
TX Text Control
ActiveX Programmer's Guide

Version 7.0

TX Text Control 7.0

Information in this document is subject to change without notice and does not represent a
commitment on the part of The Imaging Source Europe GmbH. The software described in
this document is furnished under a license agreement. The software may only be used or
copied in accordance with the terms of this agreement.

Copyright 1991-2000 The Imaging Source Europe GmbH. All rights reserved.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Contents

What's New ... 7
What's New in Version 7.0 since Version 6.0 7

New Features .. 7
Changes and Extensions... 8
New and Extended Properties, Methods and Events 8

What's New in Version 7.0 since Version 5.2 10
New Features .. 10
Changes and Extensions... 11
New and Extended Properties, Methods and Events 11

Introduction .. 13
System Requirements .. 13
How this Manual is Organized ... 13
Distributing your Applications... 14

Visual Basic User's Guide 16
Creating a Simple Word Processor 16

Creating the Project .. 16
Creating the Controls ... 16
Connecting the Controls .. 17
Running the Program ... 17
Adding Scrollbars .. 17
Resizing the Controls ... 18
Adding a Menu... 18
What Comes Next .. 21

Text Control Programming .. 22
Working with Files .. 22
Printing ... 23

Using Multiple Controls .. 24
A Forms Filler .. 29
Using Marked Text Fields ... 32
A Word Processor .. 38
Using Text Control as a Bound Control .. 39
Calling DLL Functions from Visual Basic Code 40
Inserting Objects .. 41
Mail Merge ... 42
Using Hypertext Links ... 44
Headers and Footers ... 51
Drag and Drop .. 53

TX Publisher - An Advanced Example 55
Text Frames and OLE Objects ... 55
Drawing Text Frames... 56
Connecting Text Frames .. 56
Deleting and Creating Frame Connections 57
Changing Frame Size and Position .. 57
Setting Indents and Tabs ... 58
Using Images .. 58
OLE Objects ... 59
The File Menu .. 60
The Edit Menu ... 60
The View Menu ... 60
The Insert Menu ... 61
The Format Menu .. 61
The Help Menu .. 61
How the Program Works .. 62
The Page Ruler Control ... 64

Delphi User's Guide ... 65
Creating a Simple Word Processor 65

Creating the Project .. 65
Creating the Controls ... 66
Connecting the Controls .. 66
Running the Program ... 66

Adding a Menu... 68
What Comes Next .. 70

Text Control Programming .. 71
Working with Files .. 71
Printing ... 72
Using Multiple Controls .. 73
A Forms Filler .. 79
Using Marked Text Fields ... 82
A Word Processor .. 89
Using Text Control with a Database .. 91
Calling DLL Functions from Delphi Code 91
Mail Merge ... 92
Using Hypertext Links ... 93
Headers and Footers ... 101
Drag and Drop .. 103

TX Publisher - An Advanced Example 106
Text Frames and OLE Objects ... 106
Drawing Text Frames... 107
Connecting Text Frames .. 107
Deleting and Creating Frame Connections 108
Changing Frame Size and Position .. 108
Setting Indents and Tabs ... 109
Using Images .. 109
OLE Objects ... 110
The File Menu .. 111
The Edit Menu ... 111
The View Menu ... 111
The Insert Menu ... 112
The Format Menu .. 112
The Help Menu .. 112
How the Program Works .. 113
The Page Ruler Control ... 115

Other Languages...116
Standard C... 116
Microsoft Visual C++ 4.x / 5.x / 6.x 116
Microsoft Access 2.0 .. 124

Reference .. 125
Overviews .. 125

Text Formatting and Views ... 125
Headers and Footers ... 130
Tables ... 133
Marked Text Fields .. 137
Resources ... 144

Text Control Data Types ... 146
Text Control Properties, Events, and Methods 147
Obsolete Properties, Events, and Methods 257
Button Bar Control Properties, Events, and Methods ... 264
Status Bar Control Properties, Events, and Methods.... 267
Ruler Control Properties, Events, and Methods 271
PageRuler Properties, Events, and Methods 273
Appendix A: Mouse and Keyboard Assignment 275

Mouse Assignment ... 275
Keyboard Assignment .. 275

Index .. 277

Page 7What's New

What's New
What's New in Version 7.0 since Version 6.0

This chapter provides a general list of features that have been added or
changed since Text Control version 6.0.

New Features
Text Control supports headers and footers. Several properties, methods
and events have been added for this feature. See chapter "Overviews -
Headers and Footers" for more information about these properties and
methods and how headers and footers can be used and programmed.

Text Control supports several special types of marked text fields, like
source and destination fields for hypertext links or fields that display the
current page number. The new FieldType and FieldTypeData
properties set the type for a marked text field and additional data
depending on this type. See chapter "Overviews - Marked Text Fields -
Special Types of Marked Text Fields" for more information about these
features.

Text Control offers an additional page view that centers the document in
the control's window and displays three-dimensional pages with
shadows. This mode can be set with the ViewMode property. See
chapter "Overviews - Text Formatting and Views" for more information.

Two new attributes that can be set with the LoadSaveAttribute
property have been implemented. These can be used to specify an
absolute path (txAbsPath) and a base path (txBasePath), to find files
and other resources integrated in documents.

The new ResetContents method can be used to delete the entire
contents of a Text Control.

The new InputPosFromPoint method can be used to calculate a text
positon belonging to a certain geometric position.

What's NewPage 8

The new ObjectItem property can be used to get a reference to an
object's property and method interface.

Changes and Extensions
The Text Control text format has been changed to support headers and
footers and special types of marked text fields. The text format is fully
compatible to prior formats. Furthermore all prior formats can be
loaded. The new format version number is 700. More information about
how headers and footers are integrated, can be found in Appendix A of
the DLL reference manual.

The CurrentInputPosition property can be used to set a new text input
position.

New and Extended Properties, Methods and Events
Property/Method/Event Description

CurrentInputPosition Property Now supports the setting of a
new input position.

FieldAtInputPos Property Returns the field identifier of the
field containing the current input
position.

FieldGoto Method Sets the current input position to
the beginning of a marked text
field.

FieldLinkClicked Event Occurs when a marked text field
is clicked that represents the
source of a hypertext link.

FieldNext Method Additionally supports the special
field types

FieldType Property Sets or returns the type of a
marked text field.

FieldTypeData Property Sets or returns the data belonging
to a marked text field of a special
type.

Page 9What's New

HeaderFooter Property Determines which headers and/or
footers the document contains.

HeaderFooterActivate Method Activates a certain header or
footer.

HeaderFooterActivated Event Occurs when a header or footer
has been activated.

HeaderFooterDeactivated Event Occurs when a header or footer
has been deactivated.

HeaderFooterPosition Property Specifies a header's or footer's
position.

HeaderFooterSelect Method Selects a certain header or footer
to use a Text Control property for
the header or footer instead for
the main text.

HeaderFooterStyle Property Determines style settings for
headers and footers.

InputPosFromPoint Method Calculates a text position
belonging to a certain geometric
position.

LoadSaveAttribute Property Supports the additional attributes
txBasePath,
txAbsPath,
txEnableLinks,
txEnableHighlights and
txEnableTopics.

ObjectItem Property Gets a reference to an embedded
OLE object.

ResetContents Method Deletes the complete contents of
a Text Control.

ViewMode Property Supports an additional page view
that centers the document in the
control and displays three-
dimensional pages with shadows.

What's NewPage 10

What's New in Version 7.0 since Version 5.2
This chapter provides a general list of features that have been added or
changed since Text Control version 5.2.

New Features
The 32 bit version of Text Control has been extended to support Uni-
code, the character set for all languages. When using the DLL interface
see the new chapter 1.14 "ANSI and Unicode" in the DLL reference
manual for more information and a complete list of the extended
messages and functions and how to use them. Unicode support is
available on Windows NT and Windows 95/98.

The 32 bit version of Text Control now supports Far Eastern writing
systems (Input Method Editors) and can process double-byte character
sets. Internal dialog boxes and user messages are available in Japanese.
This also is supported on Windows NT and Windows 95/98.

The Load and Save methods support loading and storing Unicode text
either as text only or integrated in the Text Control's text format.

The new methods SaveToMemory and LoadFromMemory can be
used to copy or load formatted or unformatted text to or from a byte
array.

The new Find Method can be used to search for a certain string in the
Text Control's text contents without using the system-defined dialog
boxes.

The new property CurrentInputPosition returns page, line and column
number of the current input position.

The new TableNext method can be used to enumerate all tables a Text
Control contains.

The new property TableCellAttribute sets attributes of table cells like
border widths, text distances and background color.

The new properties TableCellStart and TableCellLength can be used
to get the start character index and the length of the text in a table cell.

Page 11What's New

The new ResourceFile property returns or sets the file name of a
recource library which Text Control loads when resources are needed.
This property can be used to display information strings and dialog
boxes in other than the buil-in languages. See the new chapter
"Overviews - Resources" for more information how to build a resource
library.

A new tabulator type has been implemented. This type acts like a right-
aligned tabulator but its position is always the rightmost text position.
This tabulator type can only be set with the TabType Property.

Changes and Extensions
The Text Control's file format has been extended to support Unicode.
See the "DLL Reference Manual" for more information.

The DataFormat property has been renamed to DataTextFormat to
offer compatibility with Visual Basic 6.0.

In table cells with a single decimal tabulator, text is automatically
formatted. It is not necessary to type a tabulator character.

New and Extended Properties, Methods and Events
Property/Method/Event Description

CurrentInputPosition Property Returns page, line and column
number of the current text input
position.

Load/Save Methods Support the new format
identifiers:
6 - Text only in Unicode format
(Windows compatible).
7 - Text only in Unicode format
(Text Control compatible).
8 - Internal Text Control format.
Text is stored in Unicode.

Find Method Searches the text in a Text
Control for a given string.

What's NewPage 12

LoadFromMemory Method Loads text data in a certain
format from a byte array.

ResourceFile Property Returns or sets the file name of a
resource library.

SaveToMemory Method Stores text data in a certain
format in a byte array.

TableCellAttribute Property Sets attributes of one or more
table cells.

TableCellLength Property Returns the number of characters
in a table cell.

TableCellStart Property Returns the character index of the
first character in a table cell.

TableNext Method Can be used to enumerate all
tables of a Text Control.

TabType Property Supports the new tabulator type:
5 - Right tab at the right most text
position.
For this type any position set with
the TabPos property is ignored.

Button Bar:

Appearance Property Returns or sets the painting style
of a Button Bar.

ResourceFile Property Returns or sets the file name of a
resource library.

Style Property Returns or sets the painting style
of a Button Bar's buttons.

Status Bar and Ruler:

ResourceFile Property Returns or sets the file name of a
resource library.

Page 13Introduction

Introduction
Welcome to TX Text Control, the text processor in a single ActiveX
control. Using Text Control, you can create all kinds of text-based
applications with the ease of programming that is characteristic of
Visual Basic and with highly sophisticated formatting and display
capabilities which are normally the exlusive domain of large word
processing packages.

System Requirements
The Text Control ActiveX control requires the following minimum
configuration:

� Windows 95/98, Windows NT 4.0 or Windows 2000.

� Microsoft Visual Basic, Borland Delphi, Microsoft Visual C++ or one
of many other development platforms which support ActiveX controls.

How this Manual is Organized
� Part 1 of this manual, "Visual Basic User's Guide", describes how to use

Text Control with Visual Basic 4 or higher.

� Part 2, "Delphi User's Guide", shows you how to install and use Text
Control with Delphi 2 or higher.

� Part 3, "Other Languages", contains tips for using Text Control with
languages other than Visual Basic and Delphi.

� Part 4, "Reference", starts with several articles, giving you an overview
how Text Control's properties, methods and events work together
followed by a list of all Text Control's properties, methods and events.

� Appendix A describes Text Control's keyboard and mouse interface.

IntroductionPage 14

Distributing your Applications
The table below shows all the files necessary for Text Control to
operate properly. You must ensure that these files exist on your client's
machine and they are the correct version. If your client's machine has
older versions of these files, you should update them.

1 TX4OLE.OCX

2 TX32.DLL

TXTLS32.DLL
WNDTLS32.DLL
TXOBJ32.DLL
IC32.DLL
IC32.INI
TX_BMP32.FLT
TX_TIF32.FLT
TX_WMF32.FLT
TX_RTF32.DLL
TX_HTM32.DLL
TX_WORD.DLL

3 MFC40.DLL

MSVCRT40.DLL

4 TX_GIF32.FLT

The first file (group 1) is the Text Control ActiveX server containing
the ActiveX controls. These controls must be registered in the
registration database on your client's machine.

The files listed in the second group are the additional Text Control DLL
files. They must be installed in the same directory as the ActiveX
server. You must always install all of them.

You should also verify that the Microsoft foundation class library files
(group 3) are installed on your client's computer. These files must be

Page 15Introduction

installed in the Windows system directory. Please refer to Microsoft's
redistribution policy if you need to redistribute them.

The last file (group 4) is a filter to use the GIF image format with Text
Control. Unisys Corporation holds patent rights to the LZW technology
used in this filter. If a customer wants to use the GIF file format, he is
required to obtain a license from Unisys and send a copy of the license
agreement to The Imaging Source Europe GmbH. We will then send
him the GIF filter free of charge.

Page 16 Creating a Simple Word Processor with Visual Basic

Visual Basic User's Guide
Creating a Simple Word Processor

This chapter shows you how to create a small word processor from
scratch with just a few lines of code. It will be able to load and save
files, use the clipboard, and will have dialog boxes for character and
paragraph formatting, a ruler, a status bar and full keyboard and mouse
interface. The source code for this example is contained in the Simple
sample source directory.

Creating the Project
Assuming that you have already run the Text Control installation
program and started Visual Basic, the next step is to create a project for
the text processor. To do this begin by selecting the New Project
command from the file menu. Then use the Tools / Custom Controls...
command to include the file 'tx4ole.ocx' into the new project. You will
see four additional icons appear at the bottom of the toolbox,
representing the Text Control and its Status Bar, Button Bar and Ruler:

The Text Control Icon The Status Bar Icon

The Button Bar Icon The Ruler Icon

Creating the Controls
The next step is to put these four
controls onto a form and connect them.
Click on the Text Control icon and
draw it on the form. In the same way,
create a Ruler and a Button Bar on top
of the Text Control, and a Status Bar
below it. Your form should now look
like the diagram on the right:

Creating a Simple Word Processor with Visual Basic Page 17

Connecting the Controls
Add the following code to the form's Load event procedure:
Private Sub Form_Load()
 TXTextControl1.ButtonBarHandle = TXButtonBar1.hWnd
 TXTextControl1.RulerHandle = TXRuler1.hWnd
 TXTextControl1.StatusBarHandle = TXStatusBar1.hWnd
End Sub

Running the Program
The text processor is not yet finished, but we can make a first attempt at
running it to see what it can do. Click the 'Start' button. You can type in
some text, select it with the mouse, copy it to the clipboard (use the
<CTRL>+<C> and <CTRL>+<V> keys as
long as there is no menu), select a different
font, set tabs and do lots of other things. All
of these features have been built into the Text
Control and can be used with almost no
programming effort.

You will have noticed, however, that some
features are still missing. For instance, if you
resize the main window, the controls keep
their old sizes. There is no menu, and there
are no scrollbars either. We will fix this in
the coming chapters.

Adding Scrollbars
To add scrollbars, click on the Text Control
window to have its property list displayed.
Click on the Scrollbars property and select
3 - Both. Select the PageWidth property and
enter 12000, which is about the width of a
letter in twips, the currently selected
measurement. Set PageHeight to 15000 for
now.

Page 18 Creating a Simple Word Processor with Visual Basic

Resizing the Controls
Two steps are involved in making the controls resize properly when the
main window is resized.

� Set the Align property to 1 - Align Top for the Button Bar, the Ruler and
the Text Control. Set it to 2 - Align Bottom for the Status Bar. This will
adjust everything except the height of the Text Control.

� Open the code window for the form which contains the Text Control. In
the combo boxes on top of the code window, select 'Form' in the
'Object:' box and 'Resize' in the 'Proc:' box. The code window should
show an empty procedure for the Resize event:

Private Sub Form_Resize ()
End Sub

Extend it as follows:

Private Sub Form_Resize ()
 TXTextControl1.Height = ScaleHeight - TXRuler1.Height _
 - TXStatusBar1.Height - TXButtonBar1.Height
End Sub

This line of code will cause the Text Control's height to be adjusted
every time the size of the form is altered. (The ' _' character is used to
extend one logical line of code to two or more physical lines).

Adding a Menu
In this section, you will add a
menu to the text processor to
enable you to call the Text
Control's built-in dialog
boxes.

Use the Visual Basic Menu
Editor to create a Format
menu with the items
Character... and Para-
graph....

Creating a Simple Word Processor with Visual Basic Page 19

Name the items 'mnuFomat_Character' and 'mnuFormat_Paragraph'.
(Please refer to the Visual Basic documentation if you need help with
creating menus).

Add the following code to the Click procedures of the menu items:

Private Sub mnuFormat_Character_Click()
TXTextControl1.FontDialog

End Sub

Private Sub mnuFormat_Paragraph_Click()
TXTextControl1.ParagraphDialog

End Sub

Start the program again. You should be able to use
the menu items to call the Font and Paragraph
dialog boxes.

Now for the Edit menu. Again use the Menu
Design Window and create an Edit menu
containing items for Cut, Copy, and Paste. The
code for these menu items is:

Private Sub mnuEdit_Cut_Click()
TXTextControl1.Clip 1

End Sub

Private Sub mnuEdit_Copy_Click()
TXTextControl1.Clip 2

End Sub

Private Sub mnuEdit_Paste_Click()
TXTextControl1.Clip 3

End Sub

Having added these menu items, you can exchange
formatted text with other word processors via the
clipboard.

Finally, we shall add one last menu. Create a File
menu including the items Load... and Save As.... Place a common dialog
box icon on the form and enter the following code, which will call the

Page 20 Creating a Simple Word Processor with Visual Basic

common dialog box to get a file name from the user, and will then load
respectively save the selected file:

Private Sub mnuFile_Load_Click()
On Error Resume Next

' Create an "Open File" dialog box
CommonDialog1.Filter = "TX Demo (*.tx)|*.tx"
CommonDialog1.DialogTitle = "Open"
CommonDialog1.Flags = cdlOFNFileMustExist Or _

cdlOFNHideReadOnly
CommonDialog1.CancelError = True
CommonDialog1.ShowOpen
If Err Then Exit Sub

' Pass the filename to the text control
TXTextControl1.Load CommonDialog1.filename, 0

End Sub

Private Sub mnuFile_SaveAs_Click()
On Error Resume Next

' Create a "Save File" dialog box
CommonDialog1.Filter = "TX Demo (*.tx)|*.tx"
CommonDialog1.DialogTitle = "Save As"
CommonDialog1.Flags = cdlOFNOverwritePrompt Or _

cdlOFNHideReadOnly
CommonDialog1.CancelError = True
CommonDialog1.ShowSave
If Err Then Exit Sub

' Open the selected file
TXTextControl1.Save CommonDialog1.filename, 0

End Sub

Creating a Simple Word Processor with Visual Basic Page 21

What Comes Next
It goes, of course, without saying that Text Control has many more
features than those included in our little demo program. It is up to you
now to include zoom, images, tables, OLE objects, paragraph frames
and whatever else makes up a full-blown word processor. If you need
some hints about how to integrate special features, have a look at the
source code of the other sample programs or post a message in the Text
Control support forum at http://www.textcontrol.com.

Text Control Programming with Visual BasicPage 22

Text Control Programming
This chapter is a guide to programming Text Control and its tools,
explaining the parts which have been omitted from the Creating a
Simple Word Processor example.

Working with Files
Text Control uses 5 different file formats:

� Its own native format, which you would normally use to store data in
document files.

� The Rich Text Format (RTF), which can be used to exchange formatted
text with other applications.

� HTML

� Microsoft Word format

� Unformatted text in ANSI or Unicode format.

An example of how to use the native file format has already been
presented in the previous chapter. Using RTF, HTML, Word or
unformatted text is just as simple: All you have to do is specify the
format you want to use as a parameter of the Load or Save method.

Using RTF, HTML, Word and unformatted text you can only read or
write the contents of a single Text Control from or to a file. Using the
native file format, however, you can write a file header prior to saving
the Text Control data, or even write the contents of several Text
Controls to one file.

The Forms1 sample program, which is described in the next but one
section, shows you how to write the contents of multiple Text Controls
to a single file. The MDIDemo sample shows you how to write a file
header prior to the Text Control's data and how to use RTF, HTML,
Word and unformatted text.

Page 23Text Control Programming with Visual Basic

Printing
Visual Basic provides two techniques for sending information to the
printer. The first one is to use the PrintForm method, the second is to
use the printer object. Both methods have their drawbacks: PrintForm
works with screen resolution only, which would result in very poor print
quality. The printer object, on the other hand, provides the best print
quality, but requires a lot of coding. Text Control uses the second
method to achieve the best result, but without a 'lot of coding'.

The following example sends the contents of a Text Control, which can
be several pages long, to the default printer:

Sub mnuFile_Print_Click ()
Dim wPages As Integer, No As Integer
wPages = TXTextControl1.CurrentPages
For No = 1 To wPages

Printer.Print
TXTextControl1.PrintDevice = Printer.hDC
TXTextControl1.PrintPage No
Printer.NewPage

Next No
Printer.EndDoc

End Sub

After storing the number of pages in a local variable called wPages, the
printer object is initialized with the Printer.Print statement, The For ..
Next loop runs from 1 to wPages to print all of the pages. Inside the
loop there are three more lines of code which print a single page:

1. The device context handle of the printer object is assigned to Text
Control's PrintDevice property. Without this step, a device context
which is compatible to the screen device would be used, resulting again
in poor print quality.

2. The number of the page to be printed is passed as a parameter to the
PrintPage method. This will also start the printing process.

3. The printer object's NewPage method is invoked to advance to the next
page.

Text Control Programming with Visual BasicPage 24

Everything else, like calculating the line and page breaks, is done
internally by Text Control. The formatting is based on the values of two
groups of properties:

� PageHeight and PageWidth determine the dimensions of the printed
page.

� PageMarginB, PageMarginL, PageMarginR and PageMarginT
determine the print margins.

These properties are normally set in a page setup dialog box.

Using Multiple Controls
This chapter shows how to
use Text Control in
programs which have
several text fields placed on
a single page. Think of a
program to print labels, to
fill out forms, or to mask
data entry. The Forms1
sample program, which can
be found in the samples
subdirectory provides the
basic functionality for
applications of this kind.

Running the Sample Program

Initially, when the program
is started, the main window
contains one framed Text
Control where text can be
entered. The rest of the
window is empty.

What you can do with the
program is:

Page 25Text Control Programming with Visual Basic

� Move the Text Control by pressing the ALT key and dragging the
window with the mouse.

� Resize the Text Control by pressing the ALT key and dragging the
window borders with the mouse.

� Create additional controls by clicking on an empty part of the main
window.

� Save, load or print.

To keep things simple, there are no scrollbars in the main window and
no menu items except the ones listed above. Scrollbars, zoom and a few
other features will however be added in the next chapter.

How it Works

The Forms1 sample uses a control array for the text fields. The first
Text Control, the one which you see when you start the program, is
placed on the form at design time. More controls are created when you
click on an empty area of the form. These controls are created
dynamically with the Visual Basic Load function when a MouseDown
event occurs on the form:

Private Sub Form_MouseDown(Button As Integer, _
Shift As Integer, X As Single, Y As Single)

MaxID = MaxID + 1
Load TXTextControl1(MaxID)
TXTextControl1(MaxID).Move X, Y
TXTextControl1(MaxID).Visible = True
TXTextControl1(MaxID).ZOrder

End Sub

Clicking on an existing text field brings it to the front. This is done by
changing the Z order when a Click Event has occured:

Private Sub TXTextControl1_Click(Index As Integer)
TXTextControl1(Index).ZOrder

End Sub

The global variable MaxID counts the total number of controls; It is
initialized to a value of 1 when the form is loaded.

Text Control Programming with Visual BasicPage 26

Moving and resizing the controls is done by Text Control itself. To
enable these functions, the SizeMode property must be set to 3 - Move
and Sizeable.

Saving the Controls

Saving a document which has been created with this program
necessitates storing not only the data contained in the Text Controls, but
also the number and the positions of the controls. In addition, a format
identifier should be stored to enable the load routine of the program to
determine if it can process a file which it is about to load. The code on
the following page shows you how to save the document.

Private Sub mnuFile_SaveAs_Click()
On Error Resume Next

Dim i As Integer, FileID As Long
Dim xPos As Single, yPos As Single
Dim xSize As Single, ySize As Single

' Create a "Save File" dialog box
CommonDialog1.Filter = "TX Form Demo (*.txf)|*.txf"
CommonDialog1.DialogTitle = "Save As"
CommonDialog1.Flags = cdlOFNOverwritePrompt Or _

OFNHideReadOnly
CommonDialog1.CancelError = True
CommonDialog1.ShowSave
If Err Then Exit Sub

' Open the file
Open CommonDialog1.filename For Binary As #1
If Err Then

MsgBox "Can't open file: " + CommonDialog1.filename
Exit Sub

End If

' Write file header consisting of file format ID
' and number of controls
FileID = FILE_ID
Put #1, , FileID

Page 27Text Control Programming with Visual Basic

Put #1, , MaxID

' Save the position of all Text Controls
For i = 1 To MaxID

xPos = TXTextControl1(i).Left
yPos = TXTextControl1(i).Top
xSize = TXTextControl1(i).Width
ySize = TXTextControl1(i).Height
Put #1, , xPos
Put #1, , yPos
Put #1, , xSize
Put #1, , ySize

Next i
Close #1
' Save the contents of all TextControls
For i = 1 To MaxID

TXTextControl1(i).Save CommonDialog1.filename
Next i

End Sub

The Load routine first reads the format identifier and the number of
controls. Then it creates the required number of controls, loads their
contents and finally moves them to their correct position:

Private Sub mnuFile_Load_Click()
On Error Resume Next

Dim i As Integer, lFilePos As Long
Dim FileID As Long, xPos As Single, yPos As Single
Dim xSize As Single, ySize As Single

' Create an Open File dialog box
CommonDialog1.Filter = "TX Form Demo (*.txf)|*.txf"
CommonDialog1.DialogTitle = "Open"
CommonDialog1.Flags = cdlOFNFileMustExist Or _

cdlOFNHideReadOnly
CommonDialog1.CancelError = True
CommonDialog1.ShowOpen

If Err Then Exit Sub

' Open the selected file

Text Control Programming with Visual BasicPage 28

Open CMDialog1.filename For Binary As #1
If Err Then

MsgBox "Can't open file: " + CommonDialog1.filename
Exit Sub

End If

' Read file header
Get #1, , FileID
If FileID <> FILE_ID Then

MsgBox "Wrong file type: " + CommonDialog1.filename
Close #1
Exit Sub

End If

' Destroy existing controls
For i = 2 To MaxID

Unload TXTextControl1(i)
Next i

' Create text controls and load their contents
Get #1, , MaxID
For i = 1 To MaxID

Get #1, , xPos
Get #1, , yPos
Get #1, , xSize
Get #1, , ySize
If i <> 1 Then Load TXTextControl1(i)
TXTextControl1(i).Move xPos, yPos, xSize, ySize
TXTextControl1(i).Text = ""

Next i
lFilePos = Loc(1)
Close #1

For i = 1 To MaxID
lFilePos = TXTextControl1(i).Load _

(CommonDialog1.filename, lFilePos)
Next i

End Sub

Page 29Text Control Programming with Visual Basic

Printing Multiple Controls

Printing a document is quite straightforward. The PageWidth and
PageHeight properties are set to a value of 0 at design time, so the
controls are printed like they are formatted on the screen. The print
margin properties are used to specify the positions of the controls on the
page.

Private Sub mnuFile_Print_Click()
Dim i As Integer
Printer.Print
For i = 1 To MaxID

TXTextControl1(i).PrintDevice = Printer.hDC
TXTextControl1(i).PageMarginL = TXTextControl1(i).Left
TXTextControl1(i).PageMarginT = TXTextControl1(i).Top
TXTextControl1(i).PrintPage 1

Next i
Printer.NewPage
Printer.EndDoc

End Sub

The complete source code of the Forms1 sample program is contained
in the Forms1 sample source directory.

A Forms Filler
With the Forms1 sample program, you can place text fields at arbitrary
positions on a page. When you print the page, the text fields appear on
the paper at exactly the same positions where they were previously
placed on the screen. These
features will be used in the
following sample to create a
program for filling out pre-printed
forms.
The scanned image of the form is
shown in the background of the
screen, enabling the user to easily
determine the positions of the
filled-out fields. He has only to
click (with the CTRL key pressed)

Text Control Programming with Visual BasicPage 30

on the area of the form where he wants to put text and then start typing.
The fields can be moved and resized afterwards by holding down the
ALT key and dragging them with the mouse.

The source code for this example is contained in the Forms2 sample
source directory.

Adding ButtonBar, Ruler and StatusBar

The Button Bar, Ruler and Status Bar are used in a special way in this
sample program. If you run the program and click on various fields you
will notice that the tools automatically switch to the text field which has
been clicked on. This switching is done internally by Text Control, so
no programming is required for it. The tools are simply connected to
the first member of the Text Control array at design time.

Displaying the Background Image

The background image is displayed by an Image Control. You could
also use the Visual Basic PictureBox for this, but the PictureBox can not
handle the large image files which result from scanning a full document
page, and it does not support the TIFF file format, which is used by
most scan programs.

The Image Control is not a separate custom control, but a child window
of the Text Control. To display the background image, create a Text
Control which has the size of the whole page, and then load an image
using Text Control's ObjectInsertAsChar
method.

The Text Control which displays the
background image has an additional
function, which again saves a lot of
programming work. It acts as a container for
the Text Controls which are used as fill-out
fields. (A container control enables you to
draw other controls within it at design time.
Examples of container controls are frames
and picture boxes). The big advantage of a
container is that it handles all of the clipping
for the controls which have been created on

Page 31Text Control Programming with Visual Basic

top of it. Otherwise, scrolling the background image would cause the
text fields to overwrite anything that lies within the form's boundaries,
like ButtonBar, Ruler, and even the scrollbars. It would require many
calculations of field positions and sizes and some direct calls to the
Windows DLLs on every scroll and resize event to do the clipping
without a container control. Using the background Text Control as a
container, you need only create the first text field inside of it, and
everything else is done automatically.

Working with Transparent Text Controls

Run the program, load a background image and create a few text fields
by clicking on this background image. You will notice that the text
fields are transparent, so you can see the background image below.
Using this feature in a program requires some fine-tuning of the clipping
areas with the ClipChildren and ClipSiblings properties.

These two properties determine which areas of an image are repainted
when a new part of a control becomes visible or when its contents have
been changed.
For example, if one control is covered by another, it only has to be
repainted if the one which lies on top of it is transparent. You will
always want to repaint as little as possible to make the application run
fast and to avoid unnecessary flickering on the screen. Furthermore you
will not want your computer to spend time drawing things which are not
visible.

For maximum flexibility in setting the clipping areas and mixing trans-
parent and opaque controls, two properties have been implemented
which share this task:

The ClipChildren property is used only for Text Controls which act as
a container for other Text Controls. When ClipChildren is set to True,
the areas occupied by the child controls are excluded from the update
area. So, if as in the forms filler program, transparent controls are used
as children of the container control, this property must be set to False.

The ClipSiblings property determines the behaviour between each of
the child controls. It must be set to False if the program allows transpa-
rent Text Controls to overlap others.

Text Control Programming with Visual BasicPage 32

Zooming

Zooming is simply done by setting the ZoomFactor property of each of
the Text Controls:

Private Sub mnuView_ZoomItem_Click(Index As Integer)
Dim nZoom As Integer, i As Integer
nZoom = Val(Mid$(mnuView_ZoomItem(Index).Caption, 2))
TXTextControl2.ZoomFactor = nZoom
For i = 1 To MaxID

TXTextControl1(i).ZoomFactor = nZoom
Next i
For i = 1 To 5

mnuView_ZoomItem(i).Checked = (i = Index)
Next

End Sub

Using Marked Text Fields
Marked text fields are markers which are inserted in the text. They can
be used to implement a wide range of special functions in a text
processor. To name just a few:

- Mail Merge functions

- Spreadsheet-like calculation fields

- Bookmarks

- Automatic table of contents and index generation

- Hypertext viewers which include any kind of buttons, images, pop-up
windows or even OLE objects in the text

Any group of characters within the text can be a marked text field. The
maximum number of fields is 65,535. Text Control maintains the
positions and numbers of the fields. It also takes care of loading, saving
and clipboard operations.

Page 33Text Control Programming with Visual Basic

A Simple Example

This first sample program will show you how fields are created and
what happens when they are clicked on. The code shown here is
contained in the Field1 sample source directory.

The program consists of a form with just one menu item, Insert Field!,
with an exclamation mark to say that clicking on this item will cause an
immediate action instead of dropping a menu. There are two Text
Controls on the form, one of which is used as a normal text window
(TXTextControl1), the other one as a pop-up window
(TXTextControl2).

The following code is executed when the menu item is clicked on:

Private Sub mnuInsertField_Click ()
 TXTextControl1.FieldInsert "--------"
End Sub

This inserts a field at the current caret position. If you move the cursor
over the field, Text Control changes the mouse pointer to an upward
pointing arrow (�) to indicate that there is something to click on.

If you click on the field, the application receives a FieldClicked event,
to which it responds by popping up a window which displays the field
number.

Only four lines of code are required for this:

Private Sub TXTextControl1_FieldClicked(ByVal FieldIndex _
As Integer)

TXTextControl1.FieldCurrent = FieldIndex
TXTextControl2.Text = "This is field no." & FieldIndex _

Text Control Programming with Visual BasicPage 34

& ". Its text is: " & TXTextControl1.FieldText
TXTextControl2.Move TXTextControl1.FieldPosX, _

TXTextControl1.FieldPosY
TXTextControl2.ZOrder

End Sub

The first line selects the marked text field which has been clicked on.
Line 2 builds the string that is to be displayed in the pop-up window.
Line 3 moves the pop-up window, which is initially hidden behind the
text window, to the position of the marked text field. Line 4 puts the
pop-up window in front of the text window to make it visible. When the
mouse button is released, the text window is moved to the front again:

Private Sub TXTextControl1_MouseUp(Button As Integer, _
Shift As Integer, X As Single, Y As Single)

TXTextControl1.ZOrder
End Sub

Bookmarks

This example shows you how to use Text Control's marked text fields to
create bookmarks. The first version will reference the bookmarks simply
by their field numbers. The source code for this example is contained in
the Field2 sample source directory.

The sample application has a Bookmark menu with two items which are
named Insert and Go to.... Clicking Insert creates a marked text field at
the current caret position. If a text selection exists, the selected text is
converted into a field. If not, the character next to the caret is selected.

Private Sub mnuBookmark_Insert_Click()
If TXTextControl1.Text = "" Then

MsgBox "Cannot insert bookmark if control is empty."
Else

If TXTextControl1.SelLength = 0 Then _
TXTextControl1.SelLength = 1

TXTextControl1.FieldInsert ""
End If

End Sub

After typing in some text and inserting a few bookmarks, select the Go
To... menu item. This will launch a dialog box which allows you to enter

Page 35Text Control Programming with Visual Basic

the number of the bookmark to jump to.
There is no error processing in this
example, so if you enter the number of a
non-existent field, nothing will happen.

Clicking the 'OK' button executes the
following procedure:

Private Sub cmdOk_Click()
Form1.TXTextControl1.FieldCurrent = Text1.Text
Form1.TXTextControl1.SelStart = _

Form1.TXTextControl1.FieldStart - 1
Form1.TXTextControl1.SelLength = _

Form1.TXTextControl1.FieldEnd - _
Form1.TXTextControl1.FieldStart + 1

Unload Me
End Sub

The number which has been entered in the dialog box is taken as a value
for the FieldCurrent property.

Adding Strings to Marked Text Fields

The source code for this example is contained in the Field3 sample
source directory.

In commercial word processors, bookmarks are normally referenced by
names, not just by numbers. The names are typed in by the user when he
creates a bookmark. The Goto Bookmark dialog box then presents a
listbox or combobox in which one of the strings may be selected.

The Insert Bookmark... menu item in this
version of the program creates a dialog box
where the user can enter a label for the
bookmark. When the ‘OK’ button is
clicked, the following code is executed:

Private Sub btnOK_Click()

Form1.TXTextControl1.FieldInsert ""
Form1.TXTextControl1.FieldData(_

Form1.TXTextControl1.FieldCurrent) = Text1

Text Control Programming with Visual BasicPage 36

Form1.TXTextControl1.SelLength = 0

Unload Me

End Sub

First, a marked text field is created at the current caret position. Second,
the name of the bookmark, which is the text that has been typed in by
the user, is stored in the FieldData property.

The Goto Bookmark dialog box contains a
combo box which lists all of the bookmarks
which have been created so far. The combo
box is filled with the bookmark titles when
its form is loaded:

Private Sub Form_Load()

Dim nFieldID As Integer
nFieldID = 0

' Fill the combobox with bookmarks
Do

nFieldID = Form1.TXTextControl1.FieldNext(nFieldID, 0)
If nFieldID > 0 Then

cboBookmark.AddItem _
Form1.TXTextControl1.FieldData(nFieldID)

End If
Loop While nFieldID <> 0

' Copy the first item to the edit control part of
' the combo box
cboBookmark.Text = cboBookmark.List(0)

End Sub

When the ‘OK’ button is clicked, the bookmark list is searched for the
string which has been selected in the combo box, and the corresponding
marked text field is selected.

Private Sub cmdOk_Click()

Dim nFieldID As Integer
nFieldID = 0

Page 37Text Control Programming with Visual Basic

' Search for the requested bookmark
Do

nFieldID = Form1.TXTextControl1.FieldNext(nFieldID, 0)
If nFieldID > 0 Then

If Form1.TXTextControl1.FieldData(nFieldID) = _
cboBookmark.Text Then
Exit Do

End If
End If

Loop While nFieldID <> 0

' If the bookmark has been found, select it.
' Text Control will then automatically scroll to
' make it visible.
If nFieldID <> 0 Then

Form1.TXTextControl1.FieldCurrent = nFieldID
Form1.TXTextControl1.SelStart = _

Form1.TXTextControl1.FieldStart - 1
Form1.TXTextControl1.SelLength = _

Form1.TXTextControl1.FieldEnd - _
Form1.TXTextControl1.FieldStart + 1

Else
MsgBox "Bookmark not found."

End If

Unload Me

End Sub

You can also extend the sample program with a dialog box, similar to
the Go To Bookmark... dialog, in which a bookmark can be deleted
without deleting the text. This would require converting the marked text
field to normal text. Use the FieldDelete method to achieve this.

More information about marked text fields and a list of all properties,
methods and events that can be used with marked text fields, can be
found in the Reference part, later on in this manual, in chapter
"Overviews - Marked Text Fields".

Text Control Programming with Visual BasicPage 38

A Word Processor
This chapter shows
you how to use Text
Control to write a
standard word
processor. The
program is based
upon the MDI sample
from the Visual Basic
Programmer's Guide,
with the TextBox
controls replaced by
Text Controls. If you
are not familiar with
MDI, control arrays
or creating a toolbar
you should read that chapter first.

The source code for this example is contained in the MDIDemo and
Common sample source directories.

Adding a PageSetup Dialog Box

The Page Setup dialog box is used to
determine the page size and print
margins. The maximum page size is
restricted by the capabilities of the
default printer. For implementation
details, look at the source code of the
PageDlg form.

A Print Dialog Box

When the Print... menu item is
clicked, first a Common Dialog box is shown to let the user enter the
range of pages, number of copies and printer specific information. The
rest of the procedure, which is part of the MDIChild form, is just a loop

Page 39Text Control Programming with Visual Basic

which sets the appropriate Text Control properties for every page to be
printed.

Search and Replace

Searching and replacing is entirely done in Text Control. You just have
to assign a value of 1 for Search or 2 for Search And Replace to the
FindReplace method. Text Control then opens the Windows Common
Dialog box.

Using Paragraph Frames

With Text Control, you can add lines and
frames to a paragraph or a range of
paragraphs. For instance, you can put a
line at the bottom of a caption like in the
header of this manual.

The dialog box for paragraph frames is not
included in the Text Control, but the
source code is included in the MDI
sample.

The properties which are responsible for paragraph frames are
FrameDistance, FrameLineWidth, and FrameStyle.

Dialog Boxes for Text and Background Color

This is also done with Common Dialogs. The color value returned from
the dialog box is assigned to the ForeColor or BackColor properties.

Using Text Control as a Bound Control
This chapter describes how to use Text Control to access databases with
the Visual Basic Data Control. If you are not familiar with the Data
Control or with Bound Controls in general please refer to the Visual
Basic documentation.

The source code for this example is contained in the Data sample source
directory.

Text Control Programming with Visual BasicPage 40

Connecting a Text Control to a Data Control enables you to store the
contents of the Text Control as a record in a database. Not only is the
plain text stored, but also all formatting information, e.g. font and
paragraph attributes, colors and image file names. The data is stored in a
binary format which is the same as that used by the Load and Save
methods.

The Data sample program is connected
to a small database which contains
descriptions of some of Text Control's
properties. The database was created
with the Visual Basic Data Manager and
then filled by inserting text from the
clipboard. You can browse through the
records of the database by clicking the
Data Control buttons on the lower left
side of the window. If you change something in the current record, the
changes will automatically be written to the database as soon as you
click on one of the buttons.

Storing a Text Control's contents with all formatting
information as is illustrated in this example requires
the DataTextFormat property to be set to 1 - Binary. In the default
mode, which is 0 - Text, only the text is stored. The 0 - Text mode can
be used to access databases which have been created by other programs
which do not use the Text Control data format.

Calling DLL Functions from Visual Basic Code
Sometimes it is necessary to access the Text Control DLL directly
instead of using the OCX Properties. There are messages which,
because most Visual Basic users will never need them, have no
corresponding properties, but which may be useful for your program.

The CallDLLs sample program, whose source code is contained in the
CallDLLs sample source directory, shows you how to use these
messages. You may want to browse through the DLL Reference online

Page 41Text Control Programming with Visual Basic

help file to see which other messages might be useful. The numbers of
the Text Control messages are listed in \samples\dll\inc\tx.h.

Inserting Objects
This sample program shows you how to insert external objects into a
Text Control. The source code for this example is contained in the
Objects sample source directory.

An external object can be anything that has a window handle, for
instance buttons, list boxes, combo boxes, or other Text Controls. This
feature enables you to create active documents, in which the user can
enter data, select items from lists, or press buttons. Imagine a pizza
order form, where you enter your name and address into the Text
Control fields and select the things you want your pizza to consist of
from various drop-down menus.

How it Works

In this sample, two kinds of external objects can be inserted: Text
Controls, which act as text input fields, and combo boxes, which can be
used to select an item from a list. The two kinds of objects are control
arrays. One element of each of the controls is placed on the Text
Control at design time is made invisible and is assigned an Index
property value of 0. At run time, when the user clicks a menu item to
create an object, a new element of the respective property array is
created, made visible, and inserted into the Text Control. Objetcts are
inserted using the ObjectInsertAsChar or ObjectInsertFixed Method.
Like images, objects can be inserted 'as character', making them act as if
they were characters within the text and move as the text changes, or
'fixed', in which case the text flows around the objects. The last
parameter of the ObjectInsertAsChar or ObjectInsertFixed methods
is used to disinguish between different kinds of objects.

Loading and Saving

When you save a document which contains external objects, then the
Text Control does not know what data these controls may contain.
To enable you to save the object's data, Text Control sends an

Text Control Programming with Visual BasicPage 42

ObjectGetData event for every object to be saved. When you then re-
load the document, the saved data is passed back as a parameter of
ObjectSetData events. Note that you do not need to process these
events for inserted Text Controls.

Using the Clipboard

Another important event is ObjectGethWnd. This event is sent
whenever an object is to be created, i.e. when a document which
contains objects is pasted from the clipboard, or loaded from a file. In
response to this event, the application creates the object and returns its
window handle.

Note that you cannot use the SizeMode property to move an inserted
Text Control with the mouse. Using SizeMode, only the Text Control's
window is moved, but not the OLE frame. If your application requires
Text Controls to be moved, insert them by calling the
CreateTextControl function, which is described in the DLL Reference
Manual.

For an example of how to use the Objectxxx properties amd methods,
refer to the MDI sample program.

Mail Merge
The chapter "Using Text Control as a Bound Control" showed you how
to store a Text Control's entire contents in a database field. For
implementing functions like mail merge, however, the requirements are
different: the contents of database fields have to be inserted at specified
positions in a previously prepared document. The following sample
program provides you with the basis of how to this.

The code shown here is contained in the Stdlet sample source directory.

The Sample Program

The program consists of two forms, Form1 for creating a text and
Form2 for connecting it to the database.

Start the program and use the File / Open... command to load the sample
file 'account.tx'. The file contains three fields which are to be replaced

Page 43Text Control Programming with Visual Basic

by database entries. Select Insert
/ Data to access Form2. When
you click the Insert button in
Form2, the contents of the three
database fields are copied to the
text fields in Form1. You can
select a different record by
clicking one of the data control
buttons in Form2, and then

clicking Insert again to replace the fields.

How it Works

Each of the three edit controls in Form2 are connected to a field in the
database. The edit controls are used as bound controls, so when you
browse through the database by clicking on the data control buttons, the
contents of the selected database record are automatically copied to the
edit controls. The only thing left to do is to copy the data from the edit
controls to the text fields in the document. This is done when you click
on the Insert button:

Private Sub cmdInsert_Click()
Form1.TXTextControl1.FieldCurrent = 1
Form1.TXTextControl1.FieldText = Form2.Text1
Form1.TXTextControl1.FieldCurrent = 2
Form1.TXTextControl1.FieldText = Form2.Text2
Form1.TXTextControl1.FieldCurrent = 3
Form1.TXTextControl1.FieldText = Form2.Text3

' Uncomment this to send the result to the printer.
' Printer.Print

Text Control Programming with Visual BasicPage 44

' Form1.TXTextControl1.PrintDevice = Printer.hDC
' Form1.TXTextControl1.PrintPage 1
' Printer.EndDoc

End Sub

To implement a real mail merge function you will have to add a dialog
box in which the user can select the database to be used. You may also
want to provide a variable number of database fields which are
dependent on the contents of the selected database.

Using Hypertext Links
This chapter shows how to use Text Control's marked text fields to
insert hypertext links and targets into text documents and how to
respond to events which Text Control fires when the user clicks on a
hypertext link.

The source code for the following examples is contained in the
subfolders Step1 to Step4 of the HyperLnk sample source directory.

Step 1: Inserting a Hypertext Link

In this first sample program a hypertext link will be inserted in a text
document. The document is saved then as a HTML file so that it can be
viewed in a browser.

Hypertext links are handled as a special type of a marked text field. A
hypertext link therefore is inserted by calling the FieldInsert method,
and then specifying the type of the field with the FieldType property:

TXTextControl1.FieldInsert "Text Control Web Site"
TXTextControl1.FieldType(TXTextControl1.FieldCurrent) = _

txFieldExternalLink

To store the target to where the link points, the FieldTypeData property
is used:

TXTextControl1.FieldTypeData(TXTextControl1.FieldCurrent)= _
"http://www.textcontrol.com"

Page 45Text Control Programming with Visual Basic

The following line of code saves the document, containing the hypertext
link, which has just been inserted as a HTML file in the sample folder:

TXTextControl1.Save App.Path & "\step1.html", , 4, 0

When this file is loaded with a web browser, the hypertext link will be
displayed as specified in your browser's settings. Clicking on the link,
will take you to the Text Control web site.

Note that there is no code for the Click events yet, so clicking on the
hypertext link in the Text Control will have no effect. Also, the link is
neither underlined nor colored.

Step 2: Adding a Dialog Box for Inserting Hypertext Links

In this second sample program a dialog box is created which enables the
user, to insert hypertext links in a more convenient way. Additionally,
hypertext links which have previously been inserted or loaded from a
file, can be edited and modified. Note that, while hypertext links are
usually associated with HTML files, they can as well be stored in RTF
or Microsoft Word files, or in Text Control's proprietary format.

The dialog box has two
text boxes. The first is
for the text that
represents the hypertext
link in the document and
the second is for the
address, to where the link points. In the step 1 example, the representing
text was "Text Control Web Site", and the address, to where the link
points, was "http://www.textcontrol.com".

Text Control Programming with Visual BasicPage 46

The same dialog box is used for both, inserting a new and editing an
existing hypertext link. Depending on whether the current input position
is inside of an existing link, this link is modified. Otherwise a new one
is inserted.

The dialog form's properties, tx and bShowHyperlinks, are used to pass a
Text Control's reference and some information about how to display the
hypertext links to the form.

Public Sub do_mnuInsert_Hyperlink_Click(tx As TXTextControl,
bShowHyperlinks As Boolean)

Set frmHyperlink.tx = tx
frmHyperlink.bShowHyperlinks = _

(mnuView_Hyperlinks.Checked = True)
frmHyperlink.Show 1

End Sub

When the form is loaded, the text boxes are filled with the text and link
information when the current input position is inside of an existing link:

Private Sub Form_Load()
If CaretInsideHyperlink(tx) <> 0 Then

txtLinkedText = tx.FieldText
txtLinkTarget = tx.FieldTypeData(tx.FieldCurrent)

Else
txtLinkedText = tx.SelText

End If
End Sub

The user then can change the displayed information. The information is
then transfered to the document by either inserting a link or modifying
the existing one when the 'OK' button is pressed:

If tx.FieldAtInputPos <> 0 Then
' editing an existing hypertext link
tx.FieldText = txtLinkedText
tx.FieldType(tx.FieldCurrent) = txFieldExternalLink
tx.FieldTypeData(tx.FieldCurrent) = txtLinkTarget

Else
' insert new hypertext link
tx.FieldInsert txtLinkedText
tx.FieldType(tx.FieldCurrent) = txFieldExternalLink

Page 47Text Control Programming with Visual Basic

tx.FieldTypeData(tx.FieldCurrent) = txtLinkTarget
HighlightHyperlinks tx, bShowHyperlinks

End If

Finally, there is a menu item to switch the character format of the
hyperlink's text to blue colored and underlined style. The menu item
calls the function HighlightHyperlinks, which is defined in the file
HyperlinkFunctions.bas.

Step 3: Adding Targets

Step 1 and 2 only handle references to external resources, i.e. addresses
of web pages or files. In this step, links to positions in the same
document will be handled. These links are called internal links and the
positions, to where they point, are called targets. Targets are also
refered to as anchors (in the context of HTML editors) or bookmarks (in
word processors). When using this example, first add some text and
then some targets with the Insert / Target... menu item. Finally use the
Insert / Hypertext Link... menu item to add links to these targets.

Inserting a Target

Targets are realized again as a
special type of a marked text field.
The type and the target's name
must be set with the FieldType
and the FieldTypeData
properties. Unlike links, targets
have no visible text, therefore an empty field must be inserted with the
FieldInsert method to insert a target:

Dim TargetName As String
TargetName = InputBox("Target name:", "Insert target")
If TargetName <> "" Then

TXTextControl1.FieldInsert ""
TXTextControl1.FieldType(TXTextControl1.FieldCurrent) = _

txFieldLinkTarget

TXTextControl1.FieldTypeData(TXTextControl1.FieldCurrent)_
= TargetName

End If

Text Control Programming with Visual BasicPage 48

Only one text box is required to display the name of a target, so a simple
InputBox statement can be used.

Inserting Links to Targets

To insert links to the just inserted targets, the Hypertext Link dialog box
is extended with a list box showing the names of all targets the
document contains. The FieldNext method is used to fill this list box:

Dim FieldID As Integer
List1.Clear
FieldID = tx.FieldNext(0, &H100&)
While FieldID <> 0
List1.AddItem tx.FieldTypeData(FieldID)

FieldID = tx.FieldNext(FieldID, &H100&)
Wend

When the user
selects a target,
the Link To field
is filled with the
target's name.
After typing the
link's text and
pressing the 'OK'
button, the link is inserted. An internal link is inserted in the same way
as the external links from step 1, but the FieldType property now is set
to txInternalLink and the FieldTypeData property is set to the target's
name.

Jumping to a Target

After inserting internal links and targets, a jump must be realized. When
the user clicks on a marked text field that represents a hypertext link,
Text Control fires a FieldLinkClicked event. The information provided
through this event can be used with the FieldGoto method to jump to
the target:

Private Sub TXTextControl1_FieldLinkClicked(_
ByVal FieldId As Integer, _
ByVal FieldType As Integer, _

Page 49Text Control Programming with Visual Basic

TypeData As String)
TXTextControl1.FieldGoto txFieldLinkTarget, TypeData

End Sub

While the FieldGoto method is used for targets within the same file,
links to external targets must be treated differently. When the
FieldLinkClicked event occurs, and the FieldType parameter indicates
that the link is external, then it depends on the type of the application,
what to do. External links can point to, for instance, files on the local
harddisk, or addresses in the internet.

Note that responding to the events is only required for making the
hypertext links work while the text is edited in Text Control. If the text
is saved to a file and displayed with a browser, then the hypertext links
will work depending on the used browser.

Step 4: Adding Jumps to External Targets

Finally, in this step, jumps to other documents and jumps to targets in
these documents are added.

An Enhanced Dialog Box for
Displaying and Selecting Targets

Again the Hypertext Link
dialog box is extended to
choose an external file. A
Choose File... button is
placed on the form that
triggers a common dialog.
After the user has chosen a
file, its name is displayed
in the text box and the file
is searched for internal
targets:

Private Sub CheckFileForTargets(file As String)
tx(1).LoadSaveAttribute(txEnableLinks) = True
tx(1).Load file, 0, 4
FillListboxWithTargets (1)

Text Control Programming with Visual BasicPage 50

optSelFile.Value = True
loadedFile = file

End Sub

For this purpose the file is loaded in a second, invisible Text Control.
Then the FieldNext method is used as in step 3 to list all targets.

Jumping to an External Target

To implement the jump to an external link, the code added to the
FieldLinkClicked event in step 3 must be extended. The following
code does not handle jumps to internet addresses, it only implements
jumps to targets in other files. To seperate a file from a name of a target,
Text Control uses the '#' character. The following code separates the file
name and the target's name, loads the file with the Load method and
jumps to the target with the FieldGoto method:

ElseIf FieldType = txFieldExternalLink Then
‘This sample does not feature links to www sites,
‘so exit sub
If Left(TypeData, 7) = „http://“ Then

Exit Sub
End If

TXTextControl1.LoadSaveAttribute(txEnableLinks) = True
pos = InStr(TypeData, „#“)

‘File name includes an internal link
If pos >= 0 Then

‘Ask the user to save changes, if any
If bDocDirty Then

ret = MsgBox(„Save changes?“, vbYesNoCancel, _
„Question“)
If ret = vbYes Then

mnuFile_SaveAs_Click
ElseIf ret = vbCancel Then

Exit Sub
End If

End If

‘Extract file name & path from full path

Page 51Text Control Programming with Visual Basic

str = Left(TypeData, pos - 1)
TXTextControl1.Load str, 0, 4
‘Extract file position from full path
str = Mid(TypeData, pos + 1)
TXTextControl1.FieldGoto txFieldLinkTarget, str

Else
‘File name doesn’t include an internal link
TXTextControl1.Load TypeData, 0, 4

End If
End If

Loading and Saving Files containing Hypertext Links

When an HTML, RTF or Microsoft Word document is loaded, Text
Control must convert containing hypertext links to appropriate marked
text field, as described above. To perform this, a programmer must set
the LoadSaveAttribute(txEnableLinks) before using the Load
method. Otherwise hypertext links and target fields are not converted.
When a document is saved, marked text fields that represent hypertext
links, are always converted to the appropriate format.

If Text Control's proprietary format is used, setting LoadSaveAttribute
is not necessary.

More information about hypertext links and a list of all properties,
methods and events that can be used with marked text fields, can be
found in the Reference part, later on in this manual, in the chapter
"Overviews - Marked Text Fields - Special Types of Marked Text
Fields".

Headers and Footers
This example shows how to use headers and footers. The source code is
contained in the Headers sample source directory.

TX supports headers as well as footers. You also have the ability to
create a different header or footer for the first page.

To insert a header or footer in the example, click on Insert and choose
one of the four possible options. The code that is executed when

Text Control Programming with Visual BasicPage 52

clicking on one of the menu items is almost the same. For the Header
menu item it looks as shown below. The line

TXTextControl1.HeaderFooter = TXTextControl1.HeaderFooter +
txHeader

informs Text Control that a header should be added to the current
settings.

Setting the HeaderFooterStyle property to txMouseClick enables the
user to activate the header with a single click rather than a double-click.
Activating a header or footer with a double-click is Text Control's
default setting. More information about how to use headers and footers
and a list of all properties, methods and events that can be used with
headers and footers, can be found in the Reference part, later on in this
manual, in the chapter "Overviews - Headers and Footers".

When using properties, Text Control distinguishes between the main
text and headers or footers. To switch between these different indepen-
dent text parts, Text Control provides the HeaderFooterSelect method:

TXTextControl1.HeaderFooterSelect txHeader
TXTextControl1.SelText = "Header"
TXTextControl1.HeaderFooterSelect 0

This code selects the header, so that the following code affects the
header and then sets the headers text. Finally the mode is reset to zero
using the HeaderFooterSelect method. More information about
programming with headers and footers see the chapter "Overviews -
Headers and Footers - Programming Headers and Footers".

A header or footer is activated from programming code using the
HeaderFooterActivate method. To delete a header or footer, simply
substract the txHeader constant from the current HeaderFooter
settings.

The following is the complete code of the menu item:

Private Sub mnuHeader_Click()
If mnuHeader.Checked = False Then

TXTextControl1.HeaderFooter = _
TXTextControl1.HeaderFooter + txHeader

Page 53Text Control Programming with Visual Basic

TXTextControl1.HeaderFooterSelect txHeader
TXTextControl1.SelText = "Header"
TXTextControl1.HeaderFooterSelect 0
TXTextControl1.HeaderFooterActivate txHeader
mnuHeader.Checked = True

Else
TXTextControl1.HeaderFooter = _

TXTextControl1.HeaderFooter - txHeader
mnuHeader.Checked = False

End If
End Sub

Drag and Drop
This example shows how to use the InputPosFromPoint method to
realise a simple Drag&Drop in a Text Control application.

Drag&Drop in a text editor enables the user to drag a piece of text and
drop it in a new location of the document. So, the incoming mouse
events have to be analyzed and handled.

In the MouseDown event, the InputPosFromPoint method is used to
get the character position the user has clicked on. The current input
position and the length of the selection are stored in global variables,
because they are needed in the MouseUp event. If the input position the
user has clicked on, is inside of the current selection, dragging can be
started. First a global variable named dragging is set to true and the
MousePointer property is changed to indicate that dragging is in
process. The text and format information of the current selection is
copied to a memory buffer using the SaveToMemory method. Finally,
the Text Control's EditMode property is set to 2 - read only.

‘Get current input position and the current selection
pos = TXTextControl1.InputPosFromPoint(X, Y)
gblStart = TXTextControl1.SelStart
gblLength = TXTextControl1.SelLength

‘Check if the click occured in the current selection
If gblStart <= pos And gblStart + gblLength > pos Then

Text Control Programming with Visual BasicPage 54

‘Start dragging
data = TXTextControl1.SaveToMemory(3, True)
dragging = True
MousePointer = 2
TXTextControl1.EditMode = 2

End If

In the MouseUp event procedure the InputPosFromPoint method is
used again to get the character position where the user has left the
mouse button. When dragging is in process and the input position is not
inside the current selection, the drop opertation can be performed. The
previously saved text now is inserted with the LoadFromMemory
method after setting the new input position with the SelStart property.

pos = TXTextControl1.InputPosFromPoint(X, Y)
If dragging Then

‘Check if the new input position is outside of
‘the current selection. If it’s not, do not
‘copy the text
If Not (gblStart<=pos And gblStart + gblLength>pos) Then

TXTextControl1.SelText = „“
If pos < gblStart Then

TXTextControl1.SelStart = pos
Else

TXTextControl1.SelStart = pos - gblLength
End If
TXTextControl1.LoadFromMemory data, 3, True

End If
‘End dragging
dragging = False
MousePointer = vbNormal
TXTextControl1.EditMode = 0

End if

Page 55TX Publisher - An Advanced Visual Basic Example

TX Publisher - An Advanced Example
This sample progam is written entirely in Visual Basic, with no third
party custom controls or DLLs except those included with Visual Basic
itself. The program is intended to be used as a starting point for your
applications, and it contains all the basic functions like loading and
saving documents, printing, zooming, as well as the scroll interface.
You can easily add more features and customize the program without
having to start from scratch.

Text Frames and OLE Objects
TX Publisher works with text frames. This can entail pure text frames
into which new text is entered or OLE objects. The type of frame is

Page 56 TX Publisher - An Advanced Visual Basic Example

defined in the Insert menu via the 'New Frame'
menu item. In principle, the handling of text and
OLE frames is the same. We will explain the
frame handling using examples with text frames,
and will then deal with the OLE object.

Drawing Text Frames
In order to draw a frame, click on an empty part
of the page and, depressing the left mouse
button, drag the mouse down and to the right. If
you require a different page display for this, select it in the View menu
via the 'Zoom' menu item.

The borders of the newly created text frame can be made visible by
selecting 'Text Frames' in the 'View' menu. A paragraph ruler can be
shown above the Text Frame. This setting is likewise made in the view
menu, using the menu item ‘Paragraph Ruler’.

Text can now be entered into the newly created frame until it is full, at
which point the frame has to be enlarged or the next frame has to be
created. Alternatively you can draw all the required text frames
successively, and then start entering text. Note that you can only start
entering text in the first frame.

Connecting Text Frames
The text frames are linked automatically. This means that text
automatically flows from the current frame into the next frame when the
current frame is full.

If you click on an empty text frame which is further down the chain, then
the cursor will stay in the last window which contains text.

The text frames are numbered internally in their sequence of creation.

Page 57TX Publisher - An Advanced Visual Basic Example

Deleting and Creating Frame Connections
You can eliminate the connection between frames and, if required,
regenerate them. You delete the connection to the following frame by
clicking on the respective frame with the CTRL key depressed, and by
answering the subsequent question displayed, ‘Delete connection to
next window’, with Yes.

In order to create a connection, click on the frame to be connected to
and keep the mouse button depressed until a symbol with a
sheet of paper in a hand is displayed. Keeping the CTRL key
and mouse button depressed, drag the symbol onto the frame
to which you wish to create a connection. Answer the

following question displayed, ‘Connect Frame No. x to Frame No. y’,
with Yes. If it is not possible to create a connection, an error message
will appear.

Changing Frame Size and Position
The size and position of a text
frame can be changed
subsequently. To change the
size, click the frame borders
or a corner of the frame with
the ALT key depressed. Keep the mouse key
depressed, and drag the respective border to the
desired position.

To change the position, click at any
position within the frame with the ALT
key depressed. Whilst keeping the mouse
button depressed, drag the frame to the
desired new position.

Page 58 TX Publisher - An Advanced Visual Basic Example

Setting Indents and Tabs
The currently active frame
receives a paragraph ruler when
this feature has been activated
in the 'View' menu. Using the
paragraph ruler you can set
indents and tabs.

Indents can be changed by
sliding the two small triangles
on the left side of the ruler, and
the large triangle on the right.

Tabs are left-aligned by default. To create right-aligned,
decimal or centered tabs the tab type can be selected
using the Button Bar.

You can set tabs by clicking at the desired position on the paragraph
ruler. You can then shift the tab marker by clicking on it, and
simultaneously dragging it along the ruler with the mouse button
depressed. You can remove a previously set tab by pulling it
downwards, away from the ruler. The maximum number of tabs is 14.

Using Images
Images can be inserted via the 'Insert/
Image' menu item or from the clipboard.
The menu lets you choose between
inserting the image 'At Caret Position' or

'As Fixed Object'. Images which are inserted at the caret position are
treated like characters, and they move with the text as it changes.

When inserted as fixed objects, images have a fixed position on the
page, and the text flows around them. The initial position of an image
inserted in this way is one inch from the top left corner of the page. You
can move it to the desired position just like you move text frames,
which is by depressing the ALT key and dragging the image with the
mouse.You can also change the size of the image in this way.

Page 59TX Publisher - An Advanced Visual Basic Example

Clicking on an image and selecting 'Image...' from the 'Format' menu lets
you select image attributes in a dialog box. You can adjust the size of
the borders, i.e of a frame around the image where no text is displayed,
and you can select if you want the image data to be included in your
document file or if you just want
to store a file reference. Storing
the image data increases the size
of your document file, but has the
advantage of making the document
independent of additional image
files.

Images which are inserted from
the clipboard are always inserted 'at caret position' and saved 'as data'.

OLE Objects
If you select 'OLE Object' in the 'Insert / New Frame' menu, frames are
created in the following way. The frame is drawn as described above, by
placing the mouse at the top-left corner of the frame to-be and dragging
it down and towards the right. A dialog box entitled ‘Insert Object’ then
appears. This dialog box also appears on the screen if you click over the
frame with the right mouse button. You have the choice of creating a
new object or of loading a file.

Page 60 TX Publisher - An Advanced Visual Basic Example

The File Menu
In the File menu you will find standard functions
such as: New, Open, Save, Save As, Print, Page
Setup, Exit. These will be familiar to you from
various other Windows applications and will
therefore not be described in more detail at this
point.

The Edit Menu
The Edit menu also includes a number of
standard functions including Undo and Redo
function, Cut, Copy, Paste, Delete, Search,
Replace, and Select All. Regarding the Undo
function, three different actions can be
undone; Input, Deletion and Formatting.

Other menu items include ‘Add Pages’ and
‘Remove Pages’, with which you can insert
and delete pages. When creating a document
there are two document pages. In order to
create additional pages, select Add Pages. Two

further pages are then added to the existing ones. Using the small scroll
bar at the bottom right, you can flick through the pages. You can delete
the last two pages using 'Remove Pages'.

If you wish to delete a frame, initially activate it by clicking on it, and
then select ‘Delete Frame’. After agreeing to ‘Delete Text Frame x’, the
respective frame is removed.

The View Menu
In the View menu you switch in or switch out one or
more of the displays of Control Characters, Text
Frames, Page Margins and Paragraph Rulers. You
can also set the display size of the page view. Using
‘Zoom’ you have the following options available:
Full Page, 30%, 50%, 75%, 100%, 200%.

Page 61TX Publisher - An Advanced Visual Basic Example

Regarding the Control Characters, soft and hard line breaks and blanks
are displayed.

The Insert Menu
In the Insert menu you determine, via 'New
Frame', the type of frame to be created. You
can choose between 'Text Frame' and 'OLE
Object'. For this purpose, read the previous

pages. Using the ‘Image’ menu item, a picture can be imported, and by
selecting ‘Text’, ASCII or RTF text files can be inserted at the current
caret position.

The Format Menu
In the Format menu you can perform character
and paragraph formatting. You can determine the
text colour and text background colour, and
using the menu item ‘Paragraph Frames’, you
can define lines or frames for paragraphs.

The Help Menu
Using ‘Help Topics’ you call up the Online help
service. You can also view an info window via the
menu item ‘About TX Publisher’

Page 62 TX Publisher - An Advanced Visual Basic Example

How the Program Works
Much of the program's functionality is based on the concept of container
controls. At the bottom of the control hierarchy there is a page ruler,
which is placed directly on the form. On top of the page ruler there is a
picture box which acts as a container for the document pages, which are
themselves picture boxes. Finally, the text frames, OLE frames and the
paragraph ruler use the page controls as containers. Although this may
seem a bit complicated at first sight, it saves you a lot of programming
work, because this approach helps to divide the program into logical
blocks, and handles all the different clipping regions.You can see how
the controls are put together when you look at the program in Visual
Basic design mode. (See next page).

When the program is started, two document pages are created in a
default size of A4 or Letter, depending on the system's country setting.
The size of the workspace is then automatically adjusted so that the two
pages can be shown side by side with a gray border around them.
Settings which do not change during the program execution are made in
the main form's Load event, whereas settings which depend on the
window size or the zoom factor are made in the form's Resize event.

Managing Global Data

Most of the global data is managed by the controls themselves and thus
does not have to be stored explicitly in variables.
For instance, the position and size of the text frames are stored in the
control's Left, Top, Width and Height properties. Information which
cannot be stored in control properties has been collected into a single
global structure. This structure is called 'Doc' and contains information
about zoom factor, page margins and the total number of text and OLE
frames in the document. Its definition is to be found in the file
'global.bas'.

Creating new Text and OLE Frames

A new frame is created when the user draws a rectangle on the page.
This happens in three stages in response to the page control's mouse
events:

Page 63TX Publisher - An Advanced Visual Basic Example

Text Frames,
OLE Object Frames,
Paragraph Ruler
(Text Controls, OLE Controls, TX Ruler)

|
Document Page
(Picture Box)

|
Workplace
(Picture Box)

|
Ruler
(Page Ruler)

|
Main Window
(Form)

On picPage_MouseDown, the mouse coordinates are stored as the top
left corner of the new control.

On picPage_MouseMove, a rectangle is drawn showing where the new
control will be placed after the mouse button has been released.

Finally, when the picPage_MouseUp event occurs, the rectangle is
deleted and a Text Control or OLE control is created at its coordinates.

The Text Controls and OLE controls, as well as the document pages, are
implemented as control arrays, so a new instance of one of them can be
created by calling the Load function. The newly created control is by
default a child window of picPage(0), which is the element of the page
control array that was created at design time. To have the control
displayed on top of the current page, the Windows API function
SetParent is used.

Connecting Text Frames

The last step in creating a new text frame is to connect it to its
predecessor so as to enable text to flow from one control to the next.
This is simply done by assigning the window handle of the new Text
Control to its predecessor's NextWindow property. The connection can
be deleted later on by setting the property to a value of 0.

Page 64 TX Publisher - An Advanced Visual Basic Example

Deleting frames

A frame is deleted when the user selects the 'Delete Frame' menu item.
This does not really remove it from the control array, but simply makes
it invisible and marks it as deleted by setting its Tag property to a value
of -1. The frames marked in this way are removed when the document is
saved to disk. The Tag property normally contains the number of the
page to which the control belongs.

The Page Ruler Control
When you first start TX
Publisher you will notice that the
ruler looks different from the
one in the standard version of
TX Text Control. The ruler is in
fact an additional custom
control. Its filename is
‘PgRul.Ocx', which is short for
‘Page Ruler’.

The Page Ruler control can be
used as a container for other
controls. In the TX Publisher
sample program, it is used as a
document page, on which the text frames are placed. A detailed
description of the Page Ruler's properties, methods and events can be
found in the Reference part of this manual.

Creating a Simple Word Processor with Delphi Page 65

Delphi User's Guide
Creating a Simple Word Processor

This chapter shows you how to create a small word processor from
scratch with just a few lines of code. It will be able to load and save
files, use the clipboard, and will have dialog boxes for character and
paragraph formatting, a ruler, a status bar and full keyboard and mouse
interface.

The source code for this example is contained in the Simple sample
source directory.

Creating the Project
Assuming that you have already run the Text Control installation
program and started Delphi, the next step is to create a project for the
text processor. To do this begin by selecting the New Application
command from the file menu. If you have already imported Text
Control into Delphi, its icons are shown when the ActiveX tab is
selected. Otherwise, click on Controls / Import ActiveX... and choose
TX Text Control from the given list. Click Install and then OK until all
dialog boxes have been closed. Now you will see the following four
additional icons when the ActiveX tab is selected:

The Text Control Icon The Status Bar Icon

The Button Bar Icon The Ruler Icon

Page 66 Creating a Simple Word Processor with Delphi

Creating the Controls
The next step is to put these four controls on a form and connect them.
Run Delphi and create a
new project. Select the
´OCX´ page in the
component palette to
have the 4 Text Control
icons displayed. Click on
the Text Control icon and
draw it on the form. In
the same way, create a
Ruler and a Button Bar
on top of the Text
Control, and a Status Bar
below it. Your form
should now look like the
diagram on the right:

Connecting the Controls
Add the following code to the form's FormShow Event procedure:

procedure TForm1.FormShow(Sender : TObject);
begin

TXTextControl1.ButtonBarHandle := TXButtonBar1.hWnd;
TXTextControl1.RulerHandle := TXRuler1.hWnd;
TXTextControl1.StatusBarHandle := TXStatusBar1.hWnd;

end;

Running the Program
The text processor is not yet finished, but we can make a first attempt at
running it and seeing what it can do. Click the Start button. You can
type in some text, select it with the mouse, copy it to the clipboard (use
the <CTRL>+<C> and <CTRL>+<V> keys as long as there is no
menu), select a different font, set tabs and do lots of other things. All of

Creating a Simple Word Processor with Delphi Page 67

these features have been built into the Text
Control and can be used with almost no
programming effort.

You will have noticed, however, that some
features are still missing. For instance, if
you resize the main window, the controls
keep their old sizes. There is no menu, and
there are no scrollbars either. We will fix
this in the coming chapters.

Adding Scrollbars

To add Scroll Bars, click on the Text
Control window to have its property list
displayed. Click on the Scrollbars property
and enter 3 - Both. Select the PageWidth
property and enter 12000, which is about
the width of a letter in twips, the currently
selected measurement. Set PageHeight to
15000 for now.

Resizing the Controls

Two steps are involved in making the
controls resize properly when the main
window is resized:

� Set the Align property to alTop for the Button Bar, the Ruler and the
Text Control. Set it to alBottom for the Status Bar. This will adjust
everything except the height of the Text Control.

� Change to the events listing in the property window and double-click
the OnResize event. The code window should show an empty procedure
for the Resize event:

procedure TForm1.FormResize(Sender: TObject);
begin

end;

Page 68 Creating a Simple Word Processor with Delphi

Extend it as follows:

procedure TForm1.FormResize(Sender: TObject);
begin

TXTextControl1.Height := ClientHeight - TXRuler1.Height
- TXStatusBar1.Height - TXButtonBar1.Height;

TXTextControl1.Width := ClientWidth;
TXRuler1.Width := ClientWidth;

end;

This line of code will cause the Text Control's height and width to be
adjusted every time the size of the form is altered.

Adding a Menu
In this chapter, you will add a menu to the text processor to enable you
to call the Text Control's built-in dialog boxes.

Use the Delphi Menu Component to create a
Format menu with the items Character... and
Paragraph.... (Please refer to the Delphi
documentation if you need help with creating
menus).

Add the following code to the Click procedures of the menu items:

procedure TForm1.Character1Click(Sender: TObject);begin
TXTextControl1.FontDialog

end;

procedure TForm1.Paragraph1Click(Sender: TObject);begin
TXTextControl1.ParagraphDialog;

end;

Start the program again. You should be able to
use the menu items to call the font and paragraph
dialog boxes.

Again use the Menu Design Window and create
an Edit menu containing items for Cut, Copy, and
Paste. The code for these menu items is:

Creating a Simple Word Processor with Delphi Page 69

procedure TForm1.Cut1Click(Sender: TObject);
begin

TXTextControl1.Clip (1);
end;

procedure TForm1.Copy1Click(Sender: TObject);
begin

TXTextControl1.Clip (2);
end;

procedure TForm1.Paste1Click(Sender: TObject);
begin

TXTextControl1.Clip (3);
end;

After adding these menu items, you can exchange formatted text with
other word processors via the clipboard.

The last menu for now shall be a simple file
menu. Create a File menu including the items
Load... and Save As.... Place a common dialog
box icon on the form and enter the following
code, which will call the common dialog box to
get a file name from the user, and will then load
respectively save the selected file:

procedure TForm1.Load1Click(Sender:
TObject);
const

TXT_FIlE = 1;
TXM_FILE = 3;

begin
OpenDialog1.Title := 'Open file';
OpenDialog1.Filename := '';
OpenDialog1.Filter

:= 'Text Control Demo (*.txm)|*.txm
|Plain text(*.txt)|*.txt';

OpenDialog1.FilterIndex := 1;
If OpenDialog1.Execute then begin;

// Pass the filename to the text control

Page 70 Creating a Simple Word Processor with Delphi

If UpperCase(copy(OpenDialog1.Filename,
length(OpenDialog1.filename)-2, 3)) = 'TXM' then begin

TXTextControl1.Load(OpenDialog1.Filename,
0, TXM_FILE, 0);

end
else

TXTextControl1.Load(OpenDialog1.Filename,
0, TXT_FILE, 0);

end;
end;

procedure TForm1.Saveas1Click(Sender: TObject);
const

TXM_FILE = 3;
begin

SaveDialog1.Title := 'Save as ...';
SaveDialog1.Filename := '';
SaveDialog1.Filter := 'Text Control Demo (*.txm)|*.txm';
SaveDialog1.FilterIndex := 1;
SaveDialog1.DefaultExt := 'txm';
if SaveDialog1.Execute then begin;

// Pass the filename to the text control
TXTextControl1.Save(SaveDialog1.Filename,

0, TXM_FILE, 0);
end;

end;

What Comes Next
It goes, of course, without saying that Text Control has many more
features than those included in our little demo program. It is up to you
now to include zoom, images, tables, OLE objects, paragraph frames
and whatever else makes up a full-blown word processor. If you need
some hints about how to integrate special features, have a look at the
source code of the other sample programs or post a message in the Text
Control support forum at http://www.textcontrol.com.

Page 71Text Control Programming with Delphi

Text Control Programming
This chapter is a guide to programming Text Control and its tools,
explaining the parts which have been omitted from the Creating a
Simple Word Processor example.

Working with Files
Text Control uses 5 different file formats:

� Its own native format, which you would normally use to store data in
document files.

� The Rich Text Format (RTF), which can be used to exchange formatted
text with other applications.

� HTML

� Microsoft Word format

� Unformatted text in ANSI or Unicode format.

An example of how to use the native file format has already been
presented in the previous chapter. Using RTF, HTML, Word or
unformatted text is just as simple: All you have to do is specify the
format you want to use as a parameter of the Load or Save method.

Using RTF, HTML, Word and unformatted text you can only read or
write the contents of a single Text Control from or to a file. Using the
native file format, however, you can write a file header prior to saving
the Text Control data, or even write the contents of several Text
Controls to one file.

The Forms1 sample program, which is described in the next but one
section, shows you how to write the contents of multiple Text Controls
to a single file. The MDIDemo sample shows you how to write a file
header prior to the Text Control's data and how to use RTF, HTML,
Word and unformatted text.

Text Control Programming with DelphiPage 72

Printing
Delphi provides a printer object that can be used to print the contents of
a Text Control.

The following example sends the contents of a Text Control, which can
be several pages long, to the default printer:

procedure TForm1.Print1Click(Sender: TObject);
var wPages, No : Integer;
begin

wPages := TXTextControl1.CurrentPages;
Printer.BeginDoc;
for No := 1 To wPages do begin

TXTextControl1.PrintDevice := Printer.Canvas.Handle;
TXTextControl1.PrintPage(No);
if No <> wPages then

Printer.NewPage;
end;
Printer.EndDoc;

end;

After storing the number of pages in a local variable called wPages, the
printer object is initialized with the Printer.BeginDoc statement, The
For .. Do loop runs from 1 to wPages to print all of the pages. Inside the
loop there are three more lines of code which print a single page:

1. The device context handle of the printer object is assigned to Text
Control's PrintDevice property. Without this step, a device context
which is compatible to the screen device would be used, resulting in
poor print quality.

2. The number of the page to be printed is passed as a parameter to the
PrintPage method. This will also start the printing process.

3. The printer object's NewPage method is invoked to advance to the next
page if there is one left.

Everything else, like calculating the line and page breaks, is done
internally by Text Control. The formatting is based on the values of two
groups of properties:

Page 73Text Control Programming with Delphi

� PageHeight and PageWidth determine the dimensions of the printed
page.

� PageMarginB, PageMarginL, PageMarginR and PageMarginT
determine the print margins.

These properties are normally set in a page setup dialog box.

Using Multiple Controls
This chapter shows how to
use Text Control in programs
which have several text
fields placed on a single
page. Think of a program to
print labels, to fill out forms,
or to mask data entry. The
Forms1 sample program,
which can be found in the
samples subdirectory
provides the basic
functionality for applications
of this kind.

Running the Sample Program

Initially, when the program
is started, the main window
contains one framed Text
Control where text can be
entered. The rest of the
window is empty.

What you can do with the
program is:

� Move the Text Control by
pressing the ALT key and
dragging the window with
the mouse.

Text Control Programming with DelphiPage 74

� Resize the Text Control by pressing the ALT key and dragging the
window borders with the mouse.

� Create additional controls by clicking on an empty part of the main
window.

� Save, load or print.

To keep things simple, there are no scrollbars in the main window and
no menu items except the ones listed above. Scrollbars, zoom and a few
other features will however be added in the next chapter.

How it Works

The Forms1 sample uses a control array for the text fields. The first
Text Control, the one which you see when you start the program, is
placed on the form at design time. More controls are created when you
click on an empty area of the form. These controls are created
dynamically with the Delphi Create method. After creation initial
values are assigned:

procedure TForm1.FormMouseDown(Sender: TObject; Button:
TMouseButton;

Shift: TShiftState; X, Y: Integer);
begin

MaxID := MaxID + 1;
TX := TTXTextControl.Create(Form1);
TX.Parent := Form1;
TX.Top := Y;
TX.Left := X;
TX.Width := TXTextControl1.Width;
TX.Height := TXTextControl1.Height;
TX.Name := 'TXTextControl' + InttoStr(MaxID);
TX.SizeMode := 3; // Move- and sizeable
TX.BringtoFront;
TX.OnMouseDown := TXTextControl1MouseDown;

end;

Clicking on an existing text field brings it to the front. This is done by
changing the Z order when a Click Event has occured:

Page 75Text Control Programming with Delphi

procedure TForm1.TXTextControl1MouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
TTXTextControl(Sender).BringtoFront;

end;

The global variable MaxID counts the total number of controls; It is
initialized to a value of 1 when the form is loaded.

Moving and resizing the controls is done by Text Control itself. To
enable these functions, the SizeMode property must be set to 3 - Move
and Sizeable.

Saving the Controls

Saving a document which has been created with this program
necessitates storing not only the data contained in the Text Controls, but
also the number and the positions of the controls. In addition, a format
identifier should be stored to enable the load routine of the program to
determine if it can process a file which it is about to load. The code on
the following page shows you how to save the document.

procedure TForm1.Save1Click(Sender: TObject);
var

outFile : file of byte;
begin

// Create an "Open File" dialog box
SaveDialog1.Title := 'Save as';
SaveDialog1.Filename := '';
SaveDialog1.DefaultExt := 'txm';
SaveDialog1.Filter := 'TX Form Demo (*.txf)|*.txf';
SaveDialog1.FilterIndex := 1;

if SaveDialog1.Execute then
Filename := SaveDialog1.Filename

else
Exit;

try
begin
// Open the selected file

Text Control Programming with DelphiPage 76

AssignFile(outFile, filename);
rewrite(outFile);
// Write file header
FileID.lVersion := File_ID;
BlockWrite(outFile, FileID, sizeOf(FileID));

//Save properties of all text controls
BlockWrite(outFile, MaxID, sizeof(MaxID));
For i := 1 To MaxID do begin

TXhWnd := FindComponent('TXTextControl'
+ Inttostr(i));

with TXProp do begin
xPos := TTXTextControl(TXhWnd).Left;
yPos := TTXTextControl(TXhWnd).Top;
xSize := TTXTextControl(TXhWnd).Width;
ySize := TTXTextControl(TXhWnd).Height;

end;
BlockWrite(outFile, TXProp, sizeof(TXProp));

end;
closeFile(outFile);

//Save contents of all text controls
For i := 1 to MaxID do begin

TXhWnd := FindComponent('TXTextControl'
+ InttoStr(i));

TTXTextControl(TXhWnd).Save(FileName, -1, 3, False);
end;

end;
Except

MessageDlg('Error saving ' + filename,
mtError, [mbOK], 0);

end;
end;

The Load routine first reads the format identifier and the number of
controls. Then it creates the required number of controls, loads their
contents and finally moves them to their correct position:

procedure TForm1.Load1Click(Sender: TObject);
var

Page 77Text Control Programming with Delphi

lFilePos : LongInt;
InpFile : file of byte;
bOpen : Boolean;

begin
// Create an "Open File" dialog box
OpenFileDialog.Title := 'Open file';
OpenFileDialog.Filename := '';
OpenFileDialog.Filter := 'TX Form Demo (*.txf)|*.txf';
OpenFileDialog.FilterIndex := 1;

if OpenFileDialog.Execute then
Filename := OpenFileDialog.Filename

else Exit;

try
begin

// Open the selected file
bOpen := False;
AssignFile(inpFile, filename);
reset(inpFile);
bOpen := True;

// Read file header
BlockRead(inpFile, FileID, sizeOf(FileID));
If FileID.lVersion <> FILE_ID Then begin

MessageDlg('Wrong filetype: ' + filename,
mtError,[mbOK],0);

Exit;
End;
// Destroy existing controls
If MaxID > 1 then begin

For i := 2 To MaxID do begin
TXhWnd := FindComponent('TXTextControl'

+ Inttostr(i));
TTXTextControl(TXhWnd).Free;

end;
end;
//Create text controls and load their contents
BlockRead(InpFile, MaxID, sizeof(MaxID));

Text Control Programming with DelphiPage 78

For i := 1 To MaxID do begin
BlockRead(InpFile, TXProp, sizeof(TXProp));
If i <> 1 Then begin

TX := TTXTextControl.Create(Form1);
TX.Parent := Form1;
TX.Width := TXTextControl1.Width;
TX.Height := TXTextControl1.Height;
TX.Name := 'TXTextControl' + InttoStr(i);
TX.SizeMode := 3;
TX.BringtoFront;
TX.OnMouseDown := TXTextControl1MouseDown;

end;
TXhWnd := FindComponent('TXTextControl'

+ Inttostr(i));
TTXTextControl(TXhWnd).Left := TXProp.xPos;
TTXTextControl(TXhWnd).Top := TXProp.yPos;
TTXTextControl(TXhWnd).Width := TXProp.xSize;
TTXTextControl(TXhWnd).Height := TXProp.ySize;
TTXTextControl(TXhWnd).Text := '';

end;
lFilePos := FilePos(InpFile);
closeFile(InpFile);
bOpen := False;

For i := 1 To MaxID do begin
TXhWnd := FindComponent('TXTextControl'

+ Inttostr(i));
lFilePos := TTXTextControl(TXhWnd).Load(FileName,

lFilePos, 3, False);
TTXTextControl(TXhWnd).Visible := True;

end;
end;

Except
MessageDlg('Error opening ' + filename,

mtError, [mbOK], 0);
if bOpen then begin

closeFile(inpFile);
end;

end;
end;

Page 79Text Control Programming with Delphi

Printing Multiple Controls

Printing a document is quite straightforward. The PageWidth and
PageHeight properties are set to a value of 0 at design time, so the
controls are printed like they are formatted on the screen. The print
margin properties are used to specify the positions of the controls on the
page.

procedure TForm1.Print1Click(Sender: TObject);
begin

Printer.BeginDoc;
For i := 1 To MaxID do begin

TXhWnd := FindComponent('TXTextControl' + InttoStr(i));
TTXTextControl(TXhWnd).PrintDevice := Printer.Handle;
TTXTextControl(TXhWnd).PageMarginL

:= toTwip(TTXTextControl(TXhWnd).Left);
TTXTextControl(TXhWnd).PageMarginT

:= toTwip(TTXTextControl(TXhWnd).Top);
TTXTextControl(TXhWnd).PrintPage (1);

end;
Printer.NewPage;
Printer.EndDoc;

end;

The complete source code of the Forms1 sample program is contained
in the Forms1 sample source directory.

A Forms Filler
With the Forms1 sample pro-
gram, you can place text fields
at arbitrary positions on a page.
When you print the page, the
text fields appear on the paper at
exactly the same positions
where they were previously
placed on the screen. These
features will be used in the
following sample to create a
program for filling out pre-

Text Control Programming with DelphiPage 80

printed forms.
The scanned image of the form is shown in the background of the
screen, enabling the user to easily determine the positions of the filled-
out fields. He has only to click (with the CTRL key pressed) on the area
of the form where he wants to put text and then start typing. The fields
can be moved and resized afterwards by holding down the ALT key and
dragging them with the mouse.

The source code for this example is contained in the Forms2 sample
source directory.

Adding ButtonBar, Ruler and StatusBar

The Button Bar, Ruler and Status Bar are used in a special way in this
sample program. If you run the program and click on various fields you
will notice that the tools automatically switch to the text field which has
been clicked on. This switching is done internally by Text Control, so
no programming is required for it. Each control is connected with the
status bar, button bar and ruler after it is created.

Displaying the Background Image

The background image is displayed by an Image Control. This control is
not a separate custom control, but a child window of the Text Control.
To display the background image, create a Text Control which has the
size of the whole page, and then load an image using Text Control's
ObjectInsertAsChar method.

The Text Control which displays the
background image has an additional
function, which again saves a lot of
programming work. It acts as a container for
the Text Controls which are used as fill-out
fields. (A container control enables you to
draw other controls within it at design time.
Examples of container controls are frames
and picture boxes). The big advantage of a
container is that it handles all of the clipping
for the controls which have been created on
top of it. Otherwise, scrolling the

Page 81Text Control Programming with Delphi

background image would cause the text fields to overwrite anything that
lies within the form's boundaries, like ButtonBar, Ruler, and even the
scrollbars. It would require many calculations of field positions and
sizes and some direct calls to the Windows DLLs on every scroll and
resize event to do the clipping without a container control. Using the
background Text Control as a container, you need only create the first
text field inside of it, and everything else is done automatically.

Working with Transparent Text Controls

Run the program, load a background image and create a few text fields
by clicking on this background image. You will notice that the text
fields are transparent, so you can see the background image below.
Using this feature in a program requires some fine-tuning of the clipping
areas with the ClipChildren and ClipSiblings properties.

These two properties determine which areas of an image are repainted
when a new part of a control becomes visible or when its contents have
been changed.
For example, if one control is covered by another, it only has to be
repainted if the one which lies on top of it is transparent. You will
always want to repaint as little as possible to make the application run
fast and to avoid unnecessary flickering on the screen. Furthermore you
will not want your computer to spend time drawing things which are not
visible.

For maximum flexibility in setting the clipping areas and mixing trans-
parent and opaque controls, two properties have been implemented
which share this task:

The ClipChildren property is used only for Text Controls which act as
a container for other Text Controls. When ClipChildren is set to True,
the areas occupied by the child controls are excluded from the update
area. So, if as in the forms filler program, transparent controls are used
as children of the container control, this property must be set to False.

The ClipSiblings property determines the behaviour between each of
the child controls. It must be set to False if the program allows transpa-
rent Text Controls to overlap others.

Text Control Programming with DelphiPage 82

Zooming

Zooming is simply done by setting the ZoomFactor property of each of
the Text Controls:

procedure TForm1.N751Click(Sender: TObject);
begin

Zoom := TXParent.ZoomFactor;
TXParent.ZoomFactor := 75;
For i := 1 to MaxID do begin

TXhWnd := FindComponent('TXChild' + InttoStr(i));
TTXTextControl(TXhWnd).ZoomFactor := 75;

end;
TXhWnd := FindComponent('N' + InttoStr(Zoom) + '1');
TMenuItem(TXhWnd).Checked := False;
N751.Checked := True;

end;

Using Marked Text Fields
Marked text fields are markers which are inserted in the text. They can
be used to implement a wide range of special functions in a text
processor. To name just a few:

- Mail Merge functions

- Spreadsheet-like calculation fields

- Bookmarks

- Automatic table of contents and index generation

- Hypertext viewers which include any kind of buttons, images, pop-up
windows or even OLE objects in the text

Any group of characters within the text can be a marked text field. The
maximum number of fields is 65,535. Text Control maintains the
positions and numbers of the fields. It also takes care of loading, saving
and clipboard operations.

Page 83Text Control Programming with Delphi

A Simple Example

This first sample program will show you how fields are created and
what happens when they are clicked on. The code shown here is
contained in the Field1 sample source directory.

The program consists of a form with just one menu item, Insert Field!,
with an exclamation mark to say that clicking on this item will cause an
immediate action instead of dropping a menu. There are two Text
Controls on the form, one of which is used as a normal text window
(TXTextControl1), the other one as a pop-up window
(TXTextControl2).

The following code is executed when the menu item is clicked on:

procedure TForm1.Insertfield1Click(Sender: TObject);
begin

TXTextControl1.FieldInsert ('-------');
TXTextControl1.FieldEditAttr

[TXTextControl1.FieldCurrent] := $10 + $2 + $1;
end;

This inserts a field at the current caret position. If you move the cursor
over the field, Text Control changes the mouse pointer to an upward
pointing arrow (�) to indicate that there is something to click on.

Text Control Programming with DelphiPage 84

If you click on the field, the application receives a FieldClicked event,
to which it responds by popping up a window which displays the field
number.

Only five lines of code are required for this:

procedure TForm1.TXTextControl1FieldClicked(Sender: TObject;
FieldIndex: Smallint);

begin
TXTextControl1.FieldCurrent := FieldIndex;
TXTextControl2.Text := 'This is field no. '

+ InttoStr(FieldIndex) + '. Its text is: '
+ TXTextControl1.FieldText;

TXTextControl2.Left :=
toPixels(TXTextControl1.FieldPosX);

TXTextControl2.Top := toPixels(TXTextControl1.FieldPosY);
TXTextControl2.BringtoFront;

end;

The first line selects the marked text field which has been clicked on.
Line 2 builds the string that is to be displayed in the pop-up window.
Line 3 and 4 moves the pop-up window, which is initially hidden behind
the text window, to the position of the marked text field. Line 5 puts the
pop-up window in front of the text window to make it visible. When the
mouse button is released, the text window is moved to the front again:

procedure TForm1.TXTextControl1MouseUp(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Inte-

ger);
begin

TXTextControl1.BringtoFront;
end;

Bookmarks

This example shows you how to use Text Control's marked text fields to
create bookmarks. The first version will reference the bookmarks simply
by their field numbers. The source code for this example is contained in
the Field2 sample source directory.

The sample application has a Bookmark menu with two items which are
named Insert and Go to.... Clicking Insert creates a marked text field at

Page 85Text Control Programming with Delphi

the current caret position. If a text selection exists, the selected text is
converted into a field. If not, the character next to the caret is selected.

procedure TForm1.Insert1Click(Sender: TObject);
var

fieldID : Integer;
begin

If TXTextControl1.Text = '' Then
Application.MessageBox ('Cannot insert a bookmark

if the Text Control is empty.','ERROR',MB_OK)
Else begin

If TXTextControl1.SelLength = 0 Then
TXTextControl1.SelLength := 1;

TXTextControl1.FieldInsert ('');
fieldID := TXTextControl1.FieldCurrent;
TXTextControl1.FieldEditAttr[fieldID] := $10 + $2 + $1;

end;
end;

After typing in some text and inserting a
few bookmarks, select the Go To... menu
item. This will launch a dialog box which
allows you to enter the number of the
bookmark to jump to. There is no error
processing in this example, so if you enter
the number of a non-existent field, not-
hing will happen.

Clicking the 'OK' button executes the following procedure:

procedure TfrmGoto.Button1Click(Sender: TObject);
begin

Form1.TXTextControl1.FieldCurrent
:= StrtoInt(Edit1.Text);

Form1.TXTextControl1.SelStart
:= Form1.TXTextControl1.FieldStart - 1;

Form1.TXTextControl1.SelLength
:= Form1.TXTextControl1.FieldEnd

- Form1.TXTextControl1.FieldStart + 1;
Close;

end;

Text Control Programming with DelphiPage 86

The number which has been entered in the dialog box is taken as a value
for the FieldCurrent property.

Adding Strings to Marked Text Fields

The source code for this example is contained in the Field3 sample
source directory.

In commercial word processors, bookmarks are normally referenced by
names, not just by numbers. The names are typed in by the user when he
creates a bookmark. The Goto Bookmark dialog box then presents a
listbox or combobox in which one of the strings may be selected.

The Insert Bookmark... menu item in
this version of the program creates a
dialog box where the user can enter a
label for the bookmark. When the ‘OK’
button is clicked, the following code is
executed:

procedure TfrmInsert.btnOKClick(Sender: TObject);var fieldID
: Integer;
begin

If Form1.TXTextControl1.SelLength = 0 Then begin
If Form1.TXTextControl1.SelStart

= Length(Form1.TXTextControl1.Text) Then
begin

Form1.TXTextControl1.SelText := ' ';
Form1.TXTextControl1.SelStart

:= Form1.TXTextControl1.SelStart - 1;
end;
Form1.TXTextControl1.SelLength := 1;

end;
// Insert a field and store the bookmark name in its
// FieldData property
Form1.TXTextControl1.FieldInsert ('');
fieldID := Form1.TXTextControl1.FieldCurrent;
Form1.TXTextControl1.FieldEditAttr [fieldID]

:= $10 + $2 + $1;

Form1.TXTextControl1.FieldData[Form1.TXTextControl1.FieldCurrent]

Page 87Text Control Programming with Delphi

:= Edit1.Text;
Form1.TXTextControl1.SelLength := 0;
Close;

end;

First, a marked text field is created at the current caret position. Second,
the name of the bookmark, which is the text that has been typed in by
the user, is stored in the FieldData
property.

The Goto Bookmark dialog box contains
a combo box which lists all of the
bookmarks which have been created so
far. The combo box is filled with the
bookmark titles when its form is loaded:

procedure TfrmGoto.FormShow(Sender: TObject);
var

nfieldID : Integer;
begin

nFieldID := 0;
cboBookmark.Clear;

// Fill the combobox with bookmarks
Repeat

nFieldID := Form1.TXTextControl1.FieldNext(
nfieldID, 0);

If nFieldID > 0 Then
cboBookmark.Items.Add(
Form1.TXTextControl1.FieldData[nFieldID])

Until nFieldID = 0;

// Copy first item to the edit control part
// of the combo box
cboBookmark.Text := cboBookmark.Items.Strings[0];

end;

When the ‘OK’ button is clicked, the bookmark list is searched for the
string which has been selected in the combo box, and the corresponding
marked text field is selected.

Text Control Programming with DelphiPage 88

procedure TfrmGoto.Button1Click(Sender: TObject);
var

nFieldID : Integer;
label

Exit;
begin

nFieldID := 0;
// Search for the requested bookmark
Repeat

nFieldID := Form1.TXTextControl1.FieldNext(
nFieldID, 0);

If nFieldID > 0 Then begin
If Form1.TXTextControl1.FieldData[nFieldID] =

(cboBookmark.Text) Then
begin

Goto Exit;
end;

end;
until nFieldID = 0;

Exit:
// If the bookmark has been found, select it. Text

Control will then
// automatically scroll to make it visible
If nFieldID <> 0 Then begin

Form1.TXTextControl1.FieldCurrent := nFieldID;
Form1.TXTextControl1.SelStart

:= Form1.TXTextControl1.FieldStart - 1;
Form1.TXTextControl1.SelLength

:= Form1.TXTextControl1.FieldEnd
- Form1.TXTextControl1.FieldStart + 1;

end
Else

Application.MessageBox(
'Bookmark not found.','ERROR',MB_OK);

Close;
end;

You can also extend the sample program with a dialog box, similar to
the Go To Bookmark... dialog, in which a bookmark can be deleted

Page 89Text Control Programming with Delphi

without deleting the text. This would require converting the marked text
field to normal text. Use the FieldDelete method to achieve this.

More information about marked text fields and a list of all properties,
methods and events that can be used with marked text fields, can be
found in the Reference part, later on in this manual, in chapter
"Overviews - Marked Text Fields".

A Word Processor
This chapter
shows you
how to use
Text Control
to write a
standard word
processor. The
source code
for this
example is
contained in
the MDIDemo
sample source
directory.

Adding a PageSetup Dialog Box

The Page Setup dialog box is used
to determine the page size and
print margins. The maximum page
size is restricted by the
capabilities of the default printer.
For implementation details, look
at the source code of the
frmPageDlg form.

Text Control Programming with DelphiPage 90

A Print Dialog Box

When the Print... menu item is clicked, first a Common Dialog box is
shown to let the user enter the range of pages, number of copies and
printer specific information. The rest of the procedure, which is part of
the MDIChild form, is just a loop which sets the appropriate Text
Control properties for every page to be printed.

Search and Replace

Searching and replacing is entirely done in Text Control. You just have
to assign a value of 1 for Search or 2 for Search And Replace to the
FindReplace method. Text Control then opens the Windows Common
Dialog box.

Using Paragraph Frames

With Text Control, you can
add lines and frames to a
paragraph or a range of
paragraphs. For instance, you
can put a line at the bottom of
a caption like in the header of
this manual.

The dialog box for paragraph
frames is not included in the
Text Control, but the source
code is included in the MDI
sample.

The properties which are responsible for paragraph frames are
FrameDistance, FrameLineWidth, and FrameStyle.

Dialog Boxes for Text and Background Color

This is also done with Common Dialogs. The color value returned from
the dialog box is assigned to the ForeColor or BackColor properties.

Page 91Text Control Programming with Delphi

Using Text Control with a Database
This chapter describes how to use Text Control to access databases with
the Delphi TDBNavigator control. If you are not familiar with the
TDBNavigator control please refer to the Delphi documentation.

The source code for this example is contained in the Database sample
source directory.

The sample uses the
TX_DATAIN and
TX_DATAOUT
messages to store data to
the database and vice
versa.Not only is the
plain text stored, but also
all formatting
information, e.g. font
and paragraph attributes,
colors and image file
names. The data is
stored in RTF format,
which is the easiest to
handle.

The Database sample program is connected to a small data base which
contains descriptions of some of Text Control's properties. You can
browse through the records of the data base by clicking the
TDBNavigator control buttons on the lower left side of the window. If
you want to change something in the current record, press the button
with the triangle.

Calling DLL Functions from Delphi Code
Sometimes it is necessary to access the Text Control DLL directly
instead of using the properties and methods. There are messages which,
because most users will never need them, have no corresponding
properties, but which may be useful for your program.

Text Control Programming with DelphiPage 92

The CallDLLs sample program, whose source code is contained in the
CallDLLs sample source directory, shows you how to use these
messages. You may want to browse through the DLL Reference online
help file to see which other messages might be useful. The numbers of
the Text Control messages are listed in \samples\dll\inc\tx.h.

Mail Merge
The chapter "Using Text Control with a Database" showed you how to
store a Text Control's entire contents in a database field. For
implementing functions like mail merge, however, the requirements are
different: the contents of database fields have to be inserted at specified
positions in a previously prepared document. The following sample
program provides you with the basis of how to this.

The code shown here is contained in the Stdlet sample source directory.

The Sample Program

The program consists of two forms, Form1 for creating a text and
Form2 for connecting it to the database.

Start the program and use the
File / Open... command to load
the sample file 'account.tx'. The
file contains three fields which
are to be replaced by database
entries. Select Insert / Data to
access Form2. When you click
the Insert button in Form2, the
contents of the three database

Page 93Text Control Programming with Delphi

fields are copied to the text fields in Form1. You can select a different
record by clicking one of the data control buttons in Form2, and then
clicking Insert again to replace the fields.

How it Works

Each of the 3 edit controls on the second form is connected to a field in
the database. The data is read from the database in the same way as in
the Database sample.The only new thing is copying the data from the
edit controls to the text fields in the document. This is done when you
click on the Insert button:

procedure TForm2.Button1Click(Sender: TObject);
begin

Form1.TXTextControl1.FieldCurrent := 1;
Form1.TXTextControl1.FieldText := Form2.Edit1.Text;
Form1.TXTextControl1.FieldCurrent := 2;
Form1.TXTextControl1.FieldText := Form2.Edit2.Text;
Form1.TXTextControl1.FieldCurrent := 3;
Form1.TXTextControl1.FieldText := Form2.Edit3.Text;

end;

To implement a real mail merge function you will have to add a dialog
box in which the user can select the database to be used. You may also
want to provide a variable number of database fields which are
dependent on the contents of the selected database.

Using Hypertext Links
This chapter shows how to use Text Control's marked text fields to
insert hypertext links and targets into text documents and how to
respond to events which Text Control fires when the user clicks on a
hypertext link.

The source code for the following examples is contained in the
subfolders Step1 to Step4 of the HyperLnk sample source directory.

Text Control Programming with DelphiPage 94

Step 1: Inserting a Hypertext Link

In this first sample program a hypertext link will be inserted in a text
document. The document is saved then as a HTML file so that it can be
viewed in a browser.

Hypertext links are handled as a special type of a marked text field. A
hypertext link therefore is inserted by calling the FieldInsert method,
and then specifying the type of the field with the FieldType property:

TXTextControl1.FieldInsert ('Text Control Web Site');
TXTextControl1.FieldType[TXTextControl1.FieldCurrent]

:= txFieldExternalLink;

To store the target to where the link points, the FieldTypeData property
is used:

TXTextControl1.FieldTypeData[TXTextControl1.FieldCurrent]
:= 'http://www.textcontrol.com';

The following line of code saves the document, containing the hypertext
link, which has just been inserted as a HTML file in the sample folder:

TXTextControl1.Save (Application.GetNamePath + '.html',
0, 4, False);

When this file is loaded with a web browser, the hypertext link will be
displayed as specified in your browser's settings. Clicking on the link,
will take you to the Text Control web site.

Note that there is no code for the Click events yet, so clicking on the
hypertext link in the Text Control will have no effect. Also, the link is
neither underlined nor colored.

Page 95Text Control Programming with Delphi

Step 2: Adding a Dialog Box for Inserting Hypertext Links

In this second sample program a dialog box is created which enables the
user, to insert hypertext links in a more convenient way. Additionally,
hypertext links which have previously been inserted or loaded from a
file, can be edited and modified. Note that, while hypertext links are
usually associated with HTML files, they can as well be stored in RTF
or Microsoft Word files, or in Text Control's proprietary format.

The dialog box
has two text
boxes. The first
is for the text
that represents
the hypertext
link in the document and the second is for the address, to where the link
points. In the step 1 example, the representing text was "Text Control
Web Site", and the address, to where the link points, was "http://
www.textcontrol.com".

The same dialog box is used for both, inserting a new and editing an
existing hypertext link. Depending on whether the current input position
is inside of an existing link, this link is modified. Otherwise a new one
is inserted.

The dialog form's property, tx, is used to pass a Text Control's reference
and some information about how to display the hypertext links to the
form.

procedure TForm1.HypertextLink2Click(Sender: TObject);
begin

Form2.tx := TXTextControl1;
Form2.ShowModal;

end;

When the form is loaded, the text boxes are filled with the text and link
information when the current input position is inside of an existing link:

procedure TForm2.FormShow(Sender: TObject);
begin
// If the caret is inside an existing hyperlink,

Text Control Programming with DelphiPage 96

// copy the hyperlink's text and link information to the
// text boxes on the form.

If (Form1.TXTextControl1.FieldAtInputPos
<> 0) Then begin

txtLinkedText.Text := Form1.TXTextControl1.FieldText;
txtLinkTarget.Text

:= Form1.TXTextControl1.FieldTypeData[
Form1.TXTextControl1.FieldCurrent];

end Else begin
txtLinkedText.Text := Form1.TXTextControl1.SelText;
txtLinkTarget.Text := '';

end;
end;

The user then can change the displayed information. The information is
then transfered to the document by either inserting a link or modifying
the existing one when the 'OK' button is pressed:

If tx.FieldAtInputPos <> 0 Then begin
// editing an existing hyperlink
tx.FieldText := txtLinkedText.Text;
tx.FieldType[tx.FieldCurrent] := txFieldExternalLink;
tx.FieldTypeData[tx.FieldCurrent] := txtLinkTarget.Text;

end Else begin
// insert new hyperlink
tx.FieldInsert (txtLinkedText.Text);
tx.FieldType[tx.FieldCurrent] := txFieldExternalLink;
tx.FieldTypeData[tx.FieldCurrent] := txtLinkTarget.Text;
HighlightHyperlinks (tx, Form1.HypertextLinks1.Checked);

End;

Finally, there is a menu item to switch the character format of the
hyperlink's text to blue colored and underlined style. The menu item
calls the function HighlightHyperlinks, which is defined in the file
Unit3.pas.

Step 3: Adding Targets

Step 1 and 2 only handle references to external resources, i.e. addresses
of web pages or files. In this step, links to positions in the same
document will be handled. These links are called internal links and the

Page 97Text Control Programming with Delphi

positions, to where they point, are called targets. Targets are also
refered to as anchors (in the context of HTML editors) or bookmarks (in
word processors). When using this example, first add some text and
then some targets with the Insert / Target... menu item. Finally use the
Insert / Hypertext Link... menu item to add links to these targets.

Inserting a Target

Targets are realized again as a
special type of a marked text field.
The type and the target's name
must be set with the FieldType
and the FieldTypeData
properties. Unlike links, targets
have no visible text, therefore an empty field must be inserted with the
FieldInsert method to insert a target:

procedure TForm1.Target1Click(Sender: TObject);
var

TargetName : String;
begin

TargetName := InputBox('Target name:',
'Insert target', '');

If TargetName <> '' Then begin
TXTextControl1.FieldInsert ('');
TXTextControl1.FieldType[TXTextControl1.FieldCurrent]

:= txFieldLinkTarget;
TXTextControl1.FieldTypeData[

TXTextControl1.FieldCurrent] := TargetName;
End;

end;

Only one text box is required to display the name of a target, so a simple
InputBox statement can be used.

Inserting Links to Targets

To insert links to the just inserted targets, the Hypertext Link dialog box
is extended with a list box showing the names of all targets the
document contains. The FieldNext method is used to fill this list box:

Text Control Programming with DelphiPage 98

Procedure TForm2.FillListboxWithTargets(Sender : TObject);
var

FieldID : Integer;
begin

ListBox1.clear;
FieldID := tx.FieldNext(0, $100);
While FieldID <> 0 do begin

ListBox1.Items.Add(tx.FieldTypeData[FieldID]);
FieldID := tx.FieldNext(FieldID, $100);

end;
end;

When the user
selects a target,
the Link To field
is filled with the
target's name.
After typing the
link's text and
pressing the 'OK'
button, the link is
inserted. An internal link is inserted in the same way as the external
links from step 1, but the FieldType property now is set to
txInternalLink and the FieldTypeData property is set to the target's
name.

Jumping to a Target

After inserting internal links and targets, a jump must be realized. When
the user clicks on a marked text field that represents a hypertext link,
Text Control fires a FieldLinkClicked event. The information provided
through this event can be used with the FieldGoto method to jump to
the target:

procedure TForm1.TXTextControl1FieldLinkClicked(
Sender: TObject; FieldId,
FieldType: Smallint; var TypeData: WideString);

begin
If FieldType = txFieldInternalLink Then

TXTextControl1.FieldGoto(txFieldLinkTarget, TypeData);

Page 99Text Control Programming with Delphi

end;

While the FieldGoto method is used for targets within the same file,
links to external targets must be treated differently. When the
FieldLinkClicked event occurs, and the FieldType parameter indicates
that the link is external, then it depends on the type of the application,
what to do. External links can point to, for instance, files on the local
harddisk, or addresses in the internet.

Note that responding to the events is only required for making the
hypertext links work while the text is edited in Text Control. If the text
is saved to a file and displayed with a browser, then the hypertext links
will work depending on the used browser.

Step 4: Adding Jumps to External Targets

Finally, in this step, jumps to other documents and jumps to targets in
these documents are added.

An Enhanced Dialog Box for Displaying and Selecting Targets

Again the
Hypertext Link
dialog box is
extended to
choose an
external file. A
Choose File...
button is
placed on the
form that
triggers a
common
dialog. After
the user has
chosen a file,
its name is
displayed in
the text box
and the file is searched for internal targets:

Text Control Programming with DelphiPage 100

procedure TForm2.CheckFileForTargets(tfile : String);
begin

txhidden.LoadSaveAttribute[txEnableLinks] := True;
txhidden.Load (tfile, 0, 4, false);
FillListboxWithTargets (1);
RadioButton2.Checked := True;
loadedFile := tfile;

End;

For this purpose the file is loaded in a second, invisible Text Control.
Then the FieldNext method is used as in step 3 to list all targets.

Jumping to an External Target

To implement the jump to an external link, the code added to the
FieldLinkClicked event in step 3 must be extended. The following
code does not handle jumps to internet addresses, it only implements
jumps to targets in other files. To seperate a file from a name of a target,
Text Control uses the '#' character. The following code separates the file
name and the target's name, loads the file with the Load method and
jumps to the target with the FieldGoto method:

Else begin
// determine which type of link we have (see
// List1_Click()) and remove the '#' charaacter.
If (copy(txtLinkTarget.Text, 0, 1) = '#') Then begin

LinkType := txFieldInternalLink;
txtLinkTarget.Text := copy(txtLinkTarget.Text, 1,

Length(txtLinkTarget.Text) - 1);
end Else

LinkType := txFieldExternalLink;

If tx.FieldAtInputPos <> 0 Then begin
// editing an existing hyperlink
tx.FieldText := txtLinkedText.Text;
tx.FieldType[tx.FieldCurrent] := LinkType;
tx.FieldTypeData[tx.FieldCurrent]

:= txtLinkTarget.Text;
end Else begin

// insert new hyperlink
tx.FieldInsert (txtLinkedText.Text);

Page 101Text Control Programming with Delphi

tx.FieldType[tx.FieldCurrent] := LinkType;
tx.FieldTypeData[tx.FieldCurrent]

:= txtLinkTarget.Text;
End;
HighlightHyperlinks (tx, Form1.HypertextLinks1.Checked);
close;

End;

Loading and Saving Files containing Hypertext Links

When an HTML, RTF or Microsoft Word document is loaded, Text
Control must convert containing hypertext links to appropriate marked
text field, as described above. To perform this, a programmer must set
the LoadSaveAttribute(txEnableLinks) before using the Load
method. Otherwise hypertext links and target fields are not converted.
When a document is saved, marked text fields that represent hypertext
links, are always converted to the appropriate format.

If Text Control's proprietary format is used, setting LoadSaveAttribute
is not necessary.

More information about hypertext links and a list of all properties,
methods and events that can be used with marked text fields, can be
found in the Reference part, later on in this manual, in the chapter
"Overviews - Marked Text Fields - Special Types of Marked Text
Fields".

Headers and Footers
This example shows how to use headers and footers. The source code is
contained in the Headers sample source directory.

TX supports headers as well as footers. You also have the ability to
create a different header or footer for the first page.

To insert a header or footer in the example, click on Insert and choose
one of the four possible options. The code that is executed when
clicking on one of the menu items is almost the same. For the Header
menu item it looks as shown below. The line
TXTextControl1.HeaderFooter

:= TXTextControl1.HeaderFooter + txHeader;

Text Control Programming with DelphiPage 102

informs Text Control that a header should be added to the current
settings.

Setting the HeaderFooterStyle property to txMouseClick enables the
user to activate the header with a single click rather than a double-click.
Activating a header or footer with a double-click is Text Control's
default setting. More information about how to use headers and footers
and a list of all properties, methods and events that can be used with
headers and footers, can be found in the Reference part, later on in this
manual, in the chapter "Overviews - Headers and Footers".

When using properties, Text Control distinguishes between the main
text and headers or footers. To switch between these different indepen-
dent text parts, Text Control provides the HeaderFooterSelect method:

TXTextControl1.HeaderFooterSelect (txHeader);
TXTextControl1.SelText := 'Header';
TXTextControl1.HeaderFooterSelect (0);

This code selects the header, so that the following code affects the
header and then sets the headers text. Finally the mode is reset to zero
using the HeaderFooterSelect method. More information about
programming with headers and footers see the chapter "Overviews -
Headers and Footers - Programming Headers and Footers".

A header or footer is activated from programming code using the
HeaderFooterActivate method. To delete a header or footer, simply
substract the txHeader constant from the current HeaderFooter
settings.

The following is the complete code of the menu item:

procedure TForm1.Header1Click(Sender: TObject);
begin

If Header1.Checked = False Then begin
TXTextControl1.HeaderFooter

:= TXTextControl1.HeaderFooter + txHeader;
TXTextControl1.HeaderFooterSelect (txHeader);
TXTextControl1.SelText := 'Header';
TXTextControl1.HeaderFooterSelect(0);
TXTextControl1.HeaderFooterActivate (txHeader);

Page 103Text Control Programming with Delphi

Header1.Checked := True;
end Else begin

TXTextControl1.HeaderFooter
:= TXTextControl1.HeaderFooter - txHeader;

Header1.Checked := False;
End;

end;

Drag and Drop
This example shows how to use the InputPosFromPoint method to
realise a simple Drag&Drop in a Text Control application.

Drag&Drop in a text editor enables the user to drag a piece of text and
drop it in a new location of the document. So, the incoming mouse
events have to be analyzed and handled.

In the MouseDown event, the InputPosFromPoint method is used to
get the character position the user has clicked on. The current input
position and the length of the selection are stored in global variables,
because they are needed in the MouseUp event. If the input position the
user has clicked on, is inside of the current selection, dragging can be
started. First a global variable named dragging is set to true and the
MousePointer property is changed to indicate that dragging is in
process. The text and format information of the current selection is
copied to a memory buffer using the SaveToMemory method. Finally,
the Text Control's EditMode property is set to 2 - read only.

procedure TForm1.TXTextControl1MouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

var
pos : LongInt;

begin
//Get current input position and the current selection
pos := TXTextControl1.InputPosFromPoint(

toTwips(X), toTwips(Y));
gblStart := TXTextControl1.SelStart;
gblLength := TXTextControl1.SelLength;

//Check if the click occured in the current selection

Text Control Programming with DelphiPage 104

If (gblStart <= pos)
And (gblStart + gblLength > pos) Then begin

//Start dragging
data := TXTextControl1.SaveToMemory(3, True);
dragging := true;
Cursor := 2;
TXTextControl1.EditMode := 2;

End;
end;

In the MouseUp event procedure the InputPosFromPoint method is
used again to get the character position where the user has left the
mouse button. When dragging is in process and the input position is not
inside the current selection, the drop opertation can be performed. The
previously saved text now is inserted with the LoadFromMemory
method after setting the new input position with the SelStart property.

procedure TForm1.TXTextControl1MouseUp(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

var
pos : LongInt;

begin

pos := TXTextControl1.InputPosFromPoint(
toTwips(X), toTwips(Y));

If dragging Then begin
//Check if the new input position is outside of
//the current selection. If it's not, do not
//copy the text
If Not ((gblStart <= pos)

And (gblStart + gblLength > pos)) Then begin
TXTextControl1.SelText := '';
If pos < gblStart Then

TXTextControl1.SelStart := pos
Else

TXTextControl1.SelStart := pos - gblLength;

TXTextControl1.LoadFromMemory(data, 3, True);
End;

Page 105Text Control Programming with Delphi

//End dragging
dragging := False;
Cursor := 0;
TXTextControl1.EditMode := 0;

End;
end;

Page 106 TX Publisher - An Advanced Delphi Example

TX Publisher - An Advanced Example
This sample progam is written entirely in Delphi, with no third party
custom controls or DLLs except those included with Delphi itself. The
program is intended to be used as a starting point for your applications,
and it contains all the basic functions like loading and saving
documents, printing, zooming, as well as the scroll interface. You can
easily add more features and customize the program without having to
start from scratch.

Text Frames and OLE Objects
TX Publisher works with text frames. This can entail pure text frames
into which new text is entered or OLE objects. The type of frame is

Page 107TX Publisher - An Advanced Delphi Example

defined in the Insert menu via the 'New Frame'
menu item. In principle, the handling of text and
OLE frames is the same. We will explain the
frame handling using examples with text frames,
and will then deal with the OLE object.

Drawing Text Frames
In order to draw a frame, click on an empty part
of the page and, depressing the left mouse
button, drag the mouse down and to the right. If
you require a different page display for this, select it in the View menu
via the 'Zoom' menu item.

The borders of the newly created text frame can be made visible by
selecting 'Text Frames' in the 'View' menu. A paragraph ruler can be
shown above the Text Frame. This setting is likewise made in the view
menu, using the menu item ‘Paragraph Ruler’.

Text can now be entered into the newly created frame until it is full, at
which point the frame has to be enlarged or the next frame has to be
created. Alternatively you can draw all the required text frames
successively, and then start entering text. Note that you can only start
entering text in the first frame.

Connecting Text Frames
The text frames are linked automatically. This means that text
automatically flows from the current frame into the next frame when the
current frame is full.

If you click on an empty text frame which is further down the chain, then
the cursor will stay in the last window which contains text.

The text frames are numbered internally in their sequence of creation.

Page 108 TX Publisher - An Advanced Delphi Example

Deleting and Creating Frame Connections
You can eliminate the connection between frames and, if required,
regenerate them. You delete the connection to the following frame by
clicking on the respective frame with the CTRL key depressed, and by
answering the subsequent question displayed, ‘Delete connection to
next window’, with Yes.

In order to create a connection, click on the frame to be connected to
and keep the mouse button depressed until a symbol with a
sheet of paper in a hand is displayed. Keeping the CTRL key
and mouse button depressed, drag the symbol onto the frame
to which you wish to create a connection. Answer the

following question displayed, ‘Connect Frame No. x to Frame No. y’,
with Yes. If it is not possible to create a connection, an error message
will appear.

Changing Frame Size and Position
The size and position of a text
frame can be changed
subsequently. To change the
size, click the frame borders
or a corner of the frame with
the ALT key depressed. Keep the mouse key
depressed, and drag the respective border to the
desired position.

To change the position, click at any
position within the frame with the ALT
key depressed. Whilst keeping the mouse
button depressed, drag the frame to the
desired new position.

Page 109TX Publisher - An Advanced Delphi Example

Setting Indents and Tabs
The currently active frame
receives a paragraph ruler when
this feature has been activated
in the 'View' menu. Using the
paragraph ruler you can set
indents and tabs.

Indents can be changed by
sliding the two small triangles
on the left side of the ruler, and
the large triangle on the right.

Tabs are left-aligned by default. To create right-aligned,
decimal or centered tabs the tab type can be selected
using the Button Bar.

You can set tabs by clicking at the desired position on the paragraph
ruler. You can then shift the tab marker by clicking on it, and
simultaneously dragging it along the ruler with the mouse button
depressed. You can remove a previously set tab by pulling it
downwards, away from the ruler. The maximum number of tabs is 14.

Using Images
Images can be inserted via the 'Insert/
Image' menu item or from the clipboard.
The menu lets you choose between
inserting the image 'At Caret Position' or

'As Fixed Object'. Images which are inserted at the caret position are
treated like characters, and they move with the text as it changes.

When inserted as fixed objects, images have a fixed position on the
page, and the text flows around them. The initial position of an image
inserted in this way is one inch from the top left corner of the page. You
can move it to the desired position just like you move text frames,
which is by depressing the ALT key and dragging the image with the
mouse.You can also change the size of the image in this way.

Page 110 TX Publisher - An Advanced Delphi Example

Clicking on an image and selecting 'Image...' from the 'Format' menu lets
you select image attributes in a dialog box. You can adjust the size of
the borders, i.e of a frame around the image where no text is displayed,
and you can select if you want the image data to be included in your
document file or if you just want
to store a file reference. Storing
the image data increases the size
of your document file, but has the
advantage of making the document
independent of additional image
files.

Images which are inserted from
the clipboard are always inserted 'at caret position' and saved 'as data'.

OLE Objects
If you select 'OLE Object' in the 'Insert / New Frame' menu, frames are
created in the following way. The frame is drawn as described above, by
placing the mouse at the top-left corner of the frame to-be and dragging
it down and towards the right. A dialog box entitled ‘Insert Object’ then
appears. This dialog box also appears on the screen if you click over the
frame with the right mouse button. You have the choice of creating a
new object or of loading a file.

Page 111TX Publisher - An Advanced Delphi Example

The File Menu
In the File menu you will find standard functions
such as: New, Open, Save, Save As, Print, Page
Setup, Exit. These will be familiar to you from
various other Windows applications and will
therefore not be described in more detail at this
point.

The Edit Menu
The Edit menu also includes a number of
standard functions including Undo and Redo
function, Cut, Copy, Paste, Delete, Search,
Replace, and Select All. Regarding the Undo
function, three different actions can be
undone; Input, Deletion and Formatting.

Other menu items include ‘Add Pages’ and
‘Remove Pages’, with which you can insert
and delete pages. When creating a document
there are two document pages. In order to
create additional pages, select Add Pages. Two

further pages are then added to the existing ones. Using the small scroll
bar at the bottom right, you can flick through the pages. You can delete
the last two pages using 'Remove Pages'.

If you wish to delete a frame, initially activate it by clicking on it, and
then select ‘Delete Frame’. After agreeing to ‘Delete Text Frame x’, the
respective frame is removed.

The View Menu
In the View menu you switch in or switch out one or
more of the displays of Control Characters, Text
Frames, Page Margins and Paragraph Rulers. You
can also set the display size of the page view. Using
‘Zoom’ you have the following options available:
Full Page, 30%, 50%, 75%, 100%, 200%.

Page 112 TX Publisher - An Advanced Delphi Example

Regarding the Control Characters, soft and hard line breaks and blanks
are displayed.

The Insert Menu
In the Insert menu you determine, via 'New
Frame', the type of frame to be created. You
can choose between 'Text Frame' and 'OLE
Object'. For this purpose, read the previous

pages. Using the ‘Image’ menu item, a picture can be imported, and by
selecting ‘Text’, ASCII or RTF text files can be inserted at the current
caret position.

The Format Menu
In the Format menu you can perform character
and paragraph formatting. You can determine the
text colour and text background colour, and
using the menu item ‘Paragraph Frames’, you
can define lines or frames for paragraphs.

The Help Menu
Using ‘Help Topics’ you call up the Online help
service. You can also view an info window via the
menu item ‘About TX Publisher’

Page 113TX Publisher - An Advanced Delphi Example

How the Program Works
Much of the program's functionality is based on the concept of container
controls. At the bottom of the control hierarchy there is a page ruler,
which is placed directly on the form. On top of the page ruler there is a
picture box which acts as a container for the document pages, which are
themselves picture boxes. Finally, the text frames, OLE frames and the
paragraph ruler use the page controls as containers. Although this may
seem a bit complicated at first sight, it saves you a lot of programming
work, because this approach helps to divide the program into logical
blocks, and handles all the different clipping regions.You can see how
the controls are put together when you look at the program in Delphi
design mode. (See next page).

When the program is started, two document pages are created in a
default size of A4 or Letter, depending on the system's country setting.
The size of the workspace is then automatically adjusted so that the two
pages can be shown side by side with a gray border around them.
Settings which do not change during the program execution are made in
the main form's OnCreate event, whereas settings which depend on the
window size or the zoom factor are made in the form's OnResize event.

Managing Global Data

Most of the global data is managed by the controls themselves and thus
does not have to be stored explicitly in variables.
For instance, the position and size of the text frames are stored in the
control's Left, Top, Width and Height properties. Information which
cannot be stored in control properties has been collected into a single
global structure. This structure is called 'Doc' and contains information
about zoom factor, page margins and the total number of text and OLE
frames in the document.

Creating new Text and OLE Frames

A new frame is created when the user draws a rectangle on the page.
This happens in three stages in response to the page control's mouse
events:

On OnMouseDown, the mouse coordinates are stored as the top left

Page 114 TX Publisher - An Advanced Delphi Example

Text Frames,
OLE Object Frames,
Paragraph Ruler
(Text Controls, OLE Controls, TX Ruler)

|
Document Page
(Picture Box)

|
Workplace
(Picture Box)

|
Ruler
(Page Ruler)

|
Main Window
(Form)

corner of the new control.

On OnMouseMove, a rectangle is drawn showing where the new control
will be placed after the mouse button has been released.

Finally, when the OnMouseUp event occurs, the rectangle is deleted and
a Text Control or OLE control is created at its coordinates.

The Text Controls and OLE controls, as well as the document pages, are
implemented as control arrays, so a new instance of one of them can be
created by calling the Load function. The newly created control is a
child window of the sender control TXParentX:

TXNew.Parent := TTXTextControl(Sender);

Connecting Text Frames

The last step in creating a new text frame is to connect it to its
predecessor so as to enable text to flow from one control to the next.
This is simply done by assigning the window handle of the new Text
Control to its predecessor's NextWindow property. The connection can
be deleted later on by setting the property to a value of 0.

Deleting frames

A frame is deleted when the user selects the 'Delete Frame' menu item.

Page 115TX Publisher - An Advanced Delphi Example

This does not really remove it from the control array, but simply moves
it into an unvisible TX Text Control called TXTrash. The controls in
the trash are deleted automatically when the program is closed.

The Page Ruler Control
When you first start TX Publisher you will notice that the ruler looks
different from the one in the standard version of TX Text Control. The
ruler is in fact an additional custom control. Its filename is ‘PgRul.Ocx',
which is short for ‘Page Ruler’.

The Page Ruler control can be
used as a container for other
controls. In the TX Publisher
sample program, it is used as a
document page, on which the
text frames are placed. A
detailed description of the Page
Ruler's properties, methods and
events can be found in the
Reference part of this manual.

Page 116 Other Languages

Other Languages
This chapter shows you how to use Text Control in programming
environments other than Visual Basic or Delphi.

Standard C
If you are programming in an environment like Microsoft C 1.xx which
does not support the OCX interface, you can use the Text Control DLL
without the OCX wrapper. The interface is described in the DLL
Reference.

Microsoft Visual C++ 4.x / 5.x / 6.x
Text Control can be used as an OCX with several Windows-based
development environments. This chapter highlights procedures required
to use Text Control as an OCX with the Microsoft Visual C++
environment.

Creating Applications in Visual C++
Before using Text Control with Visual C++, you should read the Micro-
soft Visual C++ 4.x / 5.x / 6.x documentation and on-line help.

Creating a Dialog, CFormView, or CView Based OCX Application
1. Start Visual C++.

2. From the File menu, choose New. The New dialog box appears

3. VC 4.x: In the New box, select Project Workspace and click OK.
VC 5.x/6.x: In the New box, select Projects Tab.

4. The New Project Workspace dialog appears.

5. Browse to the desired directory path.

6. In the Name text box, type a name for your project. This will create
a sub-directory of that name in the current path.

7. From the Type list, select MFC AppWizard(exe) to create a project
based on the MFC library.

Page 117Other Languages

8. VC 4.x: Click the Create button.
VC 5.x/6.x: Click the OK button.

The MFC AppWizard - Step 1 Dialog appears.

If you wish to create a Dialog based application, click the Dialog radio
button, click NEXT and procede to the section, Dialog Based
Applications. If you wish to create a CFormView based application,
click the "Single Document" or "Multiple Documents" radio button,
click NEXT and procede to the section, CFormView Based Application.
If you wish to create a CView based application, click the "Single
Document" or "Multiple Documents" radio button, click NEXT and
procede to the section, CView Based Applications.

Dialog Based Applications
1. In the Step 2 dialog, click on the OLE Controls (VC 5.x/6.x:

ActiveX Controls) check box to add built-in support for OCX
products.

2. Click on NEXT button.
The Step 3 dialog will appear.

3. In the Step 3 dialog, you can accept the default options by clicking
the NEXT button.

4. In Step 4, you can accept the default options by clicking the FINISH
button. VC++ will build your project.
The New Project Information dialog will appear.

5. Click OK

CFormView Based Applications
1. In the Step 2 dialog you can accept the default options by clicking

the NEXT button.

2. In the Step 3 dialog, click on the OLE Controls (VC 5.x/6.x:
ActiveX Controls) check box to add built-in support for OCX
products.

3. Click on Next button.

4. In the Step 4 and 5 dialogs you can accept the default options by
clicking the NEXT button.

5. In the Step 6 dialog, select the class view name from the class list at

Page 118 Other Languages

the top of the dialog.
CView will appear in the Base Class listbox.

6. In the Base Class listbox, change CView to CFormView.

7. Then click on the FINISH button to have VC++ build your project.

CView Based Applications
1. In the Step 2 dialog you can accept the default options by clicking

the NEXT button.

2. In the Step 3 dialog, click on the OLE Controls (VC 5.x: ActiveX
Controls) check box to add built-in support for OCX products.

3. Click on Next button.

4. In the Step 4 and 5 dialogs you can accept the default options by
clicking the NEXT button.

5. In the Step 6 dialog, click on the FINISH button to have VC++ build
your project.

Adding the Text Control Component to your Project
To insert a Text Control component into your project:

1. VC 4.x: From the Insert menu, choose Components.
The Component Gallery dialog box appears.
Select the OLE Controls tab.
If the Text Control Text Control icon is not visible in the Gallery,
click Customize to add the control.
Select the control from the Component list on the right and click OK.
This returns you to the Component Gallery.
VC 5.x/6.x: From the Project / Add to Project menu choose
Components and Controls.
Open the Registered ActiveX Controls folder.

2. Select the Text Control icon in the Gallery and click Insert.
The Confirm Classes dialog will display.

3. Click OK to confirm and exit the dialog.

4. Repeat steps 2 and 3 for the Status Bar, Ruler, and Button Bar
controls.

5. Click Close to exit the Component Gallery.

The Text Control and its tools should now appear in the Control palette.

Page 119Other Languages

When VC++ adds components to your project, it creates CPP and H
source files defining the class, properties, and methods for the control.
It is a good idea to take a look at these files to understand what they
contain. Methods and properties are not accessed the same in C++ as
they are in many other languages like Visual Basic. When these files are
generated, VC++ creates both a Get and Set function for most methods
and properties. Text Control, for example, has a Text property. VC++
will create both a GetText and SetText member functions.

Adding the Component to your Dialog or CFormView:
1. In the Resource Editor, bring up the dialog that you want to place

Text Control into.

2. Click on the Text Control component in the Editor's Control palette.

3. Draw the component on the dialog box.

4. Now this can be placed and sized as desired using the handles around
the control.

5. Click on the right mouse button to bring up a floating menu. The
design-time properties for the control can be viewed and modified
through this menu.

Assigning Member Variables
Once you have added the text control to the dialog, it will be necessary
to assign a member variable to each control to gain access to the
methods and properties at runtime.

1. From the View menu, choose ClassWizard.

2. Select the Member Variables tab.

3. Select the control in the Control ID window for which you wish to
add a variable and click the Add Variable button.
The Add Member Variable dialog will display.

4. Type in the member variable name e.g. something like m_txctrl.
Accept the default variable category and type, by clicking OK.

5. The MFC ClassWizard dialog will display the variable you added in
the Control ID window.

Page 120 Other Languages

6. Repeat steps 3 and 4 for each of the Text Control controls,
specifying a new name for each.

7. Once you have added all the variables, click on OK in the MFC
ClassWizard dialog to return to your project.

Adding the Text Control Component to your CView:
1. In the file list, bring up the header file for the view

(<projname>view.h).

2. At the top of the file, include each of the Text Control control header
files:

#include "tx4ole.h"
#include "txbbar.h"
#include "txruler.h"
#include "txsbar.h"

3. In the Attributes section, as a public member, add the following to
create member variables for each of the controls in your view:

CTX4OLE m_txctrl;
CTXBBAR m_txbbar;
CTXRULER m_txruler;
CTXSBAR m_txsbar;

4. Now through the file list, bring up the C++ source file for the view
(<projname>view.cpp).

5. Start the ClassWizard. Make sure the view class is selected as the
Class Name.

6. Select the View object in the Object Id listbox.

7. Select the "Create" message in the Messages listbox.
The Create handler will initially come up with the following code:

return CWnd::Create(lpszClassName, lpszWindowName, dwStyle, rect,
pParentWnd, nID, pContext);

Change this to the following:

if (CWnd::Create(lpszClassName, lpszWindowName, dwStyle, rect,
pParentWnd, nID, pContext) == 0)

return 0;

Page 121Other Languages

WCHAR szLic[] = L“AB-12345TS-1234567890“;
BSTR bstrKey = SysAllocString(szLic);
BOOL bSuccess = m_txctrl.Create(NULL, dwStyle, rect, this, 1000,

NULL, NULL, bstrKey);
SysFreeString(bstrKey);
if (!bSuccess)

return 0;
if (m_txbbar.Create("TextControl ButtonBar", dwStyle, rect,

this, 1001) == 0)
return 0;

if (m_txruler.Create("TextControl Ruler", dwStyle, rect,
this, 1002) == 0)

return 0;
if (m_txsbar.Create("TextControl StatusBar", dwStyle, rect,

this, 1003) == 0)
return 0;

return TRUE;

8. Start the ClassWizard. Select view class as the Class Name.

9. Select the View object in the Object Id listbox.

10.Select the "WM_SIZE" message in the Messages listbox.

11.Click on the Add Function button to create the OnSize handler
function for this message.

12.Add the following code to the handler:
if (m_txctrl.m_hWnd && m_txbbar.m_hWnd && m_txruler.m_hWnd &&
m_txsbar.m_hWnd) {

m_txctrl.MoveWindow(0, 60, cx, cy-(25+60));
m_txbbar.MoveWindow(0, 0, cx, 30);
m_txruler.MoveWindow(0, 30, cx, 30);
m_txsbar.MoveWindow(0, cy-25, cx, 25);

}

Licensing the Control

The code added in the previous section, uses a license string to create a
Text Control. Text Control is shipped as a CD version and as a trial
version that can be downloaded and unlocked. The license string for the
CD version users is the Text Control serial number. The license string
for the trial version users is the customer key followed by the serial

Page 122 Other Languages

number when the trial version is unlocked. When you use the locked
trial version to test Text Control's features, use only your customer key
as license string. In the code example above the customer key is "AB-
12345" and the serial number is "TS-1234567890".

Connecting the Text Control Controls
Connecting the Controls:

1. In the Create handler, add the following code:

m_txctrl.SetButtonBarHandle(m_txbbar.GetHWnd());
m_txctrl.SetRulerHandle(m_txruler.GetHWnd());
m_txctrl.SetStatusBarHandle(m_txsbar.GetHWnd());

Handling Events in your Dialog or CFormView:
Assigning Message Handlers:

1. Start ClassWizard

2. In the Class Name listbox, select the Dialog or CFormView class
that was created.

3. In the Messages listbox, select the desired message to handle and
click on Add Function button to add a handler for this. For our
example, select the "Click" event and click on the Add Function
button to add the handler for this.

4. Click on the Edit Code button to edit the new function.

5. Add the following code in the function:

MessageBox ("Click Event","You clicked on the document");

6. Run the program and when the document is clicked on, the message
"You click on the document".

Setting Properties in Visual C++
You can easily set specific properties for each of the controls you
include in your project.

To set properties for a control:

1. Double-click on the control in your project that you wish to set
properties for. The Control Properties dialog will display.

Page 123Other Languages

2. Select the appropriate tab for the property settings you wish to
modify.
Properties are grouped together in categories, such as paragraphs,
fonts, and pages.

3. Modify the property settings as needed. For more information on
each property, see 'Text Control Properties, Events, and Methods.'

4. Once you have set the properties for the active control, close the
Control Properties dialog to return to your project.

5. Repeat steps 1 through 4 for each control.

Page 124 Other Languages

Microsoft Access 2.0
The 16bit OCX can be used with Microsoft Access 2.0, but since
Access went to manufacturing when the OLE control development kit
was in an early prerelease state, some functions work different than in
other programming environments.

1. You can't use Text Control (or any other OCX) as a bound control.
The control must be inserted as an unbound object field, and you
have to provide code for copying text from the data base to Text
Control and vice versa.

2. Connecting the Text Control to the Ruler, ButtonBar and Status bar
has to be done in 2 steps. (This example assumes that you have
created a Text Control named 'tx' and a Ruler, ButtonBar and
StatusBar named ' Ruler', 'ButtonBar' and 'StatusBar'.) In the
FormLoad event, write:

Sub Form_Load ()
 Me!tx.object.RulerHandle = 1
 Me!tx.object.ButtonBarHandle = 1
 Me!tx.object.StatusBarHandle = 1
End Sub

This tells Text Control to send a ConnectTools event when all of the
controls have been created ans are ready to be connected. In the
ConnectTools event, write:

Sub TX_ConnectTools ()
 Me!tx.object.RulerHandle = Me!Ruler.object.hWnd
 Me!tx.object.ButtonBarHandle = Me!ButtonBar.object.hWnd
 Me!tx.object.StatusBarHandle = Me!StatusBar.object.hWnd
End Sub

Overviews Page 125

Reference
Overviews

Text Formatting and Views
Text Control offers several ways, in which text may be formatted and
viewed as described in the following list:

1. Control view:
The area for text formatting is the Text Control's control size. This is the
default setting after creating a Text Control.

2. Control view with autoexpand:
The area for text formatting is the Text Control's control size, but this
size is automatically expanded or reduced when the text exceeds it.

3. Control view and linked Text Controls:
The area for text formatting is the Text Control's control size, but text
automatically flows to a following linked Text Control when it exceeds
the control size.

4. Normal View:
The formatting width and height have been specified by the programmer
and invisible text can be shown with a built-in scroll interface, with or
without scroll-bars. The vertical scrolling amount depends on the text.

5. Page View:
The formatting width and height has been specified by the programmer.
Text Control has a built-in scroll interface and displays pages with gaps,
borders, margins and a gray background. The number of pages depends
on the text.

6. Extended Page View:
This view works in the same way as the page view, but Text Control
displays three-dimensional pages which are centered in the control's
window.

Page 126 Overviews

Properties, Methods and Events

For text formatting, text view and scrolling the following properties,
methods and events can be used:

Property/Method/Event Description

AutoExpand Property Sets or resets the autoexpand mode

AutoScroll Event Occurs while expanding a selection
with the mouse (control view only).

CaretOut Event Occurs when the caret has been
moved to a completely invisible
control (control view only).

CaretOutBottom Event Occurs when the caret has been
moved down out of the control's
visible area (control view only).

CaretOutLeft Event Occurs when the caret has been
moved to the left out of the control's
visible area (control view only).

CaretOutRight Event Occurs when the caret has been
moved to the right out of the
control's visible area (control view
only).

CaretOutTop Event Occurs when the caret has been
moved up out of the control's visible
area (control view only).

HExpand Event Occurs when the Text Control has
changed its control width (control
view with autoexpand only).

HScroll Event Occurs when the horizontal scroll
position has been changed (normal
view and page views only).

PageHeight Property Gets or sets the formatting height.

PageMarginB Property Gets or sets the bottom page margin.

PageMarginL Property Gets or sets the left page margin.

Overviews Page 127

PageMarginR Property Gets or sets the right page margin.

PageMarginT Property Gets or sets the bottom page margin.

PageWidth Property Gets or sets the formatting width.

ScrollBars Property Specifies which scrollbars are to be
shown (normal and page views
only).

ScrollPosX Property Gets the current horizontal scroll
position (normal and page views
only).

ScrollPosY Property Gets the current vertical scroll
position.

VExpand Event Occurs when the Text Control has
changed its control height (control
view with autoexpand only).

ViewMode Property Specifies whether and how pages are
to be displayed (normal and page
views only).

VScroll Event Occurs when the vertical scroll
position has been changed (normal
view and page views only).

Control View

The formatting area, which is the area Text Control uses to perform line
breaks, is Text Control's control size. This means that every time the
control is sized, the text is newly formatted.

A line break is automatically performed when the current input position
reaches the control's right border. When the control's right border is
reached without having a break character in a line, no line break is
performed and Text Control indicates overflowing text with a vertical
mark. This mark is displayed at the control's left or right border,
depending on the paragraph alignment setting. When the number of
lines exceed the control's height, overflowing text is indicated with a
plus mark at the bottom of the control. The current input position,

Page 128 Overviews

indicated by the caret, can never leave the control. If the user tries to
move the caret to overflowing text, the Text Control beeps.

When the Text Control is zoomed, the current control size is also
zoomed to adapt the formatting area to the new zooming factor. Its
position in relation to its container control or form is also zoomed.

Autoexpanding and control linking are only possible in this view. In
autoexpanding mode the control's size is automatically expanded to the
current text amount. This mode can be set with the AutoExpand
property. After Text Control has expanded its control size it sends
HExpand and/or VExpand events. A following linked Text Control
can be set with NextWindow property.

Because the control view has no built-in scroll interface, Text Control
has several events to enable a programmer to implement an external
scroll interface. This can be important, for example when linked Text
Controls are used to form a document with several pages. The
CaretOutBottom, CaretOutLeft, CaretOutRight and CaretOutTop
events are sent, when the current input position has been moved outside
of the control's visible part. The CaretOut event is sent, when the
current input position has been moved to a completely invisible control
and the AutoScroll event is sent during extension of a text selection
with the mouse. All of these events are only possible in the control
view.

Normal View

With the PageWidth and PageHeight properties the formatting area
can be changed by the programmer. This is necessary to realize a text
editor that formats the text accordingly to a certain page width. The
ViewMode property must be set to 0 for this view, which is the default
value. In normal view the formatting height - the amount the user can
scroll - depends on the current amount of text.

When the formatting width and/or height is greater than the current
control size and the caret reaches the control's borders, scrolling is
performed automatically to make the new input position visible. In
addition, a horizontal and/or a vertical scroll-bar can be used to scroll to

Overviews Page 129

text parts outside of the client area without changing the current input
position. Scroll-bars can be set through the ScrollBars property.

If the Text Control is sized the text is not newly formatted and if the
Text Control is zoomed the control's size and position are not changed.
If the control is sized, visible scroll-bars are automatically hidden when
they are no longer needed. Conversely, previously hidden scroll-bars are
automatically shown when the control's size becomes smaller.

Page View

When the ViewMode property is set to 1, Text Control shows pages
with margins and borders. The number of pages depends on the amount
of text.

The PageWidth and PageHeight properties define the extension of the
page including its margins. Page margins have a default value of one
inch and can be changed through the PageMarginB, PageMarginL,
PageMarginR and PageMarginT properties.

Extended Page View

When the ViewMode property is set to 2, pages are displayed in three
dimensions with borders and shadows and they are centered in the
control's window.

Like for many other extension settings, Text Control uses twentieths of
a point to define the formatting area. This unit is often used in
combination with text processing applications or fonts and is called
TWIP. One TWIP is a 1/1440th of an inch.

In the normal view and in both page views Text Control has a built-in
scroll interface. Text Control sends HScroll and VScroll events when it
scrolls automatically. The current scroll positions can be obtained or set
with the ScrollPosX and ScrollPosY properties.

Only with the page view and the extended page view can headers and
footers be used. For more information how to handle headers and
footers see "Headers and Footers".

Page 130 Overviews

Mixed Views

The control view and the normal view can be mixed, when either the
PageWidth or PageHeight property is set to zero. For example, when
specifying a width of zero and a height of non-zero, the text is formatted
depending on the control's width but it is not limited to the control's
height.

Headers and Footers
Properties, Methods and Events

With headers and footers the following properties, methods and events
can be used:

Property/Method/Event Description

HeaderFooter Property Determines which headers and/or
footers the document contains.

HeaderFooterActivate Method Activates a certain header or footer.

HeaderFooterActivated Event Occurs when a header or footer has
been activated.

HeaderFooterDeactivated Event Occurs when a header or footer has
been deactivated.

HeaderFooterPosition Property Specifies a header's or footer's
position.

HeaderFooterSelect Method Selects a certain header or footer to
use a Text Control property for the
header or footer instead for the main
text.

HeaderFooterStyle Property Determines style settings for headers
and footers.

Using Headers and Footers

Headers and footers can only be used when the PageWidth and
PageHeight properties have non-zero values. Headers and footers are
only visible on the screen when the ViewMode property is set to 1
(page view) or 2 (extended page view).

Overviews Page 131

Headers and footers are parts of a document. The HeaderFooter
property determines whether headers and footers, only headers or only
footers are contained. Additionally special headers and/or footers for the
first page can be specified with this property. To edit a header or footer,
it must be activated either with the HeaderFooterActivate method or
with a mouse double-click in a header's or footer's area. An activated
header or footer gets the input focus and its border is shown with a
dotted frame. When a header or footer is activated, the main text is
displayed in gray, otherwise a header's or footer's text is displayed in
gray. Text Control fires HeaderFooterActivated and
HeaderFooterDeactivated events to inform the application about
activation or deactivation of headers or footers.

The HeaderFooterStyle property allows the following style settings:

1. Activation can be performed with mouse double-clicks and/or single
mouse clicks.

2. The border of an activated header or footer can be solid, dotted or
unframed.

The default style setting is a dotted frame and a mouse interface that
activates a header or footer with double-clicks.

By default the top of a header has a distance of one centimeter from the
top of the page and the bottom of a footer has a distance of one
centimeter from the bottom of the page. With the
HeaderFooterPosition property these values can be changed. The
height of a header or footer depends on the header's or footer's current
text.

When a document is loaded or converted from another format,
contained headers and footers are automatically displayed. The
HeaderFooter property returns the information which headers and/or
footers the current document contains.

Programming Headers and Footers

Headers and footers are seperate text parts which are independent of the
main text. When the user alters the text or the text format, for example
with a connected button bar, Text Control uses the current input focus,

Page 132 Overviews

to determine whether the text format of a header, a footer or the main
text is changed. The same occurs when the text is manipulated from
programming code. For example when a table is inserted from a menu
with the TableInsert method, the current input focus determines
whether the table is inserted in a header's or footer's text or in the main
text.

In addition to this default text part selection, a programmer can use the
HeaderFooterSelect method to use a certain property with a certain
text part. For example the following code alters the text of a header:

TXTextControl1.HeaderFooterSelect txHeader
TXTextControl1.Text = "This is the header's text"
TXTextControl1.HeaderFooterSelect 0

The first line selects the header, independent of the current input focus,
the second line alters the text of the header and the third line returns to
the default selection mode. There can be more than one property or
method call between the two HeaderFooterSelect calls.

Almost all properties and methods can be used in this way with some
exceptions. The following is a complete list of properties and methods
which can be used with headers and footers:

Alignment
BaseLine
CurrentInputPosition
Fieldxxx (all field properties and methods)
Find
FindReplace
ForeColor
FormatSelection
Fontxxx (all font properties and methods)
FrameDistance
FrameLineWidth
FrameStyle
ImageDisplayMode
ImageFilename
ImageFilters

Overviews Page 133

ImageSaveMode
Indentxxx
LineSpacing
LineSpacingT
Objectxxx (all object properties and methods)
ParagraphDialog
RTFSelText
SelLength
SelStart
SelText
TabCurrent
TabKey
TabPos
TabType
Tablexxx (all table properties and methods)
Text
TextBkColor

The following methods can only be used in conjunction with the
HeaderFooterSelect method:

Load
LoadFromMemory
LoadSaveAttribute
Save
SaveToMemory

Tables
Properties, Methods and Events

With tables the following properties, methods and events can be used:

Property/Method/Event Description

TableAtInputPos Property Returns the identifier of the table
with the current input position.

TableAttrDialog Method Invokes a built-in dialog box for
setting table attributes.

Page 134 Overviews

TableCanChangeAttr Property Informs whether the attributes of a
currently selected table can be
changed.

TableCanDeleteLines Property Informs whether the currently
selected table rows can be deleted.

TableCanInsert Property Informs whether a new table can be
inserted at the current input position.

TableCellAttribute Property Sets attributes of one or more table
cells.

TableCellLength Property Returns the number of characters in
a table cell.

TableCellStart Property Returns the character index of the
first character in a table cell.

TableCellText Property Gets or sets the text contents of a
certain table cell.

TableColAtInputPos Property Returns the number of the current
input column in a table.

TableColumns Property Gets a table's number of columns.

TableCreated Event Occurs when a table has been
created.

TableDeleted Event Occurs when a table has been
deleted.

TableDeleteLines Method Deletes one or more complete rows
of a table.

TableGridLines Property Determines the visibility state of grid
lines.

TableInsert Method Inserts a new table.

TableNext Method Can be used to enumerate all tables
of a Text Control.

TableRowAtInputPos Property Returns the number of the current
input row in a table.

TableRows Property Gets a table's number of rows.

Overviews Page 135

Using Tables

Tables can be inserted into a Text Control either with the TableInsert
method or via the Load method as part of a document formatted with
the RTF or HTML formats. Text Control treats a table as a number of
cells organized in rows and columns. Each cell can have as many lines
and paragraphs as required. Paragraph formatting is performed in
relation to a cell's borders. Each cell has a position and an extension in
the document, within this area a cell's frames and text are drawn along
with its paragraph and character formatting attributes. There can be a
distance between the frame and the text.

Text can be selected either within a single cell or in steps of complete
cells or rows. When a selection is deleted inside a table only the text is
deleted. To delete one or more complete rows use the
TableDeleteLines method. Tables can be copied to the clipboard and
pasted from the clipboard. When a table is inserted at the first position
of another table or immediately behind another table and both tables
have the same number of columns they are combined into a single table.
The insertion of one table inside another table is not possible.

A table's attributes are its frame width, distance between frame and
formatted text, and background color. To alter the attributes of a table or
part of a table, cells must be selected. Then a built-in dialog box can be
opened with the TableAttrDialog method. When the selection extends
over several tables or tables mixed with text, attributes cannot be
changed. To get information about whether attributes can be changed or
tables can be inserted or deleted, for example to implement a menu, the
TableCanChangeAttr, TableCanDeleteLines and TableCanInsert
properties can be used.

When the current input position is inside a table, the ruler shows the
positions of all the cells in a table's row and the formatting attributes of
the cell the input position belongs to.Then the cells' positions and
extensions can be changed with a built-in mouse interface.

Page 136 Overviews

Programming with Table Identifiers

Each table can have an user-defined identifier which a programmer can
set with the TableInsert method. Setting the identifier is not necessary
but recommended when a table's text or attributes are to be changed
from the program instead from an end-user. The user-defined identifier
need not to be unique and remains valid if a table is saved and reloaded.
When no identifier is set Text Control returns an own-selected one,
which is unique and does not remain valid if a table is saved and
reloaded.

When a table or a part of a table is inserted inside another table the
inserted table becomes a part of the existing table and the inserted
table's identifier is lost.

When a table with a user-defined identifier is inserted outside of all
existing tables a new table is created and the table's identifier remains
valid. Text Control informs the program with a TableCreated event
that a new table has been created. The programmer can change the table
identifier sent with the event by setting the NewTableId parameter of the
event.

When a table is inserted from another application, which means it
cannot have a user-defined identifier, Text Control sends an own-
selected identifier with the TableCreated event and the program can
change it.

When tables are imported with the Load method, TableCreated events
occur only when text is inserted into an existing document or when an
imported table has no user-defined identifier. Otherwise when a table
with a user-defined identifier is saved and reloaded no event occurs.

When a table is completely deleted Text Control informs the program
with a TableDeleted event.

The following properties and methods can be used with table identifiers
to get information or to set table attributes regardless whether the
current input position is or is not inside this table:

Overviews Page 137

Property/Method Description

TableCellText Property Gets or sets the text contents of a
certain table cell.

TableColumns Property Gets a table's number of columns.

TableRows Property Gets a table's number of rows.

When more than one table with a certain identifier exists, these
properties and methods perform the operation with the original inserted
table. In chains of linked windows these properties and methods can be
used with any Text Control in the chain regardless of which control
contains the table.

Marked Text Fields
A set of properties, methods and events has been implemented to define
areas in the text of a Text Control called marked text fields. These fields
can be used to create hypertext features like those in the Windows Help
application, to realize database embedding while text of different
datasets can be included into the text or to combine several fields with
formulas as in spreadsheet applications.

Properties, Methods and Events

With marked text fields the following properties, methods and events
can be used:

Property/Method/Event Description

FieldAtInputPos Property Returns the field identifier of the
field containing the current input
position.

FieldChangeable Property Defines whether a field's text is or is
not changeable.

FieldChanged Event Occurs when the text of a field has
been changed.

FieldClicked Event Occurs when a field has been
clicked.

Page 138 Overviews

FieldCreated Event Occurs when a field has been
created.

FieldCurrent Property Specifies the current field.

FieldDblClicked Event Occurs when a field has been
double-clicked.

FieldData Property Relates numeric or string data to a
marked text field.

FieldDelete Method Deletes a certain field.

FieldDeleteable Property Defines whether a field is or is not
deleteable.

FieldDeleted Event Occurs when a field has been
deleted.

FieldEditAttr Property Defines field attributes for advanced
editing.

FieldEnd Property Returns a field's end position in the
text.

FieldEntered Event Occurs when the current input
position has been moved from a
position outside to a position inside a
field.

FieldGoto Method Sets the current input position to the
beginning of a marked text field.

FieldInsert Method Inserts a new field.

FieldLeft Event Occurs when the current input
position has been moved from a
position inside to a position outside a
field.

FieldLinkClicked Event Occurs when a marked text field is
clicked that represents the source of
a hypertext link.

FieldNext Method Finds the next marked text field.

FieldPosX Property Returns a field's horizontal position.

FieldPosY Property Returns a field's vertical position.

Overviews Page 139

FieldSetCursor Event Occurs when a cursor is moved over
a field.

FieldStart Property Returns a field's start position in the
text.

FieldText Property Gets or sets the text of a certain
field.

FieldType Property Sets or returns the type of a marked
text field.

FieldTypeData Property Sets or returns the data belonging to
a marked text field of a special type.

Using Marked Text Fields

Fields can be inserted into a Text Control either with the FieldInsert
method or via the Load method as a part of a document. The whole
communication works with unique numbers returned by this method or
defined by the user. To communicate with a field, the field must be
previously set as the current field with the FieldCurrent property.

The current text can then be changed or retrieved with the FieldText
property and a field can be deleted with the FieldDelete method. To get
a field's position, either geometrically or as character position, the
properties FieldPosX, FieldPosY, FieldStart and FieldEnd can be
used. To get the number of the next field in the text or to enumerate all
fields, the FieldNext method can be used.

Special attributes can be set with the FieldChangeable and
FieldDeleteable properties. These attributes can prevent a field from
beeing deleted or the text of a field from being changed. Further
attributes which can help the end-user to edit the field's contents are
described in the next chapter.

With different events Text Control informs the application about special
conditions. The FieldClicked and FieldDblClicked event inform the
application about mouse clicks, FieldEntered and FieldLeft indicate
whether the current input position has been moved into or from a field.
The FieldSetCursor event can be used to define the cursor when it is
moved over a field. The default cursor is the up-arrow cursor. The

Page 140 Overviews

FieldChanged event occurs when the text of a field has been altered,
and the FieldDeleted and FieldCreated event occur when fields have
been deleted or created while inserting or deleting text with the
keyboard or the clipboard.

Editing Marked Text Fields

When marked text fields are used in an editable Text Control and these
fields are editable, the end-user can alter the contents of the field like
any other text. Because it is not always unique whether the current input
position is or is not inside a field some field attributes have been
implemented to help the end-user to edit fields. These attributes can be
used in any combination and must be set with the FieldEditAttr
property.

When the current input position is in front or behind a field the next
inserted character can either belong to the field or to the text outside the
field. In normal editing mode an inserted character has the attributes of
its preceding character which means that inserted text just behind a field
belongs to the field and inserted text in front of a field does belong to
the text in front of the field. To solve these problems extended editing
features can be defined for every field with the FieldEditAttr property.
It implements a second input position at the beginning and the end of
the field. The end-user can switch between the two positions with the
left and right arrow keys. This is especially important when a marked
text field is at the beginning or the end of the complete text. For
example when a field is at the end of the text the end-user can press
CTRL+END to reach the text end. When this position is also the end of
a marked text field the right arrow key can be pressed when the next
inserted character should not belong to the field.

To help the end-user to find the correct position, additional settings can
be performed which change the caret's width when it is inside a marked
text field or display the complete text of a field with a gray background
when the current input position is inside this field.

Each of the described attributes can be defined for a single field in any
combination which means that different kinds of marked text fields can
be implemented in a single Text Control.

Overviews Page 141

Relating data to a marked text field

For each marked text field Text Control can store any data that can be
set with the FieldData property. For example when a Text Control is
used to show the contents of a database a marked text field can be
created for each database field. The database's field names can then be
related to the Text Control's marked text fields using the FieldData
property.

Other parts of the program can use the FieldData property to retrieve
the name of the database field to which a marked text field is linked. For
example when the user has clicked on a marked text field, the
FieldData property can be used with the field identifier, which has been
specified through the FieldClicked event. The property then retrieves
the name of the database field the user has clicked on.

The FieldData property accepts strings and numbers. When a marked
text field is copied via the clipboard or saved to a file the data belonging
to the field is also copied or saved. The usage of the FieldData property
does not change the current text contents of a marked text field. When
new data is set, all previously set data is overwritten independently of
the kind of data involved.

Special Types of Marked Text Fields

Text Control supports special types of marked text fields that can be
defined with the FieldType property. The following types are possible:

Type Description

txFieldExternalLink This field defines the source of a
hypertext link to a location outside
of the document.

txFieldInternalLink This field defines the source of a
hypertext link to a location in the
same document.

txFieldLinkTarget This field defines the target of a
hypertext link.

Page 142 Overviews

txFieldPageNumber This field displays the current page
number. It can only be used in
headers or footers.

txFieldHighlight This field defines a piece of text that
can be highlighted.

txFieldTopic This field defines a position in a
document that is the beginning of a
topic.

All of these fields have the same general properties as standard marked
text fields with the following exceptions: Fields of the type
txFieldLinkTarget or txFieldTopic define text positions in a
document. Therefore as they have no visible text, they cannot be edited
and have no extended edit mode. Fields of the type
txFieldPageNumber can only be used in headers or footers.

For each of the special field types Text Control handles some additional
data, called type-related data. These data can be set or returned with the
FieldTypeData property. For the types txFieldExternalLink and
txFieldInternalLink these data are the information to where the link
points. This can be an address or a file name and/or the name of a target
in a document. Targets in documents can be realized with marked text
fields, which have the type txFieldLinkTarget. These fields can have a
name that is saved as type-related data. When the user clicks on a field
of the type txFieldExternalLink or txFieldInternalLink a
FieldLinkClicked event is fired including the information to where the
link points. The FieldGoto method can be used to scroll to a target
position and the FieldNext method can be used to enumerate all fields
of a certain type.

To insert a field of a special type from programming code, use the
FieldInsert method first and then set the type and its data. The
following Basic example inserts a field that represents a link to the Text
Control homepage:
Dim Field As Integer
TXTextControl1.FieldInsert "visit the Text Control homepage"
Field = TXTextControl1.FieldCurrent
TXTextControl1.FieldType(Field) = txFieldExternalLink

Overviews Page 143

TXTextControl1.FieldTypeData(Field)
= "http://www.textcontrol.com"

When a user clicks on this marked text field, a FieldLinkClicked event
is fired, containing the address of the homepage. To insert a field of the
type txFieldLinkTarget, the created field must not have text. The
following Basic example creates a field that represents such a target:
Dim Field As Integer
TXTextControl1.FieldInsert ""
Field = TXTextControl1.FieldCurrent
TXTextControl1.FieldType(Field) = txFieldLinkTarget
TXTextControl1.FieldTypeData(Field) = "first target"

This creates a field with the name "first target". The FieldGoto method
can be used to scroll to this target:
TXTextControl1.FieldGoto txFieldLinkTarget, "first target"

When HTML, RTF or Word documents are loaded, source and target
fields for hypertext links are automatically created. To perform this, set
the txEnableLinks attribute with the LoadSaveAttribute property
before using the Load method.

Fields of the type txFieldPageNumber display the current page number
and can only be used in headers or footers. The following Basic
example inserts a page number field:
TXTextControl1.FieldInsert ""
TXTextControl1.FieldType(TXTextControl1.FieldCurrent) =
txFieldPageNumber

Fields of the type txFieldHighlight can be used to mark pieces of text
in a document that can be highlighted. This is useful, for instance, to
highlight occurrences of a word found during a global search. The
highlight color is stored as additional data for these fields. The
FieldGoto method enables the programmer to scroll fom highlight to
highlight. When RTF documents are loaded with the Load method and
the txEnableHighlights attribute has been set previously with the
LoadSaveAttribute property, all RTF '\cbN' keywords are
automatically converted to fields of the type txFieldHighlight. N is the
index of a color in the RTF color table.

Page 144 Overviews

Fields of the type txFieldTopic are text positions in a document
defining the beginning of a topic. The FieldGoto method can be used to
scroll to a topic with a certain number. When RTF documents are
loaded with the Load method and the txEnableTopics attribute has
been set previously with the LoadSaveAttribute property, all RTF
'\sect' keywords are automatically converted to fields of the type
txFieldTopic . These topics are numbered from 1 to n in the order they
appear in the RTF document.

Resources
Text Control has several built-in resources like information strings,
error messages and dialog boxes. These resources are available in
different languages. When a new control is created Text Control selects
the current set system language as the default one. With the Language
property this setting can be altered independent of the system language.
The description of the Language property lists all currently available
built-in languages. To alter the language of the Button Bar and Status
Bar the appropriate Language properties must be used.

To display resources in additional languages external resource libraries
can be built and then set with the ResourceFile property. A resource
library is a dynamic link library that only contains resources. The
SAMPLES\TXRES subdiretory contains the basic files to create such a
DLL file. See the chapter 1.15 "Resources" in the DLL Reference
Manual for more information how to create a resource library.

To avoid conflicts with other programs that also uses own resources or
with future versions of Text Control the following points are important:

1. The resource library should have a unique file name.

2. The resource library should be placed in the same directory as the
final application. Get the full path name of the apllication's executable
file at run time and specify the resource library's file name including this
path when setting the ResourceFile property.

At runtime Text Control determines resources in the following way:

Overviews Page 145

1.The Language property is initialized with the system default language.
If the system language is not built-in, Text Control displays English
resources.

2. When the Language property has been changed with an identifier of
a built-in language, Text Control displays resources in this language
independent of the system language.

3. When the ResourceFile property has been set, Text Control tries to
load the resources from this library. In this case the Language property
is ignored. When the resource library does not contain a needed
resource or when the specified file could not be found, Text Control
displays English resources without reporting an error.

4. Setting the ResourceFile and Language properties of a Text Control
does not automatically set the appropriate properties of a connected
Button Bar or Status Bar to the same values. These properties must be
changed independently.

Page 146 Text Control Properties, Methods, and Events

Text Control Data Types
The Text Control reference uses the following data types:

Data type Description

Byte Is a one-byte value with the range 0 to 255.

Boolean Is a two-byte value that can be True or False.

Integer Is a two-byte value with the range -32,768 to
32,767.

Long Is a four-byte value with the range
2,147,483,648 to 2,147,483,647

Handle 32 bit: A four-byte value with the range
0 - 4,294,967,295.
16 bit: A two-byte value with the range
0 - 65536

String Is a length-prefixed string of unlimited size.

Variant Can be any of the priviously explained data
types, including arrays of these types.

Text Control Properties, Methods, and Events Page 147

Properties

Alignment
AutoExpand
BackColor
BackStyle
BaseLine
BorderStyle
ButtonBarHandle
CanRedo
CanUndo
ClipChildren
ClipSiblings
ControlChars
CurrentInputPosition
CurrentPages
DataText
DataTextFormat
EditMode
Enabled
FieldAtInputPos
FieldChangeable
FieldCurrent
FieldData
FieldDeleteable
FieldEditAttr
FieldEnd
FieldPosX
FieldPosY
FieldStart

FieldText
FieldType
FieldTypeData
FontBold
FontItalic
FontName
FontSize
FontStrikethru
FontUnderline
FontUnderlineStyle
ForeColor
FormatSelection
FrameDistance
FrameLineWidth
FrameStyle
HeaderFooter
HeaderFooterPosition
HeaderFooterStyle
HideSelection
hWnd
ImageDisplayMode
ImageFilename
ImageFilters
ImageSaveMode
IndentB
IndentFL
IndentL
IndentR
IndentT
InsertionMode

Language
LineSpacing
LineSpacingT
LoadSaveAttribute
MousePointer
NextWindow
ObjectCurrent
ObjectDistance
ObjectItem
ObjectScaleX
ObjectScaleY
ObjectSizeMode
ObjectTextflow
PageHeight
PageMarginB
PageMarginL
PageMarginR
PageMarginT
PageWidth
PrintColors
PrintDevice
PrintOffset
PrintZoom
ResourceFile
RTFSelText
RulerHandle
ScrollBars
ScrollPosX
ScrollPosY
SelLength

Text Control Properties, Events, and Methods
All of Text Control's properties, methods and events are listed in
alphabetical order in the following table. A detailed description can be
found in the following section.

Page 148 Text Control Properties, Methods, and Events

SelStart
SelText
SizeMode
StatusBarHandle
TabCurrent
TabKey
TableAtInputPos
TableCanChangeAttr
TableCanDeleteLines
TableCanInsert
TableCellAttribute
TableCellLength
TableCellStart
TableCellText
TableColAtInputPos
TableColumns
TableGridLines
TableRowAtInputPos
TableRows
TabPos
TabType
Text
TextBkColor
ViewMode
VTSpellDictionary
ZoomFactor

Methods

Clip
FieldDelete
FieldGoto
FieldInsert
FieldNext
Find
FindReplace

FontDialog
HeaderFooterActivate
HeaderFooterSelect
InputPosFromPoint
Load
LoadFromMemory
ObjectDelete
ObjectInsertAsChar
ObjectInsertFixed
ObjectNext
ParagraphDialog
PrintPage
Redo
Refresh
ResetContents
Save
SaveToMemory
TableAttrDialog
TableDeleteLines
TableInsert
TableNext
TextExport
TextImport
Undo
VTSpellCheck

Events

AutoLink
AutoScroll
CaretOut
CaretOutBottom
CaretOutLeft
CaretOutRight
CaretOutTop
Change

CharFormatChange
Click
ConnectTools
DblClick
Error
FieldChanged
FieldClicked
FieldCreated
FieldDblClicked
FieldDeleted
FieldEntered
FieldLeft
FieldLinkClicked
FieldSetCursor
HeaderFooterActivated
HeaderFooterDeactivated
HExpand
HScroll
KeyDown
KeyPress
KeyStateChange
KeyUp
MouseDown
MouseMove
MouseUp
Move
ObjectClicked
ObjectCreated
ObjectDblClicked
ObjectDeleted
ObjectGetData
ObjectGethWnd
ObjectGetZoom
ObjectMoved
ObjectPrint
ObjectScrollOut

Text Control Properties, Methods, and Events Page 149

ObjectSetData
ObjectSetZoom
ObjectSized
PageFormatChange
ParagraphChange
ParagraphFormatChange
PosChange
Size
TableCreated
TableDeleted
VExpand
VScroll
Zoomed

Page 150 Text Control Properties, Methods, and Events

Alignment Property

Description: Returns or sets the text alignment for a Text Control.

Usage: TXTextControl.Alignment [= value]

The property's settings are:

Setting Description

0 - Left aligned (Default) Text is left-aligned.

1 - Right aligned Text is right-aligned.

2 - Centered Text is centered.

3 - Justified Text is justified.

4 This value cannot be assigned to the property.
Its purpose is to indicate that the selected text
contains paragraphs which have different
types of alignment.

Remarks: If the FormatSelection Property has previously been set to True,
changing the Alignment Property affects only the currently selected
paragaph. If FormatSelection has been set to False the setting applies
to the entire control, in which case a value of 4 does not occur.

Data Type: Integer.

AutoExpand Property
Description: Specifies whether the control size should expand automatically when

the text insertion or format changes results in text that does not fit into
the Text Control anymore.

Usage: TXTextControl.AutoExpand [= boolean]

The property's settings are:

Setting Description

True The window size expands automatically.

False Fixed window size.

Text Control Properties, Methods, and Events Page 151

This property is always set to False if the control is linked to other
controls or if the PageHeight or PageWidth property is set to a value
different from zero.

Data Type: Boolean.

Limitations: Runtime only.

AutoLink Event
Description: This event specifies that text will be inserted into the last control in a

chain of linked windows. The program can avoid a text overflow at the
end of the chain if it responds to this notification by an expansion of the
chain. This event is sent before the text is inserted.

Syntax: AutoLink()

See also: NextWindow Property.

AutoScroll Event
Description: This event occurs when the cursor leaves the visible portion of a Text

Control's client area whilst a text selection is being expanded with the
mouse. It is only sent if the cursor movement does not result in a caret
movement. This happens if the cursor is moved outside the client area or
if the cursor is moved over parts which are not covered with text below
the last line. In all cases where the cursor movement results in a caret
movement, the Text Control sends CaretOutxxx events.

Syntax: AutoScroll()

See also: CaretOut Event, CaretOutBottom Event, CaretOutLeft Event,
CaretOutRight Event, CaretOutTop Event.

Page 152 Text Control Properties, Methods, and Events

BackColor Property
Description: Returns or sets the background color of a Text Control. Text Control

uses the Microsoft Windows operating enviroment red-green-blue
(RGB) color scheme.

Usage: TXTextControl.BackColor [= value]

The property's settings are:

Setting Description

RGB colors The valid range for a RGB color is 0 to
&HFFFFFF. The high byte of a number in this
range equals 0; the lower 3 bytes, from least to
most significant byte, determine the amount of
red, green, and blue, respectively. The red,
green, and blue components are each
represented by a number between 0 and 255
(&HFF).

System colors Colors specified by the system color
constants. If the high byte isn't 0, Text Control
uses the system colors, as defined in the user's
Control Panel settings.

Data Type: Long.

See also: ForeColor Property.

BackStyle Property
Description: Returns or sets a value indicating whether the background of a Text

Control is transparent or opaque.

Usage: TXTextControl.BackStyle[= value]

The property's settings are:

Setting Description

0 - Transparent The Text Control has a transparent
background.

Text Control Properties, Methods, and Events Page 153

1 - Opaque (Default) The control's BackColor property
setting fills the background.

Remarks: A transparent background is only possible when the control's container
does not clip its controls. The most containers have a property to enable
or disable clipping. For example a Visual Basic form has a
ClipControls property.

Data Type: Integer.

See also: BackColor Property.

BaseLine Property
Description: Specifies the baseline alignment for selected text. A negative value is

used to specify a subscript offset, a positive value for superscript. Text
Control limits the baseline alignment to 960 twips in both directions.

Usage: TXTextControl.BaseLine [= value]

Data Type: Integer.

See also: FormatSelection Property.

BorderStyle Property
Description: Returns or sets the border style for a Text Control.

Usage: TXTextControl.BorderStyle [= value]

The property's settings are:

Setting Description

0 - None The Text Control has no border.

1 - Fixed Single (Default) The Text Control has a fixed border.

Data Type: Integer.

Page 154 Text Control Properties, Methods, and Events

ButtonBarHandle Property
Description: Specifies the button bar control to be used with a Text Control.

Usage: TXTextControl.ButtonBarHandle [= ButtonBar.hWnd]

Remarks: The Button Bar, like the Status Bar and the Ruler, is one of the
additional controls which are contained in the Text Control OCX file.

Data Type: Handle.

Limitations: Runtime only.

See also: RulerHandle Property, StatusBarHandle Property.

CanRedo Property
Description: Informs whether an operation can be re-done using the Redo method.

Usage: TXTextControl.CanRedo

The property returns the following values:

Setting Description

0 Nothing that can be restored.

10 The next redo operation restores inserted text.

11 The next redo operation deletes restored text.

12 The next redo operation restores the last
formatting operation.

Data Type: Integer.

Limitations: Read only, Runtime only.

See also: CanUndo Property, Undo Method, Redo Method.

CanUndo Property
Description: Informs whether an operation can be undone using the Undo method.

Usage: TXTextControl.CanUndo

Text Control Properties, Methods, and Events Page 155

Remarks: The CanUndo Property has one of the following values:

Setting Description

0 Nothing to be undone.

1 The next undo operation deletes inserted text.

2 The next undo operation inserts deleted text.

3 The next undo operation resets the last
formatting operation.

Data Type: Integer.

Limitations: Read only, Runtime only.

See also: CanRedo Property, Undo Method, Redo Method.

CaretOut Event
CaretOutBottom Event
CaretOutLeft Event
CaretOutRight Event
CaretOutTop Event
Description: Occurs when the caret has been moved to a control that is completely

out of the visible area.

Syntax: CaretOutxxx()

See also: AutoScroll Event.

Change Event
Description: Indicates that the contents of a Text Control have changed.

Syntax: Change()

Page 156 Text Control Properties, Methods, and Events

CharFormatChange Event
Description: Occurs when the formatting attributes of the selected characters have

been changed. It also occurs if font settings have been changed because
the Text Control has adapted fonts to a new output device.

Syntax: CharFormatChange()

Click Event
Description: Occurs when the user presses and then releases a mouse button over a

Text Control.

Syntax: Click()

Clip Method
Description: Performs Text Control clipboard actions.

Usage: TXTextControl.Clip Action

The Action parameter can have one of the following values:

Value Description

1 Cuts out the selected text and copies it to the
clipboard.

2 Copies the selected text to the clipboard.

3 Pastes text from the clipboard.

4 Clears the selection.

Return Value: This method has no return value.

Data Types: Action Integer

Example: This Basic example copies the selected text from a Text Control named
"TXTextControl1" to the clipboard when the user selects the "Edit/
Copy" menu item:
Sub mnuEdit_Copy_Click ()
 TXTextControl1.Clip 2

Text Control Properties, Methods, and Events Page 157

End Sub

ClipChildren Property
Description: This property is only used for Text Controls which act as a container for

other Text Controls or embedded objects. When this property is set to
True, the areas occupied by the child controls are excluded from the
update area.

Usage: TXTextControl.ClipChildren [= boolean]

The property's settings are:

Setting Description

True Exclude areas which are occupied by child
controls from the update area.

False (Default) Update areas which are occupied by
child controls.

Data Type: Boolean.

See also: ClipSiblings Property.

Example: See Forms2 Basic sample program.

ClipSiblings Property
Description: This property determines the clipping behaviour of each of the child

controls which belong to a common container control. It must be set to
False if the program is to allow transparent Text Controls to overlap
other Text Controls.

Usage: TXTextControl.ClipSiblings [= boolean]

The property's settings are:

Setting Description

True (Default) Excludes those areas occupied by
other child controls from the update area.

Page 158 Text Control Properties, Methods, and Events

False Updates areas which are occupied by other
child controls.

Data Type: Boolean.

See also: ClipChildren Property.

Example: See Forms2 Basic sample program.

ConnectTools Event
Description: MS Access only:

Occurs after all Text Controls, Rulers, ButtonBars and StatusBars have
been created and are ready to be connected. This has to be done in 2
steps. (This example assumes that you have created a Text Control
named 'tx' and a Ruler, ButtonBar and StatusBar named 'Ruler',
'ButtonBar' and 'StatusBar'.)

Example: In the FormLoad event, write:
Sub Form_Load ()
 Me!tx.object.RulerHandle = 1
 Me!tx.object.ButtonBarHandle = 1
 Me!tx.object.StatusBarHandle = 1
End Sub

This tells Text Control to send a ConnectTools event when all of the
controls have been created and are ready to be connected. In the
ConnectTools event, write:
Sub TX_ConnectTools ()
 Me!tx.object.RulerHandle = Me!Ruler.object.hWnd
 Me!tx.object.ButtonBarHandle = Me!ButtonBar.object.hWnd
 Me!tx.object.StatusBarHandle = Me!StatusBar.object.hWnd
End Sub

ControlChars Property
Description: Specifies if control characters are visible.

Text Control Properties, Methods, and Events Page 159

Usage: TXTextControl.ControlChars [= boolean]

The property's settings are:

Setting Description

True Control characters, like space or paragraph
break, are visible.

False Control characters are invisible.

Data Type: Boolean.

CurrentInputPosition Property
Description: Returns or sets an array of three values which specify the page, line and

column number of the current text input position. These values are the
same that are shown in Text Control's statusbar.

Usage: TXTextControl.CurrentInputPosition [= Array]

The array's values are:

Index Description

0 Specifies the current page number. The first
page has the number one.

1 Specifies the current line number. The first
line has the number one.

2 Specifies the current column number. The first
column has the number one.

Data Type: Array of 3 Long.

Limitations: Run time only.

CurrentPages Property
Description: Returns the number of pages contained in the current document.

Usage: TXTextControl.CurrentPages

Page 160 Text Control Properties, Methods, and Events

Remarks: The value of this property depends on the size of the text as well as on
the settings of the PageHeight, PageWidth and PageMarginx
properties.

Data Type: Long.

Limitations: Read only, run time only.

See also: PageHeight Property, PageWidth Property, PageMarginx Properties,
PrintDevice Property, PrintPage Method.

Example: See PrintPage Method example.

DataText Property
The DataText property is used internally by Visual Basic when Text
Control is used as a bound control. This property is not to be
manipulated by the developer and will likely be hidden in future
releases.

DataTextFormat Property
Description: When using Text Control as a bound control, this property specifies if

the data which is exchanged with a database is text or binary data.

Usage: TXTextControl.DataFormat [= value]

The property's settings are:

Setting Description

0 - Text Data is stored as text.

1 - Binary Text and formatting information are stored in
Text Control's own binary format.

Data Type: Integer.

Text Control Properties, Methods, and Events Page 161

DblClick Event
Description: Occurs when the user presses and releases a mouse button and then

presses and releases it again over a Text Control.

Syntax: DblClick()

EditMode Property
Description: Specifies whether the Text Control operates in edit mode or in one of

the two read-only modes.

Usage: TXTextControl.EditMode [= value]

The property's settings are:

Setting Description

0 - Edit (Default) Edit mode. This mode can be used to
edit and display text. The cursor is the text I-
beam cursor.

1 - Read and Select Read-only mode. This mode can be used to
display and select text. The cursor is the
standard arrow cursor.

2 - Read only This mode can be used to display text only.
Text input and selecting text with the mouse
or the keyboard is not possible. The cursor is
the standard arrow cursor.

Data Type: Integer.

Enabled Property
Description: Returns or sets a value that determines whether a Text Control can

respond to user-generated events.

Usage: TXTextControl.Enabled [= boolean]

The property's settings are:

Page 162 Text Control Properties, Methods, and Events

Setting Description

True (Default) Allows a Text Control to respond to
events.

False Prevents a Text Control from responding to
events.

Data Type: Boolean.

Error Event
Description: Occurs when the Text Control reports an error.

Syntax: Error(Number, Description, Scode, Source, HelpFile, HelpContext,
CancelDisplay)

The event procedure's parameters are:

Parameter Description

Number Is the error number.

Description Is a corresponding error string. This string can
be changed.

Scode Is the OLE Status Code.

Source Is the name of the module which caused the
error.

HelpFile Is the name of a help file.

HelpContext Is the help context ID in this help file.

CancelDisplay Can be set to True if the application wants to
display its own error string. When this
parameter is not set to True, the control will
display a message box showing the error
string.

Data Types: Number: Integer
Description: String
Scode: Long
Source: String
HelpFile: String

Text Control Properties, Methods, and Events Page 163

HelpContext: Long
CancelDisplay: Boolean

FieldAtInputPos Property
Description: Returns the field identifier of the field containing the input position.

Zero is returned when the input position is not inside a field.

Usage: TXTextControl.FieldAtInputPos

Data Type: Integer.

Limitations: Read only, run time only.

FieldChangeable Property
Description: Specifies if the contents of a marked text field can be changed by the

user. The field identifier must have previously been determined with the
FieldCurrent property.

Usage: TXTextControl.FieldChangeable [= boolean]

The property's settings are:

Setting Description

True The text which is contained in the field can be
changed.

False The text cannot be changed.

Data Type: Boolean.

Limitations: Runtime only.

See also: FieldDeleteable Property.

FieldChanged Event
Description: Occurs when the text of a marked text field has been changed.

Syntax: FieldChanged(FieldId)

Page 164 Text Control Properties, Methods, and Events

The event procedure's parameters are:

Parameter Description

FieldId Is the identifier of the field that has been
changed.

Remarks: The value of the FieldCurrent property is updated with the value given
through the FieldId parameter.

Data Types: FieldId Integer

See also: FieldClicked Event, FieldCreated Event, FieldDblClicked Event,
FieldDeleted Event, FieldSetCursor Event.

FieldClicked Event
Description: Occurs when a marked text field has been clicked on.

Syntax: FieldClicked(FieldId)

The event procedure's parameters are:

Parameter Description

FieldId Is the identifier of the field that has been
clicked on.

Remarks: The value of the FieldCurrent property is updated with the value given
through the FieldId parameter.

Data Types: FieldId Integer

See also: FieldChanged Event, FieldCreated Event, FieldDblClicked Event,
FieldDeleted Event, FieldSetCursor Event.

FieldCreated Event
Description: Occurs when a marked text field has been pasted from the clipboard.

Syntax: FieldCreated(FieldId)

The event procedure's parameters are:

Text Control Properties, Methods, and Events Page 165

Parameter Description

FieldId Is the identifier of the field that has been
created.

Remarks: The value of the FieldCurrent property is updated with the value given
through the FieldId parameter.

Data Types: FieldId Integer

See also: FieldChanged Event, FieldClicked Event, FieldDblClicked Event,
FieldDeleted Event, FieldSetCursor Event.

FieldCurrent Property
Description: Returns or sets the identifier of the current marked text field for the

Fieldxxx properties, methods and events.

Usage: TXTextControl.FieldCurrent [= FieldId]

Data Type: Integer.

Limitations: Run time only.

Example: The Basic example creates a marked text field with a text content of
'New Field' and afterwards changes the text to 'Hello':

Sub Create()
Dim FieldId As Integer

'Create a marked text field and store its number
TXTextControl.FieldInsert "New Field"
FieldId = TXTextControl.FieldCurrent
..
'Change the text
TXTextControl.FieldCurrent = FieldId
TXTextControl.FieldText = "Hello"

End Sub

FieldData property
Description: This property relates numeric or string data to a marked text field.

Page 166 Text Control Properties, Methods, and Events

Usage: TXTextControl.FieldData(FieldId) [= Data]

The property's parameters are:

Parameter Description

FieldId Identifies the field that is to be manipulated.

Remarks: The specified data can be a long value or a character string. A long
value of zero or an empty string deletes all data previously related to the
specified marked text field.

Data Type: Long or String.

Limitations: Run time only.

See also: FieldInsert Method.

FieldDblClicked Event
Description: Occurs when a marked text field has been double-clicked on.

Syntax: FieldDblClicked(FieldId)

The event procedure's parameters are:

Parameter Description

FieldId Is the identifier of the field that has been
double-clicked on.

Remarks: The value of the FieldCurrent property is updated with the number
given through the FieldId parameter.

Data Types: FieldId Integer

See also: FieldChanged Event, FieldClicked Event, FieldCreated Event,
FieldDeleted Event, FieldSetCursor Event.

FieldDelete Method
Description: Deletes the marked text field specified by the FieldCurrent property, or

changes it to simple text.

Text Control Properties, Methods, and Events Page 167

Usage: TXTextControl.FieldDelete DeleteTotal

The DeleteTotal parameter can have one of the following values:

Value Description

True The marked text field is completely deleted.

False The marked text field is deleted, but its text
contents are preserved.

Return Value: The method returns True when the operation could be performed,
otherwise it returns False.

Data Types: DeleteTotal: Boolean
Return value: Boolean

FieldDeleteable Property
Description: Specifies whether a marked text field can be deleted by the user. The

field identifier must have previously been determined with the
FieldCurrent property.

Usage: TXTextControl.FieldDeleteable [= boolean]

The property's settings are:

Setting Description

True The field can be deleted.

False The field cannot be deleted.

Data Type: Boolean.

Limitations: Run time only.

See also: FieldChangeable Property.

FieldDeleted Event
Description: Occurs when a marked text field has been deleted.

Syntax: FieldDeleted(FieldId)

Page 168 Text Control Properties, Methods, and Events

The event procedure's parameters are:

Parameter Description

FieldId Is the identifier of the field that has been
deleted.

Remarks: The value of the FieldCurrent property is set to zero.

Data Types: FieldId Integer

See also: FieldChanged Event, FieldClicked Event, FieldCreated Event,
FieldDblClicked Event, FieldSetCursor Event.

FieldEditAttr Property
Description: This property returns or sets attributes for advanced editing inside

marked text fields.

Usage: TXTextControl.FieldEditAttr(FieldId) [= Attr]

The property's parameters are:

Parameter Description

FieldId Identifies the field that is to be manipulated.

The property's settings are:

Setting Description

&H1& Implements a second character input position
at the beginning and the end of the specified
marked text field.

&H2& Performs normal editing at the beginning and
the end of the specified marked text field.

&H4& Changes the width of the caret when the
character input position is inside the specified
marked text field.

&H8& Uses the normal text caret when the character
input position is inside the specified marked
text field.

Text Control Properties, Methods, and Events Page 169

&H10& Displays the text of the specified marked text
field with a gray background when the input
position is inside this field.

&H20& Displays the text of the specified marked text
field with the standard control background
when the input position is inside this field.

&H40& Enables the normal double-click processing
inside marked text fields that starts a
wordwise selection.

&H80& Disables the normal double-click processing
inside marked text fields.

These values can be combined by adding the desired constant values.
Changing one option does not affect the other. The default value of a
newly inserted field is:

&H2& + &H8& + &H20& + &H80&

Data Type: Integer.

Limitations: Run time only.

See also: FieldInsert Method.

FieldEnd Property
Description: Returns the end position of a marked text field. The field identifier must

have previously been determined with the FieldCurrent property.

Usage: TXTextControl.FieldEnd

Data Type: Long.

Limitations: Read only, run time only.

See also: FieldStart Property.

Page 170 Text Control Properties, Methods, and Events

FieldEntered Event
Description: Occurs when the current input position, indicated by the caret, has been

moved to a position that belongs to a marked text field. It only occurs if
the caret has been moved using the keyboard. If the caret has been
moved with a mouse click a FieldClicked event is sent.

Syntax: FieldEntered(FieldId)

The event procedure's parameters are:

Parameter Description

FieldId Is the identifier of the field that has been
entered.

Remarks: This event that does not change the value of the FieldCurrent property.

Data Types: FieldId Integer

See also: FieldLeft Event.

FieldGoto Method
Description: Sets the current input position to the beginning of the specified marked

text field and scrolls the text so that this position is at the top of the
control's visible text.

Usage: TXTextControl.FieldGoto FieldType, FieldIdOrName

The method's parameters are:

Parameter Description

FieldType Specifies the type of the marked text field. See
the Constants section of the FieldType
property for valid values.

FieldIdOrName Identifies the marked text field to which
should be scrolled. It must be a valid field
identifier. For fields of the type
txFieldLinkTarget this parameter can also be
the name of the field. For fields of the type

Text Control Properties, Methods, and Events Page 171

txFieldTopic this parameter can also be a
valid topic number.

Return Value: If the field could be found the method returns True, otherwise it returns
False.

Data Types: FieldType Integer
FieldIdOrName Integer or String
Return value: Boolean

FieldInsert Method
Description: Inserts a new marked text field at the current caret position.

Usage: TXTextControl.FieldInsert FieldText

Return Value: The method returns True if a field could be inserted, otherwise it returns
False.

Remarks: Selected text can be converted to a marked text field by using an empty
string as FieldText. Inserting a marked text field changes the value of
the FieldCurrent property to the identifier of the newly created field.

Data Types: FieldText String
Return value: Boolean

Example: See the description of the FieldCurrent property.

FieldLeft Event
Description: Occurs when the current input position indicated by the caret has been

moved to a position that does not belong to the marked text field at the
previous input position.

Syntax: FieldLeft(FieldId)

The event procedure's parameters are:

Parameter Description

FieldId Is the identifier of the field that has been left.

Page 172 Text Control Properties, Methods, and Events

Remarks: This event that does not change the value of the FieldCurrent property.

Data Types: FieldId Integer

See also: FieldEntered Event.

FieldLinkClicked Event
Description: Occurs when a marked text field has been clicked on that represents the

source of a hypertext link.

Syntax: FieldLinkClicked(FieldId, FieldType, TypeData)

The event procedure's parameters are:

Parameter Description

FieldId Is the identifier of the field that has been
clicked on.

FieldType Is the type of the field that has been clicked
on. This event occurs only for fields of the
types txFieldExternalLink and
txFieldInternalLink.

TypeData Specifies a character string that is the
information to where the link points. This data
has either been set with the FieldTypeData
property or has been created through a text
filter. For fields of the type
txFieldExternalLink this can be any kind of
address or file name. For fields of the type
txFieldInternalLink this is the name of a
marked text field of the type
txFieldLinkTarget.

Data Types: FieldId Integer
FieldType Integer
TypeData String

See also: FieldTypeData Property

Text Control Properties, Methods, and Events Page 173

FieldNext Method
Description: This method returns the identifier of the marked text field that follows

the specified field in the Text Control's current text. It can be used to
find the next field in the text or to enumerate all fields. In a list of linked
Text Controls the search is performed in all controls.

Usage: TXTextControl1.FieldNext FieldId, FieldGroup

The method's parameters are:

Parameter Description

FieldId Specifies a field identifier. If this parameter is
zero the first field's identifier is returned.

FieldGroup This parameter can be the sum of one or more
constants used to seperate fields with certain
attributes. Valid values are described in
Remarks. If FieldGroup is zero, the method
enumerates all fields.

Return Value: The method returns the identifier of the field that follows the specified
field in the Text Control's text. It is zero if there is no following field.

Remarks: The settings for Options can include:

Setting Description

0 Returns the identifiers of all fields.

&H1& Returns only identifiers of fields which are
both changeable and deleteable.

&H2& Returns only identifiers of fields which are
unchangeable.

&H4& Returns only identifiers of fields which are
undeleteable.

&H100& Returns only identifiers of fields which have
the type txFieldLinkTarget.

&H200& Returns only identifiers of fields which have
the type txFieldExternalLink.

Page 174 Text Control Properties, Methods, and Events

&H400& Returns only identifiers of fields which have
the type txFieldInternalLink.

&H800& Returns only identifiers of fields which have
the type txFieldPageNumber.

&H1000& Returns only identifiers of fields which have
the type txFieldHighlight.

&H2000& Returns only identifiers of fields which have
the type txFieldTopic.

Data Types: FieldId Integer
FieldGroup Integer
Return value: Integer

See also: FieldChangeable Property, FieldDeleteable Property, FieldType
Property

FieldPosX Property
Description: Returns the horizontal position of a marked text field. The field

identifier must have previously been determined with the FieldCurrent
property.

Usage: TXTextControl.FieldPosX

Remarks: The property value is the distance in horizontal direction between the
left border of the marked text field and the left border of the Text
Control. It is not affected by the scrollbar positions.

Limitations: Read only, run time only.

Data Type: Long.

See also: FieldPosY Property.

FieldPosY Property
Description: Returns the vertical position of a marked text field. The field identifier

must have previously been determined with the FieldCurrent property.

Text Control Properties, Methods, and Events Page 175

Usage: TXTextControl.FieldPosY

Remarks: The property value is the distance in vertical direction between the
upper left corner of the marked text field and the upper left corner of the
text. It is not affected by the scrollbar positions.

Limitations: Read only, run time only.

Data Type: Long.

See also: FieldPosX Property.

FieldSetCursor Event
Description: Occurs when the cursor is moved over a marked text field.

Syntax: FieldSetCursor(FieldId, MousePointer)

The event procedure's parameters are:

Parameter Description

FieldId Is the identifier of the field where the cursor is
moved over.

MousePointer When this parameter is changed Text Control
uses the specified cursor whilst moving over
the marked text field. When this parameter is
not changed, Text Control uses its standard
cursor for marked text fields (Up Arrow). For
possible values see the description of the
MousePointer property.

Remarks: This event that does not change the value of the FieldCurrent property.

Data Types: FieldId Integer
MousePointer Integer

See also: FieldChanged Event, FieldClicked Event, FieldCreated Event,
FieldDblClicked Event, FieldDeleted Event.

Page 176 Text Control Properties, Methods, and Events

FieldStart Property
Description: Specifies the start position of a marked text field. The field identifier

must have previously been determined with the FieldCurrent property.

Usage: TXTextControl.FieldStart

Data Type: Long.

Limitations: Read only, run time only.

See also: FieldEnd Property.

FieldText Property
Description: Returns or sets the text which is contained within a marked text field.

The field identifier must have previously been determined with the
FieldCurrent property.

Usage: TXTextControl.FieldText [=string]

Data Type: String.

Limitations: Run time only.

FieldType Property
Description: This property sets or returns the type of a marked text field. The chapter

"Overviews - Marked Text Fields - Special Types of Marked Text
Fields" describes all the types and the data belonging to these types.
Type-related data must be set with the FieldTypeData property

Usage: TXTextControl.FieldType(FieldId) [= FieldType]

The property's parameters are:

Parameter Description

FieldId Identifies the field that is to be manipulated.

Constants: The property setting can be one of the following constants:

Text Control Properties, Methods, and Events Page 177

Constant Value Description

txFieldExternalLink 1 Defines the source of a hypertext
link to a location outside of the
document.The FieldTypeData
property must be used to define
where the link points to.

txInternalLink 2 Defines the source of a hypertext
link to a location in the same
document.The FieldTypeData
property must be used to define
where the link points to. It must be
the name of a marked text field that
has the txFieldLinkTarget type.

txFieldPageNumber 3 This field displays the current page
number. It can only be used in
headers or footers.

txFieldLinkTarget 4 Defines a position in a document
which is the target of a hypertext
link. The FieldTypeData property
must be used to define the name of
this field.

txFieldHighlight 5 Defines a piece of text that can be
highlighted. The FieldTypeData
property must be used to define the
color of the highlight.

txFieldTopic 6 Defines a position in a document
that is the beginning of a topic. The
FieldTypeData property must be
used to define the number of the
topic.

txFieldStandard 0 Resets a field of a special type to a
standard marked text field.

Remarks: The types txFieldLinkTarget, txFieldPageNumber and txFieldTopic
can only be set when the marked text field has no text.

Page 178 Text Control Properties, Methods, and Events

Data Types: FieldId Integer
Property value: Integer.

Limitations: Run time only.

See also: FieldInsert Method, FieldTypeData Property, FieldLinkClicked
Event.

FieldTypeData Property
Description: This property sets or returns the data that belongs to a marked text field

of a special type. The chapter "Overviews - Marked Text Fields -
Special Types of Marked Text Fields" informs about all the types and
the data belonging to these types.

Usage: TXTextControl.FieldTypeData(FieldId) [= TypeData]

The property's parameters are:

Parameter Description

FieldId Identifies the field that is to be manipulated.

Remarks: The specified data can be a long value or a character string depending
on the type of the field. A long value is used for fields of the types
txFieldHighlight and txFieldTopic. For fields of the types
txFieldExternalLink, txFieldInternalLink and txFieldLinkTarget
the TypeData parameter must be a character string.

Data Types: FieldId Integer
Property value: Long or String.

Limitations: Run time only.

See also: FieldInsert Method, FieldLinkClicked Event.

Find Method
Description: Searches the text in a Text Control for a given string.

Usage: TXTextControl.Find FindWhat[, Start[, Options]]

The method's parameters are:

Text Control Properties, Methods, and Events Page 179

Parameter Description

FindWhat Specifies the string to search for.

Start Optional. An integer character index that
determines where to begin the search. The
first character of text in the control has an
index of 0. When this parameter is omitted or
set to -1, the search begins at the current input
position.

Options Optional. Is the sum of one or more constants
used to specify optional features, as described
in Remarks.

Return Value: If the text searched for is found, the Find method highlights the
specified text and returns the index (zero-based) of the first character
highlighted. If the specified text is not found, the Find method
returns -1.

Remarks: The settings for Options can include:

Setting Description

1 - SearchUp Determines the direction of searches through a
document. If this flag is used, the search
direction is up; if the flag is not used, the
search direction is down.

4 - MatchCase Determines if a match is based on the case of
the specified string as well as the text of the
string.

8 - NoHighLight Determines if a match appears highlighted in
the Text Control.

16 - NoMessageBox Suppresses the built-in message boxes which
inform the user that a match could not be
found.

Data Types: FindWhat: String
Start: Long
Options: Long
Return Value: Long

Page 180 Text Control Properties, Methods, and Events

See also: FindReplace Method

FindReplace Method
Description: Displays a 'Find' or 'Replace' dialog box.

Usage: TXTextControl.FindReplace TypeOfDialog

Return Value: This method has no return value.

Remarks: The TypeOfDialog parameter can have one of the following values:

Value Description

1 Displays a 'Find' dialog box.

2 Displays a 'Replace' dialog box.

Data Type: TypeOfDialog Integer

FontBold Property
FontItalic Property
FontStrikethru Property
FontUnderline Property
Description: Returns or sets font styles in the following formats: Bold, Italic,

Strikethru, and Underline. At design time these properties determine the
styles of the complete text. At runtime these properties get or set the
styles of the selected text when the FormatSelection property has been
set to True. When the FormatSelection property has been set to False
style settings are made for the complete text.

Usage: TXTextControl.FontBold [= value]
TXTextControl.FontItalic [= value]
TXTextControl.FontStrikethru [= value]
TXTextControl.FontUnderline [= value]

The properties' settings are:

Text Control Properties, Methods, and Events Page 181

Setting Description

0 The characters are not formatted with the
specified style.

1 The characters are formatted with the
specified style.

2 Indicates that the selection contains characters
that have a mix of the appropriate font styles.
This value is only possible at runtime and
when the FormatSelection property has been
set to True.

Data Type: Integer.

See also: FontName Property, FontSize Property, FontDialog Method,
FormatSelection Property, FontUnderlineStyle Property.

FontDialog Method
Description: Invokes the Text Control's built-in font dialog box and, after the user

has closed the dialog box, specifies whether he has changed something.

Usage: TXTextControl.FontDialog

Return Value: The method returns True when the user has changed one or more
attibutes. The method returns False when the formatting remains
unchanged.

Remarks: The changes, made in the dialog box, apply to the currently selected
text.

Data Types: Return value: Boolean.

FontName Property
Description: Returns or sets the font used to display text. At design time this property

changes or gets the font name of the complete text. At runtime this
property determines the font of the selected text when the
FormatSelection property has been set to True. When the

Page 182 Text Control Properties, Methods, and Events

FormatSelection property has been set to False the font of the complete
text is set or returned.

Usage: TXTextControl.FontName [= string]

Remarks: The property returns an empty string if the selected text contains
different fonts. This can happen only at runtime and when the
FormatSelection property has been set to True.

Data Type: String.

See also: FontDialog Method, FormatSelection Property.

FontSize Property
Description: Returns or sets a value that specifies the size of the font used to display

text. This value is in points. At design time this property changes or gets
the font size of the complete text. At runtime this property determines
the font size of the selected text when the FormatSelection property
has been set to True. When the FormatSelection property has been set
to False the font size of the complete text is set or returned.

Usage: TXTextControl.FontSize [= value]

Remarks: The property returns 0 if the selected text contains fonts with different
sizes. This can happen only at runtime and when the FormatSelection
property has been set to True.

Data Type: Integer.

See also: FontDialog Method, FormatSelection Property.

FontUnderlineStyle Property
Description: This property determines styles for the FontUnderline property.

Usage: TXTextControl.FontUnderlineStyle [= value]

The property's settings are:

Setting Description

&H1& Underline style is single underlined.

Text Control Properties, Methods, and Events Page 183

&H2& Underline style is double underlined.

&H4& Underline style is words only underlined. This
value is possible only in combination with
single or double underlined.

&H10& The text contains single underlined parts.

&H20& The text contains double underlined parts.

&H40& The text contains parts that are underlined
words only.

Remarks: The first group of values describes the underline styles. The second
group are additional values that are only useful for the property return
value. They inform about complex selections and are possible only
when the FormatSelection property has been set to True.

Data Type: Integer.

Limitations: Run time only.

See also: FontUnderline Property, FormatSelection Property.

ForeColor Property
Description: Returns or sets the color used to display text in a Text Control. Text

Control uses the Microsoft Windows operating enviroment red-green-
blue (RGB) color scheme.
At design time this property changes or gets the text color of the
complete text. At runtime this property determines the color of the
selected text when the FormatSelection property has been set to True.
When the FormatSelection property has been set to False the text color
of the complete text is set or returned.

Usage: TXTextControl.ForeColor [= value]

The property's settings are:

Page 184 Text Control Properties, Methods, and Events

Setting Description

RGB colors The valid range for a RGB color is 0 to
&HFFFFFF. The high byte of a number in this
range equals 0; the lower 3 bytes, from least to
most significant byte, determine the amount of
red, green, and blue, respectively. The red,
green, and blue components are each
represented by a number between 0 and 255
(&HFF).

System colors Colors specified by the system color
constants. If the high byte isn't 0, Text Control
uses the system colors, as defined in the user's
Control Panel settings.

Data Type: Long.

See also: FormatSelection Property, BackColor Property.

FormatSelection Property
Description: Specifies whether character and paragraph formatting properties apply

to the whole text or to a particular selection only.

Usage: TXTextControl.FormatSelection [= boolean]

The property's settings are:

Setting Description

True The formatting properties only apply to
selected text. This mode works only at run
time, because at design time it is not possible
to select text.

False (Default) The formatting properties apply to
the complete text.

Remarks: The properties which are affected are Alignment, BaseLine, FontBold,
FontItalic, FontName, FontSize, FontStrikethru, FontUnderline,

Text Control Properties, Methods, and Events Page 185

FontUnderlineStyle, LineSpacing, LineSpacingT, ForeColor,
TextBkColor.

Data Type: Boolean.

FrameDistance Property
Description: Returns or sets the distance between text and paragraph frame for the

currently selected paragraph(s).

Usage: TXTextControl.FrameDistance [= value]

Remarks: The property returns -1 if the user selects two or more paragraphs which
have different frame distance settings.

Data Type: Integer.

Limitations: Run time only.

FrameLineWidth Property
Description: Specifies the line widths of the currently selected paragraphs' frames.

Usage: TXTextControl.FrameLineWidth [= value]

Remarks: The property returns 0 if the user selects two or more paragraphs which
have different line width settings.

Data Type: Integer.

Limitations: Run time only.

FrameStyle Property
Description: Returns or sets the style of the currently selected paragraphs' frames.

Usage: TXTextControl.FrameStyle [= value]

The property value can be a combination of the following values:

Setting Description

BF_LEFTLINE (&H1) Draws a left frame line.

Page 186 Text Control Properties, Methods, and Events

BF_RIGHTLINE (&H2) Draws a right frame line.

BF_TOPLINE (&H4) Draws a top frame line.

BF_BOTTOMLINE (&H8) Draws a bottom frame line.

BF_TABLINES (&H10) Draws a vertical line at each tab
position.

BF_SINGLE (&H20) Draws a single line.

BF_DOUBLE (&H40) Draws a doubled line.

BF_BOXCONNECT (&H80) Draws a doubled line.

BF_NOLEFTLINE (&H100) Resets an existing left line.

BF_NORIGHTLINE (&H200) Resets an existing right line.

BF_NOTOPLINE (&H400) Resets an existing top line.

BF_NOBOTTOMLINE (&H800) Resets an existing bottom line.

BF_NOTABLINES (&H1000) Resets existing tabulator lines.

Remarks: The property returns -1 if the user selects two or more paragraphs which
have different frame style settings.

Data Type: Integer.

Limitations: Run time only.

HeaderFooter Property
Description: This property determines which kind of headers and/or footers the

document contains. It can only be used when the PageWidth and
PageHeight properties have non-zero values. Using this property, a
header or footer is not automatically activated. The
HeaderFooterActivate method or the built-in mouse interface can be
used to activate a header or footer.

Usage: TXTextControl.HeaderFooter [= HeadersFooters]

Constants: The setting for HeadersFooters can be the sum of one or more of the
following constants:

Text Control Properties, Methods, and Events Page 187

Constant Value Description

txHeader 1 Inserts a header.

txFirstHeader 2 Inserts a special header for the first
page.

txFooter 4 Inserts a footer.

txFirstFooter 8 Inserts a special footer for the first page.

Data Type: Integer.

Limitations: Run time only.

See also: HeaderFooterActivate Method, HeaderFooterStyle Property

HeaderFooterActivate Method
Description: Activates or deactivates a header or a footer. During activation the

current input focus is set to the header or footer area, so that the user
can alter the text and/or the format. During deactivation the input focus
is set back to the main text.

Usage: TXTextControl.HeaderFooterActivate HeaderFooter

The method's parameters are:

Parameter Description

HeaderFooter Specifies the header or footer to activate.
Valid values are described in Constants. When
this value is zero, a currently activated header
or footer is deactivated.

Return Value: The method returns True, if a header or footer could be activated,
otherwise it returns False.

Constants: The settings for HeaderFooter can be one of the following constants:

Constant Value Description

txHeader 1 Activates the header.

txFirstHeader 2 Activates the special header of the first
page.

Page 188 Text Control Properties, Methods, and Events

txFooter 4 Activates the footer.

txFirstFooter 8 Activates the special footer of the first
page.

Data Types: HeaderFooter Integer
Return value: Boolean

HeaderFooterActivated Event
Description: Occurs when a header or footer has been activated.

Syntax: HeaderFooterActivated(HeaderFooter)

The event procedure's parameters are:

Parameter Description

HeaderFooter Specifies the header or footer that has been
activated. Valid values are listed in Constants.

Constants: Valid values for HeaderFooter are:

Constant Value Description

txHeader 1 A header has been activated.

txFirstHeader 2 The special header for the first page has
been activated.

txFooter 4 A footer has been activated.

txFirstFooter 8 The special footer for the first page has
been activated.

Data Types: HeaderFooter Integer

See also: HeaderFooterDeactivated Event

HeaderFooterDeactivated Event
Description: Occurs when a header or footer has been deactivated.

Syntax: HeaderFooterDeactivated(HeaderFooter)

The event procedure's parameters are:

Text Control Properties, Methods, and Events Page 189

Parameter Description

HeaderFooter Specifies the header or footer that has been
deactivated. Valid values are listed in
Constants.

Constants: Valid values for HeaderFooter are:

Constant Value Description

txHeader 1 A header has been deactivated.

txFirstHeader 2 The special header for the first page has
been deactivated.

txFooter 4 A footer has been deactivated.

txFirstFooter 8 The special footer for the first page has
been deactivated.

Data Types: HeaderFooter Integer

See also: HeaderFooterActivated Event

HeaderFooterPosition Property
Description: This property specifies the position of a header or footer. For headers

the position value is the distance between the top of the header and the
top of the page. For footers the position value is the distance between
the bottom of the footer and the bottom of the page. All values are in
twips. The default value is 567 twips = 1 cm.

Usage: TXTextControl.HeaderFooterPosition(HeaderFooter) [= position]

Remarks: Valid settings for HeaderFooter are:

Constant Value Description

txHeader 1 Specifies the header.

txFirstHeader 2 Specifies the special header for the first
page.

txFooter 4 Specifies the footer.

txFirstFooter 8 Specifies the special footer for the first
page.

Page 190 Text Control Properties, Methods, and Events

Data Type: Long.

Limitations: Run time only.

HeaderFooterSelect Method
Description: This method determines whether a certain Text Control property or

method manipulates a header or a footer or the main text. This method
does not activate a header or footer.

Usage: TXTextControl.HeaderFooterSelect HeaderFooter

The method's parameters are:

Parameter Description

HeaderFooter Specifies the part of the text that is to be
selected. Valid values are described in
Constants. When this value is zero, Text
Control performs automatic selection, which
means that a certain property or method
manipulates the text part with the current input
position.

Return Value: The method returns True, if a header or footer could be selected,
otherwise it returns False.

Constants: The settings for HeaderFooter can be one of the following constants:

Constant Value Description

txHeader 1 Selects the header.

txFirstHeader 2 Selects the special header for the first
page.

txFooter 4 Selects the footer.

txFirstFooter 8 Selects the special footer for the first
page.

txMainText 10 Selects the main text.

Data Types: HeaderFooter Integer
Return value: Boolean

Text Control Properties, Methods, and Events Page 191

Example: This Basic example selects the header, alters the text of the header and
returns to the automatic mode:

TXTextControl1.HeaderFooterSelect txHeader
TXTextControl1.Text = "This is the header's text"
TXTextControl1.HeaderFooterSelect 0

HeaderFooterStyle Property
Description: This property determines how headers and footers can be activated and

how activated headers and footers appear on the screen.

Usage: TXTextControl.HeaderFooterStyle [= style]

Remarks: Valid settings are the sum of one or more constants specified in the
folowing list:

Constant Value Description

txMouseClick 1 Headers and footers can be activated
through single mouse clicks.

txNoDblClk 2 Headers and footers cannot be activated
through mouse double-clicks.

txSolidFrame 4 An activated header or footer has a solid
border to indicate its size.

txUnframed 8 An activated header or footer has no
border.

The default style setting is a dotted border for an activated header or
footer and a mouse interface that activates a header or footer with
double-clicks.

Data Type: Integer.

Limitations: Run time only.

Page 192 Text Control Properties, Methods, and Events

HExpand Event
Description: Occurs when the Text Control has changed its window size horizontally.

This event can only occur when the AutoExpand property is set to
True.

Syntax: HExpand()

See also: AutoExpand Property, VExpand Event.

HideSelection Property
Description: Specifies whether a text selection is hidden when the Text Control

looses the input focus.

Usage: TXTextControl.HideSelection [= boolean]

The property's settings are:

Setting Description

True (Default) The selection is hidden when the
Text Control looses the input focus and shown
when the Text Control gets the input focus.

False The selection stays visible, independent of the
current input focus.

Data Type: Boolean.

HScroll Event
Description: Occurs when the horizontal scroll position has been changed.

Syntax: HScroll()

See also: VScroll Event.

hWnd Property
Description: Returns a handle to a Text Control.

Text Control Properties, Methods, and Events Page 193

Usage: TXTextControl.hWnd [= handle]

Remarks: The hWnd property is used with Windows API calls. Many Windows
operating enviroment functions require the hWnd of the active window
as an argument.

Data Type: Handle.

Limitations: Read only, run time only.

ImageDisplayMode Property
Description: Provides several modes how images are displayed or refreshed.

Usage: TXTextControl.ImageDisplayMode [= value]

The property's settings are:

Setting Description

0 (Default) Standard mode.

&H1& Displays an image as a gray rectangle.

&H2& Container mode. This mode ensures proper
refreshing when the image is used as a
background image for transparent controls.
This mode is read only and can only be set
with the ObjectInsertFixed and
ObjectInsertAsChar methods.

Remarks: The property settings can be combined by adding the desired constant
values.

Data Type: Integer.

Limitations: Run time only.

See also: ObjectInsertAsChar Method, ObjectInsertFixed Method.

ImageFilename Property
Description: Determines the image filename of an embedded object. This property is

only available when the object has been inserted as a Image Control

Page 194 Text Control Properties, Methods, and Events

(See the ObjectInsertAsChar method for more information). The
object identifier must have previously been determined with the
ObjectCurrent property.

Usage: TXTextControl.ImageFilename [= string]

Data Type: String.

Limitations: Run time only.

See also: ObjectCurrent Property, ObjectInsertAsChar Method,
ObjectInsertFixed Method.

ImageFilters Property
Description: This property returns a string which specifies the available image filters.

This string can be used to initialize the Filter property of a Common
Dialog control.

Usage: TXTextControl.ImageFilters

Remarks: The filter names are read from the IC.INI or IC32.INI files. In the
standard version, only filters for TIFF, Bitmap and Windows Metafiles
are supplied, but you can add any Aldus compatible image filter library,
for instance Visual Tools VTImageStream.

Data Type: String.

Limitations: Read only, run time only.

See also: ObjectInsertAsChar Method, ObjectInsertFixed Method.

Example: This Basic example initializes an OpenFile dialog box with the names
of the available image filters and then loads a selected image:

dlgFile.DialogTitle = "Insert Image"
dlgFile.Filename = ""
dlgFile.Filter = TXTextControl1.ImageFilters
dlgFile.FilterIndex = 1
dlgFile.Flags = cdlOFNPathMustExist Or cdlOFNFileMustExist _
Or cdlOFNHideReadOnly
dlgFile.CancelError = True
dlgFile.ShowOpen

Text Control Properties, Methods, and Events Page 195

TXTextControl1.ObjectInsertAsChar 0, dlgFile.Filename, _
1, 100, 100, 0, 0

ImageSaveMode Property
Description: When saving a Text Control file using the Save or RTFExport

methods, this property determines whether the image data or the image
file name is stored.

Usage: TXTextControl.ImageSaveMode [= value]

The property's settings are:

Setting Description

0 Saves the image filename.

1 (Default) Saves the image data.

Data Type: Integer.

Limitations: Run time only.

See also: ObjectInsertAsChar Method, ObjectInsertFixed Method, Save
Method.

IndentB Property
IndentFL Property
IndentL Property
IndentR Property
IndentT Property
Description: Returns or sets the left, top, right, bottom, and first line indents (in

twips) for a paragraph or a selected range of paragraphs.

Usage: TXTextControl.IndentB [= value]
TXTextControl.IndentFL [= value]
TXTextControl.IndentL [= value]

Page 196 Text Control Properties, Methods, and Events

TXTextControl.IndentR [= value]
TXTextControl.IndentT [= value]

Remarks: If a number of paragraphs have been selected which have different
settings for one of the indents, the appropriate property returns &H8000.
The first line indent can be negative.

Data Type: Integer.

InputPosFromPoint Method
Description: Returns the text input position belonging to a certain geometric position.

The text input position is relative to the beginning of the text and the
geometric position is a position in the visible part of the text.

Usage: TXTextControl.InputPosFromPoint X, Y

The method's parameters are:

Parameter Description

X, Y Specify the coordinates of the point. These
values must be in twips.

Return Value: The method returns the text input position beginning with zero for the
position in front of the first character. The method returns -1, if a text
position could not be found.

Data Types: X, Y Long
Return value: Long

InsertionMode Property
Description: Specifies whether text is inserted or overwrites existing text.

Usage: TXTextControl.InsertionMode [= boolean]

The property's settings are:

Setting Description

True (Default) New text is inserted.

Text Control Properties, Methods, and Events Page 197

False New text overwrites existing text.

Data Type: Boolean.

KeyDown Event
KeyUp Event
Description: Occurs when the user presses (KeyDown) or releases (KeyUp) a key

while the Text Control has the input focus. To interpret ANSI
characters, use the KeyPress event.

Syntax: KeyDown(KeyCode, Shift)
KeyUp(KeyCode, Shift)

The event procedures' parameters are:

Parameter Description

KeyCode Is the virtual-key code of the pressed or
released key. When this value is changed,
Text Control handles the changed key.

Shift Informs about the state of the SHIFT, CTRL
and ALT keys at the time of the event. It is the
sum of one or more of the values described in
Remarks.

Remarks: The settings for Shift can include:

Value Description

1 The SHIFT key was pressed at the time of the
event.

2 The CTRL key was pressed at the time of the
event.

4 The ALT key was pressed at the time of the
event.

Data Types: KeyCode Integer
Shift Integer

See also: KeyPress Event

Page 198 Text Control Properties, Methods, and Events

KeyPress Event
Description: Occurs when the user presses and releases an ANSI key while the Text

Control has the input focus.

Syntax: KeyPress(KeyAscii)

The event procedure's parameters are:

Parameter Description

KeyAscii Is a standard numeric ANSI keycode.
Changing it sends a different character to the
Text Control.

Data Types: KeyAscii Integer

See also: KeyDown Event, KeyUp Event

KeyStateChange Event
Description: Occurs when the character insertion mode or when the state of the

NUMLOCK or CAPSLOCK key has been changed.

Syntax: KeyStateChange()

Language Property
Description: Determines the language in which Text Control displays dialog boxes

and error messages. Text Control has several built-in languages,
additional languages can be added with the ResourceFile property. The
default language is the Windows system language. See "Overviews -
Resources" for more information.

Usage: TXTextControl.Language [= value]

The property's settings are:

Setting Description

33 French

34 Spanish

Text Control Properties, Methods, and Events Page 199

39 Italian

41 German (Switzerland)

43 German (Austria)

49 German

81 Japanese (32 bit only)

else English

Data Type: Integer.

LineSpacing Property
Description: Specifies the line spacing for the currently selected paragraphs as a

percentage of the font size.

Usage: TXTextControl.LineSpacing [= value]

Data Type: Integer.

See also: FormatSelection Property.

LineSpacingT Property
Description: Specifies the line spacing for the currently selected paragraphs in twips.

Usage: TXTextControl.LineSpacingT [= value]

Data Type: Integer.

See also: FormatSelection Property.

Load Method
Description: Loads data from a file and inserts it into a Text Control. All Unicode

formats (6, 7 and 8) and the Microsoft Word format can only be used
with the 32 bit version of Text Control.

Usage: TXTextControl.Load FileName[, Offset[, Format[, CurSelection]]]

Page 200 Text Control Properties, Methods, and Events

The method's parameters are:

Parameter Description

FileName Specifies the file to load from.

Offset Optional. Specifies the file position from
where the data is read. When not specified or
set to
zero the data is read from the beginning.

Format Optional. Specifies a format identifier or the
name of a user-developed filter. When not
specified Text Control assumes TX format (id.
3). The following format identifiers are
possible:
1 - ANSI text Text only in ANSI format

(Windows compatible).
2 - TX text Text only in ANSI format

(Text Control compatible).
3 - TX Internal Text Control

format.
4 - HTML HTML format (Hypertext

Markup Language).
5 - RTF RTF format (Rich Text

Format).
6 - Unicode text Text only in Unicode

format (Windows
compatible).

7 - TX text Text only in Unicode
format (Text Control
compatible).

8 - TX Internal Text Control
format. Text is stored in
Unicode.

9 - WORD Microsoft Word format.
FilterFileName Can be used with a user-

developed filter.

Text Control Properties, Methods, and Events Page 201

CurSelection Optional. When set to true the loaded data
replaces the current selection or is inserted at
the current input position. The new input
position is behind the inserted data. When
omitted or set to false the loaded data replaces
the complete control contents independent of
the current selection. The new input position
is at the beginning of the data.

Return Value: The method returns the position in the file after the data has been
loaded.

Data Type: FileName: String
Offset: Long
Format: Integer or String
CurSelection: Boolean
Return value: Long

See also: Save Method.

Example: This Basic example opens a file and loads its contents into
TXTextControl1:

Private Sub mnuFile_Load_Click()
On Error Resume Next
' Create an "Open File" dialog box
CommonDialog1.Filter = "TX Demo (*.tx)|*.tx"
CommonDialog1.DialogTitle = "Open"
CommonDialog1.Flags = cdlOFNFileMustExist Or _

cdlOFNHideReadOnly
CommonDialog1.CancelError = True
CommonDialog1.ShowOpen
If Err Then Exit Sub
' Pass the filename to the text control
TXTextControl1.Load CommonDialog1.filename

End Sub

Page 202 Text Control Properties, Methods, and Events

LoadFromMemory Method
Description: Loads data from a byte array and inserts it into a Text Control. This

method works in the same way as the Load method.

Usage: TXTextControl.LoadFromMemory DataArray[, Format[,
CurSelection]]

The method's parameters are:

Parameter Description

DataArray Specifies the byte array to load from.

Format Optional. See the Format parameter of the
Load method for a description.

CurSelection Optional. See the CurSelection parameter of
the Load method for a description.

Return Value: The method returns True if the data could be loaded, otherwise it
returns False.

Data Types: DataArray: One-dimensional Byte Array
Format: Integer or String
CurSelection: Boolean
Return value: Boolean

See also: Load Method, SaveToMemory Method

LoadSaveAttribute Property
Description: This property enables an application to specify several attributes that

can be used in combination with the Load and Save methods for the
following situations:

1. Documents can contain elements, for example a document title, that
cannot be converted directly to text properties but may be useful for
certain applications. Such an attribute can be set before a document is
saved, in order to store it as part of the document, or it can be provided
and used after a document has been loaded.

Text Control Properties, Methods, and Events Page 203

2. In some documents generic information about text properties is left
out, for example with HTML documents which define font heights as a
percentage of a base height without specifying that base height. Such an
attribute can be set before a document is loaded, in order to inform the
filter how to calculate such relative values.

Usage: TXTextControl.LoadSaveAttribute(Attribute) [= value]

The property's parameters are:

Setting Description

Attribute Determines the attribute that is to be changed
or returned. Possible values are listed in
Constants.

Constants: Valid values for Attribute are:

Constant Description

txDocWidth Loads or saves a document width in twentieths
of a point. When this property is set before a
document is loaded, it is used to calculate
width values contained in the document which
are relative to the document's width. After a
document has been loaded, this property
returns the width, contained in the document,
or -1 if the document does not contain a width.
When a document is saved and this property
has not been set, Text Control saves the value
of the PageWidth property instead, except
this property has been set to -1 previously.

txDocHeight Loads or saves a document height in
twentieths of a point. It is used in the same
manner as described for the txDocWidth
attribute.

txDocLeftMargin Loads or saves a left document margin in
twentieths of a point. After a document has
been loaded, this property returns the margin
contained in the document, or -1 if the

Page 204 Text Control Properties, Methods, and Events

document does not contain the margin.
When a document is saved and this property
has not been set, Text Control saves the value
of the PageMarginL property instead, except
this property has been set to -1 previously.

txDocTopMargin Loads or saves a top document margin in
twentieths of a point. It is used in the same
manner as described for the
txDocLeftMargin attribute.

txDocRightMargin Loads or saves a right document margin in
twentieths of a point. It is used in the same
manner as described for the
txDocLeftMargin attribute.

txDocBottomMargin Loads or saves a bottom document margin in
twentieths of a point. It is used in the same
manner as described for the
txDocLeftMargin attribute.

txDocTitle Loads or saves a document title. After a
document has been loaded, this property
returns the document title contained in the
document, or an empty string if the document
does not contain a title.

txDocBkColor Loads or saves a document background color
as a RGB value. After a document has been
loaded, this property returns the background
color contained in the document, or -1, if the
document does not contain a background
color.

txAbsPath Specifies a character string that is used to
search for resources like images or
destinations of hypertext links. When a
document is loaded, this path is used to locate
a resource. It is only used for resources which
are specified through an absolute location. In

Text Control Properties, Methods, and Events Page 205

this case the absolute resource location is
completely replaced through the path specified
through this property. When a document is
saved, this attribute is not used.

txBasePath Specifies a character string that is used to
search for resources given through a relative
location. When a document is loaded, this path
is added to the relative location of a resource.
When a document is saved the string can only
be a file path. All files in the document are
saved relative to this path.

txBaseFontSize HTML only. Specifies a base font size in
points and is used to convert percentage font
sizes to absolute font sizes. When not set, a
value of 10 points is used. This attribute is
only used when a document is loaded.

txPropFontName HTML only. Defines a proportional font name
when not specified in the document. When not
set, Text Control uses a default font. This
attribute is only used when a document is
loaded.

txMonoFontName HTML only. Defines a mono-spaced font
name when not specified in the document.
When not set, Text Control uses a default
mono-spaced font. This attribute is only used
when a document is loaded.

txTextColor HTML only. Defines a text color. This
attribute is only used when a document is
loaded. When the txOverwriteTextColor
attribute is set to True, this color is used for
text coloring. Otherwise when not set to
overwrite, this color is only used when no text
color is specified in the document.

txOverwriteTextColor HTML only. Sets the txTextColor attribute to
overwrite or not to overwrite.

Page 206 Text Control Properties, Methods, and Events

txTextBkColor HTML only. Defines a text background color.
This attribute is only used when a document is
loaded. When the txOverwriteTextBkColor
attribute is set to True, this color is used for
text background coloring. Otherwise, when
not set to overwrite, this color is only used
when no text background color is specified in
the document.

txOverwriteTextBkColor HTML only. Sets the txTextBkColor
attribute to overwrite or not to overwrite.

txLoadImages HTML only. Specifies whether or not images
are loaded. When not set, images are replaced
by its alternate text or a special link text. For
all other formats images are always loaded.

txEnableLinks HTML, RTF and Word only. Converts source
and target fields of hypertext links to
appropriate marked text fields.

txEnableHighlights RTF only. Converts all '\cbN' keywords into
marked text fields of the type
txFieldHighlight.

txEnableTopics RTF only. Converts all '\sect' keywords into
marked text fields of the type txFieldTopic.

txLinkColor HTML only. Defines a text color for pieces of
text which function as hypertext links. This
attribute is only used when a document is
loaded. When the txOverwriteLinkColor
attribute is set to True, this color is used to
color hypertext links. Otherwise when not set
to overwrite, this color is only used when no
color for links is specified in the document.

txOverwriteLinkColor HTML only. Sets the txLinkColor attribute to
overwrite or not to overwrite.

txUnderlineLinks HTML only. Specifies whether or not
hypertext links are underlined. This attribute

Text Control Properties, Methods, and Events Page 207

is only used when a document is loaded.
When set to False, hypertext links are only
underlined when specified in the document.

Data Types: The following lists the data type for each attribute including its numeric
value:

Constant Value DataType
txDocWidth 0 Long
txDocHeight 1 Long
txDocLeftMargin 2 Long
txDocTopMargin 3 Long
txDocRightMargin 4 Long
txDocBottomMargin 5 Long
txDocTitle 6 String
txDocBkColor 7 Long
txAbsPath 28 String
txBasePath 29 String
txBaseFontSize 30 Integer
txPropFontName 31 String
txMonoFontName 32 String
txTextColor 33 Long
txOverwriteTextColor 34 Boolean
txTextBkColor 35 Long
txOverwriteTextBkColor 36 Boolean
txLoadImages 37 Boolean
txEnableLinks 38 Boolean
txEnableHighlights 39 Boolean
txEnableTopics 40 Boolean
txLinkColor 50 Long
txOverwriteLinkColor 51 Boolean
txUnderlineLinks 52 Boolean

Limitations: Run time only

See also: Load Method, Save Method

MouseDown Event

Page 208 Text Control Properties, Methods, and Events

MouseMove Event
MouseUp Event
Description: Occurs when the user presses (MouseDown) or releases (MouseUp) a

mouse button or when the user moves the mouse (MouseMove).

Syntax: MouseDown(Button, Shift, X, Y)
MouseMove(Button, Shift, X, Y)
MouseUp(Button, Shift, X, Y)

The event procedures' parameters are:

Parameter Description

Button Informs about the state of the mouse buttons at
the time of the event. Possible settings are
described in Remarks.

Shift Informs about the state of the SHIFT, CTRL
and ALT keys at the time of the event.
Possible values are the same as for the
KeyDown and KeyUp events.

X,Y Specifies the current location of the mouse
pointer. The coordinates are relative to the
upper-left corner of the Text Control's
window.

Remarks: The following are valid values for the Button parameter. For the
MouseDown and MouseUp events it can only be one of the values. For
the MouseMove event it can be the sum of more than one value.

Value Description

1 The left button is pressed.

2 The right button is pressed.

4 The middle button is pressed.

Data Types: Button Integer
Shift Integer

Text Control Properties, Methods, and Events Page 209

X Long
Y Long

See also: KeyDown Event, KeyUp Event.

MousePointer Property
Description: Returns or sets a value indicating the type of mouse pointer displayed

when the mouse is over a particular part of a Text Control at run time.

Usage: TXTextControl.MousePointer [= value]

The property's settings are:

Setting Description

0 (Default) The mouse pointer is an I-Beam in
edit mode and an arrow in read-only mode.
See the EditMode property for more
information.

1 Arrow.

2 Cross.

3 I-Beam.

4 Icon (small square within a square).

5 Size (four-pointed arrow).

6 Size NE SW (double arrow pointing northeast
and southwest).

7 Size N S (double arrow pointing north and
south).

8 Size NW SE (double arrow pointing northwest
and southeast).

9 Size W E (double arrow pointing west and
east).

10 Up Arrow.

11 Hourglass.

12 Hand.

Page 210 Text Control Properties, Methods, and Events

Data Type: Integer.

Move Event
Description: Occurs when a Text Control has been moved with the mouse while

depressing the ALT key.

Syntax: Move()

See also: Size Event, SizeMode Property.

NextWindow Property
Description: Returns or sets the next window in a chain of linked windows.

Usage: TXTextControl.NextWindow [= handle]

Data Type: Handle.

Limitations: Run time only.

Example: The following Basic code line links 2 Text Controls so that text flows
from TextControl1 to TextControl2:

TextControl1.NextWindow = TextControl2.hWnd

ObjectClicked Event
Description: Occurs when an object has been clicked on.

Syntax: ObjectClicked(ObjectId)

The event procedure's parameters are:

Parameter Description

ObjectId Is the identifier of the object that has been
clicked.

Remarks: The value of the ObjectCurrent property is updated with the identifier
given through the ObjectId parameter.

Data Types: ObjectId Integer

Text Control Properties, Methods, and Events Page 211

See also: ObjectInsertAsChar Method, ObjectInsertFixed Method,
ObjectDblClicked Event.

ObjectCreated Event
Description: This event specifies that a new object has been created. This can happen

when a document that contains objects, is loaded or when an object is
pasted from the clipboard. This event does not occur after inserting a
new object with the ObjectInsertFixed or ObjectInsertAsChar
methods.

Syntax: ObjectCreated(ObjectId)

The event procedure's parameters are:

Parameter Description

ObjectId Is the identifier of the object that has been
created.

Remarks: The value of the ObjectCurrent property is updated with the identifier
given through the ObjectId parameter.

Data Types: ObjectId Integer

See also: ObjectInsertAsChar Method, ObjectInsertFixed Method

ObjectCurrent Property
Description: Returns or sets the current object for the Objectxxx and Imagexxx

properties, methods, and events, except ObjectInsertAsChar and
ObjectInsertFixed. The value is automatically updated when an object
is inserted or when you click on an object.

Usage: TXTextControl.ObjectCurrent [= ObjectId]

Limitations: Run time only.

Data Type: Integer.

Page 212 Text Control Properties, Methods, and Events

ObjectDblClicked Event
Description: Occurs when an object has been double-clicked on.

Syntax: ObjectDblClicked(ObjectId)

The event procedure's parameters are:

Parameter Description

ObjectId Is the identifier of the object that has been
double-clicked.

Remarks: The value of the ObjectCurrent property is updated with the identifier
given through the ObjectId parameter.

Data Types: ObjectId Integer

See also: ObjectClicked Event.

ObjectDelete Method
Description: This method deletes the object with the specified object identifier.

Usage: TXTextControl.ObjectDelete ObjectId

Return Value: The method returns True if the specified object could be deleted,
otherwise it returns False.

Data Types: ObjectId Integer
Return value: Boolean

See also: ObjectInsertAsChar Method, ObjectInsertFixed Method,
ObjectDeleted Event.

ObjectDeleted Event
Description: Occurs when an object has been deleted.

Syntax: ObjectDeleted(ObjectId)

The event procedure's parameters are:

Text Control Properties, Methods, and Events Page 213

Parameter Description

ObjectId Is the identifier of the object that has been
deleted.

Remarks: The value of the ObjectCurrent property is set to zero.

Data Types: ObjectId Integer

See also: ObjectInsertAsChar Method, ObjectInsertFixed Method,
ObjectDelete Method.

ObjectDistance Property
Description: Specifies the distance (in twips) between an object and the text that

flows around it. This property can only be used with objects that have
been inserted using the ObjectInsertFixed method. Otherwise an
Error event is generated.

Usage: TXTextControl.ObjectDistance(index) [= value]

The property's parameters are:

Parameter Description

index Specifies one of the four possible distances:
left (1), top (2), right (3), bottom (4).

Data Type: Integer.

Limitations: Run time only.

See also: ObjectInsertAsChar Method, ObjectInsertFixed Method.

ObjectGetData Event
Description: Occurs when a document which contains objects, is saved. This event is

sent only for objects that have been inserted via its hWnd property. In
response to this event, the application can store the object's data by
copying it into the ObjectData parameter.

Syntax: ObjectGetData(ObjectId, ObjectData)

Page 214 Text Control Properties, Methods, and Events

The event procedure's parameters are:

Parameter Description

ObjectId Is the identifier of the object that is to be
saved.

ObjectData The object's private data can be copied to this
parameter.

Remarks: It is recommended to store binary data as a byte array and not as a
string. If you want compatibility between the 16 bit and 32 bit version
you should store strings always as ANSI strings.

Data Types: ObjectId Integer
ObjectData Variant

See also: ObjectSetData Event, ObjectGethWnd Event

ObjectGethWnd Event
Description: Occurs when a document which contains objects, is loaded. This event

is sent only for objects that have been inserted via its hWnd property.
The application must create the object and copy the object's hWnd
property to the hWnd parameter.

Syntax: ObjectGethWnd(ObjectId, KindOfObject, hWnd)

The event procedure's parameters are:

Parameter Description

ObjectId Is the identifier of the object that is to be
created.

KindOfObject Is the value that has been specified as
KindOfObject parameter for the
ObjectInsertAsChar or ObjectInsertFixed
method.

hWnd The hWnd property of the new created object
must be copied to this variable.

Text Control Properties, Methods, and Events Page 215

Data Types: ObjectId Integer
KindOfObject Integer
hWnd Handle

See also: ObjectGetData Event, ObjectSetData Event.

ObjectGetZoom Event
Description: Occurs when an object’s zoom factor is requested. This event is sent

only for objects that have been inserted via its hWnd property.

Syntax: ObjectGetZoom(ObjectId, ZoomFactor)

The event procedure's parameters are:

Parameter Description

ObjectId Is the identifier of the object, the zoom factor
of which is requested.

ZoomFactor The zoom factor of the object must be copied
to this variable.

Data Types: ObjectId Integer
ZoomFactor Integer

See also: ObjectSetZoom Event

ObjectInsertAsChar Method
Description: This method embeds a new object or image which is then handled like a

single character in the text.

Usage: TXTextControl.ObjectInsertAsChar hWnd, FileName, TextPos,
ScaleX, ScaleY, ImageDisplayMode, ImageSaveMode [,KindOfObject]

The method's parameters are:

Parameter Description

hWnd Specifies an externally created window that
represents the object to be inserted. It can also
be one of the following identifiers:

Page 216 Text Control Properties, Methods, and Events

0 - Image Control
The Text Control creates an Image Control
window and handles this window internally.
In this case the FileName parameter must
specify a file containing an image.

1 - OLE object
Inserts an OLE object. The type of object can
be selected with the system embedded OLE
Insert dialog box (32 bit only).

2 - OLE object (programmatic identifier)
Creates a newly created OLE object. In this
case the FileName parameter must specify a
string which is the programmatic identifier of
the OLE object to insert.The programmatic
identifier is stored under the ProgID key in
the registration database. For example the
programmatic identifier of a Text Control 5.0
is TX.TextControl.110 (32 bit only).

3 - OLE object (embedded)
Inserts a newly created embedded OLE object
from a file. In this case the FileName
parameter must specify a valid filename (32
bit only).

4 - OLE object (linked)
Inserts a newly created linked OLE object
from a file. In this case the FileName
parameter must specify a valid filename (32
bit only).

FileName Specifies the full DOS path name of a file that
contains an image. This parameter can be zero
if hWnd specifies an externally created
window.

TextPos This parameter specifies the text position
where the object is to be inserted. If TextPos is

Text Control Properties, Methods, and Events Page 217

-1 the object is inserted at the current input
position.

ScaleX Specifies a horizontal scaling factor as a
percentage. It must be a value between 10 and
250.

ScaleY Specifies a vertical scaling factor as a
percentage. It must be a value between 10 and
250.

ImageDisplayMode see ImageDisplayMode Property.

ImageSaveMode see ImageSaveMode Property.

KindOfObject Optional. Specifies an identifier that is to be
used with externally created windows. When a
document with external windows is loaded an
ObjectGethWnd event occurs for each
window to give an application the opportunity
of recreating these windows. This parameter
can be used to handle groups of different types
of windows.

Return Value: The method returns the object's identifier when an object could be
inserted. Otherwise it returns zero. The object's identifier can also be
obtained with the ObjectCurrent property.

Data Types: hWnd: Handle
FileName: String
TextPos: Long
ScaleX: Integer
ScaleY: Integer
ImageDisplayMode: Integer
ImageSaveMode: Integer
KindOfObject: Integer
Return value: Integer

See also: ObjectInsertFixed Method.

Page 218 Text Control Properties, Methods, and Events

ObjectInsertFixed Method
Description: This method embeds a new object or image at a fixed position. The text

flows around the object.

Usage: TXTextControl.ObjectInsertFixed hWnd, FileName, PosX, PosY,
ScaleX, ScaleY, ImageDisplayMode, ImageSaveMode, SizeMode,
TextFlow, DistanceL, DistanceT, DistanceR, DistanceB[,KindOfObject]

The method's parameters are:

Parameter Description

hWnd Specifies an externally created window that
represents the object to be inserted. It can also
be an identifier to insert Image Controls or
OLE objects. See the hWnd parameter
description of the ObjectInsertAsChar
method for more information.

FileName Specifies the full DOS path name of a file that
contains an image. This parameter can be zero
if hWnd specifies an externally created
window.

PosX Specifies the object's horizontal position in
twentieths of a point.

PosY Specifies the object's vertical position in
twentieths of a point.

ScaleX Specifies a horizontal scaling factor as a
percentage. It must be a value between 10 and
250.

ScaleY Specifies a vertical scaling factor as a
percentage. It must be a value between 10 and
250.

ImageDisplayMode see ImageDisplayMode Property.

ImageSaveMode see ImageSaveMode Property.

SizeMode see ObjectSizeMode Property.

TextFlow see ObjectTextFlow Property.

Text Control Properties, Methods, and Events Page 219

DistanceL,
DistanceT,
DistanceR,
DistanceB see ObjectDistance Property.

KindOfObject Optional. Specifies an identifier that is to be
used with externally created windows. When a
document with external windows is loaded an
ObjectGethWnd event occurs for each
window to give an application the opportunity
of recreating the external windows. This
parameter can be used to handle groups of
different types of windows.

Return Value: The method returns the object's identifier when an object could be
inserted. Otherwise it returns zero. The object's identifier can also be
obtained with the ObjectCurrent property.

Data Types: hWnd: Handle
FileName: String
PosX: Long
PosY: Long
ScaleX: Integer
ScaleY: Integer
ImageDisplayMode: Integer
ImageSaveMode: Integer
SizeMode: Integer
TextFlow: Integer
DistanceL: Integer
DistanceT: Integer
DistanceR: Integer
DistanceB: Integer
KindOfObject: Integer
Return value: Integer

See also: ObjectInsertAsChar Method.

Page 220 Text Control Properties, Methods, and Events

ObjectItem Property
Description: Returns a reference to the object currently set with the ObjectCurrent

property. This property is only available for inserted OLE objects.

Usage: TXTextControl.ObjectItem

Data Type: Object.

Limitations: Read only, run time only.

Example: The following Basic example inserts a Text Control into another Text
Control at the current input position and sets the font bold attribute for
the inserted Text Control. The ObjectInsertAsChar method implicitely
sets the ObjectCurrent property to the just inserted object.

TXTextControl1.ObjectInsertAsChar 2, "TX.TextControl.110", -
1, 100, 100, 0, 0

TXTextControl1.ObjectItem.FontBold = True

ObjectMoved Event
Description: Occurs when an inserted object has been moved with the mouse while

depressing the ALT key.

Syntax: ObjectMoved(ObjectId)

The event procedure's parameters are:

Parameter Description

ObjectId Is the identifier of the object that has been
moved.

Data Types: ObjectId Integer

See also: ObjectSized Event.

ObjectNext Method
Description: This method returns the identifier of the object that follows the

specified object in the Text Control's internal list of objects.

Text Control Properties, Methods, and Events Page 221

Usage: TXTextControl1.ObjectNext ObjectId, ObjectGroup

The method's parameters are:

Parameter Description

ObjectId Specifies a unique identifier returned by the
ObjectInsertAsChar or ObjectInsertFixed
method. If this parameter is zero the first
object's identifier is returned.

ObjectGroup This parameter specifies which kinds of
objects are to be returned. It can be a sum of
the values, described in Remarks. If this
parameter is zero, the identifiers of all objects
are returned.

Return Value: The method returns the next object's identifier. It returns zero when
there is no following object.

Remarks: The settings for ObjectGroup can include:

Value Description

1 Returns only identifiers of fixed positioned
objects.

2 Returns only identifiers of objects that act as
single characters.

4 Returns only identifiers of objects which are
internally created by the Text Control using
the Image-Control module.

8 Returns only identifiers of objects which are
externally created by the application.

Data Types: ObjectId: Integer
ObjectGroup: Integer
Return value: Integer

Page 222 Text Control Properties, Methods, and Events

ObjectPrint Event
Description: Occurs when a document which contains objects, is printed. This event

is sent only for objects that have been inserted via its hWnd property.

Syntax: ObjectPrint(ObjectId, Device, Left, Top, Right, Bottom, Processed)

The event procedure's parameters are:

Parameter Description

ObjectId Is the identifier of the object that is to be
printed.

Device Is the printer device context.

Left, Top, Right, Bottom Is the object's bounding rectangle. This
rectangle is given in device pixels with an
origin at the upper left corner of the object.

Processed When the object has been printed, this
parameter should be set to True.

Data Types: ObjectId Integer
Device Long
Left, Top, Right, Bottom Long
Processed Boolean

See also: ObjectGetData Event, ObjectSetData Event, ObjectGethWnd Event

ObjectScaleX Property
ObjectScaleY Property
Description: Specifies the object's scaling factor as a percentage in the range of 10 to

400%. The object must have previously been selected with the
ObjectCurrent property.

Usage: TXTextControl.ObjectScaleX [= value]
TXTextControl.ObjectScaleY [= value]

Data Type: Integer.

Limitations: Run time only.

Text Control Properties, Methods, and Events Page 223

See also: ObjectDistance Property, ObjectInsertFixed Method.

ObjectScrollOut Event
Description: Occurs when an object is scrolled out of the visible area.

Syntax: ObjectScrollOut(ObjectId)

The event procedure's parameters are:

Parameter Description

ObjectId Is the identifier of the object that has been
scrolled.

Data Types: ObjectId Integer

See also: ObjectMoved Event, ObjectSized Event

ObjectSetData Event
Description: Occurs when a document which contains objects, is loaded. This event

is sent only for objects that have been inserted via its hWnd property.

Syntax: ObjectSetData(ObjectId, ObjectData)

The event procedure's parameters are:

Parameter Description

ObjectId Is the identifier of the object that is loaded.

ObjectData The data of the object in the format saved with
the ObjectGetData event.

Data Types: ObjectId Integer
ObjectData Variant

See also: ObjectGetData Event, ObjectGethWnd Event

Page 224 Text Control Properties, Methods, and Events

ObjectSetZoom Event
Description: Occurs when an object’s zoom factor is to be changed. This event is

sent only for objects that have been inserted via its hWnd property.

Syntax: ObjectSetZoom(ObjectId, ZoomFactor, Processed)

The event procedure's parameters are:

Parameter Description

ObjectId Is the identifier of the object, the zoom factor
of which is to be changed.

ZoomFactor Is the object's new zoom factor.

Processed If the event is being processed this parameter
should be set to True.

Data Types: ObjectId Integer
ZoomFactor Integer
Processed Boolean

See also: ObjectGetZoom Event.

ObjectSized Event
Description: Occurs when an embedded object has been resized with the mouse

while depressing the ALT key.

Syntax: ObjectSized(ObjectId)

The event procedure's parameters are:

Parameter Description

ObjectId Is the identifier of the object that has been
sized.

Data Types: ObjectId Integer

See also: ObjectMoved Event.

Text Control Properties, Methods, and Events Page 225

ObjectSizeMode Property
Description: Specifies whether an inserted object can be moved or resized at run

time. If the Moveable option is selected, the control can be moved on
the background by depressing the ALT key and then dragging the
control with the mouse. If the Sizeable option is selected and the ALT
key is depressed, the borders of the control can be dragged.

Usage: TXTextControl.ObjectSizeMode [= value]

The property's settings are:

Setting Description

0 - Fixed (Default) The object cannot be moved or
sized.

1 - Moveable The object can be moved.

2 - Sizeable The object can be sized.

3 - Move and Sizeable The object can be moved and sized.

Data Type: Integer.

Limitations: Run time only.

See also: ObjectMoved Event, ObjectSized Event, SizeMode Property.

ObjectTextFlow Property
Description: Informs about the way in which text flows around an embedded object.

Usage: TXTextControl.ObjectTextFlow

The property returns the following values:

Setting Description

0 The object has been inserted 'as character'
using the ObjectInsertAsChar method.

2 The object has been inserted as fixed object.
The text stops at the top and continues at the
bottom of the object.

Page 226 Text Control Properties, Methods, and Events

3 The object has been inserted as fixed object.
The text flows around the object and empty
areas at the left and right side are filled.

Data Type: Integer.

Limitations: Read only, run time only.

See also: ObjectInsertFixed Method.

PageFormatChange Event
Description: Occurs when the page format settings have been changed.

Syntax: PageFormatChange()

PageHeight Property
Description: Specifies the height of the page for the current document.

Usage: TXTextControl.PageHeight [= value]

Remarks: The height of the actual printed area is PageHeight minus
PageMarginB minus PageMarginT. The maximum value depends on
the capabilities of the selected printer and must not exceed 32767 twips.

If PageHeight is 0, the control's height is used instead. This setting can
be used to place several controls without scrollbars on a page.

Data Type: Long.

See also: PageWidth Property, PageMarginx Properties, PrintDevice Property,
PrintPage Method.

Example: See PrintPage Method example.

PageMarginB Property
PageMarginL Property
PageMarginR Property

Text Control Properties, Methods, and Events Page 227

PageMarginT Property
Description: Returns or sets the margins for the pages of the current document.

Usage: TXTextControl.PageMarginB [= value]
TXTextControl.PageMarginL [= value]
TXTextControl.PageMarginR [= value]
TXTextControl.PageMarginT [= value]

Remarks: The maximum values depend on the setting of the PageWidth and
PageHeight properties.

Data Type: Long.

See also: PageHeight Property, PageWidth Property, PrintDevice Property,
PrintPage Method.

Example: See PrintPage Method example.

PageWidth Property
Description: Specifies the width of the page for the current document.

Usage: TXTextControl.PageWidth [= value]

Remarks: The width of the actual printed area is PageWidth minus
PageMarginR minus PageMarginL. The maximum value depends on
the capabilities of the selected printer and must not exceed 32767 twips.

If PageWidth is 0, the control's width is used instead. This setting can
be used to place several controls without scrollbars on a page.

Data Type: Long.

See also: PageHeight Property, PageMarginxx Properties, PrintDevice
Property, PrintPage Method.

Example: See PrintPage Method example.

Page 228 Text Control Properties, Methods, and Events

ParagraphChange Event
Description: Occurs when the character input position has been moved to another

paragraph.

Syntax: ParagraphChange()

ParagraphDialog Method
Description: Invokes the Text Control's built-in paragraph attributes dialog box and,

after the user has closed the dialog box, specifies whether he has
changed something.

Usage: TXTextControl.ParagraphDialog

Return Value: The method returns True when the user has changed one or more
attibutes. The method returns False when the formatting remains
unchanged.

Remarks: The changes, made in the dialog box, apply to the currently selected
text.

Data Types: Return value: Boolean.

ParagraphFormatChange Event
Description: Occurs when the paragraph attributes of the selected paragraphs have

been changed.

Syntax: ParagraphFormatChange()

PosChange Event
Description: Occurs when the current character input position has been changed.

Syntax: PosChange()

Text Control Properties, Methods, and Events Page 229

PrintColors Property
Description: Specifies whether text colors are printed as colors or in black.

Usage: TXTextControl.PrinterColors [= boolean]

The property's settings are:

Setting Description

True (Default) Text colors are printed.

False All the text is printed in black.

Data Type: Boolean.

PrintDevice Property
Description: Sets the printer device context for TextContol's built-in printing

function. The Windows operating enviroment manages devices like
printers and screens with context handles.

Usage: TXTextControl.PrintDevice [= DeviceContextHandle]

Data Type: Long.

Limitations: Write only, run time only.

See also: PageHeight Property, PageMarginx Properties, PageWidth Property,
PrintPage Method.

Example: See PrintPage Method.

PrintOffset Property
Description: Determines whether Text Control starts printing exactly at the top left

corner of the page, or at the printer's physical printing offset.

Usage: TXTextControl.PrintOffset [= boolean]

The property's settings are:

Page 230 Text Control Properties, Methods, and Events

Setting Description

True Adds the physical printing offset.

False (Default) Do not add the physical printing
offset.

Data Type: Boolean.

PrintPage Method
Description: Prints a page of text on the default printer. The number is specified

through PageNumber. The first page has the number 1.

Usage: TXTextControl.PrintPage PageNumber

Return Value: This method has no return value.

Remarks: Prior to using this method the Text Control's output device must be
selected using the PrintDevice property.

Data Types: PageNumber Integer

See also: PageHeight Property, PageMarginx Properties, PageWidth Property,
PrintDevice Property.

Example: This Basic example shows how to print the contents of a Text Control
on the default printer:

Sub mnuFile_Print_Click ()
Dim wPages, No

Printer.Print
wPages = TXTextControl1.CurrentPages
For No = 1 To wPages

TXTextControl1.PrintDevice = Printer.hDC
TXTextControl1.PrintPage No
Printer.NewPage

Next No
Printer.EndDoc

End Sub

Text Control Properties, Methods, and Events Page 231

PrintZoom Property
Description: Specifies a zoom factor for printing. The value is specified as a

percentage in the range of 10 to 400%. This property is independent of
the current ZoomFactor setting.

Usage: TXTextControl.PrintZoom [= value]

Data Type: Integer.

See also: ZoomFactor Property.

Redo Method
Description: This method can be used to redo the last Text Control operation.

Usage: TXTextControl.Redo

Return Value: The method returns True if the redo operation was successful.
Otherwise it returns False.

Data Types: Return value: Boolean

See also: Undo Method, CanUndo Property, CanRedo Property.

Refresh Method
Description: This method forces a complete repaint of a Text Control.

Usage: TXTextControl.Refresh

Return Value: This method has no return value.

ResetContents Method
Description: Deletes the complete contents of a Text Control including tables,

objects, marked text fields and headers and footers.

Usage: TXTextControl.ResetContents

Page 232 Text Control Properties, Methods, and Events

Return Value: The method returns True, if everything could be deleted, otherwise it
returns False.

Data Types: Return value: Boolean

ResourceFile Property
Description: Returns or sets the file name of a resource library which Text Control

loads to display resources like information strings, error messages and
built-in dialog boxes. The file name must include a complete path.
When a resource library is set, the value of the Language property is
ignored. See the new chapter "Overviews - Resources" for more
information.
To avoid compatibility errors, resource libraries should have a unique
file name and should be placed in the same directory as the application's
executable file.

Usage: TXTextControl.ResourceFile [= string]

Data Type: String

Limitations: Run time only.

See also: Language Property.

RTFSelText Property
Description: This property works much like the standard SelText property. The

SelStart and SelLength properties can be used to specify a text
selection which is to be copied to a string or inserted from a string. The
difference between SelText and RTFSelText is that with the SelText
property, text is stored without formatting information in the ANSI
format, whilst RTFSelText uses Rich Text Format to preserve all of the
formatting attributes.

Usage: TXTextControl.RTFSelText [= string]

Text Control Properties, Methods, and Events Page 233

Remarks: RTF (Rich Text Format) is one of the most common interchange
formats for text documents. Most word processors available for
Windows are able to read and write RTF files.

Data Type: String.

Limitations: Run time only.

See also: RTFImport Method.

RulerHandle Property
Description: Specifies the ruler control to be used with a Text Control.

Usage: TXTextControl.RulerHandle [= Ruler.hWnd]

Data Type: Handle

Limitations: Run time only.

See also: StatusBarHandle Property, ButtonBarHandle Property.

Save Method
Description: Saves data in a file with a specified format. All Unicode formats (6, 7

and 8) and the Microsoft Word format can only be used with the 32 bit
version of Text Control.

Usage: TXTextControl.Save FileName[, Offset[, Format[, CurSelection]]]

The method's parameters are:

Parameter Description

FileName Specifies the file to save in.

Offset Optional. Specifies the file position to where
the data is to be written when the data of more
than one Text Control are to be saved. When
not specified or set to -1 the data is appended.

Format Optional. Specifies a format identifier or the
name of a user-developed filter. When this

Page 234 Text Control Properties, Methods, and Events

parameter is not specified the data is saved in
the internal Text Control format. The
following format identifiers are possible:
1 - ANSI text Text only in ANSI format

(Windows compatible).
2 - TX text Text only in ANSI format

(Text Control compatible).
3 - TX Internal Text Control

format.
4 - HTML HTML format (Hypertext

Markup Language).
5 - RTF RTF format (Rich Text

Format).
6 - Unicode text Text only in Unicode

format (Windows
compatible).

7 - TX text Text only in Unicode
format (Text Control
compatible).

8 - TX Internal Text Control
format. Text is stored in
Unicode.

9 - WORD Microsoft Word format.
FilterFileName Can be used with a user-

developed filter.

CurSelection Optional. When set to true the current
selection is saved. When omitted or set to
false or when no selection exists all the
control contents are saved.

Return Value: The method returns the position in the file behind the saved data. It is
zero if the data could not be saved.

Data Types: FileName: String
Offset: Long
Format: Integer or String

Text Control Properties, Methods, and Events Page 235

CurSelection: Boolean
Return value: Long

See also: Load Method.

SaveToMemory Method
Description: Returns a byte array containing text data in a specified format. This

method works in the same way as the Save method.

Usage: TXTextControl.SaveToMemory[Format[, CurSelection]]

The method's parameters are:

Parameter Description

Format Optional. See the Format parameter of the
Save method for a description.

CurSelection Optional. See the CurSelection parameter of
the Save method for a description.

Return Value: The method returns a one-dimensional array of bytes, containing the
saved data.

Data Types: Format: Integer or String
CurSelection: Boolean
Return value: One-dimensional Byte Array

See also: Save Method, LoadFromMemory Method

Example: This Basic example copies the currently selected text from the first Text
Control and inserts it at the current input position of a second Text
Control:

Dim data() As Byte

data = TXTextControl1.SaveToMemory(3, True)

TXTextControl2.LoadFromMemory data, 3, True

Page 236 Text Control Properties, Methods, and Events

ScrollBars Property
Description: Returns or sets a value indicating whether a Text Control has horizontal

or vertical scroll bars. Scroll bars are automatically hidden when the
formatting area is smaller than the control's visible area and vice versa.
Therefore this property has only effect if the PageWidth and/or the
PageHeight properties have been set to non-zero. See "Overviews - Text
Formatting and Views" for more information.

Usage: TXTextControl.ScrollBars [= value]

The property's settings are:

Setting Description

0 (Default) The Text Control has no scroll bars.

1 The Text Control has a horizontal scroll bar
when the page width is larger than the
control's width.

2 The Text Control has a vertical scroll bar
when the page height is larger than the
control's height.

3 The Text Control has both scroll bars.

Data Type: Integer.

See also: PageWidth Property, PageHeight Property

ScrollPosX Property
Description: Specifies the position of the horizontal scroll bar in twips.

Usage: TXTextControl.ScrollPosX [= value]

Data Type: Long.

Limitations: Run time only.

See also: ScrollPosY Property, HScroll Event, VScroll Event.

Text Control Properties, Methods, and Events Page 237

ScrollPosY Property
Description: Specifies the position of the vertical scroll bar in twips.

Usage: TXTextControl.ScrollPosY [= value]

Data Type: Long.

Limitations: Run time only.

See also: ScrollPosX Property, HScroll Event, VScroll Event.

SelLength Property
Description: Returns or sets the number of characters selected.

Usage: TXTextControl.SelLength [= value]

Remarks: The valid range of settings is 0 to text length, the total number of
characters a Text Control contains.

Data Type: Long.

Limitations: Run time only.

See also: SelStart Property, SelText Property.

SelStart Property
Description: Returns or sets the starting point of text selected or indicates the

position of the insertion point if no text is selected. The first text
position has a value of 0.

Usage: TXTextControl.SelStart [= value]

Remarks: Setting the property value greater than the text length limits it to the
existing text length.

Data Type: Long.

Limitations: Run time only.

See also: SelLength Property, SelText Property.

Page 238 Text Control Properties, Methods, and Events

SelText Property
Description: Returns or sets the string containing the currently selected text. It is a

zero-length string if no characters are selected. This property can be
used in conjunction with the SelStart and SelLength properties for
tasks such as selecting substrings or clearing text. In conjunction with
the clipboard these properties are useful for copy, cut, and paste
operations.

Usage: TXTextControl.SelText [= value]

Remarks: Setting this property to a new value sets SelLength to 0 and replaces the
selected text with the new string.

Data Type: String.

Limitations: Run time only.

See also: SelLength Property, SelStart Property.

Size Event
Description: Occurs when a Text Control has been resized with the mouse while

depressing the ALT key.

Syntax: Size()

See also: Move Event, SizeMode Property.

SizeMode Property
Description: Specifies whether the Text Control can be moved or resized at run time.

If the Moveable option is selected, the control can be moved by
depressing the ALT key and then dragging the control with the mouse.
If the Sizeable option is selected and the ALT key is depressed, the
borders of the control can be dragged.

Usage: TXTextControl.SizeMode [= value]

The property's settings are:

Text Control Properties, Methods, and Events Page 239

Setting Description

0 - Fixed (Default) The Text Control cannot be moved
or sized.

1 - Moveable The Text Control can be moved.

2 - Sizeable The Text Control can be sized.

3 - Move and Sizeable The Text Control can be moved and sized.

Data Type: Integer.

See also: Move Event, Size Event.

StatusBarHandle Property
Description: Specifies the status bar control to be used with a Text Control.

Usage: TXTextControl.StatusBarHandle [= TXStatusBar.hWnd]

Data Type: Handle

Limitations: Run time only.

See also: ButtonBarHandle Property, RulerHandle Property.

TabCurrent Property
Description: Specifies the current tab number for the properties TabPos and

TabType.

Usage: TXTextControl.TabCurrent [= value]

Remarks: Text Control supports up to 14 tabs for each paragraph. Valid values for
this property are 1 to 14.

Data Type: Integer.

See also: TabPos Property, TabType Property.

Example: This Basic example moves the first tab to a new position 1 inch from the
left border and changes it to a decimal tab:

TXTextControl1.TabCurrent = 1

Page 240 Text Control Properties, Methods, and Events

TXTextControl1.TabType = 4
TXTextControl1.TabPos = 1440

This Basic example changes all the tabs to be right-aligned at 1/2 inch
gradations:

' Delete all tabs
for n=14 to 1 step -1

TXTextControl1.TabCurrent = n
TXTextControl1.TabPos = 0

next n

' Create new tabs
for n=1 to 14

TXTextControl1.TabCurrent = n
TXTextControl1.TabPos = n*720
if (TXTextControl1.TabPos > 0) then

TXTextControl1.TabType = 2
next n

Text Control sorts the tabs in ascending order whenever you change the
position of a tab, so a tab's number can change when it it moved. In this
case, the TabCurrent Property is updated to reflect the change.

Tabs outside of the paragraph are automatically set to zero.

TabKey Property
Description: Determines if the keyboard's tab key moves the input focus to the next

control or to insert tabulators in the Text Control's text.

Usage: TXTextControl.TabKey [= boolean]

The property's settings are:

Setting Description

True (Default) Inserts a tabulator in the Text
Control's text.

False Moves the current input focus to the next
control.

Data Type: Boolean.

Text Control Properties, Methods, and Events Page 241

TableAtInputPos Property
Description: Returns the table identifier of the table containing the input position.

Zero is returned when the input position is not inside a table or when
more than one table cell is selected.

Usage: TXTextControl.TableAtInputPos

Data Type: Integer.

Limitations: Read only, run time only.

See also: TableColAtInputPos Property, TableRowAtInputPos Property

TableAttrDialog Method
Description: This method invokes the Text Control's built-in table-attributes dialog

box and, after the user has closed the dialog box, specifies whether he
has changed something.

Usage: TXTextControl.TableAttrDialog

Return Value: The method returns True when the user has changed one or more
attibutes. The method returns False when the formatting remains
unchanged.

Remarks: The changes, made in the dialog box, apply to the currently selected
text.

Data Types: Return value: Boolean.

TableCanChangeAttr Property
Description: This property provides information about whether the attributes of all

the selected table cells can be altered. It returns False when the selection
is not completely within a single table. Otherwise it returns True.

Usage: TXTextControl.TableCanChangeAttr

The property's settings are:

Page 242 Text Control Properties, Methods, and Events

Setting Description

True Table attributes can be altered.

False Table attributes cannot be altered.

Data Type: Boolean.

Limitations: Read only, run time only.

See also: TableAttrDialog Method.

TableCanDeleteLines Property
Description: This property provides information about whether table lines can be

deleted. It returns False when no table line is selected or when the
current input position is outside a table. Otherwise it returns True.

Usage: TXTextControl.TableCanDeleteLines

The property's settings are:

Setting Description

True Table lines can be deleted.

False Table lines cannot be deleted.

Data Type: Boolean.

Limitations: Read only, run time only.

See also: TableDeleteLines Method.

TableCanInsert Property
Description: This property provides information about whether a table can be

inserted. It returns False when a selection exists or the current input
position is inside a table. Otherwise it returns True.

Usage: TXTextControl.TableCanInsert

The property's settings are:

Text Control Properties, Methods, and Events Page 243

Setting Description

True A new table can be inserted.

False A new table cannot be inserted.

Data Type: Boolean.

Limitations: Read only, run time only.

See also: TableInsert Method.

TableCellAttribute Property
Description: Returns or sets attributes of a table cell.

Usage: TXTextControl.TableCellAttribute(TableId,Row,Column,Attribute) [=
value]

The property's parameters are:

Parameter Description

TableId Specifies a table. It is the same identifier set
with the TableInsert method.

Row Specifies a row number which identifies a
certain cell in the table. The first row has the
number one. This parameter set to zero means
a complete column.

Column Specifies a column number which identifies a
certain cell in the table. The first column has
the number one. This parameter set to zero
means a complete row.

Attribute Specifies the type of attribute. It can be
anyone of the values listed in Constants.

Constants: Valid constants for Attribute are:

Attribute Description

txTableCellHorizontalPos The property value is the horizontal
position of a table cell.

Page 244 Text Control Properties, Methods, and Events

txTableCellHorizontalExt The property value is the horizontal
extension of a table cell.

txTableCellBorderWidth The property value is the border
width of a table cell.

txTableCellTextGap The property value is the width of
the gap between a cell's border and
its text.

txTableCellBackColor The property value is the table cell's
background color.

txTableCellLeftBorderWidth The property value is the left border
width of a table cell.

txTableCellTopBorderWidth The property value is the top border
width of a table cell.

txTableCellRightBorderWidth The property value is the right
border width of a table cell.

txTableCellBottomBorderWidth The property value is the bottom
border width of a table cell.

txTableCellLeftTextGap The property value is the width of
the gap between a cell's left border
and its text.

txTableCellTopTextGap The property value is the width of
the gap between a cell's top border
and its text.

txTableCellRightTextGap The property value is the width of
the gap between a cell's right border
and its text.

txTableCellBottomTextGap The property value is the width of
the gap between a cell's bottom
border and its text.

Remarks: When the row and column parameters are both set to zero the attributes
of a complete table can be manipulated.
When more than one table cell is specified this property returns Null

Text Control Properties, Methods, and Events Page 245

(Visual Basic) or is set to empty (C++) if the cells are differently
formatted.

Data Types: TableId Integer
Row Integer
Column Integer
Attribute Integer
Property value: Variant

Limitations: Run time only.

See also: TableInsert Method, TableCellText Property

Example: This Basic example sets a red background color for the leftmost column
of a table:

TXTextControl1.TableCellAttribute(id, 0, 1, 4) = RGB(255, 0
,0)

TableCellLength Property
Description: Returns the number of characters in a table cell.

Usage: TXTextControl.TableCellLength(TableId,Row,Column)

The property's parameters are:

Parameter Description

TableId Specifies a table. It is the same identifier set
with the TableInsert method.

Row, Column Specify a row and column number which
identifies a certain cell in the table. The first
has the number 1, 1.

Data Types: TableId Integer
Row Integer
Column Integer
Property value: Long

Limitations: Read only, run time only.

Page 246 Text Control Properties, Methods, and Events

TableCellStart Property
Description: Returns the character index (one-based) of the first character in a table

cell.

Usage: TXTextControl.TableCellStart(TableId,Row,Column)

The property's parameters are:

Parameter Description

TableId Specifies a table. It is the same identifier set
with the TableInsert method.

Row, Column Specify a row and column number which
identifies a certain cell in the table. The first
cell has the number 1, 1.

Data Types: TableId Integer
Row Integer
Column Integer
Property value: Long

Limitations: Read only, run time only.

TableCellText Property
Description: Returns or sets the text of a table cell.

Usage: TXTextControl.TableCellText(TableId,Row,Column) [= string]

The property's parameters are:

Parameter Description

TableId Specifies a table. It is the same identifier set
with the TableInsert method.

Row, Column Specify a row and column number which
identifies a certain cell in the table. The first
cell has the number 1, 1.

Data Types: TableId Integer
Row Integer

Text Control Properties, Methods, and Events Page 247

Column Integer
Property value: String

Limitations: Run time only.

See also: TableInsert Method, TableRows Property, TableColumns Property

TableColAtInputPos Property
Description: Returns the number of the current input column in a table. It is zero

when the input position is not inside a table or when more than one table
cell is selected.

Usage: TXTextControl.TableColAtInputPos

Data Type: Integer.

Limitations: Read only, run time only.

See also: TableAtInputPos Property, TableRowAtInputPos Property

TableColumns Property
Description: Informs about the number of columns a specified table contains.

Usage: TXTextControl.TableColumns(TableId)

The property's parameters are:

Parameter Description

TableId Specifies a table. It is the same identifier set
with the TableInsert method.

Data Types: TableId Integer
Property value: Integer

Limitations: Read only, run time only.

See also: TableInsert Method, TableRows Property

Page 248 Text Control Properties, Methods, and Events

TableCreated Event
Description: Occurs after a new table has been created as a result of a text insertion

via the clipboard. It does not occur when the table is inserted with the
TableInsert method or when a previously saved document is reloaded.

Syntax: TableCreated(TableId, NewTableId)

The event procedure's parameters are:

Parameter Description

TableId Is the number of the created table. This
number can be changed through setting the
NewTableId parameter.

NewTableId Is a new table identifier for the created table.
It must be in the range of 10 to 32,767.

Data Types: TableId Integer
NewTableId Integer

See also: TableDeleted Event, TableInsert Method.

TableDeleted Event
Description: Occurs after a table has been deleted.

Syntax: TableDeleted(TableId)

The event procedure's parameters are:

Parameter Description

TableId Is the the identifier of the deleted table.

Data Types: TableId Integer

See also: TableCreated Event.

Text Control Properties, Methods, and Events Page 249

TableDeleteLines Method
Description: This method deletes the currently selected table lines or the table line at

the current input position.

Usage: TXTextControl.TableDeleteLines

Return Value: The method returns True if table lines have been deleted. Otherwise it
returns False.

Data Types: Return value: Boolean

See also: TableInsert Method, TableCanDeleteLines Property.

TableGridLines Property
Description: This property determines whether or not grid lines in tables are visible.

Usage: TXTextControl.TableGridLines [= boolean]

Remarks: The property's settings are:

Setting Description

True (Default) Grid lines in tables are visible.

False Grid lines in tables are invisible.

Data Type: Boolean.

TableInsert Method
Description: This method inserts a new table in the text.

Usage: TXTextControl.TableInsert Rows, Columns, TextPos [, TableId]

The method's parameters are:

Parameter Description

Rows Specifies the number of rows.

Columns Specifies the number of columns.

Page 250 Text Control Properties, Methods, and Events

TextPos Specifies the text position where the new table
is to be inserted. It is inserted at the current
input position when this parameter is set to -1.

TableId Optional. Specifies a table identifier. This
identifier can be used to access or to alter the
table's text and attributes. It must be in the
range of 10 to 32,767.

Return Value: The method returns one of the following values:

Value Description

0 An error has occurred or the table could not be
inserted. Tables cannot be inserted inside
existing tables or when a section of text has
been selected.

-1 The new table has been inserted at the top or
at the bottom of an existing table and has been
combined with this table.

otherwise The table's identifier. This is the same value as
specified with the TableId parameter or an
internal identifier selected by Text Control
when the optional TableId parameter has been
omitted.

Data Types: Rows Integer
Columns Integer
TextPos Long
TableId Integer
Return value: Integer

See also: TableCanInsert Property, TableDeleteLines Method.

TableNext Method
Description: This method returns a enumaration number of the table that follows the

specified table in the Text Control's current text. It can be used to
enumerate all tables. In a list of linked Text Controls the search is

Text Control Properties, Methods, and Events Page 251

performed in all controls. The method uses enumeration numbers
instead of table identifiers because table identifiers are not unique. The
corresponding table identifer is retrieved by the TableId parameter.

Usage: TXTextControl.TableNext EnumerationNumber, TableId

The method's parameters are:

Parameter Description

EnumerationNumber Specifies a enumeration number. The method
returns the enumeration number of the table
that follows the table with this number.

If this parameter is zero the first table's
enumeration number is returned.

TableId Text Control copies the table's identifier to
this variable. This is the same value set with
the TableInsert method.

Return Value: Specifies the enumeration number of the next table. It can be used for
the next TableNext call. The return value is zero when the last table has
been reached or when the specified enumeration number was invalid.

Data Types: EnumerationNumber Integer
TableId Integer
Return value: Integer

TableRowAtInputPos Property
Description: Returns the number of the current input row in a table. It is zero when

the input position is not inside a table or when more than one table cell
is selected.

Usage: TXTextControl.TableRowAtInputPos

Data Type: Integer.

Limitations: Read only, run time only.

See also: TableAtInputPos Property, TableColAtInputPos Property

Page 252 Text Control Properties, Methods, and Events

TableRows Property
Description: Informs about the number of rows a specified table contains.

Usage: TXTextControl.TableRows(TableId)

The property's parameters are:

Parameter Description

TableId Specifies a table. It is the same identifier set
with the TableInsert method.

Data Types: TableId Integer
Property value: Integer

Limitations: Read only, run time only.

See also: TableInsert Method, TableColumns Property

TabPos Property
Description: Determines the position (in twips) of a certain tab. The tab number must

have previously been determined with the TabCurrent property.

Usage: TXTextControl.TabKey [= value]

Data Type: Long.

See also: TabCurrent Property, TabType Property.

TabType Property
Description: Determines the type of a certain tab. The tab number must have

previously been determined with the TabCurrent property.

Usage: TXTextControl.TabType [= value]

The property's settings are:

Setting Description

1 Left tab.

Text Control Properties, Methods, and Events Page 253

2 Right tab.

3 Centered tab.

4 Decimal tab.

5 Right tab at the right most text position. For
this type any position set with the TabPos
property is ignored.

Data Type: Integer.

See also: TabCurrent Property, TabPos Property.

Text Property
Description: Returns or sets the complete text of a Text Control.

Usage: TXTextControl.Text [= string]

Data Type: String.

TextBkColor Property
Description: Returns or sets the background color for selected text. Text Control uses

the Microsoft Windows operating enviroment red-green-blue (RGB)
color scheme.

Usage: TXTextControl.TextBkColor [= value]

Remarks: The TextBkColor property applies only to the currently selected text.
The BackColor property can be used to set the window background
color.
The valid range for a RGB color is 0 to &HFFFFFF. The high byte of a
number in this range equals 0; the lower 3 bytes, from least to most
significant byte, determine the amount of red, green, and blue,
respectively. The red, green, and blue components are each represented
by a number between 0 and 255 (&HFF).

Data Type: Long.

See also: FormatSelection Property, BackColor Property.

Page 254 Text Control Properties, Methods, and Events

Undo Method
Description: The Undo method can be used to undo the last Text Control operation.

Usage: TXTextControl.Undo

Return Value: The method returns True if the undo operation was successful.
Otherwise it returns False.

Data Types: Return value: Boolean

See also: Redo Method, CanUndo Property, CanRedo Property.

VExpand Event
Description: Occurs when the control has changed its window size vertically. This

event can only occur if the AutoExpand property is set to True.

Syntax: VExpand()

See also: AutoExpand Property, HExpand Event.

ViewMode Property
Description: Returns or sets the mode in which Text Control displays the document

pages. This property has only effect if the PageWidth and/or
PageHeight properties have been set to non-zero. See "Overviews - Text
Formatting and Views" for more information.

Usage: TXTextControl.ViewMode [= value]

The property's settings are:

Setting Description

0 - Normal view (Default) Do not display page borders,
margins and gaps.

1 - Page view Display the document's pages with page
margins and show the page number in the
status bar.

Text Control Properties, Methods, and Events Page 255

2 - Ext. page view Shows the document's pages centered and
displays three-dimensional borders.

Data Type: Integer.

See also: PageWidth Property, PageHeight Property.

VScroll Event
Description: Occurs when the vertical scroll position has been changed.

Syntax: VScroll()

See also: HScroll Event.

VTSpellCheck Method
Description: Starts the spellchecker. This method is only available if the VT-Speller

tool from VisualTools has been installed. VT Speller is not part of the
Text Control package.

Usage: TXTextControl.VTSpellCheck

Return Value: The method returns True if the spellchecker could be started, otherwise
it returns False.

Data Types: Return value: Boolean

See also: VTSpellDictionary Property.

VTSpellDictionary Property
Description: Determines the file name of the dictionary which is used by VT-

Speller.Text Control uses this property only if the VT-Speller tool from
VisualTools has been installed. VT Speller is not part of the Text
Control package.

Usage: TXTextControl.VTSpellDictionary [= string]

Data Type: String.

Page 256 Text Control Properties, Methods, and Events

See also: VTSpellCheck Method.

Zoomed Event
Description: Occurs when the Text Control has been zoomed.

Syntax: Zoomed()

See also: ZoomFactor Property.

ZoomFactor Property
Description: Specifies the zoom factor for a Text Control. The value is specified as a

percentage in the range of 10..400%.

Usage: TXTextControl.ZoomFactor [= value]

Data Type: Integer.

See also: PrintZoom Property.

Page 257Obsolete Properties, Methods and Events

Obsolete Properties, Events, and Methods
The following is a list of obsolete properties, methods and events .
These are still provided for compatibility with earlier versions of Text
Control. Newly developed applications should use the appropriate
newer properties, methods or events.

Property/Method/Event Description

EnableHyperlinks Property Enables special actions for pieces of
text that work as hyperlinks. Text
parts that function as hyperlinks are
now automatically converted to
marked text fields, when the
LoadSaveAttribute(txEnableLinks)
property has been set to True before
a document is loaded.

LoadSaveAttribute(53) Property Enables automatic jumps when the
user clicks on a hypertext link. Can
now be realized with the new
FieldGoto method.

RTFExport Method Has been replaced with the Save
method.

RTFImport Method Has been replaced with the Load
method.

TextExport Method Has been replaced with the Save
method.

TextImport Method Has been replaced with the Load
method.

ViewClicked Event Has been replaced with the new
FieldLinkClicked event.

ViewImagePath Property Has been replaced with the new
LoadSaveAttribute(txAbsPath)
property.

Page 258 Obsolete Properties, Methods and Events

ViewNextHighlight Method Scrolls to the next highlight. Can be
realized with the new FieldGoto
method.

ViewSection Property Jumps to a specified text position.
Can be realized with the new
FieldGoto method.

ViewWordDblClicked Event Occurs when the mouse is double-
clicked over text in Viewer mode.

EnableHyperlinks Property
Description: This property must be set to True to enable special actions for pieces of

text that function as hyperlinks. After loading a document that contains
hyperlinks the user receives ViewClicked and ViewWordDblClicked
events and can use the ViewSection and ViewNextHighlight properties
and methods. With enabled hyperlinks a Text Control cannot be edited.

Usage: TXTextControl.EnableHyperlinks [= boolean]

The property's settings are:

Setting Description

True Hyperlinks are enabled. The Viewxx events
and methods are available.

False (Default) Hyperlinks are disabled. The
Viewxx events and methods are not available.

Data Type: Boolean.

See also: LoadSaveAttribute Property.

RTFExport Method
Description: Writes the contents of a Text Control to a file with the specified name

using the Rich Text Format.

Usage: TXTextControl.RTFExport Filename

Page 259Obsolete Properties, Methods and Events

Return Value: The method returns True when the data has been written to the file.
Otherwise it returns False.

Remarks: RTF (Rich Text Format) is one of the most common interchange
formats for text documents. Most word processors available for
Windows are able to read and write RTF files.

Data Types: FileName String
Return value: Boolean

See also: RTFImport Method.

RTFImport Method
Description: Loads the contents of an RTF file with the specified name into a Text

Control.

Usage: TXTextControl.RTFImport Filename[, extended]

The method's parameters are:

Parameter Description

Filename Is the name of the RTF file that is to be
loaded.

Extended Optional. If this parameter is missing or zero
then the text is inserted at the current caret
position.
If this parameter has a value of 1 then Text
Control supports a special Viewer mode. In
this mode, additional hypertext information is
imported from the RTF file. See TX Info
Artist manual for details.

Return Value: The method returns True when the data could be imported. Otherwise it
returns False.

Remarks: RTF (Rich Text Format) is one of the most common interchange
formats for text documents. Most word processors available for
Windows are able to read and write RTF files.

Page 260 Obsolete Properties, Methods and Events

Data Types: Filename: String
Extended: Long
Return value: Boolean

See also: RTFExport Method, ViewImagePath Property.

TextExport Method
Description: Writes the selected text to a file in ANSI format.

Usage: TXTextControl.TextExport FileName

The method's parameters are:

Parameter Description

FileName Is the name of the file, Text Control uses for
saving. When the file does not exist, a new file
with this name is created. When the file exists,
Text Control overwrites its current contents.

Return Value: The method returns True when the text has been written to the file.
Otherwise it returns False.

Data Types: FileName String
Return value: Boolean

See also: TextImport Method, RTFImport Method, Save Method.

TextImport Method
Description: Loads text in ANSI format and inserts it at the current caret position.

Usage: TXTextControl.TextImport FileName

The method's parameters are:

Parameter Description

FileName Is the name of the file, Text Control uses for
loading.

Page 261Obsolete Properties, Methods and Events

Return Value: The method returns True when the text could be imported. Otherwise it
returns False.

Data Types: FileName String
Return value Boolean

See also: TextExport Method, RTFExport Method, Load Method.

ViewClicked Event
Description: Occurs when a marked text field for which hyperlink data has been

stored, is clicked on. It occurs only if the EnableHyperlinks property is
set to True.

Syntax: ViewClicked(FieldType, FieldContents)

The event procedure's parameters are:

Parameter Description

FieldType Specifies the type of a field as an identifier. It
can be one of the following values:
0 - 19 Specifies fields that represent links

to text positions within the same
document (RTF only).

20 - 39 Specifies buttons that represent link
positions (RTF only).

100 Specifies a field that is a link to a
position in the same document
(HTML only).

101 Specifies a field that is a link to an
external position (HTML only).

FieldContents Is a string that represents the contents of the
field. The specification depends on the field's
type and on the type of the document.

Remarks: This event is sent before a FieldClicked event is sent.

Data Types: FieldType Integer
FieldContents String

Page 262 Obsolete Properties, Methods and Events

See also: EnableHyperlinks Property.

ViewImagePath Property
Description: When importing text data files which contain references to image files,

the ViewImagePath property can be used to specify a different path for
the images.

Usage: TXTextControl.ViewImagePath [= string]

Data Type: String.

Limitations: Run time only.

See also: RTFImport Method.

ViewNextHighlight Method
Description: Scrolls to the next highlight.

Usage: TXTextControl.ViewNextHighlight

Return Value: The method returns False if the last highlight has been reached.
Otherwise it returns True.

Remarks: The use of this method is only valid if the RTFImport method was
previously used with the extended parameter set to 1. See TX Info Artist
description for details.

Data Types: Return value: Boolean

See also: RTFImport Method.

ViewSection Property
Description: Jumps to a specified text position. See TX Info Artist description for

details.

Usage: TXTextControl.ViewSection [= SectionNumber]

Page 263Obsolete Properties, Methods and Events

Remarks: The use of this property is only valid if the RTFImport method was
used before with the extended parameter set to 1.

Data Type: Integer.

Limitations: Write only, run time only.

See also: RTFImport Method.

ViewWordDblClicked Event
Description: Occurs when a word is double-clicked with the mouse. It occurs only if

the EnableHyperlinks property is set to True.

Syntax: ViewWordDblClicked(SelectedText)

The event procedure's parameters are:

Parameter Description

SelectedText Is the word that has been double-clicked.

Remarks: This event is sent before a DblClick event is sent.

Data Type: SelectedTextString

See also: RTFImport Method, DblClick Event.

Page 264 Tool Properties

Button Bar Control Properties, Events, and
Methods

All of the properties, methods and events for the button bar are listed in
alphabetical order in the following table. A detailed description can be
found in the following section.

Properties

Appearance
BorderStyle
Enabled
hWnd
Language
ResourceFile
Style

Events

MouseDown
MouseMove
MouseUp

Page 265Tool Properties

BorderStyle Property
Enabled Property
hWnd Property
Language Property
MouseDown Event
MouseMove Event
MouseUp Event
ResourceFile Property

All of these properties and events work in the same way as for a Text
Control. See the appropriate section prior in this manual.

Appearance Property
Description: Returns or sets the paint style of a Button Bar.

Usage: TXButtonBar.Appearance [= value]

The property's settings are:

Setting Description

0 - txFlat Flat. Paints the Button Bar without visual
effects.

1 - tx3D (Default). 3D. Paints the Button Bar with
three-dimensional effects.

Data Type: Integer.

Style Property
Description: Returns or sets the paint style of a Button Bar's buttons.

Usage: TXButtonBar.Style [= value]

Page 266 Tool Properties

Remarks: The Style property settings are:

Setting Description

0 - txFlat Flat. Paints the Button Bar's buttons without
visual effects.

1 - tx3D (Default) 3D. Paints the Button Bar's buttons
with three-dimensional effects.

Data Type: Integer.

Page 267Tool Properties

Status Bar Control Properties, Events, and
Methods

All of the properties, methods and events for the status bar are listed in
alphabetical order in the following table. A detailed description can be
found in the following section.

Properties

BorderStyle
Enabled
Font
FontBold
FontItalic
FontName
FontSize
FontStrikethru
FontUnderline
hWnd
Language
PageMode
ResourceFile
Text
TextColumn
TextLine
TextPage

Events

MouseDown
MouseMove
MouseUp

Page 268 Tool Properties

BorderStyle Property
Enabled Property
hWnd Property
Language Property
MouseDown Event
MouseMove Event
MouseUp Event
ResourceFile Property

All of these properties and events work in the same way as for a Text
Control. See the appropriate section prior in this manual.

FontBold Property
FontItalic Property
FontStrikethru Property
FontUnderline Property
Description: Returns or sets font styles in the following formats: Bold, Italic,

Strikethru, and Underline.

Usage: TXStatusBar.FontBold [= boolean]
TXStatusBar.FontItalic [= boolean]
TXStatusBar.FontStrikethru [= boolean]
TXStatusBar.FontUnderline [= boolean]

The properties' settings are:

Setting Description

True The characters are formatted with the
specified style.

Page 269Tool Properties

False The characters are not formatted with the
specified style.

Data Type: Boolean.

See also: FontName Property, FontSize Property.

FontName Property
Description: Returns or sets the font used to display text.

Usage: TXStatusBar.FontName [= string]

See also: FontSize Property.

FontSize Property
Description: Returns or sets a value that specifies the size of the font used to display

text.

Usage: TXStatusBar.FontSize [= value]

Data Type: Integer.

See also: FontName Property.

PageMode Property
Description: Returns or sets the status of the StatusBar's 'Page' field.

Usage: TXStatusBar.PageMode [= value]

The property's settings are:

Setting Description

0 The 'Page' field is hidden.

1 The 'Page' field is always shown.

2 The 'Page' field is only shown if the connected
Text-Contol's ViewMode property has been
set to 'Page View' or 'Extended Page View' or

Page 270 Tool Properties

if several Text Controls are linked with the
NextWindow property.

Data Type: Integer.

Text Property
Description: Returns or sets the info text a Status Bar Control displays.

Usage: TXStatusBar.Text [= string]

Data Type: String.

TextColumn Property
TextLine Property
TextPage Property
Description: Returns or sets the texts which appear in the 'Column', 'Line' and 'Page'

fields of the Status Bar. By default "Col", "Line" and "Page" is
displayed.

Usage: TXStatusBar.TextColumn [= string]
TXStatusBar.TextLine [= string]
TXStatusBar.TextPage [= string]

Data Type: String.

Page 271Tool Properties

Ruler Control Properties, Events, and Methods
All of the properties, methods and events for the ruler are listed in
alphabetical order in the following table. A detailed description can be
found in the following section.

Properties

BorderStyle
Enabled
hWnd
Language
ResourceFile
ScaleUnits

Events

MouseDown
MouseMove
MouseUp

Page 272 Tool Properties

BorderStyle Property
Enabled Property
hWnd Property
Language Property
MouseDown Event
MouseMove Event
MouseUp Event
ResourceFile Property

All of these properties and events work in the same way as for a Text
Control. See the appropriate section prior in this manual.

ScaleUnits Property
Description: Returns or sets the scale units for the Ruler.

Usage: TXRuler.ScaleUnits [= value]

The property's settings are:

Setting Description

0 mm

1 cm

2 inch

Data Type: Integer.

Page 273Tool Properties

PageRuler Properties, Events, and Methods
All of the Properties, Events, and Methods for the Page Ruler are listed
in alphabetical order in the following table. Properties and Events that
apply only to this control are marked with an asterisk (*) and
documented in the following section:

Properties

Align
BackColor
ClipControls
CtlName
DragIcon
DragMode
Enabled
Height
HelpContextID
hWnd
Index
Left
MousePointer
*OriginX
*OriginY
Parent
Tag
Top

*Units
Visible
Width
*ZoomFactor

Events

Click
DblClick
DragDrop
DragOver
MouseDown
MouseMove
MouseUp

Methods

Move
Refresh
SetFocus
ZOrder

Page 274 Tool Properties

OriginX and OriginY Properties
Description: Specify the ruler origin, i.e. the distance between the point where the

ruler displays its 0 coordinate and the top left corner of the ruler
window. Not available at design time. The measurement depends on the
selected scale mode.

Usage: [form.]PgRuler.OriginX = origin

Data Type: Long.

Units Property
Description: Specifies if the ruler is to display its scale in inches or centimeters.

Usage: [form.]PgRuler.Units = units

Remarks: The settings are:

Setting Description

0 cm

1 inch

Data Type: Integer.

ZoomFactor Property
Description: Specifies the zoom factor as a percentage.

Usage: [form.]PgRuler.ZoomFactor = zoom factor

Data Type: Integer.

Page 275Appendix

Appendix A: Mouse and Keyboard Assignment

Mouse Assignment
Mouse Action Reaction of Text Control

Click Moves cursor to point of click or selects an
image.

Shift+Click Extends the selection to the point of click.

Double-click Selects the word that is clicked on or opens a
modal dialog box to select an image
alignment.

Drag Selects text from point of button down to
point where button is released.

Double-click and drag Extends the selection from word to word.

Triple-click and drag Extends the selection from row to row.

PgUp/PgDown Scrolls the text up or down one client area
height minus the height of one line of text.
Active only if a vertical scrollbar exists.

Moving the caret while SHIFT is pressed extends the current selection
to the new caret position.

Keyboard Assignment
Key type Reaction of Text Control

HOME Moves the caret to the beginning of the line.

END Moves the caret to the end of the line.

(Left Arrow) Moves the caret one character to the left.

(Right Arrow) Moves the caret one character to the right.

(Up Arrow) Moves the caret one line up.

(Down Arrow) Moves the caret one line down.

CTRL+(Left Arrow) Moves the caret to the beginning of the
current word.

Page 276 Appendix

CTRL+(Right Arrow) Moves the caret to the beginning of the next
word.

CTRL+HOME Moves the caret to start of text.

CTRL+END Moves the caret to end of text.

CTRL+ENTER Inserts a new page.

SHIFT+ENTER Creates a line feed.

CTRL+(-) Inserts an end-of-line hyphen.

DEL Deletes selected text.

SHIFT+DEL Copies selected text to the Clipboard and
deletes the selection.

CTRL+INS Copies selected text to the clipboard.

SHIFT+INS Inserts text from the clipboard.

CTRL+SHIFT+(Spacebar) Inserts a non-breaking space.

CTRL+(Backspace) Deletes the previous word.

Moving the caret while SHIFT is pressed extends the current selection
to the new caret position.

Page 277Appendix

Index
A

Access 158
Access 2.0 124
Align Property 18
Alignment Property 150
AutoExpand Property 126, 128, 150
AutoLink Event 151
AutoScroll Event 126, 128, 151

B

BackColor Dialog Box 39, 90
BackColor Property 39, 90, 152
Background Image 30, 80
BackStyle Property 152
BaseLine Property 153
BorderStyle Property 153
Bound Contol 39, 42
ButtonBarHandle Property 154

C

CanRedo Property 154
CanUndo Property 154
CaretOut Event 126, 128, 155
CaretOutBottom Event 126, 128, 155
CaretOutLeft Event 126, 128, 155
CaretOutRight Event 126, 128, 155
CaretOutTop Event 126, 128, 155
CFormView 116
Change Event 155
CharFormatChange Event 156
Clip Method 156
ClipChildren Property 31, 81, 157
ClipSiblings Property 31, 81, 157
ConnectTools Event 158
ControlChars Property 158
CurrentInputPosition Property 159
CurrentPages Property 159
CView 116

D

Data sample 39
DataText Property 160
DataTextFormat Property 160
DLL Functions 40, 91

E

EditMode Property 161
Enabled Property 161
EnableHyperlinks Property 257, 258
Error Event 162

F

FieldAtInputPos Property 137, 163
FieldChangeable Property 137, 139, 163
FieldChanged Event 137, 140, 163
FieldClicked Event 137, 139, 141, 164
FieldCreated Event 138, 140, 164
FieldCurrent Property 35, 86, 138, 139, 165
FieldData Property 138, 141, 165
FieldDblClicked Event 138, 139, 166
FieldDelete Method 138, 139, 166
FieldDeleteable Property 138, 139, 167
FieldDeleted Event 138, 140, 167
FieldEditAttr Property 138, 140, 168
FieldEnd Property 138, 139, 169
FieldEntered Event 138, 139, 170
FieldGoto Method 138, 143, 144, 170
FieldInsert Method 138, 139, 142, 171
FieldLeft Event 138, 139, 171
FieldLinkClicked Event 138, 142, 143
FieldNext Method 138, 139, 142, 172, 173
FieldPosX Property 138, 139, 174, 246
FieldPosY Property 138, 139, 174
FieldSetCursor Event 139, 175
FieldStart Property 139, 176
FieldText Property 139, 176
FieldText property 139
FieldType Property 139, 141, 176
FieldTypeData Property 139, 142, 178

Page 278 Appendix

File
Formats 22, 71
Saving 26, 75

Find Method 178
FindReplace Method 180
FontBold Property 180, 268
FontDialog Method 181
FontItalic Property 180
FontName Property 181
FontSize Property 182
FontStrikethru Property 180
FontUnderline Property 180, 269
FontUnderlineStyle Property 182, 269
ForeColor Property 183
FormatSelection Property 184
Forms2 sample 30, 80
FrameDistance Property 39, 90, 185
FrameLineWidth Property 39, 90, 185
FrameStyle Property 39, 90, 185

H

HeaderFooter Property 130, 131, 186
HeaderFooterActivate Method 130, 131, 187
HeaderFooterActivated Event 130, 131, 188
HeaderFooterDeactivated

Event 130, 131, 188
HeaderFooterPosition Property 130, 131, 189
HeaderFooterSelect Method 130, 132, 190
HeaderFooterStyle Property 130, 131, 191
HExpand Event 126, 128, 192
HideSelection Property 192
HScroll Event 126, 129, 192
HTML 135, 200, 234
hWnd Property 192

I

Image-Control 30, 80
ImageDisplayMode Property 193
ImageFilename Property 193
ImageFilters Property 194
Images 30, 80
ImageSaveMode Property 195

IndentB Property 195
IndentFL Property 195
IndentL Property 195
IndentR Property 195
Indents 58, 109
IndentT Property 195
InputPosFromPoint Method 196
InsertionMode Property 196

K

KeyDown Event 197
KeyPress Event 198
KeyStateChange Event 198
KeyUp Event 197

L

Language Property 144, 198
LineSpacing Property 199
LineSpacingT Property 199
Load Method 135, 136, 139, 143, 144, 199
LoadFromMemory Method 202
LoadSaveAttribute Property 143, 144, 202

M

Mail Merge 42, 92
Marked Text Fields 34, 84
MDI sample 38
MouseDown Event 207
MouseMove Event 208
MousePointer Property 209
MouseUp Event 208
Move Event 210

N

NextWindow Property 128, 210

O

ObjectClicked Event 210
ObjectCreated Event 211
ObjectCurrent Property 211
ObjectDblClicked Event 212

Page 279Appendix

ObjectDelete Method 212
ObjectDeleted Event 212
ObjectDistance Property 213
ObjectGetData Event 42, 213
ObjectGethWnd Event 42, 214
ObjectGetZoom Event 215
ObjectInsertAsChar Method 41, 215
ObjectInsertFixed Method 41, 218
ObjectMoved Event 220
ObjectNext Method 220
ObjectPrint Event 222
Objects 41
ObjectScaleX Property 222
ObjectScaleY Property 222
ObjectScrollOut Event 223
ObjectSetData Event 42, 223
ObjectSetZoom Event 224
ObjectSized Event 224
ObjectSizeMode 225
ObjectTextFlow Property 225

P

Page Ruler Control 64, 115
Page Setup Dialog Box 38, 89
PageFormatChange Event 226
PageHeight

Property 24, 29, 73, 79, 126, 128, 129, 130, 226
PageMarginB Property 126, 129, 226
PageMarginL Property 126, 129, 226, 227
PageMarginR Property 127, 129
PageMarginT Property 127, 129
PageWidth

Property 24, 29, 73, 79, 127, 128, 129, 130, 227
Paragraph Frames 39, 90
ParagraphChange Event 228
ParagraphDialog Method 228
ParagraphFormatChange Event 228
PgRul.Ocx 64, 115
PosChange Event 228
PrintColors Property 229
PrintDevice Property 23, 72, 229
PrintForm Method 23
Printing 23, 29, 79

PrintOffset Property 229
PrintPage Method 230
PrintZoom Property 231

R

Redo Method 231
Refresh Method 231
Replace 39, 90
ResetContents Method 231
ResourceFile Property 144, 232
Rich Text Format 22, 71
RTF 135, 200, 234
RTFExport Method 257, 258
RTFImport Method 257, 259
RTFSelText Property 232
RulerHandle Property 233

S

Save Method 233
SaveToMemory Method 235
ScrollBars Property 127, 129, 236
ScrollPosX Property 127, 129, 236
ScrollPosY Property 127, 129, 237
Search 39, 90
SelLength Property 237
SelStart Property 237
SelText Property 238
Size Event 238
SizeMode Property 26, 75, 238
StatusBarHandle Property 239
System Requirements 13, 116

T

TabCurrent Property 239
TabKey Property 240
TableAtInputPos Property 133, 241
TableAttrDialog Method 133, 135, 241
TableCanChangeAttr Property 134, 135
TableCanDeleteLines Property 134, 135, 242
TableCanInsert Property 134, 135, 242
TableCellAttribute Property 134, 243
TableCellLength Property 134, 245

Page 280 Appendix

TableCellStart Property 134
TableCellText Property 134, 137, 246
TableColAtInputPos Property 134, 247
TableColumns Property 134, 137, 247
TableCreated Event 134, 136, 248
TableDeleted Event 134, 136, 248
TableDeleteLines Method 134, 135, 249
TableGridLines Property 134, 249
TableInsert Method 134, 135, 136, 249
TableRowAtInputPos Property 134, 250
TableRows Property 134, 137, 252
TabPos Property 252
Tabs 58, 109
TabType Property 252
Text Property 253
TextBkColor Property 253
TextColor Dialog Box 39, 90
TextExport Method 257, 260
TextImport Method 257, 260
Transparent Text Controls 31, 81

V

VExpand Event 127, 128, 254
ViewClicked Event 257, 261
ViewImagePath Property 257, 262
ViewMode

Property 127, 128, 129, 186, 187, 189, 254
ViewNextHighlight Method 255, 258, 262
ViewSection Property 258, 262
ViewWordDblClicked Event 258, 263
Visual C++ 116
VScroll Event 127, 129
VTSpellCheck Method 255
VTSpellDictionary Property 255

Z

Zoomed Event 256
ZoomFactor Property 256

	Contents
	What's New
	What's New in Version 7.0 since Version 6.0
	New Features
	Changes and Extensions
	New and Extended Properties, Methods and Events
	What's New in Version 7.0 since Version 5.2
	New Features
	Changes and Extensions
	New and Extended Properties, Methods and Events
	Introduction
	System Requirements
	How this Manual is Organized
	Distributing your Applications
	Visual Basic User's Guide
	Creating a Simple Word Processor
	Creating the Project
	Creating the Controls
	Connecting the Controls
	Running the Program
	Adding Scrollbars
	Resizing the Controls
	Adding a Menu
	What Comes Next
	Text Control Programming
	Working with Files
	Printing
	Using Multiple Controls
	A Forms Filler
	Using Marked Text Fields
	A Word Processor
	Using Text Control as a Bound Control
	Calling DLL Functions from Visual Basic Code
	Inserting Objects
	Mail Merge
	Using Hypertext Links
	Headers and Footers
	Drag and Drop
	TX Publisher - An Advanced Example
	Text Frames and OLE Objects
	Drawing Text Frames
	Connecting Text Frames
	Deleting and Creating Frame Connections
	Changing Frame Size and Position
	Setting Indents and Tabs
	Using Images
	OLE Objects
	The File Menu
	The Edit Menu
	The View Menu
	The Insert Menu
	The Format Menu
	The Help Menu
	How the Program Works
	The Page Ruler Control
	Delphi User's Guide
	Creating a Simple Word Processor
	Creating the Project
	Creating the Controls
	Connecting the Controls
	Running the Program
	Adding a Menu
	What Comes Next
	Text Control Programming
	Working with Files
	Printing
	Using Multiple Controls
	A Forms Filler
	Using Marked Text Fields
	A Word Processor
	Using Text Control with a Database
	Calling DLL Functions from Delphi Code
	Mail Merge
	Using Hypertext Links
	Headers and Footers
	Drag and Drop
	TX Publisher - An Advanced Example
	Text Frames and OLE Objects
	Drawing Text Frames
	Connecting Text Frames
	Deleting and Creating Frame Connections
	Changing Frame Size and Position
	Setting Indents and Tabs
	Using Images
	OLE Objects
	The File Menu
	The Edit Menu
	The View Menu
	The Insert Menu
	The Format Menu
	The Help Menu
	How the Program Works
	The Page Ruler Control
	Other Languages
	Standard C
	Microsoft Visual C++ 4.x / 5.x / 6.x
	Microsoft Access 2.0
	Reference
	Overviews
	Text Formatting and Views
	Headers and Footers
	Tables
	Marked Text Fields
	Resources
	Text Control Data Types
	Text Control Properties, Events, and Methods
	Obsolete Properties, Events, and Methods
	Button Bar Control Properties, Events, and Methods
	Status Bar Control Properties, Events, and Methods
	Ruler Control Properties, Events, and Methods
	PageRuler Properties, Events, and Methods
	Appendix A: Mouse and Keyboard Assignment
	Mouse Assignment
	Keyboard Assignment
	Index

