TX Text Control

Getting Started

Page 2 Getting Started

TX Text Control 7.0

Information in this document is subject to change without notice and does not represent a
commitment on the part of The Imaging Source Europe GmbH. The software described in
this document is furnished under alicense agreement. The software may only be used or
copied in accordance with the terms of this agreement.

Copyright 1991-2000 The Imaging Source Europe GmbH. All rights reserved.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Getting Started Page 3

Getting Startedcocoeeiiiii 5
Starting with the ActiveXccooiiiiiiiiiienn, 6
INTrOAUCTION oo 6
System REQUITEMENTS ..o 6
Distributing your Applicationsccoceriierere e 6
A Simple Word Processor in Visual BasiCccccee...... 7
Creating the ProjECEcoceie e 8
Creating the COoNtrolScooeiiieiee e 8
Connecting the CONtIolSeeoeereieeeeere e 8
RUNNING the Program ... 9
Adding SCrollbarscocoeeeeeeereee e 9
Resizing the COoNtrolS.......oocereiieeeese e 9
AddiNg aMENU ..o s 10
A Simple Word Processor in Delphi......cccccviiiiiiiiiinnnn, 13
Creating the ProjECEcooov e 13
Creating the COoNtrolScoov e 14
Connecting the CONtrolScceoeiireeerereeee e 14
RUNNING the Program ..o 14
Adding SCrollbarsccoeoeeeeeere e 15
Resizing the COoNtrolS.......cocereiiieeee e 15
AddiNg aMENU ..o s 16
Using the ActiveX Control in Visual C++ccccceeee 19
Creating Applicationsin Visual C++cccocveveveieccese e 19
Adding the Text Control Component to your Project...................... 21
Licensing the Controlccceveeeereie e 24
Connecting the Text Control CoNtrolS.........ccceeeveveeceeseseseeiennens 24
Handling Eventsin your Dialog or CFormView:ccccceveveeveneene. 25

Setting Propertiesin Visual CH+occceeciiicceccceceee e 25

Page 4 Getting Started

What ComeSs NEXT ...uuuiiiiiiieiieieeeeei e 26
Starting with the Class Library 27
INTFOAUCTION e 27
SyStem ReQUITEMENTS........coviieeeeree e e 27
The FilesYou WOrk With ... 27
Distributing your AppliCationsccooervreneerere e 28
Creating a Simple Word Processor......cccccooeeevvviiiiiieeeenns 29
Step 1: Usethe Visual C++ AppWizard to Create a Project 30
Step 2: Add Text Control's Include Filesto Y our Project 31
Step 3: Add Text Control's Import Librariesto Y our Project.......... 31
Step 4: Enable Runtime Type Information (RTTI) ...cccooveeeeeiennee 32
Step 5: Copy Text Control's DLL Flescoeeveiveeeeeeeeee 33
Step 6: Derive Your View Class from CTXVIiewccccoceeeneennene 33
Step 7: Derive Your Document Class from CTXDoc.........ccceenee.e. 34
Step 8: Add Code to Load and Save Documentscccceeeeeneenee 34
Step 9: Add Code to Print DOCUMENES........cceeeeeiereeeeeeene e 34
Step 10: Compile and Run Your Applicationcccccceevvvveeennene. 35

What ComeS NEXT ..o 35

Getting Started

Page 5

Getting Started

Now that you have TX Text Control, the first thing you will want to do
istoinstal it onto your system. To perform the installation, simply
insert the Text Control CD into your CD ROM drive and run the
Setup.exe program. If you have downloaded the Text Control
installation file from the Text Control web site, extract the .ZIP file and
run the contained Setup.exe program.

By choosing al the default options while Setup.exe is running you will
install both, the Text Control ActiveX Control and the Text Control
C++ Class Library. Choosing Customin the Setup Type dialog box you
can select either the ActiveX Control or the Class Library or both.

Once theinstallation is complete, the quickest way to get an overview of
what you can do with TX Text Control isto look at the sample
programs. The most comprehensive sample included with Text Control,
isthe TX Text Control Words demo program, that can either be started
directly from the last dialog of the setup program or through an itemin
the Text Control program folder.

TX Text Control Words illustrates many of the featuresin TX Text
Control, but it only begins to demonstrate the full creative potential
available with TX. Because of TX Text Control’s scalable design, you
do not have to stick to standard word processing style user interfaces.
Y ou can design the user interface that is right for your application and
you can pick and choose from the appropriate controls included with
Text Control.

The remainder of this book is devoted to creating a simple word
processor with TX Text Control. For ActiveX Control usersit contains
examples for the Microsoft Visual Basic, Borland Delphi, and Microsoft
Visual C++ development enviroments.

For Class Library usersit contains a short tutorial on how to integrate
TX Text Control in the Microsoft Visual C++ development enviroment.

Page 6 Starting with the ActiveX

Starting with the ActiveX

Introduction

Welcometo TX Text Control, the comprehensive text integration tool in
asingle ActiveX control. Using Text Control, you can create al kinds
of text-based applications with the ease of programming that is
characteristic of Microsoft Visual Basic, with highly sophisticated
formatting and display capabilities which are normally the exlusive
domain of large word processing packages.

System Requirements
The Text Control ActiveX control requires the following minimum
configuration:
. Windows 95/98, Windows NT 4.0 or Windows 2000.

. Microsoft Visual Basic, Borland Delphi, Microsoft Visual C++ or one
of many other development platforms which support ActiveX controls.

Distributing your Applications

The table below shows al the files necessary for the Text Control
ActiveX to operate properly. Y ou must ensure that these files exist on
your client's machine and they are the correct version. If your client's
machine has older versions of these files, you should update them.

1 TX40LE.OCX

2 TX32.DLL
TXTLS32.DLL
WNDTLS32.DLL
TXOBJ32.DLL
IC32.DLL
IC32.INI
TX_BMP32.FLT
TX_TIF32.FLT

Starting with the ActiveX Page 7

TX_WMF32.FLT
TX_RTF32.DLL

TX_HTM32.DLL
TX_WORD.DLL

3 MFC40.DLL
MSVCRT40.DLL

4 TX_GIF32.FLT

Thefirst file (group 1) isthe Text Control ActiveX server containing
the ActiveX controls. These controls must be registered in the
registration database on your client's machine.

Thefileslisted in the second group are the additional Text Control DLL
files. They must be installed in the same directory as the ActiveX
server. You must alwaysinstall al of them.

Y ou should also verify that the Microsoft foundation class library files
(group 3) areinstalled on your client's computer. These files must be
installed in the Windows system directory. Please refer to Microsoft's
redistribution policy if you need to redistribute them.

Thelast file (group 4) is afilter to use the GIF image format with Text
Control. Unisys Corporation holds patent rights to the LZW technology
used in thisfilter. If acustomer wants to use the GIF file format, heis
required to obtain alicense from Unisys and send a copy of the license
agreement to The Imaging Source Europe GmbH. We will then send
him the GIF filter free of charge.

A Simple Word Processor in Visual Basic

This chapter shows you how to create a small word processor from
scratch with just afew lines of code. It will be able to load and save
files, use the clipboard, and will have dialog boxes for character and
paragraph formatting, aruler, a status bar and full keyboard and mouse

Page 8 Starting with the ActiveX

interface. The source code for this example is contained in the Smple
sample source directory.

Creating the Project

Assuming that you have already run the Text Control installation
program and started Visual Basic, the next step isto create a project for
the text processor. To do this begin by selecting the New Project
command from the file menu. Then use the Tools/ Custom Controls...
command to include the file 'tx4ole.ocx' into the new project. Y ou will
see four additional icons appear at the bottom of the toolbox,
representing the Text Control and its Status Bar, Button Bar and Ruler:

iaz| TheText Control Icon ZX| The StatusBar Icon

ZX | The Button Bar Icon ZX | TheRuler Icon

Creating the Controls

The next step is to put these four . — “mEn
controls onto a form and connect them. (el 7Tw] (FW]3
Click on the Text Control icon and draw i Siie T n mr Tn s

it on the form. In the same way, create a
Ruler and a Button Bar on top of the
Text Control, and a Status Bar below it.
Y our form should now look like the
diagram on the right:

Connecting the Controls

Add the following code to the form's L oad event procedure:
Private Sub Form Load()

TXText Control 1. ButtonBar Handl e = TXButt onBar 1. hWid

TXText Control 1. Rul erHandl e = TXRul er 1. hwid

TXText Control 1. St at usBar Handl e = TXSt at usBar 1. hwid
End Sub

Starting with the ActiveX

Running the Program

The text processor is not yet finished, but we
can make afirst attempt at running it to see
what it can do. Click the 'Start' button. Y ou can
type in some text, select it with the mouse,
copy it to the clipboard (use the
<CTRL>+<C> and <CTRL>+<V> keys as
long as there is no menu), select a different
font, set tabs and do lots of other things. All of
these features have been built into the Text
Control and can be used with almost no
programming effort.

Y ou will have noticed, however, that some
features are still missing. For instance, if you
resize the main window, the controls keep their
old sizes. Thereis no menu, and there are no
scrollbars either. We will fix thisin the coming
chapters.

Adding Scrollbars

To add scrollbars, click on the Text Control
window to have its property list displayed.
Click on the Scrollbar s property and select

| Tei T awtlandicl

=T
Haislna

a e pe
R T
i i1
sl hat
ikl
L s carasd
[lata>ance
g [
Ulumgisbads
I il
]
¥ cardld
F o bal
F il g
Forfase
Forisaloatin
F ool il
F sk
F carnaf) wiwchaor
g
Heip oD
HlZalacion
I=dordd
Bl
| mcdarsk
Ifmd =
Lo I
| mdar
1= od bl =y
L g
Lak

LE TUTER e

Fials

Fab=
AR 75
Fabm

G

il

[T

a

=N =] —-]

3 - Both. Select the PageWidth property and enter 12000, which is
about the width of aletter in twips, the currently selected measurement.

Set PageHeight to 15000 for now.

Resizing the Controls

Two steps are involved in making the controls resize properly when the

main window isresized.

Set the Align property to 1 - Align Top for the Button Bar, the Ruler and
the Text Control. Set it to 2 - Align Bottom for the Status Bar. This will
adjust everything except the height of the Text Control.

Page 10

Starting with the ActiveX

Open the code window for the form which contains the Text Control. In
the combo boxes on top of the code window, select 'Form' in the
'Object:' box and 'Resize' in the 'Proc:' box. The code window should
show an empty procedure for the Resize event:

Private Sub Form Resize ()
End Sub

Extend it as follows:

Private Sub Form Resize ()

TXText Control 1. Hei ght = Scal eHei ght
- TXButtonBar 1. Hei ght

- TXSt at usBar 1. Hei ght
End Sub

- TXRul er 1. Hei ght _

Thisline of code will cause the Text Control's height to be adjusted
every time the size of the form is altered. (The' _' character is used to
extend one logical line of code to two or more physical lines).

Adding a Menu

In this section, you will add a
menu to the text processor to
enable you to call the Text
Control's built-in dialog boxes.

Use the Visual Basic Menu Editor
to create a Format menu with the
items Character... and Para-
graph....

Name the items
'mnuFomat_Character' and
'mnuFormat_Paragraph’. (Please
refer to the Visual Basic
documentation if you need help
with creating menus).

(e e B
Cagior: [Fasgacn 0k |
Mg [reForat_Faspwph ﬁ
g | Shotrat o) =
HapConisalD 1 HagaaePor i ||:| Kine -|
I Crecksd FF £ rabbsd = i I iaretional rt

¢ 3]2] 3] [T e | oo |

Fearaad
Chaslie b

Add the following code to the Click procedures of the menu items:

Private Sub mmuFormat _Character_Cick()

TXText Cont rol 1. Font Di al og

Starting with the ActiveX Page 11

End Sub

LT .
Private Sub muFornmat _Paragraph_C i ck() Fordt
TXText Cont rol 1. Par agr aphDi al og fuuta =
End Sub] 3 I

Start the program again. Y ou should be able to use
the menu items to call the Font and Paragraph dialog
boxes.

Now for the Edit menu. Again use the Menu Design
Window and create an Edit menu containing items
for Cut, Copy, and Paste. The code for these menu
itemsis: E1|
Lra 1 Ca O x|
Private Sub muEdit _Cut Cick()
TXText Control 1.Clip 1

End Sub

Private Sub muEdit_Copy_d i ck() mm-_
TXText Control 1.Cip 2 - =) |1

End Sub S —

Private Sub muEdit_Paste O ick()
TXText Control 1.Clip 3
End Sub

Having added these menu items, you can exchange

formatted text with other word processors viathe

clipboard. .

Finally, we shall add one last menu, Create aFile i e s i
menu including the items Load... and Save As....
Place a common dialog box icon on the form and enter the following
code, which will call the common dialog box to get afile name from the
user, and will then load respectively save the selected file:

Private Sub muFile_Load _dick()
On Error Resume Next

Create an "Qpen File" dial og box
ComonDi al ogl. Filter = "TX Demp (*.tx)|*.tx"

Page 12

Starting with the ActiveX

CommonDi al ogl. Di al ogTitle = " Cpen"

CommonDi al ogl. Fl ags = cdl OFNFi | eMust Exi st O _
cdl OFNH deReadOnl y

CommonDi al ogl. Cancel Error = True

CommonDi al ogl. ShowOpen

If Err Then Exit Sub

' Pass the filename to the text control

TXText Control 1. Load CommonDi al ogl.fil enane, 0

End Sub

Private Sub muFil e_SaveAs _Cick()

On Error Resune Next

' Create a "Save File" dial og box

ComonDi al ogl. Filter = "TX Demp (*.tx)|*.tx"

ComonDi al ogl. Di al ogTitl e = "Save As"

CommonDi al ogl. Fl ags = cdl OFNOverwritePrompt O _
cdl OFNH deReadOnl y

ComonDi al ogl. Cancel Error = True

ComonDi al ogl. ShowSave

If Err Then Exit Sub

" Open the selected file

TXText Control 1. Save CormonDi al ogl.fil ename, 0

End Sub

Starting with the ActiveX Page 13

A Simple Word Processor in Delphi

This chapter shows you how to create a small word processor from
scratch with just afew lines of code. It will be able to load and save
files, use the clipboard, and will have dialog boxes for character and
paragraph formatting, aruler, a status bar and full keyboard and mouse
interface.

The source code for this example is contained in the Smple sample
source directory.

Creating the Project

Assuming that you have aready run the Text Control installation
program and started Delphi, the next step is to create a project for the
text processor. To do this begin by selecting the New Application
command from the file menu. If you have already imported Text
Control into Delphi, itsicons are shown when the ActiveX tab is
selected. Otherwise, click on Controls/ Import ActiveX... and choose
TX Text Control from the given list. Click Install and then OK until all
dialog boxes have been closed. Now you will see the following four
additional icons when the ActiveX tab is selected:

The Text Control Icon #£| The Status Bar Icon

The Button Bar Icon ZX | TheRuler Icon

Page 14 Starting with the Activex

Creating the Controls

The next step is to put these four controls on aform and connect them.
Run Delphi and create a

new project. Select the

"OCX” pageinthe

component palette to ! = fl ! fl o) ;lul = ‘,I 5|
havethe4 TextControl @& & . & @& @&, &, 0 & % %
icons displayed. Click on Folprett =
the Text Control icon and

draw it on theform. In

the same way, create a

Ruler and a Button Bar

on top of the Text

Control, and a Status Bar |
below it. Your form a | _|—|
should now look like the

diagram on theright:

A T Tl Conliod - 5 mple 5 anpls Progss

Connecting the Controls

Add the following code to the form's FormShow Event procedure:

procedur e TForml. For nShow Sender : TChj ect);
begi n
TXText Control 1. ButtonBar Handl e : = TXBut t onBar 1. hWhd;
TXText Control 1. Rul er Handl e : = TXRul er 1. hWd;
TXText Control 1. St at usBar Handl e : = TXSt at usBar 1. hWhd;
end;

Running the Program

The text processor is not yet finished, but we can make afirst attempt at
running it and seeing what it can do. Click the Start button. Y ou can
type in some text, select it with the mouse, copy it to the clipboard (use
the <CTRL>+<C> and <CTRL>+<V> keys aslong as thereis no
menu), select adifferent font, set tabs and do lots of other things. All of

Starting with the ActiveX

Page 15

these features have been built into the Text
Control and can be used with almost no
programming effort.

Y ou will have noticed, however, that some
features are still missing. For instance, if
you resize the main window, the controls
keep their old sizes. There is no menu, and
there are no scrollbars either. We will fix
thisin the coming chapters.

Adding Scrollbars

To add Scroll Bars, click on the Text
Control window to have its property list
displayed. Click on the Scrollbars property
and enter 3 - Both. Select the PageWidth
property and enter 12000, which is about
the width of aletter in twips, the currently
selected measurement. Set PageHeight to
15000 for now.

Resizing the Controls

Two steps are involved in making the

Object Inspector

I THTexwtContrall: TTeT e:-ctEu:untrLI

Fropertiez | Eventgl

PagetarginT | 1440 |
Pageifidth]

ParentColaor True

ParentF ant True
ParentShowHint True
Popuptdenu

FrintColors True

FrintQffzet Falze

FrintZoom 100

ScrollBarz 3 - Eath] j
ShowHint Falze

SizeMode 0 - Fixed
TabCurrent 1

Tabkey True
TableGridLines | True

TabOrder 1]

TabPos 1134

TabStop True

TabType 1

Tag 1] LI

controls resize properly when the main window is resized:

Set the Align property to al Top for the Button Bar, the Ruler and the
Text Control. Set it to alBottom for the Status Bar. This will adjust
everything except the height of the Text Control.

Change to the events listing in the property window and double-click
the OnResize event. The code window should show an empty procedure

for the Resize event:

procedur e TFor . For nResi ze(Sender: TCbj ect);

begi n

end;

Page 16

Starting with the ActiveX

Extend it as follows:

procedur e TFor nil. For nResi ze(Sender: Tbj ect);
begi n
TXText Control 1. Hei ght := dientHeight - TXRul er 1. Hei ght
- TXStatusBar 1. Hei ght - TXButtonBar 1. Hei ght;
TXText Control 1. Wdth : = dientWdth;
TXRulerl. Wdth := dientWdth;
end;

Thisline of code will cause the Text Control's height and width to be
adjusted every time the size of the form is altered.

Adding a Menu

In this chapter, you will add a menu to the text processor to enable you
to call the Text Control's built-in dialog boxes.

Use the Delphi Menu Component to create a
Format menu with the items Character... and
Paragraph.... (Please refer to the Delphi
documentation if you need help with creating
menus).

Add the following code to the Click procedures of the menu items:

procedure TForml. Character1d i ck(Sender: TChject); begin
TXText Control 1. Font Di al og
end;

procedur e TForml. Par agr aph1d i ck(Sender: TChj ect); begin
TXText Cont r ol 1. Par agr aphDi al og;
end;

Start the program again. Y ou should be able to
use the menu items to call the font and paragraph e E Farmat \
dialog boxes. L m

Again use the Menu Design Window and create
an Edit menu containing items for Cut, Copy, and
Paste. The code for these menu itemsis:

i’

Starting with the ActiveX Page 17

procedure TFornil. Cut 10 i ck(Sender: TObject);

begi n
TXText Control 1.0 ip (1);
end;
procedure TFornil. Copyld i ck(Sender: TCbject);
begi n
TXText Control 1.0 ip (2);
end;
procedure TFornil. Past eld i ck(Sender: T(hject);
begi n
TXText Control 1.0 ip (3);
end;

After adding these menu items, you can exchange formatted text with
other word processors via the clipboard.

The last menu for now shall be asimplefile i 1aum] Mankinnal M=
menu. Create a File menu including the items I Edh Fermat

Load... and Save As.... Place acommon dialog ?.:,

box icon on the form and enter the following Sris .

code, which will call the common dialog box to Print...
get afile name from the user, and will then load

respectively save the selected file: =

procedur e TFor . Load1d i ck(Sender:
Thj ect);
const
TXT_FIIE
TXM FI LE
begi n
OpenDialogl. Title :="Cpen file';
QpenDi al ogl. Filename :="";
QpenDi al ogl. Fil ter
;= '"Text Control Demp (*.txm)|*.txm
|[Plaintext(*.txt)|*.txt";
QpenDi al ogl. Filterlndex : =1,
I f OpenDi al ogl. Execut e then begin;

1;
3

/] Pass the filenane to the text control

Page 18

Starting with the ActiveX

I f Upper Case(copy(QpenDi al ogl. Fi | enane,

I engt h(CpenDi al ogl.filename)-2, 3)) ='TXM then begin

TXText Cont rol 1. Load(QpenDi al ogl. Fi | enane,
0, TXMFILE, 0);

end
el se

TXText Control 1. Load(QpenDi al ogl. Fi | enane,

0, TXT_FILE, 0);
end,
end;

procedure TFormnl. Saveas1d i ck(Sender: TObject);
const
TXM FI LE = 3;
begi n
SaveDialogl. Title :="'Save as ...";
SaveDi al ogl. Filename :="";
SaveDi al ogl. Filter :="Text Control Deno (*.txm|*.txni;
SaveDi al ogl. Filterlndex : = 1;
SaveDi al ogl. Defaul t Ext :="txm;
i f SaveDi al ogl. Execute then begin;
/1 Pass the filename to the text control
TXText Control 1. Save(SaveDi al ogl. Fi | enane,
0, TXM FILE, 0);
end;
end;

Starting with the ActiveX Page 19

Using the ActiveX Control in Visual C++

This chapter discusses how to use the TX Text Control ActiveX in
Visual C++ 4.x, 5.x and 6.x. We're assuming that you already have
working knowledge of Visual C++, or at least are familiar with the
Visual C++ documentation and online help.

Creating Applications in Visual C++

Creating a Dialog, CFormView, or CView Based Application
1. Start Visual C++.
2. From the File menu, choose New. The New dialog box appears

3. VC 4.x: Inthe New box, select Project Workspace and click OK.
VC 5.x/6.x: Inthe New box, select Projects Tab.

4. The New Project Workspace dialog appears.
Browse to the desired directory path.

6. Inthe Nametext box, type a name for your project. Thiswill create
a sub-directory of that name in the current path.

7. From the Typelist, select MFC AppWizard(exe) to create a project
based on the MFC library.

8. VC 4.x: Click the Create button.
VC 5.x/6.x; Click the OK button.

The MFC AppWizard - Step 1 Dialog appears.

If you wish to create a Dialog based application, click the Dialog radio
button, click NEXT and procede to the section, Dialog Based
Applications. If you wish to create a CFormView based application,
click the "Single Document” or "Multiple Documents" radio button,
click NEXT and procede to the section, CFormView Based Application.
If you wish to create a CView based application, click the "Single
Document™ or "Multiple Documents" radio button, click NEXT and
procede to the section, CView Based Applications.

o

Dialog Based Applications

1. Inthe Step 2 dialog, click on the OLE Controls (VC 5.x/6.x:
ActiveX Controls) check box to add built-in support for OCX

Page 20 Starting with the ActiveX

products.

2. Click on NEXT button.
The Step 3 dialog will appear.

3. Inthe Step 3 dialog, you can accept the default options by clicking
the NEXT button.

4. In Step 4, you can accept the default options by clicking the FINISH
button. VC++ will build your project.
The New Project Information dialog will appear.

5. Click OK

CFormView Based Applications

1. Inthe Step 2 dialog you can accept the default options by clicking
the NEXT button.

2. Inthe Step 3 diaog, click on the OLE Controls (VC 5.x/6.x:
ActiveX Controls) check box to add built-in support for OCX
products.

3. Click on Next button.

4. Inthe Step 4 and 5 dialogs you can accept the default options by
clicking the NEXT button.

5. Inthe Step 6 dialog, select the class view name from the classlist at
the top of the dialog.
CView will appear in the Base Class listbox.

6. Inthe Base Class listbox, change CView to CFormView.
7. Then click on the FINISH button to have V C++ build your project.

CView Based Applications

1. Inthe Step 2 dialog you can accept the default options by clicking
the NEXT button.

2. Inthe Step 3 diaog, click on the OLE Controls (VC 5.x: ActiveX
Controls) check box to add built-in support for OCX products.

3. Click on Next button.

4. Inthe Step 4 and 5 dialogs you can accept the default options by
clicking the NEXT button.

Starting with the ActiveX Page 21

5. Inthe Step 6 diaog, click on the FINISH button to have VC++ build
your project.

Adding the Text Control Component to your Project
To insert a Text Control component into your project:

1. VC 4.x: From the Insert menu, choose Components.
The Component Gallery dialog box appears.
Select the OLE Controlstab.
If the Text Control Text Control icon is not visible in the Gallery,
click Customize to add the control.
Select the control from the Component list on the right and click OK.
This returns you to the Component Gallery.
VC 5.x/6.x: From the Project / Add to Project menu choose
Components and Controls.
Open the Registered ActiveX Controls folder.

2. Select the Text Control icon in the Gallery and click Insert.
The Confirm Classes dialog will display.

3. Click OK to confirm and exit the dialog.

4. Repeat steps 2 and 3 for the Status Bar, Ruler, and Button Bar
controls.

5. Click Close to exit the Component Gallery.
The Text Control and its tools should now appear in the Control palette.

When V C++ adds components to your project, it creates CPP and H
source files defining the class, properties, and methods for the control.

It isagood ideato take alook at these files to understand what they
contain. Methods and properties are not accessed the samein C++ as
they are in many other languages like Visual Basic. When these files are
generated, V C++ creates both a Get and Set function for most methods
and properties. Text Control, for example, has a Text property. VC++
will create both a GetText and SetText member functions.

Adding the Component to your Dialog or CFormView:

1. Inthe Resource Editor, bring up the dialog that you want to place
Text Control into.

2. Click on the Text Control component in the Editor's Control palette.

Page 22 Starting with the ActiveX

3. Draw the component on the dialog box.

4. Now this can be placed and sized as desired using the handles around
the control.

5. Click on the right mouse button to bring up afloating menu. The
design-time properties for the control can be viewed and modified
through this menu.

Assigning Member Variables

Once you have added the text control to the dialog, it will be necessary

to assign a member variable to each control to gain accessto the

methods and properties at runtime.

1. From the View menu, choose ClassWizard.

2. Select the Member Variables tab.

3. Select the contral in the Control 1D window for which you wish to
add avariable and click the Add Variable button.
The Add Member Variable dialog will display.

4. Typeinthe member variable name e.g. something like m_txctrl.
Accept the default variable category and type, by clicking OK.

5. The MFC ClassWizard dialog will display the variable you added in
the Control 1D window.

6. Repeat steps 3 and 4 for each of the Text Control controls,
specifying a new name for each.

7. Once you have added al the variables, click on OK in the MFC
ClassWizard dialog to return to your project.

Adding the Text Control Component to your CView:
1. Inthefilelist, bring up the header file for the view
(<projname>view.h).
2. Atthetop of thefile, include each of the Text Control control header
files:

#include "tx4ol e. h"
#incl ude "txbbar.h"
#include "txruler.h"

Starting with the ActiveX Page 23

#incl ude "txsbar.h"

3. Inthe Attributes section, as a public member, add the following to
create member variables for each of the controlsin your view:

CTX4OLE mtxctrl;
CTXBBAR m t xbbar;
CTXRULER m t xrul er;
CTXSBAR m t xshar;

4. Now through the file list, bring up the C++ source file for the view
(<projname>view.cpp).

5. Start the ClassWizard. Make sure the view class is selected as the
Class Name.

6. Select the View object in the Object 1d listbox.

7. Select the "Create” message in the Messages listbox.
The Create handler will initially come up with the following code:

return CMd: : Create(l pszd assName, | pszW ndowNanme, dwStyle, rect,
pParent Wd, nlD, pContext);

Change thisto the following:

if (CWhd:: Create(lpszC assNane, |pszWndowNane, dwStyle, rect,
pParent Wid, ni D, pContext) == 0)
return 0;

WCHAR szLic[] = L“AB-12345TS- 1234567890 ;
BSTR bstrKey = SysAllocString(szLic);
BOOL bSuccess = mtxctrl. Create(NULL, dwStyle, rect, this, 1000,
NULL, NULL, bstrKey);
SysFreeString(bstrKey);
if (!bSuccess)
return 0;
if (mtxbbar.Create("TextControl ButtonBar", dwStyle, rect,
this, 1001) == 0)
return 0;
if (mtxruler.Create("TextControl Ruler", dwStyle, rect,
this, 1002) == 0)
return 0;
if (mtxsbar.Create("TextControl StatusBar", dwStyle, rect,

Page 24

Starting with the ActiveX

this, 1003) == 0)
return 0;

return TRUE

8. Start the ClassWizard. Select view class as the Class Name.

9. Select the View object in the Object 1d listbox.

10.Select the "WM_SIZE" message in the Messages listbox.

11.Click on the Add Function button to create the OnSize handler
function for this message.

12.Add the following code to the handler:
if (mtxctrl.mhWd & mtxbbar. mhWd && mtxrul er. m hWd &&
m t xsbar. m hWwd) {
mtxctrl.MveWndow(0, 60, cx, cy-(25+60));
m t xbbar . MoveW ndow(0, 0, cx, 30);
m txrul er. MoveW ndow(0, 30, cx, 30);
m t xshar. MoveW ndow(0, cy-25, cx, 25);
}

Licensing the Control

The code added in the previous section, uses a license string to create a
Text Control. Text Control is shipped asa CD version and as atrial
version that can be downloaded and unlocked. The license string for the
CD version usersisthe Text Control serial number. The license string
for thetrial version usersis the customer key followed by the serial
number when the trial version is unlocked. When you use the locked
trial version to test Text Control's features, use only your customer key
as license string. In the code example above the customer key is"AB-
12345" and the serial number is"TS-1234567890".

Connecting the Text Control Controls

Connecting the Controls:
1. Inthe Create handler, add the following code:
mtxctrl. Set ButtonBar Handl e(m t xbbar. Get HWd());

mtxctrl. Set Rul er Handl e(m t xrul er. Get HWd());
mtxctrl. Set StatusBar Handl e(m t xsbar. Get HWd()) ;

Starting with the ActiveX Page 25

Handling Events in your Dialog or CFormView:
Assigning Message Handlers:

1
2.

4,
5,

Start ClassWizard

In the Class Name listbox, select the Dialog or CFormView class
that was created.

In the Messages listbox, select the desired message to handle and
click on Add Function button to add a handler for this. For our
example, select the "Click" event and click on the Add Function
button to add the handler for this.

Click on the Edit Code button to edit the new function.

Add the following code in the function:

MessageBox ("Click Event","You clicked on the document");

6.

Run the program and when the document is clicked on, the message
"You click on the document".

Setting Properties in Visual C++

You can easily set specific properties for each of the controls you
include in your project.

To set properties for a control:

1

Double-click on the control in your project that you wish to set
properties for. The Control Properties dialog will display.

Select the appropriate tab for the property settings you wish to
modify.

Properties are grouped together in categories, such as paragraphs,
fonts, and pages.

Modify the property settings as needed. For more information on
each property, see "Text Control Properties, Events, and Methods.

Once you have set the properties for the active control, close the
Control Properties dialog to return to your project.

Repeat steps 1 through 4 for each control.

Page 26 Starting with the ActiveX

What Comes Next

Now that you’ ve created your first TX Text Control project, you can see
how quick and easy it isto add word processing functionality into your
application. Naturally, TX has many more features than these simple
examples demonstrate such as OLE Object support, image embedding,
table support, headers and footers, macro fields, hypertext links, undo/
redo, printing, and zooming. To find out more information about these
features and how to use them, please use the following resources:

Online Manuals

The TX Text Control ActiveX comes with an extensive online manual,
the ActiveX Programmer’s Guide, that provides complete information
on programming and using TX Text Control. The ActiveX
Programmer’ s Guide describes the ActiveX interface, including a
complete property, method and event reference. It also discusses the
various sample programs.

Sample Programs

In addition to the reference manual, the Text Control ActiveX comes
with awealth of sample programs. These are all stored under the
Samples directory, that is a subdirectory of your selected Text Control
installation directory. Each sample project is located within its own
subdirectory.

Readme Files

Before you get too involved with Text Control, you should take a quick
look at the Read me and Notes for ActiveX Users documents. It contains
the latest and greatest news concerning Text Control, including new
information since the manuals were printed. Y ou can start them from
the Text Control program folder.

Technical Support

Free technical support for Text Control can be obtained at
http://www.textcontrol.com/support or contact The Imaging Source
Europe GmbH by fax at +49-421-33591-80.

Starting with the Class Library Page 27

Starting with the Class Library

Introduction

Welcometo TX Text Control, the comprehensive text integration tool
with an extensive C++ class library. The Text Control Class Library isa
set of C++ classes that encapsulate the functionality necessary to use
Text Control in applications written with the Microsoft Foundation
Class Library. Using Text Control, you can create al kinds of text-based
applications with highly sophisticated formatting and display
capabilities which are normally the exlusive domain of large word
processing packages.

System Requirements
Using the Text Control Class Library requires the following minimum
configuration:
. Windows 95/98, Windows NT 4.0 or Windows 2000.
. Microsoft Visual C++ 6.0.
. The Microsoft Foundation Class Library 6.0.

The Files You Work With

After Text Control has successfully been installed you can find all
required files in the following sub-directories under the main
installation directory:

. \BIN contains all DLL files of the Text Control Classlibrary and the
Text Control kernel. The Class Library DLL is contained in the
following versions:

. TXCLASSES.DLL

Retail version using the ANSI character format
. TXCLASSESD.DLL

Debug version using the ANSI character format

. TXCLASSESU.DLL
Retail version using the Unicode character format

Page 28

Starting with the Class Library

. TXCLASSESDU.DLL
Debug version using the Unicode character format

\HELP contains the Text Control online help files.

\TXCLASSES\INC contains the Class Library's include files. More
information about how to integrate these files can be found in the next
chapter.

\TXCLASSES\LIB contains the import library files of the Class
Library. More information about how to link your appliction with these
files can be found in the next chapter.

\TXCLASSES\SRC contains the source files of the Class Library. For

more information on how to modify and compile the Class Library see
"Building Your Own Class Library".

Distributing your Applications

The following table shows all the files necessary for Text Control to
operate properly. Y ou must ensure that these files exist on your client's
machine and they are the correct version. If your client's machine has
older versions of these files, you should update them.

1 TXCLASSESDLL

2 TX32.DLL
TXTLS32.DLL
WNDTLS32.DLL
TXOBJ32.DLL
IC32.DLL
IC32.INI
TX_BMP32.FLT
TX_TIF32.FLT
TX_WMF32.FLT
TX_RTF32.DLL
TX_HTM32.DLL
TX_WORD.DLL

3 MFC42.DLL (6.00.8447.0)

Starting with the Class Library Page 29

4 TX_GIF32.FLT

Thefirst file (group 1) isthe DLL file containing the Text Control Class
Library. Thisfile should be installed in the same directory as your
application's executable file. If your application is based on the Unicode
character format, you must distribute the Unicode version
(TXCLASSESU.DLL).

Thefiles listed in the second group are the Text Control kernel DLL
files. They must be installed in the same directory asthe
TXCLASSES.DLL. You must alwaysinstall all of them.

Y ou should also verify that the Microsoft Foundation Class Library
(group 3) isinstalled on your client's computer. This file must be
installed in the Windows system directory. Please refer to Microsoft's
redistribution policy if you need to redistribute them. If your application
is based on the Unicode character format you must distribute the Uni-
code version (MFC42U.DLL).

Thelast file (group 4) is afilter to use the GIF image format with Text
Control. Unisys Corporation holds patent rights to the LZW technology
used in thisfilter. If acustomer wants to use the GIF fileformat, heis
required to obtain alicense from Unisys and send a copy of the license
agreement to The Imaging Source Europe GmbH. We will then send
him the GIF filter free of charge.

Creating a Simple Word Processor

This chapter shows you how to create a simple word processor from
scratch with just afew lines of code. It will be able to load, save and
print files, use the clipboard and will have afull keyboard and mouse
interface. The following step-by-step instructions cover the following
topics:

. Creating the starter application.
. Performing Visual C++ project settings.

Page 30 Starting with the Class Library

. Adding the Text Control Class Library.

. Using the MFC document/view architecture.

Step 1: Use the Visual C++ AppWizard to Create a Project
Start Application Wizard:
. From the Visual C++ File menu select New.
. Make sure you' re on the Projects tab.
. Select MFC AppWizard (exe).

. In the Location box enter the desired project base directory (e.g.
C:\Projects).

. Enter the name of your Project in the Project Name box (This tutorial
assumes TXWords as the project name)

Fles Pl | wokipsoss | Dt Do |

ATLO0M dppiaiamd [ez B Ly Frugert pare:

Chrib A gsimince: Type Wit I""""'"'\-"

o ig’iaand

Dababrs Fropeet e

[- | Promcte! Tedwionds =l

Exdarsded oo Proc Wi
15461 £ shwrren 'wiewd
Hakatin F Cnstw rews reochopacs
HL Adtees Lanfedsmd r
ML feprtoforand | | r
M dapfrared || [=]
A Pty [bt ' i
} Lty Puciect
WL el
WAL C ool Sppkcsine Eferdoes:
e WO sl ind Loy

i | L] |

. Click on OK.

Proceed in the following dialogs as follows:

On page 1 don't change the default settings. Click on Next.
2. On page 2 don't change the default settings. Click on Next.

Starting with the Class Library Page 31

On page 3 deselect support for ActiveX Controls.Click on Next.

On page 4 deselect Initial status bar, because Text Control hasits own
status bar. Click on Next.

On page 5 don't change the default settings. Click on Next.
On page 6 don't change the default settings. Click on Finish.

Now adialog box appears, summarizing al the settings made in the
previous steps. Click on OK to start the code generation process.

Step 2: Add Text Control's Include Files to Your Project

InVisua C++, select Tools -Options from the menu, select the
Directories tab,

and add the Ogtions ______EH]
\TXClasses\Inc Edbor | Tabs | Debug | Corpsibdy | Eukd Dieciodes | | [1]4]
subdirectory to Plafsme s chrsias fowr

thelist of include ['winz =] |irchus e =]

paths. (i.e.if your — peie T ¥ 4
Text Control [\Vizual Sl B IVCEUNCLLIDE =]
ins[a”ation D sl Sl B RVCESAMFCWUM CLUDE

directory is e e ™
C:\TextControl,

add

Clle G
to thelist of
include paths). or]

Close this dialog = =
by clicking on OK.

Step 3: Add Text Control's Import Libraries to Your Project
. From the Project menu select Settings.
. Select the Link tab.
. Under Category select Input.

Page 32 Starting with the Class Library

. In the Object/Library modules text field enter the following depending
on the configuration you selected under Settings For:

For this configuration Add thisto Object/Library modules
Win32 Debug TXClassesD.lib
Win32 Release TXClasses.lib

(Use TXClassesU.lib and TXClassesDU.lib instead, when you develop
an application based on the Unicode character format.)

. Select Settings for: All configurations.

. In the Additional library path text field, enter the \TXClasses\Lib
subdirectory, i.e. enter C:\TextControl\TXClasses\Lib if your Text
Control installation directory is C:\TextControl.

Finmcl Satings EilE
Setirggs Fon. E,:..:,.._,..M._ =] | Geness | Debug | CAee | Lk | Aesews]3]
: Cotepy [inpad =] Aum |
ik Moot iy rocdiudert
|
| prearm Brarmr ™ | greoes g debsoll Bsiss
|
Frsnces pganbul red srerass:
|
Ageitional sy pathc
I:'-'l o Contaal T Laroea L B[
Coramen Dpfars:
[1 L 3 . |“ ;I
Mt " Tt Dol
[
[T] cawe |

Step 4: Enable Runtime Type Information (RTTI)

. While still in the Project Settings dialog, select Settings for: All
configurations.

. On the C++ tab select the C++ Language category.
. Select the Enable Run-Time Type Information (RTTI) check box.

Starting with the Class Library Page 33

. Close the Project Settings dialog by clicking on OK.

Note: If you forget this last step, you will get an error while compiling
your TXWords project. RTTI is absolutely necessary for the TX Classes
DLL towork properly.

Step 5: Copy Text Control's DLL Files

Before running your program make sure the Text Control DLL files are
in the output directory of your project. The Text Control DLL files can
be found in the \Bin subdirectory of the Text Control installation
directory. For more information see "Introduction - The Files You Work
With".

If you build an application based on the ANSI character format:
. Copy TXCLASSES.DLL to C:\Projects\TXWords\Release.
. Copy TXCLASSESD.DLL to C:\Projects\TXWords\Debug.
If you build an application based on the Unicode character format:
. Copy TXCLASSESU.DLL to C:\Projects\TXWords\Release.
. Copy TXCLASSESUD.DLL to C:\Projects\TXWords\Debug.

Copy all other Text Control DLL filesto both directories. A complete
list can be found in "Introduction - Distributing your Applications".

Step 6: Derive Your View Class from CTXView

In TXWordsView.h:

. Add the following before the declaration of the class CTXWordsView:
#incl ude "TXVi ew. h"

. Derive your CTXWordsView class from CTXView:
class CTXWordsView : public CTXVi ew
In TXWordsView.cpp:

. Replace every occurrence of CView with CTXView.

Page 34 Starting with the Class Library

Step 7: Derive Your Document Class from CTXDoc

In TXWordsDoc.h:
. Add the following before the declaration of the class CTXWordsDoc:
#i ncl ude " TXDoc. h"
. Derive your CTXWordsDac class from CTXDoc:
cl ass CTXWrdsDoc : public CTXDoc
In TXWordsDoc.cpp:
. Replace every occurrence of CDocument with CTXDaoc.

Step 8: Add Code to Load and Save Documents

In TXWordsDac.cpp add the following line to
CTXWordsDoc:: Serialize() (the added line is marked with):

voi d CTXWordsDoc: : Seri al i ze(CArchi ve& ar)

{
EY CTXDoc: : Serialize(ar);

if (ar.1sStoring())

{
/1 TODG add storing code here

}

el se

{
/] TODO add | oading code here

}
}

Step 9: Add Code to Print Documents

In TXWordsView.cpp change CTXWordsView::OnPrepar ePrinting.
The function's code should look like the following:

BOOL CTXWor dsVi ew. : OnPrepar ePri nting(CPrintlnfo* plnfo)
{

}

return CTXVi ew. : OnPrepar ePrinting(pl nfo);

Starting with the Class Library Page 35

Step 10: Compile and Run Your Application

*

Verify that you have completed all steps exactly as they are documented
here. (The sub-directory Samples\Visual C\TXWordsl contains the code
created in this chapter.)

Hit F7 (or select Build TXWords.exe from the Build menu) to start the
compilation process.

After compilation, you can run the application with Visual C++'s Build -
Execute TxWords.exe command. When TXWords runs, an MDI
application window appears with a menu bar containing File, Edit,
View, Window and Help menus and a default toolbar. The application
window contains one open document window with aruler at its top.

Y ou can typein text, copy and pasteit viathe clipboard and save and
load the text using the File - Open and the File - Save menus. Y ou can
aso print the document or view the printing output with the print
preview command.

What Comes Next

Now that you’ ve created your first TX Text Control project, you can see
how quick and easy it isto add word processing functionality into your
application. Naturally, TX has many more features than this short step-
by-step guide demonstrate such as OL E Object support, image
embedding, table support, headers and footers, macro fields, hypertext
links, undo/redo, printing, and zooming. To find out more information
about these features and how to use them, please use the following
resources:

Online Manuals

The TX Text Control Class Library comes with an extensive online
manual, the Class Library Programmer’s Guide, that provides complete
information on programming and using TX Text Control. The Class
Library Programmer’s Guide contains atutorial that continues creating
the word processor you have just started. Additionally it is areference
of al the classes member functions and how these functions work

Page 36 Starting with the Class Library

together. It also contains several articles describing how the Text
Control Class Library realizes the more advanced Text Control features.

Readme Files

Before you get too involved with Text Control, you should take a quick
look at the Read mefile. It contains the latest and greatest news
concerning Text Control, including new information since the manuals
were printed. You can start it from the Text Control program folder.

Technical Support

Free technical support for Text Control can be obtained at
http://www.textcontrol.com/support or contact The Imaging Source
Europe GmbH by fax at +49-421-33591-80.

	Contents
	Getting Started
	Starting with the ActiveX
	Introduction
	System Requirements
	Distributing your Applications
	A Simple Word Processor in Visual Basic
	Creating the Project
	Creating the Controls
	Connecting the Controls
	Running the Program
	Adding Scrollbars
	Resizing the Controls
	Adding a Menu
	A Simple Word Processor in Delphi
	Creating the Project
	Creating the Controls
	Connecting the Controls
	Running the Program
	Adding Scrollbars
	Resizing the Controls
	Adding a Menu
	Using the ActiveX Control in Visual C++
	Creating Applications in Visual C++
	Adding the Text Control Component to your Project
	Licensing the Control
	Connecting the Text Control Controls
	Handling Events in your Dialog or CFormView:
	Setting Properties in Visual C++
	What Comes Next
	Starting with the Class Library
	Introduction
	System Requirements
	The Files You Work With
	Distributing your Applications
	Creating a Simple Word Processor
	Step 1: Use the Visual C++ AppWizard to Create a Project
	Step 2: Add Text Control's Include Files to Your Project
	Step 3: Add Text Control's Import Libraries to Your Project
	Step 4: Enable Runtime Type Information (RTTI)
	Step 5: Copy Text Control's DLL Files
	Step 6: Derive Your View Class from CTXView
	Step 7: Derive Your Document Class from CTXDoc
	Step 8: Add Code to Load and Save Documents
	Step 9: Add Code to Print Documents
	Step 10: Compile and Run Your Application
	What Comes Next

