
Page 1Getting Started

TX Text Control
Getting Started

Getting StartedPage 2

TX Text Control 7.0

Information in this document is subject to change without notice and does not represent a
commitment on the part of The Imaging Source Europe GmbH. The software described in
this document is furnished under a license agreement. The software may only be used or
copied in accordance with the terms of this agreement.

Copyright 1991-2000 The Imaging Source Europe GmbH. All rights reserved.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Page 3Getting Started

Contents

Getting Started ... 5

Starting with the ActiveX 6
Introduction ... 6

System Requirements ... 6
Distributing your Applications .. 6

A Simple Word Processor in Visual Basic 7
Creating the Project .. 8
Creating the Controls ... 8
Connecting the Controls .. 8
Running the Program ... 9
Adding Scrollbars .. 9
Resizing the Controls ... 9
Adding a Menu... 10

A Simple Word Processor in Delphi 13
Creating the Project .. 13
Creating the Controls ... 14
Connecting the Controls .. 14
Running the Program ... 14
Adding Scrollbars .. 15
Resizing the Controls ... 15
Adding a Menu... 16

Using the ActiveX Control in Visual C++ 19
Creating Applications in Visual C++ .. 19
Adding the Text Control Component to your Project 21
Licensing the Control ... 24
Connecting the Text Control Controls ... 24
Handling Events in your Dialog or CFormView: 25
Setting Properties in Visual C++ ... 25

Getting StartedPage 4

What Comes Next ... 26

Starting with the Class Library 27
Introduction ... 27

System Requirements ... 27
The Files You Work With.. 27
Distributing your Applications .. 28

Creating a Simple Word Processor 29
Step 1: Use the Visual C++ AppWizard to Create a Project 30
Step 2: Add Text Control's Include Files to Your Project 31
Step 3: Add Text Control's Import Libraries to Your Project 31
Step 4: Enable Runtime Type Information (RTTI) 32
Step 5: Copy Text Control's DLL Files ... 33
Step 6: Derive Your View Class from CTXView 33
Step 7: Derive Your Document Class from CTXDoc...................... 34
Step 8: Add Code to Load and Save Documents 34
Step 9: Add Code to Print Documents ... 34
Step 10: Compile and Run Your Application 35

What Comes Next ... 35

Page 5Getting Started

Getting Started
Now that you have TX Text Control, the first thing you will want to do
is to install it onto your system. To perform the installation, simply
insert the Text Control CD into your CD ROM drive and run the
Setup.exe program. If you have downloaded the Text Control
installation file from the Text Control web site, extract the .ZIP file and
run the contained Setup.exe program.

By choosing all the default options while Setup.exe is running you will
install both, the Text Control ActiveX Control and the Text Control
C++ Class Library. Choosing Custom in the Setup Type dialog box you
can select either the ActiveX Control or the Class Library or both.

Once the installation is complete, the quickest way to get an overview of
what you can do with TX Text Control is to look at the sample
programs. The most comprehensive sample included with Text Control,
is the TX Text Control Words demo program, that can either be started
directly from the last dialog of the setup program or through an item in
the Text Control program folder.

TX Text Control Words illustrates many of the features in TX Text
Control, but it only begins to demonstrate the full creative potential
available with TX. Because of TX Text Control’s scalable design, you
do not have to stick to standard word processing style user interfaces.
You can design the user interface that is right for your application and
you can pick and choose from the appropriate controls included with
Text Control.

The remainder of this book is devoted to creating a simple word
processor with TX Text Control. For ActiveX Control users it contains
examples for the Microsoft Visual Basic, Borland Delphi, and Microsoft
Visual C++ development enviroments.

For Class Library users it contains a short tutorial on how to integrate
TX Text Control in the Microsoft Visual C++ development enviroment.

Page 6 Starting with the ActiveX

Starting with the ActiveX
Introduction

Welcome to TX Text Control, the comprehensive text integration tool in
a single ActiveX control. Using Text Control, you can create all kinds
of text-based applications with the ease of programming that is
characteristic of Microsoft Visual Basic, with highly sophisticated
formatting and display capabilities which are normally the exlusive
domain of large word processing packages.

System Requirements
The Text Control ActiveX control requires the following minimum
configuration:

� Windows 95/98, Windows NT 4.0 or Windows 2000.

� Microsoft Visual Basic, Borland Delphi, Microsoft Visual C++ or one
of many other development platforms which support ActiveX controls.

Distributing your Applications
The table below shows all the files necessary for the Text Control
ActiveX to operate properly. You must ensure that these files exist on
your client's machine and they are the correct version. If your client's
machine has older versions of these files, you should update them.

1 TX4OLE.OCX

2 TX32.DLL

TXTLS32.DLL
WNDTLS32.DLL
TXOBJ32.DLL
IC32.DLL
IC32.INI
TX_BMP32.FLT
TX_TIF32.FLT

Starting with the ActiveX Page 7

TX_WMF32.FLT
TX_RTF32.DLL
TX_HTM32.DLL
TX_WORD.DLL

3 MFC40.DLL

MSVCRT40.DLL

4 TX_GIF32.FLT

The first file (group 1) is the Text Control ActiveX server containing
the ActiveX controls. These controls must be registered in the
registration database on your client's machine.

The files listed in the second group are the additional Text Control DLL
files. They must be installed in the same directory as the ActiveX
server. You must always install all of them.

You should also verify that the Microsoft foundation class library files
(group 3) are installed on your client's computer. These files must be
installed in the Windows system directory. Please refer to Microsoft's
redistribution policy if you need to redistribute them.

The last file (group 4) is a filter to use the GIF image format with Text
Control. Unisys Corporation holds patent rights to the LZW technology
used in this filter. If a customer wants to use the GIF file format, he is
required to obtain a license from Unisys and send a copy of the license
agreement to The Imaging Source Europe GmbH. We will then send
him the GIF filter free of charge.

A Simple Word Processor in Visual Basic
This chapter shows you how to create a small word processor from
scratch with just a few lines of code. It will be able to load and save
files, use the clipboard, and will have dialog boxes for character and
paragraph formatting, a ruler, a status bar and full keyboard and mouse

Page 8 Starting with the ActiveX

interface. The source code for this example is contained in the Simple
sample source directory.

Creating the Project
Assuming that you have already run the Text Control installation
program and started Visual Basic, the next step is to create a project for
the text processor. To do this begin by selecting the New Project
command from the file menu. Then use the Tools / Custom Controls...
command to include the file 'tx4ole.ocx' into the new project. You will
see four additional icons appear at the bottom of the toolbox,
representing the Text Control and its Status Bar, Button Bar and Ruler:

The Text Control Icon The Status Bar Icon

The Button Bar Icon The Ruler Icon

Creating the Controls
The next step is to put these four
controls onto a form and connect them.
Click on the Text Control icon and draw
it on the form. In the same way, create a
Ruler and a Button Bar on top of the
Text Control, and a Status Bar below it.
Your form should now look like the
diagram on the right:

Connecting the Controls
Add the following code to the form's Load event procedure:
Private Sub Form_Load()
 TXTextControl1.ButtonBarHandle = TXButtonBar1.hWnd
 TXTextControl1.RulerHandle = TXRuler1.hWnd
 TXTextControl1.StatusBarHandle = TXStatusBar1.hWnd
End Sub

Starting with the ActiveX Page 9

Running the Program
The text processor is not yet finished, but we
can make a first attempt at running it to see
what it can do. Click the 'Start' button. You can
type in some text, select it with the mouse,
copy it to the clipboard (use the
<CTRL>+<C> and <CTRL>+<V> keys as
long as there is no menu), select a different
font, set tabs and do lots of other things. All of
these features have been built into the Text
Control and can be used with almost no
programming effort.

You will have noticed, however, that some
features are still missing. For instance, if you
resize the main window, the controls keep their
old sizes. There is no menu, and there are no
scrollbars either. We will fix this in the coming
chapters.

Adding Scrollbars
To add scrollbars, click on the Text Control
window to have its property list displayed.
Click on the Scrollbars property and select
3 - Both. Select the PageWidth property and enter 12000, which is
about the width of a letter in twips, the currently selected measurement.
Set PageHeight to 15000 for now.

Resizing the Controls
Two steps are involved in making the controls resize properly when the
main window is resized.

� Set the Align property to 1 - Align Top for the Button Bar, the Ruler and
the Text Control. Set it to 2 - Align Bottom for the Status Bar. This will
adjust everything except the height of the Text Control.

Page 10 Starting with the ActiveX

� Open the code window for the form which contains the Text Control. In
the combo boxes on top of the code window, select 'Form' in the
'Object:' box and 'Resize' in the 'Proc:' box. The code window should
show an empty procedure for the Resize event:

Private Sub Form_Resize ()
End Sub

Extend it as follows:

Private Sub Form_Resize ()
 TXTextControl1.Height = ScaleHeight - TXRuler1.Height _
 - TXStatusBar1.Height - TXButtonBar1.Height
End Sub

This line of code will cause the Text Control's height to be adjusted
every time the size of the form is altered. (The ' _' character is used to
extend one logical line of code to two or more physical lines).

Adding a Menu
In this section, you will add a
menu to the text processor to
enable you to call the Text
Control's built-in dialog boxes.

Use the Visual Basic Menu Editor
to create a Format menu with the
items Character... and Para-
graph....

Name the items
'mnuFomat_Character' and
'mnuFormat_Paragraph'. (Please
refer to the Visual Basic
documentation if you need help
with creating menus).

Add the following code to the Click procedures of the menu items:

Private Sub mnuFormat_Character_Click()
TXTextControl1.FontDialog

Starting with the ActiveX Page 11

End Sub

Private Sub mnuFormat_Paragraph_Click()
TXTextControl1.ParagraphDialog

End Sub

Start the program again. You should be able to use
the menu items to call the Font and Paragraph dialog
boxes.

Now for the Edit menu. Again use the Menu Design
Window and create an Edit menu containing items
for Cut, Copy, and Paste. The code for these menu
items is:

Private Sub mnuEdit_Cut_Click()
TXTextControl1.Clip 1

End Sub

Private Sub mnuEdit_Copy_Click()
TXTextControl1.Clip 2

End Sub

Private Sub mnuEdit_Paste_Click()
TXTextControl1.Clip 3

End Sub

Having added these menu items, you can exchange
formatted text with other word processors via the
clipboard.

Finally, we shall add one last menu. Create a File
menu including the items Load... and Save As....
Place a common dialog box icon on the form and enter the following
code, which will call the common dialog box to get a file name from the
user, and will then load respectively save the selected file:

Private Sub mnuFile_Load_Click()
On Error Resume Next

' Create an "Open File" dialog box
CommonDialog1.Filter = "TX Demo (*.tx)|*.tx"

Page 12 Starting with the ActiveX

CommonDialog1.DialogTitle = "Open"
CommonDialog1.Flags = cdlOFNFileMustExist Or _

cdlOFNHideReadOnly
CommonDialog1.CancelError = True
CommonDialog1.ShowOpen
If Err Then Exit Sub

' Pass the filename to the text control
TXTextControl1.Load CommonDialog1.filename, 0

End Sub

Private Sub mnuFile_SaveAs_Click()
On Error Resume Next

' Create a "Save File" dialog box
CommonDialog1.Filter = "TX Demo (*.tx)|*.tx"
CommonDialog1.DialogTitle = "Save As"
CommonDialog1.Flags = cdlOFNOverwritePrompt Or _

cdlOFNHideReadOnly
CommonDialog1.CancelError = True
CommonDialog1.ShowSave
If Err Then Exit Sub

' Open the selected file
TXTextControl1.Save CommonDialog1.filename, 0

End Sub

Starting with the ActiveX Page 13

A Simple Word Processor in Delphi
This chapter shows you how to create a small word processor from
scratch with just a few lines of code. It will be able to load and save
files, use the clipboard, and will have dialog boxes for character and
paragraph formatting, a ruler, a status bar and full keyboard and mouse
interface.

The source code for this example is contained in the Simple sample
source directory.

Creating the Project
Assuming that you have already run the Text Control installation
program and started Delphi, the next step is to create a project for the
text processor. To do this begin by selecting the New Application
command from the file menu. If you have already imported Text
Control into Delphi, its icons are shown when the ActiveX tab is
selected. Otherwise, click on Controls / Import ActiveX... and choose
TX Text Control from the given list. Click Install and then OK until all
dialog boxes have been closed. Now you will see the following four
additional icons when the ActiveX tab is selected:

The Text Control Icon The Status Bar Icon

The Button Bar Icon The Ruler Icon

Page 14 Starting with the ActiveX

Creating the Controls
The next step is to put these four controls on a form and connect them.
Run Delphi and create a
new project. Select the
´OCX´ page in the
component palette to
have the 4 Text Control
icons displayed. Click on
the Text Control icon and
draw it on the form. In
the same way, create a
Ruler and a Button Bar
on top of the Text
Control, and a Status Bar
below it. Your form
should now look like the
diagram on the right:

Connecting the Controls
Add the following code to the form's FormShow Event procedure:

procedure TForm1.FormShow(Sender : TObject);
begin

TXTextControl1.ButtonBarHandle := TXButtonBar1.hWnd;
TXTextControl1.RulerHandle := TXRuler1.hWnd;
TXTextControl1.StatusBarHandle := TXStatusBar1.hWnd;

end;

Running the Program
The text processor is not yet finished, but we can make a first attempt at
running it and seeing what it can do. Click the Start button. You can
type in some text, select it with the mouse, copy it to the clipboard (use
the <CTRL>+<C> and <CTRL>+<V> keys as long as there is no
menu), select a different font, set tabs and do lots of other things. All of

Starting with the ActiveX Page 15

these features have been built into the Text
Control and can be used with almost no
programming effort.

You will have noticed, however, that some
features are still missing. For instance, if
you resize the main window, the controls
keep their old sizes. There is no menu, and
there are no scrollbars either. We will fix
this in the coming chapters.

Adding Scrollbars
To add Scroll Bars, click on the Text
Control window to have its property list
displayed. Click on the Scrollbars property
and enter 3 - Both. Select the PageWidth
property and enter 12000, which is about
the width of a letter in twips, the currently
selected measurement. Set PageHeight to
15000 for now.

Resizing the Controls
Two steps are involved in making the
controls resize properly when the main window is resized:

� Set the Align property to alTop for the Button Bar, the Ruler and the
Text Control. Set it to alBottom for the Status Bar. This will adjust
everything except the height of the Text Control.

� Change to the events listing in the property window and double-click
the OnResize event. The code window should show an empty procedure
for the Resize event:

procedure TForm1.FormResize(Sender: TObject);
begin

end;

Page 16 Starting with the ActiveX

Extend it as follows:

procedure TForm1.FormResize(Sender: TObject);
begin

TXTextControl1.Height := ClientHeight - TXRuler1.Height
- TXStatusBar1.Height - TXButtonBar1.Height;

TXTextControl1.Width := ClientWidth;
TXRuler1.Width := ClientWidth;

end;

This line of code will cause the Text Control's height and width to be
adjusted every time the size of the form is altered.

Adding a Menu
In this chapter, you will add a menu to the text processor to enable you
to call the Text Control's built-in dialog boxes.

Use the Delphi Menu Component to create a
Format menu with the items Character... and
Paragraph.... (Please refer to the Delphi
documentation if you need help with creating
menus).

Add the following code to the Click procedures of the menu items:

procedure TForm1.Character1Click(Sender: TObject);begin
TXTextControl1.FontDialog

end;

procedure TForm1.Paragraph1Click(Sender: TObject);begin
TXTextControl1.ParagraphDialog;

end;

Start the program again. You should be able to
use the menu items to call the font and paragraph
dialog boxes.

Again use the Menu Design Window and create
an Edit menu containing items for Cut, Copy, and
Paste. The code for these menu items is:

Starting with the ActiveX Page 17

procedure TForm1.Cut1Click(Sender: TObject);
begin

TXTextControl1.Clip (1);
end;

procedure TForm1.Copy1Click(Sender: TObject);
begin

TXTextControl1.Clip (2);
end;

procedure TForm1.Paste1Click(Sender: TObject);
begin

TXTextControl1.Clip (3);
end;

After adding these menu items, you can exchange formatted text with
other word processors via the clipboard.

The last menu for now shall be a simple file
menu. Create a File menu including the items
Load... and Save As.... Place a common dialog
box icon on the form and enter the following
code, which will call the common dialog box to
get a file name from the user, and will then load
respectively save the selected file:

procedure TForm1.Load1Click(Sender:
TObject);
const

TXT_FIlE = 1;
TXM_FILE = 3;

begin
OpenDialog1.Title := 'Open file';
OpenDialog1.Filename := '';
OpenDialog1.Filter

:= 'Text Control Demo (*.txm)|*.txm
|Plain text(*.txt)|*.txt';

OpenDialog1.FilterIndex := 1;
If OpenDialog1.Execute then begin;

// Pass the filename to the text control

Page 18 Starting with the ActiveX

If UpperCase(copy(OpenDialog1.Filename,
length(OpenDialog1.filename)-2, 3)) = 'TXM' then begin

TXTextControl1.Load(OpenDialog1.Filename,
0, TXM_FILE, 0);

end
else

TXTextControl1.Load(OpenDialog1.Filename,
0, TXT_FILE, 0);

end;
end;

procedure TForm1.Saveas1Click(Sender: TObject);
const

TXM_FILE = 3;
begin

SaveDialog1.Title := 'Save as ...';
SaveDialog1.Filename := '';
SaveDialog1.Filter := 'Text Control Demo (*.txm)|*.txm';
SaveDialog1.FilterIndex := 1;
SaveDialog1.DefaultExt := 'txm';
if SaveDialog1.Execute then begin;

// Pass the filename to the text control
TXTextControl1.Save(SaveDialog1.Filename,

0, TXM_FILE, 0);
end;

end;

Page 19Starting with the ActiveX

Using the ActiveX Control in Visual C++
This chapter discusses how to use the TX Text Control ActiveX in
Visual C++ 4.x, 5.x and 6.x. We're assuming that you already have
working knowledge of Visual C++, or at least are familiar with the
Visual C++ documentation and online help.

Creating Applications in Visual C++
Creating a Dialog, CFormView, or CView Based Application

1. Start Visual C++.

2. From the File menu, choose New. The New dialog box appears

3. VC 4.x: In the New box, select Project Workspace and click OK.
VC 5.x/6.x: In the New box, select Projects Tab.

4. The New Project Workspace dialog appears.

5. Browse to the desired directory path.

6. In the Name text box, type a name for your project. This will create
a sub-directory of that name in the current path.

7. From the Type list, select MFC AppWizard(exe) to create a project
based on the MFC library.

8. VC 4.x: Click the Create button.
VC 5.x/6.x: Click the OK button.

The MFC AppWizard - Step 1 Dialog appears.

If you wish to create a Dialog based application, click the Dialog radio
button, click NEXT and procede to the section, Dialog Based
Applications. If you wish to create a CFormView based application,
click the "Single Document" or "Multiple Documents" radio button,
click NEXT and procede to the section, CFormView Based Application.
If you wish to create a CView based application, click the "Single
Document" or "Multiple Documents" radio button, click NEXT and
procede to the section, CView Based Applications.

Dialog Based Applications
1. In the Step 2 dialog, click on the OLE Controls (VC 5.x/6.x:

ActiveX Controls) check box to add built-in support for OCX

Page 20 Starting with the ActiveX

products.

2. Click on NEXT button.
The Step 3 dialog will appear.

3. In the Step 3 dialog, you can accept the default options by clicking
the NEXT button.

4. In Step 4, you can accept the default options by clicking the FINISH
button. VC++ will build your project.
The New Project Information dialog will appear.

5. Click OK

CFormView Based Applications
1. In the Step 2 dialog you can accept the default options by clicking

the NEXT button.

2. In the Step 3 dialog, click on the OLE Controls (VC 5.x/6.x:
ActiveX Controls) check box to add built-in support for OCX
products.

3. Click on Next button.

4. In the Step 4 and 5 dialogs you can accept the default options by
clicking the NEXT button.

5. In the Step 6 dialog, select the class view name from the class list at
the top of the dialog.
CView will appear in the Base Class listbox.

6. In the Base Class listbox, change CView to CFormView.

7. Then click on the FINISH button to have VC++ build your project.

CView Based Applications
1. In the Step 2 dialog you can accept the default options by clicking

the NEXT button.

2. In the Step 3 dialog, click on the OLE Controls (VC 5.x: ActiveX
Controls) check box to add built-in support for OCX products.

3. Click on Next button.

4. In the Step 4 and 5 dialogs you can accept the default options by
clicking the NEXT button.

Page 21Starting with the ActiveX

5. In the Step 6 dialog, click on the FINISH button to have VC++ build
your project.

Adding the Text Control Component to your Project
To insert a Text Control component into your project:

1. VC 4.x: From the Insert menu, choose Components.
The Component Gallery dialog box appears.
Select the OLE Controls tab.
If the Text Control Text Control icon is not visible in the Gallery,
click Customize to add the control.
Select the control from the Component list on the right and click OK.
This returns you to the Component Gallery.
VC 5.x/6.x: From the Project / Add to Project menu choose
Components and Controls.
Open the Registered ActiveX Controls folder.

2. Select the Text Control icon in the Gallery and click Insert.
The Confirm Classes dialog will display.

3. Click OK to confirm and exit the dialog.

4. Repeat steps 2 and 3 for the Status Bar, Ruler, and Button Bar
controls.

5. Click Close to exit the Component Gallery.

The Text Control and its tools should now appear in the Control palette.

When VC++ adds components to your project, it creates CPP and H
source files defining the class, properties, and methods for the control.
It is a good idea to take a look at these files to understand what they
contain. Methods and properties are not accessed the same in C++ as
they are in many other languages like Visual Basic. When these files are
generated, VC++ creates both a Get and Set function for most methods
and properties. Text Control, for example, has a Text property. VC++
will create both a GetText and SetText member functions.

Adding the Component to your Dialog or CFormView:
1. In the Resource Editor, bring up the dialog that you want to place

Text Control into.

2. Click on the Text Control component in the Editor's Control palette.

Page 22 Starting with the ActiveX

3. Draw the component on the dialog box.

4. Now this can be placed and sized as desired using the handles around
the control.

5. Click on the right mouse button to bring up a floating menu. The
design-time properties for the control can be viewed and modified
through this menu.

Assigning Member Variables
Once you have added the text control to the dialog, it will be necessary
to assign a member variable to each control to gain access to the
methods and properties at runtime.

1. From the View menu, choose ClassWizard.

2. Select the Member Variables tab.

3. Select the control in the Control ID window for which you wish to
add a variable and click the Add Variable button.
The Add Member Variable dialog will display.

4. Type in the member variable name e.g. something like m_txctrl.
Accept the default variable category and type, by clicking OK.

5. The MFC ClassWizard dialog will display the variable you added in
the Control ID window.

6. Repeat steps 3 and 4 for each of the Text Control controls,
specifying a new name for each.

7. Once you have added all the variables, click on OK in the MFC
ClassWizard dialog to return to your project.

Adding the Text Control Component to your CView:
1. In the file list, bring up the header file for the view

(<projname>view.h).

2. At the top of the file, include each of the Text Control control header
files:

#include "tx4ole.h"
#include "txbbar.h"
#include "txruler.h"

Page 23Starting with the ActiveX

#include "txsbar.h"

3. In the Attributes section, as a public member, add the following to
create member variables for each of the controls in your view:

CTX4OLE m_txctrl;
CTXBBAR m_txbbar;
CTXRULER m_txruler;
CTXSBAR m_txsbar;

4. Now through the file list, bring up the C++ source file for the view
(<projname>view.cpp).

5. Start the ClassWizard. Make sure the view class is selected as the
Class Name.

6. Select the View object in the Object Id listbox.

7. Select the "Create" message in the Messages listbox.
The Create handler will initially come up with the following code:

return CWnd::Create(lpszClassName, lpszWindowName, dwStyle, rect,
pParentWnd, nID, pContext);

Change this to the following:

if (CWnd::Create(lpszClassName, lpszWindowName, dwStyle, rect,
pParentWnd, nID, pContext) == 0)

return 0;

WCHAR szLic[] = L“AB-12345TS-1234567890“;
BSTR bstrKey = SysAllocString(szLic);
BOOL bSuccess = m_txctrl.Create(NULL, dwStyle, rect, this, 1000,

NULL, NULL, bstrKey);
SysFreeString(bstrKey);
if (!bSuccess)

return 0;
if (m_txbbar.Create("TextControl ButtonBar", dwStyle, rect,

this, 1001) == 0)
return 0;

if (m_txruler.Create("TextControl Ruler", dwStyle, rect,
this, 1002) == 0)

return 0;
if (m_txsbar.Create("TextControl StatusBar", dwStyle, rect,

Page 24 Starting with the ActiveX

this, 1003) == 0)
return 0;

return TRUE;

8. Start the ClassWizard. Select view class as the Class Name.

9. Select the View object in the Object Id listbox.

10.Select the "WM_SIZE" message in the Messages listbox.

11.Click on the Add Function button to create the OnSize handler
function for this message.

12.Add the following code to the handler:
if (m_txctrl.m_hWnd && m_txbbar.m_hWnd && m_txruler.m_hWnd &&
m_txsbar.m_hWnd) {

m_txctrl.MoveWindow(0, 60, cx, cy-(25+60));
m_txbbar.MoveWindow(0, 0, cx, 30);
m_txruler.MoveWindow(0, 30, cx, 30);
m_txsbar.MoveWindow(0, cy-25, cx, 25);

}

Licensing the Control
The code added in the previous section, uses a license string to create a
Text Control. Text Control is shipped as a CD version and as a trial
version that can be downloaded and unlocked. The license string for the
CD version users is the Text Control serial number. The license string
for the trial version users is the customer key followed by the serial
number when the trial version is unlocked. When you use the locked
trial version to test Text Control's features, use only your customer key
as license string. In the code example above the customer key is "AB-
12345" and the serial number is "TS-1234567890".

Connecting the Text Control Controls
Connecting the Controls:

1. In the Create handler, add the following code:

m_txctrl.SetButtonBarHandle(m_txbbar.GetHWnd());
m_txctrl.SetRulerHandle(m_txruler.GetHWnd());
m_txctrl.SetStatusBarHandle(m_txsbar.GetHWnd());

Page 25Starting with the ActiveX

Handling Events in your Dialog or CFormView:
Assigning Message Handlers:

1. Start ClassWizard

2. In the Class Name listbox, select the Dialog or CFormView class
that was created.

3. In the Messages listbox, select the desired message to handle and
click on Add Function button to add a handler for this. For our
example, select the "Click" event and click on the Add Function
button to add the handler for this.

4. Click on the Edit Code button to edit the new function.

5. Add the following code in the function:

MessageBox ("Click Event","You clicked on the document");

6. Run the program and when the document is clicked on, the message
"You click on the document".

Setting Properties in Visual C++
You can easily set specific properties for each of the controls you
include in your project.

To set properties for a control:

1. Double-click on the control in your project that you wish to set
properties for. The Control Properties dialog will display.

2. Select the appropriate tab for the property settings you wish to
modify.
Properties are grouped together in categories, such as paragraphs,
fonts, and pages.

3. Modify the property settings as needed. For more information on
each property, see 'Text Control Properties, Events, and Methods.'

4. Once you have set the properties for the active control, close the
Control Properties dialog to return to your project.

5. Repeat steps 1 through 4 for each control.

Page 26 Starting with the ActiveX

What Comes Next
Now that you’ve created your first TX Text Control project, you can see
how quick and easy it is to add word processing functionality into your
application. Naturally, TX has many more features than these simple
examples demonstrate such as OLE Object support, image embedding,
table support, headers and footers, macro fields, hypertext links, undo/
redo, printing, and zooming. To find out more information about these
features and how to use them, please use the following resources:

Online Manuals

The TX Text Control ActiveX comes with an extensive online manual,
the ActiveX Programmer’s Guide, that provides complete information
on programming and using TX Text Control. The ActiveX
Programmer’s Guide describes the ActiveX interface, including a
complete property, method and event reference. It also discusses the
various sample programs.

Sample Programs

In addition to the reference manual, the Text Control ActiveX comes
with a wealth of sample programs. These are all stored under the
Samples directory, that is a subdirectory of your selected Text Control
installation directory. Each sample project is located within its own
subdirectory.

Readme Files

Before you get too involved with Text Control, you should take a quick
look at the Read me and Notes for ActiveX Users documents. It contains
the latest and greatest news concerning Text Control, including new
information since the manuals were printed. You can start them from
the Text Control program folder.

Technical Support

Free technical support for Text Control can be obtained at
http://www.textcontrol.com/support or contact The Imaging Source
Europe GmbH by fax at +49-421-33591-80.

Page 27Starting with the Class Library

Starting with the Class Library
Introduction

Welcome to TX Text Control, the comprehensive text integration tool
with an extensive C++ class library. The Text Control Class Library is a
set of C++ classes that encapsulate the functionality necessary to use
Text Control in applications written with the Microsoft Foundation
Class Library. Using Text Control, you can create all kinds of text-based
applications with highly sophisticated formatting and display
capabilities which are normally the exlusive domain of large word
processing packages.

System Requirements
Using the Text Control Class Library requires the following minimum
configuration:

� Windows 95/98, Windows NT 4.0 or Windows 2000.

� Microsoft Visual C++ 6.0.

� The Microsoft Foundation Class Library 6.0.

The Files You Work With
After Text Control has successfully been installed you can find all
required files in the following sub-directories under the main
installation directory:

� \BIN contains all DLL files of the Text Control Class library and the
Text Control kernel. The Class Library DLL is contained in the
following versions:

� TXCLASSES.DLL
Retail version using the ANSI character format

� TXCLASSESD.DLL
Debug version using the ANSI character format

� TXCLASSESU.DLL
Retail version using the Unicode character format

Starting with the Class LibraryPage 28

� TXCLASSESDU.DLL
Debug version using the Unicode character format

� \HELP contains the Text Control online help files.

� \TXCLASSES\INC contains the Class Library's include files. More
information about how to integrate these files can be found in the next
chapter.

� \TXCLASSES\LIB contains the import library files of the Class
Library. More information about how to link your appliction with these
files can be found in the next chapter.

� \TXCLASSES\SRC contains the source files of the Class Library. For
more information on how to modify and compile the Class Library see
"Building Your Own Class Library".

Distributing your Applications
The following table shows all the files necessary for Text Control to
operate properly. You must ensure that these files exist on your client's
machine and they are the correct version. If your client's machine has
older versions of these files, you should update them.

1 TXCLASSES.DLL

2 TX32.DLL

TXTLS32.DLL
WNDTLS32.DLL
TXOBJ32.DLL
IC32.DLL
IC32.INI
TX_BMP32.FLT
TX_TIF32.FLT
TX_WMF32.FLT
TX_RTF32.DLL
TX_HTM32.DLL
TX_WORD.DLL

3 MFC42.DLL (6.00.8447.0)

Page 29Starting with the Class Library

4 TX_GIF32.FLT

The first file (group 1) is the DLL file containing the Text Control Class
Library. This file should be installed in the same directory as your
application's executable file. If your application is based on the Unicode
character format, you must distribute the Unicode version
(TXCLASSESU.DLL).

The files listed in the second group are the Text Control kernel DLL
files. They must be installed in the same directory as the
TXCLASSES.DLL. You must always install all of them.

You should also verify that the Microsoft Foundation Class Library
(group 3) is installed on your client's computer. This file must be
installed in the Windows system directory. Please refer to Microsoft's
redistribution policy if you need to redistribute them. If your application
is based on the Unicode character format you must distribute the Uni-
code version (MFC42U.DLL).

The last file (group 4) is a filter to use the GIF image format with Text
Control. Unisys Corporation holds patent rights to the LZW technology
used in this filter. If a customer wants to use the GIF file format, he is
required to obtain a license from Unisys and send a copy of the license
agreement to The Imaging Source Europe GmbH. We will then send
him the GIF filter free of charge.

Creating a Simple Word Processor
This chapter shows you how to create a simple word processor from
scratch with just a few lines of code. It will be able to load, save and
print files, use the clipboard and will have a full keyboard and mouse
interface.The following step-by-step instructions cover the following
topics:

� Creating the starter application.

� Performing Visual C++ project settings.

Starting with the Class LibraryPage 30

� Adding the Text Control Class Library.

� Using the MFC document/view architecture.

Step 1: Use the Visual C++ AppWizard to Create a Project
Start Application Wizard:

� From the Visual C++ File menu select New.

� Make sure you’re on the Projects tab.

� Select MFC AppWizard (exe).

� In the Location box enter the desired project base directory (e.g.
C:\Projects).

� Enter the name of your Project in the Project Name box (This tutorial
assumes TXWords as the project name)

� Click on OK.

Proceed in the following dialogs as follows:

1. On page 1 don't change the default settings. Click on Next.

2. On page 2 don't change the default settings. Click on Next.

Page 31Starting with the Class Library

3. On page 3 deselect support for ActiveX Controls.Click on Next.

4. On page 4 deselect Initial status bar, because Text Control has its own
status bar. Click on Next.

5. On page 5 don't change the default settings. Click on Next.

6. On page 6 don't change the default settings. Click on Finish.

Now a dialog box appears, summarizing all the settings made in the
previous steps. Click on OK to start the code generation process.

Step 2: Add Text Control's Include Files to Your Project
In Visual C++, select Tools -Options from the menu, select the
Directories tab,
and add the
\TXClasses\Inc
subdirectory to
the list of include
paths. (i.e. if your
Text Control
installation
directory is
C:\TextControl,
add
C:\TextControl\TXClasses\Inc
to the list of
include paths).
Close this dialog
by clicking on OK.

Step 3: Add Text Control's Import Libraries to Your Project
� From the Project menu select Settings.

� Select the Link tab.

� Under Category select Input.

Starting with the Class LibraryPage 32

� In the Object/Library modules text field enter the following depending
on the configuration you selected under Settings For:

For this configuration Add this to Object/Library modules

Win32 Debug TXClassesD.lib

Win32 Release TXClasses.lib

(Use TXClassesU.lib and TXClassesDU.lib instead, when you develop
an application based on the Unicode character format.)

� Select Settings for: All configurations.

� In the Additional library path text field, enter the \TXClasses\Lib
subdirectory, i.e. enter C:\TextControl\TXClasses\Lib if your Text
Control installation directory is C:\TextControl.

Step 4: Enable Runtime Type Information (RTTI)
� While still in the Project Settings dialog, select Settings for: All

configurations.

� On the C++ tab select the C++ Language category.

� Select the Enable Run-Time Type Information (RTTI) check box.

Page 33Starting with the Class Library

� Close the Project Settings dialog by clicking on OK.

Note: If you forget this last step, you will get an error while compiling
your TXWords project. RTTI is absolutely necessary for the TXClasses
DLL to work properly.

Step 5: Copy Text Control's DLL Files
Before running your program make sure the Text Control DLL files are
in the output directory of your project. The Text Control DLL files can
be found in the \Bin subdirectory of the Text Control installation
directory. For more information see "Introduction - The Files You Work
With".

If you build an application based on the ANSI character format:

� Copy TXCLASSES.DLL to C:\Projects\TXWords\Release.

� Copy TXCLASSESD.DLL to C:\Projects\TXWords\Debug.

If you build an application based on the Unicode character format:

� Copy TXCLASSESU.DLL to C:\Projects\TXWords\Release.

� Copy TXCLASSESUD.DLL to C:\Projects\TXWords\Debug.

Copy all other Text Control DLL files to both directories. A complete
list can be found in "Introduction - Distributing your Applications".

Step 6: Derive Your View Class from CTXView
In TXWordsView.h:

� Add the following before the declaration of the class CTXWordsView:

#include "TXView.h"

� Derive your CTXWordsView class from CTXView:

class CTXWordsView : public CTXView

In TXWordsView.cpp:

 � Replace every occurrence of CView with CTXView.

Starting with the Class LibraryPage 34

Step 7: Derive Your Document Class from CTXDoc
In TXWordsDoc.h:

� Add the following before the declaration of the class CTXWordsDoc:

#include "TXDoc.h"

� Derive your CTXWordsDoc class from CTXDoc:

class CTXWordsDoc : public CTXDoc

In TXWordsDoc.cpp:

� Replace every occurrence of CDocument with CTXDoc.

Step 8: Add Code to Load and Save Documents
In TXWordsDoc.cpp add the following line to
CTXWordsDoc::Serialize() (the added line is marked with �):

void CTXWordsDoc::Serialize(CArchive& ar)
{

� CTXDoc::Serialize(ar);

if (ar.IsStoring())
{

// TODO: add storing code here
}
else
{

// TODO: add loading code here
}

}

Step 9: Add Code to Print Documents
In TXWordsView.cpp change CTXWordsView::OnPreparePrinting.
The function's code should look like the following:

BOOL CTXWordsView::OnPreparePrinting(CPrintInfo* pInfo)
{

return CTXView::OnPreparePrinting(pInfo);
}

Page 35Starting with the Class Library

Step 10: Compile and Run Your Application
� Verify that you have completed all steps exactly as they are documented

here. (The sub-directory Samples\VisualC\TXWords1 contains the code
created in this chapter.)

� Hit F7 (or select Build TXWords.exe from the Build menu) to start the
compilation process.

After compilation, you can run the application with Visual C++'s Build -
Execute TxWords.exe command. When TXWords runs, an MDI
application window appears with a menu bar containing File, Edit,
View, Window and Help menus and a default toolbar. The application
window contains one open document window with a ruler at its top.
You can type in text, copy and paste it via the clipboard and save and
load the text using the File - Open and the File - Save menus. You can
also print the document or view the printing output with the print
preview command.

What Comes Next
Now that you’ve created your first TX Text Control project, you can see
how quick and easy it is to add word processing functionality into your
application. Naturally, TX has many more features than this short step-
by-step guide demonstrate such as OLE Object support, image
embedding, table support, headers and footers, macro fields, hypertext
links, undo/redo, printing, and zooming. To find out more information
about these features and how to use them, please use the following
resources:

Online Manuals

The TX Text Control Class Library comes with an extensive online
manual, the Class Library Programmer’s Guide, that provides complete
information on programming and using TX Text Control. The Class
Library Programmer’s Guide contains a tutorial that continues creating
the word processor you have just started. Additionally it is a reference
of all the classes' member functions and how these functions work

Starting with the Class LibraryPage 36

together. It also contains several articles describing how the Text
Control Class Library realizes the more advanced Text Control features.

Readme Files

Before you get too involved with Text Control, you should take a quick
look at the Read me file. It contains the latest and greatest news
concerning Text Control, including new information since the manuals
were printed. You can start it from the Text Control program folder.

Technical Support

Free technical support for Text Control can be obtained at
http://www.textcontrol.com/support or contact The Imaging Source
Europe GmbH by fax at +49-421-33591-80.

	Contents
	Getting Started
	Starting with the ActiveX
	Introduction
	System Requirements
	Distributing your Applications
	A Simple Word Processor in Visual Basic
	Creating the Project
	Creating the Controls
	Connecting the Controls
	Running the Program
	Adding Scrollbars
	Resizing the Controls
	Adding a Menu
	A Simple Word Processor in Delphi
	Creating the Project
	Creating the Controls
	Connecting the Controls
	Running the Program
	Adding Scrollbars
	Resizing the Controls
	Adding a Menu
	Using the ActiveX Control in Visual C++
	Creating Applications in Visual C++
	Adding the Text Control Component to your Project
	Licensing the Control
	Connecting the Text Control Controls
	Handling Events in your Dialog or CFormView:
	Setting Properties in Visual C++
	What Comes Next
	Starting with the Class Library
	Introduction
	System Requirements
	The Files You Work With
	Distributing your Applications
	Creating a Simple Word Processor
	Step 1: Use the Visual C++ AppWizard to Create a Project
	Step 2: Add Text Control's Include Files to Your Project
	Step 3: Add Text Control's Import Libraries to Your Project
	Step 4: Enable Runtime Type Information (RTTI)
	Step 5: Copy Text Control's DLL Files
	Step 6: Derive Your View Class from CTXView
	Step 7: Derive Your Document Class from CTXDoc
	Step 8: Add Code to Load and Save Documents
	Step 9: Add Code to Print Documents
	Step 10: Compile and Run Your Application
	What Comes Next

