
EVMS User Guide

Christine Lorenz

IBM

Joy Goodreau

IBM

Kylie Smith

IBM

Copyright © 2004 IBM

April 9, 2004

Special Notices

The following terms are registered trademarks of International Business Machines corporation in the United
States and/or other countries: AIX, OS/2, System/390. A full list of U.S. trademarks owned by IBM may be
found at http://www.ibm.com/legal/copytrade.shtml.

Intel is a trademark or registered trademark of Intel Corporation in the United States, other countries, or both.

Windows is a trademark of Microsoft Corporation in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

This document is provided "AS IS," with no express or implied warranties. Use the information in this
document at your own risk.

License Information

This document may be reproduced or distributed in any form without prior permission provided the copyright
notice is retained on all copies. Modified versions of this document may be freely distributed provided that
they are clearly identified as such, and this copyright is included intact.

http://www.ibm.com/legal/copytrade.shtml




Table of Contents
Preface..................................................................................................................................................................1

Chapter 1. What is EVMS?................................................................................................................................3
1.1. Why choose EVMS?.........................................................................................................................3
1.2. The EVMS user interfaces................................................................................................................3
1.3. EVMS terminology...........................................................................................................................4
1.4. What makes EVMS so flexible?.......................................................................................................5
1.5. Plug−in layer definitions...................................................................................................................5

Chapter 2. Using the EVMS interfaces.............................................................................................................8
2.1. EVMS GUI.......................................................................................................................................8

2.1.1. Using context sensitive and action menus...............................................................................8
2.1.2. Saving changes........................................................................................................................8
2.1.3. Refreshing changes..................................................................................................................8
2.1.4. Using the GUI "+"...................................................................................................................9
2.1.5. Using the accelerator keys.......................................................................................................9

2.2. EVMS Ncurses interface.................................................................................................................10
2.2.1. Navigating through EVMS Ncurses......................................................................................11
2.2.2. Saving changes......................................................................................................................11

2.3. EVMS Command Line Interpreter..................................................................................................11
2.3.1. Using the EVMS CLI............................................................................................................12
2.3.2. Notes on commands and command files...............................................................................13

Chapter 3. The EVMS log file and error  data collection..............................................................................14
3.1. About the EVMS log file................................................................................................................14
3.2. Log file logging levels....................................................................................................................14
3.3. Specifying the logging levels..........................................................................................................15

Chapter 4. Viewing compatibility  volumes after migrating..........................................................................16
4.1. Using the EVMS GUI.....................................................................................................................16
4.2. Using Ncurses.................................................................................................................................16
4.3. Using the CLI..................................................................................................................................17

Chapter 5. Obtaining interface display details...............................................................................................19
5.1. Using the EVMS GUI.....................................................................................................................19
5.2. Using Ncurses.................................................................................................................................19
5.3. Using the CLI..................................................................................................................................19

Chapter 6. Adding and removing a segment manager..................................................................................21
6.1. When to add a segment manager....................................................................................................21
6.2. Types of segment managers............................................................................................................21

6.2.1. DOS Segment Manager.........................................................................................................21
6.2.2. GUID Partitioning Table (GPT) Segment Manager..............................................................21
6.2.3. S/390 Segment Manager.......................................................................................................22
6.2.4. Cluster segment manager......................................................................................................22
6.2.5. BSD segment manager..........................................................................................................23
6.2.6. MAC segment manager.........................................................................................................23
6.2.7. BBR segment manager..........................................................................................................23

EVMS User Guide

i



Table of Contents
Chapter 6. Adding and removing a segment manager

6.3. Adding a segment manager to an existing disk..............................................................................23
6.4. Adding a segment manager to a new disk......................................................................................24
6.5. Example: add a segment manager...................................................................................................24

6.5.1. Using the EVMS GUI...........................................................................................................24
6.5.2. Using Ncurses........................................................................................................................25
6.5.3. Using the CLI........................................................................................................................25

6.6. Removing a segment manager........................................................................................................25
6.7. Example: remove a segment manager............................................................................................26

6.7.1. Using the EVMS GUI context sensitive menu......................................................................26
6.7.2. Using Ncurses........................................................................................................................26
6.7.3. Using the CLI........................................................................................................................26

Chapter 7. Creating segments..........................................................................................................................27
7.1. When to create a segment...............................................................................................................27
7.2. Example: create a segment..............................................................................................................27

7.2.1. Using the EVMS GUI...........................................................................................................27
7.2.2. Using Ncurses........................................................................................................................28
7.2.3. Using the CLI........................................................................................................................28

Chapter 8. Creating a container......................................................................................................................29
8.1. When to create a container..............................................................................................................29
8.2. Example: create a container............................................................................................................29

8.2.1. Using the EVMS GUI...........................................................................................................29
8.2.2. Using Ncurses........................................................................................................................29
8.2.3. Using the CLI........................................................................................................................30

Chapter 9. Creating regions.............................................................................................................................31
9.1. When to create regions....................................................................................................................31
9.2. Example: create a region.................................................................................................................31

9.2.1. Using the EVMS GUI...........................................................................................................31
9.2.2. Using Ncurses........................................................................................................................32
9.2.3. Using the CLI........................................................................................................................32

Chapter 10. Creating drive links.....................................................................................................................33
10.1. What is drive linking?...................................................................................................................33
10.2. How drive linking is implemented................................................................................................33
10.3. Creating a drive link......................................................................................................................33
10.4. Example: create a drive link.........................................................................................................34

10.4.1. Using the EVMS GUI.........................................................................................................34
10.4.2. Using Ncurses......................................................................................................................34
10.4.3. Using the CLI......................................................................................................................35

10.5. Expanding a drive link..................................................................................................................35
10.6. Shrinking a drive link...................................................................................................................36
10.7. Deleting a drive link......................................................................................................................36

EVMS User Guide

ii



Table of Contents
Chapter 11. Creating snapshots.......................................................................................................................37

11.1. What is a snapshot?.......................................................................................................................37
11.2. Creating and activating snapshot objects......................................................................................37

11.2.1. Creating a snapshot.............................................................................................................37
11.2.2. Activating a snapshot..........................................................................................................37

11.3. Example: create a snapshot...........................................................................................................38
11.3.1. Using the EVMS GUI.........................................................................................................38
11.3.2. Using Ncurses......................................................................................................................38
11.3.3. Using the CLI......................................................................................................................39

11.4. Reinitializing a snapshot...............................................................................................................39
11.4.1. Using the EVMS GUI or Ncurses.......................................................................................39
11.4.2. Using the CLI......................................................................................................................40

11.5. Expanding a snapshot...................................................................................................................40
11.5.1. Using the EVMS GUI or Ncurses.......................................................................................40
11.5.2. Using the CLI......................................................................................................................41

11.6. Deleting a snapshot.......................................................................................................................41
11.7. Rolling back a snapshot................................................................................................................41

11.7.1. Using the EVMS GUI or Ncurses.......................................................................................42
11.7.2. Using the CLI......................................................................................................................42

Chapter 12. Creating volumes.........................................................................................................................43
12.1. When to create a volume...............................................................................................................43
12.2. Example: create an EVMS native volume....................................................................................43

12.2.1. Using the EVMS GUI.........................................................................................................43
12.2.2. Using Ncurses......................................................................................................................44
12.2.3. Using the CLI......................................................................................................................44

12.3. Example: create a compatibility volume.......................................................................................44
12.3.1. Using the GUI.....................................................................................................................44
12.3.2. Using Ncurses......................................................................................................................45
12.3.3. Using the CLI......................................................................................................................45

Chapter 13. FSIMs and file system operations..............................................................................................46
13.1. The FSIMs supported by EVMS..................................................................................................46

13.1.1. JFS.......................................................................................................................................46
13.1.2. XFS......................................................................................................................................46
13.1.3. ReiserFS..............................................................................................................................46
13.1.4. Ext2/3..................................................................................................................................47
13.1.5. SWAPFS.............................................................................................................................47
13.1.6. OpenGFS.............................................................................................................................47

13.2. Example: add a file system to a volume.......................................................................................47
13.2.1. Using the EVMS GUI.........................................................................................................47
13.2.2. Using Ncurses......................................................................................................................48
13.2.3. Using the CLI......................................................................................................................48

13.3. Example: check a file system........................................................................................................48
13.3.1. Using the EVMS GUI.........................................................................................................49
13.3.2. Using Ncurses......................................................................................................................49
13.3.3. Using the CLI......................................................................................................................49

EVMS User Guide

iii



Table of Contents
Chapter 14. Clustering operations..................................................................................................................50

14.1. Rules and restrictions for creating cluster containers...................................................................50
14.2. Example: create a private cluster container..................................................................................50

14.2.1. Using the EVMS GUI.........................................................................................................50
14.2.2. Using Ncurses......................................................................................................................51
14.2.3. Using the CLI......................................................................................................................51

14.3. Example: create a shared cluster container...................................................................................52
14.3.1. Using the EVMS GUI.........................................................................................................52
14.3.2. Using Ncurses......................................................................................................................52
14.3.3. Using the CLI......................................................................................................................53

14.4. Example: convert a private container to a shared container.........................................................53
14.4.1. Using the EVMS GUI.........................................................................................................53
14.4.2. Using Ncurses......................................................................................................................54
14.4.3. Using the CLI......................................................................................................................54

14.5. Example: convert a shared container to a private container.........................................................54
14.5.1. Using the EVMS GUI.........................................................................................................55
14.5.2. Using Ncurses......................................................................................................................55
14.5.3. Using the CLI......................................................................................................................55

14.6. Example: deport a private or shared container.............................................................................55
14.6.1. Using the EVMS GUI.........................................................................................................56
14.6.2. Using Ncurses......................................................................................................................56
14.6.3. Using the CLI......................................................................................................................56

14.7. Deleting a cluster container..........................................................................................................57
14.8. Failover and Failback of a private container on Linux−HA.........................................................57
14.9. Remote configuration management..............................................................................................57

14.9.1. Using the EVMS GUI.........................................................................................................58
14.9.2. Using Ncurses......................................................................................................................58
14.9.3. Using the CLI......................................................................................................................58

14.10. Forcing a cluster container to be imported.................................................................................58

Chapter 15. Converting volumes.....................................................................................................................60
15.1. When to convert volumes.............................................................................................................60
15.2. Example: convert compatibility volumes to EVMS volumes......................................................60

15.2.1. Using the EVMS GUI.........................................................................................................60
15.2.2. Using Ncurses......................................................................................................................61
15.2.3. Using the CLI......................................................................................................................61

15.3. Example: convert EVMS volumes to compatibility volumes......................................................61
15.3.1. Using the EVMS GUI.........................................................................................................61
15.3.2. Using Ncurses......................................................................................................................62
15.3.3. Using the CLI......................................................................................................................62

Chapter 16. Expanding and shrinking volumes.............................................................................................63
16.1. Why expand and shrink volumes?................................................................................................63
16.2. Example: shrink a volume............................................................................................................63

16.2.1. Using the EVMS GUI.........................................................................................................64
16.2.2. Using Ncurses......................................................................................................................64
16.2.3. Using the CLI......................................................................................................................64

16.3. Example: expand a volume...........................................................................................................65

EVMS User Guide

iv



Table of Contents
Chapter 16. Expanding and shrinking volumes

16.3.1. Using the EVMS GUI.........................................................................................................65
16.3.2. Using Ncurses......................................................................................................................65
16.3.3. Using the CLI......................................................................................................................66

Chapter 17. Adding features to an existing volume.......................................................................................67
17.1. Why add features to a volume?.....................................................................................................67
17.2. Example: add drive linking to an existing volume.......................................................................67

17.2.1. Using the EVMS GUI.........................................................................................................67
17.2.2. Using Ncurses......................................................................................................................68
17.2.3. Using the CLI......................................................................................................................68

Chapter 18. Plug−in operations tasks.............................................................................................................69
18.1. What are plug−in tasks?................................................................................................................69
18.2. Example: complete a plug−in operations task..............................................................................69

18.2.1. Using the EVMS GUI.........................................................................................................69
18.2.2. Using Ncurses......................................................................................................................70
18.2.3. Using the CLI......................................................................................................................70

Chapter 19. Deleting objects............................................................................................................................71
19.1. How to delete objects: delete and delete recursive.......................................................................71
19.2. Example: perform a delete recursive operation............................................................................71

19.2.1. Using the EVMS GUI.........................................................................................................71
19.2.2. Using Ncurses......................................................................................................................72
19.2.3. Using the CLI......................................................................................................................72

Chapter 20. Replacing objects.........................................................................................................................73
20.1. What is object−replace?................................................................................................................73
20.2. Replacing a drive−link child object..............................................................................................73

20.2.1. Using the EVMS GUI or Ncurses.......................................................................................73
20.2.2. Using the CLI......................................................................................................................74

Chapter 21. Moving segment storage objects.................................................................................................75
21.1. What is segment moving?.............................................................................................................75
21.2. Why move a segment?..................................................................................................................75
21.3. Which segment manager plug−ins implement the move function?..............................................75
21.4. Example: move a DOS segment...................................................................................................75

21.4.1. Using the EVMS GUI context sensitive menu....................................................................76
21.4.2. Using Ncurses......................................................................................................................76
21.4.3. Using the CLI......................................................................................................................76

Appendix A. The DOS plug−in........................................................................................................................77
A.1. How the DOS plug−in is implemented..........................................................................................77
A.2. Assigning the DOS plug−in...........................................................................................................78
A.3. Creating DOS partitions.................................................................................................................78
A.4. Expanding DOS partitions.............................................................................................................79
A.5. Shrinking DOS partitions...............................................................................................................79
A.6. Deleting partitions..........................................................................................................................80

EVMS User Guide

v



Table of Contents
Appendix B. The MD region manager............................................................................................................81

B.1. Creating an MD region...................................................................................................................81
B.2. Adding and removing a spare object (RAID−1 and RAID−4/5)...................................................82
B.3. Reconfiguring MD arrays...............................................................................................................82

B.3.1. Expanding and shrinking MD arrays (linear and RAID−1).................................................82
B.3.2. Adding an active object (RAID−1 only)..............................................................................82
B.3.3. Removing an active object (RAID−1 only)..........................................................................82

B.4. Removing a faulty object (RAID−1 and RAID−4/5).....................................................................83
B.5. Marking an object faulty (RAID−1 and RAID−4/5)......................................................................83
B.6. Replacing an object........................................................................................................................83
B.7. Characteristics of Linux RAID levels............................................................................................83

B.7.1. Linear mode..........................................................................................................................83
B.7.2. RAID−0................................................................................................................................84
B.7.3. RAID−1................................................................................................................................84
B.7.4. RAID−4................................................................................................................................85
B.7.5. RAID−5................................................................................................................................85
B.7.6. MULTIPATH.......................................................................................................................85

Appendix C. The LVM  plug−in.......................................................................................................................87
C.1. How LVM is implemented.............................................................................................................87
C.2. Container operations......................................................................................................................87

C.2.1. Creating LVM containers.....................................................................................................87
C.2.2. Adding objects to LVM containers.......................................................................................87
C.2.3. Removing objects from LVM containers.............................................................................88
C.2.4. Deleting LVM containers.....................................................................................................88

C.3. Region operations...........................................................................................................................88
C.3.1. Creating LVM regions..........................................................................................................88
C.3.2. Expanding LVM regions......................................................................................................89
C.3.3. Shrinking LVM regions........................................................................................................89
C.3.4. Deleting LVM regions..........................................................................................................89
C.3.5. Moving LVM regions...........................................................................................................90

Appendix D. The CSM plug−in.......................................................................................................................92
D.1. Assigning the CSM plug−in...........................................................................................................92
D.2. Unassigning the CSM plug−in.......................................................................................................93
D.3. Deleting a CSM container..............................................................................................................93

Appendix E. JFS file system interface module...............................................................................................94
E.1. Creating JFS file systems...............................................................................................................94
E.2. Checking JFS file systems..............................................................................................................94
E.3. Removing JFS file systems............................................................................................................94
E.4. Expanding JFS file systems............................................................................................................95
E.5. Shrinking JFS file systems.............................................................................................................95

Appendix F. XFS file system interface module..............................................................................................96
F.1. Creating XFS file systems..............................................................................................................96
F.2. Checking XFS file systems.............................................................................................................96
F.3. Removing XFS file systems...........................................................................................................96

EVMS User Guide

vi



Table of Contents
Appendix F. XFS file system interface module

F.4. Expanding XFS file systems...........................................................................................................96
F.5. Shrinking XFS file systems............................................................................................................96

Appendix G. ReiserFS file system interface module......................................................................................97
G.1. Creating ReiserFS file systems......................................................................................................97
G.2. Checking ReiserFS file systems.....................................................................................................97
G.3. Removing ReiserFS file systems...................................................................................................97
G.4. Expanding ReiserFS file systems...................................................................................................97
G.5. Shrinking ReiserFS file systems....................................................................................................97

Appendix H. Ext−2/3 file system interface module........................................................................................98
H.1. Creating Ext−2/3 file systems........................................................................................................98
H.2. Checking Ext−2/3 file systems......................................................................................................98
H.3. Removing Ext−2/3 file systems.....................................................................................................98
H.4. Expanding and shrinking Ext−2/3 file systems.............................................................................98

Appendix I. OpenGFS file system interface module....................................................................................100
I.1. Creating OpenGFS file systems....................................................................................................100
I.2. Checking OpenGFS file systems...................................................................................................100
I.3. Removing OpenGFS file systems.................................................................................................100
I.4. Expanding and shrinking OpenGFS file systems..........................................................................100

EVMS User Guide

vii



Preface
This guide tells how to configure and manage Enterprise Volume Management System (EVMS). EVMS is a
storage management program that provides a single framework for managing and administering your system's
storage.

This guide is intended for Linux system administrators and users who are responsible for setting up and
maintaining EVMS.

For additional information about EVMS or to ask questions specific to your distribution, refer to the EVMS
mailing lists. You can view the list archives or subscribe to the lists from the EVMS Project web site.

The following table shows how this guide is organized:

Table 1. Organization of the EVMS User Guide

Chapter or appendix
title

Contents

1. What is EVMS? Discusses general EVMS concepts and terms.

2. Using the EVMS
interfaces

Describes the three EVMS user interfaces and how to
use them.

3. The EVMS log file
and error data
collection

Discusses the EVMS information and error log file
and explains how to change the logging level.

4. Viewing
compatibility volumes
after migrating

Tells how to view existing files that have been
migrated to EVMS.

5. Obtaining interface
display details

Tells how to view detailed information about EVMS
objects.

6. Adding and
removing a segment
manager

Discusses segments and explains how to add and
remove a segment manager.

7. Creating segmentsExplains when and how to create segments.

8. Creating containers
Discusses containers and explains when and how to
create them.

9. Creating regions
Discusses regions and explains when and how to
create them.

10. Creating drive
links

Discusses the drive linking feature and tells how to
create a drive link.

11. Creating snapshots
Discusses snapshotting and tells how to create a
snapshot.

12. Creating volumes Explains when and how to create volumes.

13. FSIMs and file
system operations

Discusses the standard FSIMs shipped with EVMS
and provides examples of adding file systems and
coordinating file checks with the FSIMs.

Preface 1

http://evms.sourceforge.net/mailinglists.html


14. Clustering
operations

Describes EVMS clustering and how to create private
and shared containers.

15. Converting
volumes

Explains how to convert EVMS native volumes to
compatibility volumes and compatibility volumes to
EVMS native volumes.

16. Expanding and
shrinking volumes

Tells how to expand and shrink EVMS volumes with
the various EVMS user interfaces.

17. Adding features to
an existing volume

Tells how to add additional features, such as drive
linking and bad block relocation, to an existing
volume.

18. Plug−in operations
tasks

Discusses the plug−in tasks that are available within
the context of a particular plug−in.

19. Deleting objects Tells how to safely delete EVMS objects.

20. Replacing objects
Tells how to change the configuration of a volume or
storage object.

21. Moving segment
storage objects

Discusses how to use the move function for moving
segments.

A. The DOS plug−in
Provides details about the DOS plug−in, which is a
segment manager plug−in.

B. The MD region
manager

Explains the Multiple Disks (MD) support in Linux
that is a software implementation of RAID.

C. The LVM plug−in
Tells how the LVM plug−in is implemented and how
to perform container operations.

D. The CSM plug−in
Explains how the Cluster Segment Manager (CSM)
plug−in is implemented and how to perform CSM
operations.

E. JFS file system
interface module

Provides information about the JFS FSIM.

F. XFS file system
interface module

Provides information about the XFS FSIM.

G. ReiserFS file
system interface
module

Provides information about the ReiserFS FSIM.

H. Ext−2/3 file system
interface module

Provides information about the Ext−2/3 FSIM.

I. OpenGFS file
system interface
module

Provides information about the OpenGFS FSIM.

EVMS User Guide

Preface 2



Chapter 1. What is EVMS?
EVMS brings a new model of volume management to Linux®. EVMS integrates all aspects of volume
management, such as disk partitioning, Linux logical volume manager (LVM) and multi−disk (MD)
management, OS2 and AIX volume managers, and file system operations into a single cohesive package.
With EVMS, various volume management technologies are accessible through one interface, and new
technologies can be added as plug−ins as they are developed.

1.1. Why choose EVMS?

EVMS lets you manage storage space in a way that is more intuitive and flexible than many other Linux
volume management systems. Practical tasks, such as migrating disks or adding new disks to your Linux
system, become more manageable with EVMS because EVMS can recognize and read from different volume
types and file systems. EVMS provides additional safety controls by not allowing commands that are unsafe.
These controls help maintain the integrity of the data stored on the system.

You can use EVMS to create and manage data storage. With EVMS, you can use multiple volume
management technologies under one framework while ensuring your system still interacts correctly with
stored data. With EVMS, you are can use bad block relocation, shrink and expand volumes, create snapshots
of your volumes, and set up RAID (redundant array of independent devices) features for your system. You
can also use many types of file systems and manipulate these storage pieces in ways that best meet the needs
of your particular work environment.

EVMS also provides the capability to manage data on storage that is physically shared by nodes in a cluster.
This shared storage allows data to be highly available from different nodes in the cluster.

1.2. The EVMS user interfaces

There are currently three user interfaces available for EVMS: graphical (GUI), text mode (Ncurses), and the
Command Line Interpreter (CLI). Additionally, you can use the EVMS Application Programming Interface to
implement your own customized user interface.

Table 1−1 tells more about each of the EVMS user interfaces.

Table 1−1. EVMS user interfaces

User interface Typical user Types of use Function

GUI All
All uses except
automation

Allows you to choose from available
options only, instead of having to sort
through all the options, including ones
that are not available at that point in
the process.

Ncurses

Users who don't have
GTK libraries or X
Window Systems on
their machines

All uses except
automation

Allows you to choose from available
options only, instead of having to sort
through all the options, including ones
that are not available at that point in
the process.

Chapter 1. What is EVMS? 3



Command LineExpert All uses Allows easy automation of tasks

1.3. EVMS terminology

To avoid confusion with other terms that describe volume management in general, EVMS uses a specific set
of terms. These terms are listed, from most fundamental to most comprehensive, as follows:

Logical disk
Representation of anything EVMS can access as a physical disk. In EVMS, physical disks are logical
disks.

Sector
The lowest level of addressability on a block device. This definition is in keeping with the standard
meaning found in other management systems.

Disk segment
An ordered set of physically contiguous sectors residing on the same storage object. The general
analogy for a segment is to a traditional disk partition, such as DOS or OS/2 ®

Storage region
An ordered set of logically contiguous sectors that are not necessarily physically contiguous.

Storage object
Any persistent memory structure in EVMS that can be used to build objects or create a volume.
Storage object is a generic term for disks, segments, regions, and feature objects.

Storage container
A collection of storage objects. A storage container consumes one set of storage objects and produces
new storage objects. One common subset of storage containers is volume groups, such as AIX® or
LVM.

Storage containers can be either of type private or cluster.
Cluster storage container

Specialized storage containers that consume only disk objects that are physically accessible from all
nodes of a cluster.

Private storage container
A collection of disks that are physically accessible from all nodes of a cluster, managed as a
single pool of storage, and owned and accessed by a single node of the cluster at any given
time.

Shared storage container
A collection of disks that are physically accessible from all nodes of a cluster, managed as a
single pool of storage, and owned and accessed by all nodes of the cluster simultaneously.

Deported storage container
A shared cluster container that is not owned by any node of the cluster.

Feature object
A storage object that contains an EVMS native feature, such as bad block relocation.

An EVMS Native Feature is a function of volume management designed and implemented by EVMS.
These features are not intended to be backward compatible with other volume management
technologies.

Logical volume
A volume that consumes a storage object and exports something mountable. There are two varieties of
logical volumes: EVMS Volumes and Compatibility volumes.

EVMS User Guide

Chapter 1. What is EVMS? 4



EVMS Volumes contain EVMS native metadata and can support all EVMS features.
/dev/evms/my_volume would be an example of an EVMS Volume.

Compatibility volumes do not contain any EVMS native metadata. Compatibility volumes are
backward compatible to their particular scheme, but they cannot support EVMS features.
/dev/evms/md/md0 would be an example of a compatibility volume.

1.4. What makes EVMS so flexible?

There are numerous drivers in the Linux kernel, such as Device Mapper and MD (software RAID), that
implement volume management schemes. EVMS is built on top of these drivers to provide one framework for
combining and accessing the capabilities.

The EVMS Engine handles the creation, configuration, and management of volumes, segments, and disks.
The EVMS Engine is a programmatic interface to the EVMS system. User interfaces and programs that use
EVMS must go through the Engine.

EVMS provides the capacity for plug−in modules to the Engine that allow EVMS to perform specialized tasks
without altering the core code. These plug−in modules allow EVMS to be more extensible and customizable
than other volume management systems.

1.5. Plug−in layer definitions

EVMS defines a layered architecture where plug−ins in each layer create abstractions of the layer or layers
below. EVMS also allows most plug−ins to create abstractions of objects within the same layer. The
following list defines these layers from the bottom up.

Device managers
The first (bottom) layer consists of device managers. These plug−ins communicate with hardware
device drivers to create the first EVMS objects. Currently, all devices are handled by a single plug−in.
Future releases of EVMS might need additional device managers for network device management (for
example, to manage disks on a storage area network (SAN)).

Segment managers
The second layer consists of segment managers. These plug−ins handle the segmenting, or
partitioning, of disk drives. The Engine components can replace partitioning programs, such as fdisk
and Disk Druid, and EVMS uses Device Mapper to replace the in−kernel disk partitioning code.
Segment managers can also be "stacked," meaning that one segment manager can take as input the
output from another segment manager.

EVMS provides the following segment managers: DOS, GPT, System/390® (S/390), Cluster, and
BSD. Other segment manager plug−ins can be added to support other partitioning schemes.

Region managers
The third layer consists of region managers. This layer provides a place for plug−ins that ensure
compatibility with existing volume management schemes in Linux and other operating systems.
Region managers are intended to model systems that provide a logical abstraction above disks or
partitions.

Like segment managers, region managers can also be stacked. Therefore, the input object(s) to a
region manager can be disks, segments, or other regions.

EVMS User Guide

Chapter 1. What is EVMS? 5



There are currently four region manager plug−ins in EVMS: Linux LVM, AIX, OS/2, and Multi−Disk
(MD).

Linux LVM
The Linux LVM plug−in provides compatibility with the Linux LVM and allows the creation
of volume groups (known in EVMS as containers) and logical volumes (known in EVMS as
regions).

AIX LVM
The AIX LVM provides compatibility with AIX and is similar in functionality to the Linux
LVM by also using volume groups and logical volumes.

OS/2 LVM
The OS/2 plug−in provides compatibility with volumes created under OS/2. Unlike the Linux
and AIX LVMs, the OS/2 LVM is based on linear linking of disk partitions, as well as
bad−block relocation. The OS/2 LVM does not allow for modifications.

MD
The Multi−Disk (MD) plug−in for RAID provides RAID levels linear, 0, 1, 4, and 5 in
software. MD is one plug−in that displays as four region managers that you can choose from.

EVMS features
The next layer consists of EVMS features. This layer is where new EVMS−native functionality is
implemented. EVMS features can be built on any object in the system, including disks, segments,
regions, or other feature objects. All EVMS features share a common type of metadata, which makes
discovery of feature objects much more efficient, and recovery of broken features objects much more
reliable. There are three features currently available in EVMS: drive linking, Bad Block Relocation,
and snapshotting.

Drive Linking
Drive linking allows any number of objects to be linearly concatenated together into a single
object. A drive linked volume can be expanded by adding another storage object to the end or
shrunk by removing the last object.

Bad Block Relocation
Bad Block Relocation (BBR) monitors its I/O path and detects write failures (which can be
caused by a damaged disk). In the event of such a failure, the data from that request is stored
in a new location. BBR keeps track of this remapping. Additional I/Os to that location are
redirected to the new location.

Snapshotting
The Snapshotting feature provides a mechanism for creating a "frozen" copy of a volume at a
single instant in time, without having to take that volume off−line. This is useful for
performing backups on a live system. Snapshots work with any volume (EVMS or
compatibility), and can use any other available object as a backing store. After a snapshot is
created and made into an EVMS volume, writes to the "original" volume cause the original
contents of that location to be copied to the snapshot's storage object. Reads to the snapshot
volume look like they come from the original at the time the snapshot was created.

File System Interface Modules
File System Interface Modules (FSIMs) provide coordination with the file systems during certain
volume management operations. For instance, when expanding or shrinking a volume, the file system
must also be expanded or shrunk to the appropriate size. Ordering in this example is also important; a
file system cannot be expanded before the volume, and a volume cannot be shrunk before the file
system. The FSIMs allow EVMS to ensure this coordination and ordering.

FSIMs also perform file system operations from one of the EVMS user interfaces. For instance, a user
can make new file systems and check existing file systems by interacting with the FSIM.

EVMS User Guide

Chapter 1. What is EVMS? 6



Cluster Manager Interface Modules
Cluster Manager Interface Modules, also known as the EVMS Clustered Engine (ECE), interface with
the local cluster manager installed on the system. The ECE provides a standardized ECE API to the
Engine while hiding cluster manager details from the Engine.

EVMS User Guide

Chapter 1. What is EVMS? 7



Chapter 2. Using the EVMS interfaces
This chapter explains how to use the EVMS GUI, Ncurses, and CLI interfaces. This chapter also includes
information about basic navigation and commands available through the CLI.

2.1. EVMS GUI

The EVMS GUI is a flexible and easy−to−use interface for administering volumes and storage objects. Many
users find the EVMS GUI easy to use because it displays which storage objects, actions, and plug−ins are
acceptable for a particular task.

2.1.1. Using context sensitive and action menus

The EVMS GUI lets you accomplish most tasks in one of two ways: context sensitive menus or the Actions
menu.

Context sensitive menus are available from any of the main "views." Each view corresponds to a page in a
notebook widget located on the EVMS GUI main window. These views are made up of different trees or lists
that visually represent the organization of different object types, including volumes, feature objects, regions,
containers, segments, or disks.

You can view the context sensitive menu for an object by right−clicking on that object. The actions that are
available for that object display on the screen. The GUI will only present actions that are acceptable for the
selected object at that point in the process. These actions are not always a complete set.

To use the Actions menu, choose Action−><the action you want to accomplish>−><options>. The Actions
menu provides a more guided path for completing a task than do context sensitive menus. The Actions option
is similar to the wizard or druid approach used by many GUI applications.

All of the operations you need to perform as an administrator are available through the Actions menu.

2.1.2. Saving changes

All of the changes that you make while in the EVMS GUI are only in memory until you save the changes. In
order to make your changes permanent, you must save all changes before exiting. If you forget to save the
changes and decide to exit or close the EVMS GUI, you are reminded to save any pending changes.

To explicitly save all the changes you made, select Action−>Save, and click the Save button.

2.1.3. Refreshing changes

The Refresh button updates the view and allows you to see changes, like mount points, that might have
changed outside of the GUI.

Chapter 2. Using the EVMS interfaces 8



2.1.4. Using the GUI "+"

Along the left hand side of the panel views in the GUI is a "+" that resides beside each item. When you click
the "+," the objects that are included in the item are displayed. If any of the objects that display also have a
"+" beside them, you can expand them further by clicking on the "+" next to each object name.

2.1.5. Using the accelerator keys

You can avoid using a mouse for navigating the EVMS GUI by using a series of key strokes, or "accelerator
keys," instead. The following sections tell how to use accelerator keys in the EVMS Main Window, the
Selection Window, and the Configuration Options Window.

2.1.5.1. Main Window accelerator keys

In the Main Window view, use the following keys to navigate:

Table 2−1. Accelerator keys in the Main Window

Left and right arrow keys
Navigate between the notebook tabs of the different
views.

Down arrow and Spacebar Bring keyboard focus into the view.

While in a view, use the following keys to navigate:

Table 2−2. Accelerator keys in the views

up and down arrows Allow movement around the window.

"+" Opens an object tree.

"−" Collapses an object tree.

ENTER Brings up the context menu (on a row).

Arrows Navigate a context menu.

ENTER Activates an item.

ESC Dismisses the context menu.

Tab
Gets you out of the view and moves you back up to
the notebook tab.

To access the action bar menu, press Alt and then the underlined accelerator key for the menu choice (for
example, "A" for the Actions dropdown menu).

In a dropdown menu, you can use the up and down arrows to navigate. You could also just type the
accelerator key for the menu item, which is the character with the underscore. For example, to initiate a
command to delete a container, type Alt + "A" + "D" + "C."

Ctrl−S is a shortcut to initiate saving changes. Ctrl−Q is a shortcut to initiate quitting the EVMS GUI.

EVMS User Guide

Chapter 2. Using the EVMS interfaces 9



2.1.5.2. Accelerator keys in the selection window

A selection window typically contains a selection list, plus four to five buttons below it. Use the following
keys to navigate in the selection window:

Table 2−3. Accelerator keys in the selection window

Tab
Navigates (changes keyboard focus) between the list
and the buttons.

Up and down arrows Navigates within the selection list.

Spacebar Selects and deselects items in the selection list.

Enter on the button or type the accelerator character
(if one exists)

Activates a button

2.1.5.3. Configuration options window accelerator keys

Use the following keys to navigate in the configuration options window:

Table 2−4. Accelerator keys in the configuration options window

Tab Cycles focus between fields and buttons

Left and right arrows
Navigate the folder tabs if the window has a widget
notebook.

Spacebar or the down arrow Switches focus to a different notebook page.

Enter or type the accelerator character (if one exists)Activates a button

For widgets, use the following keys to navigate:

Table 2−5. Widget navigation keys in the configuration options window

Tab Cycles forward through a set of widgets

Shift−Tab Cycles backward through a set of widgets.

The widget navigation, selection, and activation is the same in all dialog windows.

2.2. EVMS Ncurses interface

The EVMS Ncurses (evmsn) user interface is a menu−driven interface with characteristics similar to those of
the EVMS GUI. Like the EVMS GUI, evmsn can accommodate new plug−ins and features without requiring
any code changes.

The EVMS Ncurses user interface allows you to manage volumes on systems that do not have the X and
GTK+ libraries that are required by the EVMS GUI.

EVMS User Guide

Chapter 2. Using the EVMS interfaces 10



2.2.1. Navigating through EVMS Ncurses

The EVMS Ncurses user interface initially displays a list of logical volumes similar to the logical volumes
view in the EVMS GUI. Ncurses also provides a menu bar similar to the menu bar in the EVMS GUI.

A general guide to navigating through the layout of the Ncurses window is listed below:

Tab cycles you through the available views.• 
Status messages and tips are displayed on the last line of the screen.• 
Typing the accelerator character (the letter highlighted in red) for any menu item activates that item.
For example, typing A in any view brings down the Actions menu.

• 

Typing A + Q in a view quits the application.• 
Typing A + S in a view saves changes made during an evmsn session.• 
Use the up and down arrows to highlight an object in a view. Pressing Enter while an object in a
view is highlighted presents a context popup menu.

• 

Dismiss a context popup menu by pressing Esc or by selecting a menu item with the up and down
arrows and pressing Enter to activate the menu item.

• 

Dialog windows are similar in design to the EVMS GUI dialogs, which allow a user to navigate forward and
backward through a series of dialogs using Next and Previous. A general guide to dialog windows is listed
below:

Tab cycles you through the available buttons. Note that some buttons might not be available until a
valid selection is made.

• 

The left and right arrows can also be used to move to an available button.• 
Navigate a selection list with the up and down arrows.• 
Toggle the selection of an item in a list with spacebar.• 
Activate a button that has the current focus with Enter. If the button has an accelerator character
(highlighted in red), you can also activate the button by typing the accelerator character regardless of
whether the button has the current focus.

• 

The EVMS Ncurses user interface, like the EVMS GUI, provides context menus for actions that are available
only to the selected object in a view. Ncurses also provides context menus for items that are available from the
Actions menu. These context menus present a list of commands available for a certain object.

2.2.2. Saving changes

All changes you make while in the EVMS Ncurses are only in memory until you save the changes. In order to
make the changes permanent, save all changes before exiting. If you forget to save the changes and decide to
exit the EVMS Ncurses interface, you will be reminded of the unsaved changes and be given the chance to
save or discard the changes before exiting.

To explicitly save all changes, press A + S and confirm that you want to save changes.

2.3. EVMS Command Line Interpreter

The EVMS Command Line Interpreter (EVMS CLI) provides a command−driven user interface for EVMS.
The EVMS CLI helps automate volume management tasks and provides an interactive mode in situations
where the EVMS GUI is not available.

EVMS User Guide

Chapter 2. Using the EVMS interfaces 11



Because the EVMS CLI is an interpreter, it operates differently than command line utilities for the operating
system. The options you specify on the EVMS CLI command line to invoke the EVMS CLI control how the
EVMS CLI operates. For example, the command line options tell the CLI where to go for commands to
interpret and how often the EVMS CLI must commit changes to disk. When invoked, the EVMS CLI prompts
for commands.

The volume management commands the EVMS CLI understands are specified in the
/usr/src/evms−2.2.0/engine2/ui/cli/grammar.ps file that accompanies the EVMS package.
These commands are described in detail in the EVMS man page, and help on these commands is available
from within the EVMS CLI.

2.3.1. Using the EVMS CLI

Use the evms command to start the EVMS CLI. If you do not enter an option with evms, the EVMS CLI
starts in interactive mode. In interactive mode, the EVMS CLI prompts you for commands. The result of each
command is immediately saved to disk. The EVMS CLI exits when you type exit. You can modify this
behavior by using the following options with evms:

−b
This option indicates that you are running in batch mode and anytime there is a prompt for input from
the user, the default value is accepted automatically. This is the default behavior with the −f option.

−c
This option commits changes to disk only when EVMS CLI exits, not after each command.

−f filename
This option tells the EVMS CLI to use filename as the source of commands. The EVMS CLI exits
when it reaches the end of filename.

−p
This option only parses commands; it does not execute them. When combined with the −f option, the
−p option detects syntax errors in command files.

−h
This option displays help information for options used with the evms command.

−rl
This option tells the CLI that all remaining items on the command line are replacement parameters for
use with EVMS commands.

NOTE

Replacement parameters are accessed in EVMS commands using the $(x) notation, where x is
the number identifying which replacement parameter to use. Replacement parameters are
assigned numbers (starting with 1) as they are encountered on the command line. Substitutions
are not made within comments or quoted strings.

An example would be:

evms −c −f testcase −rl sda sdb

sda is the replacement for parameter1 and sdb is the replacement for parameter2

NOTE

Information on less commonly used options is available in the EVMS man page.

EVMS User Guide

Chapter 2. Using the EVMS interfaces 12



2.3.2. Notes on commands and command files

The EVMS CLI allows multiple commands to be displayed on a command line. When you specify multiple
commands on a single command line, separate the commands with a colon ( : ). This is important for
command files because the EVMS CLI sees a command file as a single long command line. The EVMS CLI
has no concept of lines in the file and ignores spaces. These features allow a command in a command file to
span several lines and use whatever indentation or margins that are convenient. The only requirement is that
the command separator (the colon) be present between commands.

The EVMS CLI ignores spaces unless they occur within quote marks. Place in quotation marks a name that
contains spaces or other non−printable or control characters. If the name contains a quotation mark as part of
the name, the quotation mark must be "doubled," as shown in the following example:

"This is a name containing ""embedded"" quote marks."

EVMS CLI keywords are not case sensitive, but EVMS names are case sensitive. Sizes can be input in any
units with a unit label, such as KB, MB, GB, or TB.

Finally, C programming language style comments are supported by the EVMS CLI. Comments can begin and
end anywhere except within a quoted string, as shown in the following example:

/* This is a comment */
Create:Vo/*This is a silly place for a comment, but it is
allowed.*/lume,"lvm/Sample Container/My LVM
Volume",compatibility

EVMS User Guide

Chapter 2. Using the EVMS interfaces 13



Chapter 3. The EVMS log file and error data
collection
This chapter discusses the EVMS information and error log file and the various logging levels. It also explains
how to change the logging level.

3.1. About the EVMS log file

The EVMS Engine creates a log file called /var/log/evmsEngine.log every time the Engine is
opened. The Engine also saves copies of up to 10 previous Engine sessions in the files
/var/log/evmsEngine.n.log, where n is the number of the session between 1 and 10.

3.2. Log file logging levels

There are several possible logging levels that you can choose to be collected in
/var/log/evmsEngine.log. The "lowest" logging level, critical, collects only messages about
serious system problems, whereas the "highest" level, everything, collects all logging related messages.
When you specify a particular logging level, the Engine collects messages for that level and all the levels
below it.

The following table lists the allowable log levels and the information they provide:

Table 3−1. EVMS logging levels

Level name Description

Critical
The health of the system or the Engine is in jeopardy;
for example, an operation has failed because there is
not enough memory.

Serious An operation did not succeed.

Error
The user has caused an error. The error messages are
provided to help the user correct the problem.

Warning
An error has occurred that the system might or might
not be able to work around.

Default
An error has occurred that the system has already
worked around.

Details Detailed information about the system.

Entry_Exit Traces the entries and exits of functions.

Debug Information that helps the user debug a problem.

Extra
More information that helps the user debug a problem
than the "Debug" level provides.

Everything Verbose output.

Chapter 3. The EVMS log file and error data collection 14



3.3. Specifying the logging levels

By default, when any of the EVMS interfaces is opened, the Engine logs the Default level of messages into
the /var/log/evmsEngine.log file. However, if your system is having problems and you want to see
more of what is happening, you can change the logging level to be higher; if you want fewer logging
messages, you can change the logging level to be lower. To change the logging level, specify the −d
parameter and the log level on the interface open call. The following examples show how to open the various
interfaces with the highest logging level (everything):

GUI:            evmsgui −d everything

Ncurses:        evmsn −d everything

CLI:            evms −d everything

NOTE

If you use the EVMS mailing list for help with a problem, providing to us the log file that is created
when you open one of the interfaces (as shown in the previous commands) makes it easier for us to help
you.

The EVMS GUI lets you change the logging level during an Engine session. To do so, follow these steps:

Select Settings−>Log Level−>Engine.1. 
Click the Level you want.2. 

The CLI command, probe, opens and closes the Engine, which causes a new log to start. The log that existed
before the probe command was issued is renamed /var/log/evmsEngine.1.log and the new log is
named /var/log/evmsEngine.log.

If you will be frequently using a different log level than the default, you can specify the default logging level
in /etc/evms.conf rather than having to use the −d option when starting the user interface. The
"debug_level" option in the "engine" section sets the default logging level for when the Engine is opened.
Using the −d option during the command invocation overrides the setting in /etc/evms.conf.

EVMS User Guide

Chapter 3. The EVMS log file and error data collection 15



Chapter 4. Viewing compatibility volumes after
migrating
Migrating to EVMS allows you to have the flexibility of EVMS without losing the integrity of your existing
data. EVMS discovers existing volume management volumes as compatibility volumes. After you have
installed EVMS, you can view your existing volumes with the interface of your choice.

4.1. Using the EVMS GUI

If you are using the EVMS GUI as your preferred interface, you can view your migrated volumes by typing
evmsgui at the command prompt. The following window opens, listing your migrated volumes.

Figure 4−1. GUI start−up window

4.2. Using Ncurses

If you are using the Ncurses interface, you can view your migrated volumes by typing evmsn at the command
prompt. The following window opens, listing your migrated volumes.

Figure 4−2. Ncurses start−up window

Chapter 4. Viewing compatibility volumes after migrating 16



4.3. Using the CLI

If you are using the Command Line Interpreter (CLI) interface, you can view your migrated volumes by
following these steps:

Start the Command Line Interpreter by typing evms at the command line.1. 
Query the volumes by typing the following at the EVMS prompt:
query:volumes

Your migrated volumes are displayed as results of the query.

2. 

Figure 4−3. CLI volume query results

EVMS User Guide

Chapter 4. Viewing compatibility volumes after migrating 17



EVMS User Guide

Chapter 4. Viewing compatibility volumes after migrating 18



Chapter 5. Obtaining interface display details
The EVMS interfaces let you view more detailed information about an EVMS object than what is readily
available from the main views of the EVMS user interfaces. The type and extent of additional information
available is dependent on the interface you use. For example, the EVMS GUI provides more in−depth
information than does the CLI.

The following sections show how to find detailed information on the region lvm/Sample
Container/Sample Region, which is part of volume /dev/evms/Sample Volume (created in
section 10.2).

5.1. Using the EVMS GUI

With the EVMS GUI, it is only possible to display additional details on an object through the Context
Sensitive Menus, as shown in the following steps:

Looking at the volumes view, click the "+" next to volume /dev/evms/Sample Volume.
Alternatively, look at the regions view.

1. 

Right click lvm/Sample Container/Sample Region.2. 
Point at Display Details... and click. A new window opens with additional information about the
selected region.

3. 

Click More by the Logical Extents box. Another window opens that displays the mappings of logical
extents to physical extents.

4. 

5.2. Using Ncurses

Follow these steps to display additional details on an object with Ncurses:

Press Tab to reach the Storage Regions view.1. 
Scroll down using the down arrow until lvm/Sample Container/Sample Region is
highlighted.

2. 

Press Enter.3. 
In the context menu, scroll down using the down arrow to highlight "Display Details..."4. 
Press Enter to activate the menu item.5. 
In the Detailed Information dialog, use the down arrow to highlight the "Logical Extents" item and
then use spacebar to open another window that displays the mappings of logical extents to physical
extents.

6. 

5.3. Using the CLI

Use the query command (abbreviated q) with filters to display details about EVMS objects. There are two
filters that are especially helpful for navigating within the command line: list options (abbreviated lo) and
extended info (abbreviated ei).

The list options command tells you what can currently be done and what options you can specify. To use this
command, first build a traditional query command starting with the command name query, followed by a
colon (:), and then the type of object you want to query (for example, volumes, objects, plug−ins). Then, you
can use filters to narrow the search to only the area you are interested in. For example, to determine the

Chapter 5. Obtaining interface display details 19



acceptable actions at the current time on lvm/Sample Container/Sample Region, enter the
following command:

query: regions, region="lvm/Sample Container/Sample Region", list options

The extended info filter is the equivalent of Display Details in the EVMS GUI and Ncurses interfaces. The
command takes the following form: query, followed by a colon (:), the filter (extended info), a comma (,),
and the object you want more information about. The command returns a list containing the field names,
titles, descriptions and values for each field defined for the object. For example, to obtain details on
lvm/Sample Container/Sample Region, enter the following command:

query: extended info, "lvm/Sample Container/Sample Region"

Many of the field names that are returned by the extended info filter can be expanded further by specifying
the field name or names at the end of the command, separated by commas. For example, if you wanted
additional information about logical extents, the query would look like the following:

query: extended info, "lvm/Sample Container/Sample Region", Extents

EVMS User Guide

Chapter 5. Obtaining interface display details 20



Chapter 6. Adding and removing a segment
manager
This chapter discusses when to use a segment manager, what the different types of segment managers are,
how to add a segment manager to a disk, and how to remove a segment manager.

6.1. When to add a segment manager

Adding a segment manager to a disk allows the disk to be subdivided into smaller storage objects called disk
segments. The add command causes a segment manager to create appropriate metadata and expose freespace
that the segment manager finds on the disk. You need to add segment managers when you have a new disk or
when you are switching from one partitioning scheme to another.

EVMS displays disk segments as the following types:

Data: a set of contiguous sectors that has been allocated from a disk and can be used to construct a
volume or object.

• 

Freespace: a set of contiguous sectors that are unallocated or not in use. Freespace can be used to
create a segment.

• 

Metadata: a set of contiguous sectors that contain information needed by the segment manager.• 

6.2. Types of segment managers

There are seven types of segment managers in EVMS: DOS, GPT, S/390, Cluster, BSD, MAC, and BBR.

6.2.1. DOS Segment Manager

The most commonly used segment manager is the DOS Segment Manager. This plug−in provides support for
traditional DOS disk partitioning. The DOS Segment Manager also recognizes and supports the following
variations of the DOS partitioning scheme:

OS/2: an OS/2 disk has additional metadata sectors that contain information needed to reconstruct
disk segments.

• 

Embedded partitions: support for BSD, SolarisX86, and UnixWare is sometimes found embedded in
primary DOS partitions. The DOS Segment Manager recognizes and supports these slices as disk
segments.

• 

6.2.2. GUID Partitioning Table (GPT) Segment Manager

The GUID Partitioning Table (GPT) Segment Manager handles the new GPT partitioning scheme on IA−64
machines. The Intel Extensible Firmware Interface Specification requires that firmware be able to discover
partitions and produce logical devices that correspond to disk partitions. The partitioning scheme described in
the specification is called GPT due to the extensive use of Globally Unique Identifier (GUID) tagging. GUID
is a 128 bit long identifier, also referred to as a Universally Unique Identifier (UUID). As described in the
Intel Wired For Management Baseline Specification, a GUID is a combination of time and space fields that
produce an identifier that is unique across an entire UUID space. These identifiers are used extensively on
GPT partitioned disks for tagging entire disks and individual partitions. GPT partitioned disks serve several

Chapter 6. Adding and removing a segment manager 21



functions, such as:

keeping a primary and backup copy of metadata• 
replacing msdos partition nesting by allowing many partitions• 
using 64 bit logical block addressing• 
tagging partitions and disks with GUID descriptors• 

The GPT Segment Manager scales better to large disks. It provides more redundancy with added reliability
and uses unique names. However, the GPT Segment Manager is not compatible with DOS, OS/2, or
Windows®.

6.2.3. S/390 Segment Manager

The S/390 Segment Manager is used exclusively on System/390 mainframes. The S/390 Segment Manager
has the ability to recognize various disk layouts found on an S/390 machine, and provide disk segment
support for this architecture. The two most common disk layouts are Linux Disk Layout (LDL) and Common
Disk Layout (CDL).

The principle difference between LDL and CDL is that an LDL disk cannot be further subdivided. An LDL
disk will produce a single metadata disk segment and a single data disk segment. There is no freespace on an
LDL disk, and you cannot delete or re−size the data segment. A CDL disk can be subdivided into multiple
data disk segments because it contains metadata that is missing from an LDL disk, specifically the Volume
Table of Contents (vtoc) information.

The S/390 Segment Manager is the only segment manager plug−in capable of understanding the unique S/390
disk layouts. The S/390 Segment Manager cannot be added or removed from a disk.

6.2.4. Cluster segment manager

The cluster segment manager (CSM) supports high availability clusters. When the CSM is added to a shared
storage disk, it writes metadata on the disk that:

provides a unique disk ID (guid)• 
names the EVMS container the disk will reside within• 
specifies the cluster node (nodeid) that owns the disk• 
specifies the cluster (clusterid)• 

This metadata allows the CSM to build containers for supporting failover situations. It does so by constructing
an EVMS container object that consumes all shared disks discovered by the CSM and belonging to the same
container. These shared storage disks are consumed by the container and a single data segment is produced by
the container for each consumed disk. A failover of the EVMS resource is accomplished by simply
reassigning the CSM container to the standby cluster node and having that node re−run its discovery process.

Adding disks to CSM containers implies that only disk storage objects are acceptable to the CSM. This is an
important aspect of the CSM. Other segment managers can be embedded within storage objects and used to
further subdivide them. However, the CSM cannot add any other kind of storage object to a CSM container
because the container is meant to be a disk group and the entire disk group is reassigned during a failover. So,
the CSM only accepts disks when constructing containers. This is important to remember when adding the
CSM to a disk. If you choose Add and the CSM does not appear in the list of selectable plug−ins when you
know you have a disk, you should look at the Volume list and see if the disk has already been listed as a

EVMS User Guide

Chapter 6. Adding and removing a segment manager 22



compatibility volume. If you simply delete the volume, the disk will become an available object and the CSM
will then appear in the list of plug−ins because it now has an available disk that it can add to a container.

6.2.5. BSD segment manager

BSD refers to the Berkeley Software Distribution UNIX® operating system. The EVMS BSD segment
manager is responsible for recognizing and producing EVMS segment storage objects that map BSD
partitions. A BSD disk may have a slice table in the very first sector on the disk for compatibility purposes
with other operating systems. For example, a DOS slice table might be found in the usual MBR sector. The
BSD disk would then be found within a disk slice that is located using the compatibility slice table. However,
BSD has no need for the slice table and can fully dedicate the disk to itself by placing the disk label in the
very first sector. This is called a "fully dedicated disk" because BSD uses the entire disk and does not provide
a compatibility slice table. The BSD segment manager recognizes such "fully dedicated disks" and provides
mappings for the BSD partitions.

6.2.6. MAC segment manager

Apple−partitioned disks use a disk label that is recognized by the MAC segment manager. The MAC segment
manager recognizes the disk label during discovery and creates EVMS segments to map the MacOS disk
partitions.

6.2.7. BBR segment manager

The bad block replacement (BBR) segment manager enhances the reliability of a disk by remapping bad
storage blocks. When BBR is added to a disk, it writes metadata on the disk that:

reserves replacement blocks• 
maps bad blocks to reserved blocks• 

Bad blocks occur when an I/O error is detected for a write operation. When this happens, I/O normally fails
and the failure code is returned to the calling program code. BBR detects failed write operations and remaps
the I/O to a reserved block on the disk. Afterward, BBR restarts the I/O using the reserve block.

Every block of storage has an address, called a logical block address, or LBA. When BBR is added to a disk,
it provides two critical functions: remap and recovery. When an I/O operation is sent to disk, BBR inspects
the LBA in the I/O command to see if the LBA has been remapped to a reserve block due to some earlier I/O
error. If BBR finds a mapping between the LBA and a reserve block, it updates the I/O command with the
LBA of the reserve block before sending it on to the disk. Recovery occurs when BBR detects an I/O error
and remaps the bad block to a reserve block. The new LBA mapping is saved in BBR metadata so that
subsequent I/O to the LBA can be remapped.

6.3. Adding a segment manager to an existing disk

When you add a segment manager to a disk, the segment manager needs to change the basic layout of the
disk. This change means that some sectors are reserved for metadata and the remaining sectors are made
available for creating data disk segments. Metadata sectors are written to disk to save information needed by
the segment manager; previous information found on the disk is lost. Before adding a segment manager to an
existing disk, you must remove any existing volume management structures, including any previous segment
manager.

EVMS User Guide

Chapter 6. Adding and removing a segment manager 23



6.4. Adding a segment manager to a new disk

When a new disk is added to a system, the disk usually contains no data and has not been partitioned. If this is
the case, the disk shows up in EVMS as a compatibility volume because EVMS cannot tell if the disk is being
used as a volume. To add a segment manager to the disk so that it can be subdivided into smaller disk segment
objects, tell EVMS that the disk is not a compatibility volume by deleting the volume information.

If the new disk was moved from another system, chances are good that the disk already contains metadata. If
the disk does contain metadata, the disk shows up in EVMS with storage objects that were produced from the
existing metadata. Deleting these objects will allow you to add a different segment manager to the disk, and
you lose any old data.

6.5. Example: add a segment manager

This section shows how to add a segment manager with EVMS.

EVMS initially displays the physical disks it sees as volumes. Assume that you have added a new disk to the
system that EVMS sees as sde. This disk contains no data and has not been subdivided (no partitions).
EVMS assumes that this disk is a compatibility volume known as /dev/evms/sde.

Example 6−1. Add the DOS Segment Manager

Add the DOS Segment Manager to disk sde.

NOTE

In the following example, the DOS Segment Manager creates two segments on the disk: a metadata
segment known as sde_mbr, and a segment to represent the available space on the drive,
sde_freespace1. This freespace segment (sde_freespace1) can be divided into other segments
because it represents space on the drive that is not in use.

6.5.1. Using the EVMS GUI

To add the DOS Segment Manager to sde, first remove the volume, /dev/evms/sde:

Select Actions−>Delete−>Volume.1. 
Select /dev/evms/sde.2. 
Click Delete.3. 

Alternatively, you can remove the volume through the GUI context sensitive menu:

From the Volumes tab, right click /dev/evms/sde.1. 
Click Delete.2. 

After the volume is removed, add the DOS Segment Manager:

EVMS User Guide

Chapter 6. Adding and removing a segment manager 24



Select Actions−>Add−>Segment Manager to Storage Object.1. 
Select DOS Segment Manager.2. 
Click Next.3. 
Select sde4. 
Click Add5. 

6.5.2. Using Ncurses

To add the DOS Segment Manager to sde, first remove the volume /dev/evms/sde:

Select Actions−>Delete−>Segment Manager to Storage Object.1. 
Select /dev/evms/sde.2. 
Activate Delete.3. 

Alternatively, you can remove the volume through the context sensitive menu:

From the Logical Volumes view, press Enter on /dev/evms/sde.1. 
Activate Delete.2. 

After the volume is removed, add the DOS Segment Manager:

Select Actions−>Add−>Segment Manager to Storage Object1. 
Select DOS Segment Manager.2. 
Activate Next.3. 
Select sde.4. 
Activate Add.5. 

6.5.3. Using the CLI

To add the DOS Segment Manager to sde, first tell EVMS that this disk is not a volume and is available for
use:

Delete:/dev/evms/sde

Next, add the DOS Segment Manager to sde by typing the following:

Add:DosSegMgr={},sde

6.6. Removing a segment manager

When a segment manager is removed from a disk, the disk can be reused by other plug−ins. The remove
command causes the segment manager to remove its partition or slice table from the disk, leaving the raw disk
storage object that then becomes an available EVMS storage object. As an available storage object, the disk is
free to be used by any plug−in when storage objects are created or expanded. You can also add any of the
segment managers to the available disk storage object to subdivide the disk into segments.

Most segment manager plug−ins check to determine if any of the segments are still in use by other plug−ins or
are still part of volumes. If a segment manager determines that there are no disks from which it can safely
remove itself, it will not be listed when you use the remove command. In this case, you should delete the

EVMS User Guide

Chapter 6. Adding and removing a segment manager 25



volume or storage object that is consuming segments from the disk you want to reuse.

6.7. Example: remove a segment manager

This section shows how to remove a segment manager with EVMS.

Example 6−2. Remove the DOS Segment Manager

Remove the DOS Segment Manager from disk sda.

NOTE

In the following example, the DOS Segment Manager has one primary partition on disk sda. The
segment is a compatibility volume known as /dev/evms/sda1.

6.7.1. Using the EVMS GUI context sensitive menu

Follow these steps to remove a segment manager with the GUI context sensitive menu:

From the Volumes tab, right click /dev/evms/sda1..1. 
Click Delete.2. 
Select Actions−>Remove−>Segment Manager from Storage Object.3. 
Select DOS Segment Manager, sda.4. 
Click Remove.5. 

6.7.2. Using Ncurses

Follow these steps to remove a segment manager with the Ncurses interface:

Select Actions−>Delete−>Volume.1. 
Select /dev/evms/sda1.2. 
Click Delete.3. 
Select Actions−>Remove−>Segment Manager from Storage Object.4. 
Click Remove.5. 

6.7.3. Using the CLI

Follow these steps to remove a segment manager with the CLI:

Delete:/dev/evms/sda1

Remove: sda

EVMS User Guide

Chapter 6. Adding and removing a segment manager 26



Chapter 7. Creating segments
This chapter discusses when to use segments and how to create them using different EVMS interfaces.

7.1. When to create a segment

A disk can be subdivided into smaller storage objects called disk segments. A segment manager plug−in
provides this capability. Another reason for creating disk segments is to maintain compatibility on a dual boot
system where the other operating system requires disk partitions. Before creating a disk segment, you must
choose a segment manager plug−in to manage the disk and assign the segment manager to the disk. An
explanation of when and how to assign segment managers can be found in Chapter 6.

7.2. Example: create a segment

This section provides a detailed explanation of how to create a segment with EVMS by providing instructions
to help you complete the following task:

Example 7−1. Create a 100MB segment

Create a 100MB segment from the freespace segment sde_freespace1. This freespace segment
lies on a drive controlled by the DOS Segment Manager.

7.2.1. Using the EVMS GUI

To create a segment using the GUI, follow the steps below:

Select Actions−>Create−>Segment to see a list of segment manager plug−ins.1. 
Select DOS Segment Manager. Click Next.

The next dialog window lists the free space storage objects suitable for creating a new segment.

2. 

Select sde_freespace1. Click Next.

The last dialog window presents the free space object you selected as well as the available
configuration options for that object.

3. 

Enter 100 MB. Required fields are denoted by the "*" in front of the field description. The DOS
Segment Manager provides default values, but you might want to change some of these values.

After you have filled in information for all the required fields, the Create button becomes available.

4. 

Click Create. A window opens to display the outcome.5. 

Alternatively, you can perform some of the steps to create a segment from the GUI context sensitive menu:

From the Segments tab, right click on sde_freespace1.1. 
Click Create Segment...2. 
Continue beginning with step 4 of the GUI instructions.3. 

Chapter 7. Creating segments 27



7.2.2. Using Ncurses

To create a segment using Ncurses, follow these steps:

Select Actions−>Create−>Segment to see a list of segment manager plug−ins.1. 
Select DOS Segment Manager. Activate Next.

The next dialog window lists free space storage objects suitable for creating a new segment.

2. 

Select sde_freespace1. Activate Next.3. 
Highlight the size field and press spacebar.4. 
At the "::" prompt enter 100MB. Press Enter.5. 
After all required values have been completed, the Create button becomes available.6. 
Activate Create.7. 

Alternatively, you can perform some of the steps to create a segment from the context sensitive menu:

From the Segments view, press Enter on sde_freespace1.1. 
Activate Create Segment.2. 
Continue beginning with step 4 of the Ncurses instructions.3. 

7.2.3. Using the CLI

To create a data segment from a freespace segment, use the Create command. The arguments the Create
command accepts vary depending on what is being created. The first argument to the Create command
indicates what is to be created, which in the above example is a segment. The remaining arguments are the
freespace segment to allocate from and a list of options to pass to the segment manager. The command to
accomplish this is:

Create: Segment,sde_freespace1, size=100MB

NOTE

The Allocate command also works to create a segment.

The previous example accepts the default values for all options you don't specify. To see the options for this
command type:

query:plugins,plugin=DosSegMgr,list options

EVMS User Guide

Chapter 7. Creating segments 28



Chapter 8. Creating a container
This chapter discusses when and how to create a container.

8.1. When to create a container

Segments and disks can be combined to form a container. Containers allow you to combine storage objects
and then subdivide those combined storage objects into new storage objects. You can combine storage objects
to implement the volume group concept as found in the AIX and Linux logical volume managers.

Containers are the beginning of more flexible volume management. You might want to create a container in
order to account for flexibility in your future storage needs. For example, you might need to add additional
disks when your applications or users need more storage.

8.2. Example: create a container

This section provides a detailed explanation of how to create a container with EVMS by providing
instructions to help you complete the following task.

Example 8−1. Create "Sample Container"

Given a system with three available disk drives (sdc, sdd, hdc), use the EVMS LVM
Region Manager to combine these disk drives into a container called "Sample Container"
with a PE size of 16 MB.

8.2.1. Using the EVMS GUI

To create a container using the EVMS GUI, follow these steps:

Select Actions−>Create−>Container to see a list plug−ins that support container creation.1. 
Select the LVM Region Manager. Click Next.

The next dialog window contains a list of storage objects that the LVM Region Manager can use to
create a container.

2. 

Select sdc, sdd, and hdc from the list. Click Next.3. 
Enter the name Sample Container for the container and 16MB in the PE size field.4. 
Click Create. A window opens to display the outcome.5. 

8.2.2. Using Ncurses

To create a container using the Ncurses interface, follow these steps:

Select Actions−>Create−>Container to see a list of plug−ins that support container creation.1. 
Select the LVM Region Manager. Activate Next.2. 

Chapter 8. Creating a container 29



The next dialog window contains a list of storage objects that the LVM Region Manager can use to
create the container.
Select sdc, sdd, and hdc from the list. Activate Next.3. 
Press spacebar to select the field for the container name.4. 
Type Sample Container at the "::" prompt. Press Enter.5. 
Scroll down until PE Size is highlighted. Press spacebar.6. 
Scroll down until 16MB is highlighted. Press spacebar.7. 
Activate OK.8. 
Activate Create.9. 

8.2.3. Using the CLI

The Create command creates containers. The first argument in the Create command is the type of object to
produce, in this case a container. The Create command then accepts the following arguments: the region
manager to use along with any parameters it might need, and the segments or disks to create the container
from. The command to complete the previous example is:

Create:Container,LvmRegMgr={name="Sample Container",pe_size=16MB},sdc,sdd,hdc

The previous example accepts the default values for all options you don't specify. To see the options for this
command type:

query:plugins,plugin=LvmRegMgr,list options

EVMS User Guide

Chapter 8. Creating a container 30



Chapter 9. Creating regions
Regions can be created from containers, but they can also be created from other regions, segments, or disks.
Most region managers that support containers create one or more freespace regions to represent the freespace
within the container. This function is analogous to the way a segment manager creates a freespace segment to
represent unused disk space.

9.1. When to create regions

You can create regions because you want the features provided by a certain region manager or because you
want the features provided by that region manager. You can also create regions to be compatible with other
volume management technologies, such as MD or LVM. For example, if you wanted to make a volume that is
compatible with Linux LVM, you would create a region out of a Linux LVM container and then a
compatibility volume from that region.

9.2. Example: create a region

This section tells how to create a region with EVMS by providing instructions to help you complete the
following task.

Example 9−1. Create "Sample Region"

Given the container "Sample Container," which has a freespace region of 8799 MB, create a
data region 1000 MB in size named "Sample Region."

9.2.1. Using the EVMS GUI

To create a region, follow these steps:

Select Actions−>Create−>Region1. 
Select the LVM Region Manager. Click Next.

NOTE

You might see additional region managers that were not in the selection list when you were
creating the storage container because not all region managers are required to support containers.

2. 

Select the freespace region from the container you created in Chapter 8. Verify that the region is
named lvm/Sample Container/Freespace. Click Next.

The fields in the next window are the options for the LVM Region Manager plug−in, the options
marked with an "*" are required.

3. 

Fill in the name, Sample Region.4. 
Enter 1000MB in the size field.5. 
Click the Create button to complete the operation. A window opens to display the outcome.6. 

Alternatively, you can perform some of the steps for creating a region with the GUI context sensitive menu:

Chapter 9. Creating regions 31



From the Regions tab, right click lvm/Sample Container/Freespace.1. 
Click Create Region.2. 
Continue beginning with step 4 of the GUI instructions.3. 

9.2.2. Using Ncurses

To create a region, follow these steps:

Select Actions−>Create−>Region.1. 
Select the LVM Region Manager. Activate Next.2. 
Select the freespace region from the container you created earlier in Chapter 8. Verify that the region
is named lvm/Sample Container/Freespace.

3. 

Scroll to the Name field, and press spacebar.4. 
Type Sample Region at the "::" prompt. Press Enter.5. 
Scroll to the size field, and press spacebar.6. 
Type 1000MB at the "::" prompt. Press Enter.7. 
Activate Create.8. 

Alternatively, you can perform some of the steps for creating a region with the context sensitive menu:

From the Storage Regions view, press Enter on lvm/Sample Container/Freespace.1. 
Activate the Create Region menu item.2. 
Continue beginning with step 4 of the Ncurses instructions.3. 

9.2.3. Using the CLI

Create regions with the Create command. Arguments to the Create command are the following: keyword
Region, the name of the region manager to use, the region managers options, and the objects to consume. The
form of this command is:

Create:region, LvmRegMgr={name="Sample Region", size=1000MB},
"lvm/Sample Container/Freespace"

The LVM Region Manager supports many options for creating regions. To see the available options for
creating regions and containers, use the following Query:

query:plugins,plugin=LvmRegMgr,list options

EVMS User Guide

Chapter 9. Creating regions 32



Chapter 10. Creating drive links
This chapter discusses the EVMS drive linking feature, which is implemented by the drive link plug−in, and
tells how to create, expand, shrink, and delete a drive link.

10.1. What is drive linking?

Drive linking linearly concatenates objects, allowing you to create larger storage objects and volumes from
smaller individual pieces. For example, say you need a 1 GB volume but do not have contiguous space
available of that length. Drive linking lets you link two or more objects together to form the 1 GB volume.

The types of objects that can be drive linked include disks, segments, regions, and other feature objects.

Any resizing of an existing drive link, whether to grow it or shrink it, must be coordinated with the
appropriate file system operations. EVMS handles these file system operations automatically.

Because drive linking is an EVMS−specific feature that contains EVMS metadata, it is not backward
compatible with other volume−management schemes.

10.2. How drive linking is implemented

The drive link plug−in consumes storage objects, called link objects, which produce a larger drive link object
whose address space spans the link objects. The drive link plug−in knows how to assemble the link objects so
as to create the exact same address space every time. The information required to do this is kept on each link
child as persistent drive−link metadata. During discovery, the drive link plug−in inspects each known storage
object for this metadata. The presence of this metadata identifies the storage object as a link object. The
information contained in the metadata is sufficient to:

Identify the link object itself.• 
Identify the drive link storage object that the link object belongs to.• 
Identify all link objects belonging to the drive link storage. object• 
Establish the order in which to combine the child link objects.• 

If any link objects are missing at the conclusion of the discovery process, the drive link storage object
contains gaps where the missing link objects occur. In such cases, the drive link plug−in attempts to fill in the
gap with a substitute link object and construct the drive link storage object in read−only mode, which allows
for recovery action. The missing object might reside on removable storage that has been removed or perhaps a
lower layer plug−in failed to produce the missing object. Whatever the reason, a read−only drive link storage
object, together logging errors, help you take the appropriate actions to recover the drive link.

10.3. Creating a drive link

The drive link plug−in provides a list of acceptable objects from which it can create a drive−link object. When
you create an EVMS storage object and then choose the drive link plug−in, a list of acceptable objects is
provided that you can choose from. The ordering of the drive link is implied by the order in which you pick
objects from the provided list. After you provide a name for the new drive−link object, the identified link
objects are consumed and the new drive−link object is produced. The name for the new object is the only
option when creating a drive−link.

Chapter 10. Creating drive links 33



Only the last object in a drive link can be expanded, shrunk or removed. Additionally, a new object can be
added to the end of an existing drive link only if the file system (if one exists) permits. Any resizing of a drive
link, whether to grow it or shrink it, must be coordinated with the appropriate file system operations. EVMS
handles these file system operations automatically.

10.4. Example: create a drive link

This section shows how to create a drive link with EVMS:

Example 10−1. Create a drive link

Create a new drive link consisting of sde4 and hdc2, and call it "dl."

10.4.1. Using the EVMS GUI

To create the drive link using the GUI, follow these steps:

Select Actions−>Create−>Feature Object to see a list of EVMS features.1. 
Select Drive Linking Feature.2. 
Click Next.3. 
Click the objects you want to compose the drive link: sde4 and hdc2.4. 
Click Next.5. 
Type dl in the "name" field6. 
Click Create.

The last dialog window presents the free space object you selected as well as the available
configuration options for that object.

7. 

Alternatively, you can perform some of the steps to create a drive link with the GUI context sensitive menu:

From the Available Objects tab, right click sde4.1. 
Click Create Feature Object...2. 
Continue creating the drive link beginning with step 2 of the GUI instructions. In step 4, sde4 is
selected for you. You can also select hdc2.

3. 

10.4.2. Using Ncurses

To create the drive link, follow these steps:

Select Actions−>Create−>Feature Object to see a list of EVMS features.1. 
Select Drive Linking Feature.2. 
Activate Next.3. 
Use spacebar to select the objects you want to compose the drive link from: sde4 and hdc2.4. 
Activate Next.5. 
Press spacebar to edit the Name field.6. 
Type dl at the "::" prompt. Press Enter.7. 
Activate Create.8. 

EVMS User Guide

Chapter 10. Creating drive links 34



Alternatively, you can perform some of the steps to create a drive link with the context sensitive menu:

From the Available Objects view, press Enter on sde4.1. 
Activate the Create Feature Object menu item.2. 
Continue creating the drive link beginning with step 4 of the Ncurses instructions. sde4 will be
pre−selected. You can also select hdc2.

3. 

10.4.3. Using the CLI

Use the create command to create a drive link through the CLI. You pass the "object" keyword to the create
command, followed by the plug−in and its options, and finally the objects.

To determine the options for the plug−in you are going to use, issue the following command:

query: plugins, plugin=DriveLink, list options

Now construct the create command, as follows:

create: object, DriveLink={Name=dl}, sde4, hdc2

10.5. Expanding a drive link

A drive link is an aggregating storage object that is built by combining a number of storage objects into a
larger resulting object. A drive link consumes link objects in order to produce a larger storage object. The
ordering of the link objects as well as the number of sectors they each contribute is described by drive link
metadata. The metadata allows the drive link plug−in to recreate the drive link, spanning the link objects in a
consistent manner. Allowing any of these link objects to expand would corrupt the size and ordering of link
objects; the ordering of link objects is vital to the correct operation of the drive link. However, expanding a
drive link can be controlled by only allowing sectors to be added at the end of the drive link storage object.
This does not disturb the ordering of link objects in any manner and, because sectors are only added at the end
of the drive link, existing sectors have the same address (logical sector number) as before the expansion.
Therefore, a drive link can be expanded by adding additional sectors in two different ways:

By adding an additional storage object to the end of the drive link.• 
By expanding the last storage object in the drive link.• 

If the expansion point is the drive link storage object, you can perform the expansion by adding an additional
storage object to the drive link. This is done by choosing from a list of acceptable objects during the expand
operation. Multiple objects can be selected and added to the drive link.

If the expansion point is the last storage object in the drive link, then you expand the drive link by interacting
with the plug−in that produced the object. For example, if the link was a segment, then the segment manager
plug−in that produced the storage object expands the link object. Afterwords, the drive link plug−in notices
the size difference and updates the drive link metadata to reflect the resize of the child object.

There are no expand options.

EVMS User Guide

Chapter 10. Creating drive links 35



10.6. Shrinking a drive link

Shrinking a drive link has the same restrictions as expanding a drive link. A drive link object can only be
shrunk by removing sectors from the end of the drive link. This can be done in the following ways:

By removing link objects from the end of the drive link.• 
By shrinking the last storage object in the drive link.• 

The drive link plug−in attempts to orchestrate the shrinking of a drive−link storage object by only listing the
last link object. If you select this object, the drive link plug−in then lists the next−to−last link object, and so
forth, moving backward through the link objects to satisfy the shrink command.

If the shrink point is the last storage object in the drive link, then you shrink the drive link by interacting with
the plug−in that produced the object.

There are no shrink options.

10.7. Deleting a drive link

A drive link can be deleted as long as it is not currently a compatibility volume, an EVMS volume, or
consumed by another EVMS plug−in.

No options are available for deleting a drive link storage object.

EVMS User Guide

Chapter 10. Creating drive links 36



Chapter 11. Creating snapshots
This chapter discusses snapshotting and tells how to create a snapshot.

11.1. What is a snapshot?

A snapshot represents a frozen image of a volume. The source of a snapshot is called an "original." When a
snapshot is created, it looks exactly like the original at that point in time. As changes are made to the original,
the snapshot remains the same and looks exactly like the original at the time the snapshot was created.

Snapshotting allows you to keep a volume online while a backup is created. This method is much more
convenient than a data backup where a volume must be taken offline to perform a consistent backup. When
snapshotting, a snapshot of the volume is created and the backup is taken from the snapshot, while the original
remains in active use.

11.2. Creating and activating snapshot objects

Creating and activating a snapshot is a two−step process. The first step is to create the snapshot object. The
snapshot object specifies where the saved data will be stored when changes are made to the original. The
second step is to activate the object, which is to make an EVMS volume from the object.

11.2.1. Creating a snapshot

You can create a snapshot object from any unused storage object in EVMS (disks, segments, regions, or
feature objects). The size of this consumed object is the size available to the snapshot object. The snapshot
object can be smaller or larger than the original volume. If the object is smaller, the snapshot volume could fill
up as data is copied from the original to the snapshot, given sufficient activity on the original. In this situation,
the snapshot is deactivated and additional I/O to the snapshot fails.

Base the size of the snapshot object on the amount of activity that is likely to take place on the original during
the lifetime of the snapshot. The more changes that occur on the original and the longer the snapshot is
expected to remain active, the larger the snapshot object should be. Clearly, determining this calculation is not
simple and requires trial and error to determine the correct snapshot object size to use for a particular
situation. The goal is to create a snapshot object large enough to prevent the shapshot from being deactivated
if it fills up, yet small enough to not waste disk space. If the snapshot object is the same size as the original
volume, or a little larger, to account for the snapshot mapping tables, the snapshot is never deactivated.

11.2.2. Activating a snapshot

After you create a snapshot, activate it by making an EVMS volume from the object. After you create the
volume and save the changes, the snapshot is active. The only option you have to specify for activating
snapshots is the name to give the EVMS volume. This name can be the same as or different than the name of
the snapshot object.

Chapter 11. Creating snapshots 37



11.3. Example: create a snapshot

This section shows how to create a snapshot with EVMS:

Example 11−1. Create a snapshot of a volume

Create a new snapshot of /dev/evms/vol on lvm/Sample Container/Sample
Region, and call it "snap."

11.3.1. Using the EVMS GUI

To create the snapshot using the GUI, follow these steps:

Select Actions−>Create−>Feature Object to see a list of EVMS feature objects.1. 
Select Snapshot Feature.2. 
Click Next.3. 
Select lvm/Sample Container/Sample Region.4. 
Click Next.5. 
Select /dev/evms/vol from the list in the "Volume to be Snapshotted" field.6. 
Type snap in the "Snapshot Object Name" field.7. 
Click Create.8. 

Alternatively, you can perform some of the steps to create a snapshot with the GUI context sensitive menu:

From the Available Objects tab, right click lvm/Sample Container/Sample Region.1. 
Click Create Feature Object...2. 
Continue creating the snapshot beginning with step 2 of the GUI instructions. You can skip steps 4
and 5 of the GUI instructions.

3. 

11.3.2. Using Ncurses

To create the snapshot, follow these steps:

Select Actions−>Create−>Feature Object to see a list of EVMS feature objects.1. 
Select Snapshot Feature.2. 
Activate Next.3. 
Select lvm/Sample Container/Sample Region.4. 
Activate Next.5. 
Press spacebar to edit the "Volume to be Snapshotted" field.6. 
Highlight /dev/evms/vol and press spacebar to select.7. 
Activate OK.8. 
Highlight "Snapshot Object Name" and press spacebar to edit.9. 
Type snap at the "::" prompt. Press Enter.10. 
Activate Create.11. 

Alternatively, you can perform some of the steps to create a snapshot with the context sensitive menu:

EVMS User Guide

Chapter 11. Creating snapshots 38



From the Available Objects view, press Enter on lvm/Sample Container/Sample Region.1. 
Activate the Create Feature Object menu item.2. 
Continue creating the snapshot beginning with step 6 of the Ncurses instructions.3. 

11.3.3. Using the CLI

Use the create command to create a snapshot through the CLI. You pass the "Object" keyword to the create
command, followed by the plug−in and its options, and finally the objects.

To determine the options for the plug−in you are going to use, issue the following command:

query: plugins, plugin=Snapshot, list options

Now construct the create command, as follows:

create: object, Snapshot={original=/dev/evms/vol, snapshot=snap}, 
"lvm/Sample Container/Sample Region"

11.4. Reinitializing a snapshot

Snapshots can be reinitialized. Reinitializing causes all of the saved data to be erased and starts the snapshot
from the current point in time. A reinitialized snapshot has the same original, chunk size, and writeable flags
as the original snapshot.

To reinitialize a snapshot, use the Reset command on the snapshot object (not the snapshot volume). This
command reinitializes the snapshot without requiring you to manually delete and recreate the volume. The
snapshot volume must be unmounted for it to be reinitialized.

This section continues the example from the previous section, where a snapshot object and volume were
created. The snapshot object is called "snap" and the volume is called "/dev/evms/snap."

11.4.1. Using the EVMS GUI or Ncurses

To reinitialize a snapshot, follow these steps:

Select Actions−>Other−>Storage Object Tasks1. 
Select the volume "snap."2. 
Click Next.3. 
Select Reset.4. 
Click Next.5. 
Click Reset on the action panel.6. 
Click Reset on the warning panel.7. 

Alternatively, you can perform these same steps with the context sensitive menus:

From the Feature Objects panel, right click (or press Enter on) the object snap.1. 
Click Reset on the popup menu.2. 
Click Reset on the action panel.3. 
Click Reset on the warning panel.4. 

EVMS User Guide

Chapter 11. Creating snapshots 39



11.4.2. Using the CLI

Follow these steps to reinitialize a snapshot with the CLI:

Issue the following command to the CLI:
task:reset,snap

1. 

Press Enter to select "Reset" (the default choice) at the warning message.2. 

11.5. Expanding a snapshot

As mentioned in the Section 11.2, as data is copied from the original volume to the snapshot, the space
available for the snapshot might fill up, causing the snapshot to be invalidated. This situation might cause
your data backup to end prematurely, as the snapshot volume begins returning I/O errors after it is invalidated.

To solve this problem, EVMS now has the ability to expand the storage space for a snapshot object while the
snapshot volume is active and mounted. This feature allows you to initially create a small snapshot object and
expand the object as necessary as the space begins to fill up.

In order to expand the snapshot object, the underlying object must be expandable. Continuing the example
from the previous sections, the object "snap" is built on the LVM region lvm/Sample
Container/Sample Region. When we refer to expanding the "snap" object, the region lvm/Sample
Container/Sample Region is the object that actually gets expanded, and the object "snap" simply
makes use of the new space on that region. Thus, to have expandable snapshots, you will usually want to build
your snapshot objects on top of LVM regions that have extra freespace available in their LVM container.
DriveLink objects and some disk segments also work in certain situations.

One notable quirk about expanding snapshots is that the snapshot object and volume do not actually appear to
expand after the operation is complete. Because the snapshot volume is supposed to be a frozen image of the
original volume, the snapshot volume always has the same size as the original, even if the snapshot has been
expanded. However, you can verify that the snapshot object is using the additional space by displaying the
details for the snapshot object and comparing the percent−full field before and after the expand operation.

11.5.1. Using the EVMS GUI or Ncurses

To create the snapshot using the GUI or Ncurses, follow these steps:

Select Actions−>Expand−>Volume to see a list of EVMS feature objects.1. 
Select the volume /dev/evms/snap.2. 
Click Next.3. 
Select lvm/Sample Container/Sample Region. This object is the object that will actually be expanded.4. 
Click Next.5. 
Select the options for expanding the LVM region, including the amount of extra space to add to the
region.

6. 

Click Expand.7. 

Alternatively, you can perform the same steps using the context sensitive menus.

From the Volumes panel, right click (or press Enter on) /dev/evms/snap.1. 

EVMS User Guide

Chapter 11. Creating snapshots 40



Select Expand from the popup menu.2. 
Click Next.3. 
Select the region lvm/Sample Container/Sample Region. This is the object that will actually be
expanded.

4. 

Click Next.5. 
Select the options for expanding the LVM region, including the amount of extra space to add to the
region.

6. 

Click Expand.7. 

11.5.2. Using the CLI

The CLI expands volumes by targeting the object to be expanded. The CLI automatically handles expanding
the volume and other objects above the volume in the volume stock. As with a regular expand operation, the
options are determined by the plug−in that owns the object being expanded.

Issue the following command to determine the expand options for the region lvm/Sample
Container/Sample Region:

query:region,region="lvm/Sample Container/Sample Region",lo

The option to use for expanding this region is called "add_size." Issue the following command to expand the
snapshot by 100 MB:

expand:"lvm/Sample Container/Sample Region", add_size=100MB

11.6. Deleting a snapshot

When a snapshot is no longer needed, you can remove it by deleting the EVMS volume from the snapshot
object, and then deleting the snapshot object. Because the snapshot saved the initial state of the original
volume (and not the changed state), the original is always up−to−date and does not need any modifications
when a snapshot is deleted.

No options are available for deleting snapshots.

11.7. Rolling back a snapshot

Situations can arise where a user wants to restore the original volume to the saved state of the snapshot. This
action is called a rollback. One such scenario is if the data on the original is lost or corrupted. Snapshot
rollback acts as a quick backup and restore mechanism, and allows the user to avoid a more lengthy restore
operation from tapes or other archives.

Another situation where rollback can be particularly useful is when you are testing new software. Before you
install a new software package, create a writeable snapshot of the target volume. You can then install the
software to the snapshot volume, instead of to the original, and then test and verify the new software on the
snapshot. If the testing is successful, you can then roll back the snapshot to the original and effectively install
the software on the regular system. If there is a problem during the testing, you can simply delete the snapshot
without harming the original volume.

You can perform a rollback when the following conditions are met:

EVMS User Guide

Chapter 11. Creating snapshots 41



Both the snapshot and the original volumes are unmounted and otherwise not in use.• 
There is only a single snapshot of an original.

If an original has multiple snapshots, all but the desired snapshot must be deleted before rollback can
take place.

• 

No options are available for rolling back snapshots.

11.7.1. Using the EVMS GUI or Ncurses

Follow these steps to roll back a snapshot with the EVMS GUI or Ncurses:

Select Actions−>Other−>Storage Object Tasks+.+ +1. 
Select the object "snap."2. 
Click Next.3. 
Select Rollback .4. 
Click Next.5. 
Click Rollback on the action panel.6. 
Click Rollback on the warning panel.7. 

Alternatively, you can perform these same steps with the context sensitive menus:

From the Feature Objects panel, right click (or press Enter on) the object "snap."1. 
Click Rollback on the popup menu.2. 
Click Rollback on the action panel.3. 
Click Rollback on the warning panel.4. 

11.7.2. Using the CLI

Follow these steps to roll back a snapshot with the CLI:

Issue the following command to the CLI:
task:rollback,snap

1. 

Press Enter to select "Rollback" (the default choice) at the warning message.2. 

EVMS User Guide

Chapter 11. Creating snapshots 42



Chapter 12. Creating volumes
This chapter discusses when and how to create volumes.

12.1. When to create a volume

EVMS treats volumes and storage objects separately. A storage object does not automatically become a
volume; it must be made into a volume.

Volumes are created from storage objects. Volumes are either EVMS native volumes or compatibility
volumes. Compatibility volumes are intended to be compatible with a volume manager other than EVMS,
such as the Linux LVM, MD, OS/2 or AIX. Compatibility volumes might have restrictions on what EVMS
can do with them. EVMS native volumes have no such restrictions, but they can be used only by an EVMS
equipped system. Volumes are mountable and can contain file systems.

EVMS native volumes contain EVMS−specific information to identify the volume name. After this volume
information is applied, the volume is no longer fully backward compatible with existing volume types.

Instead of adding EVMS metadata to an existing object, you can tell EVMS to make an object directly
available as a volume. This type of volume is known as a compatibility volume. Using this method, the final
product is fully backward−compatible with the desired system.

12.2. Example: create an EVMS native volume

This section provides a detailed explanation of how to create an EVMS native volume with EVMS by
providing instructions to help you complete the following task.

Example 12−1. Create an EVMS native volume

Create an EVMS native volume called "Sample Volume" from the region, /lvm/Sample
Container/Region, you created in Chapter 9.

12.2.1. Using the EVMS GUI

Follow these instructions to create an EVMS volume:

Select Actions−>Create−>EVMS Volume.1. 
Choose lvm/Sample Container/Sample Region.2. 
Type Sample Volume in the name field.3. 
Click Create.4. 

Alternatively, you can perform some of the steps to create an EVMS volume from the GUI context sensitive
menu:

From the Available Options tab, right click lvm/Sample Container/Sample Region.1. 
Click Create EVMS Volume...2. 

Chapter 12. Creating volumes 43



Continue beginning with step 3 of the GUI instructions.3. 

12.2.2. Using Ncurses

To create a volume, follow these steps:

Select Actions−>Create−>EVMS Volume.1. 
Enter Sample Volume at the "name" prompt. Press Enter.2. 
Activate Create.3. 

Alternatively, you can perform some of the steps to create an EVMS volume from the context sensitive menu:

From the Available Objects view, press Enter on lvm/Sample Container/Sample Region.1. 
Activate the Create EVMS Volume menu item.2. 
Continue beginning with step 3 of the Ncurses instructions.3. 

12.2.3. Using the CLI

To create a volume, use the Create command. The arguments the Create command accepts vary depending
on what is being created. In the case of the example, the first argument is the key word volume that specifies
what is being created. The second argument is the object being made into a volume, in this case
lvm/Sample Container/Sample Region. The third argument is type specific for an EVMS volume,
Name=, followed by what you want to call the volume, in this case Sample Volume. The following
command creates the volume from the example.

Create: Volume, "lvm/Sample Container/Sample Region", Name="Sample Volume"

12.3. Example: create a compatibility volume

This section provides a detailed explanation of how to create a compatibility volume with EVMS by
providing instructions to help you complete the following task.

Example 12−2. Create a compatibility volume

Create a compatibility volume called "Sample Volume" from the region, /lvm/Sample
Container/Region, you created in Chapter 9.

12.3.1. Using the GUI

To create a compatibility volume, follow these steps:

Select Actions−>Create−>Compatibility Volume.1. 
Choose the region lvm/Sample Container/Sample Region from the list.2. 
Click the Create button.3. 
Click the Volume tab in the GUI to see a volume named /dev/evms/lvm/Sample
Container/Sample Region. This volume is your compatibility volume.

4. 

EVMS User Guide

Chapter 12. Creating volumes 44



Alternatively, you can perform some of the steps to create a compatibility volume from the GUI context
sensitive menu:

From the Available Objects tab, right click lvm/Sample Container/Sample Region.1. 
Click Create Compatibility Volume...2. 
Continue beginning with step 3 of the GUI instructions.3. 

12.3.2. Using Ncurses

To create a compatibility volume, follow these steps:

Select Actions−>Create−>Compatibility Volume.1. 
Choose the region lvm/Sample Container/Storage Region from the list..2. 
Activate Create.3. 

Alternatively, you can perform some of the steps to create a compatibility volume from the context sensitive
menu:

From the Available Objects view, press Enter on lvm/Sample Container/Sample Region.1. 
Activate the Create Compatibility Volume menu item.2. 
Continue beginning with step 3 of the Ncurses instructions.3. 

12.3.3. Using the CLI

To create a volume, use the Create command. The arguments the Create command accepts vary depending
on what is being created. In the case of the example, the first argument is the key word volume that specifies
what is being created. The second argument is the object being made into a volume, in this case
lvm/Sample Container/Sample Region. The third argument, compatibility, indicates that
this is a compatibility volume and should be named as such.

Create:Volume,"lvm/Sample Container/Sample Region",compatibility

EVMS User Guide

Chapter 12. Creating volumes 45



Chapter 13. FSIMs and file system operations
This chapter discusses the six File System Interface Modules (FSIMs) shipped with EVMS, and then provides
examples of adding file systems and coordinating file system checks with the FSIMs.

13.1. The FSIMs supported by EVMS

EVMS currently ships with six FSIMs. These file system modules allow EVMS to interact with file system
utilities such as mkfs and fsck. Additionally, the FSIMs ensure that EVMS safely performs operations, such
as expanding and shrinking file systems, by coordinating these actions with the file system.

You can invoke operations such as mkfs and fsck through the various EVMS user interfaces. Any actions you
initiate through an FSIM are not committed to disk until the changes are saved in the user interface. Later in
this chapter we provide examples of creating a new file system and coordinating file system checks through
the EVMS GUI, Ncurses, and command−line interfaces.

The FSIMs supported by EVMS are:

JFS• 
XFS• 
ReiserFS• 
Ext2/3• 
SWAPFS• 
OpenGFS• 

13.1.1. JFS

The JFS module supports the IBM journaling file system (JFS). Current support includes mkfs, unmkfs, fsck,
and online file system expansion. You must have at least version 1.0.9 of the JFS utilities for your system to
work with this EVMS FSIM. You can download the latest utilities from the JFS for Linux site.

For more information on the JFS FSIM, refer to Appendix E.

13.1.2. XFS

The XFS FSIM supports the XFS file system from SGI. Command support includes mkfs, unmkfs, fsck, and
online expansion. Use version 1.2 or higher, which you can download from the SGI open source FTP
directory.

For more information on the XFS FSIM, refer to Appendix F.

13.1.3. ReiserFS

The ReiserFS module supports the ReiserFS journaling file system. This module supports mkfs, unmkfs,
fsck, online and offline expansion and offline shrinkage. You need version 3.x.1a or higher of the ReiserFS
utilities for use with the EVMS FSIM modules. You can download the ReiserFS utilities from The Naming
System Venture (Namesys) Web site.

Chapter 13. FSIMs and file system operations 46

http://oss.software.ibm.com/jfs
ftp://oss.sgi.com/projects/xfs/download
ftp://oss.sgi.com/projects/xfs/download
http://www.namesys.com
http://www.namesys.com


For more information on the ReiserFS FSIM, refer to Appendix G.

13.1.4. Ext2/3

The EXT2/EXT3 FSIM supports both the ext2 and ext3 file system formats. The FSIM supports mkfs,
unmkfs, fsck, and offline shrinkage and expansion.

For more information on the Ext2/3 FSIM, refer to Appendix H.

13.1.5. SWAPFS

The SWAPFS FSIM supports Linux swap devices. The FSIM lets you create and delete swap devices, and
supports mkfs, unmkfs, shrinkage and expansion. Currently, you are responsible for issuing the swapon and
swapoff commands either in the startup scripts or manually. You can resize swap device with the SWAPFS
FSIM as long as the device is not in use.

13.1.6. OpenGFS

The OpenGFS module supports the OpenGFS clustered journaling file system. This module supports mkfs,
unmkfs, fsck, and online expansion. You need the OpenGFS utilities for use with the EVMS FSIM module.
You can download the OpenGFS utilities from the OpenGFS project on SourceForge.

For more information on the OpenGFS FSIM, refer to Appendix I.

13.2. Example: add a file system to a volume

After you have made an EVMS or compatibility volume, add a file system to the volume before mounting it.
You can add a file system to a volume through the EVMS interface of your choice.

Example 13−1. Add a JFS File System to a Volume

This example creates a new JFS file system, named jfs_vol, on volume
/dev/evms/my_vol.

13.2.1. Using the EVMS GUI

Follow these steps to create a JFS file system with the EVMS GUI:

Select Actions−>File Systems−>Make.1. 
Select JFS File System Interface Module.2. 
Click Next.3. 
Select /dev/evms/my_vol.4. 
Click Next.5. 
Type jfs_vol in the "Volume Label" field. Customize any other options you are interested in.6. 
Click Make.7. 
The operation is completed when you save.8. 

EVMS User Guide

Chapter 13. FSIMs and file system operations 47

http://sourceforge.net/projects/opengfs


Alternatively, you can perform some of the steps to create a file system with the GUI context sensitive menu:

From the Volumes tab, right click /dev/evms/my_vol.1. 
Click Make Filesystem...2. 
Continue creating the file system beginning with step 2 of the GUI instructions. You can skip steps 4
and 5 of the GUI instructions.

3. 

13.2.2. Using Ncurses

Follow these steps to create a JFS file system with Ncurses:

Select Actions−>File Systems−>Make.1. 
Select JFS File System Interface Module.2. 
Activate Next.3. 
Select /dev/evms/my_vol.4. 
Activate Next.5. 
Scroll down using the down arrow until Volume Label is highlighted.6. 
Press Spacebar.7. 
At the "::" prompt enter jfs_vol.8. 
Press Enter.9. 
Activate Make.10. 

Alternatively, you can perform some of the steps to create a file system with the context sensitive menu:

From the Volumes view, press Enter on /dev/evms/my_vol.1. 
Activate the Make Filesystem menu item.2. 
Continue creating the file system beginning with step 2 of the Ncurses instructions.3. 

13.2.3. Using the CLI

Use the mkfs command to create the new file system. The arguments to mkfs include the FSIM type (in our
example, JFS), followed by any option pairs, and then the volume name. The command to accomplish this is:

mkfs: JFS={vollabel=jfs_vol}, /dev/evms/my_vol

The command is completed upon saving.

If you are interested in other options that mkfs can use, look at the results of the following query:

query: plugins, plugin=JFS, list options

13.3. Example: check a file system

You can also coordinate file system checks from the EVMS user interfaces.

Example 13−2. Check a JFS File System

EVMS User Guide

Chapter 13. FSIMs and file system operations 48



This example shows how to perform a file system check on a JFS file system, named
jfs_vol, on volume /dev/evms/my_vol, with verbose output.

13.3.1. Using the EVMS GUI

Follow these steps to check a JFS file system with the EVMS GUI:

Select Actions−>File Systems−>Check/Repair.1. 
Select /dev/evms/my_vol.2. 
Click Next.3. 
Click the Yes button by Verbose Output. Customize any other options you are interested in.4. 
Click Check.5. 
The operation is completed when you save.6. 

Alternatively, you can perform some of the steps to check a file system with the GUI context sensitive menu:

From the Volumes tab, right click /dev/evms/my_vol.1. 
Click Check/Repair File System...2. 
Continue checking the file system beginning with step 3 of the GUI instructions.3. 

13.3.2. Using Ncurses

Follow these steps to check a JFS file system with Ncurses:

Select Actions−>File System−>Check/Repair1. 
Select /dev/evms/my_vol.2. 
Activate Next.3. 
Scroll down using the down arrow until Verbose Output is highlighted.4. 
Press Spacebar to change Verbose Output to Yes.5. 
Activate Check.6. 

Alternatively, you can perform some of the steps to check a file system with the context sensitive menu:

From the Volumes view, press Enter on /dev/evms/my_vol.1. 
Activate the Check/Repair File System menu item.2. 
Continue checking the file system beginning with step 3 of the Ncurses instructions.3. 

13.3.3. Using the CLI

The CLI check command takes a volume name and options as input. The command to check the file system
on /dev/evms/my_vol is the following:

check: /dev/evms/my_vol, verbose=TRUE

Currently, a query command for viewing additional options is not available.

EVMS User Guide

Chapter 13. FSIMs and file system operations 49



Chapter 14. Clustering operations
This chapter discusses how to configure cluster storage containers (referred to throughout this chapter as
"cluster containers"), a feature provided by the EVMS Cluster Segment Manager (CSM).

Disks that are physically accessible from all of the nodes of the cluster can be grouped together as a single
manageable entity. EVMS storage objects can then be created using storage from these containers.

Ownership is assigned to a container to make the container either private or shared. A container that is owned
by any one node of the cluster is called a private container. EVMS storage objects and storage volumes
created using space from a private container are accessible from only the owning node.

A container that is owned by all the nodes in a cluster is called a shared container. EVMS storage objects and
storage volumes created using space from a shared container are accessible from all nodes of the cluster
simultaneously.

EVMS provides the tools to convert a private container to a shared container, and a shared container to a
private container. EVMS also provides the flexibility to change the ownership of a private container from one
cluster node to another cluster node.

14.1. Rules and restrictions for creating cluster containers

Note the following rules and limitations for creating cluster containers:

Do not assign non−shared disks to a cluster container.• 
Storage objects and volumes created on a cluster container must not span across multiple cluster
containers. The EVMS Engine enforces this rule by disallowing such configurations.

• 

Do not assign RAID−1, RAID−5, BBR, or snapshotting to storage objects on a shared cluster
container. These plug−ins can be used on private cluster containers.

• 

14.2. Example: create a private cluster container

This section tells how to create a sample private container and provides instructions for completing the
following task:

Example 14−1. Create a private cluster container

Given a system with three available shared disks (sdd, sde, and sdf), use the EVMS
Cluster Segment Manager to combine these disk drives into a container called Priv1 owned
by node1.

14.2.1. Using the EVMS GUI

To create a container with the EVMS GUI, follow these steps:

Select Actions−>Create−>Container to see a list of plug−ins that support container creation.1. 

Chapter 14. Clustering operations 50



Select the Cluster Segment Manager.2. 
Click Next.

The next dialog window contains a list of storage objects that the CSM can use to create a container.

3. 

Select sdd, sde, and sdf from the list.4. 
Click Next.5. 
In the first pull−down menu, select the "Node Id" of the cluster node that owns this container (node1).
Select "Storage Type" as private from the second pull−down menu.

6. 

Enter the name Priv1 for the Container Name.7. 
Click Create.

A window opens that displays the outcome.

8. 

Commit the changes.9. 

14.2.2. Using Ncurses

To create the private container with the Ncurses interface, follow these steps:

Select Actions−>Create−>Container to see a list of plug−ins that support container creation.1. 
Scroll down with the down arrow and select Cluster Segment Manager by pressing spacebar. The
plug−in you selected is marked with an "x."

2. 

Press Enter.

The next submenu contains a list of disks that the Cluster Segment Manager finds acceptable to use
for the creation of a container.

3. 

Use spacebar to select sdd, sde, and sdf from the list. The disks you select are marked with an
"x."

4. 

Press Enter.5. 
On the Create Storage Container − Configuration Options menu, press spacebar on the Node Id,
which will provide a list of nodes from which to select.

6. 

Press spacebar on the node node1 and then press Enter.7. 
Scroll down with the down arrow and press spacebar on the Storage Type. A list of storage types
opens.

8. 

Scroll down with the down arrow to private entry and press spacebar.9. 
Press Enter.10. 
Scroll down with the down arrow to Container Name and press spacebar.

The Change Option Value menu opens and asks for the Container Name. Type in the name of the
container as Priv1, and press Enter.

11. 

Press Enter to complete the operation.12. 

14.2.3. Using the CLI

An operation to create a private cluster container with the CLI takes three parameters: the name of the
container, the type of the container, and the nodeid to which the container belongs.

On the CLI, type the following command to create the private container Priv1:

create: container,CSM={name="Priv1",type="private",nodeid="node1"},sdd,sde,sdf

EVMS User Guide

Chapter 14. Clustering operations 51



14.3. Example: create a shared cluster container

This section tells how to create a sample shared container and provides instructions to help you complete the
following task:

Example 14−2. Create a shared cluster container

Given a system with three available shared disks (sdd, sde, and sdf), use the EVMS
Cluster Segment Manager to combine these disk drives into a shared container called Shar1.

14.3.1. Using the EVMS GUI

To create a shared cluster container with the EVMS GUI, follow these steps:

Select Actions−>Create−>Container to see a list of plug−ins that support container creation.1. 
Select the Cluster Segment Manager.2. 
Click Next.

The next dialog window contains a list of storage objects that the CSM can use to create a container.

3. 

Select sdd, sde, and sdf from the list.4. 
Click Next.5. 
You do not need to change the "Node Id" field. Select Storage Type as shared from the second
pull−down menu.

6. 

Enter the name Shar1 for the Container Name.7. 
Click Create. A window opens to display the outcome.8. 
Commit the changes.9. 

14.3.2. Using Ncurses

To create a shared cluster contained with the Ncurses interface, follow these steps:

Select Actions−>Create−>Container to see a list of plug−ins that support container creation.1. 
Scroll down with the down arrow and select Cluster Segment Manager by pressing spacebar. The
plug−in you selected is marked with an "x."

2. 

Press Enter.

The next submenu contains a list of disks that the Cluster Segment Manager finds acceptable to use
for the creation of a container.

3. 

Use spacebar to select sdd, sde, and sdf from the list. The disks you select are marked with an
"x."

4. 

Press Enter.5. 
The Create Storage Container − Configuration Options menu open; ignore the "Node Id" menu.6. 
Scroll down with the down arrow and press spacebar on the Storage Type. A list of storage types
opens.

7. 

Scroll down with the down arrow to shared entry and press spacebar.8. 
Press Enter.9. 
Scroll down with the down arrow to Container Name and press spacebar.10. 

EVMS User Guide

Chapter 14. Clustering operations 52



The Change Option Value menu opens and asks for the Container Name. Type in the name of the
container as Shar1, and press Enter.
Press Enter to complete the operation.11. 
Quit Ncurses and run evms_activate on each of the cluster nodes. This process will be automated in
future releases of EVMS.

12. 

14.3.3. Using the CLI

An operation to create a shared cluster container with the CLI takes two parameters: the name of the container
and the type of the container.

On the CLI, type the following command to create shared container Shar1:

create: container,CSM={name="Shar1",type="shared"},sdd,sde,sdf

14.4. Example: convert a private container to a shared
container

This section tells how to convert a sample private container to a shared container and provides instructions for
completing the following task:

Example 14−3. Convert a private container to shared

Given a system with a private storage container Priv1 owned by evms1, convert Priv1 to
a shared storage container with the same name.

CAUTION

Ensure that no application is using the volumes on the container on any node of the cluster.

14.4.1. Using the EVMS GUI

Follow these steps to convert a private cluster container to a shared cluster container with the EVMS GUI:

Select Actions−>Modify−>Container to see a list of containers.1. 
Select the container Priv1 and press Next.

A Modify Properties dialog box opens.

2. 

Change "Type" to "shared" and click Modify.

A window opens that displays the outcome.

3. 

Commit the changes.4. 

EVMS User Guide

Chapter 14. Clustering operations 53



14.4.2. Using Ncurses

Follow these steps to convert a private cluster container to a shared cluster container with the Ncurses
interface:

Select Actions−>Modify−>Container to see a list of containers.1. 
The Modify Container Properties dialog opens. Select the container Priv1 by pressing spacebar.
The container you selected is marked with an "x."

Press Enter.

2. 

Use spacebar to select sdd, sde, and sdf from the list. The disks you select are marked with an
"x."

3. 

Press Enter.4. 
The Modify Container Properties − Configuration Options" dialog opens. Scroll down with the down
arrow and press spacebar on "Type".

5. 

Press spacebar.6. 
The Change Option Value dialog opens. Type shared and press Enter.

The changed value now displays in the Modify Container Properties − Configuration Options dialog.

7. 

Press Enter.

The outcome of the command is displayed at the bottom of the screen.

8. 

Save the changes by clicking Save in the Actions pulldown menu.9. 

14.4.3. Using the CLI

The modify command modifies the properties of a container. The first argument of the command is the object
to modify, followed by its new properties. The command to convert the private container to a shared container
in the example is:

modify: Priv1,type=shared

14.5. Example: convert a shared container to a private
container

This section tells how to convert a sample shared container to a private container and provides instructions for
completing the following task:

Example 14−4. Convert a shared container to private

Given a system with a shared storage container Shar1, convert Shar1 to a private storage
container owned by node node1 (where node1 is the nodeid of one of the cluster nodes).

CAUTION

Ensure that no application is using the volumes on the container of any node in the cluster.

EVMS User Guide

Chapter 14. Clustering operations 54



14.5.1. Using the EVMS GUI

Follow these steps to convert a shared cluster container to a private cluster container with the EVMS GUI:

Select Actions−>Modify−>Container to see a list of containers.1. 
Select the container Shar1 and press Next.

A Modify Properties dialog opens.

2. 

Change "Type" to "private" and the "Node" field to node1. Click Modify.

A window opens that displays the outcome.

3. 

Commit the changes.4. 

14.5.2. Using Ncurses

Follow these steps to convert a shared cluster container to a private cluster container with the Ncurses
interface:

Select Actions−>Modify−>Container1. 
The Modify Container Properties dialog opens. Select the container Shar1 by pressing spacebar.
The container you selected is marked with an "x."

Press Enter.

2. 

The Modify Container Properties − Configuration Options" dialog opens. Scroll down with the down
arrow and press spacebar on the "Type" field.

3. 

Press spacebar.4. 
The Change Option Value dialog opens. Select private and press Enter.5. 
The Modify Container Properties − Configuration Options dialog opens. Scroll down the list to
NodeId with the down arrow and press spacebar.

6. 

The Change Option Value dialog opens. Select node1 and press Enter.7. 
The changed values now display in the Modify Container Properties − Configuration Options dialog.
Press Enter.

The outcome of the command is displayed at the bottom of the screen.

8. 

Save the changes by clicking Save in the Actions pulldown.9. 

14.5.3. Using the CLI

The modify command modifies the properties of a container. The first argument of the command is the object
to modify, followed by its new properties. The command to convert the shared container to a private container
in the example is:

modify: Shar1,type=private,node=node1

14.6. Example: deport a private or shared container

When a container is deported, the node disowns the container and deletes all the objects created in memory
that belong to that container. No node in the cluster can discover objects residing on a deported container or
create objects for a deported container. This section explains how to deport a private or shared container.

EVMS User Guide

Chapter 14. Clustering operations 55



Example 14−5. Deport a cluster container

Given a system with a private or shared storage container named c1, deport c1.

14.6.1. Using the EVMS GUI

To deport a container with the EVMS GUI, follow these steps:

Select Actions−>Modify−>Container.1. 
Select the container c1 and press Next.

A Modify Properties dialog opens.

2. 

Change "Type" to "deported." Click Modify.

A window opens that displays the outcome.

3. 

Commit the changes.4. 

14.6.2. Using Ncurses

To deport a container with Ncurses, follow these steps:

Scroll down the list with the down arrow to Modify. Press Enter.

A submenu is displayed.

1. 

Scroll down until Container is highlighted. Press Enter.

The Modify Container Properties dialog opens.

2. 

Select the container csm/c1 by pressing spacebar. The container you selected is marked with an
"x."

3. 

Press Enter.

The Modify Container Properties − Configuration Options dialog opens.

4. 

Scroll down and press spacebar on the "Type" field.5. 
Press spacebar.

The Change Option Value dialog opens.

6. 

Type deported and press Enter.

The changed value is displayed in the Modify Container Properties − Configuration Options dialog.

7. 

Press Enter.

The outcome of the command is displayed at the bottom of the screen.

8. 

Commit the changes by clicking Save in the Actions pulldown.9. 

14.6.3. Using the CLI

To deport a container from the CLI, execute the following command at the CLI prompt:

modify: c1,type=deported

EVMS User Guide

Chapter 14. Clustering operations 56



14.7. Deleting a cluster container

The procedure for deleting a cluster container is the same for deleting any container. See Section 19.2

14.8. Failover and Failback of a private container on
Linux−HA

EVMS supports the Linux−HA cluster manager in EVMS V2.0 and later. Support for the RSCT cluster
manager is also available as of EVMS V2.1, but is not as widely tested.

NOTE

Ensure that evms_activate is called in one of the startup scripts before the heartbeat startup script is
called. If evms_activate is not called, failover might not work correctly.

Follow these steps to set up failover and failback of a private container:

Add an entry in /etc/ha.d/haresources for each private container to be failed over. For
example, if container1 and container2 are to be failed over together to the same node with
node1 as the owning node, add the following entry to /etc/ha.d/haresources:
node1 evms_failover::container1 evms_failover::container2

node1 is the cluster node that owns this resource. The resource is failed over to the other node when
node1 dies.

Similarly, if container3 and container4 are to be failed over together to the same node with
node2 as the owning node, then add the following entry to /etc/ha.d/haresources:

node2 evms_failover::container3 evms_failover::container4

Refer to http://www.linux−ha.org/download/GettingStarted.html for more details on the semantics of
resource groups.

1. 

Validate that the /etc/ha.d, /etc/ha.cf and /etc/ha.d/haresources files are the same
on all the nodes of the cluster.

2. 

The heartbeat cluster manager must be restarted, as follows, after the /etc/ha.d/haresources
file has been changed:
/etc/init.d/heartbeat restart

NOTE

Do not add shared containers to the list of failover resources; doing so causes EVMS to respond
unpredictably.

3. 

14.9. Remote configuration management

EVMS supports the administration of cluster nodes by any node in the cluster. For example, storage on remote
cluster node node1 can be administered from cluster node node2. The following sections show how to set
up remote administration through the various EVMS user interfaces.

EVMS User Guide

Chapter 14. Clustering operations 57

http://www.linux-ha.org/download/GettingStarted.html


14.9.1. Using the EVMS GUI

To designate node2 as the node to administer from the GUI, follow these steps:

Select Settings−>Node Administered...1. 
Select node2.2. 
Click Administer to switch to the new node.3. 

The GUI gathers information about the objects, containers, and volumes on the other node. The status bar
displays the message "Now administering node node2," which indicates that the GUI is switched over to node
node2.

14.9.2. Using Ncurses

To designate node2 as the node to administer from Ncurses, follow these steps:

Go to the Settings pulldown menu.1. 
Scroll down with the down arrow to the "Node Administered" option and press Enter.2. 
The Administer Remote Node dialog opens. Select node2 and press spacebar.

The node you selected is marked with an "x."

3. 

Press Enter.4. 
After a while, you will be switched over to the node node2.5. 

14.9.3. Using the CLI

To designate node2 as a node administrator from the CLI, issue this command:

evms −n node2

14.10. Forcing a cluster container to be imported

A private container and its objects are made active on a node if:

the private container is owned by the node• 
the container is not deported• 
the node currently has quorum• 

Similarly, a shared container and its objects are made active on a node if the node currently has quorum.
However, the administrator can force the importation of private and shared containers by overriding these
rules.

NOTE

Use extreme caution when performing this operation by ensuring that the node on which the cluster
container resides is the only active node in the cluster. Otherwise, the data in volumes on shared and
private containers on the node can get corrupted.

EVMS User Guide

Chapter 14. Clustering operations 58



Enabling maintenance mode in the /etc/evms.conf file. The option to modify in the
/etc/evms.conf file is the following:
# cluster segment manager section
csm {
#       admin_mode=yes  # values are: yes or no
                                # The default is no. Set this key to
                                # yes when you wish to force the CSM
                                # to discover objects from all cluster
                                # containers, allowing you to perform
                                # configuration and maintenance.  Setting
                                # admin_mode to yes will cause the CSM
                                # to ignore container ownership, which
                                # will allow you to configure storage
                                # in a maintenance mode.

1. 

Running evms_activate on the node.2. 

EVMS User Guide

Chapter 14. Clustering operations 59



Chapter 15. Converting volumes
This chapter discusses converting compatibility volumes to EVMS volumes and converting EVMS volumes
to compatibility volumes. For a discussion of the differences between compatibility and EVMS volumes, see
Chapter 12.

15.1. When to convert volumes

There are several different scenarios that might help you determine what type of volumes you need. For
example, if you wanted persistent names or to make full use of EVMS features, such as Drive Linking or
Snapshotting, you would convert your compatibility volumes to EVMS volumes. In another situation, you
might decide that a volume needs to be read by a system that understands the underlying volume management
scheme. In this case, you would convert your EVMS volume to a compatibility volume.

A volume can only be converted when it is offline. This means the volume must be unmounted and otherwise
not in use. The volume must be unmounted because the conversion operation changes both the name and the
device number of the volume. Once the volume is converted, you can remount it using its new name.

15.2. Example: convert compatibility volumes to EVMS
volumes

A compatibility volume can be converted to an EVMS volume in the following situations:

The compatibility volume has no file system (FSIM) on it.• 
The compatibility volume has a file system, but the file system can be shrunk (if necessary) to make
room for the EVMS metadata.

• 

This section provides a detailed explanation of how to convert compatibility volumes to EVMS volumes and
provides instructions to help you complete the following task.

Example 15−1. Convert a compatibility volume

You have a compatibility volume /dev/evms/hda3 that you want to make into an EVMS
volume named my_vol.

15.2.1. Using the EVMS GUI

Follow these steps to convert a compatibility volume with the EVMS GUI:

Choose Action−>Convert −>Compatibility Volume to EVMS.1. 
Select /dev/evms/hda3 from the list of available volumes.2. 
Type my_vol in the name field.3. 
Click the Convert button to convert the volume.4. 

Alternatively, you can perform some of the steps to convert the volume from the GUI context sensitive menu:

Chapter 15. Converting volumes 60



From the Volumes tab, right click on /dev/evms/hda3.1. 
Click Convert to EVMS Volume...2. 
Continue to convert the volume beginning with step 3 of the GUI instructions.3. 

15.2.2. Using Ncurses

Follow these instructions to convert a compatibility volume to an EVMS volume with the Ncurses interface:

Choose Actions−>Convert−>Compatibility Volume to EVMS Volume1. 
Select /dev/evms/hda3 from the list of available volumes.2. 
Type my_vol when prompted for the name. Press Enter.3. 
Activate Convert.4. 

Alternatively, you can perform some of the steps to convert the volume from the context sensitive menu:

From the Volumes view, press Enter on /dev/evms/hda3.1. 
Activate the Convert to EVMS Volume menu item.2. 
Continue to convert the volume beginning with step 3 of the Ncurses instructions.3. 

15.2.3. Using the CLI

To convert a volume, use the Convert command. The Convert command takes the name of a volume as its
first argument, and then name= for what you want to name the new volume as the second argument. To
complete the example and convert a volume, type the following command at the EVMS: prompt:

convert: /dev/evms/hda3, Name=my_vol

15.3. Example: convert EVMS volumes to compatibility
volumes

An EVMS volume can be converted to a compatibility volume only if the volume does not have EVMS
features on it. This section provides a detailed explanation of how to convert EVMS volumes to compatibility
volumes by providing instructions to help you complete the following task.

Example 15−2. Convert an EVMS volume

You have an EVMS volume, /dev/evms/my_vol, that you want to make a compatibility
volume.

15.3.1. Using the EVMS GUI

Follow these instructions to convert an EVMS volume to a compatibility volume with the EVMS GUI:

Choose Action−>Convert −>EVMS Volume to Compatibility Volume.1. 
Select /dev/evms/my_vol from the list of available volumes.2. 
Click the Convert button to convert the volume.3. 

EVMS User Guide

Chapter 15. Converting volumes 61



Alternatively, you can perform some of the steps to convert the volume through the GUI context sensitive
menu:

From the Volumes tab, right click /dev/evms/my_vol.1. 
Click Convert to Compatibility Volume...2. 
Continue converting the volume beginning with step 3 of the GUI instructions.3. 

15.3.2. Using Ncurses

Follow these instructions to convert an EVMS volume to a compatibility volume with the Ncurses interface:

Choose Actions−>Convert−>EVMS Volume to Compatibility Volume1. 
Select /dev/evms/my_vol from the list of available volumes.2. 
Activate Convert.3. 

Alternatively, you can perform some of the steps to convert the volume through the context sensitive menu:

From the Volumes view, press Enter on /dev/evms/my_vol.1. 
Activate the Convert to Compatibility Volume menu item.2. 
Continue to convert the volume beginning with step 3 of the Ncurses instructions.3. 

15.3.3. Using the CLI

To convert a volume use the Convert command. The Convert command takes the name of a volume as its
first argument, and the keyword compatibility to indicate a change to a compatibility volume as the
second argument. To complete the example and convert a volume, type the following command at the EVMS:
prompt:

convert: /dev/evms/my_vol, compatibility

EVMS User Guide

Chapter 15. Converting volumes 62



Chapter 16. Expanding and shrinking volumes
This chapter tells how to expand and shrink EVMS volumes with the EVMS GUI, Ncurses, and CLI
interfaces. Note that you can also expand and shrink compatibility volumes and EVMS objects.

16.1. Why expand and shrink volumes?

Expanding and shrinking volumes are common volume operations on most systems. For example, it might be
necessary to shrink a particular volume to create free space for another volume to expand into or to create a
new volume.

EVMS simplifies the process for expanding and shrinking volumes, and protects the integrity of your data, by
coordinating expand and shrink operations with the volume's file system. For example, when shrinking a
volume, EVMS first shrinks the underlying file system appropriately to protect the data. When expanding a
volume, EVMS expands the file system automatically when new space becomes available.

Not all file system interface modules (FSIM) types supported by EVMS allow shrink and expand operations,
and some only perform the operations when the file system is mounted ("online"). The following table details
the shrink and expand options available for each type of FSIM.

Table 16−1. FSIM support for expand and shrink operations

FSIM type Shrinks Expands

JFS No Online only

XFS No Online only

ReiserFS Offline only Offline and online

ext2/3 Offline only Offline only

SWAPFS Offline only Offline only

OpenGFS No Online only

You can perform all of the supported shrink and expand operations with each of the EVMS user interfaces.

16.2. Example: shrink a volume

This section tells how to shrink a compatibility volume by 500 MB.

Example 16−1. Shrink a volume

Shrink the volume /dev/evms/lvm/Sample Container/Sample Region, which
is the compatibility volume that was created in the chapter entitled "Creating Volumes," by
500 MB.

Chapter 16. Expanding and shrinking volumes 63



16.2.1. Using the EVMS GUI

Follow these steps to shrink the volume with the EVMS GUI:

Select Actions−>Shrink−>Volume...1. 
Select /dev/evms/lvm/Sample Container/Sample Region from the list of volumes.2. 
Click Next.3. 
Select /lvm/Sample Container/Sample Region from the list of volumes.4. 
Click Next.5. 
Enter 500MB in the "Shrink by Size" field.6. 
Click Shrink.7. 

Alternatively, you can perform some of the steps to shrink the volume with the GUI context sensitive menu:

From the Volumes tab, right click /dev/evms/lvm/Sample Container/Sample Region1. 
Click Shrink...2. 
Continue the operation beginning with step 3 of the GUI instructions.3. 

16.2.2. Using Ncurses

Follow these steps to shrink a volume with Ncurses:

Select Actions−>Shrink−>Volume.1. 
Select /dev/evms/lvm/Sample Container/Sample Region from the list of volumes.2. 
Activate Next.3. 
Select lvm/Sample Container/Sample Region from the shrink point selection list.4. 
Activate Next.5. 
Scroll down using the down arrow until Shrink by Size is highlighted.6. 
Press spacebar.7. 
Press Enter.8. 
At the "::" prompt enter 500MB.9. 
Press Enter.10. 
Activate Shrink.11. 

Alternatively, you can perform some of the steps to shrink the volume with the context sensitive menu:

From the Volumes view, press Enter on /dev/evms/lvm/Sample Container/Sample
Region.

1. 

Activate the Shrink menu item.2. 
Continue the operation beginning with step 3 of the Ncurses instructions.3. 

16.2.3. Using the CLI

The shrink command takes a shrink point followed by an optional name value pair or an optional shrink
object. To find the shrink point, use the query command with the shrink points filter on the object or volume
you plan to shrink. For example:

query: shrink points, "/dev/evms/lvm/Sample Container/Sample Region"

Use a list options filter on the object of the shrink point to determine the name−value pair to use, as follows:

EVMS User Guide

Chapter 16. Expanding and shrinking volumes 64



query: objects, object="lvm/Sample Container/Sample Region", list options

With the option information that is returned, you can construct the command, as follows:

shrink: "lvm/Sample Container/Sample Region", remove_size=500MB

16.3. Example: expand a volume

This section tells how to expand a volume a compatibility volume by 500 MB.

Example 16−2. Expand a volume

Expand the volume /dev/evms/lvm/Sample Container/Sample Region, which
is the compatibility volume that was created in the chapter entitled "Creating Volumes," by
500 MB.

16.3.1. Using the EVMS GUI

Follow these steps to expand the volume with the EVMS GUI:

Select Actions−>Expand−>Volume...1. 
Select /dev/evms/lvm/Sample Container/Sample Region from the list of volumes.2. 
Click Next.3. 
Select lvm/Sample Container/Sample Region from the list as the expand point.4. 
Click Next.5. 
Enter 500MB in the "Additional Size" field.6. 
Click Expand.7. 

Alternatively, you can perform some of the steps to expand the volume with the GUI context sensitive menu:

From the Volumes tab, right click /dev/evms/lvm/Sample Container/Sample Region.1. 
Click Expand...2. 
Continue the operation to expand the volume beginning with step 3 of the GUI instructions.3. 

16.3.2. Using Ncurses

Follow these steps to expand a volume with Ncurses:

Select Actions−>Expand−>Volume.1. 
Select /dev/evms/lvm/Sample Container/Sample Region from the list of volumes.2. 
Activate Next.3. 
Select lvm/Sample Container/Sample Region from the list of expand points.4. 
Activate Next.5. 
Press spacebar on the Additional Size field.6. 
At the "::" prompt enter 500MB.7. 
Press Enter.8. 
Activate Expand.9. 

EVMS User Guide

Chapter 16. Expanding and shrinking volumes 65



Alternatively, you can perform some of the steps to shrink the volume with the context sensitive menu:

From the Volumes view, press Enter on /dev/evms/lvm/Sample Container/Sample Region.1. 
Activate the Expand menu item.2. 
Continue the operation beginning with step 3 of the Ncurses instructions.3. 

16.3.3. Using the CLI

The expand command takes an expand point followed by an optional name value pair and an expandable
object. To find the expand point, use the query command with the Expand Points filter on the object or
volume you plan to expand. For example:

query: expand points, "/dev/evms/lvm/Sample Container/Sample Region"

Use a list options filter on the object of the expand point to determine the name−value pair to use, as follows:

query: objects, object="lvm/Sample Container/Sample Region", list options

The free space in your container is the container name plus /Freespace.

With the option information that is returned, you can construct the command, as follows:

expand: "lvm/Sample Container/Sample Region", add_size=500MB, 
"lvm/Sample Container/Freespace"

EVMS User Guide

Chapter 16. Expanding and shrinking volumes 66



Chapter 17. Adding features to an existing volume
This chapter tells how to add additional EVMS features to an already existing EVMS volume.

17.1. Why add features to a volume?

EVMS lets you add features such as drive linking or bad block relocation to a volume that already exists. By
adding features, you avoid having to potentially destroy the volume and recreate it from scratch. For example,
take the scenario of a volume that contains important data but is almost full. If you wanted to add more data to
that volume but no free space existed on the disk immediately after the segment, you could add a drive link to
the volume. The drive link concatenates another object to the end of the volume and continues seamlessly.

17.2. Example: add drive linking to an existing volume

The following example shows how to add drive linking to a volume with the EVMS GUI, Ncurses, and CLI
interfaces.

Example 17−1. Add drive linking to an existing volume

The following sections show how to add a drive link to volume /dev/evms/vol and call
the drive link "DL."

NOTE

Drive linking can be done only on EVMS volumes; therefore, /dev/evms/vol must
be converted to an EVMS volume if it is not already.

17.2.1. Using the EVMS GUI

Follow these steps to add a drive link to the volume with the EVMS GUI:

Select Actions−>Add−>Feature to Volume.1. 
Select /dev/evms/vol2. 
Click Next.3. 
Select Drive Linking Feature.4. 
Click Next.5. 
Type DL in the Name Field.6. 
Click Add.7. 

Alternatively, you can perform some of the steps to add a drive link with the GUI context sensitive menu:

From the Volumes tab, right click /dev/evms/vol.1. 
Click Add feature...2. 
Continue adding the drive link beginning with step 3 of the GUI instructions.3. 

Chapter 17. Adding features to an existing volume 67



17.2.2. Using Ncurses

Follow these steps to add a drive link to a volume with Ncurses:

Select Actions−>Add−>Feature to Volume.1. 
Select /dev/evms/vol.2. 
Activate Next.3. 
Select Drive Linking Feature.4. 
Activate Next.5. 
Press Spacebar to edit the Name field.6. 
At the "::" prompt enter DL.7. 
Press Enter.8. 
Activate Add.9. 

Alternatively, you can perform some of the steps to add a drive link with the context sensitive menu:

From the Volumes view, press Enter on /dev/evms/vol.1. 
Activate the Add feature menu item.2. 
Continue adding the drive link beginning with step 3 of the Ncurses instructions.3. 

17.2.3. Using the CLI

Use the add feature to add a feature to an existing volume. Specify the command name followed by a colon,
followed by any options and the volume to operate on. To determine the options for a given feature, use the
following query:

query: plugins, plugin=DriveLink, list options

The option names and descriptions are listed to help you construct your command. For our example, the
command would look like the following:

add feature: DriveLink={ Name="DL }, /dev/evms/vol

EVMS User Guide

Chapter 17. Adding features to an existing volume 68



Chapter 18. Plug−in operations tasks
This chapter discusses plug−in operations tasks and shows how to complete a plug−in task with the EVMS
GUI, Ncurses, and CLI interfaces.

18.1. What are plug−in tasks?

Plug−in tasks are functions that are available only within the context of a particular plug−in. These functions
are not common to all plug−ins. For example, tasks to add spare disks to a RAID array make sense only in the
context of the MD plug−in, and tasks to reset a snapshot make sense only in the context of the Snapshot
plug−in.

18.2. Example: complete a plug−in operations task

This section shows how to complete a plug−in operations task with the EVMS GUI, Ncurses, and CLI
interfaces.

Example 18−1. Add a spare disk to a compatibility volume made from an MDRaid5
region

This example adds disk sde as a spare disk onto volume /dev/evms/md/md0, which is a
compatibility volume that was created from an MDRaid5 region.

18.2.1. Using the EVMS GUI

Follow these steps to add sde to /dev/evms/md/md0 with the EVMS GUI:

Select Other−>Storage Object Tasks...1. 
Select md/md0.2. 
Click Next.3. 
Select Add spare object.4. 
Click Next.5. 
Select sde.6. 
Click Add.7. 
The operation is completed when you save.8. 

Alternatively, you could use context−sensitive menus to complete the task, as follows:

View the region md/md0. You can view the region either by clicking on the small plus sign beside
the volume name (/dev/evms/md/md0) on the volumes tab, or by selecting the regions tab.

1. 

Right click the region (md/md0). A list of acceptable Actions and Navigational shortcuts displays.
The last items on the list are the tasks that are acceptable at this time.

2. 

Point to Add spare object and left click.3. 
Select sde.4. 
Click Add.5. 

Chapter 18. Plug−in operations tasks 69



18.2.2. Using Ncurses

Follow these steps to add sde to /dev/evms/md/md0 with Ncurses:

Select Other−>Storage Object Tasks1. 
Select md/md0.2. 
Activate Next.3. 
Select Add spare object.4. 
Activate Next.5. 
Select sde.6. 
Activate Add.7. 

Alternatively, you can use the context sensitive menu to complete the task:

From the Regions view, press Enter on md/md0.1. 
Activate the Add spare object menu item.2. 
Select sde.3. 
Activate Add.4. 

18.2.3. Using the CLI

With the EVMS CLI, all plug−in tasks must be accomplished with the task command. Follow these steps to
add sde to /dev/evms/md/md0 with the CLI:

The following query command with the list options filter to determines the acceptable tasks for a
particular object and the name−value pairs it supports. The command returns information about which
plug−in tasks are available at the current time and provides the information necessary for you to
complete the command.
query: objects, object=md/md0, list options

1. 

The command takes the name of the task (returned from the previous query), the object to operate on
(in this case, md/md0), any required options (none in this case) and, if necessary, another object to be
manipulated (in our example, sde, which is the spare disk we want to add):
task: addspare, md/md0, sde

The command is completed upon saving.

2. 

EVMS User Guide

Chapter 18. Plug−in operations tasks 70



Chapter 19. Deleting objects
This chapter tells how to delete EVMS objects through the delete and delete recursive operations.

19.1. How to delete objects: delete and delete recursive

There are two ways in EVMS that you can destroy objects that you no longer want: Delete and Delete
Recursive. The Delete option destroys only the specific object you specify. The Delete Recursive option
destroys the object you specify and its underlying objects, down to the container, if one exists, or else down to
the disk. In order for an object to be deleted, it must not be mounted. EVMS verifies that the object you are
attempting to delete is not mounted and does not perform the deletion if the object is mounted.

19.2. Example: perform a delete recursive operation

The following example shows how to destroy a volume and the objects below it with the EVMS GUI,
Ncurses, and CLI interfaces.

Example 19−1. Destroy a volume and the region and container below it

This example uses the delete recursive operation to destroy volume /dev/evms/Sample
Volume and the region and container below it. Volume /dev/evms/Sample Volume is
the volume that was created in earlier. Although we could also use the delete option on each
of the objects, the delete recursive option takes fewer steps. Note that because we intend to
delete the container as well as the volume, the operation needs to be performed in two steps:
one to delete the volume and its contents, and one to delete the container and its contents.

19.2.1. Using the EVMS GUI

Follow these steps to delete the volume and the container with the EVMS GUI:

Select Actions−>Delete−>Volume.1. 
Select volume /dev/evms/Sample Volume from the list.2. 
Click Recursive Delete. This step deletes the volume and the region lvm/Sample
Container/Sample Region. If you want to keep the underlying pieces or want to delete each
piece separately, you would click Delete instead of Delete Recursive.

3. 

Assuming you chose Delete Recursive (if not, delete the region before continuing with these steps),
select Actions−>Delete−>Container.

4. 

Select container lvm/Sample Container from the list.5. 
Click Recursive Delete to destroy the container and anything under it. Alternatively, click Delete to
destroy only the container (if you built the container on disks as in the example, either command has
the same effect).

6. 

Alternatively, you can perform some of the volume deletion steps with the GUI context sensitive menu:

From the Volumes tab, right click /dev/evms/Sample Volume.1. 
Click Delete...2. 

Chapter 19. Deleting objects 71



Continue with the operation beginning with step 3 of the GUI instructions.3. 

19.2.2. Using Ncurses

Follow these steps to delete the volume and the container with Ncurses:

Select Actions−>Delete−>Volume.1. 
Select volume /dev/evms/Sample Volume from the list.2. 
Activate Delete Volume Recursively. This step deletes the volume and the region lvm/Sample
Container/Sample Region. If you want to keep the underlying pieces or want to delete each
piece separately, activate Delete instead of Delete Recursive.

3. 

Assuming you chose Delete Volume Recursively (if not, delete the region before continuing with
these steps), select Actions−>Delete−>Container.

4. 

Select container lvm/Sample Container from the list.5. 
Click Recursive Delete to destroy the container and everything under it. Alternatively, activate Delete
to delete only the container (if you built the container on disks as in the example, either command has
the same effect).

6. 

Press Enter.7. 

Alternatively, you can perform some of the volume deletion steps with the context sensitive menu:

From the Volumes view, press Enter on /dev/evms/Sample Volume.1. 
Activate Delete.2. 
Continue with the operation beginning with step 3 of the Ncurses instructions.3. 

19.2.3. Using the CLI

Use the delete and delete recursive commands to destroy EVMS objects. Specify the command name
followed by a colon, and then specify the volume, object, or container name. For example:

Enter this command to perform the delete recursive operation:
delete recursive: "/dev/evms/Sample Volume"

This step deletes the volume and the region /lvm/Sample Container/Sample Region. If
you wanted to keep the underlying pieces or wanted to delete each piece separately, use the delete
command, as follows:

delete: "/dev/evms/Sample Volume"

1. 

Assuming you chose Delete Volume Recursively (if not, delete the region before continuing with
these steps) enter the following to destroy the container and everything under it:
delete recursive: "lvm/Sample Container"

To destroy only the container, enter the following:

delete: "lvm/Sample Container"

2. 

EVMS User Guide

Chapter 19. Deleting objects 72



Chapter 20. Replacing objects
This chapter discusses how to replace objects.

20.1. What is object−replace?

Occasionally, you might wish to change the configuration of a volume or storage object. For instance, you
might wish to replace one of the disks in a drive−link or RAID−0 object with a newer, faster disk. As another
example, you might have an EVMS volume created from a simple disk segment, and want to switch that
segment for a RAID−1 region to provide extra data redundancy. Object−replace accomplishes such tasks.

Object−replace gives you the ability to swap one object for another object. The new object is added while the
original object is still in place. The data is then copied from the original object to the new object. When this is
complete, the original object is removed. This process can be performed while the volume is mounted and in
use.

20.2. Replacing a drive−link child object

For this example, we will start with a drive−link object named link1, which is composed of two disk
segments named sda1 and sdb1. The goal is to replace sdb1 with another segment named sdc1.

Note

The drive−linking plug−in allows the target object (sdc1 in this example) to be the same size or larger
than the source object. If the target is larger, the extra space will be unused. Other plug−ins have
different restrictions and might require that both objects be the same size.

20.2.1. Using the EVMS GUI or Ncurses

Follow these steps to replace sdb1 with sdc1:

Select Actions−>Replace.1. 
In the "Replace Source Object" panel select sdb1.2. 
Activate Next.3. 
In the "Select Replace Target Object" panel, select sdc1.4. 
Activate Replace.5. 

Alternatively, you can perform these same steps with the context sensitive menus:

From the "Disk Segments" panel, right click (or Press Enter on) the object sdb1.1. 
Choose Replace on the popup menu.2. 
In the "Select Replace Target Object" panel, select sdc1.3. 
Activate Replace.4. 

When you save changes, EVMS begins to copy the data from sdb1 to sdc1. The status bar at the bottom of the
UI will reflect the percent−complete of the copy operation. The UI must remain open until the copy is
finished. At that time, the object sdb1 will be moved to the "Available Objects" panel.

Chapter 20. Replacing objects 73



20.2.2. Using the CLI

The replace command has not yet been implemented in the EVMS CLI. It will be available in a future release.

EVMS User Guide

Chapter 20. Replacing objects 74



Chapter 21. Moving segment storage objects
This chapter discusses how and why to move segments.

21.1. What is segment moving?

A segment move is when a data segment is relocated to another location on the underlying storage object. The
new location of the segment cannot overlap with the current segment location.

21.2. Why move a segment?

Segments are moved for a variety of reasons. The most compelling among them is to make better use of disk
freespace. Disk freespace is an unused contiguous extent of sectors on a disk that has been identified by
EVMS as a freespace segment. A data segment can only be expanded by adding sectors to the end of the
segment, moving the end of the data segment up into the freespace that immediately follows the data segment.
However, what if there is no freespace following the data segment? A segment or segments could be be
moved around to put freespace after the segment that is to be expanded. For example:

The segment following the segment to be expanded can be moved elsewhere on the disk, thus freeing
up space after the segment that is to be expanded.

• 

The segment to be expanded can be moved into freespace where there is more room for the segment
to be expanded.

• 

The segment can be moved into freespace that precedes the segment so that after the move the data
segment can be expanded into the freespace created by the move.

• 

21.3. Which segment manager plug−ins implement the
move function?

The following segment manager plug−ins support the move function:

DOS• 
s390• 
GPT• 

21.4. Example: move a DOS segment

This section shows how to move a DOS segment:

Note

In the following example, the DOS segment manager has a single primary partition on disk sda that is
located at the very end of the disk. We want to move it to the front of the drive because we want to
expand the segment but there is currently no freespace following the segment.

Chapter 21. Moving segment storage objects 75



21.4.1. Using the EVMS GUI context sensitive menu

To move the DOS segment through the GUI context sensitive menu, follow these steps:

From the Segments tab, right click sda1.1. 
Click Move.2. 
Select sda_freespace1.3. 
Click Move.4. 

21.4.2. Using Ncurses

To move the DOS segment, follow these steps:

Use Tab to select the Disk Segments view.1. 
Scroll down with the down arrow and select sda1.2. 
Press Enter.3. 
Scroll down with the down arrow and select Move by pressing Enter.4. 
Use the spacebar to select sda_freespace1.5. 
Use Tab to select Move and press Enter.6. 

21.4.3. Using the CLI

Use the task command to move a DOS segment with the CLI.

task:Move,sda1,sda_freespace1

EVMS User Guide

Chapter 21. Moving segment storage objects 76



Appendix A. The DOS plug−in
The DOS plug−in is the most commonly used EVMS segment manager plug−in. The DOS plug−in supports
DOS disk partitioning as well as:

OS/2 partitions that require extra metadata sectors.• 
Embedded partition tables: SolarisX86, BSD, and UnixWare.• 

The DOS plug−in reads metadata and constructs segment storage objects that provide mappings to disk
partitions.

A.1. How the DOS plug−in is implemented

The DOS plug−in provides compatibility with DOS partition tables. The plug−in produces EVMS segment
storage objects that map primary partitions described by the MBR partition table and logical partitions
described by EBR partition tables.

DOS partitions have names that are constructed from two pieces of information:

The device they are found on.• 
The partition table entry that provided the information.• 

Take, for example, partition name hda1, which describes a partition that is found on device hda in the MBR
partition table. DOS partition tables can hold four entries. Partition numbers 1−4 refer to MBR partition
records. Therefore, our example is telling us that partition hda1 is described by the very first partition record
entry in the MBR partition table. Logical partitions, however, are different than primary partitions. EBR
partition tables are scattered across a disk but are linked together in a chain that is first located using an
extended partition record found in the MBR partition table. Each EBR partition table contains a partition
record that describes a logical partition on the disk. The name of the logical partition reflects its position in the
EBR chain. Because the MBR partition table reserves numerical names 1−4, the very first logical partition is
always named 5. The next logical partition, found by following the EBR chain, is called 6, and so forth. So,
the partition hda5 is a logical partition that is described by a partition record in the very first EBR partition
table.

While discovering DOS partitions, the DOS plug−in also looks for OS/2 DLAT metadata to further determine
if the disk is an OS/2 disk. An OS/2 disk has additional metadata and the metadata is validated during
recovery. This information is important for the DOS plug−in to know because an OS/2 disk must maintain
additional partition information. (This is why the DOS plug−in asks, when being assigned to a disk, if the disk
is a Linux disk or an OS/2 disk.) The DOS plug−in needs to know how much information must be kept on the
disk and what kind of questions it should ask the user when obtaining the information.

An OS/2 disk can contain compatibility volumes as well as logical volumes. A compatibility volume is a
single partition with an assigned drive letter that can be mounted. An OS/2 logical volume is a drive link of 1
or more partitions that have software bad−block relocation at the partition level.

Embedded partitions, like those found on a SolarisX86 disk or a BSD compatibility disk, are found within a
primary partition. Therefore, the DOS plug−in inspects primary partitions that it has just discovered to further
determine if any embedded partitions exist. Primary partitions that hold embedded partition tables have
partition type fields that indicate this. For example, a primary partition of type 0xA9 probably has a BSD

Appendix A. The DOS plug−in 77



partition table that subdivides the primary partition into BSD partitions. The DOS plug−in looks for a BSD
disk label and BSD data partitions in the primary partition. If the DOS plug−in finds a BSD disk label, it
exports the BSD partitions. Because this primary partition is actually just a container that holds the BSD
partitions, and not a data partition itself, it is not exported by the DOS plug−in. Embedded partitions are
named after the primary partition they were discovered within. As an example, hda3.1 is the name of the
first embedded partition found within primary partition hda3.

A.2. Assigning the DOS plug−in

Assigning a segment manager to a disk means that you want the plug−in to manage partitions on the disk. In
order to assign a segment manager to a disk, the plug−in needs to create and maintain the appropriate
metadata, which is accomplished through the "disk type" option. When you specify the "disk type" option and
choose Linux or OS/2, the plug−in knows what sort of metadata it needs to keep and what sort of questions it
should ask when creating partitions.

An additional OS/2 option is the "disk name" option, by which you can provide a name for the disk that will
be saved in OS/2 metadata and that will be persistent across reboots.

A.3. Creating DOS partitions

There are two basic DOS partition types:

A primary partition, which is described by a partition record in the MBR partition table.1. 
A logical partition, which is described by a partition record in the EBR partition table.2. 

Every partition table has room for four partition records; however, there are a few rules that impose limits on
this.

An MBR partition table can hold four primary partition records unless you also have logical partitions. In this
case, one partition record is used to describe an extended partition and the start of the EBR chain that in turn
describes logical partitions.

Because all logical partitions must reside in the extended partition, you cannot allocate room for a primary
partition within the extended partition and you cannot allocate room for a logical partition outside or adjacent
to this area.

Lastly, an EBR partition table performs two functions:

It describes a logical partition and therefore uses a partition record for this purpose.1. 
It uses a partition record to locate the next EBR partition table.2. 

EBR partition tables use at most two entries.

When creating a DOS partition, the options you are presented with depend on the kind of disk you are
working with. However, both OS/2 disks and Linux disks require that you choose a freespace segment on the
disk within which to create the new data segment. The create options are:

size
The size of the partition you are creating. Any adjustments that are needed for alignment are

EVMS User Guide

Appendix A. The DOS plug−in 78



performed by the DOS plug−in and the resulting size might differ slightly from the value you enter.
offset

Lets you skip sectors and start the new partition within the freespace area by specifying a sector
offset.

type
Lets you enter a partition type or choose from a list of partition types; for example, native Linux.

primary
Lets you choose between creating a primary or logical partition. Due to the rules outlined above, you
might or might not have a choice. The DOS plug−in can determine if a primary or logical partition
can be created in the freespace area you chose and disable this choice.

bootable
Lets you enable the sys_ind flag field in a primary partition and disable it when creating a logical
partition. The sys_ind flag field identifies the active primary partition for booting.

Additional OS/2 options are the following:

partition name
An OS/2 partition can have a name, like Fred or Part1.

volume name
OS/2 partitions belong to volumes, either compatibility or logical, and volumes have names.
However, because the DOS plug−in is not a logical volume manager, it cannot actually create OS/2
logical volumes.

drive letter
You can specify the drive letter for an OS/2 partition, but it is not a required field. Valid drive letters
are: C,D...Z.

A.4. Expanding DOS partitions

A partition is a physically contiguous run of sectors on a disk. You can expand a partition by adding
unallocated sectors to the initial run of sectors on the disk. Because the partition must remain physically
contiguous, a partition can only be expanded by growing into an unused area on the disk. These unused areas
are exposed by the DOS plug−in as freespace segments. Therefore, a data segment is only expandable if a
freespace segment immediately follows it. Lastly, because a DOS partition must end on a cylinder boundary,
DOS segments are expanded in cylinder size increments. This means that if the DOS segment you want to
expand is followed by a freespace segment, you might be unable to expand the DOS segment if the freespace
segment is less than a cylinder in size.

There is one expand option, as follows:

size
This is the amount by which you want to expand the data segment. The amount must be a multiple of
the disk's cylinder size.

A.5. Shrinking DOS partitions

A partition is shrunk when sectors are removed from the end of the partition. Because a partition must end on
a cylinder boundary, a partition is shrunk by removing cylinder amounts from the end of the segment.

There is one shrink option, as follows:

EVMS User Guide

Appendix A. The DOS plug−in 79



size
The amount by which you want to reduce the size of the segment. Because a segment ends on a
cylinder boundary, this value must be some multiple of the disk's cylinder size.

A.6. Deleting partitions

You can delete an existing DOS data segment as long as it is not currently a compatibility volume, an EVMS
volume, or consumed by another EVMS plug−in. No options are available for deleting partitions.

EVMS User Guide

Appendix A. The DOS plug−in 80



Appendix B. The MD region manager
Multiple disks (MD) support in Linux is a software implementation of RAID (Redundant Array of
Independent Disks). The basic idea of software RAID is to combine multiple inexpensive hard disks into an
array of disks to obtain performance, capacity, and reliability that exceeds that of a single large disk.

Linux software RAID works on most block devices. A Linux RAID device can be composed of a mixture of
IDE or SCSI devices. Furthermore, because a Linux RAID device is itself a block device, it can be a member
of another Linux RAID device.

Whereas there are six standard types of RAID arrays (RAID−0 through RAID−5) in the hardware
implementation, the Linux implementation of software RAID has RAID−0, RAID−1, RAID−4, and RAID−5
levels. In addition to these four levels, Linux also has support for other non−redundant arrays called "Linear
Mode" and "MULTIPATH."

All levels of Linux software RAID are discussed in greater detail in the Software RAID HOWTO of The
Linux Documentation Project (TLDP). One important thing to remember is RAID is not a substitute for
backups.

B.1. Creating an MD region

There are four EVMS MD region plug−ins: Linear, RAID−0, RAID−1, and RAID−4/5. The RAID−4/5 region
plug−in provides support for both RAID−4 and RAID−5 arrays. After an MD region manager is selected, the
software provides a list of acceptable objects. The ordering of the MD array is implied by the order in which
you pick objects from the provided list. The following are MD region configuration options:

chunk size
The smallest chunk size is 4 KB and the largest is 4096 KB. The chunk size is a power of 2 of the
previous value. Consider the intended use of the MD region when selecting chunk size. For example,
if the MD region contains mostly large files, you might see better performance by having a larger
chunk size. The block size of the file system being used is also an important factor when selecting
chunk size.

This option is available for use with RAID−0 and RAID−4/5.
spare disk

The benefit of having a spare disk is that when an active disk fails, the kernel MD code automatically
replaces the failed disk with the spare disk. Otherwise, the MD array operates in a degraded mode.

This option is available for use with RAID−1 and RAID−4/5.
RAID−5 algorithms

There are four RAID−5 parity algorithms: left asymmetric, right asymmetric, left symmetric, and
right symmetric. The ACCS web page provides examples of what the different parity algorithms do.

This option is available for use with the RAID−5 algorithm.

Appendix B. The MD region manager 81

http://www.accs.com/p_and_p/RAID/LinuxRAID.html


B.2. Adding and removing a spare object (RAID−1 and
RAID−4/5)

When adding a spare disk to an existing MD region, select an available object that has the same size as the
disks that are currently active in the MD region. If the MD region consists of objects with different sizes, use
the smallest size.

Note that after adding a spare to a degraded MD region, the kernel MD code automatically starts the
reconstruction of the MD array. When reconstruction finishes, the spare disks becomes an active disk.

If you want to reorganize disks and segments, you can remove an existing spare disk from the MD region.
This is a safe operation because the spare disk does not contain any data.

B.3. Reconfiguring MD arrays

B.3.1. Expanding and shrinking MD arrays (linear and RAID−1)

If the MD region is part of a compatibility volume and the MD region is the topmost object of the volume, it's
possible to expand and shrink the MD region.

B.3.1.1. Expanding a linear MD region

A linear MD region can be expanded either by expanding the last member or by adding a new member.

B.3.1.2. Shrinking a linear MD region

A linear MD region can be shrunk either by shrinking the last member or by removing disks from the array
(last member first).

B.3.1.3. Expanding a RAID−1 MD region

A RAID−1 MD region can only be expanded if all members can be expanded.

B.3.1.4. Shrinking a RAID−1 MD region

A RAID−1 MD region can only be shrunk if all members can be shrunk.

B.3.2. Adding an active object (RAID−1 only)

Use this option to increase the number of mirrors of the RAID−1 region, from n−way mirrors to (n+1)−way
mirrors. When the operation is committed, the kernel MD driver performs a resync of the MD array.

B.3.3. Removing an active object (RAID−1 only)

Use this option to decrease the number of mirrors of the RAID−1 region, from n−way mirrors to (n−1)−way
mirrors.

EVMS User Guide

Appendix B. The MD region manager 82



B.4. Removing a faulty object (RAID−1 and RAID−4/5)

When an I/O error occurs on a disk, the disk is marked faulty by the kernel MD driver. Use this function to
permanently remove the faulty disk from the MD region.

B.5. Marking an object faulty (RAID−1 and RAID−4/5)

There are two scenarios for marking an active disk faulty:

When the MD region has at least one spare disk, the active disk will be swapped with a spare disk.• 

When the MD region has no spare disks, the active disk will be marked faulty and the MD array will
operate in degraded mode.

• 

When the active disk is successfully marked faulty, it can be immediately removed from the MD region.
Alternatively, the faulty disk can be later removed, as described in Section B.4.

B.6. Replacing an object

In EVMS 2.0 and later, you can replace a member of an MD region with an available storage object. The new
object must be the same size as the replaced object. This option is currently only supported for volumes that
are offline.

B.7. Characteristics of Linux RAID levels

The following subsections describe the characteristics of each Linux RAID level.

B.7.1. Linear mode

Characteristics:

Two or more disks are combined into one virtual MD device.• 
The disks are appended to each other, so writing linearly to the MD device fills up disk 0 first, then 1,
and so on.

• 

The disks do not have to be of the same size.• 

Advantages:

Can be used to build a very large MD device.• 
No parity calculation overhead is involved.• 

Disadvantages:

Not a "true" RAID because it is not fault−tolerant.• 
One disk crash will probably result in loss of most or all data.• 
Should never be used in mission−critical environments.• 

EVMS User Guide

Appendix B. The MD region manager 83



B.7.2. RAID−0

Characteristics:

Two or more disks are combined into one virtual MD device.• 
Also called "stripe" mode.• 
Stripe size determines how data is written to disk. For example, writing 16 K bytes to a RAID−0 array
of three disks with stripe size of 4 K bytes is broken down into:

4 K bytes of disk 0♦ 
4 K bytes to disk 1♦ 
4 K bytes to disk 2♦ 
4 K bytes to disk 0♦ 

• 

The disks should be the same size but they do not have to be the same size.• 

Advantages:

Can be used to build a very large MD device.• 
I/O performance is greatly improved by spreading I/O load across many controllers and disks.• 
No parity calculation overhead is involved.• 

Disadvantages:

Not a "true" RAID because it is not fault−tolerant.• 
One disk crash is liable to result in the loss of the whole array.• 
Should never be used in mission−critical environments.• 

B.7.3. RAID−1

Characteristics:

Consists of two or more disks to provide a two−way or N−way mirrored MD device.• 
Writes result in writing identical data to all active disks in the array.• 
Reads can be performed on any active disk of the array.• 
Data is intact as long as there is at least one "good" active disk in the array.• 
The disks should be the same size. If they are different sizes, the size of the RAID−1 array is
determined by the smallest disk.

• 

Advantages:

100% redundancy of data.• 
Under certain circumstances, a RAID−1 array can sustain multiple simultaneous disk failures.• 
Kernel MD code provides good read−balancing algorithm.• 
No parity calculation overhead is involved.• 

Disadvantages:

Write performance is often worse than on a single device.• 

EVMS User Guide

Appendix B. The MD region manager 84



B.7.4. RAID−4

Characteristics:

Consists of three or more striped disks.• 
Parity information is kept on one disk. When a disk fails, parity information is used to reconstruct all
data.

• 

The disks should be the same size. If they are different sizes, the size of the RAID−4 array is
determined by the smallest disk.

• 

Advantages:

Like RAID−0, I/O performance is greatly improved by spreading the I/O load across many controllers
and disks.

• 

Disadvantages:

The parity disk becomes a bottleneck. Therefore, a slow parity disk degrades I/O performance of the
whole array.

• 

Cannot sustain a two−disk simultaneous failure.• 

B.7.5. RAID−5

Characteristics:

Consists of three or more striped disks.• 
Parity information is distributed evenly among the participating disks.• 
The disks should be the same size. If they are different sizes, the size of the RAID−5 array is
determined by the smallest disk.

• 

Advantages:

Like RAID−0, I/O performance is greatly improved by spreading the I/O load across many controllers
and disks.

• 

Read performance is similar to RAID−0.• 

Disadvantages:

Writes can be expensive when required read−in blocks for parity calculations are not in the cache.• 
Cannot sustain a two−disk simultaneous failure.• 

B.7.6. MULTIPATH

Characteristics:

Consists of 1 or more disks.• 
Disks are actually I/O paths to the same physical disk.• 
Spreads I/O across active disks for simple load balancing.• 
Like other RAID levels, I/O failures will mark a disk faulty.• 
Failed I/O will be automatically retried on remaining active disks.• 

EVMS User Guide

Appendix B. The MD region manager 85



Advantages:

Achieves fault−tolerance through redundant I/O paths.• 
Possible performance improvements through load balancing.• 

Disadvantages:

Cannot survive a single disk crash.• 

EVMS User Guide

Appendix B. The MD region manager 86



Appendix C. The LVM plug−in
The LVM plug−in combines storage objects into groups called containers. From these containers, new storage
objects can be created, with a variety of mappings to the consumed objects. Containers allow the storage
capacity of several objects to be combined, allow additional storage to be added in the future, and allow for
easy resizing of the produced objects.

C.1. How LVM is implemented

The Linux LVM plug−in is compatible with volumes and volume groups from the original Linux LVM tools
from Sistina Software. The original LVM is based on the concept of volume groups. A volume group (VG) is
a grouping of physical volumes (PVs), which are usually disks or disk partitions. The volume group is not
directly usable as storage space; instead, it represents a pool of available storage. You create logical volumes
(LVs) to use this storage. The storage space of the LV can map to one or more of the group's PVs.

The Linux LVM concepts are represented by similar concepts in the EVMS LVM plug−in. A volume group is
called a container, and the logical volumes that are produced are called regions. The physical volumes can be
disks, segments, or other regions. Just as in the original LVM, regions can map to the consumed objects in a
variety of ways.

C.2. Container operations

C.2.1. Creating LVM containers

Containers are created with an initial set of objects. In the LVM plug−in, the objects can be disks, segments,
or regions. LVM has two options for creating containers. The value of these options cannot be changed after
the container has been created. The options are:

name
The name of the new container.

pe_size
The physical extent (PE) size, which is the granularity with which regions can be created. The default
is 16 MB. Each region must have a whole number of extents. Also, each region can have only up to
65534 extents. Thus, the PE size for the container limits the maximum size of a region in that
container. With the default PE size, an LVM region can be, at most 1 TB. In addition, each object
consumed by the container must be big enough to hold at least five extents. Thus, the PE size cannot
be arbitrarily large. Choose wisely.

C.2.2. Adding objects to LVM containers

You can add objects to existing LVM containers in order to increase the pool of storage that is available for
creating regions. A single container can consume up to 256 objects. Because the name and PE size of the
containers are set when the container is created, no options are available when you add new objects to a
container. Each object must be large enough to hold five physical extents. If an object is not large enough to
satisfy this requirement, the LVM plug−in will not allow the object to be added to the container.

Appendix C. The LVM plug−in 87



C.2.3. Removing objects from LVM containers

You can remove a consumed object from its container as long as no regions are mapped to that object. The
LVM plug−in does not allow objects that are in use to be removed their their container. If an object must be
removed, you can delete or shrink regions, or move extents, in order to free the object from use.

No options are available for removing objects from LVM containers.

C.2.4. Deleting LVM containers

You can delete a container as long as the container does not have any produced regions. The LVM plug−in
does not allow containers to be deleted if they have any regions. No options are available for deleting LVM
containers.

C.3. Region operations

C.3.1. Creating LVM regions

You create LVM regions from the freespace in LVM containers. If there is at least one extent of freespace in
the container, you can create a new region.

The following options are available for creating LVM regions:

name
The name of the new region.

extents
The number of extents to allocate to the new region. A new region must have at least one extent and
no more than the total available free extents in the container, or 65534 (whichever is smaller). If you
use the extents option, the appropriate value for the size option is automatically calculated. By
default, a new region uses all available extents in the container.

size
The size of the new region. This size must be a multiple of the container's PE size. If you use the
size option, the appropriate value for the extents options is automatically calculated. By default, a
new region uses all available freespace in the container.

stripes
If the container consumes two or more objects, and each object has unallocated extents, then the new
region can be striped across multiple objects. This is similar to RAID−0 striping and achieves an
increased amount of I/O throughput across multiple objects. This option specifies how many objects
the new region should be striped across. By default, new regions are not striped, and this value is set
to 1.

stripe_size
The granularity of striping. The default value is 16 KB. Use this option only if the stripes option is
greater than 1.

contiguous
This option specifies that the new region must be allocated on a single object, and that the extents on
that object must be physically contiguous. By default, this is set to false, which allows regions to span
objects. This option cannot be used if the stripes option is greater than 1.

pv_names

EVMS User Guide

Appendix C. The LVM plug−in 88



A list of names of the objects the new region should map to. By default, this list is empty, which
means all available objects will be used to allocate space to the new region.

C.3.2. Expanding LVM regions

You can expand an existing LVM region if there are unused extents in the container. If a region is striped, you
can expand it only by using free space on the objects it is striped across. If a region was created with the
contiguous option, you can only expand it if there is physically contiguous space following the currently
allocated space.

The following options are available for expanding LVM regions:

add_extents
The number of extents to add to the region. If you specify this option, the appropriate value for the
add_size option is automatically calculated. By default, the region will expand to use all free extents
in the container.

add_size
The amount of space to add to the region. If you specify this option, the appropriate value for the
add_extents option is automatically calculated. By default, the region will expand to use all freespace
in the container.

pv_names
A list of names of the objects to allocate the additional space from. By default, this list is empty,
which means all available objects will be used to allocate new space to the region.

C.3.3. Shrinking LVM regions

You can shrink an existing LVM region by removing extents from the end of the region. Regions must have at
least one extent, so regions cannot be shrunk to zero.

The following options are available when shrinking LVM regions. Because regions are always shrunk by
removing space from the end of the region, a list of objects cannot be specified in this command.

remove_extents
The number of extents to remove from the region. If you specify this option, the appropriate value for
the remove_size option is automatically calculated. By default, one extent is removed from the
region.

remove_size
The amount of space to shrink the region by. If you specify this option, the appropriate value for the
remove_extents option is automatically calculated.

C.3.4. Deleting LVM regions

You can delete an existing LVM region as long as it is not currently a compatibility volume, an EVMS
volume, or consumed by another EVMS plug−in. No options are available for deleting LVM regions.

EVMS User Guide

Appendix C. The LVM plug−in 89



C.3.5. Moving LVM regions

The LVM plug−in lets you change the logical−to−physical mapping for an LVM region and move the
necessary data in the process. This capability is most useful if a PV needs to be removed from a container.
There are currently two LVM plug−in functions for moving regions: move_pv and move_extent.

C.3.5.1. move_pv

When a PV needs to be removed from a container, all PEs on that PV that are allocated to regions must be
moved to other PVs. The move_pv command lets you move PEs to other PVs. move_pv is targeted at the
LVM container and the desired PV is used as the selected object. The following options are available:

target_pvs
By default, all remaining PVs in the container are used to find available extents to move the PEs. You
can specify a subset of the PVs with this option.

maintain_stripes
When the target PV contains striped regions, there are three choices for handling moving extents that
belong to those regions:

no
Don't bother to maintain true striping. This choice allows extents to be moved to PVs that the
region already uses for other stripes. This means that the performance will not be as optimal
as it is with true striping, but allows the most flexibility in performing the move operation.
This choice is the default for the maintain_stripes option.

loose
Ensure that moved extents do not end up on any PVs that the striped region already uses.
However, this does not ensure that all moved extents end up on the same PV. For example, a
region with three stripes may end up mapping to four or more PVs.

strict
Ensure that all moved extents end up on the same PV, thus ensuring true striping with the
same number of PVs that the striped region originally used. This is the most restricted choice,
and may prevent the move_pv operation from proceeding (depending on the particular
configuration of the container).

If the target PV has no striped regions, the maintain_stripes option is ignored.

C.3.5.2. move_extent

In addition to moving all the extents from one PV, the LVM plug−in provides the ability to move single
extents. This allows a fine−grain tuning of the allocation of extents. This command is targeted at the region
owning the extent to move. There are three required options for the move_extent command:

le
The number of the logical extent to move. LE numbers start at 0.

pv
The target object to move the extent to.

pe
The target physical extent on the target object. PE numbers also start at 0.

To determine the source LE and target PE, it is often helpful to view the extended information about the
region and container in question. The following are command−line options that can be used to gather this

EVMS User Guide

Appendix C. The LVM plug−in 90



information:

To view the map of LEs in the region, enter this command:

query:ei,<region_name>,Extents

To view the list of PVs in the container, enter this command:

query:ei,<container_name>,Current_PVs

To view the current PE map for the desired target PV, enter this command:

query:ei,<container_name>,PEMapPV#

# is the number of the target PV in the container.

This information is also easily obtainable in the GUI and Text−Mode UIs by using the "Display Details" item
in the context−popup menus for the desired region and container.

EVMS User Guide

Appendix C. The LVM plug−in 91



Appendix D. The CSM plug−in
The Cluster Segment Manager (CSM) is the EVMS plug−in that identifies and manages cluster storage. The
CSM protects disk storage objects by writing metadata at the start and end of the disk, which prevents other
plug−ins from attempting to use the disk. Other plug−ins can look at the disk, but they cannot see their own
metadata signatures and cannot consume the disk. The protection that CSM provides allows the CSM to
discover cluster storage and present it in an appropriate fashion to the system.

All cluster storage disk objects must be placed in containers that have the following attributes:

cluster ID that identifies the cluster management software• 
node ID that identifies the owner of the disk objects• 
storage type: private, shared, or deported• 

The CSM plug−in reads metadata and constructs containers that consume the disk object. Each disk provides
a usable area, mapped as an EVMS data segment, but only if the disk is accessible to the node viewing the
storage.

The CSM plug−in performs these operations:

examines disk objects• 
creates containers• 
uses the containers to consume disk objects• 
produces data segment objects if the disk is accessible to the node• 

D.1. Assigning the CSM plug−in

Assigning a segment manager to a disk means that you want the plug−in to manage partitions on the disk. In
order to do this, the plug−in needs to create and maintain appropriate metadata. The CSM creates the follow
three segments on the disk:

primary metadata segment• 
usable area data segment• 
secondary metadata segment• 

The CSM collects the information it needs to perform the assign operation with the following options:

NodeId
Choose only from a list of configured node IDs that have been provided to the CSM by clustering
software. The default selection is the node from which you are running the EVMS user interface.

Container Name
The name for the container. You need to keep this name unique across the cluster to prevent
name−in−conflict errors should the container fail over to another node that has a container with the
same name.

Storage Type
Can be either: share, private, or deported.

Note that you would typically assign the CSM to a disk when you want to add a disk to an existing CSM
container. If you are creating a new container, you have a choice of using either:

Appendix D. The CSM plug−in 92



Actions−>Create−>Container or Actions−>Add−>Segment Manager.

If the container doesn't exist, it will be created for the disk. If the container already exists, the disk will be
added to it.

D.2. Unassigning the CSM plug−in

Unassigning a CSM plug−in results in the CSM removing its metadata from the specified disk storage object.
The result is that the disk has no segments mapped and appears as a raw disk object. The disk is removed from
the container that consumed it and the data segment is removed as well.

D.3. Deleting a CSM container

An existing CSM container cannot be deleted if it is producing any data segments, because other EVMS
plug−ins might be building higher−level objects on the CSM objects. To delete a CSM container, first remove
disk objects from the container. When the last disk is removed, the container is also removed.

EVMS User Guide

Appendix D. The CSM plug−in 93



Appendix E. JFS file system interface module
The JFS FSIM lets EVMS users create and manage JFS file systems from within the EVMS interfaces. In
order to use the JFS FSIM, version 1.0.9 or later of the JFS utilities must be installed on your system. The
latest version of JFS can be found at http://oss.software.ibm.com/jfs/.

E.1. Creating JFS file systems

JFS file systems can be created with mkfs on any EVMS or compatibility volume (at least 16 MB in size) that
does not already have a file system. The following options are available for creating JFS file systems:

badblocks
Perform a read−only check for bad blocks on the volume before creating the file system. The default
is false.

caseinsensitive
Mark the file system as case−insensitive (for OS/2 compatibility). The default is false.

vollabel
Specify a volume label for the file system. The default is none.

journalvol
Specify the volume to use for an external journal. This option is only available with version 1.0.20 or
later of the JFS utilities. The default is none.

logsize
Specify the inline log size (in MB). This option is only available if the journalvol option is not set.
The default is 0.4% of the size of the volume up to 32 MB.

E.2. Checking JFS file systems

The following options are available for checking JFS file systems with fsck:

force
Force a complete file system check, even if the file system is already marked clean. The default is
false.

readonly
Check the file system is in read−only mode. Report but do not fix errors. If the file system is
mounted, this option is automatically selected. The default is false.

omitlog
Omit replaying the transaction log. This option should only be specified if the log is corrupt. The
default is false.

verbose
Display details and debugging information during the check. The default is false.

version
Display the version of fsck.jfs and exit without checking the file system. The default is false.

E.3. Removing JFS file systems

A JFS file system can be removed from its volume if the file system is unmounted. This operation involves
erasing the superblock from the volume so the file system will not be recognized in the future. There are no
options available for removing file systems.

Appendix E. JFS file system interface module 94

http://oss.software.ibm.com/jfs/


E.4. Expanding JFS file systems

A JFS file system is automatically expanded when its volume is expanded. However, JFS only allows the
volume to be expanded if it is mounted, because JFS performs all of its expansions online. In addition, JFS
only allows expansions if version 1.0.21 or later of the JFS utilities are installed.

E.5. Shrinking JFS file systems

At this time, JFS does not support shrinking its file systems. Hence, volumes with JFS file systems cannot be
shrunk.

EVMS User Guide

Appendix E. JFS file system interface module 95



Appendix F. XFS file system interface module
The XFS FSIM lets EVMS users create and manage XFS file systems from within the EVMS interfaces. In
order to use the XFS FSIM, version 2.0.0 or later of the XFS utilities must be installed on your system. The
latest version of XFS can be found at http://oss.sgi.com/projects/xfs/.

F.1. Creating XFS file systems

XFS file systems can be created with mkfs on any EVMS or compatibility volume that does not already have
a file system. The following options are available for creating XFS file systems:

vollabel
Specify a volume label for the file system. The default is none.

journalvol
Specify the volume to use for an external journal. The default is none.

logsize
Specify the inline log size (in MB). This option is only available if the journalvol option is not set.
The default is 4 MB; the allowed range is 2 to 256 MB.

F.2. Checking XFS file systems

The following options are available for checking XFS file systems with fsck:

readonly
Check the file system is in read−only mode. Report but do not fix errors. The default is false.

verbose
Display details and debugging information during the check. The default is false.

F.3. Removing XFS file systems

An XFS file system can be removed from its volume if the file system is unmounted. This operation involves
erasing the superblock from the volume so the file system will not be recognized in the future. There are no
options available for removing file systems.

F.4. Expanding XFS file systems

An XFS file system is automatically expanded when its volume is expanded. However, XFS only allows the
volume to be expanded if it is mounted, because XFS performs all of its expansions online.

F.5. Shrinking XFS file systems

At this time, XFS does not support shrinking its file systems. Hence, volumes with XFS file systems cannot
be shrunk.

Appendix F. XFS file system interface module 96

http://oss.sgi.com/projects/xfs/


Appendix G. ReiserFS file system interface module
The ReiserFS FSIM lets EVMS users create and manage ReiserFS file systems from within the EVMS
interfaces. In order to use the ReiserFS FSIM, version 3.x.0 or later of the ReiserFS utilities must be installed
on your system. In order to get full functionality from the ReiserFS FSIM, use version 3.x.1b or later. The
latest version of ReiserFS can be found at http://www.namesys.com/.

G.1. Creating ReiserFS file systems

ReiserFS file systems can be created with mkfs on any EVMS or compatibility volume that does not already
have a file system. The following option is available for creating ReiserFS file systems:

vollabel
Specify a volume label for the file system. The default is none.

G.2. Checking ReiserFS file systems

The following option is available for checking XFS file systems with fsck:

mode
There are three possible modes for checking a ReiserFS file system: Check Read−Only, Fix, and
Rebuild Tree."

G.3. Removing ReiserFS file systems

A ReiserFS file system can be removed from its volume if the file system is unmounted. This operation
involves erasing the superblock from the volume so the file system will not be recognized in the future. There
are no options available for removing file systems.

G.4. Expanding ReiserFS file systems

A ReiserFS file system is automatically expanded when its volume is expanded. ReiserFS file systems can be
expanded if the volume is mounted or unmounted.

G.5. Shrinking ReiserFS file systems

A ReiserFS file system is automatically shrunk if the volume is shrunk. ReiserFS file systems can only be
shrunk if the volume is unmounted.

Appendix G. ReiserFS file system interface module 97

http://www.namesys.com/


Appendix H. Ext−2/3 file system interface module
The Ext−2/3 FSIM lets EVMS users create and manage Ext2 and Ext3 file systems from within the EVMS
interfaces. In order to use the Ext−2/3 FSIM, the e2fsprogs package must be installed on your system. The
e2fsprogs package can be found at http://e2fsprogs.sourceforge.net/.

H.1. Creating Ext−2/3 file systems

Ext−2/3 file systems can be created with mkfs on any EVMS or compatibility volume that does not already
have a file system. The following options are available for creating Ext−2/3 file systems:

badblocks
Perform a read−only check for bad blocks on the volume before creating the file system. The default
is false.

badblocks_rw
Perform a read/write check for bad blocks on the volume before creating the file system. The default
is false.

vollabel
Specify a volume label for the file system. The default is none.

journal
Create a journal for use with the Ext2 file system. The default is true.

H.2. Checking Ext−2/3 file systems

The following options are available for checking Ext−2/3 file systems with fsck:

force
Force a complete file system check, even if the file system is already marked clean. The default is
false.

readonly
Check the file system is in read−only mode. Report but do not fix errors. If the file system is
mounted, this option is automatically selected. The default is false.

badblocks
Check for bad blocks on the volume and mark them as busy. The default is false.

badblocks_rw
Perform a read−write check for bad blocks on the volume and mark them as busy. The default is false.

H.3. Removing Ext−2/3 file systems

An Ext−2/3 file system can be removed from its volume if the file system is unmounted. This operation
involves erasing the superblock from the volume so the file system will not be recognized in the future. There
are no options available for removing file systems.

H.4. Expanding and shrinking Ext−2/3 file systems

An Ext−2/3 file system is automatically expanded or shrunk when its volume is expanded or shrunk.
However, Ext−2/3 only allows these operations if the volume is unmounted, because online expansion and

Appendix H. Ext−2/3 file system interface module 98

http://e2fsprogs.sourceforge.net/


shrinkage is not yet supported.

EVMS User Guide

Appendix H. Ext−2/3 file system interface module 99



Appendix I. OpenGFS file system interface module
The OpenGFS FSIM lets EVMS users create and manage OpenGFS file systems from within the EVMS
interfaces. In order to use the OpenGFS FSIM, the OpenGFS utilities must be installed on your system. Go to
http://sourceforge.net/projects/opengfs for the OpenGFS project.

I.1. Creating OpenGFS file systems

OpenGFS file systems can be created with mkfs on any EVMS or compatibility volume that does not already
have a file system and that is produced from a shared cluster container. The following options are available
for creating OpenGFS file systems:

blocksize
Set the file system block size. The block size is in bytes. The block size must be a power of 2 between
512 and 65536, inclusive. The default block size is 4096 bytes.

journals
The names of the journal volumes, one for each node.

protocol
Specify the name of the locking protocol to use. The choices are "memexp" and "opendlm."

lockdev
Specify the shared volume to be used to contain the locking metadata.

The OpenGFS FSIM only takes care of file system operations. It does not take care of OpenGFS cluster and
node configuration. Before the volumes can be mounted, you must configure the cluster and node separately
after you have made the file system and saved the changes.

I.2. Checking OpenGFS file systems

The OpenGFS utility for checking the file system has no additional options.

I.3. Removing OpenGFS file systems

An OpenGFS file system can be removed from its volume if the file system is unmounted. This operation
involves erasing the superblock from the volume, erasing the log headers for the journal volumes, and erasing
the control block on the cluster configuration volume associated with the file system volume so that the file
system will not be recognized in the future. There are no options available for removing file systems.

I.4. Expanding and shrinking OpenGFS file systems

OpenGFS only allows a volume to be expanded. OpenGFS only allows a volume to expanded when the
volume is mounted. An OpenGFS file system is automatically expanded when its volume is expanded.

Appendix I. OpenGFS file system interface module 100

http://sourceforge.net/projects/opengfs

	Table of Contents
	Preface
	Chapter 1. What is EVMS?
	1.1. Why choose EVMS?
	1.2. The EVMS user interfaces
	1.3. EVMS terminology
	1.4. What makes EVMS so flexible?
	1.5. Plug-in layer definitions

	Chapter 2. Using the EVMS interfaces
	2.1. EVMS GUI
	2.1.1. Using context sensitive and action menus
	2.1.2. Saving changes
	2.1.3. Refreshing changes
	2.1.4. Using the GUI "+"
	2.1.5. Using the accelerator keys

	2.2. EVMS Ncurses interface
	2.2.1. Navigating through EVMS Ncurses
	2.2.2. Saving changes

	2.3. EVMS Command Line Interpreter
	2.3.1. Using the EVMS CLI
	2.3.2. Notes on commands and command files


	Chapter 3. The EVMS log file and error data collection
	3.1. About the EVMS log file
	3.2. Log file logging levels
	3.3. Specifying the logging levels

	Chapter 4. Viewing compatibility volumes after migrating
	4.1. Using the EVMS GUI
	4.2. Using Ncurses
	4.3. Using the CLI

	Chapter 5. Obtaining interface display details
	5.1. Using the EVMS GUI
	5.2. Using Ncurses
	5.3. Using the CLI

	Chapter 6. Adding and removing a segment manager
	6.1. When to add a segment manager
	6.2. Types of segment managers
	6.2.1. DOS Segment Manager
	6.2.2. GUID Partitioning Table (GPT) Segment Manager
	6.2.3. S/390 Segment Manager
	6.2.4. Cluster segment manager
	6.2.5. BSD segment manager
	6.2.6. MAC segment manager
	6.2.7. BBR segment manager

	6.3. Adding a segment manager to an existing disk
	6.4. Adding a segment manager to a new disk
	6.5. Example: add a segment manager
	6.5.1. Using the EVMS GUI
	6.5.2. Using Ncurses
	6.5.3. Using the CLI

	6.6. Removing a segment manager
	6.7. Example: remove a segment manager
	6.7.1. Using the EVMS GUI context sensitive menu
	6.7.2. Using Ncurses
	6.7.3. Using the CLI


	Chapter 7. Creating segments
	7.1. When to create a segment
	7.2. Example: create a segment
	7.2.1. Using the EVMS GUI
	7.2.2. Using Ncurses
	7.2.3. Using the CLI


	Chapter 8. Creating a container
	8.1. When to create a container
	8.2. Example: create a container
	8.2.1. Using the EVMS GUI
	8.2.2. Using Ncurses
	8.2.3. Using the CLI


	Chapter 9. Creating regions
	9.1. When to create regions
	9.2. Example: create a region
	9.2.1. Using the EVMS GUI
	9.2.2. Using Ncurses
	9.2.3. Using the CLI


	Chapter 10. Creating drive links
	10.1. What is drive linking?
	10.2. How drive linking is implemented
	10.3. Creating a drive link
	10.4. Example: create a drive link
	10.4.1. Using the EVMS GUI
	10.4.2. Using Ncurses
	10.4.3. Using the CLI

	10.5. Expanding a drive link
	10.6. Shrinking a drive link
	10.7. Deleting a drive link

	Chapter 11. Creating snapshots
	11.1. What is a snapshot?
	11.2. Creating and activating snapshot objects
	11.2.1. Creating a snapshot
	11.2.2. Activating a snapshot

	11.3. Example: create a snapshot
	11.3.1. Using the EVMS GUI
	11.3.2. Using Ncurses
	11.3.3. Using the CLI

	11.4. Reinitializing a snapshot
	11.4.1. Using the EVMS GUI or Ncurses
	11.4.2. Using the CLI

	11.5. Expanding a snapshot
	11.5.1. Using the EVMS GUI or Ncurses
	11.5.2. Using the CLI

	11.6. Deleting a snapshot
	11.7. Rolling back a snapshot
	11.7.1. Using the EVMS GUI or Ncurses
	11.7.2. Using the CLI


	Chapter 12. Creating volumes
	12.1. When to create a volume
	12.2. Example: create an EVMS native volume
	12.2.1. Using the EVMS GUI
	12.2.2. Using Ncurses
	12.2.3. Using the CLI

	12.3. Example: create a compatibility volume
	12.3.1. Using the GUI
	12.3.2. Using Ncurses
	12.3.3. Using the CLI


	Chapter 13. FSIMs and file system operations
	13.1. The FSIMs supported by EVMS
	13.1.1. JFS
	13.1.2. XFS
	13.1.3. ReiserFS
	13.1.4. Ext2/3
	13.1.5. SWAPFS
	13.1.6. OpenGFS

	13.2. Example: add a file system to a volume
	13.2.1. Using the EVMS GUI
	13.2.2. Using Ncurses
	13.2.3. Using the CLI

	13.3. Example: check a file system
	13.3.1. Using the EVMS GUI
	13.3.2. Using Ncurses
	13.3.3. Using the CLI


	Chapter 14. Clustering operations
	14.1. Rules and restrictions for creating cluster containers
	14.2. Example: create a private cluster container
	14.2.1. Using the EVMS GUI
	14.2.2. Using Ncurses
	14.2.3. Using the CLI

	14.3. Example: create a shared cluster container
	14.3.1. Using the EVMS GUI
	14.3.2. Using Ncurses
	14.3.3. Using the CLI

	14.4. Example: convert a private container to a shared container
	14.4.1. Using the EVMS GUI
	14.4.2. Using Ncurses
	14.4.3. Using the CLI

	14.5. Example: convert a shared container to a private container
	14.5.1. Using the EVMS GUI
	14.5.2. Using Ncurses
	14.5.3. Using the CLI

	14.6. Example: deport a private or shared container
	14.6.1. Using the EVMS GUI
	14.6.2. Using Ncurses
	14.6.3. Using the CLI

	14.7. Deleting a cluster container
	14.8. Failover and Failback of a private container on Linux-HA
	14.9. Remote configuration management
	14.9.1. Using the EVMS GUI
	14.9.2. Using Ncurses
	14.9.3. Using the CLI

	14.10. Forcing a cluster container to be imported

	Chapter 15. Converting volumes
	15.1. When to convert volumes
	15.2. Example: convert compatibility volumes to EVMS volumes
	15.2.1. Using the EVMS GUI
	15.2.2. Using Ncurses
	15.2.3. Using the CLI

	15.3. Example: convert EVMS volumes to compatibility volumes
	15.3.1. Using the EVMS GUI
	15.3.2. Using Ncurses
	15.3.3. Using the CLI


	Chapter 16. Expanding and shrinking volumes
	16.1. Why expand and shrink volumes?
	16.2. Example: shrink a volume
	16.2.1. Using the EVMS GUI
	16.2.2. Using Ncurses
	16.2.3. Using the CLI

	16.3. Example: expand a volume
	16.3.1. Using the EVMS GUI
	16.3.2. Using Ncurses
	16.3.3. Using the CLI


	Chapter 17. Adding features to an existing volume
	17.1. Why add features to a volume?
	17.2. Example: add drive linking to an existing volume
	17.2.1. Using the EVMS GUI
	17.2.2. Using Ncurses
	17.2.3. Using the CLI


	Chapter 18. Plug-in operations tasks
	18.1. What are plug-in tasks?
	18.2. Example: complete a plug-in operations task
	18.2.1. Using the EVMS GUI
	18.2.2. Using Ncurses
	18.2.3. Using the CLI


	Chapter 19. Deleting objects
	19.1. How to delete objects: delete and delete recursive
	19.2. Example: perform a delete recursive operation
	19.2.1. Using the EVMS GUI
	19.2.2. Using Ncurses
	19.2.3. Using the CLI


	Chapter 20. Replacing objects
	20.1. What is object-replace?
	20.2. Replacing a drive-link child object
	20.2.1. Using the EVMS GUI or Ncurses
	20.2.2. Using the CLI


	Chapter 21. Moving segment storage objects
	21.1. What is segment moving?
	21.2. Why move a segment?
	21.3. Which segment manager plug-ins implement the move function?
	21.4. Example: move a DOS segment
	21.4.1. Using the EVMS GUI context sensitive menu
	21.4.2. Using Ncurses
	21.4.3. Using the CLI


	Appendix A. The DOS plug-in
	A.1. How the DOS plug-in is implemented
	A.2. Assigning the DOS plug-in
	A.3. Creating DOS partitions
	A.4. Expanding DOS partitions
	A.5. Shrinking DOS partitions
	A.6. Deleting partitions

	Appendix B. The MD region manager
	B.1. Creating an MD region
	B.2. Adding and removing a spare object (RAID-1 and RAID-4/5)
	B.3. Reconfiguring MD arrays
	B.3.1. Expanding and shrinking MD arrays (linear and RAID-1)
	B.3.2. Adding an active object (RAID-1 only)
	B.3.3. Removing an active object (RAID-1 only)

	B.4. Removing a faulty object (RAID-1 and RAID-4/5)
	B.5. Marking an object faulty (RAID-1 and RAID-4/5)
	B.6. Replacing an object
	B.7. Characteristics of Linux RAID levels
	B.7.1. Linear mode
	B.7.2. RAID-0
	B.7.3. RAID-1
	B.7.4. RAID-4
	B.7.5. RAID-5
	B.7.6. MULTIPATH


	Appendix C. The LVM plug-in
	C.1. How LVM is implemented
	C.2. Container operations
	C.2.1. Creating LVM containers
	C.2.2. Adding objects to LVM containers
	C.2.3. Removing objects from LVM containers
	C.2.4. Deleting LVM containers

	C.3. Region operations
	C.3.1. Creating LVM regions
	C.3.2. Expanding LVM regions
	C.3.3. Shrinking LVM regions
	C.3.4. Deleting LVM regions
	C.3.5. Moving LVM regions


	Appendix D. The CSM plug-in
	D.1. Assigning the CSM plug-in
	D.2. Unassigning the CSM plug-in
	D.3. Deleting a CSM container

	Appendix E. JFS file system interface module
	E.1. Creating JFS file systems
	E.2. Checking JFS file systems
	E.3. Removing JFS file systems
	E.4. Expanding JFS file systems
	E.5. Shrinking JFS file systems

	Appendix F. XFS file system interface module
	F.1. Creating XFS file systems
	F.2. Checking XFS file systems
	F.3. Removing XFS file systems
	F.4. Expanding XFS file systems
	F.5. Shrinking XFS file systems

	Appendix G. ReiserFS file system interface module
	G.1. Creating ReiserFS file systems
	G.2. Checking ReiserFS file systems
	G.3. Removing ReiserFS file systems
	G.4. Expanding ReiserFS file systems
	G.5. Shrinking ReiserFS file systems

	Appendix H. Ext-2/3 file system interface module
	H.1. Creating Ext-2/3 file systems
	H.2. Checking Ext-2/3 file systems
	H.3. Removing Ext-2/3 file systems
	H.4. Expanding and shrinking Ext-2/3 file systems

	Appendix I. OpenGFS file system interface module
	I.1. Creating OpenGFS file systems
	I.2. Checking OpenGFS file systems
	I.3. Removing OpenGFS file systems
	I.4. Expanding and shrinking OpenGFS file systems


