TX Text Control

ActiveX Programmer's Guide

Version 7.0

TX Text Control 7.0

Information in this document is subject to change without notice and does not represent a
commitment on the part of The Imaging Source Europe GmbH. The software described in
this document is furnished under alicense agreement. The software may only be used or
copied in accordance with the terms of this agreement.

Copyright 1991-2000 The Imaging Source Europe GmbH. All rights reserved.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

What's NeW ..o,
What's New in Version 7.0 since Version 6.0 7
NEW FEBLUIES........eeeieeieeie ettt e 7
Changes and EXENSIONS..........coeereeriereeienieneeeeneeseeseeeee e seeeneeneens 8
New and Extended Properties, Methods and Events 8
What's New in Version 7.0 since Version 5.2 10
NEW FEALUES. ..ot e e 10
Changes and EXTENSIONS..........cccvevuereieerieseseeeese e see e sreseenee e 11
New and Extended Properties, Methods and Events. 11
INtroductioncocviiiiiiii e,
System ReqUIremMentscoooveiiiiiiiiiiiiiiiieee e 13
How this Manual is Organizedcc.ccooooeviiiiiieiiiininnee, 13
Distributing your ApplicationS........cccccceeeeiiiiiiiiciviiiie e 14
Visual Basic User's Guideccccoeeveeennnnenn,
Creating a Simple Word Processor......ccccceeeeeeviiiiiiieeennns 16
Creating the ProjECEcooov e 16
Creating the COoNtrolScoov e 16
Connecting the CONtrolScociriieeieeseeeere e 17
RUNNING the Program ..o 17
Adding SCrollbarsccceoeeeeerece e 17
Resizing the COoNtrolS.......cocorv i 18
AddiNg aMENU ..o s 18
What COMES NEXLceeieeeieeieeeee e 21
Text Control Programmingccccoeeeeviviiiiiiieiiiiee e, 22
WOrking With FIlES ..o 22

o 11T o 23

Using Multiple CONtrolsccoveeeeieiiceeieseceee e 24

A FOIMS FIHTEN .o 29
Using Marked Text FIeldscccccevvveeienececese e 32
A WOTA PrOCESSON ..ottt sttt 38
Using Text Control asaBound Contralccccccvveeveieveceeene, 39
Calling DLL Functionsfrom Visual Basic Code...........cccoevveunnnee. 40
INSErtiNGg ODJECES ...ccuveiiciceecie e 41
=TI = o= TS 42
Using HYpertext LinKScccocvceeeriiieceeececeee e 44
Headers and FOOLErS.couviiirireieeese e 51
(D=0 =g o [D o o 53
TX Publisher - An Advanced Examplecccoocoevvinnnnnnn. 55
Text Frames and OLE ObJECLS........cccvveevereceeiere e 55
Drawing TeXt FIrameS.........ccocevvieecese e 56
Connecting TEXt FIramMEScceceveriieee e 56
Deleting and Creating Frame Connections............c.cceceeveveseeceennne 57
Changing Frame Size and POSItiONcccceeveveveeeese e, 57
Setting Indents and TabSccoovveevere e 58
USING IMAGES.....ctiiiieieie ettt s 58
(@I @ o= £ 59
THE FIIE@ MENU ..ot 60
The EdIt MENU ..o 60
THe VIEW MENU ..o 60
THe INSEMT MENU ..o e 61
The FOrmMat MENUcoeieirinirieeeeese e 61
THEHEIP MENU ...t 61
How the Program WOIKS.........cccceceviiiceere e 62
The Page Ruler CONtrolccoeceeveveiecie e 64
Delphi User's Guideccoovvviviiiiiiiiiiiiieceei
Creating a Simple Word ProCessSorcccooveeveeeeiveeeeiinnnes 65
Creating the PrOJECE........ocv e 65
Creating the ControlScccocveeeve s 66
Connecting the CONLrolScccvieieeiere e 66

RUNNING the Programcccceceeeenie i 66

7N o (1 gTo IF= W1, = o S 68

What COMES NEXLovviieirieriisesieieee e 70
Text Control Programmingcccooevvviiiiiiiiiiiiii e, 71
WOrking With FIlESocveiicr e 71
111 o S 72
Using Multiple CONLrolSccccveeveieceese e 73
A FOIMS FIHTEN . 79
Using Marked Text FIeldsccccoeviieeiene e 82
A WOIA PrOCESSON ..ottt 89
Using Text Control with aDatabase.........cccccvvveeevievvsceecese e, 91
Calling DLL Functions from Delphi Code...........cccocevvvviveieecinnee 91
=TI = o= T 92
Using HYpertext LinKSccviveveveieceese et 93
Headers and FOOLENS. ..o 101
(D=0 =g o [D oo 103
TX Publisher - An Advanced Examplecccoooovvinnnnnnnn. 106
Text Frames and OLE ObJECLS........ccccvevevereeieere e 106
Drawing TeXt FIrameS........cccvvieecene e 107
Connecting TEXt FIramMESccevv e 107
Deleting and Creating Frame Connections............cccceceeveveseeeeene 108
Changing Frame Size and POSItiONccccceveeceveveceesese e 108
Setting Indents and TabSccceveiecceere e 109
USING IMAGES....cui ettt 109
(@I @ o= £ 110
ThE FIE@ MENU ... e 111
The Edit MENU ... e 111
The VIEW MENU ..o e 111
The INSEMT MENU ..o e 112
The FOrmMat MENUcoveiriiieiecesese e 112
THEHEIP MENU ..o 112
How the Program WOrIKS.........ccceieiieieerese e 113

The Page Ruler CONtrolccceveveieeceese e 115

Other Languages

Standard C....coooiiii i 116
Microsoft Visual C++ 4.X [/ 5.X/ 6.X cooeeeviiiiiiiiiiiiiiiieeeeeens 116
MiICroSOft ACCESS 2.0 coovvvviiiiiiiiiiee e 124
ReferenCe ...,
OVEIVIEBWS ..iiiiciiiiii et e et e e e e e eaans 125
Text Formatting and VIEWScccevvvieieeie et 125
Headers and FOOLENS.........ccceveieeeee e 130
LI 0] = SRS 133
Marked Text FieldS.......cceoeveieceece e 137
RESOUICES ..ottt be e b naee s 144
Text Control Data TYPES ...cceeeevvvieeeeeveiiieie e e e e e e e e e 146
Text Control Properties, Events, and Methods 147
Obsolete Properties, Events, and Methods 257

Button Bar Control Properties, Events, and Methods ... 264
Status Bar Control Properties, Events, and Methods.... 267

Ruler Control Properties, Events, and Methods 271
PageRuler Properties, Events, and Methods 273
Appendix A: Mouse and Keyboard Assignment 275
MOUSE ASSIGNMENLcviieieieie st e et re e s sre e 275
Keyboard ASSIgNMENEcccvevereieeeese e 275
INAEX e

What's New Page 7

What's New

What's New in Version 7.0 since Version 6.0

This chapter provides a general list of features that have been added or
changed since Text Control version 6.0.

New Features

Text Control supports headers and footers. Several properties, methods
and events have been added for this feature. See chapter "Overviews -
Headers and Footers' for more information about these properties and
methods and how headers and footers can be used and programmed.

Text Control supports several special types of marked text fields, like
source and destination fields for hypertext links or fields that display the
current page number. The new FieldType and FieldTypeData
properties set the type for a marked text field and additional data
depending on thistype. See chapter "Overviews - Marked Text Fields -
Spoecial Types of Marked Text Fields' for more information about these
features.

Text Control offers an additional page view that centers the document in
the control's window and displays three-dimensional pages with
shadows. This mode can be set with the ViewM ode property. See
chapter "Overviews - Text Formatting and Views' for more information.

Two new attributes that can be set with the L oadSaveAttribute
property have been implemented. These can be used to specify an
absolute path (txAbsPath) and a base path (txBasePath), to find files
and other resources integrated in documents.

The new ResetContents method can be used to delete the entire
contents of a Text Control.

The new InputPosFromPoint method can be used to calculate a text
positon belonging to a certain geometric position.

Page 8 What's New

The new Objectltem property can be used to get areference to an
object's property and method interface.

Changes and Extensions

The Text Control text format has been changed to support headers and
footers and specia types of marked text fields. The text format is fully
compatible to prior formats. Furthermore al prior formats can be
loaded. The new format version number is 700. More information about
how headers and footers are integrated, can be found in Appendix A of
the DLL reference manual.

The CurrentlnputPosition property can be used to set a new text input
position.

New and Extended Properties, Methods and Events

Property/M ethod/Event Description

CurrentlnputPosition Property Now supports the setting of a
new input position.

FieldAtl nputPos Property Returns the field identifier of the
field containing the current input
position.

FieldGoto Method Sets the current input position to
the beginning of a marked text
field.

FieldLinkClicked Event Occurs when a marked text field
is clicked that represents the
source of a hypertext link.

FieldNext Method Additionally supports the special
field types

FieldType Property Sets or returns the type of a
marked text field.

FieldTypeData Property Sets or returns the data belonging

to amarked text field of a special
type.

What's New

Page 9

Header Footer Property

Header Footer Activate Method
Header Footer Activated Event
Header Footer Deactivated Event
Header Footer Position Property

Header Footer Select Method

Header Footer Style Property

I nputPosFromPoint Method

L oadSaveAttribute Property

Objectltem Property
ResetContents Method

ViewM ode Property

Determines which headers and/or
footers the document contains.

Activates a certain header or
footer.

Occurs when a header or footer
has been activated.

Occurs when a header or footer
has been deactivated.

Specifies a header's or footer's
position.

Selects a certain header or footer
to use a Text Control property for
the header or footer instead for
the main text.

Determines style settings for
headers and footers.

Calculates atext position
belonging to a certain geometric
position.

Supports the additional attributes
txBasePath,

txAbsPath,

txEnableL inks,
txEnableHighlights and
txEnableT opics.

Gets areference to an embedded
OLE object.

Deletes the compl ete contents of
a Text Control.

Supports an additional page view
that centers the document in the
control and displays three-
dimensional pages with shadows.

Page 10 What's New

What's New in Version 7.0 since Version 5.2

This chapter provides a general list of features that have been added or
changed since Text Control version 5.2.

New Features

The 32 hit version of Text Control has been extended to support Uni-
code, the character set for all languages. When using the DLL interface
see the new chapter 1.14 "ANS and Unicode" in the DLL reference
manual for more information and a complete list of the extended
messages and functions and how to use them. Unicode support is
available on Windows NT and Windows 95/98.

The 32 bit version of Text Control now supports Far Eastern writing
systems (Input Method Editors) and can process double-byte character
sets. Internal dialog boxes and user messages are available in Japanese.
Thisaso is supported on Windows NT and Windows 95/98.

The Load and Save methods support loading and storing Unicode text
either astext only or integrated in the Text Control's text format.

The new methods SaveT oM emory and L oadFromMemory can be
used to copy or load formatted or unformatted text to or from a byte
array.

The new Find Method can be used to search for a certain string in the

Text Control's text contents without using the system-defined dialog
boxes.

The new property Currentl nputPosition returns page, line and column
number of the current input position.

The new TableNext method can be used to enumerate all tables a Text
Control contains.

The new property TableCellAttribute sets attributes of table cellslike
border widths, text distances and background color.

The new properties TableCellStart and TableCellL ength can be used
to get the start character index and the length of the text in atable cell.

What's New

Page 11

The new Resour ceFile property returns or sets the file name of a
recource library which Text Control loads when resources are needed.
This property can be used to display information strings and dialog
boxes in other than the buil-in languages. See the new chapter
"Overviews - Resources’ for more information how to build a resource
library.

A new tabulator type has been implemented. This type acts like aright-
aigned tabulator but its position is always the rightmost text position.
This tabulator type can only be set with the TabType Property.

Changes and Extensions

The Text Control's file format has been extended to support Unicode.
See the "DLL Reference Manual" for more information.

The DataFormat property has been renamed to DataT extFor mat to
offer compatibility with Visual Basic 6.0.

In table cells with asingle decimal tabulator, text is automatically
formatted. It is not necessary to type atabulator character.

New and Extended Properties, Methods and Events

Property/M ethod/Event Description

CurrentlnputPosition Property Returns page, line and column
number of the current text input
position.

L oad/Save Methods Support the new format
identifiers:

6 - Text only in Unicode format
(Windows compatible).

7 - Text only in Unicode format
(Text Control compatible).

8 - Internal Text Control format.
Text is stored in Unicode.

Find Method Searchesthetext in a Text
Control for agiven string.

Page 12

What's New

L oadFromMemory Method
Resour ceFile Property
SaveT oM emory Method
TableCellAttribute Property
TableCelL ength Property
TableCellStart Property
TableNext Method

TabType Property

Button Bar:
Appearance Property

Resour ceFile Property
Style Property

Status Bar and Ruler:
Resour ceFile Property

Loadstext datain a certain
format from a byte array.

Returns or sets the file name of a
resource library.

Stores text datain a certain
format in abyte array.

Sets attributes of one or more
table cdlls.

Returns the number of characters
in atable cell.

Returns the character index of the
first character in atable cell.

Can be used to enumerate all
tables of a Text Control.

Supports the new tabulator type:
5 - Right tab at the right most text
position.

For this type any position set with
the TabPos property isignored.

Returns or sets the painting style
of a Button Bar.

Returns or sets the file name of a
resource library.

Returns or sets the painting style
of aButton Bar's buttons.

Returns or sets the file name of a
resource library.

Introduction

Page 13

Introduction

Welcometo TX Text Control, the text processor in asingle ActiveX
control. Using Text Contral, you can create all kinds of text-based
applications with the ease of programming that is characteristic of
Visual Basic and with highly sophisticated formatting and display
capabilities which are normally the exlusive domain of large word
processing packages.

System Requirements

The Text Control ActiveX control requires the following minimum
configuration:
Windows 95/98, Windows NT 4.0 or Windows 2000.

Microsoft Visual Basic, Borland Delphi, Microsoft Visual C++ or one
of many other development platforms which support ActiveX controls.

How this Manual is Organized

*

Part 1 of thismanual, "Visual Basic User's Guide", describes how to use
Text Control with Visual Basic 4 or higher.

Part 2, "Delphi User's Guide", shows you how to install and use Text
Control with Delphi 2 or higher.

Part 3, "Other Languages’, contains tips for using Text Control with
languages other than Visual Basic and Delphi.

Part 4, "Reference”, starts with several articles, giving you an overview
how Text Control's properties, methods and events work together
followed by alist of all Text Control's properties, methods and events.

Appendix A describes Text Control's keyboard and mouse interface.

Page 14 Introduction

Distributing your Applications

The table below shows al the files necessary for Text Control to
operate properly. Y ou must ensure that these files exist on your client's
machine and they are the correct version. If your client's machine has
older versions of these files, you should update them.

1 TX40LE.OCX

2 TX32.DLL
TXTLS32.DLL
WNDTLS32.DLL
TXOBJ32.DLL
IC32.DLL
IC32.INI
TX_BMP32.FLT
TX_TIF32.FLT
TX_WMF32.FLT
TX_RTF32.DLL
TX_HTM32.DLL
TX_WORD.DLL

3 MFC40.DLL
MSVCRT40.DLL

4 TX_GIF32.FLT

Thefirst file (group 1) isthe Text Control ActiveX server containing
the ActiveX controls. These controls must be registered in the
registration database on your client's machine.

Thefiles listed in the second group are the additional Text Control DLL
files. They must be installed in the same directory as the ActiveX
server. You must alwaysinstall al of them.

Y ou should also verify that the Microsoft foundation class library files
(group 3) areinstalled on your client's computer. These files must be

Introduction

Page 15

installed in the Windows system directory. Please refer to Microsoft's
redistribution policy if you need to redistribute them.

Thelast file (group 4) is afilter to use the GIF image format with Text
Control. Unisys Corporation holds patent rights to the LZW technology
used in thisfilter. If a customer wants to use the GIF file format, heis
required to obtain alicense from Unisys and send a copy of the license
agreement to The Imaging Source Europe GmbH. We will then send
him the GIF filter free of charge.

Page 16

Creating a Simple Word Processor with Visual Basic

Visual Basic User's Guide

Creating a Simple Word Processor

This chapter shows you how to create a small word processor from
scratch with just afew lines of code. It will be able to load and save
files, use the clipboard, and will have dialog boxes for character and
paragraph formatting, aruler, a status bar and full keyboard and mouse
interface. The source code for this example is contained in the Smple
sample source directory.

Creating the Project

&
=

Assuming that you have already run the Text Control installation
program and started Visual Basic, the next step isto create a project for
the text processor. To do this begin by selecting the New Project
command from the file menu. Then use the Tools/ Custom Controls...
command to include the file 'tx4ole.ocx' into the new project. Y ou will
see four additional icons appear at the bottom of the toolbox,
representing the Text Control and its Status Bar, Button Bar and Ruler:

£C

o

The Text Control Icon The Status Bar Icon

The Button Bar Icon The Ruler Icon

Creating the Controls

The next step isto put these four
controls onto aform and connect them.
Click on the Text Control icon and i 2o A A7 A _N_ N
draw it on the form. In the same way,
create a Ruler and a Button Bar on top
of the Text Control, and a Status Bar
below it. Y our form should now look
like the diagram on the right:

Creating a Simple Word Processor with Visual Basic Page 17

Connecting the Controls

Add the following code to the form's L oad event procedure:
Private Sub Form Load()

TXText Control 1. ButtonBar Handl e = TXButt onBar 1. hWid

TXText Control 1. Rul erHandl e = TXRul er 1. hWwd

TXText Control 1. St at usBar Handl e = TXSt at usBar 1. hWwd
End Sub

Running the Program

The text processor is not yet finished, but we can make afirst attempt at
running it to see what it can do. Click the 'Start' button. Y ou can typein
some text, select it with the mouse, copy it to the clipboard (use the

<CTRL>+<C> and <CTRL>+<V> keys as

long as thereis no menu), select adifferent [THTamtCantiodl T4 eeil crid =

font, set tabs and do lots of other things. All sk 1R =l

of these features have been built into the Text .?;l?'.'f'.": | Fome B

Control and can be used with aimost no S s

programming effort. Lot Fila

Y ou will have noticed, however, that some fsiare e

features are still missing. For instance, if you s T

resize the main window, the controls keep e 20

their old sizes. There is no menu, and there frolbel Fas

are no scrollbars either. We will fix thisin Foie Aid

the coming chapters. i

et s

Adding Scrollbars Forutl i

To add scrollbars, click on the Text Control iy Tas

window to have its property list displayed. Wi ’

Click on the Scrollbars property and select o g

3 - Both. Select the PageWidth property and ~ fessr 0

enter 12000, which isabout the width of a T

letter in twips, the currently selected Frim e

measurement. Set PageHeight to 15000 for PR i |

now.

Page 18 Creating a Simple Word Processor with Visual Basic

Resizing the Controls

Two steps are involved in making the controls resize properly when the
main window isresized.

. Set the Align property to 1 - Align Top for the Button Bar, the Ruler and
the Text Control. Set it to 2 - Align Bottom for the Status Bar. This will
adjust everything except the height of the Text Control.

. Open the code window for the form which contains the Text Control. In
the combo boxes on top of the code window, select 'Form' in the
'Object:' box and 'Resize' in the 'Proc:' box. The code window should
show an empty procedure for the Resize event:

Private Sub Form Resize ()
End Sub

Extend it as follows:

Private Sub Form Resize ()
TXText Control 1. Hei ght = Scal eHei ght - TXRul er 1. Hei ght _
- TXStatusBarl. Height - TXButtonBar1l. Hei ght

End Sub

Thisline of code will cause the Text Control's height to be adjusted
every timethe size of theform is altered. (The' _' character is used to
extend one logical line of code to two or more physical lines).

i T |
Adding a Menu —— -

Inthissection, youwill adda sse [rrfare Fameh Carcel_|
menu to the text processor to e | grotcat [Forel =]
enable you to call the Text veplwiedl [T MepleePodtion [hoe v
Control's built-in dialog MCecked FErded Fiuble [i
boxes. 2 4] 4] [] e | oo |
Use the Visual Basic Menu ! s

Editor to create a Format
menu with the items
Character... and Para-
graph....

Creating a Simple Word Processor with Visual Basic Page 19

Name the items 'mnuFomat_Character' and 'mnuFormat_Paragraph'.
(Please refer to the Visual Basic documentation if you need help with
creating menus).

Add the following code to the Click procedures of the menu items:

Private Sub muFornmat _Character Cick()
TXText Control 1. Font Di al og

End Sub DT
Fiarasl
Private Sub muFornat _Paragraph_Cick() faiat A0
TXText Cont rol 1. Par agr aphDi al og] 3 3
End Sub s et e

Start the program again. Y ou should be able to use
the menu items to call the Font and Paragraph
dialog boxes.

Now for the Edit menu. Again use the Menu

Design Window and create an Edit menu

containing items for Cut, Copy, and Paste. The lap g

code for these menu itemsiis: Lra 1[G & [#dT [0

Private Sub muEdit _Cut Cick()
TXText Control 1.Clip 1

St C1 E—

Private Sub muEdit_Copy di ck() _gq,. L =T
TXText Control 1.Clip 2 e

End Sub

Private Sub muEdit Paste Cick()
TXText Control 1.Clip 3
End Sub

Having added these menu items, you can exchange
formatted text with other word processors viathe |
clipboard. LI

Lra 1 Ca @ TE |IH
Finally, we shall add one last menu. Create aFile
menu including the items Load... and Save As.... Place acommon dialog
box icon on the form and enter the following code, which will call the

Page 20 Creating a Simple Word Processor with Visual Basic

common dialog box to get a file name from the user, and will then load
respectively save the selected file:

Private Sub muFile_Load_dick()
On Error Resune Next
" Create an "Open File" dial og box

CommonDi al ogl. Filter = "TX Demp (*.tx)|*.tx"

CommonDi al ogl. Di al ogTitle = "QOpen”

CommonDi al ogl. Fl ags = cdl OFNFi | eMust Exi st O _
cdl OFNH deReadOnl y

CommonDi al ogl. Cancel Error = True

CommonDi al ogl. ShowOpen

If Err Then Exit Sub

" Pass the filenane to the text control
TXText Control 1. Load CormonDi al ogl.fil ename, 0

End Sub

Private Sub muFil e _SaveAs Cick()
On Error Resune Next
' Create a "Save File" dialog box

CommonDi al ogl. Filter = "TX Demd (*.tx)|*.tx"

CommonDi al ogl. Dial ogTitl e = "Save As"

CommonDi al ogl. Fl ags = cdl OFNOverwritePrompt O _
cdl OFNH deReadOnl y

CommonDi al ogl. Cancel Error = True

CommonDi al ogl. ShowSave

If Err Then Exit Sub

" Qpen the selected file
TXText Control 1. Save CommonDi al ogl.fil ename, 0
End Sub

Creating a Simple Word Processor with Visual Basic Page 21

What Comes Next

It goes, of course, without saying that Text Control has many more
features than those included in our little demo program. It isup to you
now to include zoom, images, tables, OLE objects, paragraph frames
and whatever else makes up afull-blown word processor. If you need
some hints about how to integrate specia features, have alook at the
source code of the other sample programs or post a message in the Text
Control support forum at http://www.textcontrol.com.

Page 22 Text Control Programming with Visual Basic

Text Control Programming

This chapter isaguide to programming Text Control and its toals,
explaining the parts which have been omitted from the Creating a
Smple Word Processor example.

Working with Files
Text Control uses 5 different file formats:

. Its own native format, which you would normally use to store datain
document files.

. The Rich Text Format (RTF), which can be used to exchange formatted
text with other applications.

. HTML
. Microsoft Word format
. Unformatted text in ANSI or Unicode format.

An example of how to use the native file format has already been
presented in the previous chapter. Using RTF, HTML, Word or
unformatted text isjust as simple: All you have to do is specify the
format you want to use as a parameter of the L oad or Save method.

Using RTF, HTML, Word and unformatted text you can only read or
write the contents of asingle Text Control from or to afile. Using the
native file format, however, you can write afile header prior to saving
the Text Control data, or even write the contents of several Text
Controlsto onefile.

The Formsl sample program, which is described in the next but one
section, shows you how to write the contents of multiple Text Controls
to asinglefile. The MDIDemo sample shows you how to write afile
header prior to the Text Control's data and how to use RTF, HTML,
Word and unformatted text.

Text Control Programming with Visual Basic Page 23

Printing

Visual Basic provides two techniques for sending information to the
printer. The first oneis to use the PrintFor m method, the second isto
use the printer object. Both methods have their drawbacks: PrintForm
works with screen resolution only, which would result in very poor print
quality. The printer object, on the other hand, provides the best print
quality, but requires alot of coding. Text Control uses the second
method to achieve the best result, but without a'lot of coding'.

The following example sends the contents of a Text Control, which can
be severa pageslong, to the default printer:

Sub muFile Print_Qick ()
D m wPages As Integer, No As Integer
wPages = TXText Control 1. Current Pages
For No = 1 To wPages
Printer.Print
TXText Control 1. PrintDevice = Printer. hDC
TXText Control 1. Pri nt Page No
Printer. NewPage
Next No
Printer. EndDoc
End Sub

After storing the number of pagesin alocal variable called wPages, the
printer object isinitialized with the Printer .Print statement, The For ..
Next loop runs from 1 to wPages to print all of the pages. Inside the
loop there are three more lines of code which print a single page:

The device context handle of the printer object is assigned to Text
Contral's PrintDevice property. Without this step, a device context
which is compatible to the screen device would be used, resulting again
in poor print quality.

The number of the page to be printed is passed as a parameter to the
PrintPage method. Thiswill also start the printing process.

The printer object's NewPage method is invoked to advance to the next
page.

Page 24

Text Control Programming with Visual Basic

Everything else, like calculating the line and page breaks, is done
internally by Text Control. The formatting is based on the values of two
groups of properties:

PageHeight and PageWidth determine the dimensions of the printed
page.

PageMarginB, PageMarginL, PageMarginR and PageMarginT
determine the print margins.

These properties are normally set in a page setup dialog box.

Using Multiple Controls

This chapter shows how to
use Text Control in
programs which have
several text fields placed on
asingle page. Think of a
program to print labels, to
fill out forms, or to mask
data entry. The Formsl
sample program, which can
be found in the samples
subdirectory provides the
basic functionality for
applications of this kind.

Running the Sample Program

Initially, when the program
is started, the main window
contains one framed Text
Control where text can be
entered. Therest of the
window is empty.

What you can do with the
programis:

. Foamal HE=E
File

i Araa |

| camal M=

Text Control Programming with Visual Basic Page 25

. Move the Text Control by pressing the ALT key and dragging the
window with the mouse.

. Resize the Text Control by pressing the ALT key and dragging the
window borders with the mouse.

. Create additional controls by clicking on an empty part of the main
window.

. Save, load or print.

To keep things simple, there are no scrollbars in the main window and
no menu items except the ones listed above. Scrollbars, zoom and afew
other features will however be added in the next chapter.

How it Works

The Formsl sample uses a control array for the text fields. The first
Text Control, the one which you see when you start the program, is
placed on the form at design time. More controls are created when you
click on an empty area of the form. These controls are created
dynamically with the Visual Basic L oad function when a M ouseDown
event occurs on the form:

Private Sub Form MouseDown(Button As |nteger, _
Shift As Integer, X As Single, Y As Single)
MaxI D = MaxID + 1
Load TXText Control 1(Max| D)
TXText Control 1(MaxI D). Move X, Y
TXText Control 1(MaxI D). Visi bl e = True
TXText Contr ol 1(MaxI D). ZOr der
End Sub

Clicking on an existing text field brings it to the front. Thisis done by
changing the Z order when a Click Event has occured:

Private Sub TXTextControl 1_Qick(Ilndex As Integer)
TXText Cont r ol 1(1 ndex) . ZOr der
End Sub

The global variable MaxID counts the total number of controls; It is
initialized to avalue of 1 when the form is |loaded.

Page 26 Text Control Programming with Visual Basic

Moving and resizing the controls is done by Text Control itself. To
enabl e these functions, the SizeM ode property must be set to 3 - Move
and Szeable.

Saving the Controls

Saving a document which has been created with this program
necessitates storing not only the data contained in the Text Controls, but
also the number and the positions of the controls. In addition, a format
identifier should be stored to enable the load routine of the program to
determineif it can process afile which it is about to load. The code on
the following page shows you how to save the document.

Private Sub muFil e_SaveAs _Cick()
On Error Resume Next

Dimi As Integer, FilelD As Long

Di mxPos As Single, yPos As Single

D mxSize As Single, ySize As Single

' Create a "Save File" dialog box

CommonDi al ogl. Filter = "TX FormDemp (*.txf)|*.txf"

CommonDi al ogl. Di al ogTitl e = "Save As"

CommonDi al ogl. Fl ags = cdl OFNOverwritePronmpt O _
OFNH deReadOnl y

CommonDi al ogl. Cancel Error = True

CommonDi al ogl. ShowSave

If Err Then Exit Sub

" Qpen the file

Open CommonDi al ogl.fil ename For Binary As #1

If Err Then
MsgBox "Can't open file: " + CommonDi al ogl.fil enanme
Exit Sub

End | f

Wite file header consisting of file format ID
and nunber of controls

FilelD=FILE_ID

Put #1, , FilelD

Text Control Programming with Visual Basic Page 27

Put #1, , MaxID
' Save the position of all Text Controls
For i =1 To MaxID

xPos = TXText Control 1(i). Left

yPos = TXText Control 1(i). Top

xSi ze = TXText Control 1(i).Wdth

ySi ze = TXText Control 1(i). Hei ght

Put #1, , xPos

Put #1, , yPos

Put #1, , xSize

Put #1, , ySize

Next i
O ose #1
' Save the contents of all TextControls
For i =1 To MaxID
TXText Control 1(i). Save ConmonDi al ogl. fil ename
Next i
End Sub

The L oad routine first reads the format identifier and the number of
controls. Then it creates the required number of controls, loads their
contents and finally moves them to their correct position:

Private Sub muFile_Load _dick()
On Error Resume Next

Dimi As Integer, |FilePos As Long
DmFilel D As Long, xPos As Single, yPos As Single
DimxSize As Single, ySize As Single

Create an Qpen File dial og box
ComonDi al ogl. Filter = "TX FormDemo (*.txf)|*.txf"
ComonDi al ogl. Di al ogTitl e = " Cpen”
CommonDi al ogl. Fl ags = cdl OFNFi | eMust Exi st O _
cdl OFNH deReadOnl y
CommonDi al ogl. Cancel Error = True
ComonDi al ogl. ShowOpen

If Err Then Exit Sub

Open the selected file

Page 28

Text Control Programming with Visual Basic

Open CMDi al ogl. filenane For Binary As #1

If Err Then
MsgBox "Can't open file: " + CommonDi al ogl.fil enanme
Exit Sub

End If

" Read file header

CGet #1, , FilelD

If FilelD <> FILE_ID Then
MsgBox "Wong file type: " + ComonDi al ogl.fil enanme
O ose #1
Exit Sub

End If

" Destroy existing controls
For i =2 To MaxID

Unl oad TXText Control 1(i)
Next i

" Create text controls and load their contents
Get #1, , MaxID
For i =1 To MaxID
Get #1, , xPos
CGet #1, , yPos
CGet #1, , xSize
Get #1, , ySize
If i <> 1 Then Load TXText Control 1(i)
TXText Control 1(i). Move xPos, yPos, xSize, ySize
TXText Control 1(i). Text =""

Next i
| Fil ePos = Loc(1)
Q ose #1
For i =1 To MaxID
| Fil ePos = TXText Control 1(i).Load _
(ConmonDi al ogl.filename, |Fil ePos)
Next i

End Sub

Text Control Programming with Visual Basic Page 29

Printing Multiple Controls

Printing a document is quite straightforward. The PageWidth and
PageHeight properties are set to avalue of 0 at design time, so the
controls are printed like they are formatted on the screen. The print
margin properties are used to specify the positions of the controls on the

page.

Private Sub muFile Print_Cick()
Dmi As Integer
Printer.Print
For i =1 To MaxID

TXText Cont rol 1(i
TXText Cont rol 1(i
TXText Cont rol 1(i

(i

.PrintDevice = Printer.hDC

. PageMar gi nL = TXText Control 1(i). Left
. PageMar gi nT = TXText Control 1(i). Top
TXText Control 1(i). PrintPage 1

Next i

Printer. NewPage

Printer. EndDoc

End Sub

~— — — —

The complete source code of the Formsl sample program is contained
in the Formsl sample source directory.

A Forms Filler

With the Formsl sample program, you can place text fields at arbitrary
positions on a page. When you print the page, the text fields appear on
the paper at exactly the same positions where they were previously
placed on the screen. These
features will be used in the

following sample to create a = A T T i

program for filling out pre-printed B 1
forms. mame: [Frad Flinteicne

The scanned image of theformis il

shown in the background of the s e |
screen, enabling the user to easily Euraoenn VAT rumbsr:

determine the positions of the O 1 wont ko pay by crect Goed. Pleaoe choms
filled-out fields. He has only to SR SRS eE S

-]

click (with the CTRL key pressed) fermrwrs—

Page 30

Text Control Programming with Visual Basic

on the area of the form where he wants to put text and then start typing.
The fields can be moved and resized afterwards by holding down the
ALT key and dragging them with the mouse.

The source code for this example is contained in the Forms2 sample
source directory.

Adding ButtonBar, Ruler and StatusBar

The Button Bar, Ruler and Status Bar are used in a special way in this
sample program. If you run the program and click on various fields you
will notice that the tools automatically switch to the text field which has
been clicked on. This switching is done internally by Text Control, so
no programming is required for it. The tools are simply connected to
the first member of the Text Control array at design time.

Displaying the Background Image

The background image is displayed by an Image Control. Y ou could
also use the Visual Basic PictureBox for this, but the PictureBox can not
handle the large image files which result from scanning a full document
page, and it does not support the TIFF file format, which is used by
mOost scan programs.

The Image Control is not a separate custom control, but a child window
of the Text Control. To display the background image, create a Text
Control which has the size of the whole page, and then load an image
using Text Control's Objectl nsertAsChar

method. M= E

The Text Control which displays the %LHRLLL]"J‘H"[H_ |

background image has an additional = iaped “ it .r.l... ws
ke cofirols on the [anm, ==

function, which again saves alot of
programming work. It acts as a container for
the Text Controls which are used as fill-out
fields. (A container control enables you to
draw other controls within it at design time.
Examples of container controls are frames

and picture boxes). The big advantage of a _Iﬂ

container isthat it handles all of the clipping
for the controls which have been created on

Text Control Programming with Visual Basic Page 31

top of it. Otherwise, scrolling the background image would cause the
text fields to overwrite anything that lies within the form's boundaries,
like ButtonBar, Ruler, and even the scrollbars. It would require many
calculations of field positions and sizes and some direct callsto the
Windows DLLs on every scroll and resize event to do the clipping
without a container control. Using the background Text Control as a
container, you need only create the first text field inside of it, and
everything elseis done automatically.

Working with Transparent Text Controls

Run the program, load a background image and create a few text fields
by clicking on this background image. Y ou will notice that the text
fields are transparent, so you can see the background image below.
Using this feature in a program requires some fine-tuning of the clipping
areas with the ClipChildren and ClipSiblings properties.

These two properties determine which areas of an image are repainted
when anew part of a control becomes visible or when its contents have
been changed.

For example, if one contral is covered by ancther, it only has to be
repainted if the one which lies on top of it istransparent. Y ou will
aways want to repaint as little as possible to make the application run
fast and to avoid unnecessary flickering on the screen. Furthermore you
will not want your computer to spend time drawing things which are not
visible.

For maximum flexibility in setting the clipping areas and mixing trans-
parent and opaque controls, two properties have been implemented
which share this task:

The ClipChildren property isused only for Text Controls which act as
acontainer for other Text Controls. When ClipChildren is set to True,
the areas occupied by the child controls are excluded from the update
area. S0, if asin the formsfiller program, transparent controls are used
as children of the container control, this property must be set to False.

The ClipSiblings property determines the behaviour between each of
the child controls. It must be set to False if the program allows transpa-
rent Text Controlsto overlap others.

Page 32

Text Control Programming with Visual Basic

Zooming

Zooming is simply done by setting the ZoomFactor property of each of
the Text Controls:

Private Sub muVi ew Zoom tem C i ck(l ndex As Integer)
Di mnZoom As Integer, i As Integer
nZoom = Val (M d$(muVi ew_Zoom t en(| ndex) . Caption, 2))
TXText Cont rol 2. ZoonFact or = nZoom

For i =1 To MaxID
TXText Control 1(i). ZoonFact or = nZoom
Next i
For i =1To 5
muVi ew_Zoom ten(i). Checked = (i = I ndex)
Next
End Sub

Using Marked Text Fields

Marked text fields are markers which are inserted in the text. They can
be used to implement awide range of special functionsin atext
processor. To name just afew:

- Mail Merge functions

- Spreadsheet-like calculation fields

- Bookmarks

- Automatic table of contents and index generation

- Hypertext viewers which include any kind of buttons, images, pop-up
windows or even OLE objectsin the text

Any group of characters within the text can be a marked text field. The
maximum number of fieldsis 65,535. Text Control maintains the
positions and numbers of the fields. It also takes care of loading, saving
and clipboard operations.

Text Control Programming with Visual Basic Page 33

A Simple Example

Thisfirst sample program will show you how fields are created and
what happens when they are clicked on. The code shown hereis
contained in the Fieldl sample source directory.

The program consists of aform with just one menu item, Insert Field!,
with an exclamation mark to say that clicking on thisitem will cause an
immediate action instead of dropping a menu. There are two Text
Controls on the form, one of which is used as a normal text window
(TXTextControl1), the other one as a pop-up window

(TXTextControl 2).

The following code is executed when the menu item is clicked on:

Private Sub mulnsertField _dick ()
TXText Control 1. Fiel dl nsert "-------- "
End Sub

Thisinserts afield at the current caret position. If you move the cursor
over the field, Text Control changes the mouse pointer to an upward
pointing arrow (1) to indicate that there is something to click on.

m Faiml HEE LRET M= E3
|maad Fakd |rae Pkl

Fualkdno, 1 —— Falkdno 1 -——

Fraldno. 2 Fraldno. 2

Fraldno. 3 Fraldno. 3

ST L T p—— Foakne < fThis s fistdng, 4. I
SR L — Frakno. 5 Fall | E—

=S i [S A— Fusld no G

Faaldno, T Faaldno. T

If you click on the field, the application receives a FieldClicked event,
to which it responds by popping up awindow which displaysthe field
number.

Only four lines of code are required for this:

Private Sub TXText Control 1_Fi el dd i cked(ByVal Fieldlndex _
As | nteger)

TXText Control 1. Fi el dCurrent = Fi el dl ndex

TXText Control 2. Text = "This is field no." & Fieldlndex _

Page 34

Text Control Programming with Visual Basic

&". Its text is: " & TXTextControl 1. Fi el dText
TXText Control 2. Move TXText Control 1. Fi el dPosX, _
TXText Control 1. Fi el dPosY
TXText Control 2. ZOr der
End Sub

Thefirst line selects the marked text field which has been clicked on.
Line 2 builds the string that is to be displayed in the pop-up window.
Line 3 moves the pop-up window, which isinitially hidden behind the
text window, to the position of the marked text field. Line 4 puts the
pop-up window in front of the text window to make it visible. When the
mouse button is rel eased, the text window is moved to the front again:

Private Sub TXText Control 1_MuseUp(Button As Integer,
Shift As Integer, X As Single, Y As Single)

TXText Control 1. ZOr der
End Sub

Bookmarks

This example shows you how to use Text Control's marked text fieldsto
create bookmarks. The first version will reference the bookmarks simply
by their field numbers. The source code for this exampleis contained in
the Field2 sample source directory.

The sample application has a Bookmark menu with two items which are
named Insert and Go to.... Clicking Insert creates a marked text field at
the current caret position. If atext selection exists, the selected text is
converted into afield. If not, the character next to the caret is selected.

Private Sub muBookmark | nsert O ick()
[f TXTextControl 1. Text = "" Then
MsgBox "Cannot insert bookmark if control is enpty."”
El se
| f TXText Control 1. Sel Length = 0 Then _
TXText Control 1. SeILength =1
TXText Control 1. Fi el dl nsert '
End If
End Sub

After typing in some text and inserting a few bookmarks, select the Go
To... menu item. Thiswill launch a dialog box which allows you to enter

Text Control Programming with Visual Basic Page 35

the nur_nber of the bookmark .'[0 J ump to.
Thereis no error processing in this
example, so if you enter thenumber of & | 4 to bookmark no.]

non-existent field, nothing will happen.
Cancel |

Clicking the 'OK" button executes the
following procedure:

Private Sub cnmdOk_Cick()
Fornl. TXText Control 1. Fi el dCurrent = Text 1. Text
Forml. TXText Control 1. Sel Start = _
Fornil. TXText Control 1. FieldStart - 1
Forml. TXText Control 1. Sel Length = _
Forml. TXText Control 1. FieldEnd - _
Fornil. TXText Control 1. FieldStart + 1
Unl oad Me
End Sub

The number which has been entered in the dialog box istaken asavalue
for the FieldCurrent property.

Adding Strings to Marked Text Fields

The source code for this example is contained in the Field3 sample
source directory.

In commercia word processors, bookmarks are normally referenced by
names, not just by numbers. The names are typed in by the user when he
creates abookmark. The Goto Bookmark dialog box then presents a
listbox or combobox in which one of the strings may be sel ected.

The Insert Bookmark... menu item in this

i Irisst Dockmaik M= E
version of the program creates adialog bOX | yasimat i o |
where the user can enter alabel for the Tmpentond]
bookmark. When the ‘OK’ button is |

clicked, the following code is executed:
Private Sub btnOK dick()

Forml. TXText Control 1. Fi el dl nsert ""
Forml. TXText Control 1. Fi el dData(_
Forml. TXText Control 1. Fiel dCurrent) = Text1l

Page 36

Text Control Programming with Visual Basic

Forml. TXText Control 1. Sel Length = 0
Unl oad Me
End Sub

First, amarked text field is created at the current caret position. Second,
the name of the bookmark, which is the text that has been typed in by
the user, is stored in the FieldData property.

The Goto Bookmark dialog box contains a

combo box which lists all of the bookmarks
. T

which have been created so far. The combo =_|

Fanl pocwioncn

box isfilled with the bookmark titleswhen [eaii ites e sn _Cawal_|
its form is loaded: ligratund

i Lasie Wk mark H=E

Private Sub Form Load()

DimnFiel dl D As I nteger
nFieldi D=0

Fill the conbobox wi th booknmarks
Do

nFi el dI D = Forml. TXText Control 1. Fi el dNext (nFi el dI D, 0)
If nFieldlD> 0 Then
cboBooknmar k. Addl tem _

For ml. TXText Control 1. Fi el dDat a(nFi el dl D)
End If
Loop Wiile nFieldlD <> 0

Copy the first itemto the edit control part of
' the conbo box

cboBooknar k. Text = cboBooknark. Li st (0)
End Sub

When the ‘OK’ button is clicked, the bookmark list is searched for the
string which has been selected in the combo box, and the corresponding
marked text field is selected.

Private Sub cnmdOk_Cick()

DimnFiel dl D As I nteger
nFieldi D=0

Text Control Programming with Visual Basic Page 37

Search for the requested bookmark
Do
nFi el dI D = Forni. TXText Control 1. Fi el dNext (nFi el dI D, 0)
If nFieldlD > 0 Then
I f Forml. TXText Control 1. FieldData(nFiel dID) = _
choBooknar k. Text Then
Exit Do
End If
End If
Loop Wiile nFieldlD <> 0

I f the booknmark has been found, select it.
" Text Control will then automatically scroll to
nmake it visible.
If nFieldlD <> 0 Then
Fornil. TXText Control 1. Fi el dCurrent = nFiel dl D
Forml. TXText Control 1. Sel Start = _
Fornil. TXText Control 1. FieldStart - 1
Forml. TXText Control 1. Sel Length = _
Forml. TXText Control 1. Fi el dEnd - _
Fornml. TXText Control 1. FieldStart + 1
El se
MsgBox " Bookmark not found."

End | f
Unl oad Me
End Sub

Y ou can also extend the sample program with a dialog box, similar to
the Go To Bookmark... dialog, in which a bookmark can be deleted
without deleting the text. This would require converting the marked text
field to normal text. Use the FieldDelete method to achieve this.

More information about marked text fields and alist of al properties,
methods and events that can be used with marked text fields, can be
found in the Reference part, later on in this manual, in chapter
"Overviews - Marked Text Fields'.

Page 38 Text Control Programming with Visual Basic

A Word Processor
This chapter shows

you how to use Text fﬁ%’*ﬁ—“‘ |

Control to write a = == &=
standard word

processor. The
program is based
upon the MDI sample
from the Visua Basic
Programmer's Guide,
with the TextBox
controls replaced by
Text Controls. If you
are not familiar with
MDI, control arrays Fam (L1 (M B [IM3 (8
or creating atoolbar

you should read that chapter first.

The source code for this example is contained in the MDIDemo and
Common sample source directories.

Adding a PageSetup Dialog Box

The Page Setup dialog box is used to
determine the page size and print Peper

margins. The maximum page sizeis + — I%‘
restricted by the capabilities of the widh [FI08 cm
default printer. For implementation Heght [FIES cm
details, look at the source code of the -
PageDlg form. Lem: [E5R em B[54 e
A Print Dialog Box Ise. [FS0 om letlom {5 cm

When the Print... menuitemis

clicked, first a Common Dialog box is shown to let the user enter the
range of pages, number of copies and printer specific information. The
rest of the procedure, which is part of the MDIChild form, isjust aloop

Text Control Programming with Visual Basic Page 39

which sets the appropriate Text Control properties for every page to be
printed.

Search and Replace

Searching and replacing is entirely done in Text Control. Y ou just have
to assign avalue of 1 for Search or 2 for Search And Replace to the
FindReplace method. Text Control then opens the Windows Common
Dialog box.

Using Paragraph Frames

With Text Control, you can add lines and m_zl

frames to a paragraph or arange of Paste |
paragraphs. For instance, you can put a - ﬁ ": ln:m p—y
line at the bottom of a caption likein the Tok Lines

header of this manual. o

The dialog box for paragraph framesisnot [Emmescted Frames © Lbie Linex
included in the Text Control, but the Lo wime [To =)

source code isincluded in the MDI Tew Distanens [T -

sample.

The properties which are responsible for paragraph frames are
FrameDistance, FrameLineéWidth, and FrameStyle.

Dialog Boxes for Text and Background Color

Thisis aso done with Common Dialogs. The color value returned from
the dialog box is assigned to the ForeColor or BackColor properties.

Using Text Control as a Bound Control

This chapter describes how to use Text Control to access databases with
the Visual Basic Data Control. If you are not familiar with the Data
Control or with Bound Controlsin general please refer to the Visual
Basic documentation.

The source code for this example is contained in the Data sample source
directory.

Page 40

Text Control Programming with Visual Basic

Connecting a Text Control to a Data Control enables you to store the
contents of the Text Control as arecord in adatabase. Not only isthe
plain text stored, but also al formatting information, e.g. font and
paragraph attributes, colors and image file names. The datais stored in a
binary format which is the same as that used by the L oad and Save
methods.

The Data sample program is connected
to asmall database which contains
descriptions of some of Text Control's
properties. The database was created
with the Visual Basic Data Manager and
then filled by inserting text from the
clipboard. Y ou can browse through the
records of the database by clicking the
Data Control buttons on the lower left
side of the window. If you change something in the current record, the
changes will automatically be written to the database as soon as you
click on one of the buttons.

Storing a Text Control's contents with all formatting [HIq]e e HH]|
information asisillustrated in this example requires

the DataT extFor mat property to be set to 1 - Binary. In the default

mode, which is 0 - Text, only the text is stored. The O - Text mode can

be used to access databases which have been created by other programs
which do not use the Text Control data format.

Calling DLL Functions from Visual Basic Code

Sometimes it is necessary to access the Text Control DLL directly
instead of using the OCX Properties. There are messages which,
because most Visual Basic users will never need them, have no
corresponding properties, but which may be useful for your program.

The CallDLLs sample program, whose source code is contained in the
CallDLLs sample source directory, shows you how to use these
messages. Y ou may want to browse through the DLL Reference online

Text Control Programming with Visual Basic Page 41

help file to see which other messages might be useful. The numbers of
the Text Control messages are listed in \samples\diNinc\tx.h.

Inserting Objects

This sample program shows you how to insert external objectsinto a
Text Control. The source code for this example is contained in the
Objects sample source directory.

An external object can be anything that has a window handle, for
instance buttons, list boxes, combo boxes, or other Text Controls. This
feature enables you to create active documents, in which the user can
enter data, select items from lists, or press buttons. Imagine a pizza
order form, where you enter your name and address into the Text
Control fields and select the things you want your pizzato consist of
from various drop-down menus.

How it Works

In this sample, two kinds of external objects can be inserted: Text
Controls, which act astext input fields, and combo boxes, which can be
used to select an item from alist. The two kinds of objects are control
arrays. One element of each of the controlsis placed on the Text
Control at design time is made invisible and is assigned an I ndex
property value of 0. At run time, when the user clicks amenu item to
create an object, a new element of the respective property array is
created, made visible, and inserted into the Text Control. Objetcts are
inserted using the ObjectlnsertAsChar or ObjectlnsertFixed Method.
Like images, objects can be inserted ‘as character’, making them act asif
they were characters within the text and move as the text changes, or
fixed', in which case the text flows around the objects. The last
parameter of the ObjectinsertAsChar or Objectl nsertFixed methods
is used to disinguish between different kinds of objects.

Loading and Saving

When you save a document which contains external objects, then the
Text Control does not know what data these controls may contain.
To enable you to save the object's data, Text Control sends an

Page 42

Text Control Programming with Visual Basic

ObjectGetData event for every object to be saved. When you then re-
load the document, the saved data is passed back as a parameter of
ObjectSetData events. Note that you do not need to process these
events for inserted Text Controls.

Using the Clipboard

Mail Merge

Another important event is ObjectGethwnd. This event is sent
whenever an object isto be created, i.e. when a document which
contains abjects is pasted from the clipboard, or loaded from afile. In
response to this event, the application creates the object and returnsits
window handle.

Note that you cannot use the SizeM ode property to move an inserted
Text Control with the mouse. Using SizeM ode, only the Text Control's
window is moved, but not the OLE frame. If your application requires
Text Controlsto be moved, insert them by calling the

CreateT extControl function, which is described in the DLL Reference
Manual.

For an example of how to use the Objectxxx properties amd methods,
refer to the MDI sample program.

The chapter "Using Text Control as a Bound Control" showed you how
to store a Text Control's entire contents in a database field. For
implementing functions like mail merge, however, the requirements are
different: the contents of database fields have to be inserted at specified
positionsin a previously prepared document. The following sample
program provides you with the basis of how to this.

The code shown here is contained in the Stdlet sample source directory.

The Sample Program

The program consists of two forms, Form1 for creating atext and
Form2 for connecting it to the database.

Start the program and use the File / Open... command to load the sample
file 'account.tx'. The file contains three fields which are to be replaced

Text Control Programming with Visual Basic Page 43

Bl rewt Lureamas |u k I

Waar Ms R : = |L|
nfomunataly, wou G ROt afend o our sl |n|.~|-1m | Caneal
gaecount of Thea gmaunt peyabls = _l

i} A impnd |||:H:| I
JHL A Sebect a spood, e clch it | |

by database entries. Select Insert
F ” — / Data to access Form2. When
T ri

It o ,s,e,r wo il ot aitend Ba our you click the Insert button in
T..(.:""' af DD1AEE The amount peyable = | Form2, the contents of the three
' database fields are copied to the
text fieldsin Form1. You can
select adifferent record by
clicking one of the data control
buttonsin Form2, and then
clicking Insert again to replace the fields.

How it Works

Each of the three edit controlsin Form2 are connected to afield in the
database. The edit controls are used as bound controls, so when you
browse through the database by clicking on the data control buttons, the
contents of the selected database record are automatically copied to the
edit controls. The only thing left to do isto copy the data from the edit
controls to the text fields in the document. Thisis done when you click
on the Insert button:

Private Sub cmdlnsert Cick()
Forml. TXText Control 1. FieldCurrent =1
Forml. TXText Control 1. Fi el dText = Forn®. Text1
Forml. TXText Control 1. Fiel dCurrent = 2
Forml. TXText Control 1. Fi el dText = FornR. Text 2
Forml. TXText Control 1. Fiel dCurrent = 3
Forml. TXText Control 1. Fi el dText = Forn®. Text 3

Uncomment this to send the result to the printer.
Printer.Print

Page 44

Text Control Programming with Visual Basic

" Forml. TXText Control 1. PrintDevice = Printer. hDC
" Forml. TXText Control 1. Print Page 1
" Printer. EndDoc

End Sub

To implement areal mail merge function you will have to add a dialog
box in which the user can select the database to be used. Y ou may also
want to provide a variable number of database fields which are
dependent on the contents of the selected database.

Using Hypertext Links

This chapter shows how to use Text Control's marked text fields to
insert hypertext links and targets into text documents and how to
respond to events which Text Control fires when the user clickson a
hypertext link.

The source code for the following examplesis contained in the
subfolders Stepl to Step4 of the Hyper Lnk sample source directory.

Step 1: Inserting a Hypertext Link

In thisfirst sample program a hypertext link will be inserted in a text
document. The document is saved then asaHTML file so that it can be
viewed in a browser.

Hypertext links are handled as a special type of a marked text field. A
hypertext link therefore isinserted by calling the Fieldl nsert method,
and then specifying the type of the field with the FieldType property:

TXText Control 1. Fiel dl nsert "Text Control Wb Site"
TXText Control 1. Fi el dType(TXTextControl 1. Fiel dCurrent) = _
t xFi el dBExt er nal Li nk

To store the target to where the link points, the FieldTypeData property
is used:

TXText Control 1. Fi el dTypeDat a(TXText Control 1. Fi el dCurrent)=_
“http://wwmw textcontrol.cont

Text Control Programming with Visual Basic Page 45

The following line of code saves the document, containing the hypertext
link, which has just been inserted asa HTML filein the sample folder:

TXText Control 1. Save App. Path & "\stepl.htm", |, 4, 0

When thisfile is loaded with aweb browser, the hypertext link will be
displayed as specified in your browser's settings. Clicking on the link,
will take you to the Text Control web site.

fm [fen n pesssde Hew
L3 250
Feisad dmwe Lawdh Mg F
il Emdemaiis J L [e S g i LT vy L v =
==
[i b o -

Note that there is ho code for the Click events yet, so clicking on the
hypertext link in the Text Control will have no effect. Also, thelink is
neither underlined nor colored.

Step 2: Adding a Dialog Box for Inserting Hypertext Links

In this second sample program adialog box is created which enables the
user, to insert hypertext links in amore convenient way. Additionally,
hypertext links which have previously been inserted or loaded from a
file, can be edited and modified. Note that, while hypertext links are
usually associated with HTML files, they can as well be stored in RTF
or Microsoft Word files, or in Text Control's proprietary format.

Thedialog box hastwo ey HEE
text boxes. Thefirst is _

for the text that - ITEEEE =]
represents the hypertext ik e ——— Canesl |

link in the document and

the second is for the

address, to where the link points. In the step 1 example, the representing
text was "Text Control Web Ste', and the address, to where the link
points, was "http: //wwww.textcontrol.com'.

Page 46

Text Control Programming with Visual Basic

The same dialog box is used for both, inserting a new and editing an
existing hypertext link. Depending on whether the current input position
isinside of an existing link, thislink is modified. Otherwise a new one
isinserted.

The diaog form's properties, tx and bShowHyperlinks, are used to pass a
Text Control's reference and some information about how to display the
hypertext links to the form.

Public Sub do_mul nsert Hyperlink Cick(tx As TXText Control,
bShowHyper | i nks As Bool ean)
Set frmHyperlink.tx = tx
frmHyperlink. bShowHyperlinks = _
(muVi ew_Hyper | inks. Checked = True)
frmHyperlink. Show 1
End Sub

When the form is loaded, the text boxes are filled with the text and link
information when the current input position isinside of an existing link:

Private Sub Form Load()
I f CaretlnsideHyperlink(tx) <> 0 Then
t xt Li nkedText = tx. Fi el dText
txt Li nkTarget =tx. Fi el dTypeDat a(tx. Fi el dCurrent)
El se
txt Li nkedText = tx. Sel Text
End | f
End Sub

The user then can change the displayed information. The information is
then transfered to the document by either inserting alink or modifying
the existing one when the 'OK' button is pressed:

If tx.FieldAtlnputPos <> 0 Then
editing an existing hypertext |ink
tx. Fi el dText = txtLi nkedText
tx. Fi el dType(tx. Fi el dCurrent) = txFi el dExt ernal Li nk
tx. Fi el dTypeDat a(tx. Fi el dCurrent) = txtLinkTarget
El se
i nsert new hypertext link
tx. Fi el dl nsert txtLinkedText
tx. Fi el dType(tx. Fi el dCurrent) = txFi el dExt ernal Li nk

Text Control Programming with Visual Basic Page 47

tx. Fi el dTypeData(tx. Fi el dCurrent) = txtLinkTarget
Hi ghl i ght Hyperlinks tx, bShowHyperli nks
End | f

Finally, there is a menu item to switch the character format of the
hyperlink's text to blue colored and underlined style. The menu item
calls the function HighlightHyperlinks, which is defined in the file
HyperlinkFunctions.bas.

Step 3: Adding Targets

Step 1 and 2 only handle references to external resources, i.e. addresses
of web pages or files. In this step, links to positions in the same
document will be handled. These links are called interna links and the
positions, to where they point, are called targets. Targets are also
refered to as anchors (in the context of HTML editors) or bookmarks (in
word processors). When using this example, first add some text and
then some targets with the Insert / Target... menu item. Finally use the
Insert / Hypertext Link... menu item to add links to these targets.

Inserting a Target

Targets arerealized again as a It bt]
specia type of amarked text field. tapens
The type and the target's name [—
must be set with the FieldType

and the FieldTypeData]

properties. Unlike links, targets
have no visible text, therefore an empty field must be inserted with the
Fieldlnsert method to insert atarget:

D m Target Name As String
Tar get Name = | nput Box("Target name:", "Insert target")
| f TargetNane <> "" Then
TXText Control 1. Fi el dl nsert ""
TXText Control 1. Fi el dType(TXText Control 1. Fi el dCurrent) = _
t xFi el dLi nkTar get

TXText Control 1. Fi el dTypeDat a(TXText Control 1. Fi el dCurrent) _
= Tar get Nane
End If

Page 48 Text Control Programming with Visual Basic

Only onetext box is required to display the name of atarget, so asimple
InputBox statement can be used.

Inserting Links to Targets

To insert links to the just inserted targets, the Hypertext Link dialog box
is extended with alist box showing the names of all targets the
document contains. The FieldNext method is used to fill thislist box:

DimFieldl D As Integer

Listl.d ear

Fieldl D = tx.Fiel dNext (0, &H100&)

Wile FieldiD<> 0

Li st 1. Addl t emt x. Fi el dTypeDat a(Fi el dI D)
Fieldl D= tx.Fiel dNext (Fi el dl D, &H1008&)

énd

When the user s, Hynastest L ink o=
selects a target, Liked [zt oo E | o

the Link To field Lk b ot —
isfilled with the T gageis —

target's name.

After typing the ‘

link's text and

pressing the 'OK'
button, the link isinserted. Aninternal link isinserted in the same way
asthe external links from step 1, but the FieldType property now is set
to txInternalLink and the FieldTypeData property is set to the target's
name.

Jumping to a Target

After inserting internal links and targets, a jump must be realized. When
the user clicks on amarked text field that represents a hypertext link,
Text Control firesaFieldLinkClicked event. The information provided
through this event can be used with the FieldGoto method to jump to
the target:

Private Sub TXText Control 1_Fi el dLi nkd i cked(_
ByVal FieldldAs Integer, _
ByVal FieldType As Integer, _

Text Control Programming with Visual Basic Page 49

TypeData As String)
TXText Control 1. Fi el dGot o t xFi el dLi nkTarget, TypeData
End Sub

While the FieldGoto method is used for targets within the samefile,
links to external targets must be treated differently. When the
FieldLinkClicked event occurs, and the FieldType parameter indicates
that the link is external, then it depends on the type of the application,
what to do. External links can point to, for instance, files on the local
harddisk, or addresses in the internet.

Note that responding to the events is only required for making the
hypertext links work while the text is edited in Text Control. If the text
is saved to afile and displayed with a browser, then the hypertext links
will work depending on the used browser.

Step 4: Adding Jumps to External Targets

Finally, in this step, jumps to other documents and jumps to targetsin
these documents are added.

An Enhanced Dialog Box for
Displaying and Selecting Targets

. Hyppertext Link

Lok o] st

Again the Hypertext Link [Eeteg sated

dialog box is extended to Lirk to

choose an external file. A Uik 5o pagm i ool . Chooie e |
Choose File... button is | Fibes' s achoes himiBfistting_shated

placed on the form that
triggers acommon dialog.

Gebsct & e gt @ cuent page [opoeal Shoss lgeds i

. L
After theuser haschosena | [mrem" & s:mn:
file, itsnameis displayed el S
in the text box and the file | limis Cenizpans =
is searched for internal
targets: [>] _ o=

Private Sub CheckFil eForTargets(file As String)
tx(1).LoadSaveAttribut e(txEnabl eLi nks) = True
tx(1).Load file, 0, 4
FillListboxWthTargets (1)

Page 50

Text Control Programming with Visual Basic

opt Sel Fil e. Val ue = True
| oadedFile = file
End Sub

For this purpose the file is loaded in a second, invisible Text Control.
Then the FieldNext method is used asin step 3to list all targets.

Jumping to an External Target

To implement the jump to an external link, the code added to the
FieldLinkClicked event in step 3 must be extended. The following
code does not handle jumps to internet addresses, it only implements
jumps to targetsin other files. To seperate afile from a name of atarget,
Text Control usesthe'# character. The following code separates the file
name and the target's name, loads the file with the L oad method and
jumps to the target with the FieldGoto method:

El sel f FieldType = txFi el dExt ernal Li nk Then
‘This sanpl e does not feature links to ww sites,
‘so exit sub
If Left(TypeData, 7) = ,http://“ Then
Exit Sub
End If

TXText Control 1. LoadSaveAt tri but e(txEnabl eLi nks) = True
pos = InStr(TypeData, ,#*)

“File nane includes an internal link
[f pos >= 0 Then
‘Ask the user to save changes, if any
If bDocDirty Then
ret = MsgBox(,Save changes?*, vbYesNoCancel, _
»Question")
If ret = vbYes Then
muFi | e_SaveAs i ck
El self ret = vbCancel Then
Exit Sub
End | f
End | f

‘“Extract file name & path fromfull path

Text Control Programming with Visual Basic Page 51

str = Left(TypeData, pos - 1)
TXText Control 1. Load str, 0, 4
‘“Extract file position fromfull path
str = Md(TypeData, pos + 1)
TXText Control 1. Fi el dGot o t xFi el dLi nkTarget, str
El se
“File nane doesn’'t include an internal |ink
TXText Control 1. Load TypeData, 0, 4
End If
End | f

Loading and Saving Files containing Hypertext Links

When an HTML, RTF or Microsoft Word document is loaded, Text
Control must convert containing hypertext links to appropriate marked
text field, as described above. To perform this, a programmer must set
the L oadSaveAttribute(txEnablel inks) before using the L oad
method. Otherwise hypertext links and target fields are not converted.
When a document is saved, marked text fields that represent hypertext
links, are always converted to the appropriate format.

If Text Control's proprietary format is used, setting L oadSaveAttribute
is not necessary.

More information about hypertext links and alist of all properties,
methods and events that can be used with marked text fields, can be
found in the Reference part, later on in this manual, in the chapter
"Overviews - Marked Text Fields - Special Types of Marked Text
Fields'.

Headers and Footers

This example shows how to use headers and footers. The source codeis
contained in the Headers sample source directory.

TX supports headers as well as footers. Y ou also have the ability to
create a different header or footer for the first page.

To insert a header or footer in the example, click on Insert and choose
one of the four possible options. The code that is executed when

Page 52

Text Control Programming with Visual Basic

clicking on one of the menu itemsis almost the same. For the Header
menu item it looks as shown below. Theline

TXText Cont rol 1. Header Foot er = TXText Control 1. Header Footer +
t xHeader

informs Text Control that a header should be added to the current
settings.

Setting the Header Footer Style property to txM ouseClick enables the
user to activate the header with asingle click rather than a double-click.
Activating a header or footer with a double-click is Text Control's
default setting. More information about how to use headers and footers
and alist of al properties, methods and events that can be used with
headers and footers, can be found in the Reference part, later on in this
manual, in the chapter "Overviews - Headers and Footers'.

When using properties, Text Control distinguishes between the main
text and headers or footers. To switch between these different indepen-
dent text parts, Text Control provides the Header Footer Select method:

TXText Control 1. Header Foot er Sel ect t xHeader
TXText Control 1. Sel Text = "Header"
TXText Control 1. Header Foot er Sel ect 0

This code selects the header, so that the following code affects the
header and then sets the headers text. Finally the mode is reset to zero
using the Header Footer Select method. More information about
programming with headers and footers see the chapter "Overviews -
Headers and Footers - Programming Headers and Footers'.

A header or footer is activated from programming code using the
Header Footer Activate method. To delete a header or footer, smply
substract the txHeader constant from the current Header Footer
settings.

The following is the compl ete code of the menu item:

Private Sub muHeader Cick()
I f muHeader. Checked = Fal se Then
TXText Control 1. Header Footer = _
TXText Control 1. Header Foot er + txHeader

Text Control Programming with Visual Basic Page 53

TXText Cont r ol 1. Header Foot er Sel ect t xHeader
TXText Control 1. Sel Text = "Header"
TXText Control 1. Header Foot er Sel ect 0
TXText Control 1. Header Foot er Acti vat e t xHeader
muHeader . Checked = True

El se
TXText Control 1. Header Footer = _

TXText Control 1. Header Foot er - txHeader

muHeader . Checked = Fal se

End | f

End Sub

Drag and Drop

This example shows how to use the | nputPosFromPoint method to
realise asimple Drag& Drop in a Text Control application.

Drag& Drop in atext editor enables the user to drag a piece of text and
drop it in anew location of the document. So, the incoming mouse
events have to be analyzed and handled.

In the M ouseDown event, the I nputPosFromPoint method is used to
get the character position the user has clicked on. The current input
position and the length of the selection are stored in global variables,
because they are needed in the M ouseUp event. If the input position the
user has clicked on, isinside of the current selection, dragging can be
started. First aglobal variable named dragging is set to true and the
MousePointer property is changed to indicate that dragging isin
process. The text and format information of the current selection is
copied to amemory buffer using the SaveT oM emory method. Finally,
the Text Control's EditM ode property isset to 2 - read only.

“Get current input position and the current selection
pos = TXText Control 1. | nput PosFronPoi nt (X, Y)

ghl Start = TXTextControl 1. Sel Start

gbl Lengt h = TXText Control 1. Sel Lengt h

“Check if the click occured in the current selection
If gbl Start <= pos And gbl Start + gbl Length > pos Then

Page 54

Text Control Programming with Visual Basic

“Start draggi ng
data = TXText Control 1. SaveToMenory(3, True)
draggi ng = True
MousePoi nter = 2
TXText Control 1. Edi t Mode = 2
End If

In the M ouseUp event procedure the I nputPosFromPoint method is
used again to get the character position where the user has left the
mouse button. When dragging is in process and the input position is not
inside the current selection, the drop opertation can be performed. The
previously saved text now isinserted with the L oadFromMemory
method after setting the new input position with the SelStart property.

pos = TXText Control 1.1 nput PosFronPoi nt (X, Y)
I f dragging Then
“Check if the new input position is outside of
“the current selection. If it’s not, do not
‘copy the text
If Not (gbl Start<=pos And gbl Start + ghl Lengt h>pos) Then
TXText Control 1. Sel Text = ,*
If pos < gbl Start Then

TXText Control 1. Sel Start = pos
El se

TXText Control 1. Sel Start = pos - gbl Length
End | f

TXText Control 1. LoadFromvenory data, 3, True
End I f
“End draggi ng
draggi ng = Fal se
MousePoi nt er = vbNor mal
TXText Control 1. Edi t Mode = 0
End if

TX Publisher - An Advanced Visual Basic Example Page 55

TX Publisher - An Advanced Example

This sample progam is written entirely in Visual Basic, with no third
party custom controls or DLLs except those included with Visual Basic
itself. The program is intended to be used as a starting point for your
applications, and it contains al the basic functions like loading and
saving documents, printing, zooming, as well as the scroll interface.

Y ou can easily add more features and customize the program without
having to start from scratch.

Text Frames and OLE Objects

TX Publisher works with text frames. This can entail pure text frames
into which new text is entered or OLE objects. The type of frameis

T Publishar - CATRSACHOWSAMPPLURLIS RS ARMPLE, TeE
File Ed# Yirw Inecrt Fgrmst Help

[Times W Romn —— [&] (11 [[8] [8] s o) [w]a]s|m][r]a]e]s]

AT ST AT LT LR T LU T ST
a Paga 17 Test-Candral
7] & Ward Processar
] This chapter shoers wors birer o uss Texd-Coniral 52 -
! write 4 sandend ward grocemor The program is
baged upoa e WIDL sarople froes the Ve Basi
-1 Frogrammer's Gude, weh the TedBax cantrals
replaced by Teat:Comrols. [you are oot fameliar e e e e T - ot e
wath MO, condrod aivaes o crealiog @ 1oolbier you [——
5] meay weant ba read gtk chapter Gt LR T T —
s P oo P T s T
he goasrce coda bor Hos axample 15 comdaned n Propray mlarmet o . o o o e
- the MOIDEMO sample soerce dirscioy o byt g
P e B kel e B
T PP P s e O e
] Pooalow i ol
Foage hirm upe Herma
. e {3 | L& o |
Heawhi T2 | e [ap] Adding & PageSetup Dialog Bax
Bab: [ih | - - .
I-u.--_. _| Beien [| The Page Setop dalog, Boo o ussd o d 3

Wk
_I

I+l 1 [+

Lra 18 [Cod 15 100X RS

Page 56 TX Publisher - An Advanced Visual Basic Example

defined in the Insert menu viathe 'New Frame'
menu item. In principle, the handling of textand ~ _ __ _________
OLE framesis the same. We will explain the :»?3
frame handling using examples with text frames,)
and will then deal with the OLE abject.

Drawing Text Frames

In order to draw aframe, click on an empty part %
of the page and, depressing the left mouse

button, drag the mouse down and to the right. If

you require a different page display for this, select it in the View menu
viathe'Zoom' menu item.

The borders of the newly created text frame can be made visible by
selecting 'Text Frames' in the 'View' menu. A paragraph ruler can be
shown above the Text Frame. This setting is likewise made in the view
menu, using the menu item * Paragraph Ruler’.

Text can now be entered into the newly created frame until it isfull, at
which point the frame has to be enlarged or the next frame has to be
created. Alternatively you can draw all the required text frames
successively, and then start entering text. Note that you can only start
entering text in the first frame.

Connecting Text Frames

The text frames are linked automatically. This means that text
automatically flows from the current frame into the next frame when the
current frame isfull.

If you click on an empty text frame which is further down the chain, then
the cursor will stay in the last window which contains text.

The text frames are numbered internally in their sequence of creation.

TX Publisher - An Advanced Visual Basic Example Page 57

Deleting and Creating Frame Connections

Y ou can eliminate the connection between frames and, if required,
regenerate them. Y ou delete the connection to the following frame by
clicking on the respective frame with the CTRL key depressed, and by
answering the subsegquent question displayed, ‘ Delete connection to
next window’, with Yes.

In order to create a connection, click on the frame to be connected to
and keep the mouse button depressed until a symbol with a

@_: sheet of paper in ahand is displayed. Keeping the CTRL key

— | and mouse button depressed, drag the symbol onto the frame
to which you wish to create a connection. Answer the
following question displayed, ‘ Connect Frame No. x to Frame No. y’,
with Yes. If it is not possible to create a connection, an error message
will appear.

Changing Frame Size and Position

The size and position of atext S

frame can be changed !

subsequently. To change the ! !

size, click the frame borders ! !

or acorner of the frame with !

the ALT key depressed. Keep the mouse key L .;‘
depressed, and drag the respective border to the

desired position.

To change the position, click at any

position within the frame with the ALT
CTTTTTTTS key depressed. Whilst keeping the mouse
button depressed, drag the frame to the
desired new position.

+

Page 58 TX Publisher - An Advanced Visual Basic Example

Setting Indents and Tabs

The currently active frame D T F ¥ ¥ T d

receives a paragraph ruler when Pl
this feature has been activated
in the 'View' menu. Using the

A Word Processor

This chapter shows you how to use
Text-Control to write a standard word

paragraph ruler you can set processor. The program is based upon the MDI
. sample from the isual Basic Programmer's
indents and tabs. Cuide, with the TextBox controls replaced by
Text-Controls. If you are not familiar with
MDI, control arrays or creating a toolbar you
Indents can be changed by 1 array: ing a toalbar y

g Idl ng the two Srna“ trlangles may want to read that chapter first

on the left side of theruler, and
the large triangle on the right.

Tabs are | eft-aligned by default. To create right-aligned,
decimal or centered tabs the tab type can be selected
using the Button Bar.

The source code for thiz example 15 contaned i

Y ou can set tabs by clicking at the desired position on the paragraph
ruler. Y ou can then shift the tab marker by clicking on it, and
simultaneously dragging it along the ruler with the mouse button
depressed. Y ou can remove a previously set tab by pulling it
downwards, away from the ruler. The maximum number of tabsis 14.

Using Images

Insert

New Frame »

Image

Images can be inserted via the 'Insert/
Image' menu item or from the clipboard.
The menu lets you choose between
inserting the image 'At Caret Position' or
'As Fixed Object'. Images which are inserted at the caret position are
treated like characters, and they move with the text as it changes.

At Caret Position...
As Fixed Object...

When inserted as fixed objects, images have afixed position on the
page, and the text flows around them. Theinitial position of animage
inserted in thisway is one inch from the top left corner of the page. Y ou
can move it to the desired position just like you move text frames,
which isby depressing the ALT key and dragging the image with the
mouse.Y ou can also change the size of theimage in thisway.

TX Publisher - An Advanced Visual Basic Example Page 59

Clicking on an image and selecting 'Image...' from the 'Format' menu lets
you select image attributes in a dialog box. Y ou can adjust the size of
the borders, i.e of aframe around the image where no text is displayed,
and you can select if you want the image datato be included in your

document file or if you just want :
to store afile reference. Storing I

the image data increases the size oo
of your document file, but hasthe | & save as bata

advantage of making the document |

. .. . Image Borders
independent of additional image Loft inch Right: inch
fl|eS. Top: inch Bottom: inch

Images which are inserted from
the clipboard are aways inserted 'at caret position' and saved 'as datal.

OLE Objects

If you select 'OLE Object' in the 'Insert / New Frame' menu, frames are
created in the following way. The frame is drawn as described above, by
placing the mouse at the top-left corner of the frame to-be and dragging
it down and towards the right. A dialog box entitled ‘Insert Object’ then
appears. This dialog box also appears on the screen if you click over the
frame with the right mouse button. Y ou have the choice of creating a
new object or of loading afile.

Page 60

TX Publisher - An Advanced Visual Basic Example

The File Menu
Open... Ctrl+0
Save Ctrl+5
Save As...
Print... Ctrl+P
Page Setup...
Exit

The Edit Menu

In the File menu you will find standard functions
such as: New, Open, Save, Save As, Print, Page
Setup, Exit. These will be familiar to you from
various other Windows applications and will
therefore not be described in more detail at this
point.

gdn The Edit menu also includes a number of
Deletion standard functions including Undo and Redo
oot smeper 1 function, Cut, Copy, Paste, Delete, Search,
Copy Curltins Replace, and Select All. Regarding the Undo
paste Sheins | function, three different actions can be
;ea,ch___ undone; Input, Deletion and Formatting.
3::: ::;" Py Other menu itemsinclude ‘Add Pages' and
Add Pages ‘Remove Pages', with which you can insert
Remave Pages... and delete pages. When creating a document
Deletc Frame there are two document pages. In order to

create additional pages, select Add Pages. Two

further pages are then added to the existing ones. Using the small scroll
bar at the bottom right, you can flick through the pages. Y ou can delete
the last two pages using 'Remove Pages.

If you wish to delete aframe, initially activate it by clicking on it, and
then select ‘ Delete Frame'. After agreeing to ‘ Delete Text Frame x’, the
respective frame is removed.

The View Menu

Yiew
Control Characters

+ Text Frames
+ Page Margins
Paragraph Ruler

Zoom »

In the View menu you switch in or switch out one or
more of the displays of Control Characters, Text
Frames, Page Margins and Paragraph Rulers. Y ou
can also set the display size of the page view. Using
‘Zoom’ you have the following options available:
Full Page, 30%, 50%, 75%, 100%, 200%.

TX Publisher - An Advanced Visual Basic Example Page 61

Regarding the Control Characters, soft and hard line breaks and blanks
are displayed.

The Insert Menu

Insert In the Insert menu you determine, via'New
e Frame', the type of frame to be created. You
Text... can choose between 'Text Frame' and 'OLE

Object'. For this purpose, read the previous
pages. Using the ‘Image’ menu item, a picture can be imported, and by
selecting ‘ Text’, ASCII or RTF text files can be inserted at the current
caret position.

The Format Menu

Fgrmat In the Format menu you can perform character
Character... H H
T and paragraph formatting. Y ou can determine the
Image... text colour and text background colour, and
:’Z“ZI using the menu item ‘ Paragraph Frames', you

E olor... . .
Text Background Color... can define lines or frames for paragraphs.
Paragraph Frames...

The Help Menu

Using ‘Help Topics you call up the Online help
service. You can also view an info window viathe
menu item ‘ About TX Publisher’

Help Topics....
About TX Publisher...

Page 62

TX Publisher - An Advanced Visual Basic Example

How the Program Works

Much of the program's functionality is based on the concept of container
controls. At the bottom of the control hierarchy thereis apageruler,
which is placed directly on the form. On top of the page ruler thereisa
picture box which acts as a container for the document pages, which are
themselves picture boxes. Finaly, the text frames, OLE frames and the
paragraph ruler use the page controls as containers. Although this may
seem a bit complicated at first sight, it saves you alot of programming
work, because this approach helps to divide the program into logical
blocks, and handles all the different clipping regions.Y ou can see how
the controls are put together when you look at the program in Visual
Basic design mode. (See next page).

When the program is started, two document pages are created in a
default size of A4 or Letter, depending on the system's country setting.
The size of the workspace is then automatically adjusted so that the two
pages can be shown side by side with a gray border around them.
Settings which do not change during the program execution are made in
the main form's Load event, whereas settings which depend on the
window size or the zoom factor are made in the form's Resize event.

Managing Global Data

Most of the global datais managed by the controls themselves and thus
does not have to be stored explicitly in variables.

For instance, the position and size of the text frames are stored in the
control's Left, Top, Width and Height properties. Information which
cannot be stored in control properties has been collected into asingle
global structure. This structure is called 'Doc' and contains information
about zoom factor, page margins and the total number of text and OLE
frames in the document. Its definition is to be found in the file
'global.bas.

Creating new Text and OLE Frames

A new frameis created when the user draws a rectangle on the page.
This happens in three stages in response to the page control's mouse
events:

TX Publisher - An Advanced Visual Basic Example

Page 63

[

o T

File Ed# View Ineedl Formal Help
EIEEIDENGOaO]
VN O A W Y- %
| 1 n
] = ™
L +—
D
BT
G ofl: |mics s=cEe
TeSiambyt

Text Frames,
OLE Object Frames,
Paragraph Ruler
(Text Controls, OLE Controls, TX Ruler)
I
Document Page
(Picture Box)
I
Workplace
(Picture Box)
I
Ruler
(Page Ruler)
I
Main Window
(Form)

On picPage_MouseDown, the mouse coordinates are stored as the top

|eft corner of the new control.

On picPage_MouseMove, arectangle is drawn showing where the new
control will be placed after the mouse button has been rel eased.

Finally, when the picPage_MouseUp event occurs, the rectangleis
deleted and a Text Control or OLE control is created at its coordinates.

The Text Controls and OLE controls, as well as the document pages, are
implemented as control arrays, so a new instance of one of them can be
created by calling the Load function. The newly created control is by
default a child window of picPage(0), which is the element of the page
control array that was created at design time. To have the control
displayed on top of the current page, the Windows API function

SetParent is used.

Connecting Text Frames

Thelast step in creating a new text frameisto connect it to its
predecessor so as to enable text to flow from one control to the next.
Thisis simply done by assigning the window handle of the new Text
Contral to its predecessor's NextWindow property. The connection can
be deleted later on by setting the property to avalue of O.

Page 64 TX Publisher - An Advanced Visual Basic Example

Deleting frames

A frameis deleted when the user selects the 'Delete Frame' menu item.
This does not really remove it from the control array, but simply makes
it invisible and marks it as deleted by setting its Tag property to avalue
of -1. The frames marked in this way are removed when the document is
saved to disk. The Tag property normally contains the number of the
page to which the control belongs.

The Page Ruler Control

When you first start TX
Publisher you will notice that the
ruler looks different from the | | E Pl
one in the standard version of b, """'“ I P B
TX Text Control. Theruler isin
fact an additional custom
control. Itsfilenameis
‘PgRul.Ocx', which is short for
‘Page Ruler’.

= 1 w || -

The Page Ruler control can be
used as a container for other
controls. In the TX Publisher
sample program, it isused as a
document page, on which the text frames are placed. A detailed
description of the Page Ruler's properties, methods and events can be
found in the Reference part of this manual.

Creating a Simple Word Processor with Delphi Page 65

Delphi User's Guide

Creating a Simple Word Processor

This chapter shows you how to create a small word processor from
scratch with just afew lines of code. It will be able to load and save
files, use the clipboard, and will have dialog boxes for character and
paragraph formatting, aruler, a status bar and full keyboard and mouse
interface.

The source code for this example is contained in the Smple sample
source directory.

Creating the Project

Assuming that you have aready run the Text Control installation
program and started Delphi, the next step is to create a project for the
text processor. To do this begin by selecting the New Application
command from the file menu. If you have already imported Text
Control into Delphi, itsicons are shown when the ActiveX tab is
selected. Otherwise, click on Controls/ Import ActiveX... and choose
TX Text Control from the given list. Click Install and then OK until all
dialog boxes have been closed. Now you will see the following four
additional icons when the ActiveX tab is selected:

The Text Control lcon <] The Status Bar Icon

The Button Bar Icon ZX | TheRuler Icon

Page 66 Creating a Simple Word Processor with Delphi

Creating the Controls

The next step is to put these four controls on aform and connect them.
Run Delphi and create a

new project. Select the

"OCX” pageinthe

component palette to ! = fl ! fl o) ;lul = ‘,I 5|
havethe4 TextControl @& & . & @& @&, &, 0 & % %
icons displayed. Click on Folprett =
the Text Control icon and

draw it on theform. In

the same way, create a

Ruler and a Button Bar

on top of the Text

Control, and a Status Bar |
below it. Your form a | _|—|
should now look like the

diagram on theright:

A T Tl Conliod - 5 mple 5 anpls Progss

Connecting the Controls

Add the following code to the form's FormShow Event procedure:

procedur e TForml. For nShow Sender : TChj ect);
begi n
TXText Control 1. ButtonBar Handl e : = TXBut t onBar 1. hWhd;
TXText Control 1. Rul er Handl e : = TXRul er 1. hWd;
TXText Control 1. St at usBar Handl e : = TXSt at usBar 1. hWhd;
end;

Running the Program

The text processor is not yet finished, but we can make afirst attempt at
running it and seeing what it can do. Click the Start button. Y ou can
type in some text, select it with the mouse, copy it to the clipboard (use
the <CTRL>+<C> and <CTRL>+<V> keys aslong as thereis no
menu), select adifferent font, set tabs and do lots of other things. All of

Creating a Simple Word Processor with Delphi

Page 67

these features have been built into the Text
Control and can be used with almost no
programming effort.

Y ou will have noticed, however, that some
features are still missing. For instance, if
you resize the main window, the controls
keep their old sizes. There is no menu, and
there are no scrollbars either. We will fix
thisin the coming chapters.

Adding Scrollbars

To add Scroll Bars, click on the Text
Control window to have its property list
displayed. Click on the Scrollbars property
and enter 3 - Both. Select the PageWidth
property and enter 12000, which is about
the width of aletter in twips, the currently
selected measurement. Set PageHeight to
15000 for now.

Resizing the Controls

Two steps are involved in making the
controls resize properly when the main
window is resized:

Object Inspector

I THTexwtContrall: TTeT e:-ctEu:untrLI

Fropertiez | Eventgl

PagetarginT | 1440 |
Pageifidth]

ParentColaor True

ParentF ant True
ParentShowHint True
Popuptdenu

FrintColors True

FrintQffzet Falze

FrintZoom 100

ScrollBarz 3 - Eath] j
ShowHint Falze

SizeMode 0 - Fixed
TabCurrent 1

Tabkey True
TableGridLines | True

TabOrder 1]

TabPos 1134

TabStop True

TabType 1

Tag 1] LI

Set the Align property to al Top for the Button Bar, the Ruler and the
Text Control. Set it to alBottom for the Status Bar. This will adjust
everything except the height of the Text Control.

Change to the events listing in the property window and double-click
the OnResize event. The code window should show an empty procedure

for the Resize event:

procedur e TFor . For nResi ze(Sender: TCbj ect);

begi n

end;

Page 68

Creating a Simple Word Processor with Delphi

Extend it as follows:

procedur e TFor nil. For nResi ze(Sender: Tbj ect);
begi n
TXText Control 1. Hei ght := dientHeight - TXRul er 1. Hei ght
- TXStatusBar 1. Hei ght - TXButtonBar 1. Hei ght;
TXText Control 1. Wdth : = dientWdth;
TXRulerl. Wdth := dientWdth;
end;

Thisline of code will cause the Text Control's height and width to be
adjusted every time the size of the form is altered.

Adding a Menu

In this chapter, you will add a menu to the text processor to enable you
to call the Text Control's built-in dialog boxes.

Use the Delphi Menu Component to create a
Format menu with the items Character... and
Paragraph.... (Please refer to the Delphi
documentation if you need help with creating
menus).

Add the following code to the Click procedures of the menu items:

procedure TForml. Character1d i ck(Sender: TChject); begin
TXText Control 1. Font Di al og
end;

procedur e TForml. Par agr aph1d i ck(Sender: TChj ect); begin
TXText Cont r ol 1. Par agr aphDi al og;
end;

Start the program again. Y ou should be able to
use the menu items to call the font and paragraph e E Farmat \
dialog boxes. L m

Again use the Menu Design Window and create
an Edit menu containing items for Cut, Copy, and
Paste. The code for these menu itemsis:

i’

Creating a Simple Word Processor with Delphi Page 69

procedure TFornil. Cut 10 i ck(Sender: TObject);

begi n
TXText Control 1.0 ip (1);
end;
procedure TFornil. Copyld i ck(Sender: TCbject);
begi n
TXText Control 1.0 ip (2);
end;
procedure TFornil. Past eld i ck(Sender: T(hject);
begi n
TXText Control 1.0 ip (3);
end;

After adding these menu items, you can exchange formatted text with
other word processors via the clipboard.

The last menu for now shall be asimplefile i 1aum] Mankinnal M=
menu. Create a File menu including the items I Edh Fermat

Load... and Save As.... Place acommon dialog ?.:,

box icon on the form and enter the following Sris .

code, which will call the common dialog box to Print...
get afile name from the user, and will then load

respectively save the selected file: =

procedur e TFor . Load1d i ck(Sender:
Thj ect);
const
TXT_FIIE
TXM FI LE
begi n
OpenDialogl. Title :="Cpen file';
QpenDi al ogl. Filename :="";
QpenDi al ogl. Fil ter
;= '"Text Control Demp (*.txm)|*.txm
|[Plaintext(*.txt)|*.txt";
QpenDi al ogl. Filterlndex : =1,
I f OpenDi al ogl. Execut e then begin;

1;
3

/] Pass the filenane to the text control

Page 70 Creating a Simple Word Processor with Delphi

I f Upper Case(copy(QpenDi al ogl. Fi | enane,

I engt h(CpenDi al ogl.filename)-2, 3)) ='TXM then begin

TXText Cont rol 1. Load(QpenDi al ogl. Fi | enane,
0, TXMFILE, 0);

end
el se

TXText Control 1. Load(QpenDi al ogl. Fi | enane,

0, TXT_FILE, 0);
end,
end;

procedure TFormnl. Saveas1d i ck(Sender: TObject);
const
TXM FI LE = 3;
begi n
SaveDialogl.Title : = 'Save as ...'
SaveDi al ogl. Filename :="";
SaveDi al ogl. Filter :="Text Control Deno (*.txm|*.txni;
SaveDi al ogl. Filterlndex : = 1;
SaveDi al ogl. Defaul t Ext :="txm;
i f SaveDi al ogl. Execute then begin;
/1 Pass the filename to the text control
TXText Control 1. Save(SaveDi al ogl. Fi | enane,
0, TXM FILE, 0);
end;
end;

What Comes Next

It goes, of course, without saying that Text Control has many more
features than those included in our little demo program. It isup to you
now to include zoom, images, tables, OLE objects, paragraph frames
and whatever else makes up afull-blown word processor. If you need
some hints about how to integrate specia features, have alook at the
source code of the other sample programs or post a message in the Text
Control support forum at http://www.textcontrol.com.

Text Control Programming with Delphi Page 71

Text Control Programming

This chapter isaguide to programming Text Control and its tools,
explaining the parts which have been omitted from the Creating a
Smple Word Processor example.

Working with Files
Text Control uses 5 different file formats:

. Its own native format, which you would normally use to store datain
document files.

. The Rich Text Format (RTF), which can be used to exchange formatted
text with other applications.

. HTML
. Microsoft Word format
. Unformatted text in ANSI or Unicode format.

An example of how to use the native file format has already been
presented in the previous chapter. Using RTF, HTML, Word or
unformatted text isjust as simple: All you have to do is specify the
format you want to use as a parameter of the L oad or Save method.

Using RTF, HTML, Word and unformatted text you can only read or
write the contents of a single Text Control from or to afile. Using the
native file format, however, you can write afile header prior to saving
the Text Control data, or even write the contents of several Text
Controls to onefile.

The Formsl sample program, which is described in the next but one
section, shows you how to write the contents of multiple Text Controls
to asinglefile. The MDIDemo sample shows you how to write afile
header prior to the Text Control's data and how to use RTF, HTML,
Word and unformatted text.

Page 72

Text Control Programming with Delphi

Printing

Delphi provides a printer abject that can be used to print the contents of
aText Control.

The following example sends the contents of a Text Control, which can
be severa pageslong, to the default printer:

procedure TForndl. Print 1C i ck(Sender: TChject);
var wPages, No : Integer;
begi n
wPages : = TXText Control 1. Current Pages;
Pri nter. Begi nDoc;
for No := 1 To wPages do begin
TXText Control 1. PrintDevice : = Printer. Canvas. Handl e;
TXText Control 1. Pri nt Page(No);
if No <> wPages then
Pri nt er. NewPage;
end,
Printer. EndDoc;
end,

After storing the number of pagesin alocal variable called wPages, the
printer object isinitialized with the Printer .BeginDoc statement, The
For .. Do loop runsfrom 1 to wPages to print all of the pages. Inside the
loop there are three more lines of code which print a single page:

The device context handle of the printer object is assigned to Text
Contral's PrintDevice property. Without this step, a device context
which is compatible to the screen device would be used, resulting in
poor print quality.

The number of the page to be printed is passed as a parameter to the
PrintPage method. Thiswill also start the printing process.

The printer object's NewPage method is invoked to advance to the next
page if thereis one left.

Everything else, like calculating the line and page breaks, is done
internally by Text Control. The formatting is based on the values of two
groups of properties:

Text Control Programming with Delphi Page 73

*

PageHeight and PageWidth determine the dimensions of the printed
page.

PageM arginB, PageMarginL, PageM arginR and PageMarginT
determine the print margins.

These properties are normally set in a page setup dialog box.

Using Multiple Controls

This chapter shows how to
use Text Control in programs
which have several text
fields placed on asingle FRESAE, 1
page. Think of aprogram to
print labels, to fill out forms,
or to mask dataentry. The
Formsl sample program,
which can be found in the
samples subdirectory
provides the basic
functionality for applications
of thiskind.

Running the Sample Program

Initially, when the program
is started, the main window
contains one framed Text
Control where text can be
entered. The rest of the
window is empty. |

What you can do with the
programis:

= M Naad Do - Frama 1 Sample Pasgoss

Move the Text Control by
pressing the ALT key and
dragging the window with
the mouse.

Page 74 Text Control Programming with Delphi

. Resize the Text Control by pressing the ALT key and dragging the
window borders with the mouse.

. Create additional controls by clicking on an empty part of the main
window.

. Save, load or print.

To keep things simple, there are no scrollbars in the main window and
no menu items except the ones listed above. Scrollbars, zoom and afew
other features will however be added in the next chapter.

How it Works

The Formsl sample uses a control array for the text fields. The first
Text Control, the one which you see when you start the program, is
placed on the form at design time. More controls are created when you
click on an empty area of the form. These controls are created
dynamically with the Delphi Create method. After creation initial

values are assigned:
procedur e TFor . For mvbuseDown(Sender: TQObj ect; Button:
TMouseBut t on;
Shift: TShiftState; X, Y: Integer);
begi n

MaxI D : = MaxI D + 1;

TX : = TTXText Control . Creat e(Fornl);

TX. Parent := Formi;

TX Top : =Y,

TX Left .= X

TX. Wdth := TXText Control 1. Wdt h;

TX Hei ght : = TXText Control 1. Hei ght ;

TX Narme : = 'TXText Control' + InttoStr(MxID);

TX. Si zeMbde := 3; // Mve- and sizeable

TX. BringtoFront;

TX. OnMouseDown : = TXText Cont r ol 1MbuseDown;
end;

Clicking on an existing text field brings it to the front. Thisis done by
changing the Z order when a Click Event has occured:

Text Control Programming with Delphi Page 75

procedure TFor ml. TXText Cont r ol 1MouseDown(Sender: TQbj ect;
Button: TMouseButton; Shift: TShiftState; X, Y. Integer);
begin
TTXText Cont rol (Sender). Bringt oFront;
end;

The global variable MaxID counts the total number of controls; It is
initialized to avalue of 1 when the form is loaded.

Moving and resizing the controls is done by Text Control itself. To
enabl e these functions, the SizeM ode property must be set to 3 - Move
and Szeable.

Saving the Controls

Saving a document which has been created with this program
necessitates storing not only the data contained in the Text Controls, but
also the number and the positions of the controls. In addition, a format
identifier should be stored to enable the load routine of the program to
determineif it can process afile which it is about to load. The code on
the following page shows you how to save the document.

procedure TForml. Saveld i ck(Sender: TChject);
var
outFile : file of byte;
begin
Il Create an "QOpen File" dial og box
SaveDial ogl. Title :='Save as';
SaveDi al ogl. Filename :="";
SaveDi al ogl. Defaul t Ext :="txm;
SaveDialogl.Filter :="'TX FormDeno (*.txf)|*.txf";
SaveDi al ogl. Filterlndex : = 1;

i f SaveDi al ogl. Execute then

Fil enane : = SaveDi al ogl. Fi | enane
el se

Exit;

try
begi n
/1 Open the selected file

Page 76

Text Control Programming with Delphi

AssignFile(outFile, filenane);
rewite(outFile);

Il Wite file header
FilelD. | Version :=File ID

Bl ockWite(outFile, FilelD, sizeO(FilelD));

[/ Save properties of all text controls
Bl ockWite(outFile, MaxID, sizeof (MxID));
For i :=1 To MaxID do begin
TXhWhd : = Fi ndConponent (' TXText Control '
+ Inttostr(i));
with TXProp do begin
xPos : = TTXText Cont rol (TXhWd) . Left;
yPos : = TTXText Contr ol (TXhWhd) . Top;
xSi ze : = TTXText Cont r ol (TXhWhd) . W dt h;
ySi ze : = TTXText Cont r ol (TXhWhd) . Hei ght ;
end;
Bl ockWite(outFile, TXProp, sizeof(TXProp));
end;
cl oseFile(outFile);

/] Save contents of all text controls
For i :=1 to MaxID do begin
TXhWhd : = Fi ndConponent (' TXText Control '
+ InttoStr(i));
TTXText Contr ol (TXhWhd) . Save(Fi | eNane, -1, 3, False);
end;
end;
Except
MessageDl g(' Error saving ' + filenang,
mError, [mhOK], 0);
end;
end;

The L oad routine first reads the format identifier and the number of
controls. Then it creates the required number of controls, loads their
contents and finally moves them to their correct position:

procedure TFornil. Load1d i ck(Sender: TChject);
var

Text Control Programming with Delphi Page 77

| FilePos : Longlnt;

InpFile . file of byte;
bOpen : Bool ean;
begi n

[l Create an "Open File" dial og box
QpenFileDialog. Title :="CQpen file';
QpenFileDial og. Fil ename :="";

QpenFileDialog.Filter :="'"TX FormDermo (*.txf)|*.txf";
QpenFileDi al og. Filterlndex := 1,

i f OpenFileD al og. Execute then
Fi | enane : = OpenFil eDi al og. Fi | enane
el se Exit;

try
begi n
/1 Open the selected file
bQpen : = Fal se;
AssignFile(inpFile, filenane);
reset (inpFile);
bQpen : = True;

/1 Read file header
Bl ockRead(inpFile, FilelD, sizeO(FilelD));
If FilelD.|Version <> FILE I D Then begin
MessageD g(' Wong filetype: ' + filenane,
m Error, [mhOK], 0);
Exit;
End;
/1 Destroy existing controls
If MaxID > 1 then begin
For i := 2 To MaxI D do begin
TXhWid : = Fi ndConponent (' TXText Control '
+ Inttostr(i));
TTXText Cont r ol (TXhWd) . Fr ee;
end;
end;
/I Create text controls and | oad their contents
Bl ockRead(| npFi |l e, MaxlI D, sizeof (MaxID));

Page 78

Text Control Programming with Delphi

For i :=1 To MaxID do begin

Bl ockRead(I npFil e, TXProp, sizeof (TXProp));

If i <> 1 Then begin
TX : = TTXText Control . Creat e(Fornl);
TX Parent := Fornt,;
TX. Wdth : = TXText Control 1. Wdt h;
TX Hei ght : = TXText Control 1. Hei ght ;

TX Nanme : = "'TXTextControl' + InttoStr(i);

TX. Si zeMode : = 3;
TX. Bringt oFront;

TX. OnMouseDown : = TXText Cont r ol 1MouseDown;

end;
TXhWid : = Fi ndConponent (' TXText Control '
+Inttostr(i));
TTXText Cont r ol (TXhWhd) .
TTXText Cont r ol (TXhWhd) .
TTXText Control (TXhWhd) . Wdt h : = TXProp. xSi ze;
TTXText Cont r ol (TXhWhd) .
TTXText Contr ol (TXhWhd) .
end;
| FilePos := FilePos(lnpFile);
cl oseFile(lnpFile);
bOpen : = Fal se;

Text .= ;

For i :=1 To MaxID do begin
TXhWid : = Fi ndConponent (' TXText Control '
+Inttostr(i));

| Fil ePos : = TTXText Cont r ol (TXhWhd) . Load(Fi | eNane,

| Fil ePos, 3, False);
TTXText Control (TXhWhd) . Vi sibl e : = True;
end;
end;

Except

MessageDl g(' Error opening ' + fil ename,
mError, [nhOK], 0);
i f bOpen then begin
cl oseFil e(inpFile);
end;

end;

end;

Left := TXProp. xPos;
Top : = TXProp. yPos;

Hei ght : = TXProp.ySi ze;

Text Control Programming with Delphi Page 79

Printing Multiple Controls

Printing a document is quite straightforward. The PagewWidth and
PageHeight properties are set to avalue of 0 at design time, so the
controls are printed like they are formatted on the screen. The print
margin properties are used to specify the positions of the controls on the

page.
procedure TFormil. Print1C i ck(Sender: TChject);
begi n

Print er. Begi nDoc;

For i :=1 To Maxl D do begin

TXhWid : = Fi ndConponent (' TXText Control' + InttoStr(i));
TTXText Control (TXhWhd) . Pri nt Devi ce : = Printer. Handl e;
TTXText Cont r ol (TXhWhd) . PageMar gi nL
:=toTw p(TTXText Cont rol (TXhWhd) . Left);
TTXText Cont r ol (TXhWhd) . PageMar gi nT
:=toTw p(TTXText Cont r ol (TXhWhd) . Top) ;
TTXText Control (TXhWhd) . Pri nt Page (1);
end;
Print er. NewPage;
Printer. EndDoc;
end;

The complete source code of the Formsl sample program is contained
in the Formsl sample source directory.

A Forms Filler

With the Forms1 sample pro- gy —
; T
gram, you can place text fields - = mlelul v wisim| 7 sle]
B [4

at arbitrary positions on a page.
When you print the page, the
text fields appear on the paper at
exactly the same positions

where they were previously | CADER FORH

placed on the screen. These I ——
features will be used in the | D Do oy =

following sample to create a e C —

program for filling out pre- T T TS TR =

Page 80

Text Control Programming with Delphi

printed forms.

The scanned image of the form is shown in the background of the
screen, enabling the user to easily determine the positions of the filled-
out fields. He has only to click (with the CTRL key pressed) on the area
of the form where he wants to put text and then start typing. The fields
can be moved and resized afterwards by holding down the ALT key and
dragging them with the mouse.

The source code for this example is contained in the Forms2 sample
source directory.

Adding ButtonBar, Ruler and StatusBar

The Button Bar, Ruler and Status Bar are used in a special way in this
sample program. If you run the program and click on various fields you
will notice that the tools automatically switch to the text field which has
been clicked on. This switching is doneinternally by Text Control, so
no programming isrequired for it. Each control is connected with the
status bar, button bar and ruler after it is created.

Displaying the Background Image

The background image is displayed by an Image Control. This control is
not a separate custom control, but a child window of the Text Control.
To display the background image, create a Text Control which has the
size of the whole page, and then load an image using Text Control's
ObjectlnsertAsChar method.

The Text Control which displays the

M= E

background image has an additional F=

s Dent Contral is nol

function, which again saves alot of ——

“hpped, S0 1L v enwTas

programming work. It acts as a container for wfasdorier controls on te fam K2

the Text Controls which are used as fill-out
fields. (A container control enablesyou to
draw other controls within it at design time.
Examples of container controls are frames
and picture boxes). The big advantage of a
container isthat it handles all of the clipping

for the controls which have been created on _|ﬂ

top of it. Otherwise, scrolling the

Text Control Programming with Delphi Page 81

background image would cause the text fields to overwrite anything that
lies within the form's boundaries, like ButtonBar, Ruler, and even the
scrollbars. It would require many calculations of field positions and
sizes and some direct calls to the Windows DLLs on every scroll and
resize event to do the clipping without a container control. Using the
background Text Control as a container, you need only create the first
text field inside of it, and everything else is done automatically.

Working with Transparent Text Controls

Run the program, load a background image and create a few text fields
by clicking on this background image. Y ou will notice that the text
fields are transparent, so you can see the background image below.
Using this feature in a program requires some fine-tuning of the clipping
areas with the ClipChildren and ClipSiblings properties.

These two properties determine which areas of an image are repainted
when anew part of a control becomes visible or when its contents have
been changed.

For example, if one contral is covered by ancther, it only has to be
repainted if the one which lies on top of it istransparent. Y ou will
aways want to repaint as little as possible to make the application run
fast and to avoid unnecessary flickering on the screen. Furthermore you
will not want your computer to spend time drawing things which are not
visible.

For maximum flexibility in setting the clipping areas and mixing trans-
parent and opaque controls, two properties have been implemented
which share this task:

The ClipChildren property isused only for Text Controls which act as
acontainer for other Text Controls. When ClipChildren is set to True,
the areas occupied by the child controls are excluded from the update
area. S0, if asin the formsfiller program, transparent controls are used
as children of the container control, this property must be set to False.

The ClipSiblings property determines the behaviour between each of
the child controls. It must be set to False if the program allows transpa-
rent Text Controlsto overlap others.

Page 82

Text Control Programming with Delphi

Zooming

Zooming is simply done by setting the ZoomFactor property of each of
the Text Controls:

procedure TFornil. N7510 i ck(Sender: TChject);
begi n
Zoom : = TXPar ent . ZoonFact or ;
TXPar ent . Zoonfactor := 75;
For i :=1 to MaxID do begin
TXhWad : = Fi ndConponent (' TXChi | d'" + InttoStr(i));
TTXText Cont r ol (TXhWhd) . ZoonFact or : = 75;
end;
TXhWhd : = Fi ndConmponent ("N + InttoStr(Zoonm + '1');
TMenul t en(TXhWhd) . Checked : = Fal se;
N751. Checked : = True;
end;

Using Marked Text Fields

Marked text fields are markers which are inserted in the text. They can
be used to implement awide range of special functionsin atext
processor. To name just afew:

- Mail Merge functions

- Spreadsheet-like calculation fields

- Bookmarks

- Automatic table of contents and index generation

- Hypertext viewers which include any kind of buttons, images, pop-up
windows or even OLE objectsin the text

Any group of characters within the text can be a marked text field. The
maximum number of fieldsis 65,535. Text Control maintains the
positions and numbers of the fields. It also takes care of loading, saving
and clipboard operations.

Text Control Programming with Delphi Page 83

A Simple Example

Thisfirst sample program will show you how fields are created and
what happens when they are clicked on. The code shown hereis
contained in the Fieldl sample source directory.

The program consists of aform with just one menu item, Insert Field!,
with an exclamation mark to say that clicking on thisitem will cause an
immediate action instead of dropping a menu. There are two Text
Controls on the form, one of which is used as a normal text window
(TXTextControl1), the other one as a pop-up window

(TXTextControl 2).

The following code is executed when the menu item is clicked on:

procedure TFornil. I nsertfiel d1C i ck(Sender: TObject);
begi n
TXText Control 1. Fiel dlnsert ('------- ")
TXText Control 1. Fiel dEdit Attr
[TXText Control 1. Fiel dCurrent] := $10 + $2 + $1;
end;

Thisinserts afield at the current caret position. If you move the cursor
over thefield, Text Control changes the mouse pointer to an upward
pointing arrow (1) to indicate that there is something to click on.

& 1% Tesl Conliol - Feel ., =] E3 1% Tesl Conbinl - Feel ., =] E3
Iret e Iraet Feid

Field no. 1 Fieldno 1

Field no. 2 Fieldno. 2

Eieldno 3 - Fieldno 3 -

Fieldno. 4 Field no. 4

Field no. 5; - Figdcd no. &; -

Field no 6 - Fieldno &

i5is figld no. &
- [—ap— -

e

Page 84

Text Control Programming with Delphi

If you click on the field, the application receives a FieldClicked event,
to which it responds by popping up awindow which displays the field
number.

Only five lines of code are required for this:

procedur e TForml. TXText Control 1Fi el dd i cked(Sender: TChj ect;
Fi el dl ndex: Smallint);
begi n
TXText Control 1. Fi el dCurrent : = Fi el dl ndex;
TXText Control 2. Text :="'This is field no. '
+ InttoStr(Fieldlndex) +"'. Its text is:
+ TXText Control 1. Fi el dText ;
TXText Control 2. Left : =
t oPi xel s(TXText Control 1. Fi el dPosX)
TXText Control 2. Top : =t oPi xel s(TXText Control 1. Fi el dPosY) ;
TXText Control 2. Bri ngt oFront ;
end;

Thefirst line selects the marked text field which has been clicked on.
Line 2 builds the string that is to be displayed in the pop-up window.
Line 3 and 4 moves the pop-up window, which isinitially hidden behind
the text window, to the position of the marked text field. Line 5 puts the
pop-up window in front of the text window to make it visible. When the
mouse button is rel eased, the text window is moved to the front again:

procedur e TFor ml. TXText Cont r ol 1MouseUp(Sender: Tbj ect;
Button: TMouseButton; Shift: TShiftState; X, Y: Inte-
ger);
begi n
TXText Control 1. Bri ngt oFront ;
end;

Bookmarks

This example shows you how to use Text Control's marked text fieldsto
create bookmarks. Thefirst version will reference the bookmarks simply
by their field numbers. The source code for this exampleis contained in
the Field2 sample source directory.

The sample application has a Bookmark menu with two items which are
named Insert and Go to.... Clicking Insert creates a marked text field at

Text Control Programming with Delphi Page 85

the current caret position. If atext selection exists, the selected text is
converted into afield. If not, the character next to the caret is selected.

procedure TForndl. I nsert1d i ck(Sender: TChj ect);
var
fieldlD: Integer;
begi n
If TXTextControl 1. Text ='"' Then
Appl i cation. MessageBox (' Cannot insert a bookmark
if the Text Control is enpty.',' ERROR , MB_(X)
El se begin
[f TXText Control 1. Sel Length = 0 Then
TXText Control 1. Sel Length : = 1;
TXText Control 1. Fiel dl nsert ('');
fieldl D:= TXTextControl 1. Fi el dCurrent;
TXText Control 1. Fiel dEdit Attr[fieldl D := $10 + $2 + $1;
end;
end;

After typing in sometext and inserting a
few bookmarks, select the Go To... menu | H Go to bookmark =] E3
item. Thiswill launch a dialog box which

allows you to enter the number of the Go to bookmark no. [
bookmark to jump to. Thereisno error

processing in this example, so if you enter

!) Cancel
the number of a non-existent field, not-

hing will happen.
Clicking the 'OK" button executes the following procedure:

procedure TfrnGot 0. ButtonlC i ck(Sender: TOhject);
begi n
Forml. TXText Control 1. Fi el dCurrent
;= Strtolnt(Editl. Text);
Forml. TXText Control 1. Sel Start
;= Forml. TXText Control 1. FieldStart - 1;
For mL. TXText Control 1. Sel Lengt h
.= Forml. TXText Control 1. Fi el dEnd
- Fornml. TXText Control 1. Fiel dStart + 1;
Cd ose;
end;

Page 86 Text Control Programming with Delphi

The number which has been entered in the dialog box istaken as avalue
for the FieldCurrent property.

Adding Strings to Marked Text Fields

The source code for this example is contained in the Field3 sample
source directory.

In commercia word processors, bookmarks are normally referenced by
names, not just by numbers. The names are typed in by the user when he
creates a bookmark. The Goto Bookmark dialog box then presents a
listbox or combobox in which one of the strings may be selected.

The Insert Bookmark... menu item in e pry— Tl =]
thlsverson of the program creates a Bookmesk Tite]
dialog box where the user can enter a e
label for the bookmark. Whenthe ‘OK’ " Cocet |
button is clicked, the following codeis
executed:
procedure Tfrm nsert. bt nOKd i ck(Sender: TCbject);var fieldl D

I nt eger;
begi n

I f Fornil. TXText Control 1. Sel Length = 0 Then begin
I f Forml. TXText Control 1. Sel Start
= Lengt h(For nlL. TXText Control 1. Text) Then
begin
Fornl. TXText Control 1. Sel Text :="' ';
Forml. TXText Control 1. Sel Start
;= Formil. TXText Control 1. Sel Start - 1;
end;
Forml. TXText Control 1. Sel Length := 1,
end;
Il Insert afield and store the booknmark name inits
/1 FieldData property
Forml. TXText Control 1. Fieldlnsert ('");
fieldl D:= Forml. TXText Control 1. Fi el dCurrent;
Forml. TXText Control 1. Fiel dEdit Attr [fiel dl D
= $10 + $2 + $1;

For L. TXText Control 1. Fi el dDat a[For ml. TXText Control 1. Fi el dQurrent]

Text Control Programming with Delphi Page 87

;= Editl. Text;
For ml. TXText Control 1. Sel Length : = 0;
d ose;
end;

First, amarked text field is created at the current caret position. Second,
the name of the bookmark, which is the text that has been typed in by

the user, is stored in the FieldData

property. * Go io Beohmark [_ O] =]

The Goto Bookmark dialog box contains Fm x|
acombo box which lists al of the St acutice Locn |

bookmarks which have been created so Irgarised
far. The combo box isfilled with the

bookmark titles when its form is loaded:
procedur e TfrnGot 0. For nBhow Sender: TChj ect);

var
nfieldlD: Integer;
begi n
nFieldlD:=0;

cboBookmar k. d ear;

[l Fill the conbobox w th bookmarks
Repeat
nFi el dI D : = Fornml. TXText Control 1. Fi el dNext (
nfieldl D, 0);
If nFieldlD> 0 Then
cboBookmar k. I t ems. Add(
For L. TXText Control 1. Fi el dDat a[nFi el dI O])
Until nFieldl D= 0;

/1 Copy first itemto the edit control part

/1 of the conbo box

cboBooknar k. Text : = cboBooknark. Items. Strings[0];
end;

When the ‘OK’ button is clicked, the bookmark list is searched for the
string which has been selected in the combo box, and the corresponding
marked text field is selected.

Page 88 Text Control Programming with Delphi

procedure TfrnmGot 0. ButtonlC i ck(Sender: TOhject);

var
nFieldiD: Integer;
| abel
Exit;
begi n
nFieldliD:= 0;
/'l Search for the requested bookmark
Repeat
nFi el dI D : = Fornil. TXText Control 1. Fi el dNext (
nFiel dl D, 0);

If nFieldlD > 0 Then begin
I f Forml. TXText Control 1. Fi el dData[nFiel dl D] =
(cboBookmar k. Text) Then
begi n
Goto Exit;
end;
end;
until nFieldl D=0;

Exit:
/1 If the booknmark has been found, select it. Text
Control will then
/1 automatically scroll to make it visible
If nFieldlD <> 0 Then begin
Forml. TXText Control 1. Fi el dCurrent := nFi el dl D
Forml. TXText Control 1. Sel Start
;= Forml. TXText Control 1. FieldStart - 1;
Forml. TXText Control 1. Sel Length
.= Forml. TXText Control 1. Fi el dEnd

- Fornil. TXText Control 1. Fiel dStart + 1;
end

El se
Appl i cati on. MessageBox(

' Bookmark not found.',' ERROR , MB_(X);
d ose;

end;

Y ou can also extend the sample program with a dialog box, similar to
the Go To Bookmark... dialog, in which a bookmark can be deleted

Text Control Programming with Delphi Page 89

without deleting the text. This would require converting the marked text
field to normal text. Use the FieldDelete method to achieve this.

More information about marked text fields and alist of al properties,
methods and events that can be used with marked text fields, can be
found in the Reference part, later on in this manual, in chapter
"Overviews - Marked Text Fields'.

A Word Processor
This chapter # T3 Tawl Canirol - MBI Dems

shows you B Gl Vi el Fosdd Wikss T
how to use | Len al nin

Text Control ~ [== A0 = s|rjulfF uzm[F 3]s
to writea e . (o~
standard word | IESEEEEE : . . i n "'E’
procr.Thel P T T I ﬂl_j
source code 2
for this -
exampleis

contained in |l

the MDIDemo _J'I
sample source | Ll | :
directory. — | __| __ -

Adding a PageSetup Dialog Box

The Page Setup dialog box is used
to determine the page size and

print margins. The maximum page S
ol

sizeisrestricted by the
capabilities of the default printer.

For implementation details, ook e =

at the source code of the i

frmPageDIlg form. - e
patne =
.

Page 90 Text Control Programming with Delphi

A Print Dialog Box

When the Print... menu item isclicked, first a Common Dialog box is
shown to let the user enter the range of pages, number of copies and
printer specific information. The rest of the procedure, which is part of
the MDIChild form, isjust aloop which sets the appropriate Text
Control properties for every page to be printed.

Search and Replace

Searching and replacing is entirely done in Text Control. Y ou just have
to assign avalue of 1 for Search or 2 for Search And Replace to the
FindReplace method. Text Control then opens the Windows Common
Dialog box.

Using Paragraph Frames

With Text Control, you can

add lines and framesto a Lire spacing Algrment III
paragraph or arange of = [oirge ing Lt
 Oneandabal et | | T Figh Camel

paragraphs. For instance, you Ton laas -~
can put aline at the bottom of B [e . :! =
acaption like in the header of _r,.-.n-n P

this manual.

The dialog box for paragraph L:""“: Distances:

1 1
framesis not included in the h [oo mm | Jex 00 em
Text Control, but the source gt 00 em | Bokom [i) e

codeisincluded in the MDI Futlge [07
sample.

The properties which are responsible for paragraph frames are
FrameDistance, FrameLineWidth, and FrameStyle.

Dialog Boxes for Text and Background Color

Thisis aso done with Common Dialogs. The color value returned from
the dialog box is assigned to the ForeColor or BackColor properties.

Text Control Programming with Delphi Page 91

Using Text Control with a Database

This chapter describes how to use Text Control to access databases with
the Delphi TDBNavigator control. If you are not familiar with the
TDBNavigator control please refer to the Delphi documentation.

The source code for this example is contained in the Database sample
source directory.

The sample uses the

& Tl Nt Codnll - Dot § nils: P 5

TX_DATAIN and o A ZAlfrEu|F @ W [F3 £

TX_DATAOUT Dalabase Sample Program
MESSAYES tO SLONe AAA L0 [rius surgle oo s s om s 1 smore Conpaaited Test Contesd it 21
the database and vice e
versaNot only isthe
plain text stored, but also
al formaﬁing © The Delphs mde. s un .'.'..'.ll:- ...l.': St 1 acossr e databaps, aad 3
information, e.g. font ik on e DB amgarer's eda Ve

and paragraph attributes,
colors and image file
names. The datais
stored in RTF format, EODOEEEED =
which isthe easiest to

handle.

- G =
&

The Database sample program is connected to a small data base which
contains descriptions of some of Text Control's properties. Y ou can
browse through the records of the data base by clicking the
TDBNavigator control buttons on the lower left side of the window. If
you want to change something in the current record, press the button
with the triangle.

Calling DLL Functions from Delphi Code

Sometimes it is necessary to access the Text Control DLL directly
instead of using the properties and methods. There are messages which,
because most users will never need them, have no corresponding
properties, but which may be useful for your program.

Page 92

Text Control Programming with Delphi

Mail Merge

The CallDLLs sample program, whose source code is contained in the
CallDLLs sample source directory, shows you how to use these
messages. Y ou may want to browse through the DLL Reference online
help file to see which other messages might be useful. The numbers of
the Text Control messages are listed in \samples\dI\inc\tx.h.

The chapter "Using Text Control with a Database" showed you how to
store a Text Control's entire contents in a database field. For
implementing functions like mail merge, however, the requirements are
different: the contents of database fields have to be inserted at specified
positionsin a previously prepared document. The following sample
program provides you with the basis of how to this.

The code shown here is contained in the Stdlet sample source directory.

The Sample Program

The program consists of two forms, Forml for creating atext and
Form2 for connecting it to the database.

* TH Tewl Comtenl - Gidlel Gample Peegion [M[=E3 |

= b BT (]
e bels i ; Dsmirasar
Infrtanatity, wou did nat aitend o our = | Irevst I
Coount of The armaunt mdﬂ& 1% Dhgtar I-I—
" —_— ARl B Cavcel |
doooank [T
[R T N

“ T Tewmt Condiol - Sidl ol 5anple Prsgion M= E Start the prograrn and use the

Eie Jrast File/ Open... command to load
[I;'f-f:;:'r ::' Duck, - the sample file 'account.tx'. The
L e o i« | file contains three fields which
£ 100 are to be replaced by database

entries. Select Insert / Data to
access Form2. When you click

the Insert button in Form2, the

contents of the three database

Text Control Programming with Delphi Page 93

fields are copied to the text fieldsin Forml. You can select a different
record by clicking one of the data control buttonsin Form2, and then
clicking Insert again to replace the fields.

How it Works

Each of the 3 edit controls on the second form is connected to afield in
the database. The data is read from the database in the same way asin
the Database sample.The only new thing is copying the data from the
edit controls to the text fields in the document. Thisis done when you
click on the Insert button:

procedure TFornR. Buttonld i ck(Sender: TChject);
begi n
Fornl. TXText Control 1. Fi el dCurrent : = 1;
Forml. TXText Control 1. Fi el dText : = Forn®. Edit1. Text;
For nl. TXText Control 1. Fi el dCurrent : = 2;
Forml. TXText Control 1. Fi el dText : = Forn®. Edit 2. Text;
For . TXText Control 1. Fi el dCurrent : = 3;
For nl. TXText Control 1. Fi el dText : = Forn®. Edi t 3. Text;
end;

To implement areal mail merge function you will have to add a dialog
box in which the user can select the database to be used. Y ou may also
want to provide a variable number of database fields which are
dependent on the contents of the selected database.

Using Hypertext Links

This chapter shows how to use Text Control's marked text fields to
insert hypertext links and targets into text documents and how to
respond to events which Text Control fires when the user clickson a
hypertext link.

The source code for the following examplesis contained in the
subfolders Stepl to Step4 of the HyperLnk sample source directory.

Page 94 Text Control Programming with Delphi

Step 1: Inserting a Hypertext Link

In thisfirst sample program a hypertext link will be inserted in a text
document. The document is saved then asaHTML file so that it can be
viewed in a browser.

Hypertext links are handled as a special type of a marked text field. A
hypertext link therefore is inserted by calling the Fieldl nsert method,
and then specifying the type of the field with the FieldType property:

TXText Control 1. Fiel dinsert (' Text Control Wb Site');
TXText Control 1. Fi el dType[TXText Control 1. Fi el dCurrent]
= txFi el dExt er nal Li nk;

To store the target to where the link points, the FieldTypeData property

is used:

TXText Control 1. Fi el dTypeDat a[TXText Control 1. Fi el dCurrent]
c="http://ww:.textcontrol.coni;

The following line of code saves the document, containing the hypertext
link, which has just been inserted asa HTML filein the sample folder:

TXText Control 1. Save (Application. Get NamePath +'.html "',
0, 4, False);

When thisfile is loaded with aweb browser, the hypertext link will be
displayed as specified in your browser's settings. Clicking on the link,
will take you to the Text Control web site.

im0 fem esedo pen
2 2 2.5 0
Feowl dwme Lewsd Krhome F
il mdmstis B Lt | e g L L v =
=
[iy d &L S0 g UE

Note that there is no code for the Click events yet, so clicking on the
hypertext link in the Text Control will have no effect. Also, thelink is
neither underlined nor colored.

Text Control Programming with Delphi Page 95

Step 2: Adding a Dialog Box for Inserting Hypertext Links

In this second sample program adialog box is created which enables the
user, to insert hypertext links in amore convenient way. Additionally,
hypertext links which have previously been inserted or loaded from a
file, can be edited and modified. Note that, while hypertext links are
usually associated with HTML files, they can as well be stored in RTF
or Microsoft Word files, or in Text Control's proprietary format.

The dialog box permeseres B &1
has two text

boxes. The first =™ &4 TS sk our homepage [o]

isfor the text o
that represents & [hitp-/vawews bestoorinol com - |

the hypertext

link in the document and the second is for the address, to where the link
points. In the step 1 example, the representing text was " Text Control
Web Site", and the address, to where the link points, was "http://
www.textcontrol.com’.

The same dialog box is used for both, inserting a new and editing an
existing hypertext link. Depending on whether the current input position
isinside of an existing link, thislink is modified. Otherwise a new one
isinserted.

The dialog form's property, tx, is used to pass a Text Control's reference
and some information about how to display the hypertext links to the
form.

procedur e TFor ml. Hypert ext Li nk2Q i ck(Sender: TQoj ect);
begi n

Forn2.tx := TXText Control 1;

For n2. Show\bdal ;
end;

When the form is loaded, the text boxes are filled with the text and link
information when the current input position is inside of an existing link:

pr ocedur e TFor nR2. For nShow(Sender: TCbj ect);
begi n
/1 If the caret is inside an existing hyperlink,

Page 96 Text Control Programming with Delphi

/'l copy the hyperlink's text and link information to the
Il text boxes on the form

I f (Forml. TXText Control 1. Fi el dAt I nput Pos
<> 0) Then begin
t xt Li nkedText . Text : = Forml. TXText Control 1. Fi el dText ;
t xt Li nkTar get . Text
: = Forml. TXText Control 1. Fi el dTypeDat a[
Forml. TXText Control 1. Fi el dCurrent];
end El se begin
t xt Li nkedText . Text := Forml. TXText Control 1. Sel Text;
txtLinkTarget. Text :="";
end;
end;

The user then can change the displayed information. The information is
then transfered to the document by either inserting alink or modifying
the existing one when the 'OK' button is pressed:

If tx.FieldAtlnputPos <> 0 Then begin

/1 editing an existing hyperlink

tx. Fi el dText := txtLinkedText. Text;

tx. Fi el dType[tx. Fi el dCurrent] : = txFi el dExt er nal Li nk

tx. Fi el dTypeData[tx. Fi el dCurrent] :=txtLinkTarget. Text;
end El se begin

/'l insert new hyperlink

tx. Fi el dlnsert (txtLinkedText. Text);

tx. Fi el dType[tx. Fi el dCurrent] : = txFi el dExt er nal Li nk

tx. Fi el dTypeData[tx. Fi el dCurrent] :=txtLinkTarget. Text;

Hi ghl i ght Hyperlinks (tx, Fornil. HypertextLinksl. Checked);
End;

Finally, there isamenu item to switch the character format of the
hyperlink's text to blue colored and underlined style. The menu item
callsthe function HighlightHyperlinks, which is defined in the file
Unit3.pas.

Step 3: Adding Targets

Step 1 and 2 only handle references to external resources, i.e. addresses
of web pages or files. In this step, links to positions in the same
document will be handled. These links are called internal links and the

Text Control Programming with Delphi Page 97

positions, to where they point, are called targets. Targets are also
refered to as anchors (in the context of HTML editors) or bookmarks (in
word processors). When using this example, first add some text and
then some targets with the Insert / Target... menu item. Finally use the
Insert / Hypertext Link... menu item to add links to these targets.

Inserting a Target

Targets arerealized again asa et Laged]
special type of amarked text field. Tagsnse
The type and the target's name [e—
must be set with the FieldType

and the FieldTypeData]

properties. Unlike links, targets
have no visible text, therefore an empty field must be inserted with the
Fieldlnsert method to insert atarget:

procedure TFor . Target 10 i ck(Sender: TChj ect);

var
Target Name : String;

begi n
Tar get Nane : = | nput Box(' Target nane:',

"Insert target', '');
If TargetNane <> '' Then begin
TXText Control 1. Fiel dl nsert ('');
TXText Control 1. Fi el dType[TXText Control 1. Fi el dCurrent]
. = txFi el dLi nkTar get ;
TXText Control 1. Fi el dTypeDat a[
TXText Control 1. Fi el dCurrent] : = Target Nare;
End;
end;

Only onetext box is required to display the name of atarget, so asimple
InputBox statement can be used.

Inserting Links to Targets

To insert links to the just inserted targets, the Hypertext Link dialog box
is extended with alist box showing the names of all targets the
document contains. The FieldNext method is used to fill thislist box:

Page 98

Text Control Programming with Delphi

Procedure TForn®. Fi |l | Li st boxWt hTar get s(Sender : TQhject);
var
FieldlD: Integer;
begi n
Li st Box1. cl ear;
FieldlD:=tx.FieldNext(0, $100);
Wile FieldlD <> 0 do begin
Li st Box1.Itens. Add(tx. Fi el dTypeData[FieldlD]);
FieldlD:=tx.FieldNext(Fieldl D $100);
end,
end;

When the user
selects atarget,
the Link To field

o |
isfilled with the Lirk T [rangett
[| |

target's name. T aigets

After typing the barget?

link's text and ‘

pressing the 'OK'
button, thelink is
inserted. Aninterna link isinserted in the same way as the external
links from step 1, but the FieldType property now is set to
txInternalLink and the FieldTypeData property is set to the target's

name.

A Hyperitext Link
Lirkmed] Tmot |3-_.-:. 1]

Jumping to a Target

After inserting internal links and targets, a jump must be realized. When
the user clicks on amarked text field that represents a hypertext link,
Text Control firesaFieldLinkClicked event. The information provided
through this event can be used with the FieldGoto method to jump to
the target:

procedur e TFor mL. TXText Control 1Fi el dLi nkd i cked(
Sender: TOoject; Fieldld,
Fiel dType: Smallint; var TypeData: WdeString);
begi n
If FieldType = txFi el dlnternal Link Then
TXText Control 1. Fi el dGot o(t xFi el dLi nkTar get, TypeDat a);

Text Control Programming with Delphi Page 99

end;

While the FieldGoto method is used for targets within the samefile,
links to external targets must be treated differently. When the
FieldLinkClicked event occurs, and the FieldType parameter indicates
that the link is external, then it depends on the type of the application,
what to do. External links can point to, for instance, files on the local
harddisk, or addresses in the internet.

Note that responding to the events is only required for making the
hypertext links work while the text is edited in Text Control. If the text
is saved to afile and displayed with a browser, then the hypertext links
will work depending on the used browser.

Step 4: Adding Jumps to External Targets

Finally, in this step, jumps to other documents and jumpsto targetsin
these documents are added.

An Enhanced Dialog Box for Displaying and Selecting Targets

Again the
H Link
Hypertext Link Yere

dialog box is Linked text:
extended to IGetting started
choose an el
external fl_le- A Link to page lacation or local file: Chooge file |
Choose File...
button is Ic:\FiIes\readme.htmﬂGetting_started
pl aced onthe Select a named target in cument page [optional]: :
form that b Show targets in;
triggersa Requirements " Cunent page
common Inztalling -

. Uninztalling + Selected file
dlalog. After Advanced features
the user has Install Corfiquring hd
chosen afile,
itsnameis oK Cancel
displayedin

the text box
and thefileis searched for internal targets:

Page 100

Text Control Programming with Delphi

procedure TFornR2. CheckFi | eFor Targets(tfile : String);
begi n
t xhi dden. LoadSaveAt tri but e[t xEnabl eLi nks] : = True;
t xhi dden. Load (tfile, 0, 4, false);
Fi Il Li stboxWthTargets (1);
Radi oBut t on2. Checked : = True
| oadedFile : = tfile;
End;

For this purpose the file is loaded in a second, invisible Text Control.
Then the FieldNext method isused asin step 3to list all targets.

Jumping to an External Target

To implement the jump to an external link, the code added to the
FieldLinkClicked event in step 3 must be extended. The following
code does not handle jumps to internet addresses, it only implements
jumps to targetsin other files. To seperate afile from a name of atarget,
Text Control usesthe '# character. The following code separates the file
name and the target's name, loads the file with the L oad method and
jumps to the target with the FieldGoto method:

El se begin

/1 determ ne which type of |ink we have (see

/1 Listl dick()) and renmove the '# charaacter.

[f (copy(txtLinkTarget.Text, 0, 1) ="'#) Then begin
Li nkType : = txFi el dl nt ernal Li nk
txt Li nkTar get. Text : = copy(txtLinkTarget. Text, 1

Lengt h(txt Li nkTarget. Text) - 1);

end El se

Li nkType : = txFi el dExt er nal Li nk

[f tx.FieldAtlnputPos <> 0 Then begin
/1 editing an existing hyperlink
tx. Fi el dText := txtLinkedText. Text;
tx. Fiel dType[tx. Fiel dCurrent] := LinkType;
tx. Fi el dTypeDat a[t x. Fi el dCurrent]
;= txtLinkTarget. Text
end El se begin
/1 insert new hyperlink
tx. Fieldlnsert (txtLinkedText. Text);

Text Control Programming with Delphi Page 101

tx. Fi el dType[tx. Fi el dCurrent] := LinkType;
tx. Fi el dTypeDat a[t x. Fi el dCurrent]
:= txtLinkTarget. Text;
End;

Hi ghli ght Hyperlinks (tx, Forml. HypertextLinksl. Checked);
cl ose;
End,;

Loading and Saving Files containing Hypertext Links

When an HTML, RTF or Microsoft Word document is loaded, Text
Control must convert containing hypertext links to appropriate marked
text field, as described above. To perform this, a programmer must set
the L cadSaveAttribute(txEnablel inks) before using the L oad
method. Otherwise hypertext links and target fields are not converted.
When a document is saved, marked text fields that represent hypertext
links, are always converted to the appropriate format.

If Text Control's proprietary format is used, setting L oadSaveAttribute
is not necessary.

More information about hypertext links and alist of all properties,
methods and events that can be used with marked text fields, can be
found in the Reference part, later on in this manual, in the chapter
"Overviews - Marked Text Fields - Special Types of Marked Text
Fields'.

Headers and Footers

This example shows how to use headers and footers. The source codeis
contained in the Header s sample source directory.

TX supports headers as well as footers. Y ou aso have the ability to
create a different header or footer for the first page.

To insert a header or footer in the example, click on Insert and choose
one of the four possible options. The code that is executed when
clicking on one of the menu itemsis almost the same. For the Header
menu item it looks as shown below. Theline
TXText Cont rol 1. Header Foot er

. = TXText Cont rol 1. Header Foot er + t xHeader;

Page 102

Text Control Programming with Delphi

informs Text Control that a header should be added to the current
settings.

Setting the Header Footer Style property to txM ouseClick enables the
user to activate the header with asingle click rather than a double-click.
Activating a header or footer with a double-click is Text Control's
default setting. More information about how to use headers and footers
and alist of al properties, methods and events that can be used with
headers and footers, can be found in the Reference part, later on in this
manual, in the chapter "Overviews - Headers and Footers'.

When using properties, Text Control distinguishes between the main
text and headers or footers. To switch between these different indepen-
dent text parts, Text Control provides the Header Footer Select method:

TXText Cont rol 1. Header Foot er Sel ect (t xHeader);
TXText Control 1. Sel Text :="'Header';
TXText Cont rol 1. Header Foot er Sel ect (0);

This code selects the header, so that the following code affects the
header and then sets the headers text. Finally the mode is reset to zero
using the Header Footer Select method. More information about
programming with headers and footers see the chapter "Overviews -
Headers and Footers - Programming Headers and Footers".

A header or footer is activated from programming code using the
Header Footer Activate method. To delete a header or footer, simply
substract the txHeader constant from the current Header Footer
settings.

The following is the complete code of the menu item:

procedure TFor nl. Header 10 i ck(Sender: TChj ect);
begi n
| f Header 1. Checked = Fal se Then begin
TXText Cont r ol 1. Header Foot er
: = TXText Control 1. Header Foot er + txHeader;
TXText Cont rol 1. Header Foot er Sel ect (t xHeader);
TXText Control 1. Sel Text :="'Header';
TXText Cont rol 1. Header Foot er Sel ect (0) ;
TXText Cont rol 1. Header Foot er Acti vat e (t xHeader) ;

Text Control Programming with Delphi Page 103

Header 1. Checked : = True;
end El se begin
TXText Cont rol 1. Header Foot er
.= TXText Control 1. Header Footer - txHeader;
Header 1. Checked : = Fal se;
End,
end;

Drag and Drop

This example shows how to use the | nputPosFromPoint method to
realise asimple Drag& Drop in a Text Control application.

Drag& Drop in atext editor enables the user to drag a piece of text and
drop it in anew location of the document. So, the incoming mouse
events have to be analyzed and handled.

In the M ouseDown event, the I nputPosFromPoint method is used to
get the character position the user has clicked on. The current input
position and the length of the selection are stored in global variables,
because they are needed in the M ouseUp event. If the input position the
user has clicked on, isinside of the current selection, dragging can be
started. First aglobal variable named dragging is set to true and the
MousePointer property is changed to indicate that dragging isin
process. The text and format information of the current selection is
copied to amemory buffer using the SaveT oM emory method. Finally,
the Text Control's EditM ode property isset to 2 - read only.

procedur e TFor mL. TXText Cont r ol 1MouseDown(Sender: TQObj ect ;
Button: TMouseButton; Shift: TShiftState; X, Y. Integer);
var
pos : Longlnt;
begi n
/1 Get current input position and the current selection
pos : = TXText Control 1. 1 nput PosFr onPoi nt (
toTwi ps(X), toTw ps(Y));
gbl Start := TXText Control 1. Sel Start;
gbl Lengt h : = TXText Control 1. Sel Lengt h;

[/ Check if the click occured in the current sel ection

Page 104

Text Control Programming with Delphi

If (gblStart <= pos)
And (gbl Start + gbl Length > pos) Then begin
[1Start draggi ng
data : = TXText Control 1. SaveToMenory(3, True);
dragging : = true;

Cursor := 2;
TXText Control 1. Edi t Mode : = 2;
End;

end;

In the M ouseUp event procedure the | nputPosFromPoint method is
used again to get the character position where the user has left the
mouse button. When dragging is in process and the input position is not
inside the current selection, the drop opertation can be performed. The
previously saved text now isinserted with the L oadFromMemory
method after setting the new input position with the SelStart property.

procedur e TFor mlL. TXText Cont r ol 1MouseUp(Sender: TChj ect;
Button: TMbuseButton; Shift: TShiftState; X, Y: Integer);
var
pos : Longlnt;
begi n

pos : = TXText Control 1. 1 nput PosFr onPoi nt (
toTwi ps(X), toTwi ps(Y));

I f draggi ng Then begin
[/ Check if the new input position is outside of
[/the current selection. If it's not, do not
[/ copy the text
If Not ((gblStart <= pos)

And (gbl Start + ghl Length > pos)) Then begin
TXText Control 1. Sel Text :=""
If pos < gbl Start Then

TXText Control 1. Sel Start
El se
TXText Control 1. Sel Start

pos

pos - gbl Length;

TXText Control 1. LoadFromvenory(data, 3, True);
End,;

Text Control Programming with Delphi Page 105

/1 End draggi ng
draggi ng : = Fal se;

Cursor := 0;
TXText Control 1. Edi t Mode : = 0;
End;

end;

Page 106 TX Publisher - An Advanced Delphi Example

TX Publisher - An Advanced Example

This sample progam is written entirely in Delphi, with no third party
custom controls or DLLs except those included with Delphi itself. The
program is intended to be used as a starting point for your applications,
and it contains all the basic functions like loading and saving
documents, printing, zooming, as well as the scroll interface. Y ou can
easily add more features and customize the program without having to
start from scratch.

Text Frames and OLE Objects

TX Publisher works with text frames. This can entail pure text frames
into which new text is entered or OLE objects. The type of frameis

TE Fublisher - CATSSRCOINDESAMPPURLISFRSARMPLLE. T3
File Ed# Yirw Inect Fgrmsd Help

[Times Mo Romn (8] (11 | [8] [8 [s Ju) [s]a]s|m][e]2]e]s]

| I AN TPEPEP AP EPEPT PN EPEPIP PPN EPEPE SR EPEPEPE L

L

o Paga 17 Text-Cardral

A Ward Processar
] Thus chapter sherwrs v borer toouse Ted-Cantral 2 e AT T EEE

ke 4 daadend wand grocemor. The progiam i — w
baged upea the WIDL sanople frees the Ve Basi
b Programmer's Gade, with the Teod B cantrals T e .
replaced by Teot: Comirols. [pou are oot fameliar e e s s T - B
wath MO, controd vars o orealing 4 1oolb e you S —
may want bo read that chapser bt L) TR —
s Pa oL P TRET & T
mary r—_
— o el b

T bt i e Bt) b
i, by oy o

T i = B e s OF pEvat

he source cede bor o sxample 15 confened n
- the MCADEMO sample sowrc e direchory:

Foge lirn Cm Memma
] v GE] | W+ B2
Hewhd [Tagn | fep [Ao] Adding a PageSetup Dialog Bax
B [| - - ¥
1 I-u---—.- —l Beiem [i | The Fage Sctop diilog, o o used e

[=]= | -

.=
1

Lrm 16 [15 0% RS

TX Publisher - An Advanced Delphi Example Page 107

defined in the Insert menu viathe 'New Frame'

menu item. In principle, the handling of textand
OLE framesis the same. We will explain the !
frame handling using examples with text frames,
and will then deal with the OLE abject. !

Drawing Text Frames

In order to draw aframe, click on an empty part %
of the page and, depressing the left mouse

button, drag the mouse down and to the right. If

you require a different page display for this, select it in the View menu
viathe'Zoom' menu item.

The borders of the newly created text frame can be made visible by
selecting 'Text Frames in the 'View' menu. A paragraph ruler can be
shown above the Text Frame. This setting is likewise made in the view
menu, using the menu item * Paragraph Ruler’.

Text can now be entered into the newly created frame until it isfull, at
which point the frame has to be enlarged or the next frame has to be
created. Alternatively you can draw all the required text frames
successively, and then start entering text. Note that you can only start
entering text in the first frame.

Connecting Text Frames

The text frames are linked automatically. This means that text
automatically flows from the current frame into the next frame when the
current frame isfull.

If you click on an empty text frame which is further down the chain, then
the cursor will stay in the last window which contains text.

The text frames are numbered internally in their sequence of creation.

Page 108 TX Publisher - An Advanced Delphi Example

Deleting and Creating Frame Connections

Y ou can eliminate the connection between frames and, if required,
regenerate them. Y ou delete the connection to the following frame by
clicking on the respective frame with the CTRL key depressed, and by
answering the subsequent question displayed, ‘ Delete connection to
next window’, with Yes.

In order to create a connection, click on the frame to be connected to
and keep the mouse button depressed until a symbol with a

@_: sheet of paper in ahand is displayed. Keeping the CTRL key

— | and mouse button depressed, drag the symbol onto the frame
to which you wish to create a connection. Answer the
following question displayed, ‘ Connect Frame No. x to Frame No. y’,
with Yes. If it is not possible to create a connection, an error message
will appear.

Changing Frame Size and Position

The size and position of atext K
frame can be changed !
subsequently. To change the !
size, click the frame borders !
or acorner of the frame with !
the ALT key depressed. Keepthemousekey — _ __ ________ v
depressed, and drag the respective border to the

desired position.

To change the position, click at any

position within the frame with the ALT
CTTTTTTTS key depressed. Whilst keeping the mouse
button depressed, drag the frame to the
desired new position.

+

TX Publisher - An Advanced Delphi Example Page 109

Setting Indents and Tabs

The currently active frame D T F ¥ ¥ T d
. oo @ @E A E & F o oE

receives a paragraph ruler when [i = cor

this feature has been activated _

. N \ i This chapter shows you how to use

inthe 'View' menu. Us ng the Text-Control to write a standard word

paragraph ruler you can set processor. The program i based upon the MDI

. sample from the isual Basic Programmer's

indents and tabs. Cuide, with the TextBox controls replaced by
Text-Controls. If you are not familiar with

Indents can be Changed by MDIL, control arrays or creating a toolbar you

s||d|ng the two m]a” trlangles may want to read that chapter first

on the left side of theruler, and
the large triangle on the right.

Tabs are |eft-aligned by default. To create right-aligned,
decimal or centered tabs the tab type can be selected
using the Button Bar.

The source code for thiz example 15 contaned i

Y ou can set tabs by clicking at the desired position on the paragraph
ruler. Y ou can then shift the tab marker by clicking on it, and
simultaneously dragging it along the ruler with the mouse button
depressed. Y ou can remove a previously set tab by pulling it
downwards, away from the ruler. The maximum number of tabsis 14.

Using Images

Insert

Image

Images can be inserted viathe 'Insert/
Image' menu item or from the clipboard.
The menu lets you choose between
inserting the image 'At Caret Position' or
'As Fixed Object’. Images which are inserted at the caret position are
treated like characters, and they move with the text as it changes.

At Caret Position...
As Fixed Object...

When inserted as fixed objects, images have afixed position on the
page, and the text flows around them. The initial position of an image
inserted in thisway is one inch from the top left corner of the page. Y ou
can moveit to the desired position just like you move text frames,
which is by depressing the ALT key and dragging the image with the
mouse.Y ou can also change the size of theimagein thisway.

Page 110

TX Publisher - An Advanced Delphi Example

OLE Objects

Clicking on an image and selecting 'Image...' from the 'Format' menu lets
you select image attributes in a dialog box. Y ou can adjust the size of
the borders, i.e of aframe around the image where no text is displayed,
and you can select if you want the image data to be included in your
document file or if you just want

to store afile reference. Stori ng I

the image data increases the size b
of your document file, but hasthe | save As bata

advantage of making the document |

. el . Image Borders
independent of additional image Left: inch Right inch
fI|eS. Top: inch Bottom: inch

Images which are inserted from
the clipboard are always inserted 'at caret position' and saved 'as data.

If you select 'OLE Object' in the 'Insert / New Frame' menu, frames are
created in the following way. The frame is drawn as described above, by
placing the mouse at the top-left corner of the frame to-be and dragging
it down and towards the right. A dialog box entitled ‘Insert Object’ then
appears. This dialog box also appears on the screen if you click over the
frame with the right mouse button. Y ou have the choice of creating a
new object or of loading afile.

TX Publisher - An Advanced Delphi Example Page 111

The File Menu
In the File menu you will find standard functions
T Ll such as: New, Open, Save, Save As, Print, Page
Save Ctr+s Setup, Exit. These will be familiar to you from
Save ds... various other Windows applications and will
Page sep. | therefore not be described in more detail at this
Exit point.

The Edit Menu

gdn The Edit menu aso includes a number of
Deletion standard functions including Undo and Redo
ot smopar | function, Cut, Copy, Paste, Delete, Search,
Copy Cul+ins Replace, and Select All. Regarding the Undo
pase shielns | function, three different actions can be
;earch... undone; Input, Deletion and Formatting.
3::: :Z" Py Other menu itemsinclude ‘Add Pages' and
Add Pages ‘Remove Pages', with which you can insert
Bemove Pages... and delete pages. When creating a document
Delete Frame there are two document pages. In order to

create additional pages, select Add Pages. Two
further pages are then added to the existing ones. Using the small scroll
bar at the bottom right, you can flick through the pages. Y ou can delete
the last two pages using '‘Remove Pages.

If you wish to delete aframe, initially activate it by clicking on it, and
then select * Delete Frame' . After agreeing to ‘Delete Text Frame x’, the
respective frame is removed.

The View Menu

Eiew In the View menu you switch in or switch out one or
PLICKILCIZCE more of the displays of Control Characters, Text

+ Text Frames

v Page Margins Frames, Page Margins and Paragraph Rulers. You
;"”‘9”‘"" Buler can also set the display size of the page view. Using
Zoom »

‘Zoom’ you have the following options available:
Full Page, 30%, 50%, 75%, 100%, 200%.

Page 112 TX Publisher - An Advanced Delphi Example

Regarding the Control Characters, soft and hard line breaks and blanks
are displayed.

The Insert Menu

Insert In the Insert menu you determine, via'New

ARSI Frame, the type of frame to be created. You

1 0l ject

Text.. can choose between 'Text Frame' and 'OLE

Object'. For this purpose, read the previous

pages. Using the ‘Image’ menu item, a picture can be imported, and by
selecting ‘ Text’, ASCII or RTF text files can be inserted at the current
caret position.

The Format Menu

Fgrmat In the Format menu you can perform character
Character...

5 “ and paragraph formatting. Y ou can determine the
Paragraph...

Image... text colour and text background colour, and
:”:"ZI using the menu item ‘ Paragraph Frames', you

Text Background Color... can define lines or frames for paragraphs.

Paragraph Frames...

The Help Menu

Using ‘Help Topics you call up the Online help
service. You can also view an info window viathe
menu item ‘ About TX Publisher’

Help Topics....
About TX Publisher...

TX Publisher - An Advanced Delphi Example Page 113

How the Program Works

Much of the program's functionality is based on the concept of container
controls. At the bottom of the control hierarchy thereis a pageruler,
which is placed directly on the form. On top of the page ruler thereisa
picture box which acts as a container for the document pages, which are
themselves picture boxes. Finaly, the text frames, OLE frames and the
paragraph ruler use the page controls as containers. Although this may
seem abit complicated at first sight, it saves you alot of programming
work, because this approach helpsto divide the program into logical
blocks, and handles al the different clipping regions.Y ou can see how
the controls are put together when you look at the program in Delphi
design mode. (See next page).

When the program is started, two document pages are created in a
default size of A4 or Letter, depending on the system's country setting.
The size of the workspace is then automatically adjusted so that the two
pages can be shown side by side with a gray border around them.
Settings which do not change during the program execution are made in
the main form's OnCreate event, whereas settings which depend on the
window size or the zoom factor are made in the form's OnResize event.

Managing Global Data

Most of the global datais managed by the controls themselves and thus
does not have to be stored explicitly in variables.

For instance, the position and size of the text frames are stored in the
control's Left, Top, Width and Height properties. Information which
cannot be stored in control properties has been collected into asingle
global structure. This structureis called 'Doc' and contains information
about zoom factor, page margins and the total number of text and OLE
framesin the document.

Creating new Text and OLE Frames

A new frameis created when the user draws a rectangle on the page.
This happensin three stages in response to the page control's mouse
events:

On OnMouseDown, the mouse coordinates are stored as the top left

Page 114 TX Publisher - An Advanced Delphi Example

File Ed&# View Ineedl Formal Help

Text Frames,
| _*” Ellﬂlflﬁlililﬂ!l / OLE Object Frames,

Paragraph Ruler

1 I 3 =] -] T .
n bkl = % (Text Controls, OLE Controls, TX Ruler)
’l, |

Document Page

=
e
\ 1=

: — (Picture Box)
b |
| /I | —— Workplace
— (Picture Box)

|
I

o T

i 1+ ——— Ruler

(Page Ruler)
I

[+ 1 T+] m [T Is 4 Main Window

(Form)

PR
=

[

TeS1aesbint

corner of the new control.

On OnMouseMove, arectangle is drawn showing where the new control
will be placed after the mouse button has been rel eased.

Finally, when the OnM ouseUp event occurs, the rectangle is deleted and
aText Control or OLE control is created at its coordinates.

The Text Controls and OLE controls, as well as the document pages, are
implemented as control arrays, so a new instance of one of them can be
created by calling the Load function. The newly created control isa
child window of the sender control TXParentX:

TXNew. Par ent : = TTXText Contr ol (Sender);
Connecting Text Frames

The last step in creating a new text frame isto connect it to its
predecessor so as to enable text to flow from one control to the next.
Thisis simply done by assigning the window handle of the new Text
Control to its predecessor's NextWindow property. The connection can
be deleted later on by setting the property to a value of 0.

Deleting frames

A frame is deleted when the user selects the 'Delete Frame' menu item.

TX Publisher - An Advanced Delphi Example Page 115

This does not really remove it from the control array, but simply moves
it into an unvisible TX Text Control called TXTrash. The controlsin
the trash are deleted automatically when the program is closed.

The Page Ruler Control

When you first start TX Publisher you will notice that the ruler looks
different from the one in the standard version of TX Text Control. The
ruler isin fact an additional custom control. Its filename is ‘ PgRul.Ocx’,
which is short for ‘ Page Ruler’.

The Page Ruler control can be

used as a container for other = : 15
controls. In the TX Publisher * o, |1 E a-
Sampleprogram’|t|su$dasa ||||||||||||I||||| ||I|||||| mmmm

document page, on which the
text frames are placed. A
detailed description of the Page
Ruler's properties, methods and
events can be found in the
Reference part of this manual.

Page 116 Other Languages

Other Languages

This chapter shows you how to use Text Control in programming
environments other than Visual Basic or Delphi.

Standard C

If you are programming in an environment like Microsoft C 1.xx which
does not support the OCX interface, you can use the Text Control DLL
without the OCX wrapper. The interface is described in the DLL
Reference.

Microsoft Visual C++ 4.x/5.x/ 6.x

Text Control can be used as an OCX with several Windows-based
development environments. This chapter highlights procedures required
to use Text Control as an OCX with the Microsoft Visual C++
environment.
Creating Applications in Visual C++
Before using Text Control with Visual C++, you should read the Micro-
soft Visual C++ 4.x / 5.x / 6.x documentation and on-line help.
Creating a Dialog, CFormView, or CView Based OCX Application
1. Start Visual C++.
2. From the File menu, choose New. The New dialog box appears

3. VC 4.x: Inthe New box, select Project Workspace and click OK.
VC 5.x/6.x: Inthe New box, select Projects Tab.

4. The New Project Workspace dialog appears.
Browse to the desired directory path.

6. Inthe Nametext box, type aname for your project. Thiswill create
a sub-directory of that name in the current path.

7. Fromthe Typelist, select MFC AppWizard(exe) to create a project
based on the MFC library.

o

Other Languages

Page 117

8. VC 4.x: Click the Create button.
VC 5.x/6.x; Click the OK button.

The MFC AppWizard - Step 1 Dialog appears.

If you wish to create a Dialog based application, click the Dialog radio
button, click NEXT and procede to the section, Dialog Based
Applications. If you wish to create a CFormView based application,
click the "Single Document” or "Multiple Documents" radio button,
click NEXT and procede to the section, CFormView Based Application.
If you wish to create a CView based application, click the "Single
Document™ or "Multiple Documents' radio button, click NEXT and
procede to the section, CView Based Applications.

Dialog Based Applications

1. Inthe Step 2 dialog, click on the OLE Controls (VC 5.x/6.x:
ActiveX Controls) check box to add built-in support for OCX
products.

2. Click on NEXT button.

The Step 3 dialog will appear.

3. Inthe Step 3 dialog, you can accept the default options by clicking
the NEXT button.

4. In Step 4, you can accept the default options by clicking the FINISH
button. VC++ will build your project.

The New Project Information dialog will appear.

5. Click OK

CFormView Based Applications

1. Inthe Step 2 dialog you can accept the default options by clicking
the NEXT button.

2. Inthe Step 3 diaog, click on the OLE Controls (VC 5.x/6.x:
ActiveX Controls) check box to add built-in support for OCX
products.

3. Click on Next button.

4. Inthe Step 4 and 5 dialogs you can accept the default options by
clicking the NEXT button.

5. Inthe Step 6 dialog, select the class view name from the classlist at

Page 118

Other Languages

6.
7.

the top of the dialog.
CView will appear in the Base Class listbox.

In the Base Class listbox, change CView to CFormView.
Then click on the FINISH button to have VC++ build your project.

CView Based Applications

1

In the Step 2 dialog you can accept the default options by clicking
the NEXT button.

In the Step 3 dialog, click on the OLE Controls (VC 5.x: ActiveX
Controls) check box to add built-in support for OCX products.

Click on Next button.

In the Step 4 and 5 dialogs you can accept the default options by
clicking the NEXT button.

In the Step 6 dialog, click on the FINISH button to have VC++ build
your project.

Adding the Text Control Component to your Project
To insert a Text Control component into your project:

1

2.

3.
4,

5.

VC 4.x: From the Insert menu, choose Components.

The Component Gallery dialog box appears.

Select the OLE Controls tab.

If the Text Control Text Control icon is not visible in the Gallery,
click Customize to add the control.

Select the control from the Component list on the right and click OK.
This returns you to the Component Gallery.

VC 5.x/6.x: From the Project / Add to Project menu choose
Components and Controls.

Open the Registered ActiveX Controls folder.

Select the Text Control icon in the Gallery and click Insert.
The Confirm Classes dialog will display.

Click OK to confirm and exit the dialog.

Repeat steps 2 and 3 for the Status Bar, Ruler, and Button Bar
controls.

Click Close to exit the Component Gallery.

The Text Control and its tools should now appear in the Control palette.

Other Languages

Page 119

When V C++ adds components to your project, it creates CPP and H
source files defining the class, properties, and methods for the control.

It isagood ideato take alook at these files to understand what they
contain. Methods and properties are not accessed the samein C++ as
they are in many other languages like Visual Basic. When these files are
generated, V C++ creates both a Get and Set function for most methods
and properties. Text Control, for example, has a Text property. VC++
will create both a GetText and SetText member functions.

Adding the Component to your Dialog or CFormView:

1. Inthe Resource Editor, bring up the dialog that you want to place
Text Control into.

2. Click on the Text Control component in the Editor's Control palette.
Draw the component on the dialog box.

4. Now this can be placed and sized as desired using the handles around
the control.

5. Click on the right mouse button to bring up afloating menu. The
design-time properties for the control can be viewed and modified
through this menu.

w

Assigning Member Variables

Once you have added the text control to the dialog, it will be necessary
to assign a member variable to each control to gain accessto the
methods and properties at runtime.

1. From the View menu, choose ClassWizard.

2. Select the Member Variables tab.

3. Select the contral in the Control 1D window for which you wish to

add a variable and click the Add V ariable button.
The Add Member Variable dialog will display.

4. Typeinthe member variable name e.g. something like m_txctrl.
Accept the default variable category and type, by clicking OK.

5. The MFC ClassWizard dialog will display the variable you added in
the Control 1D window.

Page 120 Other Languages

6. Repeat steps 3 and 4 for each of the Text Control controls,
specifying anew name for each.

7. Once you have added al the variables, click on OK in the MFC
ClassWizard dialog to return to your project.

Adding the Text Control Component to your CView:

1. Inthefileligt, bring up the header file for the view
(<projname>view.h).

2. Atthetop of thefile, include each of the Text Control control header
files:

#include "tx4ole. h"

#include "txbbar.h"

#include "txruler.h"

#include "txsbar.h"

3. Inthe Attributes section, as a public member, add the following to
create member variables for each of the controlsin your view:

CTX4O0LE mtxctrl;

CTXBBAR m t xbbar

CTXRULER m txrul er;

CTXSBAR m t xshar

4. Now through thefile list, bring up the C++ source file for the view
(<projname>view.cpp).

5. Start the ClassWizard. Make sure the view classis selected as the
ClassName.

6. Select the View object in the Object 1d listbox.
7. Select the "Create” message in the Messages listbox.
The Create handler will initially come up with the following code:

return CMd: : Create(l pszd assName, | pszW ndowNane, dwStyle, rect,
pParent Wd, nlD, pContext);

Change thisto the following:

if (CWhd::Create(lpszC assNane, |pszWndowNane, dwStyle, rect,
pParentWhd, nlD, pContext) == 0)
return 0;

Other Languages

Page 121

WCHAR szLic[] = L"AB-12345TS- 1234567890 ;
BSTR bstrKey = SysAllocString(szLic);
BOOL bSuccess = mtxctrl.Create(NULL, dwStyle, rect, this, 1000,
NULL, NULL, bstrKey);
SysFreeString(bstrKey);
if (!bSuccess)
return 0;
if (mtxbbar.Create("TextControl ButtonBar", dwStyle, rect,
this, 1001) == 0)
return 0;
if (mtxruler.Create("TextControl Ruler", dwStyle, rect,
this, 1002) == 0)
return 0;
if (mtxshar.Create("TextControl StatusBar", dwStyle, rect,
this, 1003) == 0)
return 0;
return TRUE

8. Start the ClassWizard. Select view class as the Class Name.
9. Select the View object in the Object Id listbox.
10.Select the "WM_SIZE" message in the Messages listbox.

11.Click on the Add Function button to create the OnSize handler
function for this message.

12.Add the following code to the handler:
if (mtxctrl.mhWd && mtxbbar. mhWd && mtxrul er. m hWd &&
m t xsbar. m hwd) {
mtxctrl.MveWndow(0, 60, cx, cy-(25+60));
m t xbbar . MoveW ndow(0, 0, cx, 30);
m txrul er. MoveW ndow(0, 30, cx, 30);
m t xsbar. MoveW ndow(0, cy-25, cx, 25);
}

Licensing the Control

The code added in the previous section, uses a license string to create a
Text Control. Text Control is shipped asa CD version and as atrial
version that can be downloaded and unlocked. The license string for the
CD version usersisthe Text Control serial number. The license string
for thetrial version usersis the customer key followed by the serial

Page 122

Other Languages

number when the trial version is unlocked. When you use the locked
trial version to test Text Control's features, use only your customer key
as license string. In the code example above the customer key is"AB-
12345" and the serial number is"TS-1234567890".

Connecting the Text Control Controls

Connecting the Controls:
1. Inthe Create handler, add the following code:
mtxctrl.Set ButtonBar Handl e(m t xbbar. Get HWd()) ;

mtxctrl. Set Rul er Handl e(m t xrul er. Get HMd());
mtxctrl. Set StatusBar Handl e(m t xshar. Get HWd()) ;

Handling Events in your Dialog or CFormView:

Assigning Message Handlers:
1. Start ClassWizard

2. Inthe Class Name listbox, select the Dialog or CFormView class
that was created.

3. Inthe Messages listbox, select the desired message to handle and
click on Add Function button to add a handler for this. For our
example, select the "Click" event and click on the Add Function
button to add the handler for this.

4. Click on the Edit Code button to edit the new function.
5. Add the following code in the function:
MessageBox ("Click Event","You clicked on the document");

6. Run the program and when the document is clicked on, the message
"Y ou click on the document".

Setting Properties in Visual C++

You can easily set specific properties for each of the controls you
include in your project.
To set properties for a control:

1. Double-click on the control in your project that you wish to set
properties for. The Control Properties dialog will display.

Other Languages Page 123

2. Select the appropriate tab for the property settings you wish to
modify.
Properties are grouped together in categories, such as paragraphs,
fonts, and pages.

3. Modify the property settings as needed. For more information on
each property, see "Text Control Properties, Events, and Methods.'

4. Once you have set the properties for the active control, close the
Control Properties dialog to return to your project.

5. Repeat steps 1 through 4 for each control.

Page 124 Other Languages

Microsoft Access 2.0

The 16bit OCX can be used with Microsoft Access 2.0, but since
Access went to manufacturing when the OLE control development kit
was in an early prerelease state, some functions work different thanin
other programming environments.

1. Youcan't use Text Control (or any other OCX) as a bound control.
The control must be inserted as an unbound object field, and you
have to provide code for copying text from the data base to Text
Control and vice versa.

2. Connecting the Text Control to the Ruler, ButtonBar and Status bar
hasto be donein 2 steps. (This example assumes that you have
created a Text Control named 'tx' and a Ruler, ButtonBar and
StatusBar named ' Ruler’, 'ButtonBar' and 'StatusBar'.) In the
FormLoad event, write:

Sub Form Load ()
Me!'tx. obj ect. Rul erHandle = 1
Me!t x. obj ect . But t onBar Handl e
Me!t x. obj ect . St at usBar Handl e
End Sub

Thistells Text Control to send a ConnectTools event when al of the
controls have been created ans are ready to be connected. In the
ConnectTools event, write:

Sub TX_Connect Tool s ()
Me!t x. obj ect. Rul er Handl e = Me! Rul er. obj ect . hwd
Me!t x. obj ect. Butt onBar Handl e = Me! But t onBar . obj ect . hWwd
Me!tx. obj ect. St at usBar Handl e = Me! St at usBar . obj ect . hWwd
End Sub

Overviews

Page 125

Reference

Overviews

Text Formatting and Views

Text Control offers several ways, in which text may be formatted and
viewed as described in the following list:

1. Control view:
The areafor text formatting is the Text Control's control size. Thisisthe
default setting after creating a Text Control.

2. Control view with autoexpand:
The areafor text formatting is the Text Control's control size, but this
sizeis automatically expanded or reduced when the text exceedsit.

3. Control view and linked Text Controls:

The areafor text formatting is the Text Control's control size, but text
automatically flowsto afollowing linked Text Control when it exceeds
the control size.

4. Normal View:

The formatting width and height have been specified by the programmer
and invisible text can be shown with a built-in scroll interface, with or
without scroll-bars. The vertical scrolling amount depends on the text.

5. Page View:

The formatting width and height has been specified by the programmer.
Text Control has a built-in scroll interface and displays pages with gaps,
borders, margins and a gray background. The number of pages depends
on the text.

6. Extended Page View:

This view works in the same way as the page view, but Text Control
displays three-dimensional pages which are centered in the control's
window.

Page 126

Overviews

Properties, Methods and Events

For text formatting, text view and scrolling the following properties,

methods and events can be used:
Property/M ethod/Event

Description

AutoExpand Property
AutoScroll Event

CaretOut Event

CaretOutBottom Event

CaretOutL eft Event

CaretOutRight Event

CaretOutTop Event

HExpand Event

HScroll Event

PageHeight Property
PageM ar ginB Property
PageMar ginL Property

Sets or resets the autoexpand mode

Occurs while expanding a selection
with the mouse (control view only).

Occurs when the caret has been
moved to acompletely invisible
control (control view only).

Occurs when the caret has been
moved down out of the control's
visible area (control view only).

Occurs when the caret has been
moved to the left out of the control's
visible area (control view only).

Occurs when the caret has been
moved to the right out of the
control's visible area (control view
only).

Occurs when the caret has been
moved up out of the control'svisible
area (control view only).

Occurs when the Text Control has
changed its control width (control
view with autoexpand only).

Occurs when the horizontal scroll
position has been changed (normal
view and page views only).

Gets or sets the formatting height.
Gets or sets the bottom page margin.

Gets or sets the |eft page margin.

Overviews Page 127
PageM ar ginR Property Gets or setsthe right page margin.
PageMarginT Property Gets or sets the bottom page margin.
Pagewidth Property Gets or sets the formatting width.
ScrollBar s Property Specifies which scrollbars are to be

shown (hormal and page views
only).

ScrollPosX Property Gets the current horizontal scroll
position (normal and page views
only).

ScrollPosY Property Gets the current vertical scroll
position.

VExpand Event Occurs when the Text Control has

changed its control height (control
view with autoexpand only).

ViewM ode Property Specifies whether and how pages are
to be displayed (normal and page
views only).

VScroll Event Occurs when the vertical scroll

position has been changed (normal
view and page views only).

Control View

The formatting area, which isthe area Text Control usesto perform line
breaks, is Text Control's control size. This means that every time the
control is sized, the text is newly formatted.

A line break is automatically performed when the current input position
reaches the control's right border. When the control's right border is
reached without having a break character in aline, no line break is
performed and Text Control indicates overflowing text with avertical
mark. This mark is displayed at the control's eft or right border,
depending on the paragraph alignment setting. When the number of
lines exceed the control's height, overflowing text isindicated with a
plus mark at the bottom of the control. The current input position,

Page 128

Overviews

indicated by the caret, can never leave the contral. If the user triesto
move the caret to overflowing text, the Text Control beeps.

When the Text Control is zoomed, the current control sizeis also
zoomed to adapt the formatting areato the new zooming factor. Its
position in relation to its container control or form is also zoomed.

Autoexpanding and control linking are only possible in thisview. In
autoexpanding mode the control's size is automatically expanded to the
current text amount. This mode can be set with the AutoExpand
property. After Text Control has expanded its control size it sends
HExpand and/or VExpand events. A following linked Text Control
can be set with NextWindow property.

Because the control view has no built-in scroll interface, Text Control
has several eventsto enable a programmer to implement an external
scroll interface. This can be important, for example when linked Text
Controls are used to form a document with several pages. The
CaretOutBottom, CaretOutL eft, CaretOutRight and CaretOutTop
events are sent, when the current input position has been moved outside
of the control's visible part. The CaretOut event is sent, when the
current input position has been moved to a completely invisible control
and the AutoScroll event is sent during extension of atext selection
with the mouse. All of these events are only possible in the control
view.

Normal View

With the PageWidth and PageHeight properties the formatting area
can be changed by the programmer. Thisis necessary to realize atext
editor that formats the text accordingly to a certain page width. The
ViewM ode property must be set to O for this view, which is the default
value. In normal view the formatting height - the amount the user can
scroll - depends on the current amount of text.

When the formatting width and/or height is greater than the current
control size and the caret reaches the control's borders, scrolling is
performed automatically to make the new input position visible. In
addition, a horizontal and/or avertical scroll-bar can be used to scroll to

Overviews

Page 129

Page View

text parts outside of the client area without changing the current input
position. Scroll-bars can be set through the ScrollBar s property.

If the Text Control is sized the text is not newly formatted and if the
Text Control is zoomed the control's size and position are not changed.
If the control is sized, visible scroll-bars are automatically hidden when
they are no longer needed. Conversely, previously hidden scroll-bars are
automatically shown when the control's size becomes smaller.

When the ViewM ode property is set to 1, Text Control shows pages
with margins and borders. The number of pages depends on the amount
of text.

The PageWidth and PageHeight properties define the extension of the
page including its margins. Page margins have a default value of one
inch and can be changed through the PageM ar ginB, PageM arginL,
PageM ar ginR and PageM ar ginT properties.

Extended Page View

When the ViewM ode property is set to 2, pages are displayed in three
dimensions with borders and shadows and they are centered in the
control's window.

Like for many other extension settings, Text Control uses twentieths of
apoint to define the formatting area. This unit is often used in
combination with text processing applications or fonts and is called
TWIP. One TWIP is a 1/1440th of an inch.

In the normal view and in both page views Text Control has a built-in
scroll interface. Text Control sends HScroll and VScroll events when it
scrolls automatically. The current scroll positions can be obtained or set
with the ScrollPosX and ScrollPosY properties.

Only with the page view and the extended page view can headers and
footers be used. For more information how to handle headers and
footers see "Headers and Footers".

Page 130 Overviews

Mixed Views

The control view and the normal view can be mixed, when either the
PageWidth or PageHeight property is set to zero. For example, when
specifying awidth of zero and a height of non-zero, the text is formatted
depending on the control's width but it is not limited to the control's
height.

Headers and Footers
Properties, Methods and Events

With headers and footers the following properties, methods and events

can be used:
Property/M ethod/Event Description
Header Footer Property Determines which headers and/or

footers the document contains.
Header Footer Activate Method Activates a certain header or footer.

Header Footer Activated Event Occurs when a header or footer has
been activated.

Header Footer Deactivated Event Occurs when a header or footer has
been deactivated.

Header Footer Position Property Specifies a header's or footer's
position.

Header Footer Select Method Selects a certain header or footer to
use a Text Control property for the
header or footer instead for the main
text.

Header Footer Style Property Determines style settings for headers
and footers.

Using Headers and Footers

Headers and footers can only be used when the PageWidth and
PageHeight properties have non-zero values. Headers and footers are
only visible on the screen when the ViewM ode property is set to 1
(page view) or 2 (extended page view).

Overviews

Page 131

Headers and footers are parts of a document. The Header Footer
property determines whether headers and footers, only headers or only
footers are contained. Additionally special headers and/or footers for the
first page can be specified with this property. To edit a header or footer,
it must be activated either with the Header Footer Activate method or
with a mouse double-click in aheader's or footer's area. An activated
header or footer gets the input focus and its border is shown with a
dotted frame. When a header or footer is activated, the main text is
displayed in gray, otherwise a header's or footer's text is displayed in
gray. Text Control fires Header Footer Activated and

Header Footer Deactivated events to inform the application about
activation or deactivation of headers or footers.

The Header Footer Style property allows the following style settings:

1. Activation can be performed with mouse double-clicks and/or single
mouse clicks.

2. The border of an activated header or footer can be solid, dotted or
unframed.

The default style setting is a dotted frame and a mouse interface that
activates a header or footer with double-clicks.

By default the top of a header has a distance of one centimeter from the
top of the page and the bottom of afooter has a distance of one
centimeter from the bottom of the page. With the

Header Footer Position property these values can be changed. The
height of a header or footer depends on the header's or footer's current
text.

When a document is loaded or converted from another format,
contained headers and footers are automatically displayed. The
Header Footer property returns the information which headers and/or
footers the current document contains.

Programming Headers and Footers

Headers and footers are seperate text parts which are independent of the
main text. When the user alters the text or the text format, for example
with a connected button bar, Text Control uses the current input focus,

Page 132

Overviews

to determine whether the text format of a header, afooter or the main
text is changed. The same occurs when the text is manipul ated from
programming code. For example when atable isinserted from a menu
with the Tablel nsert method, the current input focus determines
whether the table isinserted in a header's or footer's text or in the main
text.

In addition to this default text part selection, a programmer can use the
Header Footer Select method to use a certain property with a certain
text part. For example the following code alters the text of a header:

TXText Control 1. Header Foot er Sel ect t xHeader
TXText Control 1. Text = "This is the header's text"
TXText Control 1. Header Foot er Sel ect 0

The first line selects the header, independent of the current input focus,
the second line dlters the text of the header and the third line returns to
the default selection mode. There can be more than one property or
method call between the two Header Footer Select calls.

Almost all properties and methods can be used in this way with some
exceptions. The following isa complete list of properties and methods
which can be used with headers and footers:

Alignment

BaseLine

CurrentlnputPosition

Fieldxxx (all field properties and methods)
Find

FindReplace

ForeColor

FormatSelection

Fontxxx (all font properties and methods)
FrameDistance

FrameL ineWidth

FrameStyle

ImageDisplayM ode

ImageFilename

ImageFilters

Overviews

Page 133

Tables

ImageSaveM ode

I ndentxxx

LineSpacing

LineSpacingT

Objectxxx (al object properties and methods)
ParagraphDialog

RTFSe Text

SelLength

SelStart

Sel Text

TabCurrent

TabKey

TabPos

TabType

Tablexxx (al table properties and methods)
Text

TextBkColor

The following methods can only be used in conjunction with the
Header Footer Select method:

Load

L oadFromMemory
L oadSaveAttribute
Save
SaveToMemory

Properties, Methods and Events

With tables the following properties, methods and events can be used:

Property/M ethod/Event Description

TableAtlnputPos Property Returns the identifier of the table
with the current input position.

TableAttrDialog Method Invokes a built-in dialog box for

setting table attributes.

Page 134

Overviews

TableCanChangeAttr Property

TableCanDeletel ines Property
TableCanlnsert Property
TableCellAttribute Property
TableCellL ength Property
TableCellStart Property
TableCelText Property
TableColAtl nputPos Property

TableColumns Property
TableCreated Event

TableDeleted Event
TableDeletelines Method
TableGridL ines Property

Tablelnsert Method
TableNext Method

TableRowAtlI nputPos Property

TableRows Property

Informs whether the attributes of a
currently selected table can be
changed.

Informs whether the currently
selected table rows can be del eted.

Informs whether a new table can be
inserted at the current input position.

Sets attributes of one or more table
cells.

Returns the number of charactersin
atablecdll.

Returns the character index of the
first character in atable cdll.

Gets or sets the text contents of a
certain table cell.

Returns the number of the current
input column in atable.

Gets atable's number of columns.

Occurs when atable has been
created.

Occurs when atable has been
deleted.

Deletes one or more compl ete rows
of atable.

Determines the visibility state of grid
lines.

Inserts a new table.

Can be used to enumerate al tables
of aText Control.

Returns the number of the current
input row in atable.

Gets atable's number of rows.

Overviews Page 135

Using Tables

Tables can be inserted into a Text Control either with the Tablel nsert
method or viathe L oad method as part of a document formatted with
the RTF or HTML formats. Text Control treats a table as a number of
cells organized in rows and columns. Each cell can have as many lines
and paragraphs as required. Paragraph formatting is performed in
relation to a cell's borders. Each cell has a position and an extension in
the document, within this area a cell's frames and text are drawn aong
with its paragraph and character formatting attributes. There can be a
distance between the frame and the text.

Text can be selected either within asingle cell or in steps of complete
cells or rows. When a selection is deleted inside a table only thetext is
deleted. To delete one or more complete rows use the

TableDeletel ines method. Tables can be copied to the clipboard and
pasted from the clipboard. When atable isinserted at the first position
of another table or immediately behind another table and both tables
have the same number of columns they are combined into a single table.
The insertion of one table inside another table is not possible.

A table's attributes are its frame width, distance between frame and
formatted text, and background color. To alter the attributes of atable or
part of atable, cells must be selected. Then a built-in dialog box can be
opened with the TableAttr Dialog method. When the selection extends
over several tables or tables mixed with text, attributes cannot be
changed. To get information about whether attributes can be changed or
tables can be inserted or deleted, for example to implement a menu, the
TableCanChangeAttr, TableCanDeletel ines and TableCanlnsert
properties can be used.

When the current input position isinside atable, the ruler shows the
positions of all the cellsin atable's row and the formatting attributes of
the cell the input position belongs to.Then the cells' positions and
extensions can be changed with a built-in mouse interface.

Page 136 Overviews

Programming with Table Identifiers

Each table can have an user-defined identifier which a programmer can
set with the Tablel nsert method. Setting the identifier is not necessary
but recommended when atable's text or attributes are to be changed
from the program instead from an end-user. The user-defined identifier
need not to be unique and remains valid if atableis saved and rel oaded.
When no identifier is set Text Control returns an own-selected one,
which is unique and does not remain valid if atableis saved and
reloaded.

When atable or a part of atable isinserted inside another table the
inserted table becomes a part of the existing table and the inserted
table'sidentifier islost.

When atable with a user-defined identifier is inserted outside of all
existing tables a new table is created and the table's identifier remains
valid. Text Control informs the program with a TableCreated event
that a new table has been created. The programmer can change the table
identifier sent with the event by setting the NewTableld parameter of the
event.

When atable isinserted from another application, which means it
cannot have a user-defined identifier, Text Control sends an own-
selected identifier with the TableCreated event and the program can
changeit.

When tables are imported with the L oad method, TableCr eated events
occur only when text isinserted into an existing document or when an
imported table has no user-defined identifier. Otherwise when atable
with a user-defined identifier is saved and reloaded no event occurs.

When atable is completely deleted Text Control informs the program
with aTableDeleted event.

The following properties and methods can be used with table identifiers
to get information or to set table attributes regardless whether the
current input position isor is not inside this table:

Overviews Page 137
Property/M ethod Description
TableCdIText Property Gets or sets the text contents of a
certain table cell.
TableColumns Property Gets atable's number of columns.
TableRows Property Gets atable's number of rows.

When more than one table with a certain identifier exists, these
properties and methods perform the operation with the original inserted
table. In chains of linked windows these properties and methods can be
used with any Text Control in the chain regardless of which control
contains the table.

Marked Text Fields

A set of properties, methods and events has been implemented to define
areasin the text of a Text Control called marked text fields. These fields
can be used to create hypertext features like those in the Windows Help
application, to realize database embedding while text of different
datasets can be included into the text or to combine several fields with
formulas as in spreadsheet applications.

Properties, Methods and Events

With marked text fields the following properties, methods and events
can be used:

Property/M ethod/Event Description

FieldAtl nputPos Property Returns the field identifier of the
field containing the current input
position.

FieldChangeable Property Defines whether afield'stextisor is
not changeable.

FieldChanged Event Occurs when the text of afield has
been changed.

FieldClicked Event Occurs when afield has been

clicked.

Page 138

Overviews

FieldCreated Event

FieldCurrent Property
FieldDblIClicked Event

FieldData Property

FieldDelete Method
FieldDeleteable Property

FieldDeleted Event
FieldEditAttr Property
FieldEnd Property

FieldEntered Event

FieldGoto Method

Fieldlnsert Method
FieldL eft Event

FieldLinkClicked Event

FieldNext Method
FieldPosX Property
FieldPosY Property

Occurs when afield has been
created.

Specifies the current field.
Occurs when afield has been
double-clicked.

Relates numeric or string datato a
marked text field.

Deletes acertain field.

Defines whether afield isor is not
deleteable.

Occurs when afield has been
deleted.

Defines field attributes for advanced
editing.

Returns afield's end position in the
text.

Occurs when the current input
position has been moved from a
position outside to a position inside a
field.

Sets the current input position to the
beginning of amarked text field.

Inserts anew field.

Occurs when the current input
position has been moved from a
position inside to a position outside a
field.

Occurs when amarked text field is
clicked that represents the source of
a hypertext link.

Finds the next marked text field.
Returns afield's horizontal position.

Returns a field's vertical position.

Overviews

Page 139

FieldSetCursor Event Occurs when a cursor is moved over
afield.

FieldStart Property Returns afield's start position in the
text.

FieldText Property Gets or setsthe text of a certain
field.

FieldType Property Sets or returns the type of a marked
text field.

FieldTypeData Property Sets or returns the data belonging to

amarked text field of a special type.

Using Marked Text Fields

Fields can be inserted into a Text Control either with the Fieldl nsert
method or viathe L oad method as a part of a document. The whole
communication works with unique numbers returned by this method or
defined by the user. To communicate with afield, the field must be
previoudy set as the current field with the FieldCurrent property.

The current text can then be changed or retrieved with the Field T ext
property and afield can be deleted with the FieldDelete method. To get
afield's position, either geometrically or as character position, the
properties FieldPosX, FieldPosY, FieldStart and FieldEnd can be
used. To get the number of the next field in the text or to enumerate all
fields, the FieldNext method can be used.

Special attributes can be set with the FieldChangeable and
FieldDeleteable properties. These attributes can prevent a field from
beeing deleted or the text of afield from being changed. Further
attributes which can help the end-user to edit the field's contents are
described in the next chapter.

With different events Text Control informs the application about special
conditions. The FieldClicked and FieldDblClicked event inform the
application about mouse clicks, FieldEntered and FieldL eft indicate
whether the current input position has been moved into or from afield.
The FieldSetCursor event can be used to define the cursor when it is
moved over afield. The default cursor is the up-arrow cursor. The

Page 140

Overviews

FieldChanged event occurs when the text of afield has been altered,
and the FieldDeleted and FieldCreated event occur when fields have
been deleted or created while inserting or deleting text with the
keyboard or the clipboard.

Editing Marked Text Fields

When marked text fields are used in an editable Text Control and these
fields are editable, the end-user can alter the contents of the field like
any other text. Because it is not always unique whether the current input
position is or is not inside a field some field attributes have been
implemented to help the end-user to edit fields. These attributes can be
used in any combination and must be set with the FieldEditAttr
property.

When the current input position isin front or behind afield the next
inserted character can either belong to the field or to the text outside the
field. In normal editing mode an inserted character has the attributes of
its preceding character which means that inserted text just behind afield
belongs to the field and inserted text in front of afield does belong to
the text in front of the field. To solve these problems extended editing
features can be defined for every field with the FieldEditAttr property.
It implements a second input position at the beginning and the end of
the field. The end-user can switch between the two positions with the
left and right arrow keys. Thisis especialy important when a marked
text field is at the beginning or the end of the complete text. For
example when afield is at the end of the text the end-user can press
CTRL+END to reach the text end. When this position is also the end of
amarked text field the right arrow key can be pressed when the next
inserted character should not belong to the field.

To help the end-user to find the correct position, additional settings can
be performed which change the caret's width when it isinside a marked
text field or display the complete text of afield with a gray background
when the current input position isinside thisfield.

Each of the described attributes can be defined for asingle field in any
combination which means that different kinds of marked text fields can
be implemented in asingle Text Control.

Overviews Page 141

Relating data to a marked text field

For each marked text field Text Control can store any data that can be
set with the FieldData property. For example when a Text Control is
used to show the contents of a database a marked text field can be
created for each database field. The database's field names can then be
related to the Text Control's marked text fields using the FieldData
property.

Other parts of the program can use the FieldData property to retrieve
the name of the database field to which a marked text field is linked. For
example when the user has clicked on a marked text field, the
FieldData property can be used with the field identifier, which has been
specified through the FieldClicked event. The property then retrieves
the name of the database field the user has clicked on.

The FieldData property accepts strings and numbers. When a marked
text field is copied viathe clipboard or saved to afile the data belonging
to thefield is also copied or saved. The usage of the FieldData property
does not change the current text contents of a marked text field. When
new datais set, al previously set datais overwritten independently of
the kind of datainvolved.

Special Types of Marked Text Fields

Text Control supports special types of marked text fields that can be
defined with the FieldType property. The following types are possible:

Type Description

txFieldExternalLink Thisfield defines the source of a
hypertext link to alocation outside
of the document.

txFieldInternalLink Thisfield defines the source of a
hypertext link to alocation in the
same document.

txFieldLinkTarget Thisfield defines the target of a

hypertext link.

Page 142

Overviews

txFieldPageNumber Thisfield displays the current page
number. It can only be used in
headers or footers.

txFieldHighlight Thisfield defines a piece of text that
can be highlighted.

txFieldTopic Thisfield defines a position in a
document that is the beginning of a
topic.

All of these fields have the same general properties as standard marked
text fields with the following exceptions: Fields of the type
txFieldLinkTarget or txFieldTopic define text positionsin a
document. Therefore as they have no visible text, they cannot be edited
and have no extended edit mode. Fields of the type
txFieldPageNumber can only be used in headers or footers.

For each of the special field types Text Control handles some additional
data, called type-related data. These data can be set or returned with the
FieldTypeData property. For the types txFieldExternalLink and
txFieldInternalLink these data are the information to where the link
points. This can be an address or afile name and/or the name of atarget
in a document. Targets in documents can be realized with marked text
fields, which have the type txFieldLinkTar get. These fields can have a
name that is saved as type-related data. When the user clicks on afield
of the type txFieldExternalLink or txFieldInternalLink a
FieldLinkClicked event isfired including the information to where the
link points. The FieldGoto method can be used to scroll to atarget
position and the FieldNext method can be used to enumerate all fields
of acertain type.

To insert afield of a special type from programming code, use the
Fieldlnsert method first and then set the type and its data. The
following Basic example inserts afield that represents alink to the Text
Control homepage:

DimField As Integer

TXText Control 1. Fiel dinsert "visit the Text Control homepage"
Field = TXText Control 1. Fi el dCurrent

TXText Control 1. Fi el dType(Fi el d) =t xFi el dExt er nal Li nk

Overviews

Page 143

TXText Control 1. Fi el dTypeDat a(Fi el d)
="http://ww.textcontrol.cont

When a user clicks on this marked text field, a FieldLinkClicked event
isfired, containing the address of the homepage. To insert afield of the
type txFieldLinkTarget, the created field must not have text. The
following Basic example creates afield that represents such a target:
DmField As Integer

TXText Control 1. Fi el dl nsert ""

Fiel d = TXText Control 1. Fi el dCurrent

TXText Control 1. Fi el dType(Fi el d) = txFi el dLi nkTar get

TXText Control 1. Fi el dTypeData(Field) = "first target”

This creates a field with the name "first target”. The FieldGoto method
can be used to scroall to thistarget:
TXText Control 1. Fi el dGot o t xFi el dLi nkTarget, "first target”

When HTML, RTF or Word documents are loaded, source and target
fields for hypertext links are automatically created. To perform this, set
the txEnableL inks attribute with the L oadSaveAttribute property
before using the L oad method.

Fields of the type txFieldPageNumber display the current page number
and can only be used in headers or footers. The following Basic
example inserts a page number field:

TXText Control 1. Fi el dl nsert ""

TXText Control 1. Fi el dType(TXText Control 1. Fi el dCurrent) =

t xFi el dPageNunber

Fields of the type txFieldHighlight can be used to mark pieces of text
in a document that can be highlighted. Thisis useful, for instance, to
highlight occurrences of aword found during a global search. The
highlight color is stored as additional data for these fields. The
FieldGoto method enables the programmer to scroll fom highlight to
highlight. When RTF documents are loaded with the L oad method and
the txEnableHighlights attribute has been set previously with the

L oadSaveAttribute property, all RTF \cbN' keywords are
automatically converted to fields of the type txFieldHighlight. N isthe
index of acolor in the RTF color table.

Page 144

Overviews

Resources

Fields of the type txFieldT opic are text positions in a document
defining the beginning of atopic. The FieldGoto method can be used to
scroll to atopic with a certain number. When RTF documents are
loaded with the L oad method and the txEnableT opics attribute has
been set previousdly with the L coadSaveAttribute property, al RTF
\sect' keywords are automatically converted to fields of the type
txFieldTopic . These topics are numbered from 1 to n in the order they
appear in the RTF document.

Text Control has several built-in resources like information strings,
error messages and dialog boxes. These resources are availablein
different languages. When a new control is created Text Control selects
the current set system language as the default one. With the L anguage
property this setting can be atered independent of the system language.
The description of the Language property lists all currently available
built-in languages. To ater the language of the Button Bar and Status
Bar the appropriate L anguage properties must be used.

To display resources in additional languages external resource libraries
can be built and then set with the Resour ceFile property. A resource
library isadynamic link library that only contains resources. The
SAMPLES\TXRES subdiretory contains the basic files to create such a
DLL file. Seethe chapter 1.15 "Resources' in the DLL Reference
Manual for more information how to create aresource library.

To avoid conflicts with other programs that al so uses own resources or
with future versions of Text Control the following points are important:

1. Theresource library should have a unique file name.

2. The resource library should be placed in the same directory as the
final application. Get the full path name of the apllication's executable
file at run time and specify the resource library's file name including this
path when setting the Resour ceFile property.

At runtime Text Control determines resources in the following way:

Overviews

Page 145

1.The Language property isinitialized with the system default language.
If the system language is not built-in, Text Control displays English
resources.

2. When the L anguage property has been changed with an identifier of
abuilt-in language, Text Control displays resources in this language
independent of the system language.

3. When the Resour ceFile property has been set, Text Control tries to
load the resources from this library. In this case the L anguage property
isignored. When the resource library does not contain a needed
resource or when the specified file could not be found, Text Control
displays English resources without reporting an error.

4. Setting the Resour ceFile and L anguage properties of a Text Control
does not automatically set the appropriate properties of a connected
Button Bar or Status Bar to the same values. These properties must be
changed independently.

Page 146

Text Control Properties, Methods, and Events

Text Control Data Types

The Text Control reference uses the following data types:

Data type

Description

Byte
Boolean
Integer
Long

Handle

String
Variant

Is a one-byte value with the range 0 to 255.
Is atwo-byte value that can be True or False.

Is atwo-byte value with the range -32,768 to
32,767.

Is afour-byte value with the range
2,147,483,648 to 2,147,483,647

32 hit: A four-byte value with the range

0 - 4,294,967,295.

16 bit: A two-byte value with the range

0 - 65536

Isalength-prefixed string of unlimited size.

Can be any of the priviously explained data
types, including arrays of these types.

Text Control Properties, Methods, and Events

Page 147

Text Control Properties, Events, and Methods

All of Text Control's properties, methods and events are listed in
aphabetical order in the following table. A detailed description can be
found in the following section.

Properties

Alignment
AutoExpand
BackColor
BackStyle
Baseline
BorderStyle
ButtonBarHandle
CanRedo
CanUndo
ClipChildren
ClipSiblings
ControlChars
CurrentlnputPosition
CurrentPages
DataText
DataTextFormat
EditMode
Enabled
FieldAtInputPos
FieldChangeable
FieldCurrent
FieldData
FieldDeleteable
FieldEditAttr
FieldEnd
FieldPosX
FieldPosY
FieldStart

FieldText
FieldType
FieldTypeData
FontBold

Fontltalic
FontName
FontSize
FontStrikethru
FontUnderline
FontUnderlineStyle
ForeColor
FormatSelection
FrameDistance
FrameLineWidth
FrameStyle
HeaderFooter
HeaderFooterPosition
HeaderFooterStyle
HideSelection
hwnd
ImageDisplayMode
Imagekilename
ImageFilters
ImageSaveMode
IndentB

IndentFL

IndentL

IndentR

IndentT

InsertionM ode

Language
LineSpacing
LineSpacingT

L oadSaveAttribute
M ousePointer
NextWindow
ObjectCurrent
ObjectDistance
Objectitem
ObjectScaleX
ObjectScaleY
ObjectSizeMode
ObjectTextflow
PageHeight
PageMarginB
PageMarginL
PageMarginR
PageMarginT
PageWidth
PrintColors
PrintDevice
PrintOffset
PrintZoom
ResourceFile
RTFSel Text
RulerHandle
ScrollBars
ScrollPosX
ScrollPosY
SelLength

Page 148 Text Control Properties, Methods, and Events
Sel Start FontDialog CharFormatChange
Sel Text HeaderFooterActivate Click
SizeMode HeaderFooterSelect ConnectTools
StatusBarHandle I nputPosFromPoint DblIClick
TabCurrent Load Error
TabKey LoadFromMemory FieldChanged
TableAtInputPos ObjectDelete FieldClicked
TableCanChangeAttr ObjectinsertAsChar FieldCreated
TableCanDeletelines ObjectinsertFixed FieldDbIClicked
TableCanlnsert ObjectNext FieldDeleted
TableCellAttribute ParagraphDial og FieldEntered
TableCellLength PrintPage FieldL eft
TableCellStart Redo FieldLinkClicked
TableCell Text Refresh FieldSetCursor
TableCol AtInputPos ResetContents HeaderFooterActivated
TableColumns Save HeaderFooterDeactivated
TableGridLines SaveToMemory HExpand
TableRowAtInputPos TableAttrDiaog HScroll
TableRows TableDeletelines KeyDown
TabPos Tablelnsert KeyPress
TabType TableNext KeyStateChange
Text TextExport KeyUp
TextBkColor Textimport MouseDown
ViewMode Undo MouseMove
VTSpellDictionary VT SpellCheck MouseUp
ZoomFactor Move
ObjectClicked
Methods Events ObjectCreated
AutoLink ObjectDblClicked
Clip AutoScroll ObjectDeleted
FieldDelete CaretOut ObjectGetData
FieldGoto CaretOutBottom ObjectGethwnd
Fieldinsert CaretOutL eft ObjectGetZoom
FieldNext CaretOutRight ObjectMoved
Find CaretOutTop ObjectPrint
FindReplace Change ObjectScrollOut

Text Control Properties, Methods, and Events

Page 149

ObjectSetData
ObjectSetZoom
ObjectSized
PageFormatChange
ParagraphChange
ParagraphFormatChange
PosChange

Size

TableCreated
TableDeleted
VExpand

V Scroll

Zoomed

Page 150 Text Control Properties, Methods, and Events

Alignment Property

Description: Returns or sets the text alignment for a Text Control.
Usage: TXTextControl . Alignment [= value]
The property's settings are:

Setting Description

0- Left aigned (Default) Text isleft-aligned.

1- Right aligned Text isright-aligned.

2 - Centered Text is centered.

3 - Justified Text isjustified.

4 This value cannot be assigned to the property.

Its purpose is to indicate that the selected text
contains paragraphs which have different
types of alignment.

Remarks: If the For matSelection Property has previously been set to True,
changing the Alignment Property affects only the currently selected
paragaph. If FormatSelection has been set to False the setting applies
to the entire control, in which case a value of 4 does not occur.

Data Type: Integer.

AutoExpand Property

Description: Specifies whether the control size should expand automatically when
the text insertion or format changes resultsin text that does not fit into
the Text Control anymore.

Usage: TXTextControl . AutoExpand [= boolean]
The property's settings are:
Setting Description
True The window size expands automatically.
False Fixed window size.

Text Control Properties, Methods, and Events Page 151

Data Type:
Limitations:

This property is aways set to Falseif the control is linked to other
controls or if the PageHeight or PageWidth property is set to avalue
different from zero.

Boolean.

Runtime only.

AutoLink Event

Description:

Syntax:
See also:

This event specifies that text will be inserted into the last control in a
chain of linked windows. The program can avoid atext overflow at the
end of the chain if it responds to this notification by an expansion of the
chain. Thisevent is sent before the text is inserted.

AutoLink()
NextWindow Property.

AutoScroll Event

Description:

Syntax:
See also;

This event occurs when the cursor leaves the visible portion of a Text
Control's client areawhilst atext selection is being expanded with the
mouse. It is only sent if the cursor movement does not result in a caret
movement. This happensif the cursor is moved outside the client area or
if the cursor is moved over parts which are not covered with text below
thelast line. In all cases where the cursor movement results in a caret
movement, the Text Control sends Car etOutxxx events.

AutoScroll()

CaretOut Event, CaretOutBottom Event, CaretOutL eft Event,
CaretOutRight Event, CaretOutTop Event.

Page 152

Text Control Properties, Methods, and Events

BackColor Property

Description:

Usage:

Data Type:
See also:

Returns or sets the background color of a Text Control. Text Control
uses the Microsoft Windows operating enviroment red-green-blue
(RGB) color scheme.

TXTextControl.BackColor [= value]

The property's settings are:

Setting Description

RGB colors Thevalid range for aRGB color is0to
& HFFFFFF. The high byte of a number in this
range equals 0; the lower 3 bytes, from least to
most significant byte, determine the amount of
red, green, and blue, respectively. Thered,
green, and blue components are each
represented by a number between 0 and 255
(&HFF).

System colors Colors specified by the system color
constants. If the high byteisn't 0, Text Control

uses the system colors, as defined in the user's
Control Panel settings.

Long.
ForeColor Property.

BackStyle Property

Description:

Usage:

Returns or sets a value indicating whether the background of a Text
Contral is transparent or opaque.

TXTextControl.Back Style[= valug]
The property's settings are:
Setting Description

0 - Transparent The Text Control has a transparent
background.

Text Control Properties, Methods, and Events Page 153

1 - Opaque (Default) The control's BackColor property
setting fills the background.

Remarks: A transparent background is only possible when the control's container
does not clip its controls. The most containers have a property to enable
or disable clipping. For example aVisual Basic form has a
ClipControls property.

Data Type: Integer.
See also: BackColor Property.

BaseLine Property

Description: Specifies the baseline alignment for selected text. A negative valueis
used to specify a subscript offset, a positive value for superscript. Text
Control limits the baseline alignment to 960 twips in both directions.

Usage: TXTextControl.BaseL ine [= valug]
Data Type: Integer.
See also: FormatSelection Property.

BorderStyle Property

Description: Returns or sets the border style for a Text Control.
Usage: TXTextControl .Border Style [= value]
The property's settings are:
Setting Description
0- None The Text Control has no border.
1- Fixed Single (Default) The Text Control has a fixed border.

Data Type: Integer.

Page 154

Text Control Properties, Methods, and Events

ButtonBarHandle Property

Description:
Usage:

Remarks:

Data Type:
Limitations:
See also:

CanRedo

Description:

Usage:

Data Type:
Limitations:
See also:

CanUndo

Description:

Usage:

Specifies the button bar control to be used with a Text Control.
TXTextControl.ButtonBar Handle [= ButtonBar.h\Wid]

The Button Bar, like the Status Bar and the Ruler, is one of the
additional controls which are contained in the Text Control OCX file.

Handle.
Runtime only.

Ruler Handle Property, StatusBar Handle Property.

Property

Informs whether an operation can be re-done using the Redo method.
TXTextControl.CanRedo

The property returns the following values:

Setting Description

0 Nothing that can be restored.

10 The next redo operation restores inserted text.
11 The next redo operation del etes restored text.
12 The next redo operation restores the last

formatting operation.
Integer.
Read only, Runtime only.
CanUndo Property, Undo Method, Redo Method.

Property

Informs whether an operation can be undone using the Undo method.
TXTextControl.CanUndo

Text Control Properties, Methods, and Events Page 155

Remarks: The CanUndo Property has one of the following values:
Setting Description
0 Nothing to be undone.
1 The next undo operation deletes inserted text.
2 The next undo operation inserts deleted text.
3 The next undo operation resets the last

formatting operation.

Data Type: Integer.

Limitations: Read only, Runtime only.

See also: CanRedo Property, Undo Method, Redo Method.

CaretOut Event
CaretOutBottom Event
CaretOutlLeft Event
CaretOutRight Event
CaretOutTop Event

Description: Occurs when the caret has been moved to a control that is completely
out of the visible area.

Syntax: CaretOutxxx()

See also: AutoScroll Event.

Change Event

Description: Indicates that the contents of a Text Control have changed.
Syntax: Change()

Page 156

Text Control Properties, Methods, and Events

CharFormatChange Event

Description: Occurs when the formatting attributes of the selected characters have
been changed. It also occursif font settings have been changed because
the Text Control has adapted fonts to a new output device.

Syntax: Char FormatChange()

Click Event

Description: Occurs when the user presses and then releases a mouse button over a
Text Control.

Syntax: Click()

Clip Method

Description: Performs Text Control clipboard actions.

Usage: TXTextControl.Clip Action
The Action parameter can have one of the following values:

Value Description

1 Cuts out the selected text and copiesit to the
clipboard.

2 Copies the selected text to the clipboard.

3 Pastes text from the clipboard.

4 Clears the selection.

Return Value: This method has no return value.

Data Types: Action Integer

Example: This Basic example copies the selected text from a Text Control named

"TXTextControl1" to the clipboard when the user selects the "Edit/
Copy" menu item:
Sub muEdit _Copy dick ()

TXText Control 1.Clip 2

Text Control Properties, Methods, and Events Page 157

End Sub

ClipChildren Property

Description:

Usage:

Data Type:
See also:

Example:

This property isonly used for Text Controls which act as a container for
other Text Controls or embedded objects. When this property is set to
True, the areas occupied by the child controls are excluded from the
update area.

TXTextControl.ClipChildren [= boolean]
The property's settings are:

Setting Description

True Exclude areas which are occupied by child
controls from the update area.

Fase (Default) Update areas which are occupied by

child controls.
Boolean.
ClipSiblings Property.

See Forms2 Basic sample program.

ClipSiblings Property

Description:

Usage:

This property determines the clipping behaviour of each of the child
controls which belong to a common container control. It must be set to
Falseif the program isto allow transparent Text Controlsto overlap
other Text Controls.

TXTextControl.ClipSiblings [= boolean]
The property's settings are:

Setting Description
True (Default) Excludes those areas occupied by
other child controls from the update area.

Page 158 Text Control Properties, Methods, and Events
Fase Updates areas which are occupied by other
child controls.
Data Type: Boolean.
See also: ClipChildren Property.
Example: See Forms2 Basic sample program.

ConnectTools Event

Description:

Example:

MS Access only:

Occurs after al Text Controls, Rulers, ButtonBars and StatusBars have
been created and are ready to be connected. This has to be donein 2
steps. (This example assumes that you have created a Text Control
named 'tx' and a Ruler, ButtonBar and StatusBar named 'Ruler’,
'‘ButtonBar' and 'StatusBar'.)

In the FormLoad event, write:

Sub Form Load ()
Me!'t x. obj ect. Rul erHandl e = 1
Me!'t x. obj ect . But t onBar Handl e
Me!'t x. obj ect . St at usBar Handl e

End Sub

Thistells Text Control to send a ConnectTools event when al of the
controls have been created and are ready to be connected. In the
ConnectTools event, write:
Sub TX Connect Tool s ()
Me!'t x. obj ect . Rul er Handl e = Me! Rul er. obj ect . hWwid
Me!'t x. obj ect . Butt onBar Handl e = Me! But t onBar . obj ect. hWd
Me!'t x. obj ect . St at usBar Handl e = Me! St at usBar . obj ect . hwd
End Sub

ControlChars Property

Description:

Specifies if control characters are visible.

Text Control Properties, Methods, and Events Page 159

Usage: TXTextControl.ControlChars [= boolean]

The property's settings are:

Setting Description
True Control characters, like space or paragraph
break, are visible.
False Control characters areinvisible.
Data Type: Boolean.

CurrentlnputPosition Property

Description: Returns or sets an array of three values which specify the page, line and
column number of the current text input position. These values are the
same that are shown in Text Control's statusbar.

Usage: TXTextControl.CurrentlnputPosition [= Array]
The array's values are:
Index Description
0 Specifies the current page number. The first
page has the number one.
1 Specifies the current line number. The first
line has the number one.
2 Specifies the current column number. The first
column has the number one.
Data Type: Array of 3 Long.
Limitations: Run time only.

CurrentPages Property

Description: Returns the number of pages contained in the current document.

Usage: TXTextControl.CurrentPages

Page 160

Text Control Properties, Methods, and Events

Remarks:

Data Type:
Limitations:
See also:

Example:

The value of this property depends on the size of the text aswell ason
the settings of the PageHeight, PageWidth and PageM ar ginx
properties.

Long.
Read only, run time only.

PageHeight Property, PageWidth Property, PageM ar ginx Properties,
PrintDevice Property, PrintPage Method.

See PrintPage Method example.

DataText Property

The DataText property is used internally by Visual Basic when Text
Control is used as a bound control. This property is not to be
manipulated by the developer and will likely be hidden in future
releases.

DataTextFormat Property

Description:

Usage:

Data Type:

When using Text Control as a bound control, this property specifies if
the data which is exchanged with a database is text or binary data.

TXTextControl.DataFormat [= value]

The property's settings are:

Setting Description
0- Text Datais stored as text.
1- Binary Text and formatting information are stored in

Text Control's own binary format.
Integer.

Text Control Properties, Methods, and Events Page 161

DbIClick Event

Description: Occurs when the user presses and releases a mouse button and then
presses and releases it again over a Text Control.
Syntax: DbIClick()

EditMode Property

Description: Specifies whether the Text Control operates in edit mode or in one of
the two read-only modes.

Usage: TXTextControl .EditMode [= valug]
The property's settings are:
Setting Description
0 - Edit (Default) Edit mode. This mode can be used to

edit and display text. The cursor isthetext I-
beam cursor.

1 - Read and Select Read-only mode. This mode can be used to
display and select text. The cursor isthe
standard arrow cursor.

2 - Read only This mode can be used to display text only.
Text input and selecting text with the mouse
or the keyboard is not possible. The cursor is
the standard arrow cursor.

Data Type: Integer.

Enabled Property

Description: Returns or sets a value that determines whether a Text Control can
respond to user-generated events.
Usage: TXTextControl.Enabled [= boolean]

The property's settings are:

Page 162 Text Control Properties, Methods, and Events
Setting Description
True (Default) Allows a Text Control to respond to
events.
Fase Prevents a Text Control from responding to
events.
Data Type: Boolean.

Error Event

Description:
Syntax:

Data Types:

Occurs when the Text Control reports an error.
Error (Number, Description, Scode, Source, HelpFile, HelpContext,

CancelDisplay)

The event procedure's parameters are:

Parameter Description

Number Isthe error number.

Description Is a corresponding error string. This string can
be changed.

Scode Isthe OLE Status Code.

Source Is the name of the module which caused the
error.

HelpFile Isthe name of ahelpfile.

HelpContext Isthe help context ID in this help file.

CancelDisplay Can be set to True if the application wants to
display its own error string. When this
parameter is not set to True, the control will
display a message box showing the error
string.

Number: Integer

Description: String

Scode:

Source:

HelpFile:

Text Control Properties, Methods, and Events Page 163

HelpContext: Long
CancelDisplay: Boolean

FieldAtiInputPos Property

Description: Returns the field identifier of the field containing the input position.
Zero isreturned when the input position is not inside afield.

Usage: TXTextControl.FieldAtI nputPos

Data Type: Integer.

Limitations: Read only, run time only.

FieldChangeable Property

Description: Specifiesif the contents of a marked text field can be changed by the
user. The field identifier must have previously been determined with the
FieldCurrent property.

Usage: TXTextControl.FieldChangeable [= boolean]
The property's settings are:

Setting Description
True The text which is contained in the field can be
changed.
False The text cannot be changed.
Data Type: Boolean.
Limitations: Runtime only.
See also: FieldDeleteable Property.

FieldChanged Event

Description: Occurs when the text of a marked text field has been changed.
Syntax: FieldChanged(Fieldid)

Page 164 Text Control Properties, Methods, and Events

The event procedure's parameters are:

Parameter Description
Fieldld Istheidentifier of the field that has been
changed.
Remarks: The value of the FieldCurrent property is updated with the value given
through the Fieldld parameter.
Data Types: Fieldld Integer
See also: FieldClicked Event, FieldCreated Event, FieldDblClicked Event,

FieldDeleted Event, FidldSetCur sor Event.

FieldClicked Event

Description: Occurs when a marked text field has been clicked on.
Syntax: FieldClicked(Fieldid)
The event procedure's parameters are:
Parameter Description
Fieldid Isthe identifier of the field that has been
clicked on.
Remarks: The value of the FieldCurrent property is updated with the value given
through the Fieldld parameter.
Data Types: Fieldld Integer
See also: FieldChanged Event, FieldCreated Event, FieldDbIClicked Event,

FieldDeleted Event, FidldSetCur sor Event.

FieldCreated Event

Description: Occurs when a marked text field has been pasted from the clipboard.
Syntax: FieldCreated(Fieldid)

The event procedure's parameters are:;

Text Control Properties, Methods, and Events Page 165

Remarks:

Data Types:
See also:

Parameter Description
Fieldld Isthe identifier of the field that has been
created.

The value of the FieldCurrent property is updated with the value given
through the Fieldld parameter.

Fieldld Integer

FieldChanged Event, FieldClicked Event, FieldDbIClicked Event,
FieldDeleted Event, FidldSetCur sor Event.

FieldCurrent Property

Description:

Usage:
Data Type:
Limitations:

Example:

Returns or sets the identifier of the current marked text field for the
Fieldxxx properties, methods and events.

TXTextControl.FieldCurrent [= Fieldld]
Integer.
Run time only.

The Basic exampl e creates a marked text field with atext content of
'‘New Field' and afterwards changes the text to 'Hello":

Sub Create()
DmFieldld As Integer

"Create a narked text field and store its nunber
TXText Control . Fieldlnsert "New Fiel d"
Fiel dld = TXText Control . Fi el dCurrent

' Change t he text

TXText Control . FieldCurrent = Fieldld

TXText Control . Fi el dText = "Hel |l 0"
End Sub

FieldData property

Description:

This property relates numeric or string datato a marked text field.

Page 166

Text Control Properties, Methods, and Events

Usage:

Remarks:

Data Type:
Limitations:
See also:

TXTextControl.FieldData(Fieldld) [= Data]
The property's parameters are:

Parameter Description
Fieldld Identifies the field that is to be manipulated.

The specified data can be along value or a character string. A long
value of zero or an empty string deletes al data previously related to the
specified marked text field.

Long or String.
Run time only.
Fieldlnsert Method.

FieldDbIClicked Event

Description:
Syntax:

Remarks:

Data Types:
See also:

Occurs when a marked text field has been double-clicked on.
FieldDblIClicked(Fieldid)
The event procedure's parameters are:

Parameter Description

Fieldld Isthe identifier of the field that has been
double-clicked on.

The value of the FieldCurrent property is updated with the number
given through the Fieldld parameter.

Fieldld Integer

FieldChanged Event, FieldClicked Event, FieldCreated Event,
FieldDeleted Event, FieldSetCursor Event.

FieldDelete Method

Description:

Deletes the marked text field specified by the FieldCurrent property, or
changesit to simpletext.

Text Control Properties, Methods, and Events Page 167

Usage: TXTextControl.FieldDelete DeleteTotal
The DeleteTotal parameter can have one of the following values:
Value Description
True The marked text field is completely del eted.
False The marked text field is deleted, but its text
contents are preserved.

Return Value. The method returns True when the operation could be performed,
otherwise it returns False.

Data Types: DeleteTotal: Boolean
Return value: Boolean

FieldDeleteable Property

Description: Specifies whether a marked text field can be deleted by the user. The
field identifier must have previousy been determined with the
FieldCurrent property.

Usage: TXTextControl.FieldDeleteable [= boolean]
The property's settings are:

Setting Description
True Thefield can be deleted.
False The field cannot be deleted.
Data Type: Boolean.
Limitations: Run time only.
See also: FieldChangeable Property.

FieldDeleted Event

Description: Occurs when amarked text field has been deleted.
Syntax: FieldDeleted(Fieldid)

Page 168

Text Control Properties, Methods, and Events

Remarks:
Data Types:
See also:

The event procedure's parameters are:

Parameter Description

Fieldld Istheidentifier of the field that has been
deleted.

The value of the FieldCurrent property is set to zero.

Fieldld Integer

FieldChanged Event, FieldClicked Event, FieldCreated Event,
FieldDbIClicked Event, FieldSetCursor Event.

FieldEditAttr Property

Description:

Usage:

This property returns or sets attributes for advanced editing inside
marked text fields.

TXTextControl .FieldEditAttr (Fieldid) [= Attr]

The property's parameters are:

Parameter Description

Fieldld Identifies the field that is to be manipulated.
The property's settings are:

Setting Description

&H1& Implements a second character input position

at the beginning and the end of the specified
marked text field.

&H2& Performs normal editing at the beginning and
the end of the specified marked text field.
&H4& Changes the width of the caret when the

character input position is inside the specified
marked text field.

&H8& Uses the normal text caret when the character
input position is inside the specified marked
text field.

Text Control Properties, Methods, and Events Page 169

&H10& Displays the text of the specified marked text
field with agray background when the input
position isinside thisfield.

&H20& Displays the text of the specified marked text
field with the standard control background
when the input position isinside thisfield.

&H40& Enables the normal double-click processing
inside marked text fields that starts a
wordwise selection.

&H80& Disables the normal double-click processing
inside marked text fields.

These values can be combined by adding the desired constant values.
Changing one option does not affect the other. The default value of a
newly inserted field is:

&H2& + &HB8& + &H20& + &H80&

Data Type: Integer.
Limitations: Run time only.
See also: Fieldlnsert Method.

FieldEnd Property

Description: Returns the end position of a marked text field. The field identifier must
have previously been determined with the FieldCurrent property.

Usage: TXTextControl.FieldEnd

Data Type: Long.

Limitations: Read only, run time only.

See also: FieldStart Property.

Page 170

Text Control Properties, Methods, and Events

FieldEntered Event

Description:

Syntax:

Remarks:
Data Types:
See also:

Occurs when the current input position, indicated by the caret, has been
moved to a position that belongs to a marked text field. It only occurs if
the caret has been moved using the keyboard. If the caret has been
moved with amouse click aFieldClicked event is sent.

FieldEntered(Fieldid)

The event procedure's parameters are:;

Parameter Description
Fieldid Istheidentifier of the field that has been
entered.

This event that does not change the value of the FieldCurrent property.
Fieldld Integer
FieldL eft Event.

FieldGoto Method

Description:

Usage:

Sets the current input position to the beginning of the specified marked
text field and scrolls the text so that this position is at the top of the
control's visible text.

TXTextControl.FieldGoto FieldType, FieldldOrName
The method's parameters are:

Parameter Description

FieldType Specifies the type of the marked text field. See
the Constants section of the FieldType
property for valid values.

FieldldOrName I dentifies the marked text field to which
should be scrolled. It must be avalid field
identifier. For fields of the type
txFieldLinkTar get this parameter can also be
the name of the field. For fields of the type

Text Control Properties, Methods, and Events Page 171

Return Value

Data Types:

txFieldTopic this parameter can al'so be a
valid topic number.

If the field could be found the method returns True, otherwise it returns
False.

FieldType Integer
FieldldOrName Integer or String
Return value: Boolean

FieldInsert Method

Description:
Usage:

Return Value

Remarks:

Data Types:

Example:

Inserts a new marked text field at the current caret position.
TXTextControl.FieldInsert FieldText

The method returns True if afield could be inserted, otherwise it returns
False.

Selected text can be converted to a marked text field by using an empty
string as FieldText. Inserting a marked text field changes the value of
the FieldCurrent property to the identifier of the newly created field.

FieldText String
Return value; Boolean

See the description of the FieldCurrent property.

FieldLeft Event

Description:

Syntax:

Occurs when the current input position indicated by the caret has been
moved to a position that does not belong to the marked text field at the
previous input position.

FieldL eft(Fieldld)
The event procedure's parameters are:

Parameter Description

Fieldid Istheidentifier of the field that has been left.

Page 172 Text Control Properties, Methods, and Events

Remarks: This event that does not change the value of the FieldCurrent property.
Data Types: Fieldld Integer
See also: FieldEntered Event.

FieldLinkClicked Event

Description: Occurs when a marked text field has been clicked on that represents the
source of a hypertext link.

Syntax: FiddLinkClicked(Fieldld, FieldType, TypeData)
The event procedure's parameters are:

Parameter Description

Fieldld Isthe identifier of the field that has been
clicked on.

FieldType Isthe type of the field that has been clicked
on. This event occurs only for fields of the
types txFieldExternalLink and
txFieldInternalLink.

TypeData Specifies a character string that is the
information to where the link points. This data
has either been set with the FieldTypeData
property or has been created through atext
filter. For fields of the type
txFieldExternalLink this can be any kind of
address or file name. For fields of the type
txFieldInternalLink thisisthe name of a
marked text field of the type
txFieldLinkTar get.

Data Types: Fieldld Integer
FieldType Integer
TypeData String

See also: FieldTypeData Property

Text Control Properties, Methods, and Events Page 173

FieldNext Method

Description: This method returns the identifier of the marked text field that follows
the specified field in the Text Control's current text. It can be used to
find the next field in the text or to enumerate all fields. In alist of linked
Text Controls the search is performed in al controls.

Usage: TXTextControl1.FieldNext Fieldld, FieldGroup

The method's parameters are:

Parameter Description

Fieldld Specifies afield identifier. If this parameter is
zero thefirst field's identifier is returned.

FieldGroup This parameter can be the sum of one or more

constants used to seperate fields with certain
attributes. Valid values are described in
Remarks. If FieldGroup is zero, the method
enumerates al fields.

Return Valuee The method returns the identifier of the field that follows the specified
field in the Text Control's text. It is zero if there is no following field.

Remarks: The settings for Options can include:

Setting Description

0 Returns the identifiers of all fields.

&H1& Returns only identifiers of fields which are
both changeable and deleteable.

&H2& Returns only identifiers of fields which are
unchangeable.

&H4& Returns only identifiers of fields which are
undel eteable.

&H100& Returns only identifiers of fields which have
the type txFieldLinkTar get.

&H200& Returns only identifiers of fields which have

the type txFieldExternalLink.

Page 174 Text Control Properties, Methods, and Events
&H400& Returns only identifiers of fields which have
the type txFieldI nternalLink.
&H800& Returns only identifiers of fields which have
the type txFieldPageNumber.
&H1000& Returns only identifiers of fields which have
the type txFieldHighlight.
&H2000& Returns only identifiers of fields which have
the type txFieldTopic.
Data Types: Fieldld Integer
FieldGroup Integer
Return value: Integer
See also: FieldChangeable Property, FieldDeleteable Property, FieldType

Property

FieldPosX Property

Description:

Usage:

Remarks:

Limitations:
Data Type:
See also:

Returns the horizontal position of a marked text field. The field
identifier must have previously been determined with the FieldCurrent

property.
TXTextControl.FieldPosX

The property value is the distance in horizontal direction between the
left border of the marked text field and the left border of the Text
Contral. It is not affected by the scrollbar positions.

Read only, run time only.
Long.
FieldPosY Property.

FieldPosY Property

Description:

Returns the vertical position of a marked text field. The field identifier
must have previously been determined with the FieldCurrent property.

Text Control Properties, Methods, and Events Page 175

Usage: TXTextControl.FieldPosY

Remarks: The property value is the distance in vertical direction between the
upper left corner of the marked text field and the upper left corner of the
text. It is not affected by the scrollbar positions.

Limitations: Read only, run time only.
Data Type: Long.
See also: FieldPosX Property.

FieldSetCursor Event

Description: Occurs when the cursor is moved over a marked text field.
Syntax: FieldSetCursor (Fieldld, MousePointer)
The event procedure's parameters are:
Parameter Description
Fieldld Isthe identifier of the field where the cursor is
moved over.
MousePainter When this parameter is changed Text Control

uses the specified cursor whilst moving over
the marked text field. When this parameter is
not changed, Text Control usesits standard
cursor for marked text fields (Up Arrow). For
possible values see the description of the
MousePointer property.

Remarks: This event that does not change the value of the FieldCurrent property.
Data Types: Fieldld Integer

MousePainter Integer
See also: FieldChanged Event, FieldClicked Event, FieldCreated Event,

FieldDblIClicked Event, FieldDeleted Event.

Page 176

Text Control Properties, Methods, and Events

FieldStart Property

Description:

Usage:

Data Type:
Limitations:
See also:

Specifies the start position of a marked text field. The field identifier
must have previously been determined with the FieldCurrent property.

TXTextControl.FieldStart
Long.

Read only, run time only.
FieldEnd Property.

FieldText Property

Description:

Usage:
Data Type:

Limitations:

Returns or sets the text which is contained within a marked text field.
The field identifier must have previously been determined with the
FieldCurrent property.

TXTextControl.FieldText [=string]
String.

Run time only.

FieldType Property

Description:

Usage:

Constants:

This property sets or returns the type of a marked text field. The chapter
"Overviews - Marked Text Fields - Special Types of Marked Text
Fields" describes all the types and the data belonging to these types.
Type-related data must be set with the FieldTypeData property

TXTextControl.FieldType(Fieldid) [= FieldType]
The property's parameters are:

Parameter Description
Fieldld Identifies the field that is to be manipulated.

The property setting can be one of the following constants:

Text Control Properties, Methods, and Events Page 177

Constant Value Description

txFieldExter nalLink 1 Defines the source of a hypertext
link to alocation outside of the
document.The FieldTypeData
property must be used to define
where the link pointsto.

txInternalLink 2 Defines the source of a hypertext
link to alocation in the same
document.The FieldTypeData
property must be used to define
where the link points to. It must be
the name of a marked text field that
has the txFieldLink Tar get type.

txFieldPageNumber 3 Thisfield displays the current page
number. It can only be used in
headers or footers.

txFieldLinkTarget 4 Defines a position in a document
which isthe target of a hypertext
link. The FieldTypeData property
must be used to define the name of
this field.

txFieldHighlight 5 Defines a piece of text that can be
highlighted. The FieldTypeData
property must be used to define the
color of the highlight.

txFieldTopic 6 Defines a position in a document
that is the beginning of atopic. The
FieldTypeData property must be
used to define the number of the

topic.
txFieldStandard 0 Resets afield of aspecial typeto a
standard marked text field.
Remarks: The types txFieldLinkTarget, txFieldPageNumber and txFieldTopic

can only be set when the marked text field has no text.

Page 178

Text Control Properties, Methods, and Events

Data Types:

Limitations:
See also:

Fieldld Integer
Property value: Integer.

Run time only.

Fieldlnsert Method, FieldTypeData Property, FieldLinkClicked
Event.

FieldTypeData Property

Description: This property sets or returns the data that belongs to a marked text field
of aspecia type. The chapter "Overviews - Marked Text Fields -
Soecial Types of Marked Text Fields' informs about all the types and
the data belonging to these types.

Usage: TXTextControl.FieldTypeData(Fieldid) [= TypeData]
The property's parameters are:
Parameter Description
Fieldld Identifies the field that is to be manipulated.

Remarks: The specified data can be along value or a character string depending
on the type of thefield. A long value is used for fields of the types
txFieldHighlight and txFieldTopic. For fields of the types
txFieldExternalLink, txFieldInternalLink and txFieldLinkTar get
the TypeData parameter must be a character string.

Data Types: Fieldld Integer
Property value: Long or String.

Limitations: Run time only.

See also: Fieldlnsert Method, FieldLinkClicked Event.

Find Method

Description: Searches the text in a Text Control for a given string.

Usage: TXTextControl.Find FindwWhat[, Sart[, Optiong]]

The method's parameters are:

Text Control Properties, Methods, and Events Page 179

Parameter Description
FindWhat Specifies the string to search for.
Sart Optional. An integer character index that

determines where to begin the search. The
first character of text in the control has an
index of 0. When this parameter is omitted or
set to -1, the search begins at the current input
position.

Options Optional. Is the sum of one or more constants
used to specify optional features, as described
in Remarks.

Return Value: If thetext searched for is found, the Find method highlights the
specified text and returns the index (zero-based) of the first character
highlighted. If the specified text is not found, the Find method

returns -1.

Remarks: The settings for Options can include:

Setting Description

1- SearchUp Determines the direction of searches through a
document. If thisflag is used, the search
direction is up; if the flag is not used, the
search direction is down.

4 - MatchCase Determinesif amatch is based on the case of
the specified string as well as the text of the
string.

8 - NoHighLight Determines if a match appears highlighted in

the Text Control.

16 - NoM essageBox Suppresses the built-in message boxes which
inform the user that a match could not be

found.
Data Types: FindWhat: String
Sart: Long
Options: Long

Return Value: Long

Page 180

Text Control Properties, Methods, and Events

See also:

FindReplace Method

FindReplace Method

Description:
Usage:
Return Value:

Remarks:

Data Type:

Displaysa'Find' or 'Replace’ dialog box.
TXTextControl.FindReplace TypeOfDialog
This method has no return value.

The TypeOfDialog parameter can have one of the following values:

Value Description
1 Displaysa'Find' dialog box.
2 Displays a'Replace’ dialog box.

TypeOfDialog Integer

FontBold Property
Fontltalic Property
FontStrikethru Property
FontUnderline Property

Description:

Usage:

Returns or sets font styles in the following formats: Bold, Italic,
Strikethrd, and Underline. At design time these properties determine the
styles of the complete text. At runtime these properties get or set the
styles of the selected text when the For matSelection property has been
set to True. When the For matSelection property has been set to False
style settings are made for the complete text.

TXTextControl.FontBold [= value]
TXTextControl.Fontltalic [= valug]
TXTextControl.FontStrikethru [= value]
TXTextControl.FontUnderline [= value]

The properties settings are:

Text Control Properties, Methods, and Events Page 181

Data Type:
See also:

Setting Description

0 The characters are not formatted with the
specified style.

1 The characters are formatted with the
specified style.

2 Indicates that the selection contains characters

that have amix of the appropriate font styles.
Thisvaueisonly possible at runtime and
when the For mat Selection property has been
set to True.

Integer.

FontName Property, FontSize Property, FontDialog Method,
FormatSelection Property, FontUnderlineStyle Property.

FontDialog Method

Description:

Usage:

Return Value:

Remarks:

Data Types:

Invokes the Text Control's built-in font dialog box and, after the user
has closed the dialog box, specifies whether he has changed something.

TXTextControl.FontDialog

The method returns True when the user has changed one or more
attibutes. The method returns Fal se when the formatting remains
unchanged.

The changes, made in the dialog box, apply to the currently selected
text.

Return value: Boolean.

FontName Property

Description:

Returns or sets the font used to display text. At design time this property
changes or gets the font name of the complete text. At runtime this
property determines the font of the selected text when the
FormatSelection property has been set to True. When the

Page 182

Text Control Properties, Methods, and Events

Usage:

Remarks:

Data Type:
See also:

FormatSelection property has been set to False the font of the complete
text is set or returned.

TXTextControl.FontName [= string]

The property returns an empty string if the selected text contains
different fonts. This can happen only at runtime and when the
FormatSelection property has been set to True.

String.
FontDialog Method, For matSelection Property.

FontSize Property

Description:

Usage:

Remarks:

Data Type:
See also:

Returns or sets avalue that specifies the size of the font used to display
text. Thisvalueisin points. At design time this property changes or gets
the font size of the complete text. At runtime this property determines
the font size of the selected text when the For matSelection property
has been set to True. When the For mat Selection property has been set
to False the font size of the complete text is set or returned.

TXTextControl.FontSize [= value]

The property returns O if the selected text contains fonts with different
sizes. This can happen only at runtime and when the For matSelection
property has been set to True.

Integer.
FontDialog Method, For matSelection Property.

FontUnderlineStyle Property

Description:

Usage:

This property determines styles for the FontUnder line property.
TXTextControl.FontUnderlineStyle [= valug]

The property's settings are:

Setting Description

&H1& Underline style is single underlined.

Text Control Properties, Methods, and Events Page 183

Remarks:

Data Type:
Limitations:
See also:

&H2& Underline style is double underlined.

&H4& Underline style iswords only underlined. This
valueis possible only in combination with
single or double underlined.

&H10& The text contains single underlined parts.

&H20& The text contains double underlined parts.

& H40& The text contains parts that are underlined
words only.

The first group of values describes the underline styles. The second
group are additional values that are only useful for the property return
value. They inform about complex selections and are possible only
when the For mat Selection property has been set to True.

Integer.
Run time only.
FontUnderline Property, For matSelection Property.

ForeColor Property

Description:

Usage:

Returns or sets the color used to display text in a Text Control. Text
Control uses the Microsoft Windows operating enviroment red-green-
blue (RGB) color scheme.

At design time this property changes or gets the text color of the
complete text. At runtime this property determines the color of the
selected text when the For matSelection property has been set to True.
When the For matSelection property has been set to False the text color
of the complete text is set or returned.

TXTextControl.ForeColor [= value]
The property's settings are:

Page 184

Text Control Properties, Methods, and Events

Data Type:
See also:

Setting

Description

RGB colors

System colors

Long.

Thevalid range for aRGB color is0to
&HFFFFFF. The high byte of a number in this
range equals 0; the lower 3 bytes, from least to
most significant byte, determine the amount of
red, green, and blue, respectively. Thered,
green, and blue components are each
represented by a number between 0 and 255
(&HFF).

Colors specified by the system color

constants. If the high byteisn't 0, Text Control
uses the system colors, as defined in the user's
Control Panel settings.

FormatSelection Property, BackColor Property.

FormatSelection Property

Specifies whether character and paragraph formatting properties apply
to the whole text or to a particular selection only.

TXTextControl.FormatSelection [= boolean]

Description:

Usage:

Remarks:

The property's settings are:

Setting Description

True The formatting properties only apply to
selected text. This mode works only at run
time, because at design timeit is not possible
to select text.

Fase (Default) The formatting properties apply to

the complete text.

The properties which are affected are Alignment, BaselL ine, FontBold,
Fontltalic, FontName, FontSize, FontStrikethru, FontUnderline,

Text Control Properties, Methods, and Events Page 185

Data Type:

FontUnderlineStyle, LineSpacing, LineSpacingT, ForeColor,
TextBkColor.

Boolean.

FrameDistance Property

Description:

Usage:

Remarks:

Data Type:
Limitations:

Returns or sets the distance between text and paragraph frame for the
currently selected paragraph(s).

TXTextControl.FrameDistance [= value]

The property returns -1 if the user selects two or more paragraphs which
have different frame distance settings.

Integer.

Run time only.

FrameLineWidth Property

Description:
Usage:

Remarks:

Data Type:

Limitations:

Specifies the line widths of the currently selected paragraphs frames.
TXTextControl.FramelL ineWidth [= valug]

The property returns O if the user selects two or more paragraphs which
have different line width settings.

Integer.

Run time only.

FrameStyle Property

Description:

Usage:

Returns or sets the style of the currently selected paragraphs frames.
TXTextControl.FrameStyle [= valueg]

The property value can be a combination of the following values:
Setting Description

BF_LEFTLINE (&H1) Draws aleft frame line.

Page 186 Text Control Properties, Methods, and Events
BF RIGHTLINE (&H2) Draws aright frameline.
BF _TOPLINE (&H4) Draws atop frameline.
BF BOTTOMLINE (&H8) Draws abottom frame line.
BF _TABLINES (&H10) Draws avertical line at each tab

position.

BF_SINGLE (&H20) Drawsasingleline.
BF_DOUBLE (&H40) Draws adoubled line.
BF_BOXCONNECT (&H80) Draws adoubled line.
BF_NOLEFTLINE (&H100) Resets an existing left line.
BF_NORIGHTLINE (&H200) Resets an existing right line.
BF_NOTOPLINE (&H400) Resets an existing top line.
BF NOBOTTOMLINE (&H800) Resets an existing bottom line.
BF_NOTABLINES (&H1000) Resets existing tabulator lines.

Remarks: The property returns -1 if the user selects two or more paragraphs which
have different frame style settings.

Data Type: Integer.

Limitations: Runtime only.

HeaderFooter Property

Description:

Usage:

Constants:

This property determines which kind of headers and/or footers the
document contains. It can only be used when the PageWidth and
PageHeight properties have non-zero values. Using this property, a
header or footer is not automatically activated. The

Header Footer Activate method or the built-in mouse interface can be
used to activate a header or footer.

TXTextControl.Header Footer [= HeadersFooters]

The setting for Header sFooters can be the sum of one or more of the
following constants:

Text Control Properties, Methods, and Events Page 187
Constant Value Description
txHeader 1 Inserts a header.

txFirstHeader 2

txFooter 4
txFir stFooter 8

Inserts a special header for the first
page.
Inserts afooter.

Inserts a special footer for the first page.

Data Type: Integer.
Limitations: Run time only.
See also: Header Footer Activate Method, Header Footer Style Property

HeaderFooterActivate Method

Description: Activates or deactivates a header or afooter. During activation the
current input focus is set to the header or footer area, so that the user
can alter the text and/or the format. During deactivation the input focus

is set back to the main text.

Usage: TXTextControl.Header Footer Activate Header Footer

The method's parameters are:

Parameter Description

Header Footer Specifies the header or footer to activate.
Valid values are described in Constants. When
thisvalueis zero, a currently activated header
or footer is deactivated.

Return Value: The method returns True, if a header or footer could be activated,

otherwise it returns False.

Constants: The settings for HeaderFooter can be one of the following constants:
Constant Value Description
txHeader 1 Activates the header.

txFirstHeader 2

Activates the special header of the first
page.

Page 188 Text Control Properties, Methods, and Events
txFooter 4 Activates the footer.
txFir stFooter 8 Activates the special footer of the first
page.
Data Types: Header Footer Integer
Return value: Boolean

HeaderFooterActivated Event

Description:
Syntax:

Constants:

Data Types:
See also:

Occurs when a header or footer has been activated.
Header Footer Activated(Header Footer)
The event procedure's parameters are:;

Parameter Description

Header Footer Specifies the header or footer that has been
activated. Valid values are listed in Constants.

Valid values for Header Footer are:

Constant Value Description

txHeader 1 A header has been activated.

txFirstHeader 2 The special header for the first page has
been activated.

txFooter 4 A footer has been activated.

txFir stFooter 8 The special footer for the first page has
been activated.

Header Footer Integer

Header Footer Deactivated Event

HeaderFooterDeactivated Event

Description:
Syntax:

Occurs when a header or footer has been deactivated.
Header Footer Deactivated(Header Footer)

The event procedure's parameters are:

Text Control Properties, Methods, and Events Page 189

Parameter Description
Header Footer Specifies the header or footer that has been
deactivated. Valid values are listed in
Constants.
Constants: Valid values for HeaderFooter are:
Constant Value Description
txHeader 1 A header has been deactivated.
txFirstHeader 2 The special header for the first page has
been deactivated.
txFooter 4 A footer has been deactivated.
txFirstFooter 8 The special footer for the first page has
been deactivated.
Data Types: Header Footer Integer
See also: Header Footer Activated Event

HeaderFooterPosition Property

Description: This property specifies the position of a header or footer. For headers
the position value is the distance between the top of the header and the
top of the page. For footers the position value is the distance between
the bottom of the footer and the bottom of the page. All valuesarein
twips. The default valueis 567 twips=1 cm.

Usage: TXTextControl.Header Footer Position(Header Footer) [= position]
Remarks: Valid settings for Header Footer are:
Constant Value Description
txHeader 1 Specifies the header.
txFirstHeader 2 Specifies the special header for the first
page.
txFooter 4 Specifies the footer.

oo

txFirstFooter Specifies the specia footer for the first

page.

Page 190 Text Control Properties, Methods, and Events
Data Type: Long.
Limitations: Run time only.

HeaderFooterSelect Method

Description:

Usage:

Return Value

Constants:

Data Types:

This method determines whether a certain Text Control property or
method manipulates a header or afooter or the main text. This method
does not activate a header or footer.

TXTextControl.Header Footer Select Header Footer
The method's parameters are:

Parameter Description

Header Footer Specifies the part of the text that isto be
selected. Valid values are described in
Constants. When thisvalueis zero, Text
Control performs automatic selection, which
means that a certain property or method
mani pul ates the text part with the current input
position.

The method returns True, if a header or footer could be selected,
otherwise it returns False.

The settings for HeaderFooter can be one of the following constants:

Constant Value Description

txHeader 1 Selects the header.

txFirstHeader 2 Selects the specia header for the first
page.

txFooter 4 Selects the footer.

txFirstFooter 8 Selects the specia footer for the first
page.

txMainText 10 Selects the main text.

Header Footer Integer

Return value: Boolean

Text Control Properties, Methods, and Events Page 191

Example:

This Basic example selects the header, alters the text of the header and
returns to the automatic mode:

TXText Cont r ol 1. Header Foot er Sel ect t xHeader
TXText Control 1. Text = "This is the header's text"
TXText Control 1. Header Foot er Sel ect 0

HeaderFooterStyle Property

Description:

Usage:

Remarks:

Data Type:

Limitations:

This property determines how headers and footers can be activated and
how activated headers and footers appear on the screen.

TXTextControl.Header Footer Style [= style]

Valid settings are the sum of one or more constants specified in the
folowing list:

Constant Value Description

txM ouseClick 1 Headers and footers can be activated
through single mouse clicks.

txNoDbIClk 2 Headers and footers cannot be activated
through mouse double-clicks.

txSolidFrame 4 An activated header or footer has a solid
border to indicate its size.

txUnframed 8 An activated header or footer has no
border.

The default style setting is a dotted border for an activated header or
footer and a mouse interface that activates a header or footer with
double-clicks.

Integer.

Run time only.

Page 192 Text Control Properties, Methods, and Events

HExpand Event

Description: Occurs when the Text Control has changed its window size horizontally.
This event can only occur when the AutoExpand property is set to
True.

Syntax: HExpand()

See also: AutoExpand Property, VExpand Event.

HideSelection Property

Description: Specifies whether atext selection is hidden when the Text Control
looses the input focus.

Usage: TXTextControl.HideSelection [= boolean]
The property's settings are:
Setting Description
True (Default) The selection is hidden when the

Text Control looses the input focus and shown
when the Text Control gets the input focus.

Fase The selection stays visible, independent of the
current input focus.

Data Type: Boolean.

HScroll Event

Description: Occurs when the horizontal scroll position has been changed.
Syntax: HScroll()
See also: VScroll Event.

hWnd Property

Description: Returns a handle to a Text Control.

Text Control Properties, Methods, and Events Page 193

Usage: TXTextControl.hwnd [= handl€]

Remarks: The hWnd property is used with Windows API calls. Many Windows
operating enviroment functions require the hWnd of the active window
as an argument.

Data Type: Handle.

Limitations: Read only, run time only.

ImageDisplayMode Property

Description: Provides several modes how images are displayed or refreshed.
Usage: TXTextControl.| mageDisplayM ode [= valug]
The property's settings are:
Setting Description
0 (Default) Standard mode.
&H1& Displays an image as a gray rectangle.
&H2& Container mode. This mode ensures proper

refreshing when the imageisused as a
background image for transparent controls.
This mode isread only and can only be set
with the Objectl nsertFixed and
ObjectlnsertAsChar methods.

Remarks: The property settings can be combined by adding the desired constant
values.

Data Type: Integer.

Limitations: Run time only.

See also: ObjectlnsertAsChar Method, Objectl nsertFixed Method.

ImageFilename Property

Description: Determines the image filename of an embedded object. This property is
only available when the object has been inserted as almage Control

Page 194 Text Control Properties, Methods, and Events
(Seethe ObjectlnsertAsChar method for more information). The
object identifier must have previously been determined with the
ObjectCurrent property.

Usage: TXTextControl.| mageFilename [= string]

Data Type: String.

Limitations: Run time only.

See also: ObjectCurrent Property, ObjectlnsertAsChar Method,

Objectl nsertFixed Method.

ImageFilters Property

Description:

Usage:

Remarks:

Data Type:
Limitations:
See also:

Example:

This property returns a string which specifies the available image filters.
This string can be used to initialize the Filter property of a Common
Dialog control.

TXTextControl.ImageFilters

Thefilter names are read from the IC.INI or IC32.INI files. In the
standard version, only filters for TIFF, Bitmap and Windows Metafiles
are supplied, but you can add any Aldus compatible image filter library,
for instance Visual Tools V TImageStream.

String.
Read only, run time only.
ObjectlnsertAsChar Method, Objectl nsertFixed Method.

This Basic example initializes an OpenFile dialog box with the names
of the available image filters and then loads a selected image:

digFile.DialogTitle = "Insert |mage"

digFile.Filenane = ""

digFile.Filter = TXText Control 1.1 mageFilters
digFile.Filterlndex =1

dl gFil e. Fl ags = cdl OFNPat hMust Exi st O cdl OFNFi | eMust Exi st _
O cdl OFNH deReadOnl y

dl gFil e. Cancel Error = True

dl gFi | e. ShowCpen

Text Control Properties, Methods, and Events Page 195

TXText Control 1. Obj ect I nsert AsChar 0, dlgFile.Filename, _
1, 100, 100, O, O

ImageSaveMode Property

Description: When saving a Text Control file using the Save or RTFExport
methods, this property determines whether the image data or the image
file name s stored.

Usage: TXTextControl.| mageSaveM ode [= valu€]
The property's settings are:
Setting Description
0 Saves the image filename.
1 (Default) Saves the image data.
Data Type: Integer.
Limitations: Run time only.
See also: ObjectlnsertAsChar Method, Objectl nsertFixed Method, Save
Method.

IndentB Property
IndentFL Property
IndentL Property
IndentR Property
IndentT Property

Description: Returns or setsthe left, top, right, bottom, and first line indents (in
twips) for a paragraph or a selected range of paragraphs.

Usage: TXTextControl.IndentB [= value]
TXTextControl.IndentFL [= valug]
TXTextControl.IndentL [= valug]

Page 196

Text Control Properties, Methods, and Events

Remarks:

Data Type:

TXTextContral.IndentR [= valug]
TXTextControl.IndentT [= valug]

If anumber of paragraphs have been selected which have different
settings for one of the indents, the appropriate property returns & H8000.
Thefirst line indent can be negative.

Integer.

InputPosFromPoint Method

Description:

Usage:

Return Value

Data Types:

Returns the text input position belonging to a certain geometric position.
The text input position is relative to the beginning of the text and the
geometric position is a position in the visible part of the text.

TXTextContral.l nputPosFromPoaint X, Y
The method's parameters are:

Parameter Description

XY Specify the coordinates of the point. These
values must bein twips.

The method returns the text input position beginning with zero for the
position in front of the first character. The method returns -1, if atext
position could not be found.

XY Long
Return value: Long

InsertionMode Property

Description:

Usage:

Specifies whether text is inserted or overwrites existing text.
TXTextControl.l nsertionM ode [= boolean]

The property's settings are:

Setting Description

True (Default) New text isinserted.

Text Control Properties, Methods, and Events Page 197

False
Data Type: Boolean.

KeyDown Event
KeyUp Event

New text overwrites existing text.

Description: Occurs when the user presses (KeyDown) or releases (KeyUp) akey
while the Text Control has the input focus. To interpret ANSI
characters, use the K eyPress event.

Syntax: KeyDown(KeyCode, Shift)

KeyUp(KeyCode, Shift)

The event procedures' parameters are:

Parameter Description

KeyCode Isthe virtual-key code of the pressed or
released key. When this value is changed,
Text Control handles the changed key.

Shift Informs about the state of the SHIFT, CTRL
and ALT keys at the time of the event. It isthe
sum of one or more of the values described in
Remarks.

Remarks: The settings for Shift can include:

Value Description

1 The SHIFT key was pressed at the time of the
event.

2 The CTRL key was pressed at the time of the
event.

4 The ALT key was pressed at the time of the

Data Types: KeyCode
Shift

See also: KeyPress Event

event.

Integer
Integer

Page 198 Text Control Properties, Methods, and Events

KeyPress Event

Description: Occurs when the user presses and releases an ANSI key while the Text
Control has the input focus.
Syntax: K eyPress(KeyAscii)
The event procedure's parameters are:;
Parameter Description
KeyAscii Isastandard numeric ANSI keycode.
Changing it sends a different character to the
Text Control.
Data Types: KeyAscii Integer
See also: KeyDown Event, KeyUp Event

KeyStateChange Event

Description: Occurs when the character insertion mode or when the state of the
NUMLOCK or CAPSLOCK key has been changed.
Syntax: KeyStateChange()

Language Property

Description: Determines the language in which Text Control displays dialog boxes
and error messages. Text Control has several built-in languages,
additional languages can be added with the Resour ceFile property. The
default language is the Windows system language. See "Overviews -
Resources' for more information.

Usage: TXTextControl.L anguage [= value]
The property's settings are:
Setting Description
33 French
34 Spanish

Text Control Properties, Methods, and Events Page 199
39 [talian
41 German (Switzerland)
43 German (Austria)
49 German
81 Japanese (32 bit only)
ese English
Data Type: Integer.
LineSpacing Property
Description: Specifies the line spacing for the currently selected paragraphs as a
percentage of the font size.
Usage: TXTextControl.LineSpacing [= valug]
Data Type: Integer.
See also: FormatSelection Property.
LineSpacingT Property
Description: Specifies the line spacing for the currently selected paragraphsin twips.
Usage: TXTextControl.LineSpacingT [= value]
Data Type: Integer.
See also: FormatSelection Property.
Load Method
Description: Loads datafrom afile and inserts it into a Text Control. All Unicode

formats (6, 7 and 8) and the Microsoft Word format can only be used
with the 32 bit version of Text Control.

Usage: TXTextControl.L oad FileName[, Offset[, Format[, CurSelection]]]

Page 200

Text Control Properties, Methods, and Events

The method's parameters are:

Parameter Description

FileName Specifiesthefile to load from.

Offset Optional. Specifies the file position from
where the datais read. When not specified or
set to
zero the datais read from the beginning.

Format Optional. Specifies aformat identifier or the

name of a user-developed filter. When not

specified Text Control assumes TX format (id.

3). Thefollowing format identifiers are

possible:

1- ANSI text Text only in ANSI format
(Windows compatible).

2-TX text Text only in ANSI format
(Text Control compatible).

3-TX Internal Text Control
format.

4-HTML HTML format (Hypertext
Markup Language).

5-RTF RTF format (Rich Text
Format).

6 - Unicodetext Text only in Unicode
format (Windows
compatible).

7 - TX text Text only in Unicode
format (Text Control
compatible).

8-TX Internal Text Control
format. Text is stored in
Unicode.

9- WORD Microsoft Word format.

FilterFileName Can be used with a user-
developed filter.

Text Control Properties, Methods, and Events Page 201

Return Value

Data Type:

See also;

Example:

CurSlection

Optional. When set to true the loaded data
replaces the current selection or isinserted at
the current input position. The new input
position is behind the inserted data. When
omitted or set to false the loaded data replaces
the complete control contents independent of
the current selection. The new input position
is at the beginning of the data.

The method returns the position in the file after the data has been

loaded.

FileName:
Offset:
Format:

CurSalection:

Return value;

Save Method.

String

Long

Integer or String
Boolean

Long

This Basic example opens afile and loads its contents into

TXTextControl 1;

Private Sub muFile_Load _dick()
On Error Resume Next
Create an "Qpen File" dial og box
CommonDi al ogl. Filter = "TX Demp (*.tx)|*.tx"
CommonDi al ogl. Di al ogTitl e = " Cpen"
CommonDi al ogl. Fl ags = cdl OFNFi | eMust Exi st O _
cdl OFNH deReadOnl y
CommonDi al ogl. Cancel Error = True
ComonDi al ogl. ShowOpen
If Err Then Exit Sub
Pass the filename to the text control
TXText Cont rol 1. Load CommonDi al ogl. fil enane

End Sub

Page 202 Text Control Properties, Methods, and Events

LoadFromMemory Method

Description: L oads data from a byte array and inserts it into a Text Control. This
method works in the same way as the L oad method.

Usage: TXTextControl.L oadFromMemory DataArray[, Formatl[,
CurSelection]]

The method's parameters are:

Parameter Description

DataArray Specifies the byte array to load from.

Format Optional. See the Format parameter of the
L oad method for a description.

CurSelection Optional. See the Cur Sdlection parameter of

the L oad method for a description.
Return Value The method returns True if the data could be |loaded, otherwise it

returns False.

Data Types: DataArray: One-dimensional Byte Array
Format: Integer or String
CurSelection: Boolean
Return value: Boolean

See also: L oad Method, SaveT oM emory Method

LoadSaveAttribute Property

Description: This property enables an application to specify severa attributes that
can be used in combination with the L oad and Save methods for the
following situations:

1. Documents can contain elements, for example a document title, that
cannot be converted directly to text properties but may be useful for
certain applications. Such an attribute can be set before a document is
saved, in order to store it as part of the document, or it can be provided
and used after a document has been loaded.

Text Control Properties, Methods, and Events Page 203

Usage:

Constants:

2. In some documents generic information about text propertiesis | eft
out, for example with HTML documents which define font heights as a
percentage of a base height without specifying that base height. Such an
attribute can be set before a document is loaded, in order to inform the
filter how to calculate such relative values.

TXTextControl.L cadSaveAttribute(Attribute) [= valug]

The property's parameters are:

Setting Description

Attribute Determines the attribute that is to be changed
or returned. Possible values are listed in
Constants.

Valid values for Attribute are:

Constant Description

txDocWidth L oads or saves a document width in twentieths
of apoint. When this property is set before a
document isloaded, it is used to calculate
width values contained in the document which
are relative to the document's width. After a
document has been loaded, this property
returns the width, contained in the document,
or -1 if the document does not contain a width.
When a document is saved and this property
has not been set, Text Control saves the value
of the PageWidth property instead, except
this property has been set to -1 previoudly.

txDocHeight Loads or saves adocument height in
twentieths of a point. It is used in the same
manner as described for the txDocWidth
attribute.

txDocL eftMar gin Loads or saves aleft document margin in
twentieths of a point. After a document has
been loaded, this property returns the margin
contained in the document, or -1 if the

Page 204

Text Control Properties, Methods, and Events

txDocTopMargin

txDocRightMargin

txDocBottomMargin

txDocTitle

txDocBkColor

txAbsPath

document does not contain the margin.

When a document is saved and this property
has not been set, Text Control saves the value
of the PageM ar ginL property instead, except
this property has been set to -1 previoudly.
Loads or saves atop document marginin
twentieths of a point. It is used in the same
manner as described for the

txDocL eftMargin attribute.

Loads or saves aright document margin in
twentieths of a point. It is used in the same
manner as described for the
txDocL eftMargin attribute.

L oads or saves a bottom document margin in
twentieths of a point. It is used in the same
manner as described for the

txDocL eftMargin attribute.

Loads or saves a document title. After a
document has been loaded, this property
returns the document title contained in the
document, or an empty string if the document
does not contain atitle.

L oads or saves a document background color
as a RGB value. After adocument has been
loaded, this property returns the background
color contained in the document, or -1, if the
document does not contain a background
color.

Specifies a character string that is used to
search for resources like images or
destinations of hypertext links. When a
document is loaded, this path is used to locate
aresource. It isonly used for resources which
are specified through an absolute location. In

Text Control Properties, Methods, and Events Page 205

this case the absolute resource location is
completely replaced through the path specified
through this property. When adocument is
saved, this attribute is not used.

txBasePath Specifies a character string that is used to
search for resources given through arelative
location. When a document is loaded, this path
is added to the relative location of aresource.
When a document is saved the string can only
be afile path. All filesin the document are
saved relative to this path.

txBaseFontSize HTML only. Specifies abase font size in
points and is used to convert percentage font
sizes to absolute font sizes. When not set, a
value of 10 pointsis used. This attribute is
only used when a document is loaded.

txPropFontName HTML only. Defines a proportional font name
when not specified in the document. When not
set, Text Control uses adefault font. This
attribute is only used when a document is
loaded.

txMonoFontName HTML only. Defines a mono-spaced font
name when not specified in the document.
When not set, Text Control uses a default
mono-spaced font. This attribute is only used
when a document is loaded.

txTextColor HTML only. Defines atext color. This
attribute is only used when a document is
loaded. When the txOverwriteT extColor
attribute is set to True, this color is used for
text coloring. Otherwise when not set to
overwrite, this color is only used when no text
color is specified in the document.

txOverwriteTextColor HTML only. SetsthetxTextColor attribute to
overwrite or not to overwrite.

Page 206

Text Control Properties, Methods, and Events

txTextBkColor

HTML only. Defines atext background color.
This attribute is only used when adocument is
loaded. When the txOverwriteT extBkColor
attribute is set to True, this color is used for
text background coloring. Otherwise, when
not set to overwrite, this color is only used
when no text background color is specified in
the document.

txOverwriteT extBkColor HTML only. Setsthe txTextBkColor

txL oadl mages

txEnableL inks

txEnableHighlights

txEnableT opics

txLinkColor

txOverwriteLinkColor

txUnderlineLinks

attribute to overwrite or not to overwrite.

HTML only. Specifies whether or not images
are loaded. When not set, images are replaced
by its alternate text or a specia link text. For
all other formats images are always loaded.

HTML, RTF and Word only. Converts source
and target fields of hypertext links to
appropriate marked text fields.

RTF only. Converts all \cbN' keywords into
marked text fields of the type
txFieldHighlight.

RTF only. Converts all \sect' keywordsinto
marked text fields of the type txFieldTopic.

HTML only. Defines atext color for pieces of
text which function as hypertext links. This
attribute is only used when a document is
loaded. When the txOverwriteLinkColor
attribute is set to True, thiscolor isused to
color hypertext links. Otherwise when not set
to overwrite, this color is only used when no
color for links is specified in the document.

HTML only. Setsthe txLinkColor attribute to
overwrite or not to overwrite.

HTML only. Specifies whether or not
hypertext links are underlined. This attribute

Text Control Properties, Methods, and Events Page 207

isonly used when a document is loaded.
When set to False, hypertext links are only
underlined when specified in the document.

Data Types: The following lists the data type for each attribute including its numeric
value:
Constant Value DataType
txDocWidth 0 Long
txDocHeight 1 Long
txDocL eftMar gin 2 Long
txDocTopMargin 3 Long
txDocRightMargin 4 Long
txDocBottomMargin 5 Long
txDocTitle 6 String
txDocBkColor 7 Long
txAbsPath 28 String
txBasePath 29 String
txBaseFontSize 30 Integer
txPropFontName 31 String
txMonoFontName 32 String
txTextColor 33 Long
txOverwriteT extColor 34 Boolean
txTextBkColor 35 Long
txOverwriteTextBkColor 36 Boolean
txL oadl mages 37 Boolean
txEnableL inks 38 Boolean
txEnableHighlights 39 Boolean
txEnableT opics 40 Boolean
txLinkColor 50 Long
txOverwriteLinkColor 51 Boolean
txUnderlineLinks 52 Boolean

Limitations: Run time only

See also: L oad Method, Save Method

MouseDown Event

Page 208

Text Control Properties, Methods, and Events

MouseMove Event

MouseUp Event

Occurs when the user presses (MouseDown) or releases (MouseUp) a
mouse button or when the user moves the mouse (MouseMove).

M ouseDown(Button, Shift, X, Y)
M ouseM ove(Button, Shift, X, Y)
M ouseUp(Button, Shift, X, Y)

The event procedures' parameters are:

Description:

Syntax:

Remarks:

Data Types:

Parameter

Description

Button

Shift

XY

Informs about the state of the mouse buttons at
the time of the event. Possible settings are
described in Remarks.

Informs about the state of the SHIFT, CTRL
and ALT keys at the time of the event.
Possible values are the same as for the
KeyDown and KeyUp events.

Specifies the current location of the mouse
pointer. The coordinates are relative to the
upper-left corner of the Text Control's
window.

The following are valid values for the Button parameter. For the
MouseDown and M ouseUp eventsit can only be one of the values. For
the MouseM ove event it can be the sum of more than one value.

Value Description

1 The left button is pressed.

2 Theright button is pressed.

4 The middle button is pressed.
Button Integer

Shift Integer

Text Control Properties, Methods, and Events Page 209

X Long
Y Long
See also: KeyDown Event, KeyUp Event.

MousePointer Property

Description: Returns or sets avalue indicating the type of mouse pointer displayed
when the mouse is over a particular part of a Text Control at run time.

Usage: TXTextControl.M ousePointer [= valug]
The property's settings are:
Setting Description
0 (Default) The mouse pointer isan I-Beamin
edit mode and an arrow in read-only mode.

See the EditM ode property for more
information.

Arrow.

Cross.

I-Beam.

Icon (small square within a square).
Size (four-pointed arrow).

Size NE SW (double arrow pointing northeast
and southwest).

7 Size N S (double arrow pointing north and
south).

8 Size NW SE (double arrow pointing northwest
and southeast).

9 Size W E (double arrow pointing west and
east).

10 Up Arrow.

11 Hourglass.

12 Hand.

D OB~ WN P

Page 210 Text Control Properties, Methods, and Events

Data Type: Integer.

Move Event

Description: Occurs when a Text Control has been moved with the mouse while
depressing the ALT key.

Syntax: Move()

See also: Size Event, SizeM ode Property.

NextWindow Property

Description: Returns or sets the next window in a chain of linked windows.

Usage: TXTextControl.NextWindow [= handl€]

Data Type: Handle.

Limitations: Run time only.

Example: The following Basic code line links 2 Text Controls so that text flows

from TextControl 1 to TextControl 2:
Text Control 1. Next W ndow = Text Cont r ol 2. hwd

ObjectClicked Event

Description: Occurs when an object has been clicked on.
Syntax: ObjectClicked(Objectld)
The event procedure's parameters are:
Parameter Description
Objectld Isthe identifier of the object that has been
clicked.
Remarks: The value of the ObjectCurrent property is updated with the identifier

given through the Objectld parameter.
Data Types: Objectld Integer

Text Control Properties, Methods, and Events Page 211

See also: ObjectlnsertAsChar Method, Objectl nsertFixed Method,
ObjectDbIClicked Event.

ObjectCreated Event

Description: This event specifies that a new object has been created. This can happen
when a document that contains objects, is loaded or when an object is
pasted from the clipboard. This event does not occur after inserting a
new object with the ObjectinsertFixed or ObjectinsertAsChar
methods.

Syntax: ObjectCreated(Objectld)
The event procedure's parameters are:

Parameter Description
Objectld Isthe identifier of the object that has been
created.

Remarks: The value of the ObjectCurrent property is updated with the identifier
given through the Objectld parameter.

Data Types: Objectld Integer
See also: ObjectlnsertAsChar Method, ObjectlnsertFixed Method

ObjectCurrent Property

Description: Returns or sets the current object for the Objectxxx and | magexxx
properties, methods, and events, except ObjectinsertAsChar and
ObjectlnsertFixed. The value is automatically updated when an object
isinserted or when you click on an object.

Usage: TXTextControl.ObjectCurrent [= Objectld]
Limitations: Run time only.

Data Type: Integer.

Page 212 Text Control Properties, Methods, and Events

ObjectDbIClicked Event

Description: Occurs when an object has been double-clicked on.
Syntax: ObjectDblIClicked(Objectid)
The event procedure's parameters are:
Parameter Description
Objectld Isthe identifier of the object that has been
double-clicked.
Remarks: The value of the ObjectCurrent property is updated with the identifier
given through the Objectld parameter.
Data Types: Objectld Integer
See also: ObjectClicked Event.

ObjectDelete Method

Description: This method deletes the object with the specified object identifier.
Usage: TXTextControl.ObjectDelete Objectld

Return Value The method returns True if the specified object could be deleted,
otherwise it returns False.

Data Types: Objectld Integer
Return value: Boolean
See also: ObjectlnsertAsChar Method, Objectl nsertFixed Method,

ObjectDeleted Event.

ObjectDeleted Event

Description: Occurs when an object has been del eted.
Syntax: ObjectDeleted(Objectlid)

The event procedure's parameters are:

Text Control Properties, Methods, and Events Page 213

Parameter Description
Objectld Isthe identifier of the object that has been
deleted.
Remarks: The value of the ObjectCurrent property is set to zero.
Data Types: Objectld Integer
See also: ObjectlnsertAsChar Method, Objectl nsertFixed Method,
ObjectDelete Method.

ObjectDistance Property

Description: Specifies the distance (in twips) between an object and the text that
flows around it. This property can only be used with objects that have
been inserted using the Obj ectl nsertFixed method. Otherwise an
Error event is generated.

Usage: TXTextControl.ObjectDistance(index) [= valueg]
The property's parameters are:
Parameter Description
index Specifies one of the four possible distances:
left (1), top (2), right (3), bottom (4).
Data Type: Integer.
Limitations: Run time only.
See also: ObjectlnsertAsChar Method, Objectl nsertFixed Method.

ObjectGetData Event

Description: Occurs when a document which contains objects, is saved. Thisevent is
sent only for objects that have been inserted viaits hWnd property. In
response to this event, the application can store the object's data by
copying it into the ObjectData parameter.

Syntax: ObjectGetData(Objectld, ObjectData)

Page 214

Text Control Properties, Methods, and Events

Remarks:

Data Types:

See also:

The event procedure's parameters are:

Parameter Description

Objectld Isthe identifier of the object that isto be
saved.

ObjectData The abject's private data can be copied to this
parameter.

It is recommended to store binary data as a byte array and not asa
string. If you want compatibility between the 16 bit and 32 bit version
you should store strings always as ANSI strings.

Objectld Integer
ObjectData Variant

ObjectSetData Event, ObjectGethwnd Event

ObjectGethWnd Event

Description:

Syntax:

Occurs when a document which contains objects, is loaded. This event
is sent only for objects that have been inserted viaits hWnd property.
The application must create the object and copy the object's hWwnd
property to the hWind parameter.

Obj ectGethwnd(Objectld, KindOfObject, hwnd)

The event procedure's parameters are:

Parameter Description

Objectld Isthe identifier of the object that isto be
created.

KindOfObject Is the value that has been specified as

KindOfObject parameter for the
ObjectlnsertAsChar or ObjectlnsertFixed
method.

hwnd The hwnd property of the new created object
must be copied to this variable.

Text Control Properties, Methods, and Events Page 215

Data Types:

See also;

Objectld Integer
KindOfObject Integer
hwhd Handle

ObjectGetData Event, ObjectSetData Event.

ObjectGetZoom Event

Description:

Syntax:

Data Types:

See also:

Occurs when an object’ s zoom factor is requested. This event is sent
only for objects that have been inserted viaits hWwnd property.

ObjectGetZoom(Objectld, ZoomFactor)

The event procedure's parameters are:

Parameter Description

Objectld Isthe identifier of the object, the zoom factor
of which is requested.

ZoomFactor The zoom factor of the object must be copied

to this variable.

Objectld Integer
ZoomFactor Integer

ObjectSetZoom Event

ObjectinsertAsChar Method

Description:

Usage:

This method embeds a hew object or image which isthen handled like a
single character in the text.

TXTextControl.Objectl nsertAsChar hwnd, FileName, TextPos,
ScaleX, ScaleY, ImageDisplayMode, ImageSaveMode [,KindOfObject]

The method's parameters are:

Parameter Description

hwnd Specifies an externally created window that
represents the object to be inserted. It can also
be one of the following identifiers:

Page 216

Text Control Properties, Methods, and Events

FileName

TextPos

0 - Image Control

The Text Control creates an Image Control
window and handles this window internally.
In this case the FileName parameter must
specify afile containing an image.

1- OLE object

Inserts an OLE object. The type of object can
be selected with the system embedded OLE
Insert dialog box (32 bit only).

2 - OLE object (programmatic identifier)
Creates anewly created OLE object. In this
case the FileName parameter must specify a
string which is the programmatic identifier of
the OLE object to insert.The programmatic
identifier is stored under the ProgID key in
the registration database. For example the
programmatic identifier of a Text Control 5.0
is TX.TextControl.110 (32 bit only).

3 - OLE object (embedded)

Inserts a newly created embedded OLE object
from afile. In this case the FileName
parameter must specify avalid filename (32
bit only).

4 - OLE object (linked)

Inserts a newly created linked OLE object
from afile. In this case the FileName
parameter must specify avalid filename (32
bit only).

Specifies the full DOS path name of afile that
contains an image. This parameter can be zero
if hWhd specifies an externally created
window.

This parameter specifies the text position
where the object isto be inserted. If TextPosis

Text Control Properties, Methods, and Events Page 217

-1 the abject isinserted at the current input

position.

ScaleX Specifies ahorizontal scaling factor as a
percentage. It must be a value between 10 and
250.

ScaleY Specifies avertical scaling factor asa
percentage. It must be a value between 10 and
250.

ImageDisplayMode see ImageDisplayM ode Property.

ImageSaveMode see | mageSaveM ode Property.

KindOfObject Optional. Specifies an identifier that isto be

used with externally created windows. When a
document with external windowsisloaded an
ObjectGethWwnd event occurs for each
window to give an application the opportunity
of recreating these windows. This parameter
can be used to handle groups of different types
of windows.

Return Value The method returns the object's identifier when an object could be
inserted. Otherwise it returns zero. The object's identifier can aso be
obtained with the ObjectCurrent property.

Data Types: hwnd: Handle
FileName: String
TextPos: Long
ScaleX: Integer
Scaley: Integer
ImageDisplayMode: Integer
ImageSaveMode: Integer
KindOfObject: Integer
Return value: Integer

See also: ObjectlnsertFixed Method.

Page 218

Text Control Properties, Methods, and Events

ObjectinsertFixed Method

Description:

Usage:

This method embeds a new object or image at afixed position. The text

flows around the object.

TXTextControl.Objectl nsertFixed hWid, FileName, PosX, PosY,
ScaleX, ScaleY, ImageDisplayMode, ImageSaveMode, SzeMode,
TextFlow, Distancel, DistanceT, DistanceR, DistanceB[,KindOfObject]

The method's parameters are:

Parameter

Description

hwhd

FileName

PosX

PosY

ScaleX

ScaleY

ImageDisplayMode
ImageSaveMaode
SzeMode
TextFlow

Specifies an externally created window that
represents the object to be inserted. It can also
be an identifier to insert Image Controls or
OLE objects. See the hwind parameter
description of the ObjectlnsertAsChar
method for more information.

Specifies the full DOS path name of afile that
contains an image. This parameter can be zero
if hWhd specifies an externally created
window.

Specifies the object's horizontal positionin
twentieths of a point.

Specifies the object's vertical positionin
twentieths of a point.

Specifies ahorizontal scaling factor asa
percentage. It must be avalue between 10 and
250.

Specifies avertical scaling factor asa
percentage. It must be a value between 10 and
250.

see ImageDisplayM ode Property.
see | mageSaveM ode Property.
see ObjectSizeM ode Property.
see ObjectTextFlow Property.

Text Control Properties, Methods, and Events Page 219

Distancel,

DistancetT,

DistanceR,

DistanceB see ObjectDistance Property.
KindOfObject Optional. Specifies an identifier that isto be

used with externally created windows. When a
document with external windows isloaded an
ObjectGethWwnd event occurs for each
window to give an application the opportunity
of recreating the external windows. This
parameter can be used to handle groups of
different types of windows.

Return Value: The method returns the object's identifier when an object could be
inserted. Otherwise it returns zero. The object's identifier can also be
obtained with the ObjectCurrent property.

Data Types: hwnd: Handle
FileName: String
PosX: Long
PosY: Long
ScaleX: Integer
Scaley: Integer
ImageDisplayMode: Integer
ImageSaveMode: Integer
SzeMode: Integer
TextFlow: Integer
Distancel: Integer
DistanceT: Integer
DistanceR: Integer
DistanceB: Integer
KindOfObject: Integer
Return value: Integer

See also: ObjectlnsertAsChar Method.

Page 220

Text Control Properties, Methods, and Events

Objectltem Property

Description:

Usage:
Data Type:
Limitations:

Example:

Returns a reference to the object currently set with the ObjectCurrent
property. This property is only available for inserted OLE objects.

TXTextControl.Objectltem
Object.
Read only, run time only.

The following Basic example inserts a Text Control into another Text
Control at the current input position and sets the font bold attribute for
the inserted Text Control. The ObjectlnsertAsChar method implicitely
sets the ObjectCurrent property to the just inserted object.

TXText Control 1. Obj ect | nsert AsChar 2, "TX TextControl. 110", -
1, 100, 100, O, O

TXText Control 1. bj ectltem FontBold = True

ObjectMoved Event

Description:

Syntax:

Data Types:
See also:

Occurs when an inserted object has been moved with the mouse while
depressing the ALT key.

Obj ectM oved(Objectld)

The event procedure's parameters are:

Parameter Description
Objectld Isthe identifier of the object that has been
moved.

Objectld Integer
ObjectSized Event.

ObjectNext Method

Description:

This method returns the identifier of the object that follows the
specified object in the Text Control's internal list of objects.

Text Control Properties, Methods, and Events Page 221

Usage: TXTextControl 1.0bjectNext Objectld, ObjectGroup
The method's parameters are:

Parameter Description

Objectld Specifies aunique identifier returned by the
ObjectlnsertAsChar or ObjectlnsertFixed
method. If this parameter is zero the first
object's identifier is returned.

ObjectGroup This parameter specifies which kinds of
objects are to be returned. It can be a sum of
the values, described in Remarks. If this
parameter is zero, the identifiers of all objects
are returned.

Return Value: The method returns the next object's identifier. It returns zero when
there is no following object.

Remarks: The settings for ObjectGroup can include:
Value Description
1 Returns only identifiers of fixed positioned
objects.
2 Returns only identifiers of objects that act as
single characters.
4 Returns only identifiers of objects which are

internally created by the Text Control using
the Image-Control module.

8 Returns only identifiers of objects which are
externally created by the application.

Data Types: Objectid: Integer
ObjectGroup: Integer
Return value: Integer

Page 222

Text Control Properties, Methods, and Events

ObjectPrint Event

Description:

Syntax:

Data Types:

See also:

Occurs when a document which contains objects, is printed. This event
is sent only for objects that have been inserted viaits hWnd property.

ObjectPrint(Objectld, Device, Left, Top, Right, Bottom, Processed)

The event procedure's parameters are:;

Parameter Description

Objectld Isthe identifier of the object that isto be
printed.

Device Isthe printer device context.

Left, Top, Right, Bottom Isthe object's bounding rectangle. This
rectangle is given in device pixels with an
origin at the upper left corner of the abject.

Processed When the object has been printed, this
parameter should be set to True.

Objectld Integer
Device Long
Left, Top, Right, Bottom Long
Processed Boolean

ObjectGetData Event, ObjectSetData Event, ObjectGethwWnd Event

ObjectScaleX Property
ObjectScaleY Property

Description:

Usage:

Data Type:

Limitations:

Specifies the object's scaling factor as a percentage in the range of 10 to
400%. The object must have previously been selected with the
ObjectCurrent property.

TXTextControl.ObjectScaleX [= valu€]
TXTextControl.ObjectScaleY [= valug]

Integer.

Run time only.

Text Control Properties, Methods, and Events Page 223

See also;

ObjectDistance Property, ObjectlnsertFixed Method.

ObjectScrollOut Event

Description:

Syntax:

Data Types:
See also:

Occurs when an object is scrolled out of the visible area.
ObjectScrollOut(Objectid)

The event procedure's parameters are:

Parameter Description
Objectld Isthe identifier of the object that has been
scrolled.

Objectld Integer
ObjectM oved Event, ObjectSized Event

ObjectSetData Event

Description:

Syntax:

Data Types:

See also;

Occurs when a document which contains objects, isloaded. This event
is sent only for objects that have been inserted viaits hwnd property.

ObjectSetData(Objectld, ObjectData)

The event procedure's parameters are:

Parameter Description

Objectld Isthe identifier of the object that is loaded.

ObjectData The data of the object in the format saved with
the ObjectGetData event.

Objectld Integer

ObjectData Variant

ObjectGetData Event, ObjectGethWnd Event

Page 224

Text Control Properties, Methods, and Events

ObjectSetZoom Event

Description:

Syntax:

Data Types:

See also:

Occurs when an object’ s zoom factor isto be changed. Thisevent is
sent only for objects that have been inserted viaits hwnd property.

ObjectSetZoom(Objectld, ZoomFactor, Processed)

The event procedure's parameters are:;

Parameter Description

Objectld Istheidentifier of the object, the zoom factor
of which isto be changed.

ZoomFactor Is the object's new zoom factor.

Processed If the event is being processed this parameter
should be set to True.

Objectld Integer

ZoomFactor Integer

Processed Boolean

ObjectGetZoom Event.

ObjectSized Event

Description:

Syntax:

Data Types:
See also:

Occurs when an embedded object has been resized with the mouse
while depressing the ALT key.

ObjectSized(Objectld)

The event procedure's parameters are:

Parameter Description
Objectld Isthe identifier of the object that has been
sized.

Objectld Integer
ObjectMoved Event.

Text Control Properties, Methods, and Events Page 225

ObjectSizeMode Property

Description: Specifies whether an inserted object can be moved or resized at run
time. If the Moveable option is selected, the control can be moved on
the background by depressing the ALT key and then dragging the
control with the mouse. If the Sizeable option is selected and the ALT
key is depressed, the borders of the control can be dragged.

Usage: TXTextControl.ObjectSizeM ode [= value]
The property's settings are:
Setting Description
0 - Fixed (Default) The object cannot be moved or
sized.
1- Moveable The abject can be moved.
2 - Sizeable The object can be sized.

3-Moveand Sizeable The object can be moved and sized.
Data Type: Integer.
Limitations: Run time only.
See also: ObjectM oved Event, ObjectSized Event, SizeM ode Property.

ObjectTextFlow Property

Description: Informs about the way in which text flows around an embedded object.
Usage: TXTextControl .Object TextFlow
The property returns the following values:
Setting Description
0 The abject has been inserted 'as character’
using the Objectl nsertAsChar method.
2 The object has been inserted as fixed object.

The text stops at the top and continues at the
bottom of the object.

Page 226 Text Control Properties, Methods, and Events

3 The object has been inserted as fixed object.
The text flows around the object and empty
areas at the left and right side are filled.

Data Type: Integer.
Limitations: Read only, run time only.
See also: Objectl nsertFixed Method.

PageFormatChange Event

Description: Occurs when the page format settings have been changed.
Syntax: PageFormatChange()

PageHeight Property

Description: Specifies the height of the page for the current document.
Usage: TXTextControl.PageHeight [= value]
Remarks: The height of the actual printed areais PageHeight minus

PageM ar ginB minus PageM ar ginT. The maximum value depends on
the capabilities of the selected printer and must not exceed 32767 twips.

If PageHeight is O, the control's height is used instead. This setting can
be used to place severa controls without scrollbars on a page.

Data Type: Long.

See also: PageWidth Property, PageM ar ginx Properties, PrintDevice Property,
PrintPage Method.

Example: See PrintPage Method example.

PageMarginB Property
PageMarginL Property
PageMarginR Property

Text Control Properties, Methods, and Events Page 227

PageMarginT Property

Description: Returns or sets the margins for the pages of the current document.

Usage: TXTextControl.PageMarginB [= valug]
TXTextControl.PageMarginL [= value]
TXTextControl.PageMarginR [= value]
TXTextControl.PageMarginT [= value]

Remarks: The maximum values depend on the setting of the PageWidth and
PageHeight properties.

Data Type: Long.

See also: PageHeight Property, PageWidth Property, PrintDevice Property,
PrintPage Method.

Example: See PrintPage Method example.

PageWidth Property

Description: Specifies the width of the page for the current document.
Usage: TXTextControl.PageWidth [= value]
Remarks: The width of the actual printed areais PageWidth minus

PageM ar ginR minus PageM ar ginL.. The maximum value depends on
the capabilities of the selected printer and must not exceed 32767 twips.

If PageWidth is 0, the control's width is used instead. This setting can
be used to place several controls without scrollbars on a page.

Data Type: Long.

See also: PageHeight Property, PageM ar ginxx Properties, PrintDevice
Property, PrintPage Method.

Example: See PrintPage Method example.

Page 228 Text Control Properties, Methods, and Events

ParagraphChange Event

Description: Occurs when the character input paosition has been moved to another
paragraph.
Syntax: ParagraphChange()

ParagraphDialog Method

Description: Invokes the Text Control's built-in paragraph attributes dialog box and,
after the user has closed the dialog box, specifies whether he has
changed something.

Usage: TXTextControl.Par agraphDialog

Return Value The method returns True when the user has changed one or more
attibutes. The method returns Fal se when the formatting remains

unchanged.

Remarks: The changes, made in the dialog box, apply to the currently selected
text.

Data Types: Return value: Boolean.

ParagraphFormatChange Event

Description: Occurs when the paragraph attributes of the selected paragraphs have
been changed.
Syntax: Par agraphFor matChange()

PosChange Event

Description: Occurs when the current character input position has been changed.
Syntax: PosChange()

Text Control Properties, Methods, and Events Page 229

PrintColors Property

Description:
Usage:

Data Type:

Specifies whether text colors are printed as colors or in black.
TXTextControl.Printer Colors [= boolean]

The property's settings are:

Setting Description

True (Default) Text colors are printed.
Fase All the text is printed in black.
Boolean.

PrintDevice Property

Description:

Usage:

Data Type:
Limitations:
See also:

Example:

Sets the printer device context for TextContol's built-in printing
function. The Windows operating enviroment manages devices like
printers and screens with context handles.

TXTextControl.PrintDevice [= DeviceContextHandl €]
Long.
Write only, run time only.

PageHeight Property, PageM ar ginx Properties, PageWidth Property,
PrintPage Method.

See PrintPage Method.

PrintOffset Property

Description:

Usage:

Determines whether Text Control starts printing exactly at the top left
corner of the page, or at the printer's physical printing offset.

TXTextControl.PrintOffset [= boolean)]
The property's settings are:

Page 230 Text Control Properties, Methods, and Events
Setting Description
True Adds the physical printing offset.
Fase (Default) Do not add the physical printing
offset.
Data Type: Boolean.

PrintPage Method

Description:

Usage:
Return Value
Remarks:

Data Types:
See also:

Example:

Prints a page of text on the default printer. The number is specified
through PageNumber. The first page has the number 1.

TXTextControl.PrintPage PageNumber
This method has no return value.

Prior to using this method the Text Control's output device must be
selected using the PrintDevice property.

PageNumber Integer

PageHeight Property, PageM ar ginx Properties, PageWidth Property,
PrintDevice Property.

This Basic example shows how to print the contents of a Text Control
on the default printer:

Sub muFile_Print_Cick ()
D m wPages, No

Printer.Print

wPages = TXText Control 1. Current Pages

For No = 1 To wPages
TXText Control 1. PrintDevice = Printer. hDC
TXText Control 1. Pri nt Page No
Pri nt er. NewPage

Next No

Printer. EndDoc

End Sub

Text Control Properties, Methods, and Events Page 231

PrintZoom Property

Description: Specifies a zoom factor for printing. The valueis specified as a
percentage in the range of 10 to 400%. This property is independent of
the current ZoomFactor setting.

Usage: TXTextControl.PrintZoom [= value]
Data Type: Integer.
See also: ZoomFactor Property.

Redo Method

Description: This method can be used to redo the last Text Control operation.
Usage: TXTextControl.Redo

Return Value The method returns True if the redo operation was successful.
Otherwise it returns False.

Data Types: Return value: Boolean
See also: Undo Method, CanUndo Property, CanRedo Property.

Refresh Method

Description: This method forces a complete repaint of a Text Control.
Usage: TXTextControl.Refresh

Return Value: This method has no return value.

ResetContents Method

Description: Deletes the complete contents of a Text Control including tables,
objects, marked text fields and headers and footers.

Usage: TXTextControl.ResetContents

Page 232 Text Control Properties, Methods, and Events

Return Value The method returns True, if everything could be deleted, otherwise it
returns False.

Data Types: Return value: Boolean

ResourceFile Property

Description:

Usage:

Data Type:
Limitations:
See also:

Returns or sets the file name of aresource library which Text Control
loads to display resources like information strings, error messages and
built-in dialog boxes. The file name must include a complete path.
When aresource library is set, the value of the L anguage property is
ignored. See the new chapter "Overviews - Resources' for more
information.

To avoid compatibility errors, resource libraries should have a unique
file name and should be placed in the same directory as the application's
executable file.

TXTextControl.Resour ceFile [= string]
String
Run time only.

L anguage Property.

RTFSelText Property

Description:

Usage:

This property works much like the standard Sel Text property. The
SelStart and SelLength properties can be used to specify atext
selection which is to be copied to a string or inserted from a string. The
difference between SelText and RTFSel Text is that with the Sel T ext
property, text is stored without formatting information in the ANSI
format, whilst RTFSel Text uses Rich Text Format to preserve all of the
formatting attributes.

TXTextControl. RTFSel Text [= string]

Text Control Properties, Methods, and Events Page 233

Remarks:

Data Type:
Limitations:
See also;

RTF (Rich Text Format) is one of the most common interchange
formats for text documents. Most word processors available for
Windows are able to read and write RTF files.

String.
Run time only.
RTFImport Method.

RulerHandle Property

Description:
Usage:

Data Type:
Limitations:
See also:

Specifies the ruler control to be used with a Text Control.
TXTextControl.RulerHandle [= Ruler.hWid]

Handle

Run time only.

StatusBar Handle Property, ButtonBar Handle Property.

Save Method

Description:

Usage:

Saves datain afile with a specified format. All Unicode formats (6, 7
and 8) and the Microsoft Word format can only be used with the 32 bit
version of Text Control.

TXTextControl.Save FileName|, Offset[, Format[, CurSelection]]]

The method's parameters are:

Parameter Description
FileName Specifiesthefileto savein.
Offset Optional. Specifies the file position to where

the datais to be written when the data of more
than one Text Control are to be saved. When
not specified or set to -1 the data is appended.

Format Optional. Specifies aformat identifier or the
name of a user-developed filter. When this

Page 234 Text Control Properties, Methods, and Events
parameter is not specified the datais saved in
the internal Text Control format. The
following format identifiers are possible:

1- ANSI text Text only in ANSI format
(Windows compatible).

2-TX text Text only in ANSI format
(Text Control compatible).

3-TX Internal Text Control
format.

4-HTML HTML format (Hypertext
Markup Language).

5-RTF RTF format (Rich Text
Format).

6 - Unicodetext Text only in Unicode
format (Windows
compatible).

7 - TX text Text only in Unicode
format (Text Control
compatible).

8-TX Internal Text Control
format. Text is stored in
Unicode.

9- WORD Microsoft Word format.

FilterFileName Can be used with a user-
developed filter.

CurSelection Optional. When set to true the current
selection is saved. When omitted or set to
false or when no selection exists al the
control contents are saved.

Return Valuee The method returns the position in the file behind the saved data. It is

zero if the data could not be saved.

Data Types: FileName: String

Offset: Long

Format: Integer or String

Text Control Properties, Methods, and Events Page 235

See also;

Cur &lection: Boolean
Return value: Long
L oad Method.

SaveToMemory Method

Description:

Usage:

Return Value

Data Types:

See also;

Example:

Returns a byte array containing text datain a specified format. This
method works in the same way as the Save method.

TXTextControl.SaveT oM emor y[Format[, CurSelection]]

The method's parameters are:

Parameter Description

Format Optional. See the Format parameter of the
Save method for a description.

CurSelection Optional. See the Cur Selection parameter of

the Save method for a description.

The method returns a one-dimensional array of bytes, containing the
saved data.

Format: Integer or String
CurSelection: Boolean
Return value: One-dimensional Byte Array

Save Method, L oadFromMemory Method

This Basic example copies the currently selected text from the first Text
Control and insertsit at the current input position of a second Text
Control:

D mdata() As Byte
data = TXText Control 1. SaveToMenory(3, True)
TXText Control 2. LoadFrom\enory data, 3, True

Page 236

Text Control Properties, Methods, and Events

ScrollBars Property

Description:

Usage:

Data Type:
See also:

Returns or sets avalue indicating whether a Text Control has horizontal
or vertical scroll bars. Scroll bars are automatically hidden when the
formatting areais smaller than the control's visible area and vice versa.
Therefore this property has only effect if the PageWidth and/or the
PageHeight properties have been set to hon-zero. See "Overviews - Text
Formatting and Views" for more information.

TXTextControl.ScrollBar s [= value]
The property's settings are:

Setting Description
0 (Default) The Text Control has no scroll bars.
1 The Text Control has a horizontal scroll bar

when the page width islarger than the
control's width.

2 The Text Control has avertical scroll bar
when the page height is larger than the
control's height.

3 The Text Control has both scroll bars.
Integer.
PageWidth Property, PageHeight Property

ScrollPosX Property

Description:
Usage:

Data Type:
Limitations:
See also:

Specifies the position of the horizontal scroll bar in twips.
TXTextControl.ScrollPosX [= valug]

Long.

Run time only.

ScrollPosY Property, HScroll Event, VScroll Event.

Text Control Properties, Methods, and Events Page 237

ScrollPosY Property

Description:
Usage:

Data Type:
Limitations:
See also:

Specifies the position of the vertical scroll bar in twips.
TXTextControl.ScrollPosY [= value]

Long.

Run time only.

ScrollPosX Property, HScroll Event, VScroll Event.

SelLength Property

Description:
Usage:

Remarks:

Data Type:
Limitations:
See also;

Returns or sets the number of characters selected.
TXTextControl.SelL ength [= value]

The valid range of settingsis 0 to text length, the total number of
characters a Text Control contains.

Long.
Run time only.
SelStart Property, SelText Property.

SelStart Property

Description:

Usage:

Remarks:

Data Type:
Limitations:
See also;

Returns or sets the starting point of text selected or indicates the
position of the insertion point if no text is selected. The first text
position has avalue of 0.

TXTextControl.SelStart [= valug]

Setting the property value greater than the text length limitsit to the
existing text length.

Long.
Run time only.
SelL ength Property, SelText Property.

Page 238

Text Control Properties, Methods, and Events

SelText Property

Description: Returns or sets the string containing the currently selected text. Itisa
zero-length string if no characters are selected. This property can be
used in conjunction with the SelStart and SelL ength properties for
tasks such as selecting substrings or clearing text. In conjunction with
the clipboard these properties are useful for copy, cut, and paste
operations.

Usage: TXTextControl.Sel Text [= valug]

Remarks: Setting this property to a new value sets SelLength to 0 and replaces the
selected text with the new string.

Data Type: String.

Limitations: Run time only.

See also: SelLength Property, SelStart Property.

Size Event

Description: Occurs when a Text Control has been resized with the mouse while
depressing the ALT key.

Syntax: Size()

See also: Move Event, SizeM ode Property.

SizeMode Property

Description:

Usage:

Specifies whether the Text Control can be moved or resized at run time.
If the Moveable option is selected, the control can be moved by
depressing the ALT key and then dragging the control with the mouse.
If the Sizeable option is selected and the ALT key is depressed, the
borders of the control can be dragged.

TXTextControl.SizeM ode [= valu€]
The property's settings are:

Text Control Properties, Methods, and Events Page 239

Data Type:
See also:

Setting Description

0- Fixed (Default) The Text Control cannot be moved
or sized.

1- Moveable The Text Control can be moved.

2 - Sizeable The Text Control can be sized.

3-Moveand Sizeable The Text Control can be moved and sized.
Integer.

M ove Event, Size Event.

StatusBarHandle Property

Description:
Usage:

Data Type:
Limitations:
See also:

Specifies the status bar control to be used with a Text Control.
TXTextControl.StatusBar Handle [= TXSatusBar.hWnd]
Handle

Run time only.

ButtonBarHandle Property, Ruler Handle Property.

TabCurrent Property

Description:

Usage:

Remarks:

Data Type:
See also:

Example:

Specifies the current tab number for the properties TabPos and
TabType.

TXTextControl. TabCurrent [= valug]

Text Control supports up to 14 tabs for each paragraph. Valid values for
this property are 1 to 14.

Integer.
TabPos Property, TabType Property.

This Basic example moves the first tab to a new position 1 inch from the
left border and changesit to adecimal tab:

TXText Control 1. TabCurrent =1

Page 240

Text Control Properties, Methods, and Events

TXText Control 1. TabType = 4
TXText Control 1. TabPos = 1440

This Basic example changes all the tabs to be right-aligned at 1/2 inch
gradations:

Delete all tabs
for n=14 to 1 step -1
TXText Control 1. TabCurrent = n
TXText Control 1. TabPos = 0
next n

Create new tabs
for n=1 to 14
TXText Control 1. TabCurrent = n
TXText Control 1. TabPos = n*720
i f (TXTextControl 1. TabPos > 0) then
TXText Control 1. TabType = 2
next n

Text Control sorts the tabs in ascending order whenever you change the
position of atab, so atab's number can change when it it moved. In this
case, the TabCurrent Property is updated to reflect the change.

Tabs outside of the paragraph are automatically set to zero.

TabKey Property

Description:

Usage:

Data Type:

Determinesif the keyboard's tab key moves the input focus to the next
control or to insert tabulatorsin the Text Control's text.

TXTextControl. TabK ey [= boolean]
The property's settings are:

Setting Description

True (Default) Inserts atabulator in the Text
Control's text.

False Moves the current input focus to the next
control.

Boolean.

Text Control Properties, Methods, and Events Page 241

TableAtInputPos Property

Description:

Usage:

Data Type:
Limitations:
See also:

Returns the table identifier of the table containing the input position.
Zero is returned when the input position is not inside a table or when
more than one table cell is selected.

TXTextControl.TableAtI nputPos

Integer.

Read only, run time only.

TableColAtl nputPos Property, TableRowAtI nputPos Property

TableAttrDialog Method

Description:

Usage:
Return Value:

Remarks:

Data Types:

This method invokes the Text Control's built-in table-attributes dialog
box and, after the user has closed the dialog box, specifies whether he
has changed something.

TXTextControl.TableAttrDialog

The method returns True when the user has changed one or more
attibutes. The method returns Fal se when the formatting remains
unchanged.

The changes, made in the dialog box, apply to the currently selected
text.

Return value: Boolean.

TableCanChangeAttr Property

Description:

Usage:

This property provides information about whether the attributes of all
the selected table cells can be atered. It returns False when the selection
is not completely within a single table. Otherwise it returns True.

TXTextControl.TableCanChangeAttr
The property's settings are:

Page 242 Text Control Properties, Methods, and Events

Setting Description
True Table attributes can be atered.
False Table attributes cannot be altered.
Data Type: Boolean.
Limitations: Read only, run time only.
See also: TableAttr Dialog Method.

TableCanDeleteLines Property

Description: This property provides information about whether table lines can be
deleted. It returns False when no table line is selected or when the
current input position is outside a table. Otherwise it returns True.

Usage: TXTextControl.TableCanDeletel ines
The property's settings are:
Setting Description
True Table lines can be deleted.
Fase Table lines cannot be deleted.
Data Type: Boolean.
Limitations: Read only, run time only.
See also: TableDeletel ines Method.

TableCanlinsert Property

Description: This property provides information about whether a table can be
inserted. It returns False when a selection exists or the current input
position isinside atable. Otherwise it returns True.

Usage: TXTextControl.TableCanlnsert
The property's settings are:

Text Control Properties, Methods, and Events Page 243

Setting Description
True A new table can be inserted.
False A new table cannot be inserted.
Data Type: Boolean.
Limitations: Read only, run time only.
See also: Tablelnsert Method.

TableCellAttribute Property

Description: Returns or sets attributes of atable cell.
Usage: TXTextControl. TableCell Attribute(Tabl el d,Row,Column,Attribute) [=
value]

The property's parameters are:

Parameter Description

Tableld Specifies atable. It is the same identifier set
with the Tablel nsert method.

Row Specifies arow number which identifies a

certain cell in the table. The first row has the
number one. This parameter set to zero means
a complete column.

Column Specifies a column number which identifies a
certain cell in the table. The first column has
the number one. This parameter set to zero
means a compl ete row.

Attribute Specifies the type of attribute. It can be
anyone of the values listed in Constants.

Constants: Valid constants for Attribute are:
Attribute Description
txTableCellHorizontal Pos The property value is the horizontal

position of atable cell.

Page 244

Text Control Properties, Methods, and Events

Remarks:

txTableCellHorizontal Ext The property value is the horizontal
extension of atable cell.

txTableCellBorderWidth The property value is the border
width of atable cell.

txTableCell TextGap The property value is the width of
the gap between a cell's border and
its text.

txTableCellBackColor The property value isthe table cell's
background color.

txTableCellL eftBorderWidth The property value is the left border
width of atable cell.

txTableCell TopBorderWidth The property value is the top border
width of atable cell.

txTableCelIRightBorderWidth The property valueis the right
border width of atable cell.

txTableCellBottomBorderWidth The property value is the bottom
border width of atable cell.

txTableCellLeft TextGap The property value is the width of
the gap between a cell's left border
and itstext.

txTableCell TopTextGap The property value is the width of
the gap between a cell's top border
and itstext.

txTableCelIRightTextGap The property value is the width of
the gap between a cell's right border
and itstext.

txTableCellBottomTextGap The property value is the width of
the gap between a cell's bottom
border and its text.

When the row and column parameters are both set to zero the attributes
of a complete table can be manipulated.
When more than one table cell is specified this property returns Null

Text Control Properties, Methods, and Events Page 245

(Visual Basic) or is set to empty (C++) if the cells are differently

formatted.
Data Types: Tableld Integer
Row Integer
Column Integer
Attribute Integer
Property value: Variant
Limitations: Run time only.
See also: Tablelnsert Method, TableCellText Property
Example: This Basic example sets ared background color for the leftmost column
of atable:
TXText Control 1. Tabl eCel | Attribute(id, 0, 1, 4) = REB(255, 0
y O)

TableCellLength Property

Description: Returns the number of charactersin atable cell.
Usage: TXTextControl.TableCellL ength(Tablel d,Row,Column)
The property's parameters are:
Parameter Description
Tableld Specifies atable. It is the same identifier set
with the Tablel nsert method.
Row, Column Specify arow and column number which

identifies a certain cell in the table. The first
has the number 1, 1.

Data Types: Tableld Integer
Row Integer
Column Integer

Property value: Long

Limitations: Read only, run time only.

Page 246

Text Control Properties, Methods, and Events

TableCellStart Property

Description: Returns the character index (one-based) of the first character in atable
cell.
Usage: TXTextControl.TableCellStart(Tableld,Row,Column)
The property's parameters are:
Parameter Description
Tableld Specifies atable. It is the same identifier set
with the Tablel nsert method.
Row, Column Specify arow and column number which
identifies a certain cell in the table. The first
cell has the number 1, 1.
Data Types: Tableld Integer
Row Integer
Column Integer
Property value: Long
Limitations: Read only, run time only.

TableCellText Property

Description:

Usage:

Data Types:

Returns or sets the text of atable cell.
TXTextControl. TableCell Text(Tableld,Row,Column) [= string]

The property's parameters are:

Parameter Description

Tableld Specifies atable. It isthe same identifier set
with the Tablel nsert method.

Row, Column Specify arow and column number which
identifies a certain cell in the table. The first
cell has the number 1, 1.

Tableld Integer

Row Integer

Text Control Properties, Methods, and Events Page 247

Column Integer
Property value: String
Limitations: Run time only.
See also: Tablelnsert Method, TableRows Property, TableColumns Property

TableColAtinputPos Property

Description: Returns the number of the current input column in atable. It is zero
when the input position is not inside a table or when more than one table
cell is selected.

Usage: TXTextControl. TableColAtlnputPos

Data Type: Integer.

Limitations: Read only, run time only.

See also: TableAtl nputPos Property, TableRowAtl nputPaos Property

TableColumns Property

Description: Informs about the number of columns a specified table contains.
Usage: TXTextControl.TableColumns(Tablel d)

The property's parameters are:

Parameter Description

Tableld Specifies atable. It is the same identifier set

with the Tablel nsert method.

Data Types: Tableld Integer
Property value: Integer

Limitations: Read only, run time only.
See also: Tablelnsert Method, TableRows Property

Page 248 Text Control Properties, Methods, and Events

TableCreated Event

Description: Occurs after a new table has been created as aresult of atext insertion
viathe clipboard. It does not occur when the table is inserted with the
Tablelnsert method or when a previously saved document is rel oaded.

Syntax: TableCreated(Tableld, NewTableld)

The event procedure's parameters are:

Parameter Description
Tableld Is the number of the created table. This
number can be changed through setting the
NewTableld parameter.
NewTableld Isanew table identifier for the created table.
It must bein the range of 10 to 32,767.
Data Types: Tableld Integer
NewTableld Integer
See also: TableDeleted Event, Tablel nsert Method.

TableDeleted Event

Description: Occurs after atable has been deleted.
Syntax: TableDeleted(Tablel d)

The event procedure's parameters are:

Parameter Description

Tableld Isthe the identifier of the deleted table.
Data Types: Tableld Integer

See also: TableCreated Event.

Text Control Properties, Methods, and Events Page 249

TableDeleteLines Method

Description:

Usage:

Return Value

Data Types:
See also:

This method deletes the currently selected table lines or the table line at
the current input position.

TXTextControl.TableDeletelLines

The method returns True if table lines have been deleted. Otherwise it
returns False.

Return value: Boolean
Tablelnsert Method, TableCanDeletel ines Property.

TableGridLines Property

Description:
Usage:

Remarks:

Data Type:

This property determines whether or not grid linesin tables are visible.
TXTextControl. TableGridLines [= boolean]
The property's settings are:

Setting Description

True (Default) Grid linesin tables are visible.
False Grid linesin tables are invisible.
Boolean.

Tablelnsert Method

Description:

Usage:

This method inserts a new table in the text.
TXTextControl. Tablel nsert Rows, Columns, TextPos [, Tableld]
The method's parameters are:

Parameter Description
Rows Specifies the number of rows.
Columns Specifies the number of columns.

Page 250

Text Control Properties, Methods, and Events

TextPos

Tableld

Specifies the text position where the new table
isto beinserted. It isinserted at the current
input position when this parameter is set to - 1.
Optional. Specifies atable identifier. This
identifier can be used to access or to ater the
table's text and attributes. It must be in the
range of 10 to 32,767.

Return Valuee The method returns one of the following values:

Value Description

0 An error has occurred or the table could not be
inserted. Tables cannot be inserted inside
existing tables or when a section of text has
been selected.

-1 The new table has been inserted at the top or
at the bottom of an existing table and has been
combined with this table.

otherwise The table'sidentifier. Thisisthe same value as
specified with the Tableld parameter or an
internal identifier selected by Text Control
when the optional Tableld parameter has been
omitted.

Data Types: Rows Integer

Columns Integer

TextPos Long

Tableld Integer

Return value: Integer

See also: TableCanlnsert Property, TableDeletel ines Method.
TableNext Method
Description: This method returns a enumaration number of the table that follows the

specified table in the Text Control's current text. It can be used to
enumerate all tables. Inalist of linked Text Controls the searchis

Text Control Properties, Methods, and Events Page 251

performed in al controls. The method uses enumeration numbers
instead of table identifiers because table identifiers are not unique. The
corresponding table identifer is retrieved by the Tableld parameter.

Usage: TXTextControl. TableNext EnumerationNumber, Tableld
The method's parameters are:

Parameter Description

Enumer ationNumber Specifies a enumeration number. The method
returns the enumeration number of the table
that follows the table with this number.

If this parameter is zero the first table's
enumeration number is returned.

Tableld Text Control copies the table's identifier to
thisvariable. Thisisthe same value set with
the Tablel nsert method.

Return Value: Specifies the enumeration number of the next table. It can be used for
the next TableNext call. The return value is zero when the last table has
been reached or when the specified enumeration number was invalid.

Data Types: Enumer ationNumber Integer
Tableld Integer
Return value: Integer

TableRowAtInputPos Property

Description: Returns the number of the current input row in atable. It is zero when
the input position is not inside a table or when more than one table cell
is selected.

Usage: TXTextControl.TableRowAtI nputPos

Data Type: Integer.

Limitations: Read only, run time only.

See also: TableAtlnputPos Property, TableColAtlnputPos Property

Page 252 Text Control Properties, Methods, and Events

TableRows Property

Description: Informs about the number of rows a specified table contains.
Usage: TXTextControl. TableRows(Tablel d)
The property's parameters are:
Parameter Description
Tableld Specifies atable. It is the same identifier set
with the Tablel nsert method.
Data Types: Tableld Integer
Property value: Integer
Limitations: Read only, run time only.
See also: Tablelnsert Method, TableColumns Property

TabPos Property

Description: Determines the position (in twips) of a certain tab. The tab number must
have previously been determined with the TabCurrent property.

Usage: TXTextControl.TabK ey [= valu€]

Data Type: Long.

See also: TabCurrent Property, TabType Property.

TabType Property

Description: Determines the type of a certain tab. The tab number must have
previously been determined with the TabCurrent property.

Usage: TXTextControl.TabType [= value]
The property's settings are:
Setting Description
1 L eft tab.

Text Control Properties, Methods, and Events Page 253

Data Type:
See also:

Right tab.
Centered tab.
Decimal tab.

Right tab at the right most text position. For
this type any position set with the TabPos
property isignored.

a b~ DN

Integer.
TabCurrent Property, TabPos Property.

Text Property

Description:
Usage:

Data Type:

Returns or sets the complete text of a Text Control.
TXTextControl. Text [= string]
String.

TextBkColor Property

Description:

Usage:

Remarks:

Data Type:
See also:

Returns or sets the background color for selected text. Text Control uses
the Microsoft Windows operating enviroment red-green-blue (RGB)
color scheme.

TXTextControl. TextBkColor [= valug]

The TextBkColor property applies only to the currently selected text.
The BackColor property can be used to set the window background
color.

Thevalid range for aRGB color is 0 to & HFFFFFF. The high byte of a
number in this range equals 0; the lower 3 bytes, from least to most
significant byte, determine the amount of red, green, and blue,
respectively. The red, green, and blue components are each represented
by a number between 0 and 255 (& HFF).

Long.
FormatSelection Property, BackColor Property.

Page 254

Text Control Properties, Methods, and Events

Undo Method

Description:
Usage:
Return Value:

Data Types:
See also:

The Undo method can be used to undo the last Text Control operation.
TXTextControl.Undo

The method returns True if the undo operation was successful.
Otherwise it returns False.

Return value: Boolean
Redo Method, CanUndo Property, CanRedo Property.

VExpand Event

Description:

Syntax:
See also:

Occurs when the control has changed its window size vertically. This
event can only occur if the AutoExpand property is set to True.

VExpand()
AutoExpand Property, HExpand Event.

ViewMode Property

Description:

Usage:

Returns or sets the mode in which Text Control displays the document
pages. This property has only effect if the PageWidth and/or
PageHeight properties have been set to non-zero. See "Overviews - Text
Formatting and Views' for more information.

TXTextControl.ViewM ode [= value]
The property's settings are:

Setting Description

0- Normal view (Default) Do not display page borders,
margins and gaps.

1 - Pageview Display the document's pages with page

margins and show the page number in the
status bar.

Text Control Properties, Methods, and Events Page 255

2 - Ext. page view Shows the document's pages centered and
displays three-dimensional borders.
Data Type: Integer.
See also: PageWidth Property, PageHeight Property.

VScroll Event

Description: Occurs when the vertical scroll position has been changed.
Syntax: VSerall()
See also: HScroll Event.

VTSpellCheck Method

Description: Starts the spellchecker. This method is only available if the VT-Speller
tool from Visual Tools has been installed. VT Speller is not part of the
Text Control package.

Usage: TXTextControl.VT SpellCheck

Return Value The method returns True if the spellchecker could be started, otherwise
it returns False.

Data Types: Return value: Boolean
See also: VT SpellDictionary Property.

VTSpellDictionary Property

Description: Determines the file name of the dictionary which is used by VT-
Speller.Text Control uses this property only if the VT-Speller tool from
Visual Tools has been installed. VT Speller is not part of the Text
Control package.

Usage: TXTextControl .VTSpdIDictionary [= string]
Data Type: String.

Page 256 Text Control Properties, Methods, and Events

See also: VT SpellCheck Method.

Zoomed Event

Description: Occurs when the Text Control has been zoomed.
Syntax: Zoomed()
See also: ZoomFactor Property.

ZoomFactor Property

Description: Specifies the zoom factor for a Text Control. The value is specified asa
percentage in the range of 10..400%.

Usage: TXTextControl.ZoomFactor [= value]
Data Type: Integer.
See also: PrintZoom Property.

Obsolete Properties, Methods and Events Page 257

Obsolete Properties, Events, and Methods

Thefollowing isalist of obsolete properties, methods and events .
These are still provided for compatibility with earlier versions of Text
Control. Newly developed applications should use the appropriate
newer properties, methods or events.

Property/M ethod/Event Description

EnableHyperlinks Property Enables special actions for pieces of
text that work as hyperlinks. Text
parts that function as hyperlinks are
now automatically converted to
marked text fields, when the
L oadSaveAttribute(txEnablel inks)
property has been set to True before
adocument is loaded.

L oadSaveAttribute(53) Property Enables automatic jumps when the
user clicks on a hypertext link. Can
now be realized with the new
FieldGoto method.

RTFExport Method Has been replaced with the Save
method.

RTFImport Method Has been replaced with the L oad
method.

TextExport Method Has been replaced with the Save
method.

Textlmport Method Has been replaced with the L oad
method.

ViewClicked Event Has been replaced with the new
FieldLinkClicked event.

ViewlmagePath Property Has been replaced with the new

L oadSaveAttribute(txAbsPath)
property.

Page 258 Obsolete Properties, Methods and Events

ViewNextHighlight Method Scrolls to the next highlight. Can be
realized with the new FieldGoto
method.

ViewSection Property Jumps to a specified text position.
Can be realized with the new
FieldGoto method.

ViewWordDblClicked Event Occurs when the mouse is double-
clicked over text in Viewer mode.

EnableHyperlinks Property

Description: This property must be set to True to enable special actions for pieces of
text that function as hyperlinks. After loading a document that contains
hyperlinks the user receives ViewClicked and ViewWor dDblClicked
events and can use the ViewSection and ViewNextHighlight properties
and methods. With enabled hyperlinks a Text Control cannot be edited.

Usage: TXTextControl.EnableHyperlinks [= boolean]
The property's settings are:
Setting Description
True Hyperlinks are enabled. The Viewxx events
and methods are available.
Fase (Default) Hyperlinks are disabled. The
Viewxx events and methods are not available.
Data Type: Boolean.
See also: L oadSaveAttribute Property.

RTFExport Method

Description: Writes the contents of a Text Control to afile with the specified name
using the Rich Text Format.

Usage: TXTextControl.RTFExport Filename

Obsolete Properties, Methods and Events Page 259

Return Value The method returns True when the data has been written to the file.
Otherwise it returns False.

Remarks: RTF (Rich Text Format) is one of the most common interchange
formats for text documents. Most word processors available for
Windows are able to read and write RTF files.

Data Types: FileName String
Return value: Boolean
See also: RTFImport Method.

RTFImport Method

Description: L oads the contents of an RTF file with the specified name into a Text
Control.
Usage: TXTextControl. RTFImport Filename[, extended)]
The method's parameters are:
Parameter Description
Filename Isthe name of the RTF file that isto be
loaded.
Extended Optional. If this parameter is missing or zero
then the text isinserted at the current caret
position.

If this parameter has avalue of 1 then Text
Control supports a specia Viewer mode. In
this mode, additional hypertext information is
imported from the RTF file. See TX Info
Artist manual for details.

Return Value The method returns True when the data could be imported. Otherwise it
returns False.

Remarks: RTF (Rich Text Format) is one of the most common interchange
formats for text documents. Most word processors available for
Windows are able to read and write RTF files.

Page 260

Obsolete Properties, Methods and Events

Data Types:

See also;

Filename: String
Extended: Long
Return value: Boolean

RTFExport Method, Viewl magePath Property.

TextExport Method

Description:

Usage:

Return Value

Data Types:

See also;

Writes the selected text to afilein ANSI format.
TXTextControl.TextExport FileName
The method's parameters are:

Parameter Description

FileName Isthe name of the file, Text Control uses for
saving. When the file does not exist, a new file
with this name is created. When the file exists,
Text Control overwrites its current contents.

The method returns True when the text has been written to the file.
Otherwise it returns False.

FileName String
Return value: Boolean

Textimport Method, RTFImport Method, Save Method.

Textimport Method

Description:

Usage:

Loadstext in ANSI format and insertsit at the current caret position.
TXTextControl. Textlmport FileName
The method's parameters are:

Parameter Description

FileName Isthe name of the file, Text Control uses for
loading.

Obsolete Properties, Methods and Events Page 261

Return Values The method returns True when the text could be imported. Otherwise it

returns False.
Data Types: FileName String
Return value Boolean
See also: TextExport Method, RTFExport Method, L oad Method.

ViewClicked Event

Description: Occurs when a marked text field for which hyperlink data has been
stored, is clicked on. It occurs only if the EnableHyperlinks property is
set to True.

Syntax: ViewClicked(FieldType, FieldContents)
The event procedure's parameters are:

Parameter Description

FieldType Specifies the type of afield as an identifier. It
can be one of the following values:

0-19 Specifiesfields that represent links
to text positions within the same
document (RTF only).

20- 39 Specifies buttons that represent link
positions (RTF only).

100 Specifiesafield that isalink to a
position in the same document
(HTML only).

101 Specifiesafield that isalink to an
external position (HTML only).

FieldContents Isastring that represents the contents of the

field. The specification depends on the field's
type and on the type of the document.

Remarks: This event is sent before aFieldClicked event is sent.

Data Types: FieldType Integer
FieldContents String

Page 262 Obsolete Properties, Methods and Events

See also: EnableHyperlinks Property.

ViewlmagePath Property

Description: When importing text data files which contain references to image files,
the Viewl magePath property can be used to specify a different path for
the images.

Usage: TXTextControl.Viewl magePath [= string]

Data Type: String.

Limitations: Run time only.

See also: RTFImport Method.

ViewNextHighlight Method

Description: Scrollsto the next highlight.
Usage: TXTextControl.ViewNextHighlight

Return Value The method returns False if the last highlight has been reached.
Otherwise it returns True.

Remarks: The use of this method isonly valid if the RTFImport method was
previously used with the extended parameter set to 1. See TX Info Artist
description for details.

Data Types: Return value: Boolean
See also: RTFImport Method.

ViewSection Property

Description: Jumpsto a specified text position. See TX Info Artist description for
details.

Usage: TXTextControl.ViewSection [= SectionNumber]

Obsolete Properties, Methods and Events Page 263

Remarks:

Data Type:
Limitations:
See also;

The use of this property isonly valid if the RTFImport method was
used before with the extended parameter set to 1.

Integer.
Write only, run time only.
RTFImport Method.

ViewWordDblIClicked Event

Description:

Syntax:

Remarks:
Data Type:
See also:

Occurs when aword is double-clicked with the mouse. It occurs only if
the EnableHyperlinks property is set to True.

ViewWordDbIClicked(SelectedText)
The event procedure's parameters are:

Parameter Description
SelectedText Isthe word that has been double-clicked.

This event is sent before aDbIClick event is sent.
SelectedText String
RTFImport Method, DbIClick Event.

Page 264 Tool Properties

Button Bar Control Properties, Events, and
Methods

All of the properties, methods and events for the button bar are listed in
aphabetical order in the following table. A detailed description can be
found in the following section.

Properties Events
Appearance MouseDown
BorderStyle MouseMove
Enabled MouseUp
hwnd

Language

ResourceFile

Style

Tool Properties Page 265

BorderStyle Property
Enabled Property
hWnd Property
Language Property
MouseDown Event
MouseMove Event
MouseUp Event
ResourceFile Property

All of these properties and events work in the same way as for a Text
Control. See the appropriate section prior in this manual.

Appearance Property

Description: Returns or sets the paint style of a Button Bar.
Usage: TXButtonBar.Appearance [= value]
The property's settings are:
Setting Description
0- txFlat Flat. Paints the Button Bar without visual
effects.
1-tx3D (Default). 3D. Paints the Button Bar with

three-dimensional effects.

Data Type: Integer.

Style Property

Description: Returns or sets the paint style of a Button Bar's buttons.
Usage: TXButtonBar.Style [= valug]

Page 266

Tool Properties

Remarks:

Data Type:

The Style property settings are:

Setting Description

0- txHat Flat. Paints the Button Bar's buttons without
visual effects.

1-tx3D (Default) 3D. Paints the Button Bar's buttons

with three-dimensional effects.

Integer.

Tool Properties Page 267

Status Bar Control Properties, Events, and
Methods

All of the properties, methods and events for the status bar are listed in
aphabetical order in the following table. A detailed description can be
found in the following section.

Properties Events
BorderStyle MouseDown
Enabled MouseMove
Font MouseUp
FontBold

Fontltalic

FontName

FontSize

FontStrikethru
FontUnderline
hwnd
Language
PageMode
ResourceFile
Text
TextColumn
TextLine
TextPage

Page 268 Tool Properties

BorderStyle Property
Enabled Property
hWnd Property
Language Property
MouseDown Event
MouseMove Event
MouseUp Event
ResourceFile Property

All of these properties and events work in the same way as for a Text
Control. See the appropriate section prior in this manual.

FontBold Property
Fontltalic Property
FontStrikethru Property
FontUnderline Property

Description: Returns or sets font styles in the following formats: Bold, Italic,
Strikethrd, and Underline.
Usage: TXStatusBar.FontBold [= boolean]

TXStatusBar.Fontltalic [= boolean]

TXStatusBar.FontStrikethru [= boolean]

TXStatusBar.FontUnderline [= boolean]

The properties settings are:

Setting Description

True The characters are formatted with the
specified style.

Tool Properties Page 269

False The characters are not formatted with the
specified style.
Data Type: Boolean.
See also: FontName Property, FontSize Property.

FontName Property

Description: Returns or sets the font used to display text.
Usage: TXStatusBar.FontName [= string]
See also: FontSize Property.

FontSize Property

Description: Returns or sets avalue that specifies the size of the font used to display
text.

Usage: TXStatusBar.FontSize [= value]

Data Type: Integer.

See also: FontName Property.

PageMode Property

Description: Returns or sets the status of the StatusBar's 'Page’ field.
Usage: TXStatusBar.PageM ode [= value]
The property's settings are:
Setting Description
0 The 'Page' field is hidden.
1 The 'Page’ field is always shown.
2 The 'Page' field is only shown if the connected

Text-Contol's ViewM ode property has been
set to 'Page View' or 'Extended Page View' or

Page 270 Tool Properties

if several Text Controls are linked with the
NextWindow property.

Data Type: Integer.

Text Property

Description: Returns or sets the info text a Status Bar Control displays.
Usage: TXStatusBar.Text [= string]
Data Type: String.

TextColumn Property
TextLine Property
TextPage Property

Description: Returns or sets the texts which appear in the 'Column’, 'Line' and 'Page’
fields of the Status Bar. By default "Col", "Line" and "Page" is
displayed.

Usage: TXStatusBar. TextColumn [= string]

TXStatusBar. TextLine [= string]
TXStatusBar.TextPage [= string]

Data Type: String.

Tool Properties Page 271

Ruler Control Properties, Events, and Methods

All of the properties, methods and events for the ruler arelisted in
aphabetical order in the following table. A detailed description can be
found in the following section.

Properties Events
BorderStyle MouseDown
Enabled MouseMove
hwnd MouseUp
Language

ResourceFile

ScaleUnits

Page 272 Tool Properties

BorderStyle Property
Enabled Property
hWnd Property
Language Property
MouseDown Event
MouseMove Event
MouseUp Event
ResourceFile Property

All of these properties and events work in the same way as for a Text
Control. See the appropriate section prior in this manual.

ScaleUnits Property

Description: Returns or sets the scale units for the Ruler.
Usage: TXRuler.ScaleUnits [= valug]

The property's settings are:

Setting Description

0 mm

1 cm

2 inch

Data Type: Integer.

Tool Properties

Page 273

PageRuler Properties, Events, and Methods

All of the Properties, Events, and Methods for the Page Ruler are listed
in alphabetical order in the following table. Properties and Events that
apply only to this control are marked with an asterisk (*) and
documented in the following section:

Properties *Units

. Visible
Align Width
BkaOI or *ZoomFactor
ClipControls
CtIName Events
Draglcon .

Click

E“?g,“”e;’de DbiClick
Hn' ht DragDrop

@9 DragOver
HelpContextID MouseDown
Ihr\1/(\j/2>? MouseMove

MouseU

Left OUsEp
M ousePointer M ethods
*OriginX Move
*OriginY Refresh
Parent SetFocus
Tag ZOrder

Top

Page 274

Tool Properties

OriginX and OriginY Properties

Description:

Usage:

Data Type:

Specify theruler origin, i.e. the distance between the point where the
ruler displaysits 0 coordinate and the top left corner of the ruler
window. Not available at design time. The measurement depends on the
selected scale mode.

[form.]PgRuler.OriginX = origin

Long.

Units Property

Description:
Usage:

Remarks:

Data Type:

Specifiesif theruler isto display its scale in inches or centimeters.
[form.]PgRuler.Units = units

The settings are:

Setting Description
0 cm

1 inch
Integer.

ZoomFactor Property

Description:
Usage:

Data Type:

Specifies the zoom factor as a percentage.
[form.]PgRuler.ZoomFactor = zoom factor
Integer.

Appendix Page 275

Appendix A: Mouse and Keyboard Assignment

Mouse Assignment

Mouse Action Reaction of Text Control

Click Moves cursor to point of click or selects an
image.

Shift+Click Extends the selection to the point of click.

Double-click Selects the word that is clicked on or opens a
modal dialog box to select an image
alignment.

Drag Selects text from point of button down to

point where button is released.
Double-click anddrag Extends the selection from word to word.
Triple-click and drag Extends the selection from row to row.

PgUp/PgDown Scrolls the text up or down one client area
height minus the height of one line of text.
Active only if avertical scrollbar exists.

Moving the caret while SHIFT is pressed extends the current selection
to the new caret position.

Keyboard Assignment

Key type Reaction of Text Control

HOME Moves the caret to the beginning of theline.
END Moves the caret to the end of theline.

(Left Arrow) Moves the caret one character to the left.
(Right Arrow) Moves the caret one character to the right.
(Up Arrow) Moves the caret one line up.

(Down Arrow) Moves the caret one line down.

CTRL+(Left Arrow) Moves the caret to the beginning of the
current word.

Page 276 Appendix

CTRL+(Right Arrow) Movesthe caret to the beginning of the next

word.
CTRL+HOME Moves the caret to start of text.
CTRL+END Moves the caret to end of text.
CTRL+ENTER Inserts anew page.
SHIFT+ENTER Creates aline feed.
CTRL+(-) Inserts an end-of-line hyphen.
DEL Deletes selected text.
SHIFT+DEL Copies selected text to the Clipboard and
deletes the selection.
CTRL+INS Copies selected text to the clipboard.
SHIFT+INS Inserts text from the clipboard.

CTRL+SHIFT+(Spacebar) Inserts a non-breaking space.
CTRL+(Backspace) Deletes the previous word.

Moving the caret while SHIFT is pressed extends the current selection
to the new caret position.

Appendix Page 277
Index P
Datasample 39
A DataText Property 160
DataTextFormat Property 160
Access 158 DLL Functions 40, 91
Access2.0 124

Align Property 18

Alignment Property 150
AutoExpand Property 126, 128, 150
AutoLink Event 151

AutoScroll Event 126, 128, 151

B

BackColor Dialog Box 39, 90
BackColor Property 39, 90, 152
Background Image 30, 80
BackStyle Property 152
Baseline Property 153
BorderStyle Property 153
Bound Contol 39, 42
ButtonBarHandle Property 154

C

CanRedo Property 154

CanUndo Property 154

CaretOut Event 126, 128, 155
CaretOutBottom Event 126, 128, 155
CaretOutLeft Event 126, 128, 155
CaretOutRight Event 126, 128, 155
CaretOutTop Event 126, 128, 155
CFormView 116

ChangeEvent 155
CharFormatChangeEvent 156

Clip Method 156

ClipChildren Property 31, 81, 157
ClipSiblings Property 31, 81, 157
ConnectTools Event 158
ControlChars Property 158
CurrentlnputPosition Property 159
CurrentPages Property 159

CView 116

E

EditMode Property 161

Enabled Property 161
EnableHyperlinks Property 257, 258
Error Event 162

F

FieldAtInputPos Property 137, 163
FieldChangeable Property 137, 139, 163
FieldChanged Event 137, 140, 163
FieldClicked Event 137, 139, 141, 164
FieldCreated Event 138, 140, 164
FieldCurrent Property 35, 86, 138, 139, 165
FieldData Property 138, 141, 165
FieldDbIClicked Event 138, 139, 166
FieldDelete Method 138, 139, 166
FieldDeleteable Property 138, 139, 167
FieldDeleted Event 138, 140, 167
FieldEditAttr Property 138, 140, 168
FieldEnd Property 138, 139, 169
FieldEntered Event 138, 139, 170
FieldGoto Method 138, 143, 144, 170
Fieldinsert Method 138, 139, 142, 171
FieldLeft Event 138, 139, 171
FieldLinkClicked Event 138, 142, 143
FieldNext Method 138, 139, 142, 172, 173
FieldPosX Property 138, 139, 174, 246
FieldPosY Property 138, 139, 174
FieldSetCursor Event 139, 175
FieldStart Property 139, 176

FieldText Property 139, 176

FieldText property 139

FieldType Property 139, 141, 176
FieldTypeData Property 139, 142, 178

Page 278

Appendix

File
Formats 22, 71
Saving 26, 75

Find Method 178

FindReplace Method 180

FontBold Property 180, 268
FontDialog Method 181

Fontltalic Property 180

FontName Property 181

FontSize Property 182

FontStrikethru Property 180
FontUnderline Property 180, 269
FontUnderlineStyle Property 182, 269
ForeColor Property 183
FormatSelection Property 184
Forms2 sample 30, 80
FrameDistance Property 39, 90, 185
FrameLineWidth Property 39, 90, 185
FrameStyle Property 39, 90, 185

H

HeaderFooter Property 130, 131, 186
HeaderFooterActivate Method 130, 131, 187
HeaderFooterActivated Event 130, 131, 188
HeaderFooterDeactivated

Event 130, 131, 188
HeaderFooterPosition Property 130, 131, 189
HeaderFooterSelect Method 130, 132, 190
HeaderFooterStyle Property 130, 131, 191
HExpand Event 126, 128, 192
HideSelection Property 192
HScroll Event 126, 129, 192
HTML 135, 200, 234
hwnd Property 192

Image-Control 30, 80
ImageDisplayMode Property 193
ImageFilename Property 193
ImageFilters Property 194
Images 30, 80
ImageSaveMode Property 195

IndentB Property 195

IndentFL Property 195

IndentL Property 195

IndentR Property 195

Indents 58, 109

IndentT Property 195
InputPosFromPoint Method 196
InsertionMode Property 196

K

KeyDown Event 197
KeyPressEvent 198
K eyStateChange Event
KeyUp Event 197

L

Language Property 144, 198

LineSpacing Property 199

LineSpacingT Property 199

Load Method 135, 136, 139, 143, 144, 199
LoadFromMemory Method 202
LoadSaveAttribute Property 143, 144, 202

198

Mail Merge 42, 92
Marked Text Fields 34, 84
MDI sample 38
MouseDown Event 207
MouseMove Event 208
MousePointer Property 209
MouseUp Event 208
MoveEvent 210

N
NextWindow Property 128, 210
O

ObjectClicked Event 210
ObjectCreated Event 211
ObjectCurrent Property 211
ObjectDbIClicked Event 212

Appendix Page 279

ObjectDelete Method 212 PrintOffset Property 229
ObjectDeleted Event 212 PrintPage Method ~ 230
ObjectDistance Property 213 PrintZoom Property 231
ObjectGetData Event 42, 213
ObjectGethWnd Event 42, 214 R
ObjectGetZoom Event 215 Redo Method 231
Ob!ectlnsertASChar Method 41, 215 Refresh Method 231
ObjectinsertFixed Method 41, 218 Replace 39, 90
ObjectMoved Event 220 ResetContents Method 231
ObjectNext Method 220 ResourceFile Property 144, 232
ObjectPrint Event 222 Rich Text Format 22, 71
Objects 41 RTF 135, 200, 234
ObjectScalex Property 222 RTFExport Method 257, 258
ObjectScaleY Property 222 RTFImport Method 257, 259
Obj.eCtSCI'O”OUt Event 223 RTFSd Text Property 232
Ob!ectSetData Event 42, 223 RulerHandle Property 233
ObjectSetZoom Event 224
ObjectSized Event 224 S
ObjectSizeMode 225
; Save Method 233
ObjectTextFlow Property 225 SaveToMemory Method 235
P ScrollBars Property 127, 129, 236
ScrollPosX Property 127, 129, 236

Page Ruler Control 64, 115 ScrollPosY Property 127, 129, 237
PageSetup Dlalog Box 38, 89 Search 39, 90
PageFormatChange Event 226 SeILength Property 237
PageHeight SelStart Property 237

Rpaty 24 D 730 1% 128 129 130, 2654 Teyt Property 238
Pagel\/larg!nB Property 126, 129, 226 SizeEvent 238
PageMarglnL Property 126, 129, 226, 227 SizeMode Property 26, 75, 238
PageMarginR Property 127, 129 StatusBarHandle Property 239
PageMarginT Property 127, 129 System Requirements 13, 116
PageWidth

Roaty 24 29, 73 M, 127, 128 12, 130, 27T
Paragraph Frames 39, 90

ParagraphChange Event 228 TabCurrent Property 239

ParagraphDialog Method 228 TabKey Property 240
ParagraphFormatChange Event 228 TableAtinputPos Property 133, 241
PgRul.Ocx 64, 115 TableAttrDialog Method 133, 135, 241
PosChange Event 228 TableCanChangeAttr Property 134, 135
PrintColors Property 229 TableCanDeletelines Property 134, 135, 242
PrintDevice Property 23, 72, 229 TableCaninsert Property 134, 135, 242
PrintForm Method 23 TableCellAttribute Property 134, 243

Printing 23, 29, 79 TableCellLength Property 134, 245

Page 280

Appendix

TableCellStart Property 134
TableCellText Property 134, 137, 246
TableCol AtinputPos Property 134, 247
TableColumns Property 134, 137, 247
TableCreated Event 134, 136, 248
TableDeleted Event 134, 136, 248
TableDeletelines Method 134, 135, 249
TableGridLines Property 134, 249
Tablelnsert Method 134, 135, 136, 249
TableRowAtInputPos Property 134, 250
TableRows Property 134, 137, 252
TabPos Property 252

Tabs 58, 109

TabType Property 252

Text Property 253

TextBkColor Property 253

TextColor Dialog Box 39, 90
TextExport Method 257, 260
Textimport Method 257, 260
Transparent Text Controls 31, 81

\Y,

VExpand Event 127, 128, 254
ViewClicked Event 257, 261
ViewlmagePath Property 257, 262
ViewMode

Propety 127, 128, 129, 186, 187, 189, 24
ViewNextHighlight Method 255, 258, 262
ViewSection Property 258, 262
ViewWordDblClicked Event 258, 263
Visual C++ 116
VScroll Event 127, 129
VTSpellCheck Method 255
VTSpellDictionary Property 255

Z

Zoomed Event 256
ZoomFactor Property 256

	Contents
	What's New
	What's New in Version 7.0 since Version 6.0
	New Features
	Changes and Extensions
	New and Extended Properties, Methods and Events
	What's New in Version 7.0 since Version 5.2
	New Features
	Changes and Extensions
	New and Extended Properties, Methods and Events
	Introduction
	System Requirements
	How this Manual is Organized
	Distributing your Applications
	Visual Basic User's Guide
	Creating a Simple Word Processor
	Creating the Project
	Creating the Controls
	Connecting the Controls
	Running the Program
	Adding Scrollbars
	Resizing the Controls
	Adding a Menu
	What Comes Next
	Text Control Programming
	Working with Files
	Printing
	Using Multiple Controls
	A Forms Filler
	Using Marked Text Fields
	A Word Processor
	Using Text Control as a Bound Control
	Calling DLL Functions from Visual Basic Code
	Inserting Objects
	Mail Merge
	Using Hypertext Links
	Headers and Footers
	Drag and Drop
	TX Publisher - An Advanced Example
	Text Frames and OLE Objects
	Drawing Text Frames
	Connecting Text Frames
	Deleting and Creating Frame Connections
	Changing Frame Size and Position
	Setting Indents and Tabs
	Using Images
	OLE Objects
	The File Menu
	The Edit Menu
	The View Menu
	The Insert Menu
	The Format Menu
	The Help Menu
	How the Program Works
	The Page Ruler Control
	Delphi User's Guide
	Creating a Simple Word Processor
	Creating the Project
	Creating the Controls
	Connecting the Controls
	Running the Program
	Adding a Menu
	What Comes Next
	Text Control Programming
	Working with Files
	Printing
	Using Multiple Controls
	A Forms Filler
	Using Marked Text Fields
	A Word Processor
	Using Text Control with a Database
	Calling DLL Functions from Delphi Code
	Mail Merge
	Using Hypertext Links
	Headers and Footers
	Drag and Drop
	TX Publisher - An Advanced Example
	Text Frames and OLE Objects
	Drawing Text Frames
	Connecting Text Frames
	Deleting and Creating Frame Connections
	Changing Frame Size and Position
	Setting Indents and Tabs
	Using Images
	OLE Objects
	The File Menu
	The Edit Menu
	The View Menu
	The Insert Menu
	The Format Menu
	The Help Menu
	How the Program Works
	The Page Ruler Control
	Other Languages
	Standard C
	Microsoft Visual C++ 4.x / 5.x / 6.x
	Microsoft Access 2.0
	Reference
	Overviews
	Text Formatting and Views
	Headers and Footers
	Tables
	Marked Text Fields
	Resources
	Text Control Data Types
	Text Control Properties, Events, and Methods
	Obsolete Properties, Events, and Methods
	Button Bar Control Properties, Events, and Methods
	Status Bar Control Properties, Events, and Methods
	Ruler Control Properties, Events, and Methods
	PageRuler Properties, Events, and Methods
	Appendix A: Mouse and Keyboard Assignment
	Mouse Assignment
	Keyboard Assignment
	Index

