
API Reference
Netscape Gecko Plug-ins

Version2.0

August 2002

Table of Contents

Preface. 3
About This Guide . 3
Who Should Read This Guide . 3
The Plug-in Software Development Kit . 4

Plug-in Basics . 3
How Plug-ins Are Used . 3

Plug-ins and Helper Applications . 4
How Plug-ins Work . 4
Understanding the Runtime Model . 5
Plug-in Detection . 6

How Netscape Gecko Finds Plug-ins . 6
Checking Plug-ins by MIME Type . 7

Overview of Plug-in Structure . 7
Understanding the Plug-in API . 8
Plug-ins and Platform Independence . 8

Windowed and Windowless Plug-ins . 9
The Default Plug-in . 9
Using HTML to Display Plug-ins . 10

Plug-in Display Modes . 11
Using the OBJECT Tag for Plug-in Display . 13
Nesting Rules for HTML Elements . 15
Using the Appropriate Attributes . 16
Using the EMBED Tag for Plug-in Display . 16
Using Custom EMBED Attributes . 19

Plug-in References . 20

Plug-in Development Overview . 21
Writing Plug-ins . 21
Registering Plug-ins . 22

Mac OS . 23
MS Windows . 23
Unix . 24

Drawing a Plug-in Instance . 24
Handling Memory . 25
i

Sending and Receiving Streams . 25
Working with URLs . 26
Getting Version and UI Information . 26
Displaying Messages on the Status Line . 27
Making Plug-ins Scriptable . 27

How to call JavaScript from the plug-in . 29
Scriptable Plug-in Lifetime . 30
Scriptable plug-in building and installation overview . 30

Building Plug-ins . 35
Building, Platforms, and Compilers . 35
Building Carbonized Plug-ins for Mac OSX . 35
Getting and Using the xpidl Compiler . 39
Type Libraries . 39

Installing Plug-ins . 40
Native Installers . 40
XPI Plug-ins Installations . 42
Plug-in Installation and the Windows Registry . 44

Initialization and Destruction . 47
Initialization . 47
Instance Creation . 48
Instance Destruction . 49
Shutdown . 51
Initialize and Shutdown Example . 52

Drawing and Event Handling . 53
The NPWindow Structure . 53

The NPWindow Structure . 54
Drawing Plug-ins . 55

Printing the Plug-in . 56
Setting the Window . 56
Getting Information . 57

Windowed Plug-ins . 58
Mac OS . 59
Windows . 60
Unix . 60
Event Handling for Windowed Plug-ins . 60

Windowless Plug-ins . 60
Specifying That a Plug-in Is Windowless . 61
Invalidating the Drawing Area . 62
Forcing a Paint Message . 63
Making a Plug-in Opaque . 64
ii Gecko Plug-in API Reference

Making a Plug-in Transparent . 64
Creating Pop-up Menus and Dialog Boxes . 65
Event Handling for Windowless Plug-ins . 65

Streams . 67
Receiving a Stream . 68

Telling the Plug-in When a Stream Is Created . 68
Telling the Plug-in When a Stream Is Deleted . 69
Finding Out How Much Data the Plug-in Can Accept . 70
Writing the Stream to the Plug-in . 71
Sending the Stream in Random-Access Mode . 72
Sending the Stream in File Mode . 73

Sending a Stream . 74
Creating a Stream . 74
Pushing Data into the Stream . 75
Deleting the Stream . 76
Example of Sending a Stream . 77

URLs . 79
Getting URLs . 80

Getting the URL and Displaying the Page . 82
Posting URLs . 83

Posting Data to an HTTP Server . 85
Uploading Files to an FTP Server . 85
Sending Mail . 86

Memory . 87
Allocating and Freeing Memory . 87

Mac OS . 88
Flushing Memory (Mac OS only) . 88

Version, UI, and Status Information . 91
Displaying a Status Line Message . 91
Getting Agent Information . 92
Getting the Current Version . 92
Finding Out if a Feature Exists . 93
Reloading a Plug-in . 94

Plug-in Side Plug-in API . 95
Plugin Method Summary . 95

NPP_Destroy . 96
iii

NPP_DestroyStream . 97
NPP_GetValue . 99
NPP_HandleEvent . 101
NP_Initialize . 102
NPP_New . 103
NPP_NewStream . 105
NPP_Print . 108
NPP_SetValue . 109
NPP_SetWindow . 111
NP_Shutdown . 112
NPP_StreamAsFile . 113
NPP_URLNotify . 114
NPP_Write . 116
NPP_WriteReady . 117

Browser Side Plug-in API . 119
Netscape Plug-in Method Summary . 119
NPN_DestroyStream . 120
NPN_ForceRedraw . 121
NPN_GetURL . 123
NPN_GetURLNotify . 126
NPN_GetValue . 127
NPN_InvalidateRect . 129
NPN_InvalidateRegion . 130
NPN_MemAlloc . 131
NPN_MemFlush . 133
NPN_MemFree . 134
NPN_NewStream . 134
NPN_PostURL . 136
NPN_PostURLNotify . 139
NPN_ReloadPlugins . 140
NPN_RequestRead . 141
NPN_SetValue . 143
NPN_Status . 146
NPN_UserAgent . 147
NPN_Version . 147
NPN_Write . 149

Structures . 151
Structure Summary . 151
NPAnyCallbackStruct . 152
NPByteRange . 153
iv Gecko Plug-in API Reference

NPEmbedPrint . 154
NPEvent . 155
NPFullPrint . 160
NPP . 162
NP_Port . 163
NPPrint . 164
NPPrintCallbackStruct . 165
NP_Rect . 166
NP_Region . 167
NPSavedData . 168
NPSetWindowCallbackStruct . 169
NPStream . 171
NPWindow . 173

Constants . 177
Error Codes . 177
Result Codes . 178
Plug-in Version Constants . 178
Version Feature Constants . 179
v

vi Gecko Plug-in API Reference

Preface

About This Guide

The Netscape GeckoTM Plug-in API Reference describes the application programming
interfaces (APIs) for Netscape Gecko plug-ins and provides information about how to
use these interfaces to create plug-ins for Netscape Gecko-based browsers such as
Netscape 6.x, Netscape 7.0, and Mozilla.

The general introduction in “Plug-in Basics” and a chapter entitled “Plug-in
Development Overview” begin the guide. A series of chapters on specific
programming topics such as “Initialization and Destruction”, “Streams”, and
“URLs” provide more detail about the technical aspects and techniques for creating
and managing plug-ins.

The API reference in the second half of the guide is divided up into two main halves,
“Plug-in Side Plug-in API“ and “Browser Side Plug-in API“, as well as additional
reference material about “Structures” and “Constants“.

The guide is structured so the developers new to Netscape Gecko plug-ins can
familiarize themselves with the APIs and particular aspects of the development
process (e.g., “Drawing and Event Handling”), but so that plug-in developers can
quickly access the API reference material they need.

Who Should Read This Guide

The Netscape Gecko Plug-in API Reference is meant for plug-in developers. Though
it provides a basic overview of plug-ins and how they work in the browser, the guide
presumes that you understand how plug-ins work, how they handle and display media,
and what the basic architecture of a browser is that supports the use of plug-in
software.

The guide also presumes that you know how to use application programming
interfaces, have experience developing browser software such as plug-ins,
components, or add-ons, and are familiar with C/C++, the language(s) in which the
libraries were actually created and in which all of the examples are given.
1

The Plug-in Software Development Kit

A Plug-in software development kit (SDK) is available for Netscape Gecko plug-in
developers. This SDK is located in the Mozilla source under mozilla/modules/
plugin/tools/sdk. You can use it within the Mozilla source tree, or you can build
it there and then use it outside of tree if you’d rather. In either case, the Mozilla source
tree is required to get started developing plug-ins. You can also view the plug-in SDK
samples and source code using the web-based source viewer:

http://lxr.mozilla.org/seamonkey/source/modules/plugin/tools/sdk/

The SDK is based on the API developed originally for Netscape browsers starting
with Netscape 2.x. Some additions were made when Netscape 3.x and Netscape 4.x
were released. The present SDK reflects major changes related to Mozilla code base:
LiveConnect for plugin scriptability is no longer supported, existing plugins should be
modified slightly to become scriptable again; the browser services are now accessible
from the plug-in through the access to the service manager.

The SDK is intended to help in creating full-blown plugins to work with the Mozilla
code base without actually having the whole Mozilla source tree present and built.

The Common folder contains stub implementations of the NPAPI methods. There is
no need to modify files in this folder, just include them into your project. This is not
necessary though, some samples or plugin projects may use their own
implementations, the files in this folder are just an illustration of one possible way to
do that.

The Samples section at this point contains the following plug-in samples:

Basic plug-in

Shows the bare bones of the plugin DLL. It does not do anything more than a 'Hello,
World' for plug-ins. The basic plug-in demonstrates how the plugin DLL is invoked
and how NPAPI methods are called. It can be used as a starting template for writing
your own plug-in.

Simple plug-in

This plugin example illustrates specific for Mozilla code base features. It is scriptable
via JavaScript and uses services provided by the browser.
2 Gecko Plug-in API Reference

http://lxr.mozilla.org/seamonkey/source/modules/plugin/tools/sdk/

XPCOM interfaces are implemented in the simple plug-in so the Mozilla browser is
aware of its capabilities. The plugin does not draw in the native window but rather
uses JavaScript box to display the result of its work. Therefore, there are no separate
projects for different platforms in this sample.

Scriptable plug-in

Yet another example of plug-in scriptability. The scriptable plug-in implements two
native methods callable from the JavaScript, and it draws in a native window, so it
uses different projects for the different major platforms.

Windowless plug-in

The windowless plug-in is an example of a plugin which does not use native window
messaging mechanism and relies exclusively on NPP_HandleEvent to receive GUI
messages for painting and other tasks. This plug-in simply draws a gray rectangle in
the occupied area.

Scriptable plug-in samples require that you generate cross-platform type library
(XPT) files and place them in the Mozilla Plugins directory along with the plug-in
DLLs. (For backwards compatibility with pre-Mozilla 1.0 and Netscape 6.x browsers,
you must put the type library file in the Components directory instead. For more
information on type libraries and plug-in path information, see Plug-in Detection in
the “Plug-in Basics” chapter.)

To verify that Mozilla is aware of new .xpt files, you can look in the generated file,
xpti.dat, where type libraries are listed. If you need to, you can call
netscape.plugins.refresh() to to find new XPT files and plug-in software.

Plug-in developers might find it useful for debugging purporses to turn off the
exception catching mechanism currently implemented in Mozilla on Windows. To
turn off Windows exception handling, add the following line into your prefs.js file:
user_pref("plugin.dont_try_safe_calls", true);
3

4 Gecko Plug-in API Reference

Plug-in Basics

How Plug-ins Are Used

Plug-ins offer a rich variety of features that can increase the flexibility of Netscape
Gecko-based browsers. Plug-ins like these are now available:
• multimedia viewers such as Macromedia Shockwave and Adobe Acrobat
• utilities that provide object embedding and compression/decompression services
• applications that range from personal information managers to games

The range of possibilities for using plug-in technology seems boundless, as shown by
the growing numbers of independent software vendors who are creating new and
innovative plug-ins.

With the Plug-in API, you can create dynamically loaded plug-ins that can:
• register one or more MIME types
• draw into a part of a browser window
• receive keyboard and mouse events
• obtain data from the network using URLs
• post data to URLs
• add hyperlinks or hotspots that link to new URLs
• draw into sections on an HTML page
• communicate with Javascript/DOM from native code

You can see which plug-ins are installed on your system and have been properly
associated with the browser by consulting the Installed Plug-ins page. Go to the Help
menu, and click Help and then About Plug-ins. The Installed Plug-ins page lists each
installed plug-in along with its MIME type or types, description, extensions, and the
current state (enabled or disabled) of the plug-in for each MIME type assigned to it.
Notice in view-source that this information is simply gathered from the DOM.

Because plug-ins are platform-specific, you must port them to every operating system
and processor platform upon which you want to deploy your plug-in.
3

Plug-ins and Helper Applications

Before plug-ins, there were helper applications. A helper application is a separate,
free-standing application that can be started from the browser. Like a plug-in, the
browser starts a helper application when the browser encounters a MIME type that is
mapped to it. Unlike a plug-in, a helper application runs separately from the browser
in its own application space and does not interact with the browser or the web.

When the browser encounters a MIME type, it always searches for a registered plug-
in first. If there are no matches for the MIME type, it looks for a helper application.

Plug-ins and helper applications fill different application needs. For more information
about helper applications, refer to the Netscape online help.

How Plug-ins Work

The life cycle of a plug-in, unlike that of an application, is completely controlled by
the web page that calls it. This section gives you an overview of the way that plug-ins
operate in the browser.

When Netscape Gecko starts, it checks for plug-in modules in the plugins directory or
Plug-ins folder (Mac OS) located in the same folder or directory as the browser
application. For more information, see "How Netscape Gecko Finds Plug-ins"

When the user opens a page that contains embedded data of a media type that invokes
a plug-in, the browser responds with the following sequence of actions:
• check for a plug-in with a matching MIME type
• load the plug-in code into memory
• initialize the plug-in
• create a new instance of the plug-in

Netscape Gecko can load multiple instances of the same plug-in on a single page, or
in several open windows at the same time. If you are browsing a page that has several
embedded real audio clips, for example, the browser will create as many instances of
the RealPlayer plug-in as are needed (though of course playing several real audio files
at the same time would seldom be a good idea). When the user leaves the page or
closes the window, the plug-in instance is deleted. When the last instance of a plug-in
is deleted, the plug-in code is unloaded from memory. A plug-in consumes no
resources other than disk space when it is not loaded. The next section,
Understanding the Runtime Model, describes these stages in more detail.
4 Gecko Plug-in API Reference

Understanding the Runtime Model

Plug-ins are dynamic code modules that are associated with one or more MIME types.
When the browser starts, it enumerates the available plug-ins (this step varies
according to platform), reads resources from each plug-in file to determine the MIME
types for that plug-in, and registers each plug-in library for its MIME types.

The following stages outline the life of a plug-in from loading to deletion:
• When Netscape Gecko encounters data of a MIME type registered for a plug-in

(either embedded in an HTML page or in a separate file), it dynamically loads the
plug-in code into memory, if it hasn't been loaded already, and it creates a new
instance of the plug-in.

Netscape Gecko calls the plug-in API function NP_Initialize1 when the plug-in
code is first loaded. By convention, all of the plug-in specific functions have the
prefix “NPP”, and all of the browser-specific functions have the prefix “NPN”

• The browser calls the plug-in API function NPP_New when the instance is cre-
ated. Multiple instances of the same plug-in can exist (a) if there are multiple
embedded objects on a single page, or (b) if several browser windows are open
and each displays the same data type.

• A plug-in instance is deleted when a user leaves the instance's page or closes its
window; Netscape Gecko calls the function NPP_Destroy to inform the plug-in
that the instance is being deleted.

• When the last instance of a plug-in is deleted, the plug-in code is unloaded from
memory. Netscape Gecko calls the function NP_Shutdown. Plug-ins consume no
resources (other than disk space) when not loaded.

NOTE: Plug-in API calls and callbacks use the main Navigator thread. In general, if
you want a plug-in to generate additional threads to handle processing at any stage in
its lifespan, you should be careful to isolate these from Plug-in API calls.

See “Initialization and Destruction” for more information about using these
methods.

1. Note that NP_Initialize and NP_Shutdown are not technically a part of the function
table that the plug-in hands to the browser. The browser calls them when the plug-in
software is loaded and unloaded. These functions are exported from the plug-in DLL and
accessed with a system table lookup, which means that they are not related to any
particular plug-in instance. Again, see “Initialization and Destruction” for more
information about initializing and destroying plug-ins.
5

Plug-in Detection

Netscape Gecko looks for plug-ins in various places and in a particular order. The
next section, “How Netscape Gecko Finds Plug-ins,” describes these rules, and the
following section, “Checking Plug-ins by MIME Type,” describes how you can use
JavaScript to locate plug-ins yourself and establish which ones are to be registered for
which MIME types.

How Netscape Gecko Finds Plug-ins

When a Netscape Gecko-based browser starts up on Windows or Unix systems, it
checks for plug-in modules in the path pointed to by MOZ_PLUGIN_PATH. After that,
it checks in the plug-ins directory for the platform:
• MS Windows: plugins subdirectory, in the same directory as the browser appli-

cation.
• Mac OS: Plug-ins folder. A Mac OS plug-in can reside in a different directory

if you install a Macintosh alias that links to the plug-in in the Plug-ins folder.
• Unix: usr/local/lib/netscape/plugins or $HOME/.mozilla/plugins.

If you want to use a different directory, set the MOZ_PLUGIN_PATH environment
variable to its filepath, for example,
$HOME/yourplugins:/usr/local/lib/netscape/plugins.

Netscape Gecko searches any directory that this variable specifies. The local user
location, if it exists, overrides the network location.

• Finally, on the Mac, the browser scans the ~/Library/Internet Plugins

then /Library/Internet Plugins. Within these directories, the plug-ins are
ordered by date.

On all platforms, the plug-ins subdirectory or folder must be in the same directory
as the browser application. Users can install plug-ins in this directory manually, by
using a binary installer program, or by using the XPInstall API to write an installation
script, which the browser then uses to perform the installation. For more information
about these options, see Installing Plug-ins.

To find out which plug-ins are currently installed, choose About Plug-ins from the
Help menu (MS Windows and Unix) or "?" (Help) menu (Mac OS). Netscape Gecko
displays a page listing all installed plug-ins and the MIME types they handle, as well
as optional descriptive information supplied by the plug-in.

On Windows, installed plug-ins are automatically configured to handle the MIME
types that they support. If multiple plug-ins handle the same MIME type, the first
plug-in registered handles the MIME type. For information about the way MIME
types are assigned, see Registering Plug-ins.
6 Gecko Plug-in API Reference

Checking Plug-ins by MIME Type

The enabledPlugin property in JavaScript can be used to determine which plug-in
is configured for a specific MIME type. Though plug-ins may support multiple MIME
types and each MIME type may be supported by multiple plug-ins, only one plug-in
can be configured for a MIME type. The enabledPlugin property is a reference to a
Plugin object that represents the plug-in that is configured for the specified MIME
type.

You might need to know which plug-in is configured for a MIME type, for example,
to dynamically create an OBJECT tag on the page if the user has a plug-in configured
for the MIME type.

The following example uses the DOM to determine whether the Shockwave plug-in is
installed. If it is, a movie is displayed.

Overview of Plug-in Structure

This section is an overview of basic information you will need as you develop plug-
ins.
• Understanding the Plug-in API
• Plug-ins and Platform Independence

// Can we display Shockwave movies?

mimetype = navigator.mimeTypes["application/x-director"]

if (mimetype) {

// Yes, so can we display with a plug-in?

plugin = mimetype.enabledPlugin

if (plugin)

// Yes, so show the data in-line

document.writeln("Here\'s a movie:

<OBJECT DATA=mymovie.dir HEIGHT=100 WIDTH=100>")

else

// No, so provide a link to the data

document.writeln("

Click here to see a movie.")

} else {

// No, so tell them so

document.writeln("Sorry, can't show you this movie.")

}

7

Understanding the Plug-in API

A plug-in is a native code library whose source conforms to standard C syntax. The
Plug-in Application Programming Interface (API) is made up of two groups of
functions and a set of shared data structures.
• Plug-in methods are functions that you implement in the plug-in; Netscape

Gecko calls these functions. The names of all the plug-in functions in the API
begin with NPP_, for example, NPP_New. There are also a couple of functions
(i.e., NP_Initialize and NP_Shutdown), that are direct library entry points
and not related to any particular plug-in instance.

• Browser methods are functions implemented by Netscape Gecko; the plug-in
calls these functions. The names of all the browser functions in the API begin
with NPN_, for example, NPN_Write.

• Data structures are plug-in-specific types defined for use in the Plug-in API. The
names of structures begin with NP, for example, NPWindow.

All plug-in names in the API start with NP. In general, the operation of all API
functions is the same on all platforms. Where this varies, the reference entry for the
function in the reference section describes the difference.

Plug-ins and Platform Independence

A plug-in is a dynamic code module that is native to the specific platform on which
the browser is running. It is a code library, rather than an application or an applet, and
runs only from the browser. Although plug-ins are platform-specific, the Plug-in API
is designed to provide the maximum degree of flexibility and to be functionally
consistent across all platforms. This guide notes platform-specific differences in
coding for the MS Windows, Mac OS, and Unix platforms.

You can use the Plug-in API to write plug-ins that are media type driven and provide
high performance by taking advantage of native code. Plug-ins give you an
opportunity to seamlessly integrate platform-dependent code and enhance the
Netscape Gecko core functionality by providing support for new data types.

The plug-in file type depends on the platform:
• MS Windows: .DLL (Dynamic Link Library) files
• Unix: .SO or .DSO (Shared Objects) files
• Mac OS: PowerPC Shared Library files.
8 Gecko Plug-in API Reference

Windowed and Windowless Plug-ins

You can write plug-ins that are drawn in their own native windows or frames on a web
page. Alternatively, you can write plug-ins that do not require a window to draw into.
Using windowless plug-ins extends the possibilities for web page design and
functionality. Note, however, that plug-ins are windowed by default, as windowed
plug-ins are in general easier to develop and more stable to use.
• A windowed plug-in is drawn into its own native window on a web page. Win-

dowed plug-ins are opaque and always come to the top HTML section of a web
page.

• A windowless plug-in need not be drawn in a native window; it is drawn in its
own drawing target. Windowless plug-ins can be opaque or transparent, and can
be invoked in HTML sections.

Whether a plug-in is windowed or windowless depends on how you define it.

The way plug-ins are displayed on the web page is determined by the HTML tag that
invokes them. This is up to the content developer or web page author. Depending on
the tag and its attributes, a plug-in can be visible or hidden, or can appear as part of a
page or as a full page in its own window. A web page can display a windowed or
windowless plug-in in any HTML display mode; however, the plug-in must be visible
for its window type to be meaningful. For information about the way HTML
determines plug-in display mode, see "Using HTML to Display Plug-ins."

The Default Plug-in

When a specific plug-in is not registered to handle the media referred to in the HTML,
Netscape Gecko invokes the default plug-in to help users find and install the right
plug-in for that MIME type.
9

The blue puzzle piece that appears in the HTML page’s plug-in window when the
default plug-in loads is meant to signify that the browser is missing a piece that it
needs to display or play the requested media.

How the plug-in HTML tag was coded determines what action is taken when the user
clicks the plug-in piece. If the browser cannot handle the given MIME type, then the
default plug-in checks to see if there is a plug-in referenced in the OBJECT tag that
defines the media. If there is, then thedefault plug-in prompts the user to download
that plug-in from the specified location. If a plug-in is not specified in the OBJECT tag,
then the default plug-in looks for child elements, such as other OBJECT tag, which
will provide more specific information about how to handle the specified media type.

Using HTML to Display Plug-ins

When a user browses to a web page that invokes a plug-in, how the plug-in appears
(or does not appear) depends on two factors:
• The way the developer writes the plug-in determines whether it is displayed in its

own window or is windowless.
• The way the content provider uses HTML tags to invoke the plug-in determines

its display mode: whether it is embedded in a page, is part of a section, appears on
its own separate page, or is hidden.

This section discusses using HTML tags and display modes. For information about
windowed and windowless operation, see Windowed and Windowless Plug-ins.

For a description of each plug-in display mode, and which HTML tag to use to
achieve it, go on to “Plug-in Display Modes.” For details about the HTML tags and
their attributes, go on to:

• “Using the OBJECT Tag for Plug-in Display”

• “Using the EMBED Tag for Plug-in Display”
10 Gecko Plug-in API Reference

Plug-in Display Modes

Whether you are writing an HTML page to display a plug-in or developing a plug-in
for an HTML author to include in a page, you need to understand how the display
mode affects the way plug-ins appear.

A plug-in, whether it is windowed or windowless, can have one of these display
modes:
• embedded in a web page and visible
• embedded in a web page and hidden
• displayed as a full page in its own window

An embedded plug-in is part of a larger HTML document and is loaded at the time
the document is displayed. The plug-in is visible as a rectangular subpart of the page
(unless it is hidden). Embedded plug-ins are commonly used for multimedia images
relating to text in the page, such as the Macromedia Shockwave plug-in. When
Netscape Gecko encounters the OBJECT or EMBED tag in a document, it attempts to
find and display the file represented by the DATA and SRC attributes, respectively. The
HEIGHT and WIDTH attributes of the OBJECT tag determine the size of the embedded
plug-in in the HTML page. For example, this OBJECT tag calls a plug-in that displays
video:

A hidden plug-in is a type of embedded plug-in that is not drawn on the screen when
it is invoked. It is created by using the HIDDEN attribute of the EMBED tag. Here's an
example:

NOTE: Whether a plug-in is windowed or windowless is not meaningful if the plug-in
is invoked with the HIDDEN attribute.

<OBJECT DATA="newave.avi" TYPE=”video/avi”

WIDTH=320

HEIGHT=200

AUTOSTART=true LOOP=true>

<EMBED SRC="audiplay.aiff" TYPE="audio/x-aiff"
HIDDEN=”true”>
11

You can also create hidden plug-ins using the OBJECT tag. Though the OBJECT tag
has no HIDDEN attribute, you can create CSS rules to override the sizing attributes of
the OBJECT tag

In this case, the OBJECT tag that picks up these special style definitions would have a
class of hidden. Using the class attribute and the CSS block above, you can simulate
the behavior of the hidden plug-in in the EMBED tag:

A full-page plug-in is a visible plug-in that is not part of an HTML page. The server
looks for the media (MIME) type registered by a plug-in, based on the file extension,
and starts sending the file to the browser. Netscape Gecko looks up the MIME type
and loads the appropriate plug-in if it finds a plug-in registered to that type. This type
of plug-in completely fills the web page. Full-page plug-ins are commonly used for
document viewers, such as Adobe Acrobat.

NOTE: The browser does not display scroll bars automatically for a full-page plug-in.
The plug-in must draw its own scroll bars if it requires them.

The browser user interface remains relatively constant regardless of which type of
plug-in is displayed. The part of the application window that does not display plug-in
data does not change. The basic operations of the browser, such as navigation, history,
and opening files, apply to all pages, regardless of the plug-ins in use.

object {

visibility: visible;

}

object.hiddenObject {

visibility: hidden ! important;

width: 0px ! important;

height: 0px ! important;

margin: 0px ! important;

padding: 0px ! important;

border-style: none ! important;

border-width: 0px ! important;

max-width: 0px ! important;

max-height: 0px ! important;

}

<OBJECT DATA="audiplay.aiff" TYPE="audio/x-aiff"
CLASS=”hiddenObject”>
12 Gecko Plug-in API Reference

Using the OBJECT Tag for Plug-in Display

The OBJECT tag is part of the HTML specification for generic inclusion of special
media in a web page. It embeds a variety of object types in an HTML page, including
plug-ins, Java components, ActiveX controls, applets, and images. OBJECT tag
attributes determine the type of object to embed, the type and location of the object's
implementation (code), and the type and implementation of the object's data.

Plug-ins were originally designed to work with the EMBED tag rather than the OBJECT
tag (see “Using the EMBED Tag for Plug-in Display”), but the OBJECT tag itself
provides some flexibility here. In particular, the OBJECT tag allows you to invoke
another object if the browser cannot support the object invoked by the tag. The EMBED
tag, which is also used for plug-ins, does not.

The OBJECT tag is also a part of the HTML W3C standard, for which see:

http://www.w3c.org/MarkUp/

Also, unlike the APPLET tag, OBJECT can contain other HTML attributes, including
other OBJECT tags, nested between its opening and closing angle brackets. So, for
example, though Netscape Gecko does not support the CLASSID attribute of the
OBJECT tag—which was used for Java classes and ActiveX plug-ins embedded in
pages—OBJECT tags can be nested to support different plug-in implementations.

See the Mozilla ActiveX project page in the “Plug-in References” section below for
more information about embedding ActiveX controls in plug-ins or embedding plug-
ins in ActiveX applications.

The following examples demonstrate this use of nested OBJECT tags with markup
more congenial to Netscape Gecko included as children of the parent OBJECT tag.

Example 1: Nesting OBJECT Tags
13

http://www.w3c.org/MarkUp/

The outermost OBJECT tag defines the CLASSID; the first nested OBJECT uses the
TYPE value "application/x-shockwave-flash" to load the shockwave plug-in,
and the innermost OBJECT exposes a download page for users that do not already
have the necessary plug-in. This nesting is quite common in the use of OBJECT tags,
and lets you avoid code forking for different browser.

<html>

<head>

<base href="http://www.macromedia.com/software/flash/">

<style>

.myPlugin {

width: 470px;

height: 231px;

}

</style>

<body>

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/

swflash.cab#version=5,0,30,0"

class="myPlugin">

<param name=movie value="/software/flash/home_movie.swf">

<param name=quality value=high>

<param name="salign" value="tl">

<param name="menu" value="0">

<OBJECT data="/software/flash/home_movie.swf"

type="application/x-shockwave-flash"

class="myPlugin">

<param name=quality value=high>

<param name="salign" value="tl">

<param name="menu" value="0">

<object type="*" class="myPlugin">

<param name="pluginspage" value="http://www.macromedia.com/

shockwave/download/index.cgi?P1_Prod_Version=ShockwaveFlash">

</object>

</object>

</object>

</body></html>
14 Gecko Plug-in API Reference

Nesting Rules for HTML Elements

The rules for descending into nested OBJECT and EMBED tags are as follows:

• The browser looks at the MIME type of the top element. If it knows how to deal
with that MIME type (i.e., by loading a plug-in that’s been registered for it), then
it does so.

• If the browser cannot handle the MIME type, it looks in the element for a pointer
to a plug-in that can be used to handle that MIME type. The browser downloads
the requested plug-in.

• If the MIME type is unknown and there is no reference to a plug-in that can be
used, the browser descends into the child element, where these rules for handling
MIME types are repeated.

The rest of this section is a brief introduction to this HTML tag. For more information
on the OBJECT tag and other tags used for plug-in display, see:

• W3C HTML 4.0 specification.

To embed a variety of object types in an HTML page, use the OBJECT tag.

The first set of OBJECT tag attributes are URLs.

• CLASSID is the URL of the specific object implementation. This attribute is similar
to the CODE attribute of the APPLET tag. Though Netscape Gecko does not support
this OBJECT attribute, you can nest OBJECT tags with different attributes to use
the OBJECT tag for embedding plug-ins on any browser platform (see the example
above).

<OBJECT

CLASSID="classFile"

DATA="dataLocation"

CODEBASE="classFileDir"

TYPE="MIMEtype"

ALIGN="alignment"

HEIGHT="pixHeight"

WIDTH="pixWidth"

ID="name"

>

15

http://www.w3.org/TR/html401/

• DATA represents the URL of the object's data; this is equivalent to the SRC attribute
of EMBED.

• CODEBASE represents the URL of the plug-in; this is the same as the CODEBASE
attribute of the APPLET tag. For plug-ins, CODEBASE is the same as
PLUGINSPAGE.

• TYPE represents the MIME type of the plug-in; this is the same as the TYPE
attribute of EMBED.

• HEIGHT, WIDTH, ALIGN are basic IMG/EMBED/APPLET attributes supported by
OBJECT. HEIGHT and WIDTH are required for OBJECT tags that resolve to EMBED

tags.

• Use the ID attribute, which specifies the name of the plug-in, if the plug-in is
communicating with JavaScript. This is equivalent to the NAME attribute of
APPLET and EMBED. It must be unique.

Using the Appropriate Attributes

It's up to you to provide enough attributes and to make sure that they do not conflict;
for example, the values of WIDTH and HEIGHT may be wrong for the plug-in.
Otherwise, the plug-in cannot be embedded.

Netscape Gecko interprets the attributes as follows: When the browser encounters an
OBJECT tag, it goes through the tag attributes, ignoring or parsing as appropriate. It
analyzes the attributes to determine the object type, then determines whether the
browser can handle the type.

• If the browser can handle the type—that is, if a plug-in exists for that type—then
all tags and attributes up to the closing </OBJECT> tag, except PARAM tags and
other OBJECT tags, are filtered.

• If the browser cannot handle the type, or cannot determine the type, it cannot
embed the object. Subsequent HTML is parsed as normal.

Using the EMBED Tag for Plug-in Display

A plug-in runs in an HTML page in a browser window. The HTML author uses the
HTML EMBED tag to invoke the plug-in and control its display. Though the OBJECT
tag is the preferred way to invoke plug-ins (see “Using the OBJECT Tag for Plug-in
Display”), the EMBED tag can be used for backward compatibility with Netscape 4.x
16 Gecko Plug-in API Reference

browsers, and in cases where you specifically want to prompt the user to install a
plug-in, because the default plug-in is only automatically invoked when you use the
EMBED tag.

Netscape Gecko loads an embedded plug-in when the user displays an HTML page
that contains an embedded object whose MIME type is registered by a plug-in. Plug-
ins are embedded in much the same way as GIF or JPEG images are, except that a
plug-in can be live and respond to user events, such as mouse clicks.

The EMBED tag has the following syntax and attributes:

You must include either the SRC attribute or the TYPE attribute in an EMBED tag. If you
do not, then there is no way of determing the media type, and so no plug-in loads.

The SRC attribute is the URL of the file to run. The TYPE attribute specifies the MIME
type of the plug-in needed to run the file. Navigator uses either the value of the TYPE
attribute or the suffix of the filename given as the source to determine which plug-in
to use.

<EMBED

SRC="location"

TYPE="MIMEtype"

PLUGINSPAGE="instrURL"

PLUGINURL="pluginURL"

ALIGN="LEFT"|"RIGHT"|"TOP"|"BOTTOM"

BORDER="borderWidth"

FRAMEBORDER="NO"

HEIGHT="height"

WIDTH="width"

UNITS="units"

HIDDEN="TRUE|FALSE"

HSPACE="horizMargin"

VSPACE="vertMargin"

NAME="pluginName"

PALETTE="FOREGROUND"|"BACKGROUND"

>

...

</EMBED>
17

Use TYPE to specify the media type or MIME type necessary to display the plug-in. It
is good practice to include the MIME type in all the plug-in HTML tags. You can use
TYPE for a plug-in that requires no data, for example, a plug-in that draws an analog
clock or fetches all of its data dynamically. For a visible plug-in, you must include
WIDTH and HEIGHT if you use TYPE; no default value is used.

The PLUGINURL attribute is the URL of the plug-in or of the XPI in which the plug-in
is stored (see “Installing Plug-ins” for more information on the XPI file format).

The EMBED tag has a number of attributes that determine the appearance and size of
the plug-in instance, including these:
• The BORDER and FRAMEBORDER attributes specify the size of a border for the

plug-in or draw a borderless plug-in
• HEIGHT, WIDTH, and UNITS determine the size of the plug-in in the HTML page.

If the plug-in is not hidden, the HEIGHT and WIDTH attributes are required.
• HSPACE and VSPACE create a margin of the specified width, in pixels, around the

plug-in.
• ALIGN specifies the alignment for the plug-in relative to the web page.

Use the HIDDEN attribute if you do not want the plug-in to be visible. In this case, you
do not need the attributes that describe plug-in appearance. In fact, HIDDEN overrides
those attributes if they are present.

Use the NAME attribute, which specifies the name of the plug-in or plug-in instance, if
the plug-in is communicating with JavaScript.

For example, this EMBED tag loads a picture with the imaginary data type dgs.

Netscape Gecko interprets the attributes as follows:
• SRC: Load the data file and determine the MIME type of the data.
• WIDTH and HEIGHT: Set the area of the page handled by the plug-in to 320 by 200

pixels. In general, use CSS to control the size and location of elements within an
HTML page.

• BORDER: Draw a border 25 pixels wide around the plug-in.
• ALIGN: Align the plug-in at the right side of the web page.

The following example shows an EMBED tag nested within an OBJECT tag, which
latter is necessary for browsers that do not support the EMBED tag.

<EMBED SRC="mypic.dgs" WIDTH=320 HEIGHT=200 BORDER=25
ALIGN=right>
18 Gecko Plug-in API Reference

Example 2: EMBED within OBJECT

Using Custom EMBED Attributes

In addition to these standard attributes, you can create private, plug-in-specific
attributes and use them in the EMBED attribute to pass extra information between the
HTML page and the plug-in code. The browser ignores these nonstandard attributes
when parsing the HTML, but it passes all attributes to the plug-in, allowing the plug-
in to examine the list for any private attributes that could modify its behavior.

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/
cabs/flash/swflash.cab#version=5,0,30,0"

width="749"

height="68">

<param name=movie value="/uber/nav/global_home.swf">

<param name=quality value=high>

<param name="BGCOLOR" value="#EEEEEE">

<param name="salign" value="tl">

<param name="menu" value="0">

<embed src="/uber/nav/global_home.swf"

quality=high pluginspage="http://www.macromedia.com/shockwave/
download/index.cgi?P1_Prod_Version=ShockwaveFlash"

type="application/x-shockwave-flash"

width="749"

height="68"

bgcolor="#EEEEEE"

salign="tl"

menu="0">

</embed>

</object>
19

For example, a plug-in that displays video could have private attributes that determine
whether to start the plug-in automatically or loop the video automatically on
playback, as in the following EMBED tag:

With this EMBED tag, Netscape Gecko passes the values to the plug-in, using the arg
parameters of the NPP_New call that creates the plug-in instance.

Netscape Gecko interprets the attributes as follows:
• SRC: Load the data file and determine the MIME type of the data.
• WIDTH and HEIGHT: Set the area of the page handled by the plug-in to 100 by 125

pixels.
• AUTOSTART and LOOP: Ignore these private attributes and pass them along to the

plug-in with the rest of the attributes.

The plug-in must scan its list of attributes to determine whether it should
automatically start the video and loop it on playback. Note that with an OBJECT tag,
PARAM values are also sent in this array after the attributes, separated by a PARAM
entry.

Plug-in References

• The Mozilla Plug-ins project page

http://www.mozilla.org/projects/plugins/

• The Mozilla ActiveX Project

http://www.iol.ie/~locka/mozilla/mozilla.htm

<EMBED SRC="myavi.avi" WIDTH=100 HEIGHT=125
AUTOSTART=true LOOP=true>

argc = 5

argn = {"SRC", "WIDTH", "HEIGHT", "AUTOSTART", "LOOP"}

argv = {"movie.avi", "100", "125", "TRUE", "TRUE"}
20 Gecko Plug-in API Reference

http://www.mozilla.org/projects/plugins/
http://www.iol.ie/~locka/mozilla/mozilla.htm

Plug-in Development Overview

Writing Plug-ins

Once you decide what you want your plug-in to do, creating it is a simple process. A
basic overview of the plug-in development process is given in the following steps.

1. Plan your plug-in: decide on the services you want the plug-in software to provide
and how it will interact with the browser and the special media for which the plug-
in is created.

2. Decide the MIME type and file extension for the plug-in
(see “Registering Plug-ins”).

3. Set up your development environment properly. You can use a variety of
environments to create a plug-in, but make sure that you have the necessary files
from the mozilla source or from the plug-in SDK.

4. Create a plug-in project.

You can either start from one of the samples provided for your operating system
in the mozilla source directory, where plug-ins samples are already being built, or
you can construct a new plug-in project in your own development environment
using SDK-provided files. See the README in the plug-in SDK for more
information about using the SDK and using the samples provided there.

5. Write your plug-in code and implement the appropriate Plug-in API methods for
basic plug-in operation. You'll find an overview of the Plug-in API methods in
this chapter, as well as separate chapters for all of the major functional areas of the
Plug-in API. Also see “Making Plug-ins Scriptable” for more information about
making plug-ins accessible from the browser.

6. Build the plug-in for your operating system. See “Building Plug-ins.”

7. Install the plug-in in the plug-in directory for your operating system. See
Installing Plug-ins.
21

8. Test your plug-in and debug as necessary.

9. Create an HTML page and embed the plug-in object. For information about the
HTML tags to use, see "Using HTML to Display Plug-ins." To see your plug-in
in action, simply display the HTML page that calls it in the browser.

Registering Plug-ins

Netscape Gecko identifies a plug-in by the MIME type it supports. When it needs to
display data of a particular MIME type, the browser finds and invokes the plug-in
object that supports that type. The data can come from either an EMBED tag in an
HTML file (where the OBJECT or EMBED tag either specifies the MIME type directly
or references a file of that type), from a separate non-HTML file of that MIME type,
or from the server.

The server looks for the MIME type registered by a plug-in, based on the file
extension, and starts sending the file to the browser. The browser looks up the media
type, and if it finds a plug-in registered to that type, loads the plug-in software.

When it starts up, the browser checks for plug-in modules in the plug-in directory for
the platform and registers them. It determines which plug-ins are installed and which
types they support through a combination of user preferences that are private to the
browser and the contents of the plug-ins directory.

A MIME type is made up of a major type (such as application or image) and a minor
type, for example, image/jpeg . If you define a new MIME type for a plug-in, you
must register it with IETF (Internet Engineering Task Force). Until your new MIME
type is registered, preface its name with "x-", for example, image/x-nwim. For more
information about MIME types, see these MIME RFCs:

• RFC 1521: "MIME: Mechanisms for Specifying and Describing the Forms of
Internet Message Bodies"

• RFC 1590: "Media Type Registration Procedure."

There are some variations to how plug-ins are handled on different platforms. The
following sections describe platform-specific discovery and registration:
• Mac OS
• MS Windows
• Unix
22 Gecko Plug-in API Reference

http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1521.html

http://www.faqs.org/rfcs/rfc1590.html

Mac OS

On the Mac OS platform, the Plug-ins folder is located in the same folder as the
browser application. Plug-ins are identified by file type NSPL. When the browser
starts up, it searches subfolders of the Plug-ins folder for plug-ins and follows aliases
to folders and NSPL files. Plug-in filenames must begin with NP.

The MIME types supported by a plug-in are determined by its resources. 'STR#' 128
should contain a list of MIME types and file extensions in alternating strings. For
example:

Several other optional strings may contain useful information about the plug-in. Plug-
ins must support 'STR#' 128 but are not required to support any of these others:
• STR#' 127 can contain a list of MIME type descriptions corresponding to the

types in 'STR#' 128 . For example, this description list corresponds to the types in
the previous example: String 1: "QuickTime Video", String 4: "AIFF Audio", and
String 5: "JPEG Image Format."

• STR#' 126: String 1 can contain a descriptive message about the plug-in. This
message, which is in HTML format, is displayed by the browser in its "About
Plug-ins" page. String 2 can contain the name of the plug-in, thus allowing the
name the user sees to be different from the name of the file on disk.

MS Windows

On Windows, the plugins directory is located in the same directory as the browser
application. Typical installations locate the plugins directory here:
C:\Program Files\Netscape\Netscape 6\Plugins

You can also find this directory through the Registry. The browser does not search
subdirectories. Plug-ins must have a 8.3 filename beginning with NP and ending with
.DLL.

str 128 MIME Type

String 1 video/quicktime

String 2 mov, moov

String 3 audio/aiff

String 4 aiff

String 5 image/jpeg

String 6 jpg
23

The Windows version information for the plug-in DLL determines the MIME types,
file extensions, file open template, plug-in name, and description. In the MIME types
and file extensions strings, multiple types and extensions are separated by the "|"
character, for example:
video/quicktime|audio/aiff|image/jpeg

For the browser to recognize the plug-in, the version stamp of the plug-in DLL must
contain the following lines:
• File Extents: for file extensions
• MIME Type: for MIME types
• Language: for language in use

In your development environment, make sure your language is set to "US English"
and the character set to "Windows Multilingual." The resource code for this language
and character set combination is 040904E4.

Unix

On Unix, the plugins directory is set by the environment variable
${MOZILLA_FIVE_HOME}/plugins. Plug-in filenames must begin with NP.

To determine the MIME types of the plug-ins, the browser loads each plug-in library
and calls its required NPP_GetMIMEDescription entry point.
NPP_GetMIMEDescription should return a string containing the type, extension
list, and type description separated by semicolons; for example, image/xbm;xbm;X
Bitmap.

The browser also calls the plug-in's optional NPP_GetValue entry point to determine
the plug-in name and description.

The calls to NPP_GetMIMEDescription and NPP_GetValue are made for
registration purposes only. During registration, the browser does not call any other
plug-in entry points, and the plug-in cannot call any other browser entry points at all.

Drawing a Plug-in Instance

Before drawing itself on the page, the plug-in must provide information about itself,
set the window or other target in which it draws, arrange for redrawing, and handle
events.

A windowless plug-in can call the following Netscape methods to draw itself:
• NPN_ForceRedraw: Force a paint message for windowless plug-ins.
24 Gecko Plug-in API Reference

• NPN_InvalidateRect: Invalidate an area in a windowless plug-in before repaint-
ing or refreshing.

• NPN_InvalidateRegion: Invalidate an area in a windowless plug-in before
repainting or refreshing.

The browser calls these Plug-in methods:
• NPP_GetValue: Query the plug-in for information.
• NPP_Print: Request a platform-specific print operation for the instance.
• NPP_SetValue: Set the browser information.
• NPP_SetWindow: Set the window in which a plug-in draws.
• NPP_HandleEvent: Deliver a platform-specific event to the instance.

The plug-in can call these Netscape methods to query and set information:
• NPN_GetValue: Get the browser information.
• NPN_SetValue: Set plug-in the browser information.

For information about these processes, see "Drawing and Event Handling."

Handling Memory

Plug-in developers can take advantage of the memory features provided in the Plug-in
API to allocate and free memory.
• Use the NPN_MemAlloc method to allocate memory from the browser.
• Use the NPN_MemFree method to free memory allocated with NPN_MemAlloc.
• Use the NPN_MemFlush method to free memory (Mac OS only) before calling

memory-intensive Mac Toolbox calls.

Sending and Receiving Streams

Streams are objects that represent URLs and the data they contain. A stream is
associated with a specific instance of a plug-in, but a plug-in can have more than one
stream per instance. Streams can be produced by the browser and consumed by a
plug-in instance, or produced by an instance and consumed by the browser. Each
stream has an associated MIME type identifying the format of the data in the stream.

Streams produced by the browser can be automatically sent to the plug-in instance or
requested by the plug-in. The plug-in can select one of these transmission modes:
• Normal mode: the browser sends the stream data sequentially to the plug-in as the

data becomes available.
• Random-access mode: the browser allows the plug-in to request specific ranges

of bytes from anywhere in the stream. This mode requires server support.
25

• File mode: the browser saves the data to a local file in cache and passes that file
path to the plug-in.

Streams produced by the plug-in to send to the browser are like normal-mode streams
produced by the browser, but in reverse. In the browser’s normal-mode streams, the
browser calls the plug-in to inform it that the stream was created and to push more
data. In streams produced by the plug-in, by contrast, the plug-in calls Netscape
functions to create a stream, push data into it, and delete it.

Working with URLs

The Plug-in API provides methods that plug-ins can use to retrieve data from or post
data to a URL anywhere on the network, provide hyperlinks to other documents, post
form data to CGI scripts using HTTP, or upload files to a remote server using FTP.
• Use NPN_GetURL to request the browser to load a URL into a particular

browser window or frame for display, or to deliver the data of that URL to the
plug-in instance in a new stream

• The NPN_GetURLNotify function operates like NPN_GetURL, except that it
notifies the plug-in of the result when the operation completes.

• Use NPN_PostURL to send data to a URL from a memory buffer or file. The
result from the server can also be sent to a particular browser window or frame
for display, or delivered to the plug-in instance in a new stream.

• The NPN_PostURLNotify function operates like NPN_PostURL, except that it
notifies the plug-in of the result when the operation completes.

For information about using these methods, see "URLs."

Getting Version and UI Information

The Netscape group of Plug-in API methods provides some basic services to the plug-
in. You can use these Netscape methods:
• To identify the browser in which your plug-in is displayed: Use the

NPN_UserAgent method to read this information.
• To determine whether plug-in and the browser versions are compatible and possi-

bly provide alternative processing for different versions: Use the NPN_Version
method to check for changes in major and minor version numbers.

For information about using these methods, see "Version, UI, and Status
Information."
26 Gecko Plug-in API Reference

Displaying Messages on the Status Line

Functionally, your plug-in is seamlessly integrated into the browser and operates as an
addition to current browser capabilities. To make the user feel that the plug-in is part
of the the browser user interface, your plug-in can emulate the browser behavior by
providing status line messages. Use the NPN_Status method to display a message on
the status line.

For information about using this method, see "Version, UI, and Status
Information."

Making Plug-ins Scriptable

Scriptable plug-ins are plug-ins that have that have been extended to provide methods
that can be called from JavaScript and the DOM when accessed through the OBJECT
or EMBED tag. Consider the following example, where a media player plug-in can be
controlled with an AdvanceToNextSong() method called inside the SCRIPT tag:

LiveConnect provided this sort of behavior for 4.x NPAPI plug-ins, but Netscape
Gecko plug-ins now use XPConnect. Plug-ins that formerly used LiveConnect to
make themselves scriptable in 4.x Netscape browsers have lost this possibility in the
new XPCOM architecture upon which Netscape Gecko-based browsers are based.
This is because there is no longer a guarantee of Java compatibility on a binary level
due to the JRI/JNI switch. Plug-ins now use a mechanism called XPConnect to expose
Netscape Communicator 4.x plug-ins to JavaScript in the browser interface.

Where LiveConnect was a bridge between Java and JavaScript, XPCOM is a more
general framework for making components scriptable from the browser. In order to
make plug-ins accessible via XPConnect, however, some changes have been made to
the Mozilla code, and there are also some modifications you will have to make to your
plug-in code.

<OBJECT id="myPlugin"
type="audio/wav"
data="music.wav"></OBJECT>

<SCRIPT>

var thePlugin = document.getElementById('myPlugin');

if (thePlugin)

thePlugin.AdvanceToNextSong();

else

alert("Plugin not installed correctly");

</SCRIPT>
27

For more information about XPCOM and XPConnect, see:

• www.mozilla.org/scriptable

• www.mozilla.org/projects/xpcom

Modifications to Your Plug-in Code

1. A unique interface ID should be obtained. The windows command uuidgen can
generate this ID for you, as can guidgen on Unix.

2. An Interface Definition (.idl) file describing the plug-in scriptable interface
should be added to the project (see Example 1. Sample .idl file).

3. A Scriptable instance object should be implemented in the plug-in. This class will
contain native methods callable from JavaScript. This class should also inherit
from nsIClassInfo and implement its methods to be able to request all
necessary privileges from the Mozilla security manager (see Example 2.
Scriptable instance class).

4. Cases should be added to the plug-in implementation of NPP_GetValue for two
new scriptability additions to the NPPVariable enumeration type:

NPPVpluginScriptableInstance = 10,

NPPVpluginScriptableIID = 11

These two represent the scriptable plug-in instance and the unique ID of that plug-
in, respectively. See “Example 3. NPP_GetValue implementation” for
information about how to use these new enumerations in your code.
28 Gecko Plug-in API Reference

http://www.mozilla.org/scriptable
http://www.mozilla.org/projects/xpcom

How to call plug-in native methods

The following examples demonstrate how easily the native methods of a plug-in can
be called from JavaScript:

Note that both of the ways to access the plug-in object—with the embeds array and
with the getElementById() method—will work with the EMBED and OBJECT tags.
The embeds property is used to return an array of embedded objects, which can then
be indexed and used to call the method defined in the plug-in instance. The
document.getElementById() returns a reference to an object specified by unique
ID.

How to call JavaScript from the plug-in

When your plug-in is a scriptable component, it can be called from JavaScript in the
interface, as the example above demonstrates. Note that you can also call JavaScript
from your plug-in using some special methods described in a separate article:

http://www.mozilla.org/projects/plugins/scripting-plugins.html

<embed type="application/plugin-mimetype">

<script language="javascript">

var embed = document.embeds[0];

embed.nativeMethod();

</script>

<object id=”plug” type="application/plugin-mimetype">

<script language="javascript">

var object = document.getElementById(“plug”);

object.nativeMethod();

</script>
29

http://www.mozilla.org/projects/plugins/scripting-plugins.html

This additional mechanism allows the plug-in to use JavaScript and access the DOM
in the same way as other JavaScript objects in the interface:

Scriptable Plug-in Lifetime

Scriptable plug-ins are not immediately unloaded from memory and scripting
methods may still be called after the last plug-in instance is destroyed, since
somebody may still hold on to the scriptable object. Instead, plug-ins are held in
memory for a brief period of time so that the unloading can proceed safely after all
objects have been released.

Scriptable plug-in building and installation overview

Though you do not need to have a copy of the Mozilla source tree in order to build
your plug-in, making the plug-in interface scriptable will require Mozilla headers and
the XPCOM compatible idl compiler, xpidl.exe. Note that you cannot use the MS
DevStudio MIDL compiler for this. The header files and other supporting files you
need are included in the Plug-in SDK.

This section provides a brief overview of the building and installation stages of your
plug-in development. The following two sections, Building Plug-ins and Installing
Plug-ins provide more detail about these important plug-in development steps.

The following steps describe how to build and install a plug-in called “TestPlugin”:

1. Compile nsITestPlugin.idl with the xpidl compiler. This will generate
nsITestPlugin.h and nsITestPlugin.xpt files.

2. Put nsITestPlugin.xpt in the browser’s Plug-ins folder.

3. Build nptestplugin.dll with nsITestPlugin.h included for compiling scriptable
instance class implementaion.

<SCRIPT>

var plugin = document.embeds[0];

// tell the plugin the URL of this document.

plugin.location = document.location;

// read back the document's location

alert('location = ' + plugin.location);

</SCRIPT>
30 Gecko Plug-in API Reference

4. Put nptestplugin.dll in the Plug-ins folder.

Note that the “installation process” described here is a manual one, and merely
describes how to get the browser to see and register your plug-in for the appropriate
media type. See “Installing Plug-ins” for information on how to create a plug-in
installation. Also see the following section, “Building Plug-ins”, for a more detailed
account of the building process.

Example 1. Sample .idl file

#include "nsISupports.idl"

[scriptable, uuid(bedb0778-2ee0-11d5-9cf8-0060b0fbd8ac)]

interface nsITestPlugin : nsISupports {

void nativeMethod();

};

Example 2. Scriptable instance class

#include "nsITestPlugin.h"

#include "nsIClassInfo.h"

// We must implement nsIClassInfo because it signals the

// Mozilla Security Manager to allow calls from JavaScript.

// helper class to implement all necessary nsIClassInfo method stubs

// and to set flags used by the security system

class nsClassInfoMixin : public nsIClassInfo

{

// These flags are used by the DOM and security systems to signal that

// JavaScript callers are allowed to call this object's scritable methods.

NS_IMETHOD GetFlags(PRUint32 *aFlags)

{*aFlags = nsIClassInfo::PLUGIN_OBJECT | nsIClassInfo::DOM_OBJECT;

return NS_OK;}
31

NS_IMETHOD GetImplementationLanguage(PRUint32 *aImplementationLanguage)

{*aImplementationLanguage = nsIProgrammingLanguage::CPLUSPLUS;

return NS_OK;}

// The rest of the methods can safely return error codes...

NS_IMETHOD GetInterfaces(PRUint32 *count, nsIID * **array)

{return NS_ERROR_NOT_IMPLEMENTED;}

NS_IMETHOD GetHelperForLanguage(PRUint32 language, nsISupports **_retval)

{return NS_ERROR_NOT_IMPLEMENTED;}

NS_IMETHOD GetContractID(char * *aContractID)

{return NS_ERROR_NOT_IMPLEMENTED;}

NS_IMETHOD GetClassDescription(char * *aClassDescription)

{return NS_ERROR_NOT_IMPLEMENTED;}

NS_IMETHOD GetClassID(nsCID * *aClassID)

{return NS_ERROR_NOT_IMPLEMENTED;}

NS_IMETHOD GetClassIDNoAlloc(nsCID *aClassIDNoAlloc)

{return NS_ERROR_NOT_IMPLEMENTED;}

};

class nsScriptablePeer : public nsITestPlugin,

public nsClassInfoMixin

{

public:

nsScriptablePeer();

~nsScriptablePeer();

NS_DECL_ISUPPORTS

NS_DECL_NSITESTPLUGIN

};

nsScriptablePeer::nsScriptablePeer()

{

NS_INIT_ISUPPORTS();

}

nsScriptablePeer::~nsScriptablePeer()
32 Gecko Plug-in API Reference

{

}

// Notice that we expose our claim to implement nsIClassInfo.

NS_IMPL_ISUPPORTS2(nsScriptablePeer, nsITestPlugin, nsIClassInfo)

// the following method will be callable from JavaScript

NS_IMETHODIMP

nsScriptablePeer::NativeMethod()

{

return NS_OK;

}

Example 3. NPP_GetValue implementation

The following example shows an implementation of NPP_GetValue with the updated
parameters and a possible scenario of scriptable object life cycle.

#include "nsITestPlugin.h"

NPError NPP_New(NPMIMEType pluginType, NPP instance, uint16 mode,

int16 argc, char* argn[], char* argv[], NPSavedData* saved)

{

if(instance == NULL)

return NPERR_INVALID_INSTANCE_ERROR;

// just prime instance->pdata with null for the purpose of this example

// it will be assigned to the scriptable interface later to keep its

// association with the specific plugin instance

instance->pdata = NULL;

return rv;

}

NPError NPP_GetValue(NPP instance, NPPVariable variable, void *value)

{

33

if(instance == NULL)

return NPERR_INVALID_INSTANCE_ERROR;

NPError rv = NPERR_NO_ERROR;

static nsIID scriptableIID = NS_ITESTPLUGIN_IID;

if (variable == NPPVpluginScriptableInstance) {

// nsITestPlugin interface object should be associated with the plugin

// instance itself. For the purpose of this example to keep things simple

// we just assign it to instance->pdata after we create it.

nsITestPlugin *scriptablePeer = (nsITestPlugin *)instance->pdata;

// see if this is the first time and we haven't created it yet

if (!scriptablePeer) {

nsITestPlugin *scriptablePeer = new nsScriptablePeer();

if (scriptablePeer)

NS_ADDREF(scriptablePeer); // addref for ourself,

// don't forget to release on

// shutdown to trigger its destruction

}

// add reference for the caller requesting the object

NS_ADDREF(scriptablePeer);

*(nsISupports **)value = scriptablePeer;

}

else if (variable == NPPVpluginScriptableIID) {

nsIID* ptr = (nsIID *)NPN_MemAlloc(sizeof(nsIID));

*ptr = scriptableIID;

*(nsIID **)value = ptr;

}

return rv;

}

NPError NPP_Destroy (NPP instance, NPSavedData** save)

{

34 Gecko Plug-in API Reference

if(instance == NULL)

return NPERR_INVALID_INSTANCE_ERROR;

// release the scriptable object

NS_IF_RELEASE(instance->pdata);

}

Building Plug-ins

Once you have added the special code and additional files to make your plug-in
scriptable as described in the previous section, the build process is quite straight-
forward. In addition to the DLL that goes in the plugins folder, you must also place
a type library and an extra header file in the appropriate places in your application
directory. This section describes those extra scriptability steps in more detail.

Building, Platforms, and Compilers

Build resources have been supplied with the SDK for all of the major platforms. There
are makefiles for the Unix platform, project files for the Windows and Macintosh
IDEs, definition files, resources files, and other resources for building the samples in
the SDK and your own plug-in projects. Netscape Gecko plug-ins can also be
compiled by well-known compilers on all the major platforms—though using those
compilers competently is of course outside the scope of this manual.

All the resources you need—the definition files, the source files, the resource files—
can be found in the Plug-in SDK, which is available in the mozilla source tree and
also as separately downloadable and buildable software kit. The basic plug-in
example, located in the mozilla source at
mozilla/modules/plugin/tools/sdk/samples/basic, has all the files you
need to build a simple plug-in on the major platforms.

Building Carbonized Plug-ins for Mac OSX

The building process for Mac OSX plug-ins is very like that forMac “classic” plug-ins
and plug-ins on other platforms. There are, however, a couple of differences you must
be aware of if you are going to successfully compile your plug-in for the Mac OSX
platform.
35

The main change is visible in the npupp.h header file, where the preprocessor variable
_NPP_USE_UPP_ is set to FALSE or 0, because TARGET_API_MAC_CARBON is true:

/* NPP_Initialize */

#define _NPUPP_USE_UPP_ (TARGET_RT_MAC_CFM && !TARGET_API_MAC_CARBON)

#if _NPUPP_USE_UPP_

typedef UniversalProcPtr NPP_InitializeUPP;

enum {

uppNPP_InitializeProcInfo = kThinkCStackBased

| STACK_ROUTINE_PARAMETER(1, SIZE_CODE(0))

| RESULT_SIZE(SIZE_CODE(0))

};

#define NewNPP_InitializeProc(FUNC)\

(NPP_InitializeUPP) NewRoutineDescriptor((ProcPtr)(FUNC),
uppNPP_InitializeProcInfo, GetCurrentArchitecture())

#define CallNPP_InitializeProc(FUNC)\

(void)CallUniversalProc((UniversalProcPtr)(FUNC),
uppNPP_InitializeProcInfo)

#else

typedef void (* NP_LOADDS NPP_InitializeUPP)(void);

#define NewNPP_InitializeProc(FUNC)\

((NPP_InitializeUPP) (FUNC))

#define CallNPP_InitializeProc(FUNC)\

(*(FUNC))()

#endif
36 Gecko Plug-in API Reference

When this is the case, all of the function pointers in the NPPluginFuncs struct, also
described in the npupp.h header file, will be actual function pointers and not “routine
descriptors,” which aren’t supported in the Carbon runtime:

Finally, in the Mac Classic plug-ins, the main entry point is required to be an exported
symbol called “mainRD”, which is a routine descriptor for the plug-ins main function:

#ifdef XP_MAC

/
**

* Mac platform-specific plugin glue stuff

**
*/

/*

* Main entry point of the plugin.

* This routine will be called when the plugin is loaded. The function

* tables are passed in and the plugin fills in the NPPluginFuncs table

typedef struct _NPPluginFuncs {

uint16 size;

uint16 version;

NPP_NewUPP newp;

NPP_DestroyUPP destroy;

NPP_SetWindowUPP setwindow;

NPP_NewStreamUPP newstream;

NPP_DestroyStreamUPP destroystream;

NPP_StreamAsFileUPP asfile;

NPP_WriteReadyUPP writeready;

NPP_WriteUPP write;

NPP_PrintUPP print;

NPP_HandleEventUPP event;

NPP_URLNotifyUPP urlnotify;

JRIGlobalRef javaClass;

NPP_GetValueUPP getvalue;

NPP_SetValueUPP setvalue;

} NPPluginFuncs;
37

* and NPPShutdownUPP for Netscape's use.

*/

#if _NPUPP_USE_UPP_

typedef UniversalProcPtr NPP_MainEntryUPP;

enum {

uppNPP_MainEntryProcInfo = kThinkCStackBased

| STACK_ROUTINE_PARAMETER(1, SIZE_CODE(sizeof(NPNetscapeFuncs*)))

| STACK_ROUTINE_PARAMETER(2, SIZE_CODE(sizeof(NPPluginFuncs*)))

| STACK_ROUTINE_PARAMETER(3, SIZE_CODE(sizeof(NPP_ShutdownUPP*)))

| RESULT_SIZE(SIZE_CODE(sizeof(NPError)))

};

#define NewNPP_MainEntryProc(FUNC)\

(NPP_MainEntryUPP) NewRoutineDescriptor((ProcPtr)(FUNC),
uppNPP_MainEntryProcInfo, GetCurrentArchitecture())

#define CallNPP_MainEntryProc(FUNC, netscapeFunc, pluginFunc, shutdownUPP)\

CallUniversalProc((UniversalProcPtr)(FUNC),
(ProcInfoType)uppNPP_MainEntryProcInfo, (netscapeFunc),
(pluginFunc), (shutdownUPP))

However, in the Carbon runtime plug-ins, it’s good form if the plug-in exports a
“main” entry point, which is expected to have the same prototype. At a bare
minimum, the shared library’s “main” entry point must be set to such a routine.
38 Gecko Plug-in API Reference

Getting and Using the xpidl Compiler

The xpidl compiler that you must use to create the type library and the header file for
your plug-in is a regular product of the mozilla build process. In the bin directory of
your mozilla build, you ought to see the xpidl binary. Use the -m option to specify
which kind of output you want, as in the following usage note.

For example, to create a header file for a plug-in IDL file nsITestPlugin.idl, you
would type the following at the command prompt:
./xpidl -m header nsITestPlugin.idl

The resulting header file, nsITestPlugin.h, should then be included when the
nsTestPlug.dll is built.

Type Libraries

In addition to the header file, you must also create a type library file for your plug-in.
This file—in our example, nsITestPlugin.xpt—can also easily be generated from the
xpidl compiler, and should be placed in the Plugins subdirectory of the browser
application.

The type library is a special binary independent interface file that exposes the
interface(s) of an object in a way that allows them to be used uniformly across
platforms, languages, and programming environments. The type library provides the
information about the interface at run-time, which is required in a cross-platform
component framework like XPCOM.

Usage: ./xpidl [-m mode] [-w] [-v]

[-I path] [-o basename | -e filename.ext] filename.idl

-a emit annotations to typelib

-w turn on warnings (recommended)

-v verbose mode (NYI)

-I add entry to start of include path for ``#include "nsIThing.idl"''

-o use basename (e.g. ``/tmp/nsIThing'') for output

-e use explicit output filename

-m specify output mode:

header Generate C++ header (.h)

typelib Generate XPConnect typelib (.xpt)

doc Generate HTML documentation (.html)

java Generate Java interface (.java)
39

To create a type library file for the nsITestPlugin.idl IDL, you would type the
following at the command prompt:
./xpidl -m typelib nsITestPlugin.idl

Installing Plug-ins

With the redesign of the Netscape and Mozilla browsers, there has been a dramatic
change to the way that plug-ins and other software are installed. Netscape Gecko now
provides a cross-platform installation API that you can use to install new browser
components, plug-ins, applications, or any other software.

This API can be used in one of two ways. You can create a small installation script to
download and execute a binary installer for the plug-in, as described in the Native
Installers below. Or you can do the entire installation using the XPInstall API, which
is documented in the XPI Plug-ins Installations section below that.

For more general information about the API, see:

The XPInstall API Reference

Native Installers

Plug-ins must use the XPInstall API to install themselves in the appropriate area.
They may also use other binary installers, as before, in which case the XPInstall
archive and its installation script are effectively a small wrapper for the installer
40 Gecko Plug-in API Reference

http://developer.netscape.com/docs/manuals/xpinstall/xpinstal.html

executable, downloading that binary and executing it on the user's system. The
following installation script example gives you some idea of how simple this
"wrapper" can be.

Even with the optional logging (i.e., the logComment() method used after each main
step to check the return value of that function), the installation is less than ten lines.

Using an XPInstall script like this to wrap the installer has the additional advantage of
running in the same process as the browser, which means that you can invoke the
installer executable and hand back control immediately.

initInstall begins every installation script with parameters representing the name
and other information about the installation. The next line uses the execute()
method (which is a member of the Install object, implicit in installation script just as
the window object is implicit in browser scripts) to execute the installer contained
within the archive. performInstall() begins the actual installation. Note that you
do not have to install the installer in order to execute it on the local system. See the
XPInstall API for more information about cross-platform installations, and see the
second example below for a more detailed plug-in installation, in which the XPInstall
API performs all of the necessary steps to install the plug-in and its supporting files
and register it with the browser.

// DJ Double-Decker Plug-in Installer

err = initInstall("

DJ Double-Decker Plug-in Installer",

"DJDD",

"0.9");

logComment("initInstall() returned: " + err);

err = execute("djdd.exe", "", true);

logComment("execute() returned: " + err);

if(!err)

{

err = performInstall();

logComment("performInstall() returned: " + err);

}

41

This script is included in a special archive called a XPI. When a separate executable is
performing the actual installation, the contents of that XPI may be nothing other than
the installer executable and the install.js installation script.

XPI Plug-ins Installations

You can also use the XPInstall API do the installation yourself, without using a third-
party installer. The following script works on any platform, and installs the JRE 1.3
plug-in the JRE in the Netscape 6 browser. This sort of script can easily be adapted to
install any type of plug-in.

// this function verifies disk space in kilobytes

function verifyDiskSpace(dirPath, spaceRequired)

{

var spaceAvailable;

// Get the available disk space on the given path

spaceAvailable = fileGetDiskSpaceAvailable(dirPath);

// Convert the available disk space into kilobytes

spaceAvailable = parseInt(spaceAvailable / 1024);

// do the verification

if(spaceAvailable < spaceRequired)

{

logComment("Insufficient disk space: " + dirPath);

logComment(" required : " + spaceRequired + " K");

logComment(" available: " + spaceAvailable + " K");

return(false);

}

return(true);

}

var srDest = 38628;
42 Gecko Plug-in API Reference

var err = initInstall("Sun Java 2", "/Sun/Java2", "1.3");

logComment("initInstall: " + err);

var fPlugins= getFolder("Plugins");

logComment("plugins folder: " + fPlugins);

if (verifyDiskSpace(fPlugins, srDest))

{

err = addDirectory("JRE_Plugin_Linux_i386",

"1.3",

"jre-image-i386", // jar source folder

fPlugins, // target folder

"java2", // target subdir

true); // force flag

logComment("addDirectory() returned: " + err);

// create symlink: plugins/libjavaplugin_oji.so ->

// plugins/java2/plugin/i386/libjavaplugin_oji.so

var lnk = fPlugins + "libjavaplugin_oji.so";

var tgt = fPlugins + "java2/plugin/i386/ns600/libjavaplugin_oji.so";

var ignoreErr = execute("symlink.sh", tgt + " " + lnk, true);

logComment("execute symlink.sh "+tgt+" "+lnk+" returned: "+ignoreErr);

if (err==SUCCESS)

{

err = performInstall();

logComment("performInstall() returned: " + err);

}

else

{

cancelInstall(err);

logComment("cancelInstall() returned: " + err);

}

}

else
43

cancelInstall(INSUFFICIENT_DISK_SPACE);

Note that this script installs the Linux JRE plug-in and assumes you are running
Linux, but you can also use the XPInstall API to check the platform type, check for
the presence of other files, and perform other preparatory functions in your
installation scripts.

Also note the use of the “Plugins” keyword in the getFolder() function to locate
and specify the plug-ins subdirectory in a cross-platform way. The returned object,
fPlugins, is used as the target folder for installation of this binary file in the
addDirectory() function that actually specifies where the files in the XPI are to be
installed on the local machine.

Plug-in Installation and the Windows Registry

An important aspect of the installation process on the Windows platform is the
reading of registry keys to determine how many Netscape Gecko-based browsers are
installed locally, which they are, and how they are configured for plug-ins.

Whether you are using a native Windows installer like InstallShield or writing
installation scripts using the XPInstall API (see “XPI Plug-ins Installations”), you
can access the registry, read and write data about your plug-in, and customize your
installation for the different Netscape Gecko installation targets, as this section
describes.

The registry keys that affect the installation of plug-ins are subkeys of the various
Netscape Gecko-based products enumerated under:
HKEY_LOCAL_MACHINE\Software\Mozilla

The products are listed as subkeys of the Mozilla key. You can enumerate these
subkeys to get the Netscape Gecko-based browsers, and further enumerate those
subkeys to read such important configuration information as where in the browser
application directories the plug-in should be installed, which version is installed, and
so on.

The Plugins key-value pair shows where plug-ins should be installed for that Netscape
Gecko-based product:
Plugins = C:\Program Files\Netscape\Netscape 6\Plugins
44 Gecko Plug-in API Reference

For all but the newest Netscape Gecko-based products, the Components key-value
pair also holds an important piece of information: As described in the “Type
Libraries” section above, Netscape Gecko-based products require that you put the
type library file, or XPT, in the Components subdirectory.
Components = C:\Program Files\Netscape\Netscape 6\Components

Also, the product subkey (e.g., Mozilla/Netscape 6 6.2.1) has a bin subkey which
exposes the PathToExe key-value pair:
PathToExe = C:\Program Files\Netscape\Netscape 6\netscp6.exe

See the XPInstall registry manipulation example for more information about how
these key values from the registry can be used to steer your installation for different
targets.

If you are using a native installer, then that installer will have its own way to access
and update the registry. If you are using the XPInstall API, then you can use the
winReg function to find the plug-in subdirectories where your software should be
installed, as the following example demonstrates.

var winreg = getWinRegistry();

winreg.setRootKey(winreg.HKEY_LOCAL_MACHINE);

var index = 0;

var baseKey = "Software\\Mozilla";

while ((MozillaVersion = winreg.enumKeys(baseKey,index)) != null)

{

logComment("MozillaVersion = " + MozillaVersion);

subkey = baseKey + "\\" + MozillaVersion + "\\Extensions";

pluginsDir = winreg.getValueString (subkey, "Plugins");

if (pluginsDir)

logComment("pluginsDir = " + pluginsDir);

else

logComment("No plugins dir for " + baseKey + "\\" + MozillaVersion);

index++;

}

When combined with the installation examples above, this kind of parsing of the
Windows registry can make it easy for you to install plug-ins on different platforms
and browsers.
45

46 Gecko Plug-in API Reference

Initialization and Destruction

This chapter describes the methods that provide the basic processes of initialization,
instance creation and destruction, and shutdown.
• Initialization: The browser calls the Plug-in API function NP_Initialize when

the plug-in code is first loaded.
• Instance Creation: The browser calls the Plug-in API function NPP_New when

the instance is created.
• Instance Destruction: The plug-in instance is deleted when the user leaves the

instance page or closes the instance window; the browser calls the function
NPP_Destroy to tell the plug-in that the instance is being deleted.

• Shutdown: When the last instance of a plug-in is deleted, the plug-in code is
unloaded from memory and the browser calls the function NP_Shutdown. Plug-
ins consume no resources, other than disk space, if not referenced.

This chapter ends with Initialize and Shutdown Example, which includes the
NP_Initialize and NP_Shutdown methods.

Initialization

The browser calls NP_Initialize when a plug-in is loaded and before the first instance
is created. Use this function to allocate the memory and resources shared by all
instances of your plug-in.

After the last plug-in instance is deleted, the browser calls NP_Shutdown, which
releases the memory or resources allocated by NP_Initialize. For an example that
shows the use of both the NP_Initialize and NP_Shutdown methods, see
Initialize and Shutdown Example

During initialization, when the browser encounters data of a MIME type registered for
a plug-in (either embedded in an HTML page or in a separate file), it loads the plug-in
code into memory (if it hasn't been loaded already) and creates a new instance of the
plug-in. For more information, see Registering Plug-ins

NPError NP_Initialize(void){

};
47

Plug-ins are native code libraries: .DLL files on Windows, .SO or .DSO files on Unix,
and PowerPC Shared Library files or 68K code resources on Mac OS. To reduce
memory overhead, plug-ins are usually loaded only when needed and released as soon
as possible.

In the initialization process, the browser passes the plug-in two tables of function
pointers for all API calls:
• One table lists all API calls from the plug-in to the browser. This table is filled out

by the browser before the initialization call.
• The other table lists all API calls from the browser to the plug-in. This table is

filled out by the plug-in during the initialization call.

The function tables also contain version information that the plug-in checks to verify
that it is compatible with the API capabilities provided by the application. To check
this information, use NPN_Version.

No plug-in API calls can take place in either direction until the initialization
completes successfully, with the exception of the functions NP_Initialize and
NP_Shutdown, which are not in the function tables. However, because
NP_Initialize is called at the end of the initialization process, you can call other
methods, such as such as NPP_MemAlloc and NPP_Status, from NP_Initialize.

Instance Creation

After initialization, the plug-in instance is created. More than one instance of the same
plug-in can exist if a single page contains multiple embedded plug-ins, or if several
browser windows are open and display the same data type. At this point, a plug-in can
call the NPN_SetValue function to specify whether it is windowed (the default) or
windowless.

Plug-in instance are created with NPP_New and destroyed with NPP_Destroy.
NPP_New informs the plug-in of the creation of a new instance with the specified
MIME type. You can allocate instance-specific private data at this time.

The pluginType parameter represents the MIME type of this instance of the plug-in.
You can assign more than one MIME type to a plug-in, which could potentially allow
the plug-in to respond to data streams of different types with different interfaces and
behavior.

NPError NPP_New(NPMIMEType pluginType,

NPP instance, uint16 mode,

int16 argc, char *argn[],

char *argv[], NPSavedData *saved);
48 Gecko Plug-in API Reference

The instance parameter represents an NPP object, created by the browser. You can
store the instance-specific private data in its pdata field (instance->pdata).

The mode parameter identifies the display mode in which the plug-in was invoked,
either NP_EMBED or NP_FULL.
• NP_EMBED means that the instance was created by an EMBED and shares the

browser window with other content.
• NP_FULL means that the instance was created by a separate file and is the primary

content in the window.

The next three parameters pass parameters from the EMBED tag that called the plug-in.
The argc parameter is the number of HTML arguments in the tag. It determines the
number of attributes in the arrays specified by the argn and argv parameters.

The arguments in the EMBED tag are name-value pairs made up of the attribute name
(for example, ALIGN) and its value (for example, top). The argn array contains the
attribute names; the argv array contains the attribute values.

The browser ignores any nonstandard attributes in an EMBED tag, so the web page
author can use the arg parameters to specify private attributes defined for a particular
plug-in. For example, the following EMBED tag has the standard attributes SRC,
HEIGHT, and WIDTH and the private attribute LOOP:
<EMBED SRC="movie.avi" HEIGHT=100 WIDTH=100 LOOP=TRUE>

With the EMBED tag in the example, the browser passes the values in argv to the plug-
in instance:

The saved parameter allows an instance of a plug-in to save its data and, when the
instance is destroyed, pass the data to the next instance of the plug-in at the same
URL. The data is saved in the History list. As long as the plug-in still appears in this
list, that saved data is associated with the page; any new instances receive this data.

Instance Destruction

Plug-in instances are created with NPP_New and destroyed with NPP_Destroy. The
browser calls NPP_Destroy when a plug-in instance is deleted, usually because the
user has left the page containing the instance, closed the window, or quit the
application. If this is the last instance created by a plug-in, NP_Shutdown is called.

argc = 4

argn = { "SRC", "HEIGHT", "WIDTH", "LOOP" }

argv = { "movie.avi", "100", "100", "TRUE" }
49

You should not perform any graphics operations in NPP_Destroy because the
instance window is no longer guaranteed to be valid. Also, be sure to delete any
private instance-specific information stored in the plug-in's instance->pdata.
NPError NPP_Destroy(NPP instance, NPSavedData **save);

The instance parameter represents the plug-in instance to delete.

The plug-in can use the optional save parameter to save data for reuse by a new
instance with the same URL. The data is passed to NPP_New through its saved
parameter. For example, a video player could save the last frame number to be
displayed. When the user returns to the page, the previous frame number is passed to
the new instance of the plug-in, so it can initially display the same frame.

Note that you cannot count on data being saved this way; the data may be lost if the
browser restarts or purges memory. Ownership of the buf field of the NPSavedData
structure passes from the plug-in to the browser when NPP_Destroy returns.

The example in this section sets up a buffer and allocates memory for it. You can use
this type of buffer to handle data saved from one instance of a plug-in to another. The
example shows the use of the optional save parameter of NPP_Destroy and saved
parameter of NPP_New.
• In NPP_New, the saved parameter contains previously saved data for this instance

of the plug-in (saved by NPP_Destroy). The plug-in must free the memory for
NPSavedData and the buffer it contains.

• In NPP_Destroy, the save parameter specifies state or other information to save
for reuse by a new instance with the same URL.

To ensure that the browser does not crash or leak memory when the saved data is
discarded, the buf field should be a flat structure (a simple structure with no allocated
substructures) allocated with NPN_MemAlloc, as in this example:

If you allocate saved instance data in NPP_Destroy, be sure to allocate memory with
this function, since the browser can delete the saved data with the equivalent of
NPN_MemAlloc at any time.

char* myData = "Here is some saved data.\n";

int32 myLength = strlen(myData) + 1;

save = (NPSavedData)
NPN_MemAlloc(sizeof(NPSavedData));

(*save)->len = myLength;

(*save)->buf = (void*) NPN_MemAlloc(myLength);

strcpy((*save)->buf, myData);
50 Gecko Plug-in API Reference

Shutdown

When the application no longer needs the plug-in, it is shut down and released.
NP_Shutdown gives you an opportunity to delete data allocated in NP_Initialize to
be shared by all instances of a plug-in. The browser calls the plug-in's NP_Shutdown
function, which informs the plug-in that its library is about to be unloaded, and gives
it a chance to cancel any outstanding I/O requests, delete threads it created, free any
memory it allocated, and perform any other closing tasks.

The NP_Shutdown function releases memory or resources shared across all instances
of a plug-in. It is called once after the last instance of the plug-in is destroyed, before
releasing the plug-in library itself.
void NP_Shutdown(void);

For an example that shows both the NP_Initialize and NPN_Shutdown methods,
see "Initialize and Shutdown Example."
51

Initialize and Shutdown Example

This example demonstrates the use of the NP_Initialize and NP_Shutdown methods.

/* Define global variable to hold the user agent string. */

static char* userAgent = NULL;

/* Initialize function. */

NPError NP_Initialize(void)

{

/* Get the user agent from the browser. */

char* result = NPN_UserAgent();

if (result == NULL) return NPERR_OUT_OF_MEMORY_ERROR;

/* Allocate some memory so that you can keep a copy of it. */

userAgent = (char*) NPN_MemAlloc(strlen(result) + 1);

if (userAgent == NULL) return NPERR_OUT_OF_MEMORY_ERROR;

/* Copy the string to your memory. */

strcpy(userAgent, result);

return NPERR_NO_ERROR;

}

/* Shutdown function */

NPError NP_Shutdown(void)

{

/* Delete the memory you allocated. */

if (userAgent != NULL)

NPN_MemFree(userAgent);

return NPERR_NO_ERROR;

}

52 Gecko Plug-in API Reference

Drawing and Event Handling

This chapter tells how to determine whether a plug-in instance is windowed or
windowless, how to draw and redraw plug-ins, and how to handle plug-in events.

When it comes to determining the way a plug-in instance appears in a web page, you
(and the web page author) have many options. The content provider who writes the
web page determines its display mode : whether the plug-in is embedded, or displayed
in its own separate page. You determine whether a plug-in is windowed or
windowless by the way you define the plug-in itself.
• A windowed plug-in is drawn into its own native window (or portion of a native

window) on a web page. A windowed plug-in is opaque, hiding the part of the
page beneath its display window. This type of plug-in determines when it draws
itself.

• A windowless plug-in does not require a native window. It is drawn in a target
called a drawable , which corresponds to either the browser window or an off-
screen bitmap. A drawable can be defined in several ways, depending on the plat-
form. Windowless plug-ins can be opaque or transparent. A windowless plug-in
draws itself only in response to a paint message from the browser.

For information about the way HTML determines plug-in display mode, see "Using
HTML to Display Plug-ins."
• The NPWindow Structure
• Drawing Plug-ins
• Windowed Plug-ins
• Windowless Plug-ins

NOTE: Windowless plug-ins are currently not supported on the X Windows platform.

The NPWindow Structure

When a plug-in is loaded, it is drawn into a target area. This target is either the
windowed plug-in's native window, or the drawable of a windowless plug-in. The
NPWindow structure represents either the native window or a drawable. This
structure contains information about coordinate position, size, the state of the plug-in
(windowed or windowless), and some platform-specific information.
53

NOTE: When a plug-in is drawn to a window, the plug-in is responsible for preserving
state information and ensuring that the original state is restored.

For windowless plug-ins, the browser calls the NPP_SetWindow method with an
NPWindow structure that represents a drawable. For windowed plug-ins, the browser
calls the NPP_SetWindow method with an NPWindow structure that represents a
window.

The NPWindow Structure

The window parameter is a platform-specific handle to a native window element in
the browser window hierarchy on Windows and Unix. On Mac OS, window is a
pointer to an NP_Port.

The x and y fields specify the top-left corner of the plug-in relative to the page.

The width and height fields specify the dimensions of the plug-in area. These
values should not be modified by the plug-in.

typedef enum {

NPWindowTypeWindow = 1,

NPWindowTypeDrawable

} NPWindowType;

typedef struct _NPWindow

{

void* window; /* Platform-specific handle */

uint32 x; /* Position of top-left corner */

uint32 y; /* relative to a Netscape page */

uint32 width; /* Maximum window size */

uint32 height;

NPRect clipRect; /* Clipping rectangle in port
coordinates */

#ifdef XP_UNIX

void * ws_info; /* Platform-dependent additional data
*/

#endif /* XP_UNIX */

NPWindowType type; /* Whether this is a window or a
drawable */

} NPWindow;
54 Gecko Plug-in API Reference

The clipRect field defines the clipping rectangle of the plug-in in a coordinate
system where the origin is the top-left corner of the drawable or window. The browser
calls NPP_SetWindow whenever the drawable changes.

The type field indicates the NPWindow type of the target area:
• NPWindowTypeWindow: Windowed plug-in. The window field holds a platform-

specific handle to a window.
• NPWindowTypeDrawable: Windowless plug-in. The window field holds a plat-

form-specific handle to a drawable, as follows:

• Windows: HDC

• Mac OS: pointer to NP_Port structure.

In both cases, the drawable can be an off-screen pixmap.

Drawing Plug-ins

This section describes the methods and processes you use in drawing both windowed
and windowless plug-ins. Processes that apply to only one of these plug-in types are
described in the following sections.

The plug-in uses these methods to draw plug-ins and to handle events:

Plug-in methods, called by the browser:

Browser-side methods, called by the plug-in:

NPP_HandleEvent Deliver a platform-specific event to the instance.

NPP_Print Request a platform-specific print operation for the
instance.

NPP_SetWindow Set the window in which a plug-in draws.

NPN_ForceRedraw Force a paint message to a windowless plug-in.

NPN_InvalidateRect Invalidate an area in a windowless plug-in before
repainting or refreshing.

NPN_InvalidateRegion Invalidate a region in a windowless plug-in before
repainting or refreshing.
55

Printing the Plug-in

The browser calls the NPP_Print method to ask the plug-in instance to print itself.

The instance parameter represents the current plug-in.

The PrintInfo parameter determines the print mode. It is set to either NP_FULL to
indicate full-page plug-in printing, or NP_EMBED if this is an embedded plug-in
printed as part of the window in which it is embedded.
• An embedded plug-in shares printing with the browser. The plug-in prints the part

of the page it occupies, and the browser handles the rest of the printing process,
including displaying print dialog boxes, getting the printer device context, and, of
course, printing the rest of the page.

An embedded plug-in can set the pluginPrinted field in its PrintInfo
parameter to false (the default). This is a field of the _NPFullPrint substructure
of the NPPrint structure. The browser displays the necessary print dialog boxes
and calls NPP_Print again. This time, PrintInfo->mode should be set to
NP_EMBED.

• A full-page plug-in handles the print dialog boxes and printing process as it sees
fit. In this case, before the browser displays any print dialog boxes, NPP_Print is
called with PrintInfo->mode equal to NP_FULL. On Mac OS, full-page
printing requires that the field PrintInfo contain a standard Mac OS THPrint

(see Printing.h).

Of course, NPP_Print is also called with PrintInfo->mode equal to NP_EMBED

when the instance is embedded. In this case, platformPrint->embedPrint.window
contains the window in which the plug-in should print.

On MS Windows, note that the coordinates for the window rectangle are in TWIPS

format. For this reason, you need to convert the x- and y-coordinates using the
Windows API call DPtoLP when you output text.

Setting the Window

The browser calls the NPP_SetWindow function to set the window in which a plug-
in draws or returns an error code. This window is valid for the life of the instance, or
until NPP_SetWindow is called again with a different value.

void NPP_Print(NPP instance, NPPrint *printInfo);
56 Gecko Plug-in API Reference

Subsequent calls to NPP_SetWindow for a given instance usually mean that the
window has been resized. If either window or window->window is null, the plug-in
must not perform any additional graphics operations on the window and should free
any associated resources.

The instance parameter represents the current plug-in.

The window parameter is a pointer to the drawing target for the plug-in. For
windowless plug-ins, the platform-specific window information specified in window-
>window is a platform-specific handle to a drawable.

MS Windows and Unix

For windowed plug-ins on MS Windows and Unix, the window->window field is a
handle to a subwindow of the Netscape window hierarchy.

Mac OS

The window->window field points to an NP_Port structure.

Getting Information

To receive information from the browser, the plug-in calls the NPN_GetValue
method.

The instance parameter represents the current plug-in.

Unix and MS Windows

The queried information is returned in the variable parameter. This parameter is valid
only for the Unix and MS Windows platforms. For Unix, the values are either the
current display (NPNVxDisplay) or the application's context (NPNVxtAppContext).
For MS Windows, the value is the native window on which the plug-in drawing
occurs (NPNVnetscapeWindow).

The value parameter contains the name of the plug-in.

You can also use NPN_GetValue to help create a menu or dialog box for a
windowless plug-in.

NPError NPP_SetWindow(NPP instance, NPWindow *window);

NPError NPN_GetValue(NPP instance,

NPNVariable variable, void *value);
57

Windowed Plug-ins

The browser gives each windowed plug-in its own native window, often a child
window of the the browser window itself, to draw into. The plug-in has complete
control over drawing and event handling within that window.

On Mac OS , the browser does not give a windowed plug-in a native window, because
the Mac OS platform does not support child windows. Instead, the windowed plug-in
draws into the graphics port associated with the the browser window, at the offset that
the browser specifies.

On MS Windows and Unix, the browser creates a child window for each plug-in
instance and passes it a window through NPP_SetWindow. On Mac OS, the
application uses NPP_SetWindow to dedicate a rectangular part of its graphics port to
each instance. On any platform, the browser should be careful not to draw in the plug-
in's area, and vice versa. The data structure passed in NPP_SetWindow is an
NPWindow object, which contains the coordinates of the instance's area and various
platform-specific data.

Typically, the browser calls NPP_SetWindow after creating the instance so that the
plug-in can begin drawing immediately. However, the browser can create invisible
instances for which NPP_SetWindow is never called and a window is never created.
This happens when plug-ins are invoked with an HTML OBJECT tag that has been
hidden with special CSS rules (see Plug-in Display Modes in the Introduction) or
with an EMBED tag whose the HIDDEN attribute has been set.

The browser should call NPP_SetWindow again whenever the size or position of the
instance changes, passing it the same NPWindow object each time, but with different
values.

The browser can also call NPP_SetWindow multiple times with different values for
the window, including null. For example, if a user removes an instance from the page,
The browser should call NPP_SetWindow with a window value of null. This value
prevents the instance from drawing further until it is pasted back on the page and
NPP_SetWindow is called again with a new value.

• Mac OS

• Windows

• Unix
58 Gecko Plug-in API Reference

Mac OS

On Mac OS, the browser passes an NP_Port structure in the window field of the
NPWindow structure. This structure contains a pointer to the graphics port
(CGraphPtr) into which the plug-in instance should draw and the x- and y-
coordinates of the upper-left corner of this port. The plug-in can use these coordinates
to call SetOrigin(portx, porty) to place the upper-left corner of its rectangle at
(0,0). The Mac OS GrafPort structure's clipRgn field should be set to the clipping
rectangle for the instance in port coordinates.

Because the plug-in and the browser share the same graphics port, they share the
responsibility for managing it correctly. The browser sets up the port for the plug-in
before passing the plug-in an update event in two ways:

• The browser calls SetOrigin(npport->portx, npport->porty). This
method makes the instance's upper-left coordinate equal to (0,0).

• The browser sets the port's clip region to the region of the plug-in currently visible
(not scrolled off the page, obscured by floating palettes, or otherwise hidden).

However, for the plug-in to draw at any other time, for example, to highlight on a
mouse-down event or draw animation at idle time, it must save the current setting of
the port, set up its drawing environment as appropriate, draw, and then restore the port
to the previous settings. In this case, the plug-in makes it unnecessary for the browser
to save and restore its port settings before and after every call into the plug-in.

The browser and the plug-in can both install Drag Manager handlers for the shared
port. Because the Drag Manager calls both handlers no matter where the cursor is, the
browser does not show the drag highlight when the cursor is over an instance
rectangle. Also, the browser does nothing when a drop occurs within an instance
rectangle. The plug-in can then show the drag highlight and handle drops when they
occur within the instance rectangle.

The browser is also responsible for sending the plug-in all events targeted to an
instance, such as mouse clicks when the cursor is within the instance rectangle or
suspend and resume events when the application is switched in and out. Events are
sent to the plug-in with a call to NPP_HandleEvent; for a complete list of event
types, see the reference entry for NPEvent.
59

Windows

On Windows, the browser registers a window class and creates an instance of that
class for the plug-in instance. The plug-in can then subclass the window to receive
any events it needs. If the plug-in needs to receive periodic time messages (for
example, for animation), it should use a timer or a separate thread.

Unix

On Unix, the browser creates a Motif Drawing Area widget for the instance and
passes the window ID of the widget in the window field of NPWindow. Additionally,
the browser creates an NPSetWindowCallbackStruct object and passes it in the
ws_info field of NPWindow. As on Windows, the plug-in can receive all events for
the instance, in this case through the widget. If the plug-in needs to receive periodic
time messages, it should install a timer or fork a thread.

Event Handling for Windowed Plug-ins

All imaging and user interface events for a windowed plug-in instance are handled
according to the windowing system of its native platform. The Plug-in API provides a
native window handle within which an instance does its drawing through the API call
NPP_SetWindow. NPP_SetWindow passes the instance an NPWindow object
containing the native window handle.

On Windows and Unix, each instance receives its own child window within the
browser window hierarchy, and imaging and event processing are relative to this
window. The Mac OS does not support child windows. The native window is shared
between the instance and the browser. The instance must restrict its drawing to a
specified area of the shared window, and it must always save the current settings, set
up the drawing environment, and restore the shared drawing environment to the
previous settings. On Mac OS, events are explicitly provided to the instance by
NPP_HandleEvent.

Windowless Plug-ins

A windowless plug-in does not require a native window to draw into. Instead it draws
into a drawable (HDC on Windows or CGrafPtr on Mac OS), which can either be on-
screen or off-screen.

Windowless plug-ins provide the plug-in writer with some significant design
possibilities:
60 Gecko Plug-in API Reference

• You can place a windowless plug-in within a section; other sections can exist both
above and below it.

• You can create transparent plug-ins. In this case, the browser draws the part of the
page that exists behind the plug-in. The windowless plug-in draws only the parts
of itself that are opaque. This way, the plug-in can draw an irregularly shaped
area, such as a figure, or text over the existing background.

• The browser supports off-screen drawing of plug-ins. This makes it possible to
manipulate plug-in contents. For example, a 3D application could use the contents
of a plug-in as a texture map.

Because windowless plug-ins can be layered or drawn to arbitrary drawables, the
browser (as opposed to the native windowing system) is responsible for controlling
both their drawing and their event handling.

See the following items for more information on controlling the drawing of the plug-
in instance:

• Specifying That a Plug-in Is Windowless

• Invalidating the Drawing Area

• Forcing a Paint Message

• Making a Plug-in Opaque

• Making a Plug-in Transparent

• Creating Pop-up Menus and Dialog Boxes

• Event Handling for Windowless Plug-ins

Specifying That a Plug-in Is Windowless

To specify that a plug-in is windowless, use the NPN_SetValue method.

The instance parameter represents the current plug-in. The variable parameter
contains plug-in information to set. The value parameter returns the name of the plug-
in.

NPError NPN_SetValue(NPP instance,

NPPVariable variable, void *value);
61

To specify that a plug-in is windowless, use NPN_SetValue with
NPPVpluginWindowBool as the value of variable and false as the value of value.
The plug-in makes this call from its NPP_New method. If a plug-in does not make this
call, it is considered a windowed plug-in.

Invalidating the Drawing Area

Before it can repaint or refresh part of its drawing area, a windowless plug-in must
first invalidate the area with either of these browser methods: NPN_InvalidateRect
or NPN_InvalidateRegion. Both methods perform the same operations:

• They invalidate the specified drawing area prior to repainting or refreshing.

• They pass an update event or a paint message to the plug-in.

The browser redraws invalid areas of the document and windowless plug-ins at
regularly timed intervals. To force a paint message, the plug-in can call
NPN_ForceRedraw after calling one of the invalidate methods. If a plug-in calls one
of these methods, it receives a paint message asynchronously.

The instance parameter represents the current plug-in. The invalidRect and
invalidRegion parameters represent the area to invalidate, specified in a coordinate
system whose origin is at the top left of the plug-in.

NPN_SetValue

typedef enum {

...

...

NPPVpluginWindowBool,

NPPVpluginTransparentBool

} NPPVariable;

NPError NPN_SetValue(NPP instance, NPPVariable
variable, void *value);

void NPN_InvalidateRect(NPP instance,

NPRect *invalidRect);

void NPN_InvalidateRegion(NPP instance,

NPRegion invalidRegion);
62 Gecko Plug-in API Reference

Both methods cause the NPP_HandleEvent method to pass an update event or a
paint message to the plug-in.

Forcing a Paint Message

Windowed and windowless plug-ins have different drawing models. A windowed
plug-in determines when it draws, whereas a windowless plug-in draws in response to
a paint message from the browser. A plug-in can call NPN_ForceRedraw to force a
paint message synchronously, once an area has been invalidated with
NPN_InvalidateRect or NPN_InvalidateRegion.
void NPN_ForceRedraw(NPP instance);

This method results in a synchronous update event or paint message for the plug-in.

A plug-in must not draw into its drawable unless it receives a paint message. It does
not need to call the platform-specific function to begin painting within a window.
That is, the plug-in does not call BeginPaint on Windows or BeginUpdate on Mac OS.

Windows

The plug-in receives a WM_PAINT message. The lParam parameter of WM_PAINT
holds a pointer to an NPRect structure specifying the bounding box of the update
area. Because the plug-in and the browser share the same HDC, the plug-in must save
the current settings on the HDC, set up its own environment, draw itself, and restore the
HDC to the previous settings. The HDC settings must be restored whenever control
returns to the the browser, either before returning from NPP_HandleEvent or before
calling a drawing- related browser-side method.

#ifdef XP_MAC

typedef RgnHandle NPRegion;

#elif defined(XP_WIN)

typedef HRGN NPRegion;

#elif defined(XP_UNIX)

typedef Region NPRegion;

#else

typedef void* NPRegion;

#endif /* XP_MAC */

void NPN_InvalidateRect(NPP instance, NPRect
*invalidRect);

void NPN_InvalidateRegion(NPP instance, NPRegion
invalidRegion);
63

Mac OS

The plug-in receives an update event. The clip region of the drawable's CGrafPtr
port is set to the update region. As is the case for windowed plug- ins on Mac OS, the
plug-in must first save the current settings of the port, setting up the drawing
environment as appropriate, drawing, and restoring the port to the previous setting.
This should happen before the plug-in returns from NP_HandleEvent or before the
plug-in calls a drawing-related browser method.

Making a Plug-in Opaque

A windowless plug-in is opaque if it has no transparent areas. When the browser
generates a paint message for the plug-in, it assumes that the plug-in is responsible for
painting the entire area to be updated. Because the browser does not need to draw the
background behind the plug-in, opaque windowless plug-ins are considerably more
efficient than transparent plug-ins.

A windowless plug-in is transparent by default. To make a transparent plug-in
opaque, call NPN_SetValue to set NPPVpluginTransparentBool to false. The
plug-in can call this method any time after specifying that it is a windowless plug-in.

Making a Plug-in Transparent

A windowless plug-in is transparent if it has transparent areas. Here are two examples
of plug-ins that have transparent areas:

• plug-in that is smaller than the area specified by the enclosing OBJECT or EMBED
tag

• plug-in with nonrectangular boundaries

The browser is responsible for rendering the background of a transparent windowless
plug-in. Before generating a paint message for the plug-in, the browser makes sure
that the background is already drawn into the area to be updated. The plug-in can then
draw the part of the update region that corresponds to its opaque areas. This ensures
that the transparent areas of the plug-in are always valid.

Windowless plug-ins are transparent by default. If you want to make an opaque
windowless plug-in transparent, call the NPN_SetValue method and set
NPPVpluginTransparentBool to the value true. The plug-in can call this method
any time after specifying that it is a windowless plug-in.
64 Gecko Plug-in API Reference

Creating Pop-up Menus and Dialog Boxes

MS Windows only

A windowless plug-in does not draw in its own native window. Instead, it draws
directly in the drawable given to it. This behavior presents a problem if you need to
display pop-up menus and modal dialog boxes in a plug-in; a plug-in needs a parent
window in order to create windows like these.

To deal with this problem on Windows, use NPN_GetValue to find out where the
plug-in draws. Use NPNVnetscapeWindow as the value for the variable parameter.

The instance parameter represents the current plug-in. The variable parameter
contains the information the call is requesting, in this case NPNVnetscapeWindow
(the native window in which plug-in drawing occurs). The requested information, a
value of type HWND, is returned in the value parameter.

In many cases, a plug-in may still have to create its own window (a transparent child
window of the the browser window) to act as the owner window for pop-up menus
and modal dialog boxes. You can give this transparent child window its own
WindowProc process. The plug-in can use this to deal with WM_COMMAND messages
sent to it as a result of tracking the pop-up menu or modal dialog box.

Event Handling for Windowless Plug-ins

On all platforms, platform-specific events are passed to windowless plug-ins through
the NPP_HandleEvent method. The plug-in must return true from
NPP_HandleEvent if it has handled the event and false if it has not. Mac OS uses
this mechanism for both windowed and windowless plug-ins; on this platform,
NPP_HandleEvent is the only way the plug-in can receive events from its host
application.

The instance parameter represents the current plug-in. For a list of event types the
application is responsible for delivering to the plug-in, see the NPEvent structure.

NPError NPN_GetValue(NPP instance,

NPNVariable variable, void *value);

int16 NPP_HandleEvent(NPP instance, NPEvent *event);
65

This code shows the specific data passed through this method for each platform:

On Mac OS, when NPP_HandleEvent is called, the current port is set up correctly so
that its origin matches the upper-left corner of the plug-in. A plug-in does not need to
set up the current port for mouse coordinate translation.

#ifdef XP_MAC

typedef EventRecord NPEvent;

#elif defined(XP_WIN)

typedef struct _NPEvent {

int16 event;

int16 wParam;

int32 lParam;

} NPEvent;

#elif defined(XP_UNIX)

typedef XEvent NPEvent;

#else

typedef void NPEvent;

#endif /* XP_MAC */

int16 NPP_HandleEvent(NPP instance, NPEvent* event);
66 Gecko Plug-in API Reference

Streams

This chapter describes using Plug-in API functions to receive and send streams.

Streams are objects that represent URLs and the data they contain, or data sent by a
plug-in without an associated URL. Although a single stream is associated with one
specific instance of a plug-in, a plug-in can have more than one stream object per
instance. Streams can be produced by the browser and consumed by a plug-in
instance, or produced by an instance and consumed by the browser. Each stream has
an associated MIME type identifying the format of the data in the stream.

Streams produced by the browser can be automatically sent to or requested by the
plug-in instance. The browser calls the Plug-in methods NPP_NewStream,
NPP_WriteReady, NPP_Write, and NPP_DestroyStream to, respectively, create a
stream, find out how much data the plug-in can handle, push data into the stream, and
delete it.

The plug-in instance selects a transmission mode for streams produced by the
browser. Stream data can be pushed by the browser, pulled by the plug-in, or saved to
a local file and passed to the plug-in.

• Normal mode: The browser uses the NPP_Write method to "push" stream data to
the instance incrementally as it is available.

• Random-access mode: The plug-in calls the NPN_RequestRead method to "pull"
stream data. In general, this mode is more expensive, because the entire stream
must be downloaded to a temporary file before use unless the stream comes from
a local file or an HTTP server that supports the proposed byte-range extension to
HTTP.

• File mode: The browser saves the entire stream to a local file and passes the file
path to the plug-in instance through the NPP_StreamAsFile method. Use this
feature only as a last resort; plug-ins should implement an incremental stream-
based interface wherever possible.

Streams sent by the plug-in to the browser are like normal-mode streams produced by
the browser, but in reverse. In normal-mode streams, the browser calls the plug-in to
tell it when a stream is created and to push more data. In contrast, for streams
67

produced by the plug-in, the plug-in calls the Plug-in API methods NPP_NewStream,
NPP_Write, and NPP_DestroyStream to create a stream, push data into it, and
delete it.

• Receiving a Stream

• Sending a Stream

Receiving a Stream

When the browser sends a data stream to the plug-in, it has several tasks to perform:

• Telling the Plug-in When a Stream Is Created

• Telling the Plug-in When a Stream Is Deleted

• Finding Out How Much Data the Plug-in Can Accept

• Writing the Stream to the Plug-in

• Sending the Stream in Random-Access Mode

• Sending the Stream in File Mode

Telling the Plug-in When a Stream Is Created

To tell the plug-in instance when a new stream is created, the browser calls the
NPP_NewStream method. This method also determines which mode it should use to
send data to the plug-in. The browser can create a stream for several different types of
data:

• for the file specified in the SRC attribute of the EMBED tag

• for a data file

• for a full-page instance

The NPP_NewStream method has the following syntax:

The instance parameter refers to the plug-in instance receiving the stream; the type
parameter represents the stream's MIME type.

NPError NPP_NewStream(NPP instance, NPMIMEType type,

NPStream *stream, NPBool seekable, uint16* stype);
68 Gecko Plug-in API Reference

The stream parameter is a pointer to the new stream, which is valid until the stream
is destroyed.

The seekable parameter specifies whether the stream is seekable (true) or not
(false). Seekable streams support random access (for example, local files or HTTP
servers that support byte-range requests).

The plug-in can set the output parameter type to one of these transmission modes:

• NP_NORMAL (Default): The plug-in can process the data progressively as it arrives
from the network or file system through series of calls to NPP_WriteReady and
NPP_Write.

• NP_ASFILEONLY: This plug-in gets full random access to the data using platform-
specific file operations. The browser saves stream data to a local file, and, when
the stream is complete, delivers the path of the file through a call to
NPP_StreamAsFile.

• NP_ASFILE: This mode is like NP_ASFILEONLY except that data is delivered to
the plug-in as it is saved to the file, through a series of calls to NPP_Write. You
should use NP_ASFILEONLY whenever possible in preference to NP_ASFILE,
which is less efficient because it uses successive calls to NPP_Write to send the
data.

• NP_SEEK: The plug-in instance can randomly access stream data as needed,
through calls to NPN_RequestRead. If the stream is not seekable, these requests
are fulfilled only when all the data has been read and stored in the cache.

Once all data in the stream has been written to the plug-in, the stream is destroyed. To
do this, either the browser can call NPP_DestroyStream or the plug-in can call
NPN_DestroyStream. This applies to all plug-in modes except NP_SEEK.

NOTE: A plug-in can also use the NPN_GetURL method to request a stream for an
arbitrary URL.

Telling the Plug-in When a Stream Is Deleted

The browser calls the NPP_DestroyStream method when it completes the stream
sent to the plug-in, either successfully or abnormally. Once the plug-in returns from
this method, the browser deletes the NPStream object. The plug-in can terminate the
stream itself by calling NPN_DestroyStream.
69

You should delete any private data allocated in the plug-in's stream->pdata field when
you destroy a stream. The plug-in can store private data associated with the stream in
stream->pdata. The browser stores private data in stream->ndata; this value should
not be changed by the plug-in.

The instance parameter is the current plug-in instance; the stream parameter
specifies the stream to be deleted.

The reason parameter specifies why the stream was destroyed. It can have one of
these values:

• NPRES_DONE (Most common): Normal completion; all data was sent to the
instance.

• NPRES_USER_BREAK: The user canceled the stream directly by clicking the Stop
button or indirectly by some action, such as by deleting the instance or initiating
higher-priority network operations.

• NPRES_NETWORK_ERR: The stream failed because of problems with the network,
disk I/O error, lack of memory, or some other problem.

Finding Out How Much Data the Plug-in Can Accept

After a call to NPP_NewStream and before writing data to the plug-in, the browser
calls NPP_WriteReady to determine the maximum number of bytes that the plug-in
can consume. This function allows the browser to send only as much data to the
instance as it can handle at one time, and it helps both the browser and the plug-in to
use their resources efficiently.

After a call to NPP_NewStream, in which the plug-in requested a normal-mode
stream, the browser delivers the data in the stream progressively in a series of calls to
NPP_WriteReady and NPP_Write. The browser calls NPP_WriteReady before
each call to NPP_Write.

The value returned by NPP_WriteReady indicates how many bytes the plug-in
instance can accept for this stream. If the plug-in allocates memory for the entire
stream at once, it can return a large number. This number tells the browser that it can
pass as much data to the instance as possible in a single call to NPP_Write. The
browser can write a smaller amount of data if desired or necessary (for example, if
only 8K of data is available in a network buffer).

NPError NPP_DestroyStream(NPP instance,

NPStream *stream, NPError reason);
70 Gecko Plug-in API Reference

For instance, suppose the plug-in allocates, in NPP_NewStream, an 8K buffer to hold
the data written from that stream. In the first call, NPP_WriteReady could return
8192, resulting in a call to NPP_Write with a buffer of up to 8K bytes. After this data
is copied from the browser's buffer to the plug-in's buffer, the plug-in begins to
process the data asynchronously. At the next NPP_WriteReady call, only half of the
data has been processed. To avoid allocating additional buffers, the plug-in could
return 4096, resulting in a call to NPP_Write with a buffer of up to 4K bytes.

The buffer passed to NPP_Write may accommodate more bytes than the maximum
number returned from NPP_WriteReady . This maximum is only a promise to
consume a certain amount of data from the buffer, not an upper limit on the buffer
size. In the example above, suppose that the plug-in allocates an 8K buffer and returns
8192 from NPP_WriteReady. If the plug-in gets 10000 bytes from the browser in a
subsequent call to NPP_Write, the plug-in should copy the first 8192 bytes from the
browser's buffer into its own buffer and return 8192 (the number of bytes actually
consumed) from NPP_Write.

The instance parameter is the current plug-in instance; the stream parameter
specifies the current stream.

Writing the Stream to the Plug-in

The next step is to write the data to a plug-in from a stream. After a call to
NPP_NewStream, in which the plug-in requested a normal-mode stream, the browser
delivers the data in the stream progressively in a series of calls to NPP_WriteReady

and NPP_Write.

The NPP_Write function should return the number of bytes consumed by the
instance. If this is a negative number, the browser calls NPP_DestroyStream to
destroy the stream. If the number returned is smaller than the size of the buffer, the
browser sends the remaining data in the buffer to the plug-in through repeated calls to
NPP_WriteReady and NPP_Write.

The instance parameter is the current plug-in instance; the stream parameter
specifies the current stream. The offset parameter specifies the offset, in bytes, of
buf from the beginning of the data in the stream. The len parameter specifies the

int32 NPP_WriteReady(NPP instance, NPStream *stream);

int32 NPP_Write(NPP instance, NPStream *stream,

int32 offset, int32 len, void *buf);
71

length, in bytes, of buf , the buffer of data (delivered by the stream). The buffer
allocated by the browser is deleted after returning from the function, so the plug-in
must make a copy of the data it needs to keep.

As an example, suppose that a plug-in (and the HTTP server) supports byte-range
requests, and that the browser is in the process of pushing data to the plug-in. If the
user now requests a specific page of the document, the plug-in calls
NPN_RequestRead with a list of byte ranges. The open stream is converted from
normal mode to seek mode in an effort to pass the plug-in data that was already on the
way, rather than just discarding it. All NPP_Write calls for streaming data eventually
stop, and NPP_Write calls will be completed only for data requested with
NPN_RequestRead.

The browser does not create a new stream for each byte range it requests. Instead,
additional NPP_WriteReady and NPP_Write calls occur on the same stream. An
individual call to NPN_RequestRead can request discontiguous ranges, and you can
have many outstanding NPN_RequestRead calls. There is no guarantee that
NPP_Write will receive requests for ranges in the same order as you requested
(although this typically is the case; the server controls the order). So, you'll need to
pay attention to the offsets as data is being written.

The stream processes all byte-range requests, and then is placed in seek mode (either
explicitly in NPP_NewStream, or implicitly by a call to NPN_RequestRead). It
remains open until the plug-in closes it by calling NPN_DestroyStream, or until the
instance is destroyed.

NOTE: If you want to be sure that the NPN_*Stream functions are called in the order
you want and behave the way you expect, combine NPN_NewStream, NPN_Write,
and NPN_Destroy_Stream in the same callback.

Sending the Stream in Random-Access Mode

In random-access mode, the plug-in "pulls" stream data by calling the
NPN_RequestRead method. The browser must download the entire stream to a
temporary file before it can be used, unless the stream comes from a local file or an
HTTP server that supports the proposed byte-range extension to HTTP. This mode
consumes more resources than the others.

Random-access mode is determined in NPP_NewStream by setting the mode
NP_SEEK. This mode gives the plug-in instance random access to stream data as
needed, through calls to NPN_RequestRead. If the stream is not seekable, these
requests are fulfilled only when all the data has been read and stored in the cache.
72 Gecko Plug-in API Reference

The NPN_RequestRead method requests a range of bytes from a seekable stream.
Typically, the only streams that are seekable are from data that is in memory or on the
disk, or from HTTP servers that support byte-range requests.

• For streams that are not in NP_SEEK mode: The plug-in can call
NPN_RequestRead as long as the stream is inherently seekable;
NPN_RequestRead automatically changes the mode to NP_SEEK.

• For streams that are not inherently seekable: The stream must be put in NP_SEEK

mode initially, because the browser must cache all the stream data on disk in order
to access it randomly.

• For streams that are not inherently seekable and not initially in mode NP_SEEK:
NPN_RequestRead returns the error code NPERR_STREAM_NOT_SEEKABLE.

The NPN_RequestRead method has the following syntax:

The stream parameter is the stream from which to read bytes; the rangeList
parameter specifies the range of bytes in the form of a linked list of NPByteRange
objects, which the plug-in must allocate. Because these objects are copied by the
browser, and so the plug-in can delete them as soon as the call to NPN_RequestRead

returns.

The plug-in can request multiple ranges, either through a list of NPByteRange objects
in a single call to NPN_RequestRead or through multiple calls to
NPN_RequestRead. In this case, the browser can write individual ranges in any
order, with any number of NPP_WriteReady and NPP_Write calls.

Sending the Stream in File Mode

If the stream is sent in file mode, the browser saves the entire stream to a local file and
passes the full file path to the plug-in instance through the NPP_StreamAsFile
method. Use this feature only as a last resort; plug-ins should implement an
incremental stream-based interface whenever possible.

File mode is determined in NPP_NewStream by setting the mode NP_ASFILEONLY .
This mode gives the plug-in full random access to the data with platform-specific file
operations. The browser saves stream data to a local file, and, when the stream is
complete, delivers the path of the file through a call to NPP_StreamAsFile.

NPError NPN_RequestRead(NPStream *stream, NPByteRange
*rangeList);
73

NOTE: Most plug-ins that need the stream saved to a file should use
NP_ASFILEONLY mode rather than the older NP_ASFILE; this mode is less efficient
because it uses successive calls to NPP_Write. NPP_StreamAsFile provides the
plug-in with a full path to a local file for the stream. It is a good idea to check that the
file exists in the directory at the start of this method. If an error occurs during data
retrieval or writing to the file, the browser passes null for the filename. If the file is
created from a stream from the network, the file is locked in the the browser disk
cache until the stream or its instance is destroyed.

The instance parameter is the current plug-in; the stream parameter specifies the
current stream. The fname parameter specifies the full path to a local file (or null if
an error occurs during data retrieval or writing to the file).

Sending a Stream

When a plug-in sends a data stream to the browser, it performs several tasks. The
plug-in calls the methods NPN_NewStream, NPN_Write, and NPN_DestroyStream

to create a stream, push data into it, and delete it. Streams produced by a plug-in have
a specific MIME type and can be sent to a particular browser window or frame for
display.

• Creating a Stream

• Pushing Data into the Stream

• Deleting the Stream

For an example that demonstrates these processes, see "Example of Sending a
Stream."

Creating a Stream

The plug-in calls NPN_NewStream to send a new data stream to the browser. The
browser creates a new NPStream object and returns it to the plug-in as an output
parameter.

void NPP_StreamAsFile(NPP instance, NPStream *stream,

const char* fname);
74 Gecko Plug-in API Reference

The plug-in can use this stream object in subsequent NPN_Write calls to the browser.
When all the plug-in data is written into the stream, the plug-in must terminate the
stream and deallocate the NPStream object by calling the NPN_DestroyStream
function.

The instance parameter is the plug-in instance that is creating the stream; the type
specifies the MIME type of the stream.

The target parameter specifies the window or frame. For the possible values of
named targets, see the reference entry for NPN_NewStream. The target should not be
the same window.

The stream parameter represents the stream that the browser creates.

For an example that demonstrates using this function with NPN_Write and
NPN_DestroyStream, see "Example of Sending a Stream."

Pushing Data into the Stream

After creating a stream with NPN_NewStream, the plug-in can call NPN_Write to
deliver a buffer of data from the plug-in to the browser. This function returns the
number of bytes written or a negative integer in case of an error during processing.
NPN_Write should send as much data as is available. Unlike NPP_Write,
NPN_Write has no corresponding NPN_WriteReady function.

The plug-in should terminate the stream by calling NPN_DestroyStream, when all
data has been written to the stream, or in the event of an error.

The instance parameter is the current plug-in; the stream parameter is a pointer to
the stream being written to. The len parameter specifies the length, in bytes, of data
written to the stream. The buf parameter is a pointer to the buffer holding the data to
write to the stream.

For an example that demonstrates using this function with NPN_NewStream and
NPN_DestroyStream, see "Example of Sending a Stream."

NPError NPN_NewStream(NPP instance,

NPMIMEType type,

const char* target,

NPStream** stream);

int32 NPN_Write(NPP instance, NPStream *stream,

int32 len, void *buf);
75

Deleting the Stream

When the stream is complete, the plug-in calls NPN_DestroyStream to close and
delete it. This applies to streams the plug-in creates with NPN_NewStream or streams
created by the browser with NPP_NewStream.

The instance parameter is the current plug-in; the stream parameter specifies the
stream, created by either the browser or the plug-in. The reason parameter represents
the reason the stream was stopped, as follows:

• NPRES_DONE (most common): The stream completed normally; the plug-in sent
all data to the browser.

• NPRES_USER_BREAK: The plug-in terminated the stream because of a user
request.

• NPRES_NETWORK_ERR: The stream failed because of network problems.

For the complete list of codes, see "Result Codes."

For an example that demonstrates using this function with NPN_NewStream and
NPN_Write, see "Example of Sending a Stream."

NPError NPN_DestroyStream(NPP instance, NPStream* stream,

NPError reason);
76 Gecko Plug-in API Reference

Example of Sending a Stream

The following code creates a new stream of HTML text displayed by the browser in a
new window, writes it, and destroys the stream. Error handling has been omitted for
simplicity.

Your plug-in can create another instance of itself by specifying its own MIME type
and a new target name in a call to NPN_NewStream.

NPStream* stream;

char* myData = "<HTML>This is a message from my plug-in!</HTML>";

int32 myLength = strlen(myData) + 1;

/* Create the stream. */

err = NPN_NewStream(instance, "text/html", "_blank", &stream);

/* Push data into the stream. */

err = NPN_Write(instance, stream, myLength, myData);

/* Delete the stream. */

err = NPN_DestroyStream(instance, stream, NPRES_DONE);
77

78 Gecko Plug-in API Reference

URLs

This chapter describes retrieving URLs and displaying them on specified target pages,
posting data to an HTTP server, uploading files to an FTP server, and sending mail.

Uniform resource locator (URL) protocols provide a means for locating and accessing
resources that are available on the Internet and on intranets. Plug-ins can request and
receive the data associated with URLs of any type that the browser can handle,
including HTTP, FTP, news, mailto, and gopher.

The table below summarizes URLs supported by the Netscape browser. In addition,
Netscape may support URLs not listed on this table.

URL Scheme Description

about Locates browser information or "fun" pages. Netscape
proprietary.

file (Host-specific filenames) Locates files on a specific host
computer rather than an Internet resource.

ftp (File Transfer Protocol) Locates files and directories on Internet
hosts for file download.

gopher (Gopher protocol) Locates specified items on a Gopher server.

http (Hypertext Transfer Protocol) Locates resources on the Internet.

javascript Executes JavaScript code that follows the URL. Netscape-
specific.

mailto (Electronic mail address) Locates the Internet mailing address of
an individual or service.

nethelp Displays a NetHelp topic in a NetHelp window. Browser-
specific.

news (USENET news) Locates USENET news groups or individual
USENET articles.

nntp (USENET news using nntp access) Locates USENET news
groups or individual USENET articles; alternate to news.
79

For more information, see RFC 1738, "Uniform Resource Locators (URL).

• Getting URLs

• Posting URLs

Getting URLs

To retrieve a URL and display it on a specified target page, use the NPN_GetURL,
NPN_GetURLNotify, and NPP_URLNotify functions. This section describes the
methods and procedure used for getting the URL and displaying the page.

The plug-in uses the NPN_GetURL function to ask the browser to display data
retrieved from a URL in a specified target window or frame, or deliver it to the plug-
in instance in a new stream. This is the way that plug-ins provide hyperlinks to other
documents or retrieve data from the network.

If the browser cannot locate the URL and retrieve the data, it does not create a stream
for the instance; in this case, the plug-in receives notification of the result. To request
a stream and receive notification of the result in all cases, use NPN_GetURLNotify.

For HTTP URLs, the browser resolves NPN_GetURL as the HTTP server method
GET, which requests URL objects.

Note that NPN_GetURL is typically asynchronous: it returns immediately and only
later handles the request, such as displaying the URL or creating the stream for the
instance and writing the data. For this reason as well, calling NPN_GetURLNotify

may be more useful than NPN_GetURL; the plug-in is notified upon either successful
or unsuccessful completion of the request.

prospero (Prospero Directory Service) Locates a resource on a Prospero
directory server.

telnet (Reference to interactive sessions) Locates an interactive
service.

wais (Wide Area Information Servers) Locates WAIS databases and
their documents.

wysiwyg Placed before another URL; displays a page that JavaScript has
updated using document.write.

NPError NPN_GetURL(NPP instance, const char *url, const char *target);
80 Gecko Plug-in API Reference

The instance parameter represents the current plug-in instance. The url parameter is
the URL of the request, which can be of any type, including HTTP, FTP, news,
mailto, or gopher.

The target parameter represents the destination where the URL will be displayed, a
window or frame. If target refers to the window or frame containing the plug-in
instance, it is destroyed and the plug-in may be unloaded. If the target parameter is set
to null, the application creates a new stream and delivers the data to the plug-in
instance, through calls to NPP_NewStream, NPP_WriteReady and NPP_Write,
and NPP_DestroyStream.

In general, if a URL works in the location box of the Navigator, it works as a target
for NPN_GetURL, except for the _self target.

Make sure that the target matches the URL type sent to it. For example, a null target
does not make sense for some URL types (such as mailto). For some
recommendations to help you with target parameter choice, see the reference entry for
NPN_GetURL.

The NPN_GetURLNotify method acts like NPN_GetURL. Both request the creation of
a new stream with the contents of the specified URL, and, in addition,
NPN_GetURLNotify notifies the plug-in of the successful or unsuccessful
completion of the request. The browser notifies the plug-in by calling the plug-in's
NPP_URLNotify function and passing it the notifyData value, which may be used
to track multiple requests.

NPN_GetURLNotify handles the URL request asynchronously. It returns
immediately and only later handles the request and calls NPP_URLNotify. Without
this notification, the plug-in cannot tell whether a request with a null target failed or a
request with a non-null target was completed.

The instance, url, and target parameters have the same definitions as those of
NPN_GetURL. The notifyData parameter contains private plug-in data that can be used
to associate the request with the subsequent NPP_URLNotify call (which returns this
value) and/or to pass a pointer to some request-related payload.

NPError NPN_GetURLNotify(NPP instance, const char* url,

const char* target, void*
notifyData);
81

If a request is not completed successfully (for example, because the URL is invalid or
a HTTP server is down), the browser should call NPP_URLNotify as soon as
possible. If a request completes successfully, and the target is non-null, the browser
calls NPP_URLNotify after it has finished loading the URL. If the target is null, it
calls NPP_URLNotify after calling NPP_DestroyStream to close the stream.

Both the NPN_GetURLNotify and NPN_PostURLNotify functions call the
NPP_URLNotify method to notify the plug-in of the result of a request. Both
functions pass the notifyData value to NPP_URLNotify, which tells the plug-in that
the URL request was completed and the reason for completion.

The instance and url parameters have the same definitions as those of NPN_GetURL.
The notifyData parameter contains the private plug-in data passed to the
corresponding call to NPN_GetURLNotify and NPN_PostURLNotify.

Getting the URL and Displaying the Page

To retrieve a URL and display it on a specified target page, you use the NPN_GetURL
and NPN_GetURLNotify functions. The URL can be displayed in the same window
or frame, a new window, or a different window or frame, depending on the value of
the target parameter. Specify the display target with one of these special target names:

• _blank or _new: Load the URL in a new blank unnamed window. Safest target,
even though, when used with a mailto or news URL, this creates an extra blank
the browser instance.

• _self or _current: Load the URL into the same window the plug-in instance
occupies. If this target refers to the window or frame containing the instance, the
instance is destroyed and the plug-in may be unloaded.

• _parent: Load the URL into the immediate FRAMESET parent of the plug-in
instance document. If the plug-in instance document has no parent, the default is
_self.

• _top: Load the URL into the plug-in instance window. The default is _self, if
the plug-in instance document is already at the top. Use for breaking out of a deep
frame nesting.

Be careful when you assign a target. If the target refers to the window or frame
containing the instance or one of its parents/ancestors, the instance is destroyed and
the plug-in may be unloaded.

void NPP_URLNotify(NPP instance, const char* url,

NPReason reason, void* notifyData);
82 Gecko Plug-in API Reference

Here's an example of getting a URL: A plug-in instance draws a button that acts like a
link to another web page. When the user clicks the button, the plug-in calls
NPN_GetURL to go to the page.

Posting URLs

• Posting Data to an HTTP Server

• Uploading Files to an FTP Server

• Sending Mail

The plug-in calls NPN_PostURL to post data from a file or buffer to a URL. This
function is the counterpart of NPN_GetURL.

• NPN_PostURL writes data from a file or buffer to the URL and either displays the
server response in the target window or delivers it to the plug-in.

• NPN_GetURL reads data from the URL and either displays it in the target window
or delivers it to the plug-in.

For HTTP URLs only, the browser resolves this method as the HTTP server method
POST, which transmits data to the server.

You can use NPN_PostURL to post data to a URL from a memory buffer or file. The
result from the server can also be sent to a particular the browser window or frame for
display, or delivered to the plug-in instance in a new stream. Plug-ins can use this
capability to post form data to CGI scripts using HTTP or upload files to a remote
server using FTP.

The browser resolves this method as the HTTP server method POST , which transmits
data to the server. The data to post can be contained either in a local temporary file or
a new memory buffer. To post a file, set the flag file to true, the buffer buf to the path
name string for a file, and len to the length of the path string. The file-type URL prefix
"file://" is optional.

err = NPN_GetURL(

instance, "http://home.netscape.com/", "_blank");
83

NPN_PostURL is typically asynchronous: it returns immediately and only later
handles the request and calls NPP_Notify (which, in turn, calls NPP_URLNotify).

The instance, url, and target parameters have the same definitions as those of
NPN_GetURL.

The buf parameter identifies a local temporary file or data buffer that contains the
data to post.

Windows and Mac

If a file is posted with any protocol other than FTP, the file must be text with Unix-
style line breaks ('\n' separators only).

NPN_PostURL works identically with buffers and files. To post data from a memory
buffer, set the flag file to false, the buffer buf to the data to post, and len to the length
of the buffer.

Possible URL types include http (similar to an HTML form submission), mailto
(sending mail), news (posting a news article), and ftp (uploading a file). For protocols
in which the headers must be distinguished from the body, such as http , the buffer or
file should contain the headers, followed by a blank line, then the body. If no custom
headers are required, simply add a blank line ('\n') to the beginning of the file or
buffer.

NOTE: You cannot use NPN_PostURL to specify headers (even a blank line) in a
memory buffer. To do this, use NPN_PostURLNotify for this purpose. § The
NPN_PostURLNotify function has all the same capabilities and works like
NPN_PostURL in most ways except that (1) it supports specifying headers when
posting a memory buffer, and (2) it calls NPP_URLNotify upon successful or
unsuccessful completion of the request. NPN_PostURLNotify is typically
asynchronous: it returns immediately and only later handles the request and calls
NPP_URLNotify.

NPError NPN_PostURL(NPP instance, const char *url,

const char *target, uint32 len,

const char *buf, NPBool file);

NPError NPN_PostURLNotify(

NPP instance, const char *url,

const char *target, uint32 len,

const char *buf, NPBool file, void* notifyData

);
84 Gecko Plug-in API Reference

The parameters of this function have the same definitions as those of NPN_PostURL.
The notifyData parameter contains plug-in-private data passed by NPP_URLNotify

and may be used for tracking multiple posts.

Posting Data to an HTTP Server

The following code posts two name-value pairs to a CGI script through HTTP. The
response from the server is displayed in a new window.

Uploading Files to an FTP Server

Plug-ins can use NPN_PostURL or NPN_PostURLNotify to upload files to a remote
server using FTP. This example uploads a file from the root of the local file system to
an FTP server and displays the response in a frame named response:

char* myData = "Content Type:\tapplication/

x-www-form-urlencoded\nContent

Length:\t25\n\nname1=value1&name2=value2\n";

uint32 myLength = strlen(myData) + 1;

err = NPN_PostURL(instance, "http://
hoohoo.ncsa.uiuc.edu/

cgi-bin/post-query","_blank", myLength,
myData, FALSE);

char* myData = "file:///c\/myDirectory/myFileName";

uint32 myLength = strlen(myData) + 1;

err = NPN_PostURL(instance, "ftp://
fred@ftp.somewhere.com/pub/",

"response", myLength, myData, TRUE);
85

Sending Mail

A plug-in can send an email message using NPN_PostURL or NPN_PostURLNotify.
The following code sends a mail message with the default headers from the client
machine.

The example starts by defining the mail message, myData, and its length, myLength.
It sends myData and myLength to the mailto URL mailto:fred@somewhere.com. The
target window for displaying the message is null in the example. Normally, using a
null target window causes the response to be delivered from the server to the plug-in
instance in a new stream, but no response is expected for a mailto URL.

You cannot use either of these functions to set the body or attachments of an email
message.

char* myData = "\nHi Fred, this is a message from my
plug-in!";

uint32 myLength = strlen(myData) + 1;

err = NPN_PostURLNotify(instance,
"mailto:fred@somewhere.com",

NULL, myLength, myData, FALSE);
86 Gecko Plug-in API Reference

Memory

This chapter describes the Plug-in API functions that allocate and free memory as
needed by the plug-in.

Because plug-ins share memory space with the browser, they can take advantage of
any customized memory-allocation scheme the browser has. Browser memory
schemes may be more efficient than standard OS memory functions, and can give the
browser flexibility in the way it manages memory. In addition, the plug-in usually has
the option of using its own memory functions.

The methods that handle memory belong to the browser group of methods.

• NPN_MemAlloc allocates memory from the browser's memory space. Use this
function to allocate memory dynamically.

• NPN_MemFree requests that the browser free a specified block of memory. Use
this function to free memory allocated with NPN_MemAlloc.

• NPN_MemFlush requests the browser to free up a specified amount of memory
if not enough is currently available for the plug-in's requirements.

Allocating and Freeing Memory

To allocate memory and free memory, use these paired functions:

• NPN_MemAlloc allocates a specified amount of memory in the browser's memory
space.

• NPN_MemFree deallocates a block of memory allocated using NPN_MemAlloc.

The plug-in can call the Plug-in API NPN_MemAlloc function instead of the standard
malloc function to allocate dynamic memory. Using NPN_MemAlloc offers several
advantages to the plug-in.

• A call to NPN_MemAlloc is more likely to succeed. The browser may be able to
deallocate nonessential memory structures in response to a request.
87

• NPN_MemAlloc uses the browser’s customized memory-allocation scheme,
which is typically faster and causes less fragmentation than the standard OS
memory functions.

• If the plug-in uses NPN_MemAlloc, the browser is able to manage memory more
efficiently because it knows how much memory the plug-in is using at any given
time.

Mac OS

The Mac OS browser frequently fills its memory partition with cached data that is
purged only as necessary. Since NPN_MemAlloc automatically frees cached
information if necessary to fulfill a request for memory, calls to NPN_MemAlloc may
succeed where direct calls to NewPtr fail.

The NPN_MemAlloc method has the following syntax:

The size parameter is an unsigned long integer that represents the amount of
memory, in bytes, to allocate in the browser's memory space. This function returns a
pointer to the allocated memory or null if not enough memory is available.

The NPN_MemFree method deallocates a block of memory that was allocated using
NPN_MemAlloc only. NPN_MemFree does not free memory allocated by other means.

The ptr parameter represents a block of memory previously allocated using
NPN_MemAlloc.

Flushing Memory (Mac OS only)

The NPN_MemFlush method frees a specified amount of memory. Normally, plug-ins
should use NPN_MemAlloc , which automatically frees nonessential memory if
necessary to fulfill the request. For Communicator 4.0 and later versions, this function
is not necessary for the Mac OS platform; NPN_MemAlloc now performs memory
flushing internally. You need to use NPN_MemFlush only when it is not possible to
call NPN_MemAlloc, for example, when calling system methods that allocate memory
indirectly. If NPN_MemAlloc is called, calls to NPN_MemFlush have no effect.

void *NPN_MemAlloc (uint32 size);

void NPN_MemFree (void *ptr);
88 Gecko Plug-in API Reference

For example, suppose that the plug-in calls NewGWorld, and that the call fails because
of insufficient memory. The plug-in should try calling NPN_MemFlush to free enough
memory. If NPN_MemFlush returns a value indicating that enough memory was freed,
the plug-in can call NewGWorld again. Calling NPN_MemFlush is particularly
important to systems with small amounts of RAM and with virtual memory turned
off.

To request that the browser free as much memory as possible, call NPN_MemFlush
repeatedly until it returns 0.

The size parameter is an unsigned long integer that represents the amount of memory,
in bytes, to free in the browser's memory space. This function returns the amount of
freed memory, in bytes, or 0 if no memory could be freed.

uint32 NPN_MemFlush(uint32 size);
89

90 Gecko Plug-in API Reference

Version, UI, and Status Information

This chapter describes the functions that allow a plug-in to display a message on the
status line, get agent information, and check on the current version of the Plug-in API
and the browser.

• Displaying a Status Line Message

• Getting Agent Information

• Getting the Current Version

• Finding Out if a Feature Exists

• Reloading a Plug-in

Displaying a Status Line Message

Users are accustomed to checking the UI status line at the bottom of the browser
window for updates on the progress of an operation or the URL of a link on the page.
You can also use the status line to notify the user of plug-in-related information. The
user might appreciate seeing the percentage completed of the current operation or the
URL of a button or other link object when the cursor is over it, all of which the
browser shows. In fact, your plug-in interface should be consistent with the rest of the
browser in this way.

To accomplish this, the plug-in calls the NPN_Status method to display your
message on the status line.

The instance parameter is the current plug-in instance, that is, the one that the status
message belongs to. In the message parameter, pass the string you want to display on
the status line.

void NPN_Status(NPP instance, const char *message);
91

The browser always displays the last status line message it receives, regardless of the
message source. For this reason, your message is always displayed, but you have no
control over how long it stays in the status line before another message replaces it.
You should use a different method to display messages that the user needs to see, such
as error messages.

Getting Agent Information

A plug-in can check which browser is running on the user's current system. Browsers
communicate with HTTP servers, which store agent software name, version, and
operating system in a user_agent field. If you want to gather usage statistics or just
find out the version of your plug-in's host browser, this information can help you.

The plug-in calls the NPN_UserAgent method to retrieve the contents of the
user_agent field.

The instance parameter represents the current plug-in instance. This function
returns a string that contains the user_agent field of the browser.

Getting the Current Version

Your plug-in should make sure, possibly during initialization, that the version of the
Plug-in API it is using is compatible with the version the browser is using. To do so, it
must find the major and minor version numbers, which are determined when the plug-
in and Navigator are compiled, and compare them. If the versions are not compatible,
the plug-in can let the user know. The plug-in can also use the version number to find
out whether a particular feature exists on the version of the browser that the plug-in is
running in.

The browser and Plug-in API major version numbers represent code release numbers,
and their minor version numbers represent point release numbers. For example, Plug-
in API version 6.03 has a major version number of 6 and a point release number of 3.

Differing version numbers may mean that the current Plug-in API and the browser
versions are incompatible. Changes to the minor version numbers indicate a smaller
difference than changes to the major version. Changes to the major version numbers
probably indicate incompatibility.

const char* NPN_UserAgent(NPP instance);
92 Gecko Plug-in API Reference

The plug-in calls the NPN_Version method to check for changes in major and minor
Plug-in API version numbers. It gets the values from the plug-in rather than from the
browser.

This function returns the plug-in version number in plugin_major, the plug-in point
release number in plugin_minor, the browser version number in
netscape_major, and the browser point release number in netscape_minor.

This code declares variables to hold the version numbers and calls NPN_Version to
return the major and minor version numbers for the browser and the Plug-in API.

Finding Out if a Feature Exists

A plug-in can figure out whether it is running in a version of the browser that supports
a particular feature by using version or NPVERS constants (see Version Feature
Constants). Each NPVERS constant represents a feature. The plug-in can compare the
NPVERS constant to the version number. If the version supports the feature, the plug-
in can operate according to plan. If not, the plug-in cannot use some functionality. If
an essential feature is unavailable, the developer must arrange for alternative
behavior, shut down the plug-in, or give the user a chance to decide what to do.

In this example, the has_windowless method finds out whether the current version
supports windowless plug-ins. It starts by using NPN_Version to get the version
numbers. It then uses the netscape_minor version number to find out if the
windowless feature, represented by the NPVERS_HAS_WINDOWLESS constant, is

void NPN_Version(int *plugin_major,

int *plugin_minor,

int *netscape_major,

int *netscape_minor);

int plugin_major, plugin_minor, netscape_major,

netscape_minor; // declare variables to hold version numbers

void NPN_Version(
&plugin_major, &plugin_minor, &netscape_major,
&netscape_minor

); // find version numbers
93

supported. If the method returns true, a windowless plug-in can confidently proceed.
If false is returned, windowless plug-ins will not work, and the developer must
provide alternatives.

Reloading a Plug-in

When the browser starts up, it loads all the plug-ins it finds in the Plugins directory for
the platform. If you call NPN_ReloadPlugins, the browser reloads all plug-ins in the
Plugins directory without restarting. This causes the browser to install a new plug-in
and load it, or remove a plug-in, without having to restart. Consider using this
function as part of the plug-in's SmartUpdate process.

The reloadPages parameter is a boolean that indicates whether to reload the page
(true) or not (false).

Bool has_windowless()

{

int plugin_major, plugin_minor;

int netscape_major, netscape_minor;

/* Find the version numbers. */

NPN_Version(&plugin_major, &plugin_minor,

&netscape_major, &netscape_minor);

/* Use the netscape_minor version number: */

/* Does this version support the windowless feature? */

if (netscape_minor < NPVERS_HAS_WINDOWLESS) {

/* Plug-in is running in a version of the Navigator */

/* that does not support windowless plug-ins. */

return FALSE;

}

else

/* Plug-in is running in a Navigator version */

/* that has windowless support */

return TRUE;

}

void NPN_ReloadPlugins(NPBool reloadPages);
94 Gecko Plug-in API Reference

Plug-in Side Plug-in API

This chapter describes methods in the plug-in API that are available for the plug-in
object. The names of all of these methods begin with NPP_ to indicate that they are
implemented by the plug-in and called by the browser. For an overview of how these
two sides of the plug-in API interact, see the How Plug-ins Work and Overview of
Plug-in Structure sections in the introduction.

Plugin Method Summary

NPP_Destroy Deletes a specific instance of a plug-in.

NPP_DestroyStream Tells the plug-in that a stream is about to be
closed or destroyed.

NPP_GetValue Allows the browser to query the plug-in for
information.

NPP_HandleEvent Delivers a platform-specific window event
to the instance.

NP_Initialize Provides global initialization for a plug-in.

NPP_New Creates a new instance of a plug-in.

NPP_NewStream Notifies a plug-in instance of a new data
stream.

NPP_Print Requests a platform-specific print operation
for an embedded or full-screen plug-in.

NPP_SetValue Sets information about the plug-in.

NPP_SetWindow Tells the plug-in when a window is created,
moved, sized, or destroyed.

NP_Shutdown Provides global deinitialization for a plug-in.
95

NPP_Destroy
Deletes a specific instance of a plug-in.

Syntax

Parameters

The function has the following parameters:

Returns

If successful, the function returns NPERR_NO_ERROR.

If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.

NPP_StreamAsFile Provides a local file name for the data from a
stream.

NPP_URLNotify Notifies the instance of the completion of a
URL request.

NPP_Write Delivers data to a plug-in instance.

NPP_WriteReady Determines maximum number of bytes that
the plug-in can consume.

NPP_Destroy

#include <npapi.h>

NPError NPP_Destroy(NPP instance, NPSavedData **save);

instance Pointer to the plug-in instance to delete.

**save State or other information to save for reuse
by a new instance of this plug-in at the same
URL. Passed to NPP_New.
96 Gecko Plug-in API Reference

Description

NPP_Destroy releases the instance data and resources associated with a plug-in. The
browser calls this function when a plug-in instance is deleted, typically because the
user has left the page containing the instance, closed the window, or quit the browser.
You should delete any private instance-specific information stored in the plug-in's
instance->pdata at this time.

If this function is deleting the last instance of a plug-in, NP_Shutdown is
subsequently called. Use NP_Shutdown to delete any data allocated in NP_Initialize
and intended to be shared by all instances of a plug-in.

Use the optional save parameter if you want to save and reuse some state or other
information. Upon the user's return to the page, this information is passed to the new
plug-in instance when it is created with NPP_New.

Avoid trying to save critical data with this function. Ownership of the buf field of the
NPSavedData structure passes from the plug-in to the browser when NPP_Destroy

returns. The browser can and will discard this data based on arbitrary criteria such as
its size and the user's page history.

To ensure that the browser does not crash or leak memory when the saved data is
discarded, NPSavedData's buf field should be a flat structure (a simple structure
with no allocated substructures) allocated with NPN_MemAlloc.

Mac OS

If you want to restore state information if this plug-in is later recreated, use
NP_MemAlloc to create an NPSavedData structure. §

NOTE: You should not perform any graphics operations in NPP_Destroy as the
instance's window is no longer guaranteed to be valid. §

See Also
NPP_New, NP_Shutdown, NPP, NPN_MemAlloc, NPSavedData,

NPP_DestroyStream
NPP_DestroyStream 97

NPP_DestroyStream
Tells the plug-in that a stream is about to be closed or destroyed.

Syntax

Parameters

The function has the following parameters:

Returns

If successful, the function returns NPERR_NO_ERROR.

If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.

#include <npapi.h>

NPError NPP_DestroyStream(NPP instance,

NPStream* stream,

NPReason reason);

instance Pointer to current plug-in instance.

stream Pointer to current stream.

reason Reason the stream was destroyed. Values:

NPRES_DONE (Most common): Completed
normally; all data was sent to the instance.

NPRES_USER_BREAK: User canceled stream
directly by clicking the Stop button or
indirectly by some action such as deleting
the instance or initiating higher-priority
network operations.

NPRES_NETWORK_ERR: Stream failed due to
problems with network, disk I/O, lack of
memory, or other problems.
98 Gecko Plug-in API Reference

Description

The browser calls the NPP_DestroyStream function when a data stream sent to the
plug-in is finished, either because it has completed successfully or terminated
abnormally. After this, the browser deletes the NPStream object.

You should delete any private data allocated in stream->pdata at this time, and should
not make any further references to the stream object.

See Also
NPP_NewStream, NPP_DestroyStream, NPStream

Allows the browser to query the plug-in for information.

Syntax

NPP_GetValue

#include <npapi.h>

NPError NPP_GetValue(void *instance,

NPPVariable variable,

void *value);
NPP_GetValue 99

NPP_GetValue
Parameters

The function has the following parameters:

Returns

If successful, the function returns NPERR_NO_ERROR.

If unsuccessful, the function returns an error code. For possible values, see Error
Codes.

Description

NPP_GetValue retrieves plug-in features set with NPP_SetValue, among them
whether a plug-in is windowed or windowless and whether JavaScript is enabled.

You can use this method as an optional entry point that the browser can call to
determine the plug-in name and description. It returns the requested values, specified
by the variable and value parameters, to the plug-in.

See Also
NPP_SetValue

instance Pointer to the current plug-in instance.

variable Unix only: Plug-in information the call gets.
Values:

NPPVpluginNameString: Gets the name
of the plug-in

NPPVpluginDescriptionString: Gets
the description string of the plug-in

NPPVpluginWindowBool: Tells whether
the plug-in is windowless; true=windowless,
false=not windowless

NPPVpluginTransparentBool: Tells
whether the plug-in is transparent;
true=transparent, false=not transparent

value Plug-in name, returned by the function.
100 Gecko Plug-in API Reference

Delivers a platform-specific window event to the instance.

For Windowed Plug-ins: Currently used only on Mac OS.

For Windowless Plug-ins: Windows and Mac OS.

Syntax

Parameters

The function has the following parameters:

Returns

If the plug-in handles the event, the function should return true.

If the plug-in ignores the event, the function returns false.

NPP_HandleEvent

#include <npapi.h>

int16 NPP_HandleEvent(NPP instance, void* event);

instance Pointer to the current plug-in instance.

event Platform-specific value representing the
event handled by the function. Values:

MS Windows: Pointer to NPEvent structure

Mac OS: Pointer to a standard Mac OS
EventRecord

For a list of possible events for MS Windows
and Mac OS, see NPEvent.
NPP_HandleEvent 101

NP_Initialize
Description

The browser calls NPP_HandleEvent to tell the plug-in when events take place in the
plug-in's window or drawable area. The plug-in either handles or ignores the event,
depending on the value given in the event parameter of this function. For a list of
event types the application is responsible for delivering to the plug-in, see the
NPEvent structure.

MS Windows

The browser gives each windowed plug-in its own native window, often a child
window of the browser window, to draw into. The plug-in has complete control over
drawing and event handling within that window. §

Mac OS

The browser does not give a windowed plug-in a native window, because the Mac OS
platform does not support child windows. Instead, the windowed plug-in draws into
the graphics port associated with the the browser window, at the offset that the
browser specifies. For this reason, NPP_HandleEvent is only way the plug-in can
receive events from its host application on Mac OS. When NPP_HandleEvent is
called, the current port is set up so that its origin matches the top-left corner of the
plug-in. A plug-in does not need to set up the current port for mouse coordinate
translation. §

See Also
NPEvent

Provides global initialization for a plug-in.

Syntax

NP_Initialize

#include <npapi.h>

NPError NP_Initialize(void)
102 Gecko Plug-in API Reference

Returns

If successful, the function returns NPERR_NO_ERROR.

If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.

Description

The browser calls this function only once: when a plug-in is loaded, before the first
instance is created. This is the first function that the browser calls. NP_Initialize tells
the plug-in that the browser has loaded it and provides global initialization. Allocate
any memory or resources shared by all instances of your plug-in at this time.

After the last instance of a plug-in has been deleted, the browser calls NP_Shutdown,
where you can release allocated memory or resources.

MS Windows

See Also
NP_Shutdown, NPP_New

Creates a new instance of a plug-in.

Syntax

NPP_New

#include <npapi.h>

NPError NPP_New(NPMIMEType pluginType,

NPP instance, uint16 mode,

int16 argc, char *argn[],

char *argv[], NPSavedData *saved);
NPP_New 103

NPP_New
Parameters

The function has the following parameters:

Returns
• If successful, the function returns NPERR_NO_ERROR.
• If unsuccessful, the function returns an error code. For possible values, see Error

Codes.

pluginType Pointer to the MIME type for new plug-in
instance.

instance Contains instance-specific private data for
the plug-in and the browser. This data is
stored in instance->pdata.

mode Display mode of plug-in. Values:
• NP_EMBED: (1) Instance was created by

an EMBED tag and shares the browser
window with other content.

• NP_FULL: (2) Instance was created by a
separate file and is the primary content
in the window.

argc Number of HTML arguments in the EMBED
tag for an embedded plug-in; determines the
number of attributes in the argn and argv
arrays.

argn[] Array of attribute names passed to the plug-
in from the EMBED tag.

argv[] Array of attribute values passed to the plug-
in from the EMBED tag.

saved Pointer to data saved by NPP_Destroy for a
previous instance of this plug-in at the same
URL. If non-null, the browser passes
ownership of the NPSavedData object back
to the plug-in. The plug-in is responsible for
freeing the memory for the NPSavedData
and the buffer it contains.
104 Gecko Plug-in API Reference

Description

NPP_New creates a new instance of a plug-in. It is called after NP_Initialize and
provides the MIME type, embedded or full-screen display mode, and, for embedded
plug-ins, information about HTML EMBED arguments.

The plug-in's NPP pointer is valid until the instance is destroyed with NPP_Destroy.

If instance data was saved from a previous instance of the plug-in by the
NPP_Destroy function, it is returned in the saved parameter for the current instance
to use.

All attributes in the EMBED tag (standard and private) are passed in NPP_New in the
argn and argv arrays. The browser ignores any non-standard attributes within an
EMBED tag. This gives developers a chance to use private attributes to communicate
instance-specific options or other information to the plug-in. Place private options at
the end of the list of standard attributes in the EMBED Tag.

See Also

NPP_Destroy, NP_Shutdown, NPP, NPSavedData

Notifies a plug-in instance of a new data stream.

Syntax

NPP_NewStream

#include <npapi.h>

NPError NPP_NewStream(NPP instance,

NPMIMEType type,

NPStream *stream,

NPBool seekable,

uint16* stype);
NPP_NewStream 105

NPP_NewStream
Parameters

The function has the following parameters:

instance Pointer to current plug-in instance.

type Pointer to MIME type of the stream.

stream Pointer to new stream.

seekable Boolean indicating whether the stream is
seekable:

true: Seekable. Stream supports random
access through calls to NPN_RequestRead
(for example, local files or HTTP servers
that support byte-range requests).

false: Not seekable. The browser must
copy data in the stream to the local cache to
satisfy random access requests made through
NPN_RequestRead.

stype Requested mode of new stream. For more
information about each of these values, see
Directions in this section.

NP_NORMAL (Default): Delivers stream data
to the instance in a series of calls to
NPP_WriteReady and NPP_Write.

NP_ASFILEONLY: Saves stream data to a file
in the local cache.

NP_ASFILE: File download. Like
NP_ASFILEONLY except that data is
delivered to the plug-in as it is saved to the
file (as in mode NP_NORMAL).

NP_SEEK: Stream data randomly accessible
by the plug-in as needed, through calls to
NPN_RequestRead.
106 Gecko Plug-in API Reference

Returns

If successful, the function returns NPERR_NO_ERROR.

If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.

Description

NPP_NewStream notifies the plug-in when a new stream is created. The NPStream*
pointer is valid until the stream is destroyed. The plug-in can store plug-in-private
data associated with the stream in stream->pdata. The MIME type of the stream is
provided by the type parameter.

The data in the stream can be the file specified in the SRC attribute of the EMBED tag,
for an embedded instance, or the file itself, for a full-page instance. A plug-in can also
request a stream with the function NPN_GetURL. The browser calls
NPP_DestroyStream when the stream completes (either successfully or abnormally).
The plug-in can terminate the stream itself by calling NPN_DestroyStream.

The parameter stype defines the mode of the stream. Values:
• NP_NORMAL (Default): Delivers stream data to the instance in a series of calls to

NPP_WriteReady and NPP_Write. The plug-in can process the data progres-
sively as it arrives from the network or file system.

• NP_ASFILEONLY: The browser saves stream data to a file in the local cache.
When the stream is complete, the browser calls NPP_StreamAsFile to deliver
the path of the file to the plug-in. If the stream comes from a local file, the
NPP_Write and NPP_WriteReady functions are not called.
NPP_StreamAsFile is simply called immediately. This mode allows the plug-in
full random access to the data using platform-specific file operations.

• NP_ASFILE: File download. Differs from NP_ASFILEONLY in that data is deliv-
ered to the plug-in, through a series of calls to NPP_WriteReady and
NPP_Write, as it is saved to the file (as in mode NP_NORMAL). When the stream
is complete, the browser calls NPP_StreamAsFile to deliver the path of the file
to the plug-in. If the data in the stream comes from a file that is already local, the
data is read, sent to the plug-in through NPP_Write, and written to a file in the
local cache.

NOTE: Most plug-ins that need the stream saved to a file should use the more
efficient mode NP_ASFILEONLY (above); this mode is preserved for compatibility
only.

• NP_SEEK: Stream data is not automatically delivered to the instance, but can be
randomly accessed by the plug-in as needed, through calls to
NPP_NewStream 107

NPP_Print
NPN_RequestRead. If the stream is not seekable, placing the stream in
NP_SEEK mode causes the browser to save the entire stream to the disk cache.
NPN_RequestRead requests are only fulfilled when all data has been read and
stored in the cache. As an optimization to extract the maximum benefit from
existing network connections, the browser continues to read data sequentially out
of the stream (as in mode NP_NORMAL) until the first NPN_RequestRead call is
made.

NOTE: In any mode other than NP_SEEK, the application should call
NPP_DestroyStream once all data in the stream has been written to the plug-in.
The plug-in can also request termination of the stream at any time by calling
NPP_DestroyStream. §

See Also
NPN_NewStream, NPP_StreamAsFile, NPP_Write, NPP_WriteReady,
NPP_DestroyStream, NPN_RequestRead, NPStream, NPN_GetURL

Requests a platform-specific print operation for an embedded or full-screen plug-in.

Syntax

Parameters

The function has the following parameters:

NPP_Print

#include <npapi.h>

void NPP_Print(NPP instance, NPPrint* PrintInfo);

instance Pointer to the current plug-in instance. Must
be embedded or full-screen.

printInfo Pointer to NPPrint structure.
108 Gecko Plug-in API Reference

Description

NPP_Print is called when the user requests printing for a web page that contains a
visible plug-in (either embedded or full-page). It uses the print mode set in the
NPPrint structure in its printInfo parameter to determine whether the plug-in should
print as an embedded plug-in or as a full-page plug-in.
• An embedded plug-in shares printing with the browser; the plug-in prints the part

of the page it occupies, and the browser handles everything else, including dis-
playing print dialog boxes, getting the printer device context, and any other tasks
involved in printing, as well as printing the rest of the page. For an embedded
plug-in, set the printInfo field to NPEmbedPrint.

• A full-page plug-in handles all aspects of printing itself. For a full-page plug-in,
set the printInfo field to NPFullPrint or null.

For information about printing on your platform, see your platform documentation.

MS Windows

On MS Windows, printInfo->print.embedPrint.platformPrint is the
device context (DC) handle. Be sure to cast this to type HDC. §

The coordinates for the window rectangle are in TWIPS format. This means that you
need to convert the x-y coordinates using the Windows API call DPtoLP when you
output text. §

See Also
NPPrint, NPFullPrint, NPEmbedPrint

Sets information about the plug-in.

NPP_SetValue
NPP_SetValue 109

NPP_SetValue
Syntax

Parameters

The function has the following parameters:

Returns

If successful, the function returns NPERR_NO_ERROR.

If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.

Description

NPP_SetValue sets a variety of features for a plug-in, among them whether a plug-in
is windowed or windowless and whether JavaScript is enabled. For possible values,
see NPP_GetValue. The plug-in makes this call from its NPP_New method.

For example, to specify that a plug-in is windowless, use NPP_SetValue with
NPPVpluginWindowBool as the variable to set and false as the value parameter. If a
plug-in does not make this call, it is considered a windowed plug-in.

See Also
NPP_New, NPP_GetValue

#include <npapi.h>

NPError NPP_SetValue(void *instance,

NPPVariable variable,

void *value);

instance Pointer to the current plug-in instance.

variable The plug-in information the call is setting.
For values, see NPP_GetValue.

value Destination for plug-in information returned
by the function.
110 Gecko Plug-in API Reference

Tells the plug-in when a window is created, moved, sized, or destroyed.

Syntax

Parameters

The function has the following parameters:

Returns

If successful, the function returns NPERR_NO_ERROR.

If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.

Description

The browser calls NPP_SetWindow after creating the instance to allow drawing to
begin. Subsequent calls to NPP_SetWindow indicate changes in size or position; these
calls pass the same NPWindow object each time, but with different values. If the
window handle is set to null, the window is destroyed. In this case, the plug-in must
not perform any additional graphics operations on the window and should free any
associated resources.

NPP_SetWindow

#include <npapi.h>

NPError NPP_SetWindow(NPP instance, NPWindow *window);

instance Pointer to the current plug-in instance. Must
be embedded or full-screen.

window Pointer to the window into which the
instance draws. The window structure
contains a window handle and values for top
left corner, width, height, and clipping
rectangle (see note on Unix below).
NPP_SetWindow 111

NP_Shutdown
The data structure passed in NPP_SetWindow is an NPWindow object, which
contains the coordinates of the instance's area and various platform-specific data. This
window is valid for the life of the instance, or until NPP_SetWindow is called again
with a different value.

For windowed plug-ins on Windows and Unix, the window parameter contains a
handle to a subwindow of the browser window hierarchy. On Mac OS, this field
points to an NP_Port structure. For windowless plug-ins, it is a platform-specific
handle to a drawable.

Before setting the window parameter to point to a new window, it is a good idea to
compare the information about the new window to the previous window (if one
existed) to account for any changes.

NOTE: NPP_SetWindow is useful only for embedded (NP_EMBED) or full-screen
(NP_FULL) plug-ins, which are drawn into windows. It is irrelevant for hidden plug-
ins.§

See Also
NPP_HandleEvent, NPWindow, NP_Port

Provides global deinitialization for a plug-in.

Syntax

Description

The browser calls this function once after the last instance of your plug-in is
destroyed, before unloading the plug-in library itself. Use NP_Shutdown to delete any
data allocated in NP_Initialize to be shared by all instances of a plug-in.

NP_Shutdown

#include <npapi.h>

void NP_Shutdown(void);
112 Gecko Plug-in API Reference

If you have defined a Java class for your plug-in, be sure to release it at this time so
that Java can unload it and free up memory.

NOTE: If enough memory is available, the browser can keep the plug-in library
loaded if it expects to create more instances in the near future. The browser calls
NP_Shutdown only when the library is finally unloaded. §

MS Windows

See Also
NP_Initialize, NPP_Destroy

Provides a local file name for the data from a stream.

Syntax

Parameters

The function has the following parameters:

NPP_StreamAsFile

#include <npapi.h>

void NPP_StreamAsFile(NPP instance,

NPStream* stream,

const char* fname);

instance Pointer to current plug-in instance.

stream Pointer to current stream.

fname Pointer to full path to a local file. If an error
occurs while retrieving the data or writing
the file, fname may be null.
NPP_StreamAsFile 113

NPP_URLNotify
Description

When the stream is complete, the browser calls NPP_StreamAsFile to provide the
instance with a full path name for a local file for the stream. NPP_StreamAsFile is
called for streams whose mode is set to NP_ASFILEONLY or NP_ASFILE only in a
previous call to NPP_NewStream.

If an error occurs while retrieving the data or writing the file, the file name (fname) is
null.

See Also
NPP_NewStream, NPP_Write, NPP_WriteReady, NPStream, NPP

Notifies the instance of the completion of a URL request.

Syntax

NPP_URLNotify

#include <npapi.h>

void NPP_URLNotify(NPP instance,

const char* url,

NPReason reason,

void* notifyData);
114 Gecko Plug-in API Reference

Parameters

The function has the following parameters:

Description

The browser calls NPP_URLNotify after the completion of a NPN_GetURLNotify
or NPN_PostURLNotify request to inform the plug-in that the request was completed
and supply a reason code for the completion.

The most common reason code is NPRES_DONE, indicating simply that the request
completed normally. Other possible reason codes are NPRES_USER_BREAK,
indicating that the request was halted due to a user action (for example, clicking the
Stop button), and NPRES_NETWORK_ERR, indicating that the request could not be
completed, perhaps because the URL could not be found.

The parameter notifyData is the plug-in-private value passed as an argument by a
previous NPN_GetURLNotify or NPN_PostURLNotify call, and can be used as an
identifier for the request.

instance Pointer to the current plug-in instance.

url URL of the NPN_GetURLNotify or
NPN_PostURLNotify request.

reason Reason code for completion of request.
Values:
• NPRES_DONE (most common): Com-

pleted normally.
• NPRES_USER_BREAK: User canceled

stream directly by clicking the Stop but-
ton or indirectly by some action such as
deleting the instance or initiating higher-
priority network operations.

• NPRES_NETWORK_ERR: Stream failed
due to problems with network, disk I/O,
lack of memory, or other problems.

notifyData Plug-in-private value for associating a
previous NPN_GetURLNotify or
NPN_PostURLNotify request with a
subsequent NPP_URLNotify call.
NPP_URLNotify 115

NPP_Write
See Also
NPN_GetURLNotify, NPN_GetURL, NPN_PostURLNotify, NPN_PostURL

Delivers data to a plug-in instance.

Syntax

Parameters

The function has the following parameters:

NPP_Write

#include <npapi.h>

int32 NPP_Write(NPP instance,

NPStream* stream,

int32 offset,

int32 len,

void* buf);

instance Pointer to the current plug-in instance.

stream Pointer to the current stream.

offset Offset in bytes of buf from the beginning of
the data in the stream. Can be used to check
stream progress or bye range requests from
NPN_RequestRead.

len Length in bytes of buf; number of bytes
accepted.

buf Buffer of data, delivered by the stream, that
contains len bytes of data offset bytes from
the start of the stream. The buffer is allocated
by the browser and is deleted after returning
from the function, so the plug-in should
make a copy of the data it needs to keep.
116 Gecko Plug-in API Reference

Returns

If successful, the function returns the number of bytes consumed by the instance.

If unsuccessful, the function destroys the stream by returning a negative value.

Description

The browser calls the NPP_Write function to deliver the data specified in a previous
NPP_WriteReady call to the plug-in. A plug-in must consume at least as many bytes
as indicated in the NPP_WriteReady call.

After a stream is created by a call to NPP_NewStream, the browser calls NPP_Write
either:
• If the plug-in requested a normal-mode stream, the data in the stream is delivered

to the plug-in instance in a series of calls to NPP_WriteReady and NPP_Write.
• If the plug-in requested a seekable stream, the NPN_RequestRead function

requests reads of a specified byte range that results in a series of calls to
NPP_WriteReady and NPP_Write.

The plug-in can use the offset parameter to track the bytes that are written. This gives
you different information depending in the type of stream. In a normal-mode stream.,
the parameter value increases as the each buffer is written. The buf parameter is not
persistent, so the plug-in must process data immediately or allocate memory and save
a copy of it. In a seekable stream with byte range requests, you can use this parameter
to track NPN_RequestRead requests.

The plug-in should return the number of bytes written (consumed by the instance). If
the return value is smaller than the size of the buffer, the browser sends the remaining
data to the plug-in through subsequent calls to NPP_WriteReady and NPP_Write. A
negative return value causes an error on the stream, which causes the browser to
destroy the stream with NPP_DestroyStream.

See Also
NPP_DestroyStream, NPP_NewStream, NPP_WriteReady, NPStream, NPP

Determines maximum number of bytes that the plug-in can consume.

NPP_WriteReady
NPP_WriteReady 117

NPP_WriteReady
Syntax

Parameters

The function has the following parameters:

Returns

Returns the maximum number of bytes that an instance is prepared to accept from the
stream.

Description

The browser calls NPP_WriteReady before each call to NPP_Write to determine
whether a plug-in can receive data and how many bytes it can receive. This function
allows the browser to send only as much data to the instance as it can handle at one
time, making resource use more efficient for both the browser and plug-in.

The NPP_Write function may pass a larger buffer, but the plug-in is required to
consume only the amount of data returned by NPP_WriteReady.

The browser can write a smaller amount of data if desired or necessary; for example,
if only 8K of data is available in a network buffer. If the plug-in is allocating memory
for the entire stream at once (an AS_FILE stream), it can return a very large number.
Because it is not processing streaming data, the browser can pass as much data to the
instance as necessary in a single NPP_Write.

If the plug-in receives a value of zero, the data flow temporarily stops. The browser
checks to see if the plug-in can receive data again by resending the data at regular
intervals.

See Also
NPP_Write, NPStream, NPP

#include <npapi.h>

int32 NPP_WriteReady(NPP instance, NPStream* stream);

instance Pointer to the current plug-in instance.

stream Pointer to the current stream.
118 Gecko Plug-in API Reference

Browser Side Plug-in API

This chapter describes methods in the plug-in API that are available for the browser.
The names of all of these methods begin with NPN_ to indicate that they are
implemented by the browser and called by the plug-in. For an overview of how these
two sides of the plug-in API interact, see the How Plug-ins Work and Overview of
Plug-in Structure sections in the introduction.
Netscape Plug-in Method Summary

NPN_DestroyStream Closes and deletes a stream.

NPN_ForceRedraw Forces a paint message for a windowless
plug-in.

NPN_GetURL Asks the browser to create a stream for the
specified URL.

NPN_GetURLNotify Requests creation of a new stream with the
contents of the specified URL; gets
notification of the result.

NPN_GetValue Allows the plug-in to query the browser for
information.

NPN_InvalidateRect Invalidates specified drawing area prior to
repainting or refreshing a windowless plug-
in.

NPN_InvalidateRegion Invalidates specified drawing region prior to
repainting or refreshing a windowless plug-
in.

NPN_MemAlloc Allocates memory from the browser’s
memory space.

NPN_MemFlush Requests that the browser free a specified
amount of memory.

NPN_MemFree Deallocates a block of allocated memory.
119

NPN_DestroyStream
Closes and deletes a stream.

Syntax

NPN_NewStream Requests the creation of a new data stream
produced by the plug-in and consumed by
the browser.

NPN_PostURL Posts data to a URL.

NPN_PostURLNotify Posts data to a URL, and receives
notification of the result.

NPN_ReloadPlugins Reloads all plug-ins in the Plugins directory.

NPN_RequestRead Requests a range of bytes for a seekable
stream.

NPN_SetValue Sets windowless plug-in as transparent or
opaque.

NPN_Status Displays a message on the status line of the
browser window.

NPN_UserAgent Returns the browser’s user agent field.

NPN_Version Returns version information for the Plug-in
API.

NPN_Write Pushes data into a stream produced by the
plug-in and consumed by the browser.

NPN_DestroyStream

#include <npapi.h>

NPError NPN_DestroyStream(NPP instance,

NPStream* stream,

NPError reason);
120 Gecko Plug-in API Reference

Parameters

The function has the following parameters:

Returns

If successful, the function returns NPERR_NO_ERROR.

If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.

Description

The plug-in calls the NPN_DestroyStream function to close and delete a stream.
This stream can be either a stream that the browser created and passed to the plug-in
in NPP_NewStream, or a stream created by the plug-in through a call to
NPN_NewStream.

See Also
NPP_DestroyStream, NPN_NewStream, NPStream, NPP

instance Pointer to current plug-in instance.

stream Pointer to current stream, initiated by either
the browser or the plug-in.

reason Reason the stream was stopped so the
application can give the user appropriate
feedback. Values:
• NPRES_DONE (most common): Stream

completed normally; all data was sent
by the plug-in to the browser.

• NPRES_USER_BREAK: Plug-in is termi-
nating the stream due to a user request.

• NPRES_NETWORK_ERR: Stream failed
due to network problems.

NPN_ForceRedraw
NPN_ForceRedraw 121

NPN_ForceRedraw
Forces a paint message for a windowless plug-in.

Syntax

Parameters

The function has the following parameters:

Description

A windowed plug-in determines when it draws, while a windowless plug-in draws
only in response to a paint message from the browser. NPN_ForceRedraw forces a
paint message for a windowless plug-in.

Once a value has been invalidated with NPN_InvalidateRect or
NPN_InvalidateRegion, a plug-in can call NPN_ForceRedraw to force a paint
message. This causes a synchronous update event or paint message for the plug-in.

MS Windows

The plug-in receives a WM_PAINT message. The lParam of the WM_PAINT message
holds a pointer to an NPRect that is the bounding box of the update area. Since the
plug-in and the browser share the same HDC, before drawing, the plug-in is
responsible for saving the current HDC settings, setting up its own environment,
drawing, and restoring the HDC to the previous settings. The HDC settings must be
restored whenever control returns back to the browser, either before returning from
NPP_HandleEvent or before calling a drawing-related Netscape method. §

Mac OS

The plug-in receives an updateEvent. The clipRegion of the drawable's CGrafPtr is set
to the update region. As is the case for windowed plug-ins on Mac OS, the plug-in
must first save the current settings of the port, setting up the drawing environment as
appropriate, drawing, and restoring the port to the previous setting. This should
happen before the plug-in returns from NP_HandleEvent or before the plug-in calls a
drawing-related Navigator method. §

#include <npapi.h>

void NPN_ForceRedraw(NPP instance);

instance Plug-in instance for which the function
forces redrawing.
122 Gecko Plug-in API Reference

See Also
NPN_InvalidateRect, NPN_InvalidateRegion, NPP

Asks the browser to create a stream for the specified URL.

Syntax

NPN_GetURL

#include <npapi.h>

NPError NPN_GetURL(NPP instance,

const char* url,

const char* target);
NPN_GetURL 123

NPN_GetURL
Parameters

The function has the following parameters:

Returns
• If successful, the function returns NPERR_NO_ERROR.

instance Pointer to the current plug-in instance.

url Pointer to the URL of the request. Can be of any
type, such as HTTP, FTP, news, mailto, gopher.

target Name of the target window or frame, or one of the
following special target names. Values:
• _blank or _new: Load the link in a new

blank unnamed window. Safest target, even
though, when used with a mailto or news
URL, this creates an extra blank the browser
instance.

• _self or _current: Load the link into the
same window the plug-in instance occupies.
Not recommended; see Warning. If target
refers to the window or frame containing the
instance, the instance is destroyed and the
plug-in may be unloaded. Use with
NPN_GetURL only if you want to terminate
the plug-in.

• _parent: Load the link into the immediate
FRAMESET parent of the plug-in instance's
document. If the plug-in instance's document
has no parent, the default is _self.

• _top: Load the link into the plug-in instance
window. The default is _self, if the plug-in
instance's document is already at the top. Use
for breaking out of a deep frame nesting.

If null, the browser creates a new stream and
delivers the data to the current instance regardless
of the MIME type of the URL. In general, if a
URL works in the location box of the Navigator, it
works here, except for the _self target.
124 Gecko Plug-in API Reference

• If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.

Description

NPN_GetURL is used to load a URL into the current window or another target or
stream. Plug-ins can use this capability to provide hyperlinks to other documents or to
retrieve data from anywhere on the network. This is especially useful for enabling an
existing application to operate on the web.

For HTTP URLs, the browser resolves this method as the HTTP server method GET,
which requests URL objects.

Use NPN_PostURLNotify instead of NPN_PostURL in these cases:
• To request a stream and receive notification of the result.
• If the buffer contains header information (even a blank line).

Make sure that the target matches the URL type sent to it. For example, a null target
does not make sense for some URL types (such as mailto). The following
recommendations about target choice apply to other methods that handle URLs as
well.

If the target parameter refers to the window or frame containing the current plug-in
instance, the instance is destroyed and the plug-in may be unloaded. If target is null,
the application creates a new stream and delivers the data to the plug-in instance,
through calls to NPP_NewStream, NPP_WriteReady and NPP_Write, and
NPP_DestroyStream. This means that if you want the plug-in to handle a new
stream, no matter what the MIME type is, use null. If the application cannot locate the
URL and retrieve the data, it does not create a stream for the instance.

When the plug-in instance is part of a regular Navigator window, and it uses a
_blank target with a mailto or news URL, another blank navigator window is opened
along with the mail or news window.

When the plug-in uses a _self target, no other instance is created; the plug-in usually
continues to operate successfully in its own window. The safest target is _blank,
even though this creates an extra blank the browser instance.

For complete information on named targets for this function (as well as for normal
HTML links), see the Netscape document, "Targeting Windows."
NPN_GetURL 125

NPN_GetURLNotify
The plug-in developer cannot influence the way that the browser handles
NPN_GetURL. It is typically asynchronous but this is not guaranteed. The plug-in
could call NPN_GetURL and receive data from the URL right away, but more often the
data arrives later. The rest of the the browser interface keeps running until the data is
available. §

See Also
NPN_GetURLNotify, NPN_PostURL, NPN_PostURLNotify, NPP_URLNotify

Requests creation of a new stream with the contents of the specified URL; gets
notification of the result.

Syntax

Parameters

The function has the following parameters:

NPN_GetURLNotify

#include <npapi.h>

NPError NPN_GetURLNotify(NPP instance,

const char* url,

const char* target,

void* notifyData);

instance Pointer to the current plug-in instance.

url Pointer to the URL of the request.

target Name of the target window or frame, or one
of several special target names. For values,
see NPN_GetURL.

notifyData Plug-in-private value for associating the
request with the subsequent
NPP_URLNotify call, which passes this
value (see Description below).
126 Gecko Plug-in API Reference

Returns
• If successful, the function returns NPERR_NO_ERROR.
• If unsuccessful, the plug-in is not loaded and the function returns an error code.

For possible values, see Error Codes.

Description

NPN_GetURLNotify works just like NPN_GetURL, with one exception.
NPN_GetURLNotify notifies the plug-in instance upon successful or unsuccessful
completion of the request by calling the plug-in's NPP_URLNotify function and
passing it the notifyData value.

NPN_GetURLNotify typically handles the URL request asynchronously. It returns
immediately and only later handles the request and calls NPP_URLNotify. This
notification is the only way the plug-in can tell whether a request with a null target
failed, or that a request with a non-null target completed.

For requests that complete unsuccessfully, the browser calls NPP_URLNotify as soon
as possible. For requests that complete successfully:
• If the target is non-null, the browser calls NPP_URLNotify after it has finished

loading the URL.
• If the target is null, the browser calls NPP_URLNotify after closing the stream by

calling NPN_DestroyStream.

If this function is called with a target parameter value of _self or a parent to _self,
this function should return an INVALID_PARAM NPError. This is the only way to
notify the plug-in once it is deleted.

See Also
NPN_GetURL, NPN_PostURL, NPN_PostURLNotify, NPP_URLNotify, NPP

Allows the plug-in to query the browser for information.

NPN_GetValue
NPN_GetValue 127

NPN_GetValue
Syntax

Parameters

This function has the following parameters:

Returns
• If successful, the function returns NPERR_NO_ERROR.
• If unsuccessful, the plug-in is not loaded and the function returns an error code.

For possible values, see Error Codes.

#include <npapi.h>

NPError NPN_GetValue(NPP instance,

NPNVariable variable,

void *value);

instance Pointer to the current plug-in instance.

variable Information the call gets. Values for
NPNVariable:
• NPNVxDisplay =1: Unix only: Returns the

current Display
• NPNVxtAppContext: Unix only: Returns

the application's XtAppContext
• NPNVnetscapeWindow: MS Windows only:

Gets the native window on which plug-in
drawing occurs; returns HWND

• NPNVjavascriptEnabledBool: Tells
whether JavaScript is enabled; true=JavaS-
cript enabled, false=not enabled

• NPNVasdEnabledBool: Tells whether
SmartUpdate (former name: ASD) is
enabled; true=SmartUpdate enabled,
false=not enabled

• NPNVOfflineBool: Tells whether offline
mode is enabled; true=offline mode enabled,
false=not enabled

value Function returns the name of the plug-in in the
value parameter.
128 Gecko Plug-in API Reference

Description

NPN_GetValue returns the browser information set with NPN_SetValue. The
queried information is returned in the value parameter.

The method returns a value of type HWND. In many cases, a plug-in may still have to
create its own window (a transparent child window of the browser window) to act as
the owner window for popup menus and modal dialogs. This transparent child
window can have its own WindowProc within which the plug-in can deal with
WM_COMMAND messages sent to it a result of tracking the popup menu or modal dialog.

Unix

The values for this parameter are the NPNVxDisplay (the current Display) and the
NPNVxtAppContext (the browser's XtAppContext). §

MS Windows

You can use this method to help create a menu or dialog box for a windowless plug-
in. In order to bring up popup menus and modal dialogs, a plug-in needs a parent
window. A windowless plug-in does not receive its own native window. Instead, it
draws directly into the drawable given to it. Use the NPNVnetscapeWindow value to
get the native window on which plug-in drawing occurs. §

See Also
NPN_SetValue, NPP_GetValue, NPN_SetValue

Invalidates specified drawing area prior to repainting or refreshing a windowless
plug-in.

Syntax

NPN_InvalidateRect

#include <npapi.h>

void NPN_InvalidateRect(NPP instance,

NP_Rect *invalidRect);
NPN_InvalidateRect 129

NPN_InvalidateRegion
Parameters

The function has the following parameters:

Description

Before a windowless plug-in can repaint or refresh part of its drawing area, the plug-
in must first invalidate the area with either NPN_InvalidateRect or
NPN_InvalidateRegion.

NPN_InvalidateRect causes the NPP_HandleEvent method to pass an update
event or a paint message to the plug-in. After calling this method, the plug-in receives
a paint message asynchronously.

The browser redraws invalid areas of the document and any windowless plug-ins at
regularly timed intervals. To force a paint message, the plug-in can call
NPN_ForceRedraw after calling this method.

See Also
NPN_ForceRedraw, NPN_InvalidateRegion, NP_Rect, NPP

Invalidates specified drawing region prior to repainting or refreshing a windowless
plug-in.

Syntax

instance Pointer to the current plug-in instance.

invalidRect The area to invalidate, specified in a
coordinate system that originates at the top
left of the plug-in.

NPN_InvalidateRegion

#include <npapi.h>

void NPN_InvalidateRegion(NPP instance,

NP_Region invalidRegion);
130 Gecko Plug-in API Reference

Parameters

The function has the following parameters:

Description

Before a windowless plug-in can repaint or refresh part of its drawing area, the plug-
in must first invalidate the area with either NPN_InvalidateRect or
NPN_InvalidateRegion.

NPN_InvalidateRegion causes the NPP_HandleEvent method to pass an update
event or a paint message to the plug-in. If a plug-in calls this method, it receives a
paint message later. The browser redraws invalid areas of the document and
windowless plug-ins at regularly timed intervals. To force a paint message, the plug-
in can call NPN_ForceRedraw after calling this method.

See Also
NPN_ForceRedraw, NPN_InvalidateRect, NP_Region, NPP

Allocates memory from the browser’s memory space.

Syntax

instance Pointer to the current plug-in instance.

invalidRegion The area to invalidate, specified in a
coordinate system that originates at the top
left of the plug-in.

NPN_MemAlloc

#include <npapi.h>

void *NPN_MemAlloc (uint32 size);
NPN_MemAlloc 131

NPN_MemAlloc
Parameters

The function has the following parameters:

Returns
• If successful, the function returns a pointer to the allocated memory, in bytes.
• If insufficient memory is available, the plug-in returns null.

Description

The plug-in calls NPN_MemAlloc to allocate a specified amount of memory in the
browser's memory space. If you allocate saved instance data with NPP_Destroy, be
sure to use NPN_MemAlloc to allocate memory. This ensures that the browser can free
the saved data at a later time with the equivalent of NPN_MemFree.

Since the browser and plug-ins share the same memory space, NPN_MemAlloc allows
plug-ins to take advantage of any customized memory allocation scheme the
application may have, and allows the application to manage its memory more flexibly
and efficiently.

Mac OS

NPN_MemAlloc is particularly important on Mac OS, since the Mac OS version of the
browser frequently fills its memory partition with cached data that is only purged as
necessary. Since NPN_MemAlloc automatically frees cached information if necessary
to fulfill the request, calls to NPN_MemAlloc may succeed where direct calls to
NewPtr fail. §

Mac OS

Existing calls to NPN_MemFlush have no effect. You only need to use
NPN_MemFlush in situations where you cannot use NPN_MemAlloc, for example,
when calling system methods that allocate memory indirectly. §

See Also
NPN_MemFlush, NPN_MemFree

size Size of memory, in bytes, to allocate in the
browser's memory space.
132 Gecko Plug-in API Reference

Requests that the browser free a specified amount of memory.

Implemented only on Mac OS.

Syntax

Parameters

The function has the following parameters:

Returns
• If successful, the function returns the amount of freed memory, in bytes.
• If no memory can be freed, the plug-in returns 0.

Description

The plug-in calls NPN_MemFlush when it is not possible to call NPN_MemAlloc, for
example, when calling system APIs that indirectly allocate memory. To request that
the browser free as much memory as possible, call NPN_MemFlush repeatedly until it
returns 0.

On Mac OS, you can use this method to free memory before calling memory-
intensive Mac Toolbox calls.

In general, plug-ins should use NPN_MemAlloc to allocate memory in the browser’s
memory space, since this function automatically frees cached data if necessary to
fulfill the request.

NPN_MemFlush

#include <npapi.h>

uint32 NPN_MemFlush(uint32 size);

size Size of memory, in bytes, to free in the
browser’s memory space.
NPN_MemFlush 133

NPN_MemFree
See Also
NPN_MemFlush, NPN_MemFree

Deallocates a block of allocated memory.

Syntax

Parameters

The function has the following parameters:

Description

NPN_MemFree deallocates a block of memory that was allocated using
NPN_MemAlloc only. NPN_MemFree does not free memory allocated by any other
means.

See Also
NPN_MemAlloc, NPN_MemFlush

NPN_MemFree

#include <npapi.h>

void NPN_MemFree (void* ptr);

ptr Block of memory previously allocated using
NPN_MemAlloc.

NPN_NewStream
134 Gecko Plug-in API Reference

Requests the creation of a new data stream produced by the plug-in and consumed by
the browser.

Syntax

Parameters

The function has the following parameters:

Returns
• If successful, the function returns NPERR_NO_ERROR.
• If unsuccessful, the plug-in is not loaded and the function returns an error code.

For possible values, see Error Codes.

Description

NPN_NewStream creates a new stream of data produced by the plug-in and consumed
by the browser.

The MIME parameter is the MIME type of the plug-in to create. A plug-in can create
another instance of itself by specifying its own MIME type and a new target name in a
call to NPN_NewStream.

The stream is returned in the stream parameter. The plug-in can use this object in
subsequent calls to NPN_Write to write data into the stream. When the plug-in has
written all of its data into the stream, NPN_DestroyStream terminates the stream and
deallocates the NPStream object.

#include <npapi.h>

NPError NPN_NewStream(NPP instance,

NPMIMEType type,

const char* target,

NPStream** stream);

instance Pointer to current plug-in instance.

type MIME type of the stream.

target Name of the target window or frame, or one
of several special target names. For values,
see NPN_GetURL.

stream Stream to be created by the browser.
NPN_NewStream 135

NPN_PostURL
The target parameter is the name of the target window or frame, or one of several
special target names. For parameter values and information about how to use them,
see NPN_GetURL. If the new stream has the target of _self, this function should
return an INVALID_PARAM NPError.

See Also
NPP_NewStream, NPP_Write, NPP_DestroyStream, NPStream, NPP

Posts data to a URL.

Syntax

Parameters

The function has the following parameters:

NPN_PostURL

#include <npapi.h>

NPError NPN_PostURL(NPP instance, const char *url,

const char *target, uint32 len,

const char *buf, NPBool file);

instance Pointer to the current plug-in instance.

url URL of the request, specified by the plug-in.
136 Gecko Plug-in API Reference

Returns
• If successful, the function returns NPERR_NO_ERROR.
• If unsuccessful, the plug-in is not loaded and the function returns an error code.

For possible values, see Error Codes.

Description

NPN_PostURL works similarly to NPN_GetURL, but in reverse.
• NPN_GetURL reads data from the URL and either displays it in the target window

or delivers it to the plug-in.
• NPN_PostURL writes data from a file or buffer to the URL and either displays the

server's response in the target window or delivers it to the plug-in. If the target
parameter is null, the new stream is passed to the plug-in regardless of MIME
type.

When you use NPN_PostURL to send data to the server, you can handle the response
in several different ways by specifying different target parameters.
• If target is null, the server response is sent back to the plug-in. You can get the

data and save it in a file or use it in a program.
• If you specify _current, _self, or _top, the response data is written to the

same plug-in window and the plug-in is unloaded.
• If you specify _new or _blank, the response data is written to a new browser

window. You can also write the response data to a frame by specifying the frame
name as the target parameter.

target Display target, specified by the plug-in. If
null, pass the new stream back to the current
plug-in instance regardless of MIME type.
For values, see NPN_GetURL.

len Length of the buffer buf.

buf Path to local temporary file or data buffer
that contains the data to post. Temporary file
is deleted after use. Data in buffer cannot be
posted for a protocol that requires a header.

file A boolean value that specifies whether to
post a file. Values:
• true: Post the file whose the path is spec-

ified in buf, then delete the file.
• false: Post the raw data in buf.
NPN_PostURL 137

NPN_PostURL
For HTTP URLs only, the browser resolves this method as the HTTP server method
POST, which transmits data to the server.

The data to post can be contained either in a local temporary file or a new memory
buffer.
• To post to a temporary file, set the flag file to true, the buffer buf to the path name

string for a file, and len to the length of the path string. The file-type URL prefix
"file://" is optional.

MS Windows and Mac OS

If a file is posted with any protocol other than FTP, the file must be text with Unix-
style line breaks ('\n' separators only). §
• To post data from a memory buffer, set the flag file to false, the buffer buf to the

data to post, and len to the length of buffer.

Possible URL types include HTTP (similar to an HTML form submission), mail
(sending mail), news (posting a news article), and FTP (upload a file). Plug-ins can
use this function to post form data to CGI scripts using HTTP or upload files to a
remote server using FTP.

You cannot use NPN_PostURL to specify headers (even a blank line) in a memory
buffer. To do this, use NPN_PostURLNotify.

For protocols in which the headers must be distinguished from the body, such as
HTTP, the buffer or file should contain the headers, followed by a blank line, then the
body. If no custom headers are required, simply add a blank line ('\n') to the beginning
of the file or buffer.

NPN_PostURL is typically asynchronous: it returns immediately and only later
handles the request. For this reason, you may find it useful to call
NPN_PostURLNotify instead; this function notifies your plug-in upon successful or
unsuccessful completion of the request.

See Also
NPN_GetURL, NPN_GetURLNotify, NPN_PostURL, NPN_PostURLNotify,
NPP
138 Gecko Plug-in API Reference

Posts data to a URL, and receives notification of the result.

Syntax

Parameters

The function has the following parameters:

NPN_PostURLNotify

#include <npapi.h>

NPError NPN_PostURLNotify(NPP instance,

const char* url,

const char* target,

uint32 len,

const char* buf,

NPBool file,

void* notifyData);

instance Current plug-in instance, specified by the
plug-in.

url URL of the POST request, specified by the
plug-in.

target Target window, specified by the plug-in. For
values, see NPN_GetURL.

len Length of the buffer buf.

buf Path to local temporary file or data buffer
that contains the data to post.

file Whether to post a file. Values:
• true: Post the local file whose path is

specified in buf, then delete the file.
• false: Post the raw data in buf.

notifydata Plug-in-private value for associating the
request with the subsequent
NPP_URLNotify call, which returns this
value (see Description below).
NPN_PostURLNotify 139

NPN_ReloadPlugins
Returns
• If successful, the function returns NPERR_NO_ERROR.
• If unsuccessful, the plug-in is not loaded and the function returns an error code.

For possible values, see Error Codes.

Description

NPN_PostURLNotify functions identically to NPN_PostURL, with these
exceptions:
• NPN_PostURLNotify supports specifying headers when posting a memory

buffer.
• NPN_PostURLNotify calls NPP_URLNotify upon successful or unsuccessful

completion of the request. For more information, see NPN_PostURL.

NPN_PostURLNotify is typically asynchronous: it returns immediately and only
later handles the request and calls NPP_URLNotify.

If this function is called with a target parameter value of _self or a parent to _self,
this function should return an INVALID_PARAM NPError. This is the only way to
notify the plug-in once it is deleted. See NPN_GetURL for information about this
parameter.

See Also
NPN_GetURL, NPP_URLNotify, NPN_PostURL

Reloads all plug-ins in the Plugins directory.

Syntax

NPN_ReloadPlugins

#include <npapi.h>

void NPN_ReloadPlugins(NPBool reloadPages);code
140 Gecko Plug-in API Reference

Parameters

The function has the following parameter:

Description

NPN_ReloadPlugins reads the Plugins directory for the current platform and
reinstalls all of the plug-ins it finds there.

Netscape Gecko knows about all installed plug-ins at start-up. If you add or remove
any plug-ins, the browser does not see them until you restart it. NPN_ReloadPlugins
allows you to install a new plug-in and load it, or to remove a plug-in, without having
to restart the browser. You could use this function as part of the plug-in's installation
process.

See Also
NPN_Version

Requests a range of bytes for a seekable stream.

Syntax

reloadPages Whether to reload pages. Values:
• true: Reload pages.
• false: Do not reload pages.

NPN_RequestRead

#include <npapi.h>

NPError NPN_RequestRead(NPStream* stream,

NPByteRange* rangeList);
NPN_RequestRead 141

NPN_RequestRead
Parameters

The function has the following parameters:

Returns
• If successful, the function returns NPERR_NO_ERROR.
• If unsuccessful, the plug-in is not loaded and the function returns an error code.

For possible values, see Error Codes.

Description

For a seekable stream, the browser sends data only in response to requests by the
plug-in. The plug-in calls NPN_RequestRead to request data from a seekable stream.

The plug-in can use this function to make one or more requests for ranges of bytes.
These requests result in subsequent calls to NPP_WriteReady and NPP_Write. For
multiple requests, the function creates a linked list of NPByteRange structures, each
of which represents a separate request.

If the plug-in requests multiple ranges (either through a list of NPByteRange objects
in a single call to NPN_RequestRead, or multiple calls to NPN_RequestRead), the
browser can write individual ranges in any order, and with any number of
NPP_WriteReady and NPP_Write calls.

The plug-in must allocate NPByteRange objects, which the browser copies if
necessary. The plug-in can free these as soon as the call returns.

Seekable streams are created by calling NPP_NewStream with NP_SEEK as the stype
mode.
• The plug-in can call NPN_RequestRead on streams that were not initially in

NP_SEEK mode as long as the stream is inherently seekable; NPN_RequestRead
automatically changes the mode to NP_SEEK.

stream Stream of type NP_SEEK from which to read
bytes. Communicator writes the requested
bytes to the plug-in through subsequent calls
to NPP_WriteReady and NPP_Write.

rangeList Range of bytes in the form of a linked list of
NPByteRange objects, each of which
specifies a request for a range of bytes.
142 Gecko Plug-in API Reference

• If the stream is not inherently seekable, the stream must have been put in
NP_SEEK mode initially (since the browser must cache all the stream data on disk
in order to access it randomly).

• If NPN_RequestRead is called on a stream that is not inherently seekable and not
initially in mode NP_SEEK, it returns the error code
NPERR_STREAM_NOT_SEEKABLE.

Typically, the only streams that are inherently seekable are those from in-memory or
on-disk data, or from HTTP servers that support byte-range requests.

See Also
NPP_NewStream, NPStream

Sets various modes of plug-in operation.

Syntax

NPN_SetValue

#include <npapi.h>

NPError NPN_SetValue(NPP instance,

NPPVariable variable,

void *value);
NPN_SetValue 143

NPN_SetValue
Parameters

The function has the following parameters:

Returns
• If successful, the function returns NPERR_NO_ERROR.
• If unsuccessful, the plug-in is not loaded and the function returns an error code.

For possible values, see Error Codes.

Description

A good place to set plug-in operation mode such as windowless mode is NPP_New,
so the browser knows right away what mode the plug-in is designed to operate in.

NPPVpluginWindowBool (Windows and Unix) specifies that plug-in operates in
windowless mode. In this mode no window messages are send to the plug-in as there
is no window associated with it, all the browser to plug-in commucations related to
drawing and mouse and keyboard input are event based and accomplished via
NPP_HandleEvent. To set windowless operation plugin calls NPN_SetValue with
NPPVpluginWindowBool as its variable parameter and TRUE as its value parameter.
As a default, plug-ins are windowd, so if NPP_New does not contain this call the
plug-in is considered to be windowed.

instance Pointer to the current plug-in instance.

variable Values the function can set:
• NPPVpluginWindowBool: Sets windowless

mode for display of a plug-in; true=windowless,
false=not windowless

• NPPVpluginTransparentBool: Sets transpar-
ent mode for display of a plug-in; true=transpar-
ent, false=opaque

• NPPVjavascriptPushCallerBool - Speci-
fies whether you are pushing or popping the
JSContext off the stack

• NPPVpluginKeepLibraryInMemory - Tells
browser that plugin dll should live longer than
usual

value The value of the specified variable to be set, TRUE or
FALSE.
144 Gecko Plug-in API Reference

NPPVpluginTransparentBool (Windows and Unix) specifies that a plug-in is
either opaque or transparent. To specify an opaque mode, the plugin calls
NPN_SetValue with NPPVpluginTransparentBool for its variable parameter and
FALSE for its value parameter. To specify a transparent mode, the value parameter
should be set to TRUE.

NPPVjavascriptPushCallerBool sets whether you are pushing or popping the
appropriate JSContext off of the stack (See the two-way scriptability article on the
Mozilla Plug-ins project page for more details).

NPPVpluginKeepLibraryInMemory specifies that the plug-in does not want to be
unloaded from memory after the page which initiated it has gone. Normally, when the
browser navigates away from the page containing the plug-in all plug-in instances get
NPP_Destroy call, and if there is no more instances of the plug-in active the plug-in
is called its NP_Shutdown method and the plug-in dll gets unloaded from memory. If
this is not desired the plug-in can instruct the browser not to unload the dll and not to
call NP_Shutdown when the page is left. In such a case all this will be done on the
browser shutdown. Plug-in calls NPN_SetValue any time with
NPPVpluginKeepLibraryInMemory as variable parameter and value set to TRUE.
By default, the dll will be unloaded from memory preceded by NP_Shutdown call.

Remarks

All four variable values are boolean. Although the function prototype has type of
value void *, the actual boolean should be placed there, not a pointer to a boolean. The
browser code reads this parameter as follows (NPPVpluginWindowBool as an
example):

So the proper way to call this function from a plug-in would be:

NPError NP_EXPORT _setvalue(NPP npp, NPPVariable
variable, void *value)

{

...

BOOL bWindowless = (value == NULL);

...

}

BOOL bWindowed = FALSE;

NPN_SetValue(npp, NPPVpluginWindowBool, (
void *)bWindowed);
NPN_SetValue 145

NPN_Status
See Also
NPP_New, NPN_GetValue, NPP_SetValue

Displays a message on the status line of the browser window.

Syntax

Parameters

The function has the following parameters:

Description

You can use this function to make your plug-in user interface simulate the browser ‘s
behavior. When the user moves the cursor over a link in a browser window,
Communicator displays information about it in the status message area (on the lower
edge of the browser window). If your plug-in has a button or other object that acts as a
link when clicked, you can call NPN_Status to display a description or URL when the
user moves the cursor over it.

The browser always displays the last status line message it receives, regardless of the
message source. Your message is always displayed, but you have no control over how
long it stays in the status line before another message replaces it.

See Also
NPN_UserAgent, NPP

NPN_Status

#include <npapi.h>

void NPN_Status(NPP instance, const char* message);

instance Pointer to the current plug-in instance.

message Pointer the buffer that contains the status
message string to display.
146 Gecko Plug-in API Reference

Returns the browser’s user agent field.

Syntax

Parameters

The function has the following parameter:

Returns

A pointer to a buffer that contains the user agent field of the browser.

Description

The user agent is the part of the HTTP header that identifies the browser during
transfers. You can use this information to verify that the expected browser is in use, or
you can use it in combination with NPN_Version to supply different code for different
versions of Netscape browsers.

See Also
NPN_Status, NPN_Version

NPN_UserAgent

#include <npapi.h>

const char* NPN_UserAgent(NPP instance);

instance Pointer to the current plug-in instance.

NPN_Version
NPN_UserAgent 147

NPN_Version
Returns version information for the Plug-in API.

Syntax

Parameters

The function has the following parameters:

Description

The values of the major and minor version numbers of the Plug-in API are determined
when the plug-in and the browser are compiled. For example, Plug-in API version
4.03 has a major version number of 4 and a point release number of 3. This function
gets the values from the plug-in rather than from the browser.

A plug-in can use this function to check that the version of the Plug-in API it is using
is compatible with the version in use by the browser. This could be part of the
initialization process. For more information and an example, see "Getting the Current
Version."

You can use NPN_Version to inquire on version constants (NPVERS constants),
which represent particular Communicator features. Once the plug-in obtains a version
number, it can inquire on a version constant to find out if the feature it represents
exists in this version. For example, the plug-in could inquire on the constant
NPVERS_HAS_WINDOWLESS to see if it is running in a version of Communicator that

#include <npapi.h>

void NPN_Version(int* plugin_major,

int* plugin_minor,

int* netscape_major,

int* netscape_minor);

plugin_major Pointer to a plug-in's major version number;
changes with major code release number.

plugin_minor Pointer to a plug-in's minor version number;
changes with point release number.

netscape_major Pointer to the browser’s major version;
changes with major code release number.

netscape_minor Pointer to the browser’s version; changes
with point release number.
148 Gecko Plug-in API Reference

supports windowless functionality. For more information and an example, see
"Finding Out if a Feature Exists." For a listing of version constants defined in the
Plug-in API, see "Version Feature Constants."

NOTE: Platform-specific code in the Plug-in API files npwin.cpp, npmac.cpp, or
npunix.c checks version numbers automatically. A plug-in whose major version is
less than the major version of the browser is not loaded. §

See Also
NPN_UserAgent, NP_Initialize

Pushes data into a stream produced by the plug-in and consumed by the browser.

Syntax

Parameters

The function has the following parameters:

NPN_Write

#include <npapi.h>

NPN_Write(NPP instance,

NPStream* stream,

int32 len,

void* buf);

instance Pointer to the current plug-in instance.

stream Pointer to the current stream.

len Length in bytes of buf.

buf Buffer of data delivered for the stream.
NPN_Write 149

NPN_Write
Returns
• If successful, the function returns a positive integer representing the number of

bytes written (consumed by the browser). This number depends on the size of the
browser’s memory buffers, the number of active streams, and other factors.

• If unsuccessful, the plug-in returns a negative integer. This indicates that the
browser encountered an error while processing the data, so the plug-in should ter-
minate the stream by calling NPN_DestroyStream.

Description

NPN_Write delivers a buffer from the stream to the instance. A plug-in can call this
function multiple times after creating a stream with NPN_NewStream. The browser
makes a copy of the buffer if necessary, so the plug-in can free the buffer as the
method returns, if desired. See "Example of Sending a Stream" for an example that
includes NPN_Write.

See Also
NPP_NewStream, NPP_DestroyStream, NPP_Write, NPStream, NPP
150 Gecko Plug-in API Reference

Structures

This chapter describes the data structures that are used to represent the various objects
in the plug-in API.
Structure Summary

NPAnyCallbackStruct Contains information required during
embedded mode printing.

NPByteRange Represents a particular range of bytes from a
stream.

NPEmbedPrint Substructure of NPPrint that contains
platform-specific information used during
embedded mode printing.

NPEvent Represents an event passed by
NPP_HandleEvent to a windowless plug-
in.

NPFullPrint Substructure of NPPrint that contains
platform-specific information used during
full-page mode printing.

NPP Represents a single instance of a plug-in.

NP_Port Contains information required by the
window field of an NPWindow structure.

NPPrint Contains information the plug-in needs to
print itself in full-page or embedded mode.

NPPrintCallbackStruct Contains information required by the
platformPrint field of the NPEmbedPrint
during embedded mode printing.
151

NPAnyCallbackStruct
Used on Unix only.

Contains information required during embedded mode printing.

Syntax

Fields

The data structure has the following field:

NP_Rect Represents a rectangular area of a page.

NP_Region Represents a platform-defined region of a
page.

NPSavedData Block of instance information saved after the
plug-in is deleted; can be returned to the
plug-in.

NPSetWindowCallbackStruct Contains information about the plug-in's
Unix window environment.

NPStream Represents a stream of data either produced
by the browser and consumed by the plug-in,
or produced by the plug-in and consumed by
the browser.

NPWindow Contains information about the target into
which the plug-in instance can draw.

NPAnyCallbackStruct

typedef struct

{

int32 type;

} NPAnyCallbackStruct;

type Always contains NP_PRINT.
152 Gecko Plug-in API Reference

Description

Callback structures are used to pass platform-specific information. The
NPAnyCallbackStruct structure contains information required by the
platformPrint field of the NPEmbedPrint structure during embedded mode
printing.

During printing in embedded mode, the platformPrint field of the
NPEmbedPrint structure points to an NPAnyCallbackStruct. This structure
contains the file pointer to which the plug-in should write its Postscript data. At the
time the plug-in is called, the browser has already opened the file and written
Postscript for other parts of the page. When the plug-in is done, it should leave the file
open, as the browser can continue to write additional Postscript data to the file.

See Also
NPP_Print, NPEmbedPrint, NPSetWindowCallbackStruct,
NPPrintCallbackStruct

Represents a particular range of bytes from a stream.

Syntax

NPByteRange

typedef struct _NPByteRange

{

int32 offset; /* negative offset = from the end */

uint32 length;

struct _NPByteRange* next;

} NPByteRange;
NPByteRange 153

NPEmbedPrint
Fields

The data structure has the following fields:

Description

The plug-in seeks within a stream by building a linked list of one or more
NPByteRange objects, which represents a set of discontiguous byte ranges. The only
Plug-in API call that uses the NPByteRange type is NPN_RequestRead, which
allows the plug-in to read specified parts of a file without downloading it.

The plug-in is responsible for deleting NPByteRange objects when finished with
them. The browser makes a copy if it needs to keep the objects beyond the call to
NPN_RequestRead.

See Also

NPN_RequestRead

Substructure of NPPrint that contains platform-specific information used during
embedded mode printing.

offset Offset in bytes of the requested range, either
positive or negative:
• Positive value: Offset from the begin-

ning of the stream.
• Negative value: Offset from the end of

the stream.

length Number of bytes to fetch from the specified
offset.

next Points to the next NPByteRange request in
the list of requests, or null if this is the last
request.

NPEmbedPrint
154 Gecko Plug-in API Reference

Syntax

Fields

The data structure has the following fields:

Description

The NPP_Print function passes a pointer to an NPPrint object (previously allocated
by the browser) to the plug-in. The NPEmbedPrint structure is used when the mode
field of NPPrint is set to NP_EMBED.

Unix

The plug-in location and size in the NPWindow are in page coordinates (720/ inch),
but the printer requires point coordinates (72/inch).

See Also
NPFullPrint, NP_Port, NPP_Print, NPPrint, NPPrintCallbackStruct

typedef struct _NPEmbedPrint

{

NPWindow window;

void* platformPrint; /* Platform-specific */

} NPEmbedPrint;

window The NPWindow the plug-in should use for
printing.

platformPrint Additional platform-specific printing
information.
• Mac OS: THPrint
• Unix: Pointer to a

NPPrintCallbackStruct.

NPEvent
NPEvent 155

NPEvent
Represents an event passed by NPP_HandleEvent to a windowless plug-in.

Syntax

MS Windows

Mac OS

XWindows

typedef struct _NPEvent

{

uint16 event;

uint32 wParam;

uint32 lParam;

} NPEvent;

typedef EventRecord NPEvent;

TYPE EventRecord =

RECORD {

what: Integer;

message: LongInt;

when: LongInt;

where: Point;

modifiers: Integer;

END;

typedef XEvent NPEvent;
156 Gecko Plug-in API Reference

Fields

NPEvent on MS Windows

The data structure has the following fields:

event One of the following event types:
• WM_PAINT

• WM_LBUTTONDOWN

• WM_LBUTTONUP
• WM_LBUTTONDBLCLK
• WM_RBUTTONDOWN
• WM_RBUTTONUP
• WM_RBUTTONDBLCLK
• WM_MBUTTONDOWN
• WM_MBUTTONUP
• WM_MBUTTONDBLCLK
• WM_MOUSEMOVE
• WM_KEYUP
• WM_KEYDOWN
• WM_SETCURSOR
• WM_SETFOCUS
• WM_KILLFOCUS

For information about these events, see your
MS Windows documentation.

wParam 32 bit field for Windows event parameter;
parameter value depends upon event type.

lParam 32 bit field for Windows event parameter;
parameter value depends upon event type.
NPEvent 157

NPEvent
EventRecord NPEvent on Mac OS

NPEvent is defined as an EventRecord data structure, which has the following fields:

what Integer representing an event type. Both
windowed and windowless plug-ins receive
the same events. Values:
0 nullEvent

1 mouseDown

2 mouseUp

3 keyDown

4 keyUp

5 autoKey

6 updateEvt

7 diskEvt

8 activateEvt

15 osEvt

23 kHighLevelEvent

getFocusEvent 0, 1 (true, false)

loseFocusEvent

adjustCursorEvent 0, 1 (true,
false)

For information about these events, see your
Mac OS documentation.

message LongInt. Additional information about the
event. Type of information depends on the
event type. Undefined for null, mouseUp,
and mouseDown events.

when LongInt. Ticks since start-up.

where Point. Cursor location.

modifiers Integer. Flags.
158 Gecko Plug-in API Reference

Description

MS Windows Description

The type NPEvent represents an event passed by NPP_HandleEvent to a
windowless plug-in. For information about these events, see your MS Windows
documentation.

Mac OS Description

The NPEvent object represents an event passed by NPP_HandleEvent to a
windowless plug-in. This structure is defined as EventRecord, the event type used by
Mac OS platform. On Mac OS, plug-ins receive the same events for both windowed
and windowless plug-ins, as follows.
• Mouse events: Sent if the mouse is within the bounds of the instance.
• Key events: Sent if the instance has text focus (see below).
• Update events: Sent if the update region intersects the instance's bounds.
• Activate events: Sent to all instances in the window being activate or deactivated.
• Suspend/Resume events: Sent to all instances in all windows.
• Null events: Sent to all instances in all windows.

In addition to these standard types, the browser provides three additional event types
that can be passed in the event->what field of the EventRecord:
• getFocusEvent: Sent when the instance could become the focus of subsequent

key events, when the user clicks the instance or presses the tab key to focus the
instance.

• If your instance accepts key events, return true, and key events will be sent to the
instance until it receives a loseFocusEvent.

• If your plug-in ignores key events, return false, and the key events will be pro-
cessed by Netscape itself.

• loseFocusEvent: Sent when the instance has lost the text focus, as a result of the
user clicking elsewhere on the page or pressing the Tab key to move the focus.
No key events are sent to the instance until the next getFocusEvent.

• adjustCursorEvent: Send when the mouse enters or leaves the bounds of the
instance.

• If your plug-in wants to set the cursor when the mouse is within the instance, set
the cursor and return true.

• If you don't want a special cursor, return false and the browser will use the stan-
dard arrow cursor.
NPEvent 159

NPFullPrint
XWindows Description

The NPEvent object represents an event passed by NPP_HandleEvent to a
windowless plug-in. The NPEvent structure is defined as XEvent, the definition of
the event type used by the XWindows platform. For information about the XEvent
structure and XWindows events, see your XWindows documentation.

See Also
NPP_HandleEvent

Substructure of NPPrint that contains platform-specific information used during full-
page mode printing.

Syntax

NPFullPrint

typedef struct _NPFullPrint

{

NPBool pluginPrinted; /* true: print fullscreen */

NPBool printOne; /* true: print one copy */

/* to default printer */

void* platformPrint; /* Platform-specific */

} NPFullPrint;
160 Gecko Plug-in API Reference

Fields

The data structure has the following fields:

Description

The NPP_Print function passes the plug-in a pointer to an NPPrint object
(previously allocated by the browser). The NPFullPrint structure is used when the
mode field of NPPrint is set to NP_Full.

The pluginPrinted field of this structure determines whether the plug-in prints in
full-page mode or not. If you want the plug-in to take complete control of the printing
process, it should print the full page and set the field pluginPrinted to true before
returning.

If you want an embedded plug-in to simply render its area of the page, set
pluginPrinted to false and return immediately; the browser calls NPP_Print again
with the NPEmbedPrint substructure of NPPrint.

See Also
NPP_Print, NPPrint, NPEmbedPrint

pluginPrinted Determines whether the plug-in prints in
full-page mode. Values:
• true: Plug-in takes complete control of

the printing process and prints full-page.
• false: (Default) Plug-in renders its area

of the page only (for embedded plug-in).

printOne Not currently in use. Should always be false.
• true: Print single copy of page to the

default printer.
• false: Display print dialogs so user can

choose printer, other options.

platformPrint Platform-specific printing information.
• Mac OS: THPrint
• MS Windows: Printer's device context
NPFullPrint 161

NPP
Represents a single instance of a plug-in.

Syntax

Fields

The data structure has the following fields:

Description

Netscape Gecko creates an NPP structure for each plug-in instance and passes a
pointer to it to NPP_New. This pointer identifies the instance on which API calls
should operate and represents the opaque instance handle of a plug-in. NPP contains
private instance data for both the plug-in and the browser.

The NPP_Destroy function informs the plug-in when the NPP instance is about to be
deleted; after this call returns, the NPP pointer is no longer valid.

See Also
NPP_New, NPP_Destroy

NPP

typedef struct _NPP

{

void* pdata; /* plug-in private data */

void* ndata; /* Netscape private data */

} NPP_t;

typedef NPP_t* NPP;

pdata Plug-in private value that a plug-in can use
to store a pointer to an internal data structure
associated with the instance; not modified by
the browser.

ndata Private browser value that can store data
associated with the instance; should not be
modified by the plug-in.
162 Gecko Plug-in API Reference

Used on Mac OS only.

Contains information required by the window field of an NPWindow structure.

Syntax

Fields

The data structure has the following fields:

Description

On Mac OS, the window field of an NPWindow structure points to an NP_Port

object, which is allocated by the browser. The NP_Port is valid for the lifetime of the
NPWindow, that is, until NPP_SetWindow is called again with a different value or
the instance is destroyed.

Since the port is shared between the plug-in and other plug-ins and the browser, the
plug-in should always do the following:
• Draw only within the area designated by the NPWindow.

NP_Port

typedef struct NP_Port

{

CGrafPtr port; /* Grafport */

int32 portx; /* position inside the topmost
window */

int32 porty;

} NP_Port;

port Standard Mac OS port into which the plug-in
should draw.

portx, porty Top-left corner of the plug-in rectangle in
port coordinates (taking the scroll position
into account).
NP_Port 163

NPPrint
• Save the current port settings before changing the port for drawing.
• Set the desired port settings before drawing.
• Restore the previous port settings after drawing.

See Also
NPP_SetWindow, NPWindow

Contains information the plug-in needs to print itself in full-page or embedded mode.

Syntax

NPPrint

typedef struct _NPPrint

{

uint16 mode; /* NP_FULL or NP_EMBED */

union

{

NPFullPrint fullPrint; /* if mode is NP_FULL */

NPEmbedPrint embedPrint; /* if mode is NP_EMBED
*/

} print;

} NPPrint;
164 Gecko Plug-in API Reference

Fields

The data structure has the following fields:

Description

The NPP_Print function passes a pointer to an NPPrint object (previously allocated
by the browser) to the plug-in. The pointer and fields within the NPPrint structure
are valid only for the duration of the NPP_Print call.

See Also
NPP_Print, NPFullPrint, NPEmbedPrint

Used on Unix only.

Contains information required by the platformPrint field of the NPEmbedPrint
during embedded mode printing.

mode Determines whether plug-in prints in full-
page or embedded mode. Values:
• NP_FULL: Pointer to NPFullPrint

structure. Plug-in can optionally print in
full-page mode. The fullPrint field of
the union is valid. See NPFullPrint
and NPP_Print.

• NP_EMBED: Pointer to NPEmbedPrint

structure. Plug-in should print in embed-
ded mode. The embedPrint field of the
union is valid. See NPEmbedPrint.

NPPrintCallbackStruct
NPPrintCallbackStruct 165

NP_Rect
Syntax

Fields

The data structure has the following fields:

Description

Callback structures are used to pass platform-specific information. The
NPPrintCallbackStruct structure contains the file pointer to which the plug-in
should write its Postscript data. This information is required by the platformPrint
field of the NPEmbedPrint structure during embedded mode printing.

At the time the plug-in is called, the browser has already opened the file and written
Postscript for other parts of the page. When the plug-in is done, it should leave the file
open, as the browser can continue to write additional Postscript data to the file.

See Also
NPP_Print, NPEmbedPrint, NPSetWindowCallbackStruct,
NPAnyCallbackStruct

Represents a rectangular area of a page.

typedef struct

{

int32 type;

FILE* fp;

} NPPrintCallbackStruct;

type Always contains NP_PRINT.

fp Pointer to file to which the plug-in should
write its Postscript data.

NP_Rect
166 Gecko Plug-in API Reference

Syntax

Fields

The data structure has the following fields:

Description

NPRect defines the bounding box of the area of the plug-in window to be updated,
painted, invalidated, or clipped to.

See Also
NPN_ForceRedraw, NPN_InvalidateRect, NPN_InvalidateRegion,
NP_Region, NPWindow

Represents a platform-defined region of a page.

Syntax

MS Windows:

typedef struct _NPRect

{

uint16 top;

uint16 left;

uint16 bottom;

uint16 right;

} NPRect;

top, left, bottom, right Top, left side, bottom, and right side
of the rectangle.

NP_Region

typedef HRGN NPRegion;
NP_Region 167

NPSavedData
Mac OS:

XWindows:

Description

NPRect defines the region of the plug-in window to be updated, painted, invalidated,
or clipped to. For information about the region type definition used by your platform,
see your platform documentation.

See Also
NPN_ForceRedraw, NPN_InvalidateRect, NPN_InvalidateRegion,
NP_Region, NPWindow

Block of instance information saved after the plug-in is deleted; can be returned to the
plug-in.

Syntax

typedef RgnHandle NPRegion;

typedef Region NPRegion;

NPSavedData

typedef struct _NPSavedData

{

int32 len;

void* buf;

} NPSavedData;
168 Gecko Plug-in API Reference

Fields

The data structure has the following fields:

Description

The NPSavedData object contains a block of per-instance information that
Communicator saves after the instance is deleted. This information can be returned to
another instance of the same plug-in if the user returns to the web page that contains
it.

You can use the plug-in's NPP_Destroy function to allocate an NPSavedData object
using the NPN_MemAlloc function, fill in the fields, and return it to the browser as
an output parameter. See "Instance Destruction" for a code example that shows how to
use NPSavedData.

If the user revisits a web page that contains a plug-in, the browser returns the
NPSavedData to the new instance of the plug-in in a call to NPP_New. After this, the
plug-in is responsible for keeping or deleting the objects as necessary.

See Also
NPP_New, NPP_Destroy

Used only on Unix.

Contains information about the plug-in's Unix window environment.

len Length in bytes of the buffer pointed to by
buf; set by the plug-in.

buf Pointer to a memory buffer allocated by the
plug-in with NPN_MemAlloc. Can be any
reasonable size; its contents are private to the
plug-in and are not modified by the browser.

NPSetWindowCallbackStruct
NPSetWindowCallbackStruct 169

NPSetWindowCallbackStruct
Syntax

Fields

The data structure has the following fields:

Description

Callback structures are used to pass platform-specific information. The
NPSetWindowCallbackStruct object, allocated by the browser, contains
information required for the ws_info field of an NPWindow.

The NPP_SetWindow function passes a pointer to this structure to the plug-in. The
structure is valid for the lifetime of the NPWindow, that is, until NPP_SetWindow is
called again or the instance is destroyed.

The type field of this structure always contains NP_SetWindow. The remaining fields
are Standard X Toolkit attributes of the top-level shell window in the browser window
hierarchy.

typedef struct

{

int32 type;

Display* display;

Visual* visual;

Colormap colormap;

unsigned int depth;

} NPSetWindowCallbackStruct;

type Always contains NP_SetWindow.

display Standard X Toolkit attribute. Pointer to the
Display structure that represents the
browser-server connection.

visual Standard X Toolkit attribute. X Visual used
by the top-level shell window in the
Netscape window hierarchy.

colormap Standard X Toolkit attribute. Colormap for
the plug-in window.

depth tandard X Toolkit attribute. Depth of the
plug-in window.
170 Gecko Plug-in API Reference

See Also
NPP_SetWindow, NPWindow, NPPrintCallbackStruct,
NPAnyCallbackStruct

Represents a stream of data either produced by the browser and consumed by the
plug-in, or produced by the plug-in and consumed by the browser.

Syntax

NPStream

typedef struct _NPStream

{

void* pdata; /* plug-in private data */

void* ndata; /* Netscape private data */

const char* url;

uint32 end;

uint32 lastmodified;

void* notifyData;

} NPStream;
NPStream 171

NPStream
Fields

The data structure has the following fields: Plug-in-private value that the plug-in can
use to store a pointer to private data associated with the instance; not modified by the
browser.

Description

The browser allocates and initializes the NPStream object and passes it to the plug-in
in as a parameter to NPP_NewStream or NPN_NewStream. The browser cannot
delete the object until after it calls NPP_DestroyStream or the plug-in calls
NPN_DestroyStream.

Streams produced by the browser: the browser creates the NPStream object and
passes it to the plug-in initially as a parameter to NPP_NewStream. All API calls that
operate on the stream (such as NPP_WriteReady and NPP_Write) use a pointer to
this stream. The browser informs the plug-in when the stream is about to be deleted
through NPP_DestroyStream, after which the NPStream object is no longer valid.

ndata Browser-private value that can store data
associated with the instance; should not be
modified by the plug-in.

url The URL that the data in the stream is read
from or written to.

end Offset in bytes of the end of the stream
(equivalent to the length of the stream in
bytes). Can be zero for streams of unknown
length, such as streams returned from older
FTP servers or generated "on the fly" by CGI
scripts.

lastmodified Time the data in the URL was last modified
(if applicable), measured in seconds since
12:00 midnight GMT, January 1, 1970.

notifyData Used only for streams generated in response
to a NPN_GetURLNotify or
NPN_PostURLNotify request.
• For these streams, notifyData is set to

the value of the notifyData parameter to
NPN_GetURLNotify or
NPN_PostURLNotify.

• For other streams, notifyData is null.
172 Gecko Plug-in API Reference

Streams produced by the plug-in: the browser creates the NPStream object and
returns it as an output parameter when the plug-in calls NPP_NewStream. The plug-in
must pass a pointer to the NPStream to all API calls that operate on the stream, such
as NPN_Write and NPN_DestroyStream.

See Also
NPP_NewStream, NPP_DestroyStream, NPP_DestroyStream

Contains information about the target into which the plug-in instance can draw.

Syntax

NPWindow

typedef struct _NPWindow

{

void* window; /* Platform specific handle */

uint32 x; /* Coordinates of top left corner */

uint32 y; /* relative to a Netscape page */

uint32 width; /* Maximum window size */

uint32 height;

NPRect clipRect; /* Clipping rectangle coordinates */

/* in port - Used by Mac only */

#ifdef XP_UNIX

void * ws_info; /* Platform-dependent additional data */

#endif /* XP_UNIX */

NPWindowType type; /* Window or drawable target */

} NPWindow;
NPWindow 173

NPWindow
Fields

The data structure has the following fields:

window Platform-specific handle to a native window
element in the Netscape window hierarchy
on Windows (HWND) and Unix (X Window
ID). Mac OS: window is a pointer to an
NP_Port.

x, y The x and y coordinates for the top left
corner of the plug-in relative to the page (and
thus relative to the origin of the drawable).
Should not be modified by the plug-in.
174 Gecko Plug-in API Reference

Description

The NPWindow structure represents the native window or a drawable, and contains
information about coordinate position, size, whether the plug-in is windowed or
windowless, and some platform-specific information. The plug-in area is a native
window element on Windows and Unix, or a rectangle within a native window on
Mac OS. The x, y, height, and width coordinates of NPWindow specify the position
and size of this area.

height, width The height and width of the plug-in area.
Should not be modified by the plug-in.

clipRect Clipping rectangle of the plug-in; the origin
is the top left corner of the drawable or
window. Clipping to the clipRect prevents
the plug-in from overwriting the status bar,
scroll bars, and other page elements when
partially scrolled off the screen. Mac OS:
clipRect is the rectangle in port coordinates
to which the plug-in should clip its drawing.

ws_info Unix: Contains information about the plug-
in's Unix window environment; points to an
NPSetWindowCallbackStruct.

type NPWindowType value that specifies whether
the NPWindow instance represents a window
or a drawable. Values:
• NPWindowTypeWindow: Indicates that

the window field holds a platform-spe-
cific handle to a window (as in Naviga-
tor 2.0 and Navigator 3.0). The plug-in
is considered windowed.

• NPWindowTypeDrawable: Indicates
that the window field holds a platform-
specific handle to a drawable or an off-
screen pixmap. The plug-in is consid-
ered windowless. Values:

• Windows: HDC

• Mac OS: pointer to NP_Port

structure
NPWindow 175

NPWindow
The browser calls NPP_SetValue whenever the drawable changes.

A windowed plug-in is drawn into a native window (or portion of a native window) on
a web page. For windowed plug-ins, the browser calls the NPP_SetWindow method
with an NPWindow structure that represents a drawable (a pointer to an NPWindow

allocated by the browser). This window is valid until NPP_SetWindow is called
again with a different window or the instance is destroyed.

A windowless plug-in is drawn into a target called a drawable, which can be defined
in several ways depending on the platform. For windowless plug-ins, the browser
calls the NPP_SetWindow method with an NPWindow structure that represents a
drawable.

The plug-in should not modify the field values in this structure.

See Also
NPP_SetWindow, NP_Port, NPSetWindowCallbackStruct, NP_Rect
176 Gecko Plug-in API Reference

Constants

This section is a reference to the program definitions used by the Plug-in API. All
program definitions are found in npapi.h.
• Error Codes
• Result Codes
• Plug-in Version Constants
• Version Feature Constants
Error Codes

Code Value Description

NPERR_NO_ERROR 0 No errors occurred.

NPERR_GENERIC_ERROR 1 Error with no specific error code occurred.

NPERR_INVALID_INSTANCE_ERROR 2 Invalid instance passed to the plug-in.

NPERR_INVALID_FUNCTABLE_ERROR 3 Function table invalid.

NPERR_MODULE_LOAD_FAILED_ERROR 4 Loading of plug-in failed.

NPERR_OUT_OF_MEMORY_ERROR 5 Memory allocation failed.

NPERR_INVALID_PLUGIN_ERROR 6 Plug-in missing or invalid.

NPERR_INVALID_PLUGIN_DIR_ERROR 7 Plug-in directory missing or invalid.

NPERR_INCOMPATIBLE_VERSION_ERROR 8 Versions of plug-in and Communicator do not
match.

NPERR_INVALID_PARAM 9 Parameter missing or invalid.
177

Result Codes

Plug-in Version Constants

NPERR_INVALID_URL 10 URL missing or invalid.

NPERR_FILE_NOT_FOUND 11 File missing or invalid.

NPERR_NO_DATA 12 Stream contains no data.

NPERR_STREAM_NOT_SEEKABLE 13 Seekable stream expected.

Constant Value Description

NPRES_DONE 0 (Most common): Completed normally; all data was sent to the
instance.

NPRES_NETWORK_ERR 1 Stream failed due to problems with network, disk I/O, lack of
memory, or other problems.

NPRES_USER_BREAK 2 User canceled stream directly by clicking the Stop button or
indirectly by some action such as deleting the instance or
initiating higher-priority network operations.

Constant Value Description

NP_VERSION_MAJOR 0 Major version number; changes with major code release
number.

NP_VERSION_MINOR 11 Minor version number; changes with point release number.
178 Gecko Plug-in API Reference

Version Feature Constants

NPVERS Constant:
Version Feature Information

Value Supported Feature

NPVERS_HAS_STREAMOUTPUT 8 Streaming data.

NPVERS_HAS_NOTIFICATION 9 Notification of completion.

NPVERS_HAS_LIVECONNECT 9 LiveConnect.

NPVERS_WIN16_HAS_LIVECONNECT 9 LiveConnect (Win16).

NPVERS_68K_HAS_LIVECONNECT 11 LiveConnect (68K).

NPVERS_HAS_WINDOWLESS 11 Windowless plug-in.

NPVERS_HAS_XPCONNECT_SCRIPTING 13 Scriptable plug-in.
179

180 Gecko Plug-in API Reference

	Table of Contents
	Preface
	About This Guide
	Who Should Read This Guide
	The Plug-in Software Development Kit

	Plug-in Basics
	How Plug-ins Are Used
	Plug-ins and Helper Applications

	How Plug-ins Work
	Understanding the Runtime Model
	Plug-in Detection
	How Netscape Gecko Finds Plug-ins
	Checking Plug-ins by MIME Type

	Overview of Plug-in Structure
	Understanding the Plug-in API
	Plug-ins and Platform Independence

	Windowed and Windowless Plug-ins
	The Default Plug-in
	Using HTML to Display Plug-ins
	Plug-in Display Modes
	Using the OBJECT Tag for Plug-in Display
	Nesting Rules for HTML Elements
	Using the Appropriate Attributes
	Using the EMBED Tag for Plug-in Display
	Using Custom EMBED Attributes

	Plug-in References

	Plug-in Development Overview
	Writing Plug-ins
	Registering Plug-ins
	Mac OS
	MS Windows
	Unix

	Drawing a Plug-in Instance
	Handling Memory
	Sending and Receiving Streams
	Working with URLs
	Getting Version and UI Information
	Displaying Messages on the Status Line
	Making Plug-ins Scriptable
	How to call JavaScript from the plug-in
	Scriptable Plug-in Lifetime
	Scriptable plug-in building and installation overview

	Building Plug-ins
	Building, Platforms, and Compilers
	Building Carbonized Plug-ins for Mac OSX
	Getting and Using the xpidl Compiler
	Type Libraries

	Installing Plug-ins
	Native Installers
	XPI Plug-ins Installations
	Plug-in Installation and the Windows Registry

	Initialization and Destruction
	Initialization
	Instance Creation
	Instance Destruction
	Shutdown
	Initialize and Shutdown Example

	Drawing and Event Handling
	The NPWindow Structure
	The NPWindow Structure

	Drawing Plug-ins
	Printing the Plug-in
	Setting the Window
	Getting Information

	Windowed Plug-ins
	Mac OS
	Windows
	Unix
	Event Handling for Windowed Plug-ins

	Windowless Plug-ins
	Specifying That a Plug-in Is Windowless
	Invalidating the Drawing Area
	Forcing a Paint Message
	Making a Plug-in Opaque
	Making a Plug-in Transparent
	Creating Pop-up Menus and Dialog Boxes
	Event Handling for Windowless Plug-ins

	Streams
	Receiving a Stream
	Telling the Plug-in When a Stream Is Created
	Telling the Plug-in When a Stream Is Deleted
	Finding Out How Much Data the Plug-in Can Accept
	Writing the Stream to the Plug-in
	Sending the Stream in Random-Access Mode
	Sending the Stream in File Mode

	Sending a Stream
	Creating a Stream
	Pushing Data into the Stream
	Deleting the Stream
	Example of Sending a Stream

	URLs
	Getting URLs
	Getting the URL and Displaying the Page

	Posting URLs
	Posting Data to an HTTP Server
	Uploading Files to an FTP Server
	Sending Mail

	Memory
	Allocating and Freeing Memory
	Mac OS

	Flushing Memory (Mac OS only)

	Version, UI, and Status Information
	Displaying a Status Line Message
	Getting Agent Information
	Getting the Current Version
	Finding Out if a Feature Exists
	Reloading a Plug-in

	Plug-in Side Plug-in API
	Plugin Method Summary
	NPP_Destroy
	NPP_DestroyStream
	NPP_GetValue
	NPP_HandleEvent
	NP_Initialize
	NPP_New
	NPP_NewStream
	NPP_Print
	NPP_SetValue
	NPP_SetWindow
	NP_Shutdown
	NPP_StreamAsFile
	NPP_URLNotify
	NPP_Write
	NPP_WriteReady

	Browser Side Plug-in API
	Netscape Plug-in Method Summary
	NPN_DestroyStream
	NPN_ForceRedraw
	NPN_GetURL
	NPN_GetURLNotify
	NPN_GetValue
	NPN_InvalidateRect
	NPN_InvalidateRegion
	NPN_MemAlloc
	NPN_MemFlush
	NPN_MemFree
	NPN_NewStream
	NPN_PostURL
	NPN_PostURLNotify
	NPN_ReloadPlugins
	NPN_RequestRead
	NPN_SetValue
	NPN_Status
	NPN_UserAgent
	NPN_Version
	NPN_Write

	Structures
	Structure Summary
	NPAnyCallbackStruct
	NPByteRange
	NPEmbedPrint
	NPEvent
	NPFullPrint
	NPP
	NP_Port
	NPPrint
	NPPrintCallbackStruct
	NP_Rect
	NP_Region
	NPSavedData
	NPSetWindowCallbackStruct
	NPStream
	NPWindow

	Constants
	Error Codes
	Result Codes
	Plug-in Version Constants
	Version Feature Constants

