enumerate all tables. In a list of linked Text Controls the tables
in all windows are enumerated.

Syntax: UINT TableGetNext(UINT nEnum = 0, UINT& nTableID =
uiNULL);

Parameter Description

nEnum Specifies an enumeration number. The function returns
the enumeration number of the table that follows the
table with this number. If this parameter is zero the first
table's enumeration number is returned.

nTableID Retrieves the table's identifier. This is the same value
set with CTXTextControl::TableInsert.

Return Value: The return value is the enumeration number of the next table. It can be
used for the next TableGetNext function call. The return value is zero
when the last table has been reached or when the specified enumeration
number was invalid.

CTXTextControl::TableGetRowsAndCols
Description: This member function returns the number of rows and columns for the

specified table.

Text Control Classes Page 159

Syntax: UINT TableGetRowsAndCols(WORD& wRows, WORD& wCols,
UINT nTableID = 0);

Parameter Description

wRows Retrieves the number of rows.

wCols Retrieves the number of columns.

nTableID Specifies a table's identifier. If this parameter is zero the
function retrieves the number of rows and columns for
the table at the current text input position.

Return Value: The return value is the table's identifier. This is the same value as
specified through nTableID or the identifier of the table with the current
input position. The return value is zero if an error has occurred or if the
current input position is not inside a table and nTableID has been set to
zero.

CTXTextControl::TableInsert
Description: This member function inserts a new table into the text.

Syntax: UINT TableInsert(WORD wRows, WORD wCols,
UINT nTableID = 0);

Parameter Description

wRows Specifies the number of rows in the new table.

wCols Specifies the number of columns in the new table.

nTableID Specifies the table identifier for the new table. It must
be a value between 10 and 0x7FFF. If this parameter is
0, Text Control chooses its own identifier for the new
table.

Return Value: The return value is the table's identifier. It is either the specified
identifier or an identifier choosed through Text Control. The return
value is zero if the new table could not be created.

Page 160 Text Control Classes

CTXTextControl::TableIsPossible
Description: This member function returns TRUE if the specified action is possible.

Syntax: BOOL TableIsPossible(UINT nAction =
TF_TABLE_CANINSERT);

Parameter Description

nAction Specifies the action to perform. Possible values are
listed in the Values section.

Return Value: The return value is TRUE if the specified action can be performed.
Otherwise it is FALSE.

Values: The following actions can be requested:

Value Meaning

TF_TABLE_CANINSERT TRUE is returned if a table can be
inserted at the current input position.
FALSE is returned if a section of
text has been selected or the current
input position is inside a table.

TF_TABLE_CANDELETELINES TRUE is returned if selected
table lines can be deleted. FALSE is
returned if no table line is selected or
if the current input position is
outside a table.

TF_TABLE_CANCHANGEATTR TRUE is returned if the attributes
of selected table lines can be altered.
FALSE is returned if the selection is
not completely within a single table.

CTXTextControl::TableSetAttr
Description: This member function sets new attributes for one or more table cells.

Syntax: BOOL TableSetAttr(
UINT nTableID,

Text Control Classes Page 161

WORD wRow,
WORD wCol,
CRect& rcFrameWidth = CRect(-1, -1, -1, -1),
CRect& rcDistances = CRect(-1, -1, -1, -1),
COLORREF& crBkColor = -1,
long lxPos = -1,
long lxExt = -1);

Parameter Description

nTableID Specifies a table's identifier.

wRow Specifies a row in this table. If this parameter is zero the
attributes of all columns are changed.

wCol Specifies a column in this table. If this parameter is zero
the attributes of all columns are changed.

rcFrameWidth Sets the width of the cell's frame lines in twips. Each
value set to -1 is ignored.

rcDistances Sets the distances between the cell's frame and the cell's
text in twips. Each value set to -1 is ignored.

crBkColor Sets the cell's background color. The following values
are possible:

Value Meaning

RGB(r, g, b) Specifies an RGB color value.

CV_SYS_COLOR The color is set to the system
color for the window background.

CV_CTL_COLOR The color is set to the currently
defined control background.

-1 The parameter is ignored.

lxPos Sets the cell's horizontal position in twips. If set to -1
this parameter is ignored.

lxExt Sets the cell's width in twips. If set to -1 this parameter
is ignored.

Page 162 Text Control Classes

Return Value: The return value is FALSE if an error has occurred or if the table or the
specified cell in this table does not exist. Otherwise the return value is
TRUE.

CTXTextControl::TableSetCellText
Description: This member function alters the text of a table cell.

Syntax: BOOL TableSetCellText(UINT nTableID, WORD wRow, WORD
wCol, const CString& strText);

Parameter Description

nTableID Specifies a table's identifier.

wRow Specifies a row in this table.

wCol Specifies a column in this table.

strText Specifies the new text for the given cell.

Return Value: The return value is FALSE if an error has occurred. Otherwise it is
TRUE.

CTXTextControl::Undo
Description: This member function undoes the last edit operation.

Syntax: BOOL Undo();

Return Value: The return value is FALSE if the undo operation fails. Otherwise it is
TRUE.

Remarks: Use CTXTextControl::CanUndo to determine whether an operation
can be undone. If this function is called although there is no operation
that can be undone the Text Control beeps.

Text Control Classes Page 163

CTXToolContainer
#include <TXToolContainer.h>

The CTXToolContainer class is a base class that can be used with
classes that have embedded objects of the type CTXButtonBar,
CTXRulerBar and/or CTXStatusBar. To use this class, derive the
class which contains embedded tool bars from CTXToolContainer and
override the member functions associated with the contained tool bars.

For example if a CFrameWnd derived class, called CMainFrame, has
an embedded object of the type CTXButtonBar, derive CMainFrame
from CTXToolContainer and override
CTXToolContainer::GetButtonBar.

The CTXView class looks for a tool container and uses the tool
container's member functions to connect the tool bars with its embedded
Text Control.

CTXToolContainer Class Members

Overridables

GetButtonBar Retrieves a CTXButtonBar object.

GetRulerBar Retrieves a CTXRulerBar object.

GetStatusBar Retrieves a CTXStatusBar object.

Member Functions

CTXToolContainer::GetButtonBar
Description: This member function retrieves a CTXButtonBar object associated

with the class used as tool container. If the tool container has a Button
Bar override this function and return a pointer to this CTXButtonBar
object. The default implementation returns zero to indicate that there is
no Button Bar.

Syntax: CTXButtonBar* GetButtonBar();

Return Value: The return value is a pointer to a CTXButtonBar object or zero if there
is no Button Bar.

Page 164 Text Control Classes

CTXToolContainer::GetRulerBar
Description: This member function retrieves a CTXRulerBar object associated with

the class used as tool container. If the tool container has a Ruler Bar
override this function and return a pointer to this CTXRulerBar object.
The default implementation returns zero to indicate that there is no
Ruler Bar.

Syntax: CTXRulerBar* GetRulerBar();

Return Value: The return value points to a CTXRulerBar object or zero if there is no
Ruler Bar.

CTXToolContainer::GetStatusBar
Description: This member function retrieves a CTXStatusBar object associated with

the class used as tool container. If the tool container has a Status Bar
override this function and return a pointer to this CTXStatusBar
object. The default implementation returns zero to indicate that there is
no Status Bar.

Syntax: CTXStatusBar* GetStatusBar();

Return Value: The return value points to a CTXStatusBar object or zero if there is no
Status Bar.

Text Control Classes Page 165

CTXView
#include <TXView.h>

The CTXView class, with CTXDoc, provides the functionality of a
Text Control within the context of MFC's document view architecture.
Each instance of this class contains an embedded Text Control object.
CTXView::GetTextControl provides access to the embedded Text
Control. In addition to the functionality provided through the embedded
Text Control the CTXView class has command handler functions for
predefined menu resources.

To be able to handle notification messages sent by the embedded Text
Control, the CTXView class is implemented as a Text Control notify
handler. Therefore the view contains all the overridable member
functions described for the CTXNotifyHandler class. Override all the
functions associated with the notification messages you want to handle.

CTXView Class Members

Attributes

GetTextControl Retrieves the Text Control associated with the
view.

GetRulerBar Retrieves the Ruler Bar associated with the
view.

GetButtonBar Retrieves the Button Bar connected with the
view.

GetStatusBar Retrieves the Status Bar connected with the
view.

Overridables

CreateTextControl Creates the embedded Text Control.

GetDefaultMode Retrieves the default mode settings for the
embedded Text Control.

GetDefaultModeEx Retrieves the default extended mode settings
for the embedded Text Control.

Page 166 Text Control Classes

Member Functions

CTXView::CreateTextControl
Description: This member function is called by the view to create its associated Text

Control. Override this function if you want to alter the default creation
mechanism. The view calls this function with itself as parent window
and as notify handler.

Syntax: CTXTextControl* CreateTextControl(CWnd* pParentWnd, UINT
nID, const CRect& rcSize, CTXNotifyHandler* pNotifyHandler);

Parameter Description

pParentWnd Specifies the Text Control's parent window.

nID Specifies the Text Control's identifier.

rcSize Specifies the Text Control's size and position in client
area coordinates of its parent window.

pNotifyHandler Points to a notification handler object.

Return Value: The return value is a pointer to the created CTXTextControl object.
This pointer is retrieved through following
CTXView::GetTextControl calls.

CTXView::GetButtonBar
Description: This member function retrieves the CTXButtonBar object connected

with this CTXView object.

Syntax: CTXButtonBar* GetButtonBar();

Return Value: The return value is a CTXButtonBar object. It is zero if there is no
connected Button Bar.

CTXView::GetDefaultMode
Description: This member function is called by the view to get default mode settings

for its embedded Text Control. Mode settings are documented for the

Text Control Classes Page 167

dwNewMode parameter of the CTXTextControl::SetMode function.
The default implementation of this function retrieves TF_OPAQUE,
TF_FIXED, TF_SHOWSELNA, TF_NOTFRAMED, TF_INSERT,
TF_REPLACESEL and TF_HIDEWHITESPACE. Override this
function to use other mode settings as default.

Syntax: DWORD GetDefaultMode();

Return Value: The return value is a combination of the default mode settings.

CTXView::GetDefaultModeEx
Description: This member function is called by the view to get default extended

mode settings for its embedded Text Control. Extended mode settings
are documented for the dwNewModeEx parameter of the
CTXTextControl::SetMode function. The default implementation of
this function retrieves TF_EDIT, TF_WAITCURSOR,
TF_NOTOPINDENTFIRSTPG, TF_ERRORBOXES and
TF_SHOWGRIDLINES. Override this function to use other extended
mode settings as default.

Syntax: DWORD GetDefaultModeEx();

Return Value: The return value is a combination of the default extended mode settings.

CTXView::GetRulerBar
Description: This member function retrieves the CTXRulerBar object associated

with this CTXView object.

Syntax: CTXRulerBar* GetRulerBar();

Return Value: The return value is a CTXRulerBar object. It is zero if there is no
associated Ruler Bar.

Page 168 Text Control Classes

CTXView::GetStatusBar
Description: This member function retrieves the CTXStatusBar object connected

with this CTXView object.

Syntax: CTXStatusBar* GetStatusBar();

Return Value: The return value is a CTXStatusBar object. It is zero if there is no
connected Status Bar.

CTXView::GetTextControl
Description: This member function retrieves the CTXTextControl object associated

with this CTXView object.

Syntax: CTXTextControl* GetTextControl();

Return Value: The return value is the CTXTextControl object for this view. It is zero
if there is no associated Text Control.

Data Structures Page 169

Data Structures

TABSCT
The TABSCT structure defines the attributes of a tab stop.
typedef struct tagTABSCT {

BYTE nTabFlag;
WORD wTabPos;

} TABSCT;

The TABSCT structure has the following fields:

Field Description

nTabFlag Specifies the type of the tabstop. It can be any one of
the following values:

Value Meaning

LEFTTAB The tab position is at the left side
of text.

RIGHTTAB The tab position is at the right
side of text.

CENTERTAB The text is centered on the tab
position.

DECIMALTAB The system-defined decimal sign
is located at the tab position.

wTabPos Specifies the x-coordinate of the tab position.

Page 170 Index

Index
C

CanCopy 67, 73
CanPaste 67, 74
CanRedo 67, 74
CanUndo 67, 74
ChangeLink 33, 71, 75
ChangeTarget 34, 72, 76
Clear 66, 76
ConnectToolBar 39, 73, 76
Copy 67, 77
Create

CTXButtonBar 39
CTXRulerBar 59
CTXStatusBar 62
CTXTextControl 66, 77

CreateTextControl 165, 166
CTXButtonBar 39
CTXDoc 42
CTXNotifyHandler 31, 44
CTXRulerBar 59
CTXStatusBar 62
CTXTextControl

Class 66
Constructor 66, 78

CTXToolContainer 163
CTXView 165
Cut 67, 78

D

DisconnectToolBar 73, 78

E

EmptyUndoBuffer 67, 78
EnableFileFormats 42
EnlargeFont 68, 79

F

FieldChangeText 30, 71, 79
FieldDelete 71, 79
FieldFromCaretPos 71, 80
FieldGetData 32, 71, 80
FieldGetNext 34, 71, 81
FieldGetPosition 30, 71, 82
FieldGetText 30, 71, 82
FieldGetType 71, 83
FieldGoto 34, 71, 83
FieldHasAttr 71, 84
FieldInsert 30, 71, 84
FieldSetAttr 30, 71, 86
FieldSetData 32, 71, 87
FindText 68, 87
FontDialog 68, 89

G

GetBackgroundColor 69, 89
GetBaseLine 68, 90
GetBaseLinePos 70, 90
GetButtonBar

CTXToolContainer 163
CTXView 165, 166

GetCaretExt 69, 91
GetDefaultMode 165, 166
GetDefaultModeEx 165, 167
GetDevice 69, 91
GetFont 68, 91
GetFontAttr 68, 92
GetImageFilters 70, 92
GetLanguage 70, 93
GetLineAndCol 70, 93
GetLineCount 70, 94
GetLineRect 70, 94
GetLineSpacing 68, 94
GetLinkLocation 33, 72, 95
GetLinkWnd 73, 95
GetLinkWndCount 73, 96
GetLinkWndFromOffset 73, 96
GetLinkWndNumber 73, 97
GetLinkWndOffset 73, 97

Page 171Index

GetMode 70, 97
GetPageCount 69, 99
GetPageMargins 69, 100
GetPageSize 69, 100
GetParaAlignment 68, 101
GetParaFormatFlags 68, 101
GetParaFrame 68, 101
GetParaIndents 68, 102
GetRulerBar

CTXToolContainer 163, 164
CTXView 165, 167

GetSel 66, 103
GetSelText 66, 104
GetStatusBar

CTXToolContainer 163, 164
CTXView 165, 168

GetSupportedFonts 69, 104
GetSupportedSizes 69, 104
GetTabs 68, 105
GetTargetName 34, 72, 105
GetText 66, 105
GetTextColor 68, 106
GetTextControl 165, 168
GetTextLength 66, 107
GetTextSize 70, 107
GetTXScrollPos 69, 107
GetZoom 70, 108

H

HFActivate 25, 72, 108
HFDisable 26, 72, 109
HFEnable 25, 72, 110
HFGetEnabled 26, 72, 111
HFGetPosition 26, 73, 111
HFSelect 26, 73, 112
HFSetPosition 26, 73, 113

I

InputPosFromPoint 70, 114
InsertImage 70, 114
InsertLink 33, 72, 117
InsertOleFile 34, 70, 118

InsertOleLinkFile 34, 70, 118
InsertOleObject 34, 70, 119
InsertOleProgID 34, 70, 120
InsertPageNumber 33, 69, 122
InsertTarget 33, 72, 122
InsertWindow 71, 121

L

LineFromChar 70, 122
LineFromPoint 70, 122
LineIndex 70, 123
LoadFile 29, 67, 123
LoadFromMemory 29, 67, 125

O

ObjDelete 71, 125
ObjGetAttr 35, 71, 126
ObjGetIDispatch 71, 127
ObjGetNext 71, 128
ObjOleCancel 71, 129
ObjSetDistances 71, 129
ObjSetMovable 71, 129
ObjSetScaling 71, 130
ObjSetSizeable 71, 130
OnTnChanged 44, 47
OnTnCharFormatChanged 45, 47
OnTnDoubleClicked 44, 47
OnTnErrCode 44, 47
OnTnFieldChanged 46, 49
OnTnFieldClicked 46, 49
OnTnFieldCreated 46, 50
OnTnFieldDblClicked 46, 50
OnTnFieldDeleted 46, 50
OnTnFieldEntered 46, 50
OnTnFieldLeft 46, 51
OnTnFieldLinkClicked 34, 46, 51
OnTnFieldSetCursor 46, 52
OnTnHExpand 44, 52
OnTnHFActivated 25, 46, 52
OnTnHFDeActivated 25, 47, 53
OnTnHMoved 44, 54
OnTnHScroll 44, 54

Page 172 Index

OnTnKeyStateChanged 44, 54
OnTnKillFocus 45, 54
OnTnModeChanged 45, 54
OnTnObjClicked 45, 55
OnTnObjCreated 45, 55
OnTnObjDblClicked 45, 55
OnTnObjDeleted 45, 55
OnTnObjMoved 45, 56
OnTnObjSized 46, 56
OnTnPageFormatChanged 45, 56
OnTnParaChanged 45, 56
OnTnParaFormatChanged 45, 57
OnTnPosChanged 45, 57
OnTnSetFocus 45, 57
OnTnTableCreated 29, 46, 57
OnTnTableDeleted 30, 46, 58
OnTnVExpand 45, 58
OnTnVScroll 45, 58
OnTnZoomed 45, 58

P

ParagraphDialog 69, 131
Paste 67, 131
PrintControl 67, 132
PrintPage 36, 68, 132

R

Redo 67, 133
ReduceFont 68, 133
ReplaceSel 67, 133
ReplaceText 68, 134
ResetContents 67, 134

S

SaveFile 67, 134
SaveToMemory 67, 135
SetBackgroundColor 70, 136
SetBaseLine 68, 136
SetCaretExt 32, 70, 137
SetDevicePrinter 69, 137
SetDeviceScreen 69, 138
SetDeviceStandard 69, 139

SetFont 68, 139
SetFontAttr 68, 140
SetLanguage

CTXButtonBar 37, 41
CTXStatusBar 37, 64
CTXTextControl 36, 70, 141

SetLineAndCol 70, 142
SetLineSpacing 69, 143
SetLinkWnd 73, 143
SetMode 70, 144
SetPageMargins 69, 146
SetPageSize 25, 69, 147
SetParaAlignment 69, 148
SetParaFormatFlags 69, 149
SetParaFrame 69, 150
SetParaIndents 69, 151
SetSel 67, 151
SetTabs 69, 152
SetTextBkColor 68, 152
SetTextColor 68, 153
SetTXScrollPos 69, 154
SetZoom 70, 154

T

TableAttrDialog 28, 72, 155
TableDeleteLines 28, 72, 155
TableFromCaretPos 72, 155
TableGetAttr 28, 72, 156
TableGetCellPosition 72, 157
TableGetCellText 72, 157
TableGetNext 72, 158
TableGetRowsAndCols 72, 158
TableInsert 28, 29, 72, 159
TableIsPossible 28, 72, 160
TableSetAttr 28, 72, 160
TableSetCellText 72, 162

U

Undo 67, 162

	Contents
	Introduction
	System Requirements
	How this Manual is Organized
	The Files You Work With
	Distributing your Applications
	Class Library User's Guide
	Creating a Simple Word Processor
	Step 1: Use the Visual C++ AppWizard to Create a Project
	Step 2: Add Text Control's Include Files to Your Project
	Step 3: Add Text Control's Import Libraries to Your Project
	Step 4: Enable Runtime Type Information (RTTI)
	Step 5: Copy Text Control's DLL Files
	Step 6: Derive Your View Class from CTXView
	Step 7: Derive Your Document Class from CTXDoc
	Step 8: Add Code to Load and Save Documents
	Step 9: Add Code to Print Documents
	Step 10: Compile and Run Your Application
	Extending Your Application's Menus
	Add Text Control's Predefined Resources
	Copy the Help Menu
	Load the Copied Toolbar
	Add an Additional Menu Command
	Compile and Run Your Application
	Adding a Button Bar and a Status Bar
	Add Member Variables to CMainFrame
	Add New Resources
	Create the Button Bar and the Status Bar Window
	Make Your CMainFrame a CTXToolContainer
	Enable the Display of Menu Command Descriptions
	Compile and Run Your Application
	Working with File Formats
	Define the Application's Document Format
	Load and Save Additional Text Formats
	Compile and Run Your Application
	Reference
	Using the Text Control Class Library
	Headers and Footers
	Tables
	Marked Text Fields
	Inserting OLE Objects
	Resources
	Text Control Classes
	CTXButtonBar
	CTXDoc
	CTXNotifyHandler
	CTXRulerBar
	CTXStatusBar
	CTXTextControl
	CTXToolContainer
	CTXView
	Data Structures
	Index

