APl Reference

Netscape Gecko Plug-ins

Version 2.0

August 2002

Table of Contents

PrefaC . L o 3
AbOUt ThiS GUITE e 3
Who Should Read This GUITE o 3
The Plug-in Software Development Kit 4
PlUG-IN BaSICS . .ottt 3
HOW Plug-INS Are USed i e e e e 3
Plug-ins and Helper Applications i e 4
HOW Plug-ins WoOrK . .. oo 4
Understanding the Runtime Model 5
Plug-in Detectiono 6
How Netscape Gecko Finds Plug-ins e 6
Checking Plug-ins by MIME TYpe . ..o e 7
Overview of PIug-in STrUCTUNe o e e 7
Understanding the Plug-in APl 8
Plug-ins and Platform Independence it e 8
Windowed and Windowless PIUg-iNs i 9
The Default Plug-in . ..o o 9
Using HTML to Display PIug-ins e 10
Plug-in Display Modes i 11
Using the OBJECT Tag for Plug-in Display e 13
Nesting Rules for HTML Elements e 15
Using the Appropriate Attributes 16
Using the EMBED Tag for Plug-in Display e 16
Using Custom EMBED Attributes 19
PlUg-IN REfEIENCES . . .o 20
Plug-in Development OVEIVIEWttt e ettt et 21
WHtING PIUG-INS . .. 21
Registering PIUG-INS 22
MaaC O .. 23
MS WINAOWS . . oo e e 23
Ui o 24
Drawing a PIug-in INStaNCe i e 24
Handling MemoOry 25

Sending and ReCEIVING StreamMSttt e 25

Working With URLS e e e e e 26
Getting Version and Ul Information 26
Displaying Messages onthe Status Line i 27
Making Plug-ins Scriptable 27
How to call JavaScript fromthe plug-in 29
Scriptable Plug-in Lifetime 30
Scriptable plug-in building and installation overview 30
BUIlding Plug-ins 35
Building, Platforms, and Compilers i 35
Building Carbonized Plug-ins for Mac OSX i e 35
Getting and Using the xpidl Compiler 39
Type Libraries 39
Installing PlUG-iNS . . . oo 40
Native Installers 40
XPIPlug-ins Installations 42
Plug-in Installation and the Windows Registry i, 44
Initialization and DeStrUCtION 47
INTtIAliZAtION . .. 47
INSEANCE Creation i e e e e 48
INStance DESIIUCTION oottt e 49
SNULOWN . 51
Initialize and Shutdown Example 52
Drawing and Event Handling 53
The NPWINAOW StrUCLUIEot e e e e e e e 53
The NPWINAOW StrUCTUIE oo e e e e e 54
Drawing PlUg-INS 55
Printing the Plug-in o 56
Setting the WINAOWo 56
Getting INformation 57
Windowed PlUg-iNS . ..o 58
MaC O . 59
WNOOWS . . 60
Ui .o 60
Event Handling for Windowed Plug-ins e 60
WiINdowless PIUG-INS o 60
Specifying That a Plug-in IsWindowless i 61
Invalidating the Drawing Areat e e 62
Forcing a Paint IMBSSA0Eo oottt e e e e e e 63
Making a Plug-in OPagUeottt e e e e 64

Gecko Plug-in API Reference

Making a Plug-in Transparentt e 64

Creating Pop-up Menus and Dialog BOXESt 65
Event Handling for Windowless Plug-ins e 65
ST EaAIM S . . . 67
RECEIVING @ STrBAM . .. 68
Telling the Plug-in When aStream IsCreated it 68
Telling the Plug-in When a Stream IsDeleted i, 69
Finding Out How Much Data the Plug-in Can Acceptttt 70
Writing the Stream to the Plug-in 71
Sending the Stream in Random-Access MOde 72
Sending the Stream in File Mode 73
SENAING @ StrEaM . ..o 74
Creating @ Streamo 74
Pushing Data intothe Stream 75
Deleting the Stream 76
Example of Sending a Stream 77
UR LS o 79
GettiNg UR LS o 80
Getting the URL and Displayingthe Pagec.. i 82
POStING URLS ..o 83
Posting Data to an HTTP Server i e 85
Uploading Filesto an FTP SErVert e e e 85
Sending Mail 86
MmOy . 87
Allocating and Freeing MemMOIYt 87
MaC O . . 88
Flushing Memory (Mac OS only) o e e 88
Version, Ul, and Status Information 91
Displaying a Status LiNe MESSAGEottt et e e e 91
Getting Agent INformation 92
Getting the CUITeNt VersiON i e e e e 92
Finding Out ifa Feature EXIStS o e 93
Reloading @ PlUug-in 94
Plug-in Side Plug-in APl 95
Plugin Method SUMMArY e e e e e e e e 95
NP P _DESTIOY . . .ottt e e e 96

NPP _DEStrOYSTIEaAIMottt et e e e e e e e 97

NPP_GetValUe o 99
NPP_HandIeEVENt 101
NP _INItialize 102
N PP N W ettt et e e e 103
NP P N WS aM . . . e 105
NP P PNt .o 108
NPP_SetValue 109
NPP_SetWINAOW e e e e e 111
NP ShULAOWN .. 112
NPP_StreamASFIle ... 113
NPP _URLNOLY .ottt et e e e e 114
N - 116
NPP_WIIteReAdYo 117
Browser Side Plug-in APl 119
Netscape Plug-in Method Summary 119
NPN _DEStrOYSIIEAM oot e e e e e e e 120
NPN _FOrCeREAIrAWt e e e e e 121
NPN _GEIURL . . 123
NPN_GetURLNOtIfY e e 126
NPN _GetValue ... 127
NPN _InvalidateReCto e e e e 129
NPN_InvalidateRegion 130
NPN MemMAIIOC ... e e e e e 131
NPN MemFIUSh ... e e 133
NP N MM . ..o e e 134
NPN N EW S aM . ..o e e e e 134
NPN _POStURL ..o 136
NPN_POStURLNOtIfY ... 139
NPN_ReloadPlugins 140
NPN_ReqUEStREa 141
NPN _SetValue e e e 143
NP N S atUS .. o e e 146
NPIN _USEIAGENt . o e e 147
N PNV rSION oo e e 147
NP N VI L 149
SETUCTUIES . o oo e e e e e 151
STrUCTUNE SUMIMAIY . . .o e e e e e e e e e e 151
NPANYCallbackStruct o 152
NP BYTERANGE 153

iv. Gecko Plug-in APl Reference

NPEMDBEAPIINt .. o 154

NP EV Nt . . .o e e 155
NP U PNt o e e e 160
N PP L e e e 162
NP P oIt . e e e 163
NP P Nt L e e e 164
NPPrintCallbackStruct e e 165
NP R . o 166
NP REGION . o 167
NPSAVEAD AT e e 168
NPSetWindowCallbackStruct i e 169
N P St A . . oot e e 171
NP VI NOW ..o e e e e 173
CONS NS . .o 177
ErTOr COOES . . ot 177
RESUIE COOES . . .ot e e 178
Plug-in Version CONStants it 178
Version Feature CoNStantst e e e e 179

vi Gecko Plug-in APl Reference

Preface

About ThisGuide

The Netscape Gecko™ Plug-in API Reference describes the application programming
interfaces (APIs) for Netscape Gecko plug-insand provides information about how to
use these interfaces to create plug-ins for Netscape Gecko-based browsers such as
Netscape 6.x, Netscape 7.0, and Mozilla.

The general introduction in “Plug-in Basics” and a chapter entitled “Plug-in
Development Overview” begin the guide. A series of chapters on specific
programming topics such as “Initialization and Destruction”, “Streams’, and
“URLS’ provide more detail about the technical aspects and techniques for creating
and managing plug-ins.

The API reference in the second half of the guide is divided up into two main halves,
“Plug-in Side Plug-in API* and “Browser Side Plug-in API1“, aswell as additional
reference material about “ Structures” and “ Constants".

The guide is structured so the devel opers new to Netscape Gecko plug-ins can
familiarize themselves with the APIs and particular aspects of the development
process (e.g., “Drawing and Event Handling”), but so that plug-in developers can
quickly access the API reference material they need.

Who Should Read This Guide

The Netscape Gecko Plug-in API Reference is meant for plug-in developers. Though
it provides a basic overview of plug-ins and how they work in the browser, the guide
presumes that you understand how plug-inswork, how they handle and display media,
and what the basic architecture of a browser is that supports the use of plug-in
software.

The guide a'so presumes that you know how to use application programming
interfaces, have experience developing browser software such as plug-ins,
components, or add-ons, and are familiar with C/C++, the language(s) in which the
libraries were actually created and in which all of the examples are given.

The Plug-in Softwar e Development Kit

A Plug-in software development kit (SDK) is available for Netscape Gecko plug-in
developers. This SDK islocated in the Mozilla source under nozi | | a/ modul es/

pl ugi n/ t ool s/ sdk. You can use it within the Mozilla source tree, or you can build
it there and then use it outside of treeif you' d rather. In either case, the Mozilla source
treeisrequired to get started developing plug-ins. Y ou can aso view the plug-in SDK
samples and source code using the web-based source viewer:

http://Ixr.mozilla.org/seamonkey/source/modul es/plugin/tool s/sdk/

The SDK is based on the API developed originally for Netscape browsers starting
with Netscape 2.x. Some additions were made when Netscape 3.x and Netscape 4.x
were released. The present SDK reflects major changes related to Mozilla code base:
LiveConnect for plugin scriptability isno longer supported, existing plugins should be
modified slightly to become scriptable again; the browser services are now accessible
from the plug-in through the access to the service manager.

The SDK isintended to help in creating full-blown plugins to work with the Mozilla
code base without actually having the whole Mozilla source tree present and built.

The Common folder contains stub implementations of the NPAPI methods. Thereis
no need to modify filesin this folder, just include them into your project. Thisis not
necessary though, some samples or plugin projects may use their own
implementations, the files in this folder are just an illustration of one possible way to
do that.

The Samples section at this point contains the following plug-in samples:
Basic plug-in

Shows the bare bones of the plugin DLL. It does not do anything more than a'Hello,
World' for plug-ins. The basic plug-in demonstrates how the plugin DLL isinvoked
and how NPAPI methods are called. It can be used as a starting template for writing
your own plug-in.

Simple plug-in

This plugin example illustrates specific for Mozilla code base features. It is scriptable
via JavaScript and uses services provided by the browser.

2 Gecko Plug-in APl Reference

http://lxr.mozilla.org/seamonkey/source/modules/plugin/tools/sdk/

XPCOM interfaces are implemented in the simple plug-in so the Mozilla browser is
aware of its capabilities. The plugin does not draw in the native window but rather
uses JavaScript box to display the result of itswork. Therefore, there are no separate
projects for different platforms in this sample.

Scriptable plug-in

Y et another example of plug-in scriptability. The scriptable plug-in implements two
native methods callable from the JavaScript, and it draws in a native window, so it
uses different projects for the different major platforms.

Windowless plug-in

The windowless plug-in is an example of a plugin which does not use native window
messaging mechanism and relies exclusively on NPP_Handl eEvent to receive GUI
messages for painting and other tasks. This plug-in simply draws a gray rectangle in
the occupied area.

Scriptable plug-in samples require that you generate cross-platform type library
(XPT) files and place them in the Mozilla Plugins directory along with the plug-in
DLLs. (For backwards compatibility with pre-Mozilla 1.0 and Netscape 6.x browsers,
you must put the type library file in the Components directory instead. For more
information on type libraries and plug-in path information, see Plug-in Detection in
the “Plug-in Basics’ chapter.)

To verify that Mozillais aware of new .xpt files, you can look in the generated file,
xpti.dat, where type libraries are listed. If you need to, you can call
net scape. pl ugi ns. refresh() totofind new XPT filesand plug-in software.

Plug-in devel opers might find it useful for debugging purporses to turn off the
exception catching mechanism currently implemented in Mozilla on Windows. To
turn off Windows exception handling, add the following line into your prefs.jsfile:
user_pref("plugin.dont _try safe calls", true);

4 Gecko Plug-in APl Reference

Plug-in Basics

How Plug-insAre Used

Plug-ins offer arich variety of features that can increase the flexibility of Netscape
Gecko-based browsers. Plug-ins like these are now available:

* multimedia viewers such as Macromedia Shockwave and Adobe Acrobat

» utilitiesthat provide object embedding and compressi on/decompression services
» applicationsthat range from personal information managers to games

The range of possibilities for using plug-in technology seems boundless, as shown by
the growing numbers of independent software vendors who are creating new and
innovative plug-ins.

With the Plug-in API, you can create dynamically loaded plug-insthat can:
* register one or more MIME types

e draw into a part of a browser window

» receive keyboard and mouse events

» obtain datafrom the network using URLS

e post datato URLs

» add hyperlinks or hotspots that link to new URL S

e draw into sectionson an HTML page

* communicate with Javascript/DOM from native code

Y ou can see which plug-ins are installed on your system and have been properly
associated with the browser by consulting the Installed Plug-ins page. Go to the Help
menu, and click Help and then About Plug-ins. The Installed Plug-ins page lists each
installed plug-in along with its MIME type or types, description, extensions, and the
current state (enabled or disabled) of the plug-in for each MIME type assigned to it.
Notice in view-source that thisinformation is simply gathered from the DOM.

Because plug-ins are platform-specific, you must port them to every operating system
and processor platform upon which you want to deploy your plug-in.

Plug-insand Helper Applications

Before plug-ins, there were helper applications. A helper application is a separate,
free-standing application that can be started from the browser. Like a plug-in, the
browser starts a helper application when the browser encounters a MIME typethat is
mapped to it. Unlike a plug-in, a helper application runs separately from the browser
in its own application space and does not interact with the browser or the web.

When the browser encountersa MIME type, it always searches for aregistered plug-
infirst. If there are no matches for the MIME type, it looks for a helper application.

Plug-ins and helper applicationsfill different application needs. For more information
about helper applications, refer to the Netscape online help.

How Plug-insWork

Thelife cycle of a plug-in, unlike that of an application, is completely controlled by
the web page that calls it. This section gives you an overview of the way that plug-ins
operate in the browser.

When Netscape Gecko starts, it checksfor plug-in modulesin the plugins directory or
Plug-ins folder (Mac OS) located in the same folder or directory as the browser
application. For more information, see "How Netscape Gecko Finds Plug-ins"

When the user opens a page that contai ns embedded data of a mediatype that invokes
aplug-in, the browser responds with the following sequence of actions:

» check for aplug-in with amatching MIME type

» load the plug-in code into memory

* initidizethe plug-in

» create anew instance of the plug-in

Netscape Gecko can load multiple instances of the same plug-in on a single page, or
in several open windows at the same time. If you are browsing a page that has severa
embedded real audio clips, for example, the browser will create as many instances of
the Real Player plug-in as are needed (though of course playing several real audio files
at the same time would seldom be a good idea). When the user |eaves the page or
closes the window, the plug-in instance is deleted. When the last instance of a plug-in
is deleted, the plug-in code is unloaded from memory. A plug-in consumes no
resources other than disk space when it is not loaded. The next section,

Under standing the Runtime M odel, describes these stagesin more detail.

4 Gecko Plug-in APl Reference

Under standing the Runtime M odel

Plug-ins are dynamic code modul es that are associated with one or more MIME types.
When the browser starts, it enumerates the available plug-ins (this step varies
according to platform), reads resources from each plug-in file to determine the MIME
types for that plug-in, and registers each plug-in library for its MIME types.

The following stages outline the life of a plug-in from loading to deletion:

» When Netscape Gecko encounters data of a MIME type registered for a plug-in
(either embedded in an HTML page or in aseparate file), it dynamically loadsthe
plug-in code into memory, if it hasn't been loaded already, and it creates a new
instance of the plug-in.

Netscape Gecko callsthe plug-in API function NP_I nitialize! when the plug-in
code isfirst loaded. By convention, al of the plug-in specific functions have the
prefix “NPP”, and al of the browser-specific functions have the prefix “NPN”

* Thebrowser callsthe plug-in API function NPP_New when the instanceis cre-
ated. Multiple instances of the same plug-in can exist (a) if there are multiple
embedded objects on a single page, or (b) if severa browser windows are open
and each displays the same data type.

* A plug-ininstance is deleted when a user leaves the instance's page or closes its
window; Netscape Gecko calls the function NPP_Destroy to inform the plug-in
that the instance is being deleted.

* When thelast instance of aplug-in is deleted, the plug-in code is unloaded from
memory. Netscape Gecko call s the function NP_Shutdown. Plug-ins consume no
resources (other than disk space) when not loaded.

NOTE: Plug-in API calls and callbacks use the main Navigator thread. In general, if
you want a plug-in to generate additional threads to handle processing at any stagein
its lifespan, you should be careful to isolate these from Plug-in API calls.

See “Initialization and Destruction” for more information about using these
methods.

1. Notethat NP_I niti al i zeand NP_Shut down are not technically a part of the function
table that the plug-in hands to the browser. The browser calls them when the plug-in
software isloaded and unloaded. These functions are exported from the plug-in DLL and
accessed with a system table lookup, which means that they are not related to any
particular plug-in instance. Again, see “Initialization and Destruction” for more
information about initidizing and destroying plug-ins.

Plug-in Detection

Netscape Gecko looks for plug-insin various places and in a particular order. The
next section, “How Netscape Gecko Finds Plug-ins,” describes these rules, and the
following section, “Checking Plug-insby MIME Type,” describes how you can use
JavaScript to locate plug-ins yourself and establish which ones are to be registered for
which MIME types.

How Netscape Gecko Finds Plug-ins

When a Netscape Gecko-based browser starts up on Windows or Unix systems, it
checks for plug-in modules in the path pointed to by MOZ_PLUGI N_PATH. After that,
it checksin the plug-ins directory for the platform:

* MSWindows: pl ugi ns subdirectory, in the same directory as the browser appli-
cation.

* MacOS: Pl ug-i ns folder. A Mac OS plug-in can reside in adifferent directory
if you install aMacintosh aiasthat links to the plug-in in the Plug-ins folder.

e Unix:usr/local/lib/netscape/pl ugi ns or $SHOVE/ . nmozi | | a/ pl ugi ns.
If you want to use a different directory, set the MOZ_PLUGI N_PATH environment
variable to its filepath, for example,
$HOME/ your pl ugi ns:/usr/1 ocal /1ib/ netscape/pl ugi ns.

Netscape Gecko searches any directory that this variable specifies. The local user
location, if it exists, overrides the network location.

» Finaly, on the Mac, the browser scansthe ~/ Li brary/ | nt er net Pl ugi ns
then/Li brary/ I nternet Plugi ns.Within these directories, the plug-ins are
ordered by date.

On al platforms, the pl ug- i ns subdirectory or folder must be in the same directory
as the browser application. Users can install plug-insin this directory manualy, by
using a binary installer program, or by using the XPInstall API to write an installation
script, which the browser then uses to perform the installation. For more information
about these options, see I nstalling Plug-ins.

To find out which plug-ins are currently installed, choose About Plug-ins from the
Help menu (MS Windows and Unix) or "?' (Help) menu (Mac OS). Netscape Gecko
displays apagelisting al installed plug-ins and the MIME types they handle, as well
as optional descriptive information supplied by the plug-in.

On Windows, installed plug-ins are automatically configured to handle the MIME
types that they support. If multiple plug-ins handle the same MIME type, the first
plug-in registered handles the MIME type. For information about the way MIME
types are assigned, see Registering Plug-ins.

6 Gecko Plug-in APl Reference

Checking Plug-insby MIME Type

The enabl edPl ugi n property in JavaScript can be used to determine which plug-in
isconfigured for aspecific MIME type. Though plug-ins may support multiple MIME
types and each MIME type may be supported by multiple plug-ins, only one plug-in
can be configured for aMIME type. Theenabl edPl ugi n property isareferenceto a
Plugin object that represents the plug-in that is configured for the specified MIME

type.

Y ou might need to know which plug-in is configured for aMIME type, for example,
to dynamically create an OBJECT tag on the page if the user has a plug-in configured
for the MIME type.

The following example usesthe DOM to determine whether the Shockwave plug-inis
installed. If it is, amovieisdisplayed.

/1 Can we di splay Shockwave npvi es?
nm metype = navi gator.m nmeTypes["application/x-director"]
if (mnetype) {
/'l Yes, so can we display with a plug-in?
plugin = m nmetype. enabl edPl ugi n
if (plugin)
/'l Yes, so show the data in-line
docunent .writeln("Here\'s a novi e:
<OBJECT DATA=nynovie.dir HEl GHT=100 W DTH=100>")
el se
/1 No, so provide a link to the data
docunent . writel n("
Click here to see a novie.")
} else {
/'l No, so tell them so
docunment . witeln("Sorry, can't show you this novie.")

Overview of Plug-in Structure

This section is an overview of basic information you will need as you develop plug-
ins.

* Understanding the Plug-in API

* Plug-insand Platform Independence

Under standing the Plug-in API

A plug-in isanative code library whose source conformsto standard C syntax. The
Plug-in Application Programming Interface (API) is made up of two groups of
functions and a set of shared data structures.

» Plug-in methods are functions that you implement in the plug-in; Netscape
Gecko calls these functions. The names of all the plug-in functionsin the AP
begin with NPP_, for example, NPP_New. There are also a couple of functions
(i.e, NP_I nitializeandNP_Shut down), that are direct library entry points
and not related to any particular plug-in instance.

» Browser methods are functions implemented by Netscape Gecko; the plug-in
callsthese functions. The names of all the browser functionsin the API begin
with NPN_, for example, NPN_W i t e.

» Datastructures are plug-in-specific types defined for use in the Plug-in API. The
names of structures begin with NP, for example, NPW ndow.

All plug-in names in the API start with NP. In general, the operation of all API
functionsis the same on dl platforms. Where this varies, the reference entry for the
function in the reference section describes the difference.

Plug-insand Platform I ndependence

A plug-in is a dynamic code module that is native to the specific platform on which
the browser is running. It isacode library, rather than an application or an applet, and
runs only from the browser. Although plug-ins are platform-specific, the Plug-in API
is designed to provide the maximum degree of flexibility and to be functionally
consistent across &l platforms. This guide notes platform-specific differencesin
coding for the MS Windows, Mac OS, and Unix platforms.

Y ou can use the Plug-in API to write plug-ins that are media type driven and provide
high performance by taking advantage of native code. Plug-ins give you an
opportunity to seamlessly integrate platform-dependent code and enhance the
Netscape Gecko core functionality by providing support for new data types.

The plug-in file type depends on the platform:

* MSWindows: .DLL (Dynamic Link Library) files
e Unix: .SO or .DSO (Shared Objects) files

* Mac OS: PowerPC Shared Library files.

8 Gecko Plug-in APl Reference

Windowed and Windowless Plug-ins

Y ou can write plug-ins that are drawn in their own native windows or frames on aweb
page. Alternatively, you can write plug-ins that do not require awindow to draw into.
Using windowless plug-ins extends the possibilities for web page design and
functionality. Note, however, that plug-ins are windowed by default, as windowed
plug-ins are in general easier to develop and more stable to use.

* A windowed plug-in is drawn into its own native window on aweb page. Win-
dowed plug-ins are opagque and always come to the top HTML section of aweb
page.

* A windowless plug-in need not be drawn in anative window; it is drawn in its
own drawing target. Windowless plug-ins can be opaque or transparent, and can
be invoked in HTML sections.

Whether a plug-in is windowed or windowless depends on how you define it.

The way plug-ins are displayed on the web page is determined by the HTML tag that
invokes them. Thisis up to the content devel oper or web page author. Depending on
the tag and its attributes, a plug-in can be visible or hidden, or can appear as part of a
page or as afull pagein its own window. A web page can display a windowed or
windowless plug-inin any HTML display mode; however, the plug-in must bevisible
for itswindow type to be meaningful. For information about the way HTML
determines plug-in display mode, see "Using HTML to Display Plug-ins."

The Default Plug-in

When a specific plug-inis not registered to handle the mediareferred to in the HTML,
Netscape Gecko invokes the default plug-in to help users find and install the right
plug-in for that MIME type.

The blue puzzle piece that appearsin the HTML page's plug-in window when the
default plug-in loads is meant to signify that the browser is missing a piece that it
needs to display or play the requested media.

How the plug-in HTML tag was coded determines what action is taken when the user
clicksthe plug-in piece. If the browser cannot handle the given MIME type, then the
default plug-in checksto seeif there isa plug-in referenced in the OBJECT tag that
definesthe media. If there s, then thedefault plug-in prompts the user to download
that plug-in from the specified location. If a plug-inisnot specified in the OBJECT tag,
then the default plug-in looks for child elements, such as other OBJECT tag, which
will provide more specific information about how to handle the specified media type.

Using HTML to Display Plug-ins

When a user browses to aweb page that invokes a plug-in, how the plug-in appears

(or does not appear) depends on two factors:

* Theway the developer writes the plug-in determineswhether it is displayed in its
own window or is windowless.

* Theway the content provider uses HTML tagsto invoke the plug-in determines
itsdisplay mode: whether it isembedded in a page, is part of asection, appearson
its own separate page, or is hidden.

This section discusses using HTML tags and display modes. For information about
windowed and windowless operation, see Windowed and Windowless Plug-ins.

For adescription of each plug-in display mode, and which HTML tag to use to
achieveit, go onto “Plug-in Display M odes.” For details about the HTML tags and
their attributes, go on to:

* “Usingthe OBJECT Tag for Plug-in Display”

* “Usingthe EMBED Tag for Plug-in Display”

10 Gecko Plug-in APl Reference

Plug-in Display M odes

Whether you are writing an HTML page to display a plug-in or developing a plug-in
for an HTML author to include in a page, you need to understand how the display
mode affects the way plug-ins appear.

A plug-in, whether it is windowed or windowless, can have one of these display
modes:

e embedded in aweb page and visible

» embedded in aweb page and hidden

o displayed asafull pagein its own window

An embedded plug-in is part of alarger HTML document and is loaded at the time
the document is displayed. The plug-in isvisible as arectangular subpart of the page
(unlessit is hidden). Embedded plug-ins are commonly used for multimediaimages
relating to text in the page, such as the Macromedia Shockwave plug-in. When
Netscape Gecko encounters the OBJECT or EMBED tag in a document, it attempts to
find and display thefile represented by the DATA and SRC attributes, respectively. The
HEI GHT and W DTH attributes of the OBJECT tag determine the size of the embedded
plug-ininthe HTML page. For example, this OBJECT tag calls a plug-in that displays
video:

<OBJECT DATA="newave. avi" TYPE="vi deo/ avi”
W DTH=320
HEI GHT=200
AUTOSTART=t rue LOOP=t rue>

A hidden plug-in isatype of embedded plug-in that is not drawn on the screen when
itisinvoked. It is created by using the HI DDEN attribute of the EMBED tag. Here'san
example:

<EMBED SRC="audi pl ay. ai ff" TYPE="audi o/ x-aiff"
HI DDEN="1r ue” >

NOTE: Whether a plug-in iswindowed or windowlessis not meaningful if the plug-in
isinvoked with the HI DDEN attribute.

11

Y ou can a'so create hidden plug-ins using the OBJECT tag. Though the OBJECT tag
has no HI DDEN attribute, you can create CSS rules to override the sizing attributes of
the OBJECT tag

obj ect {
visibility: visible;
}
obj ect . hi ddenObj ect {
visibility: hidden ! inportant;
wi dt h: Opx ! inportant;
hei ght: Opx ! inportant;

margi n: Opx ! inportant;
paddi ng: Opx ! inportant;
border-style: none ! inportant;

border-wi dth: Opx ! inportant;
max-w dt h: Opx ! inportant;
max- hei ght: Opx ! inportant;

In this case, the OBJECT tag that picks up these special style definitions would have a
class of hidden. Using thecl ass attribute and the CSS block above, you can simulate
the behavior of the hidden plug-in in the EMBED tag:

<OBJECT DATA="audi pl ay. ai ff" TYPE="audi o/ x-ai ff"
CLASS="hi ddenObj ect " >

A full-page plug-in isavisible plug-in that is not part of an HTML page. The server
looks for the media (MIME) type registered by a plug-in, based on the file extension,
and starts sending the file to the browser. Netscape Gecko looks up the MIME type
and loads the appropriate plug-in if it finds a plug-in registered to that type. Thistype
of plug-in completely fills the web page. Full-page plug-ins are commonly used for
document viewers, such as Adobe Acrobat.

NOTE: The browser does not display scroll bars automatically for afull-page plug-in.
The plug-in must draw its own scroll barsif it requires them.

The browser user interface remains relatively constant regardless of which type of
plug-in isdisplayed. The part of the application window that does not display plug-in
data does not change. The basic operations of the browser, such as navigation, history,
and opening files, apply to all pages, regardless of the plug-insin use.

12 Gecko Plug-in APl Reference

Using the OBJECT Tag for Plug-in Display

The OBJECT tag is part of the HTML specification for generic inclusion of special
mediain aweb page. It embeds avariety of object typesin an HTML page, including
plug-ins, Java components, ActiveX controls, applets, and images. OBJECT tag
attributes determine the type of object to embed, the type and location of the object's
implementation (code), and the type and implementation of the object's data.

Plug-ins were originally designed to work with the EMBED tag rather than the OBJECT
tag (see “Using the EMBED Tag for Plug-in Display”), but the OBJECT tag itself
provides some flexibility here. In particular, the OBJECT tag allows you to invoke
another object if the browser cannot support the object invoked by the tag. The EMBED
tag, which is also used for plug-ins, does not.

The OBJECT tag is also a part of the HTML W3C standard, for which see:
http://www.w3c.org/MarkUp/

Also, unlike the APPLET tag, OBJECT can contain other HTML attributes, including
other OBJECT tags, nested between its opening and closing angle brackets. So, for
example, though Netscape Gecko does not support the CLASSI D attribute of the
OBJECT tag—which was used for Java classes and ActiveX plug-ins embedded in
pages—OBJECT tags can be nested to support different plug-in implementations.

See the MozillaActiveX project pagein the “ Plug-in References’ section below for
more information about embedding ActiveX controlsin plug-ins or embedding plug-
insin ActiveX applications.

The following examples demonstrate this use of nested OBJECT tags with markup
more congenial to Netscape Gecko included as children of the parent OBJECT tag.

Example 1: Nesting OBJECT Tags

13

http://www.w3c.org/MarkUp/

<htm >

<head>
<base href="http://ww. macr omedi a. com sof t ware/fl ash/ ">
<styl e>

.nyPlugin {

wi dth: 470px;
hei ght: 231px;
}
</styl e>
<body>

<obj ect cl assi d="cl si d: D27CDB6E- AE6D- 11cf - 96B8- 444553540000"
codebase="htt p: // downl oad. macr onedi a. coml pub/ shockwave/ cabs/ f | ash/
swf | ash. cab#ver si on=5, 0, 30, 0"
cl ass="nyPl ugi n" >
<param nane=novi e val ue="/software/flash/ home_novi e. swf">
<par am nane=qual i ty val ue=hi gh>
<param nane="sal i gn" val ue="t|">
<par am nanme="nenu" val ue="0">

<OBJECT dat a="/software/fl ash/ hone_novi e. swf"
type="appl i cati on/ x- shockwave-fl ash"
cl ass="nyPl ugi n" >
<par am nane=qual i ty val ue=hi gh>
<param nane="sal i gn" val ue="t|">
<par am nanme="nenu" val ue="0">

<obj ect type="*" class="nyPl ugi n">
<par am nane="pl ugi nspage" val ue="http://ww. macr omedi a. com
shockwave/ downl oad/ i ndex. cgi ?P1_Pr od_Ver si on=ShockwaveF| ash" >
</ obj ect >
</ obj ect >
</ obj ect >

</ body></ ht m >

The outermost OBJECT tag defines the CLASSI D; the first nested OBJECT uses the
TYPE value "appl i cati on/ x- shockwave- f | ash" to load the shockwave plug-in,
and the innermost OBJECT exposes a download page for users that do not already
have the necessary plug-in. This nesting is quite common in the use of OBJECT tags,
and lets you avoid code forking for different browser.

14 Gecko Plug-in APl Reference

Nesting Rulesfor HTML Elements

The rules for descending into nested OBJECT and EMBED tags are as follows:

The browser looks at the MIME type of the top element. If it knows how to deal
with that MIME type (i.e., by loading a plug-in that's been registered for it), then
it does so.

If the browser cannot handle the MIME type, it looks in the element for a pointer
to a plug-in that can be used to handle that MIME type. The browser downloads
the requested plug-in.

If the MIME type is unknown and there is no reference to a plug-in that can be
used, the browser descends into the child element, where these rules for handling
MIME types are repeated.

Therest of this section isabrief introduction to thisHTML tag. For more information
on the OBJECT tag and other tags used for plug-in display, see:

W3C HTML 4.0 specification.

To embed avariety of object typesin an HTML page, use the OBJECT tag.

<OBJECT
CLASSI D="cl assFi | e"
DATA="dat aLocat i on"
CODEBASE="cl assFi |l eDi r"
TYPE="M MEt ype"
ALl GN="al i gnment "
HEI GHT=" pi xHei ght "
W DTH=" pi xW dt h"
| B="nane"

>

Thefirst set of OBJECT tag attributes are URLs.

CLASSI Disthe URL of the specific object implementation. Thisattributeis similar
to the CODE attribute of the APPLET tag. Though Netscape Gecko does not support
this OBJECT attribute, you can nest OBJECT tags with different attributes to use
the OBJECT tag for embedding plug-ins on any browser platform (see the example
above).

15

http://www.w3.org/TR/html401/

» DATA represents the URL of the object's data; thisis eguivalent to the SRC attribute
of EMBED.

* CODEBASE represents the URL of the plug-in; thisisthe same as the CODEBASE
attribute of the APPLET tag. For plug-ins, CODEBASE is the same as
PLUG NSPACE.

* TYPE represents the MIME type of the plug-in; thisisthe same as the TYPE
attribute of EMBED.

* HEI GHT, W DTH, ALI GN are basic | MJ EMBED/ APPLET attributes supported by
OBJECT. HEI GHT and W DTH are reguired for OBJECT tags that resolve to EMBED

tags.

* Usethel Dattribute, which specifies the name of the plug-in, if the plug-inis
communicating with JavaScript. This is equivalent to the NAME attribute of
APPLET and EMBED. It must be unique.

Using the Appropriate Attributes

It's up to you to provide enough attributes and to make sure that they do not conflict;
for example, the values of W DTH and HEI GHT may be wrong for the plug-in.
Otherwise, the plug-in cannot be embedded.

Netscape Gecko interprets the attributes as follows: When the browser encounters an
OBJECT tag, it goes through the tag attributes, ignoring or parsing as appropriate. It
analyzes the attributes to determine the object type, then determines whether the
browser can handle the type.

» If the browser can handle the type—that is, if aplug-in exists for that type—then
all tags and attributes up to the closing </ OBJECT> tag, except PARAMtags and
other OBJECT tags, are filtered.

» If the browser cannot handle the type, or cannot determine the type, it cannot
embed the object. Subsequent HTML is parsed as normal.

Usingthe EMBED Tag for Plug-in Display

A plug-inrunsinan HTML page in a browser window. The HTML author uses the
HTML EMBED tag to invoke the plug-in and control its display. Though the OBJECT
tag isthe preferred way to invoke plug-ins (see“Using the OBJECT Tag for Plug-in
Display”), the EMBED tag can be used for backward compatibility with Netscape 4.x

16 Gecko Plug-in APl Reference

browsers, and in cases where you specifically want to prompt the user to install a
plug-in, because the default plug-in is only automatically invoked when you use the
EMBED tag.

Netscape Gecko loads an embedded plug-in when the user displays an HTML page
that contains an embedded object whose MIME type is registered by a plug-in. Plug-
ins are embedded in much the same way as GIF or JPEG images are, except that a
plug-in can be live and respond to user events, such as mouse clicks.

The EMBED tag has the following syntax and attributes:

<EMBED

SRC="I ocat i on"

TYPE="M MEt ype"

PLUGI NSPAGE="1i nstr URL"

PLUG NURL="pl ugi nURL"

ALl GN="LEFT"| "Rl GHT" | " TCOP" | " BOTTOM'

BORDER="bor der W dt h"

FRAMEBORDER=" NO'

HEl GHT="hei ght "

W DTH="wi dt h"

UNI TS="uni ts"

HI DDEN=" TRUE| FAL SE"

HSPACE=" hori zMar gi n"

VSPACE="vert Mar gi n"

NAMVE=" pl ugi nNane"

PALETTE=" FOREGROUND" | " BACKGROUND"
>

</ EMBED>
Y ou must include either the SRC attribute or the TYPE attribute in an EMBED tag. If you
do not, then thereis no way of determing the mediatype, and so no plug-in loads.

The SRC attribute isthe URL of the fileto run. The TYPE attribute specifies the MIME
type of the plug-in needed to run the file. Navigator uses either the value of the TYPE
attribute or the suffix of the filename given as the source to determine which plug-in
to use.

17

Use TYPE to specify the mediatype or MIME type necessary to display the plug-in. It
isgood practiceto include the MIME typein al the plug-in HTML tags. Y ou can use
TYPE for a plug-in that requires no data, for example, a plug-in that draws an analog
clock or fetches all of its data dynamically. For avisible plug-in, you must include
W DTH and HEI GHT if you use TYPE; no default value is used.

The PLUGI NURL attribute isthe URL of the plug-in or of the XPI in which the plug-in
is stored (see“Installing Plug-ins’ for more information on the XPI file format).

The EMBED tag has a number of attributes that determine the appearance and size of

the plug-in instance, including these:

» The BORDER and FRAMEBORDER attributes specify the size of a border for the
plug-in or draw a borderless plug-in

e HEI GHT, W DTH, and UNI TS determine the size of the plug-ininthe HTML page.
If the plug-in is not hidden, the HEI GHT and W DTH attributes are required.

* HSPACE and VSPACE create amargin of the specified width, in pixels, around the
plug-in.

* ALl OGN specifiesthe alignment for the plug-in relative to the web page.

Use the HI DDEN attribute if you do not want the plug-in to be visible. In this case, you
do not need the attributes that describe plug-in appearance. In fact, H DDEN overrides
those attributes if they are present.

Use the NAME attribute, which specifies the name of the plug-in or plug-in instance, if
the plug-in is communicating with JavaScript.

For example, this EMBED tag loads a picture with the imaginary data type dgs.

<EMBED SRC="nypi c. dgs" W DTH=320 HEI GHT=200 BORDER=25
ALI GN=ri ght >

Netscape Gecko interprets the attributes as follows:

* SRC: Load the datafile and determine the MIME type of the data.

* W DTHand HEl GHT: Set the area of the page handled by the plug-in to 320 by 200
pixels. In general, use CSS to control the size and location of elementswithin an
HTML page.

» BORDER: Draw aborder 25 pixelswide around the plug-in.

* ALI GN: Align the plug-in at the right side of the web page.

The following example shows an EMBED tag nested within an OBJECT tag, which
latter is necessary for browsers that do not support the EMBED tag.

18 Gecko Plug-in APl Reference

Example 2: EMBED within OBJECT

<obj ect cl assi d="cl si d: D27CDB6E- AE6D- 11cf - 96B8- 444553540000"

codebase="htt p: // downl oad. macr omedi a. com pub/ shockwave/
cabs/ fl ash/ swf | ash. cab#ver si on=5, 0, 30, 0"

wi dt h="749"
hei ght =" 68" >

<par am nanme=novi e val ue="/uber/nav/ gl obal _hone. swf">
<par am nanme=qual i ty val ue=hi gh>

<par am name="BGCOLOR"' val ue="#EEEEEE" >

<par am nanme="sal i gn" value="t|">

<par am nanme="nenu" val ue="0">

<enbed src="/uber/nav/gl obal _home. swf"

qual i ty=hi gh pl ugi nspage="http://ww. macr onedi a. com shockwave/
downl oad/ i ndex. cgi ?P1_Pr od_Ver si on=ShockwaveFl| ash"

type="appli cati on/ x- shockwave- f | ash"

wi dt h="749"
hei ght =" 68"
bgcol or =" #EEEEEE"
salign="tI|"
menu="0">
</ embed>
</ obj ect >

Using Custom EMBED Attributes

In addition to these standard attributes, you can create private, plug-in-specific
attributes and use them in the EMBED attribute to pass extra information between the
HTML page and the plug-in code. The browser ignores these nonstandard attributes
when parsing the HTML, but it passes all attributes to the plug-in, allowing the plug-
in to examine the list for any private attributes that could modify its behavior.

19

For example, aplug-in that displays video could have private attributes that determine
whether to start the plug-in automatically or loop the video automatically on
playback, asin the following EMBED teg:

<EMBED SRC="nyavi.avi" W DTH=100 HElI GHT=125
AUTOSTART=t rue LOOP=tr ue>

With this EMBED tag, Netscape Gecko passes the values to the plug-in, using the arg
parameters of the NPP_New call that creates the plug-in instance.

argc = 5
argn = {"SRC', "WDTH", "HElIGHT", "AUTCSTART", "LOOP"}
argv = {"nmovie.avi", "100", "125", "TRUE", "TRUE"}

Netscape Gecko interprets the attributes as follows:

* SRC: Load the datafile and determine the MIME type of the data.

* W DTHand HEl GHT: Set the area of the page handled by the plug-in to 100 by 125
pixels.

* AUTOSTART and LOOP: Ignore these private attributes and pass them aong to the
plug-in with the rest of the attributes.

The plug-in must scan its list of attributes to determine whether it should
automatically start the video and loop it on playback. Note that with an OBJECT tag,
PARAMvalues are also sent in this array after the attributes, separated by a PARAM
entry.

Plug-in References

» TheMozillaPlug-ins project page
http://www.mozilla.org/projects/pluging

» TheMozillaActiveX Project

http://www.iol.ie/~locka/mozilla/mozilla.htm

20 Gecko Plug-in APl Reference

http://www.mozilla.org/projects/plugins/
http://www.iol.ie/~locka/mozilla/mozilla.htm

Plug-in Development Overview

Writing Plug-ins

Once you decide what you want your plug-in to do, creating it is asimple process. A
basic overview of the plug-in development processis given in the following steps.

1. Planyour plug-in: decide on the services you want the plug-in software to provide
and how it will interact with the browser and the special mediafor which the plug-
iniscreated.

2. Decidethe MIME type and file extension for the plug-in
(see “Registering Plug-ins”).

3. Set up your development environment properly. Y ou can use avariety of
environments to create a plug-in, but make sure that you have the necessary files
from the mozilla source or from the plug-in SDK.

4. Create aplug-in project.

You can either start from one of the samples provided for your operating system
in the mozilla source directory, where plug-ins samples are already being built, or
you can construct a new plug-in project in your own devel opment environment
using SDK-provided files. See the README in the plug-in SDK for more
information about using the SDK and using the samples provided there.

5. Write your plug-in code and implement the appropriate Plug-in APl methods for
basic plug-in operation. You'll find an overview of the Plug-in APl methods in
this chapter, aswell as separate chaptersfor all of the major functional areas of the
Plug-in API. Also see“Making Plug-ins Scriptable’ for more information about
making plug-ins accessible from the browser.

6. Build the plug-in for your operating system. See “Building Plug-ins.”

7. Ingtall the plug-in in the plug-in directory for your operating system. See
Installing Plug-ins.

21

8. Test your plug-in and debug as necessary.

9. Create an HTML page and embed the plug-in object. For information about the
HTML tagsto use, see"Using HTML to Display Plug-ins." To see your plug-in
in action, simply display the HTML page that calls it in the browser.

Registering Plug-ins

Netscape Gecko identifies a plug-in by the MIME type it supports. When it needs to
display data of a particular MIME type, the browser finds and invokes the plug-in
object that supports that type. The data can come from either an EMBED tag in an
HTML file (where the OBJECT or EMBED tag either specifies the MIME type directly
or references afile of that type), from a separate non-HTML file of that MIME type,
or from the server.

The server looks for the MIME type registered by a plug-in, based on the file
extension, and starts sending the file to the browser. The browser looks up the media
type, and if it finds a plug-in registered to that type, |oads the plug-in software.

When it starts up, the browser checks for plug-in modulesin the plug-in directory for
the platform and registers them. It determines which plug-ins are installed and which
types they support through a combination of user preferencesthat are private to the
browser and the contents of the plug-ins directory.

A MIME type is made up of amajor type (such as application or image) and a minor
type, for example, image/jpeg . If you define anew MIME type for a plug-in, you
must register it with IETF (Internet Engineering Task Force). Until your new MIME
type isregistered, preface its name with "x-", for example, image/x-nwim. For more
information about MIME types, see these MIME RFCs:

* RFC 1521: "MIME: Mechanisms for Specifying and Describing the Forms of
Internet Message Bodies"

* RFC 1590: "Media Type Registration Procedure.”

There are some variations to how plug-ins are handled on different platforms. The
following sections describe platform-specific discovery and registration:

« MacOS
e MSWindows
 Unix

22 Gecko Plug-in APl Reference

http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc1521.html

http://www.faqs.org/rfcs/rfc1590.html

Mac OS

On the Mac OS platform, the Plug-ins folder islocated in the same folder as the
browser application. Plug-ins are identified by file type NSPL. When the browser
starts up, it searches subfolders of the Plug-ins folder for plug-ins and follows aliases
to folders and NSPL files. Plug-in filenames must begin with NP.

The MIME types supported by a plug-in are determined by its resources. 'STR# 128
should contain alist of MIME types and file extensions in alternating strings. For
example:

str 128 M ME Type

String 1 vi deo/ qui ckti me
String 2 nov, nmoov

String 3 audi o/ ai ff

String 4 aiff

String 5 i mage/j peg
String 6 i pg

Several other optional strings may contain useful information about the plug-in. Plug-

ins must support 'STR#' 128 but are not required to support any of these others:

e STR#' 127 cancontain alist of MIME type descriptions corresponding to the
typesin 'STR#' 128 . For example, thisdescription list correspondsto the typesin
the previous example: String 1: "QuickTime Video", String 4: "AlFF Audio”, and
String 5: "JPEG Image Format."

e STR#' 126: String 1 can contain a descriptive message about the plug-in. This
message, which isin HTML format, is displayed by the browser in its "About
Plug-ins' page. String 2 can contain the name of the plug-in, thus allowing the
name the user seesto be different from the name of the file on disk.

M S Windows

On Windows, the plugins directory is located in the same directory as the browser
application. Typical installations locate the plugins directory here:
C.\Program Fi | es\ Net scape\ Net scape 6\ Pl ugi ns

Y ou can a'so find this directory through the Registry. The browser does not search
subdirectories. Plug-ins must have a 8.3 filename beginning with NP and ending with
.DLL.

23

The Windows version information for the plug-in DLL determines the MIME types,
file extensions, file open template, plug-in name, and description. In the MIME types
and file extensions strings, multiple types and extensions are separated by the "|"
character, for example:

vi deo/ qui ckti ne| audi o/ ai ff|i nage/j peg

For the browser to recognize the plug-in, the version stamp of the plug-in DLL must
contain the following lines:

» File Extents: for file extensions

* MIME Type: for MIME types

» Language: for language in use

In your development environment, make sure your language is set to "US English"
and the character set to "Windows Multilingual." The resource code for this language
and character set combination is040904E4.

Unix

On Unix, the plugins directory is set by the environment variable
${MZI LLA_FI VE_HOVE} / pl ugi ns. Plug-in filenames must begin with NP.

To determine the MIME types of the plug-ins, the browser loads each plug-in library
and callsitsrequired NPP_Get M MEDescr i pt i on entry point.

NPP_Get M MEDescr i pt i on should return a string containing the type, extension
list, and type description separated by semicolons; for example, i mage/ xbn xbm X
Bi t map.

The browser a'so callsthe plug-in's optional NPP_Get Val ue entry point to determine
the plug-in name and description.

The callsto NPP_Get M MEDescr i pti on and NPP_Get Val ue are made for
registration purposes only. During registration, the browser does not call any other
plug-in entry points, and the plug-in cannot call any other browser entry points at all.

Drawing a Plug-in I nstance

Before drawing itself on the page, the plug-in must provide information about itself,
set the window or other target in which it draws, arrange for redrawing, and handle
events.

A windowless plug-in can cal the following Netscape methods to draw itself:
* NPN_ForceRedraw: Force a paint message for windowless plug-ins.

24 Gecko Plug-in APl Reference

* NPN_InvalidateRect: Invalidate an areain a windowless plug-in before repaint-
ing or refreshing.

* NPN_InvalidateRegion: Invalidate an areain a windowless plug-in before
repainting or refreshing.

The browser calls these Plug-in methods:

* NPP_GetValue: Query the plug-in for information.

* NPP_Print: Request a platform-specific print operation for the instance.
* NPP_SetValue: Set the browser information.

* NPP_SetWindow: Set the window in which a plug-in draws.

* NPP_HandleEvent: Deliver a platform-specific event to the instance.

The plug-in can call these Netscape methods to query and set information:
* NPN_GetValue: Get the browser information.
* NPN_SetValue: Set plug-in the browser information.

For information about these processes, see "Drawing and Event Handling."

Handling Memory

Plug-in devel opers can take advantage of the memory features provided in the Plug-in

API to alocate and free memory.

* Usethe NPN_M emAlloc method to allocate memory from the browser.

* Usethe NPN_M emFree method to free memory allocated with NPN_MemAl | oc.

* Usethe NPN_M emFlush method to free memory (Mac OS only) before calling
memory-intensive Mac Toolbox calls.

Sending and Receiving Streams

Streams are objects that represent URL s and the data they contain. A streamis
associated with a specific instance of a plug-in, but a plug-in can have more than one
stream per instance. Streams can be produced by the browser and consumed by a
plug-in instance, or produced by an instance and consumed by the browser. Each
stream has an associated MIME type identifying the format of the data in the stream.

Streams produced by the browser can be automatically sent to the plug-in instance or

requested by the plug-in. The plug-in can select one of these transmission modes:

* Normal mode: the browser sends the stream data sequentially to the plug-in asthe
data becomes available.

* Random-access mode: the browser allows the plug-in to request specific ranges
of bytes from anywhere in the stream. This mode requires server support.

25

» Filemode: the browser saves the datato alocal file in cache and passesthat file
path to the plug-in.

Streams produced by the plug-in to send to the browser are like normal-mode streams
produced by the browser, but in reverse. In the browser’ s normal-mode streams, the
browser calls the plug-in to inform it that the stream was created and to push more
data. In streams produced by the plug-in, by contrast, the plug-in calls Netscape
functions to create a stream, push datainto it, and delete it.

Working with URL s

The Plug-in API provides methods that plug-ins can use to retrieve data from or post
datato a URL anywhere on the network, provide hyperlinks to other documents, post
form datato CGI scripts using HTTP, or upload filesto a remote server using FTP.

e UseNPN_GetURL to request the browser to load a URL into a particular
browser window or frame for display, or to deliver the data of that URL to the
plug-in instance in a new stream

* TheNPN_GetURL Notify function operates like NPN_Get URL, except that it
notifies the plug-in of the result when the operation compl etes.

* UseNPN_PostURL to send datato a URL from amemory buffer or file. The
result from the server can also be sent to a particular browser window or frame
for display, or delivered to the plug-in instance in a new stream.

* The NPN_PostURL Notify function operates like NPN_Post URL, except that it
notifies the plug-in of the result when the operation compl etes.

For information about using these methods, see "URL s."

Getting Version and Ul Information

The Netscape group of Plug-in API methods provides some basic services to the plug-

in. You can use these Netscape methods:

* Toidentify the browser in which your plug-in is displayed: Use the
NPN_UserAgent method to read this information.

* To determine whether plug-in and the browser versions are compatible and possi-
bly provide alternative processing for different versions: Use the NPN_Version
method to check for changes in major and minor version numbers.

For information about using these methods, see "Version, Ul, and Status
Information."

26 Gecko Plug-in APl Reference

Displaying M essages on the StatusLine

Functionaly, your plug-in is seamlessly integrated into the browser and operates as an
addition to current browser capabilities. To make the user feel that the plug-in is part
of the the browser user interface, your plug-in can emulate the browser behavior by
providing status line messages. Usethe NPN_St at us method to display a message on
the statusline.

For information about using this method, see "Version, Ul, and Status
Information."

Making Plug-ins Scriptable

Scriptable plug-ins are plug-ins that have that have been extended to provide methods
that can be called from JavaScript and the DOM when accessed through the OBJECT
or EMBED tag. Consider the following example, where a media player plug-in can be
controlled with an AdvanceToNext Song() method called inside the SCRI PT tag:

<OBJECT i d="nyPI ugi n"
t ype="audi o/ wav"
dat a=" nusi c. wav" ></ OBJECT>
<SCRI PT>
var thePlugin = document. get El enent Byl d(' nyPl ugi n');
if (thePlugin)
t hePl ugi n. AdvanceToNext Song() ;
el se
alert("Plugin not installed correctly");
</ SCRI PT>

LiveConnect provided this sort of behavior for 4.x NPAPI plug-ins, but Netscape
Gecko plug-ins now use X PConnect. Plug-ins that formerly used LiveConnect to
make themselves scriptable in 4.x Netscape browsers have lost this possibility in the
new XPCOM architecture upon which Netscape Gecko-based browsers are based.
This is because there is no longer a guarantee of Java compatibility on abinary level
due to the JRI/INI switch. Plug-ins now use a mechanism called X PConnect to expose
Netscape Communicator 4.x plug-insto JavaScript in the browser interface.

Where LiveConnect was a bridge between Java and JavaScript, XPCOM isamore
general framework for making components scriptable from the browser. In order to
make plug-ins accessible via X PConnect, however, some changes have been made to
the Mozillacode, and there are also some modifications you will have to maketo your
plug-in code.

27

For more information about XPCOM and X PConnect, see:

www.mozilla.org/scriptable

www.mozilla.org/proj ects/xpcom

Modificationsto Your Plug-in Code

1

2.

3.

28 Gecko Plug-in APl Reference

A unique interface ID should be obtained. The windows command uui dgen can
generate this 1D for you, as can gui dgen on Unix.

An Interface Definition (.idl) file describing the plug-in scriptable interface
should be added to the project (see Example 1. Sample .idl file).

A Scriptable instance object should be implemented in the plug-in. This class will
contain native methods callable from JavaScript. This class should also inherit
from nsl Cl assl nf o and implement its methods to be able to request al
necessary privileges from the Mozilla security manager (see Example 2.
Scriptableinstance class).

Cases should be added to the plug-in implementation of NPP_Get Val ue for two
new scriptability additions to the NPPVariable enumeration type:

NPPVpl ugi nScri pt abl el nst ance = 10,

NPPVpl ugi nScri pt abl el | D =11

These two represent the scriptable plug-in instance and the unique ID of that plug-

in, respectively. See “Example 3. NPP_GetValue implementation” for
information about how to use these new enumerations in your code.

http://www.mozilla.org/scriptable
http://www.mozilla.org/projects/xpcom

How to call plug-in native methods

The following examples demonstrate how easily the native methods of a plug-in can
be called from JavaScript:

<enbed type="application/plugi n-m metype">
<script |anguage="javascript">

var enbed = docunent. enbeds[O0];

enbed. nati veMet hod() ;
</scri pt >

<obj ect id="plug” type="application/pl ugin-m nmetype">
<script |anguage="javascript">

var object = docunent.get El ement Byl d(“pl ug”) ;

obj ect . nati veMet hod() ;
</scri pt >

Note that both of the ways to access the plug-in object—with the enbeds array and
with the get El enent Byl d() method—will work with the EMBED and OBJECT tags.
The enbeds property is used to return an array of embedded objects, which can then
be indexed and used to call the method defined in the plug-in instance. The
document . get El enent Byl d() returnsareferenceto an object specified by unique

ID.

How to call JavaScript from the plug-in

When your plug-in is a scriptable component, it can be called from JavaScript in the
interface, as the example above demonstrates. Note that you can also call JavaScript
from your plug-in using some special methods described in a separate article:

http://www.mozilla.org/projects/pluging/scripting-plugins.html

29

http://www.mozilla.org/projects/plugins/scripting-plugins.html

This additional mechanism allows the plug-in to use JavaScript and access the DOM
in the same way as other JavaScript objects in the interface:

<SCRI PT>
var plugin = docunent.enbeds[0];
[/l tell the plugin the URL of this document.
plugin.l ocati on = docunment. | ocati on;

/] read back the docunent's | ocation
alert('location ="' + plugin.location);
</ SCRI PT>

Scriptable Plug-in Lifetime

Scriptable plug-ins are not immediately unloaded from memory and scripting
methods may still be called after the last plug-in instance is destroyed, since
somebody may still hold on to the scriptable object. Instead, plug-ins are held in
memory for abrief period of time so that the unloading can proceed safely after al
obj ects have been rel eased.

Scriptable plug-in building and installation overview

Though you do not need to have a copy of the Mozilla source tree in order to build
your plug-in, making the plug-in interface scriptable will require Mozilla headers and
the XPCOM compatible idl compiler, xpidl.exe. Note that you cannot use the MS
DevStudio MIDL compiler for this. The header files and other supporting files you
need are included in the Plug-in SDK.

This section provides a brief overview of the building and installation stages of your
plug-in development. The following two sections, Building Plug-insand Installing
Plug-ins provide more detail about these important plug-in development steps.

The following steps describe how to build and install aplug-in called “ TestPlugin”:

1. Compilensl! Test Pl ugi n. i dl with the xpidl compiler. Thiswill generate
nsl Test Pl ugi n. h and nsl Test Pl ugi n. xpt files.

2. Put nsl TestPlugin.xpt in the browser’s Plug-ins folder.

3. Build nptestplugin.dll with nsl TestPlugin.h included for compiling scriptable
instance class implementaion.

30 Gecko Plug-in APl Reference

4. Put nptestplugin.dll in the Plug-ins folder.

Note that the “installation process’ described here isamanual one, and merely
describes how to get the browser to see and register your plug-in for the appropriate
mediatype. See “Installing Plug-ins’ for information on how to create a plug-in
installation. Also see the following section, “Building Plug-ins’, for a more detailed
account of the building process.

Example 1. Sample .idl file

#i ncl ude "nsl Supports.idl”

[scriptable, uuid(bedb0778-2ee0-11d5-9cf8-0060b0f bd8ac)]
interface nslTestPlugin : nsl Supports {
voi d nativeMethod();

Example 2. Scriptable instance class

#i ncl ude "nsl Test Pl ugi n. h"

#i ncl ude "nsl Cl asslnfo.h"

/1 We nust inplenment nsldasslnfo because it signals the

/1 Mozilla Security Manager to allow calls from JavaScri pt.

/1 helper class to inplenent all necessary nslC asslnfo nmethod stubs
/1 and to set flags used by the security system
class nsClasslnfoMxin : public nslC asslnfo
{
/'l These flags are used by the DOM and security systens to signal that
/1 JavaScript callers are allowed to call this object's scritable nethods.
NS_| METHOD Get Fl ags(PRUI nt 32 *aFl ags)
{*aFl ags = nsl d asslnfo:: PLUG N_OBJECT | nsld assl nfo:: DOM OBJECT;
return NS_OK; }

31

NS_| METHOD Cet | npl enent at i onLanguage(PRUIi nt 32 *al npl ement ati onLanguage)
{*al npl emrent ati onLanguage = nsl Progranm ngLanguage: : CPLUSPLUS;
return NS_OK; }

/1 The rest of the nethods can safely return error codes...

NS_| METHOD Cet I nterfaces(PRU nt32 *count, nslID * **array)
{return NS_ERROR _NOT_| MPLEMENTED; }

NS_| METHOD Get Hel per For Language(PRUI nt 32 | anguage, nsl Supports **_retval)
{return NS_ERROR NOT_| MPLEMENTED; }

NS_| METHOD Get Contract!| D(char * *aContract| D)
{return NS_ERROR NOT_| MPLEMENTED; }

NS_| METHOD Get Cl assDescription(char * *aC assDescri ption)
{return NS_ERROR NOT_| MPLEMENTED; }

NS_| METHOD Get Cl assl D(nsCI D * *ad assl D)
{return NS_ERROR NOT_| MPLEMENTED; }

NS_| METHOD Get Cl assl DNoAl | oc(nsClI D *aCl assl| DNoAl | oc)
{return NS_ERROR NOT_| MPLEMENTED; }

H

cl ass nsScriptabl ePeer : public nslTestPlugin,

public nsd assl nf oM xi n

{

publi c:
nsScri pt abl ePeer () ;
~nsScri pt abl ePeer () ;
NS_DECL_| SUPPORTS
NS_DECL_NSI TESTPLUG N

H

nsScri pt abl ePeer: : nsScri ptabl ePeer ()

{
NS_I NI T_I SUPPORTS() ;

nsScri pt abl ePeer: : ~nsScri pt abl ePeer ()

32 Gecko Plug-in APl Reference

/1 Notice that we expose our claimto inplement nsld asslnfo.
NS_| MPL_| SUPPORTS2(nsScri pt abl ePeer, nsl Test Pl ugi n, nslC asslnfo)

/1 the followi ng nethod will be callable fromJavaScri pt
NS_I METHCDI MP
nsScri pt abl ePeer:: Nati veMet hod()

{
return NS_CK;

Example 3. NPP_GetValue implementation

The following example shows an implementation of NPP_Get Val ue with the updated
parameters and a possible scenario of scriptable object life cycle.

#i ncl ude "nsl Test Pl ugi n. h"

NPError NPP_New(NPM METype pl ugi nType, NPP instance, uintl6 node,
int16 argc, char* argn[], char* argv[], NPSavedData* saved)

{
if(instance == NULL)
return NPERR_I NVALI D_I NSTANCE_ERROR,
/1 just prime instance->pdata with null for the purpose of this exanple
/1 it will be assigned to the scriptable interface later to keep its
/1 association with the specific plugin instance
i nstance->pdata = NULL;
return rv;
}

NPError NPP_Get Val ue(NPP i nstance, NPPVariable variable, void *val ue)
{

if(instance == NULL)
return NPERR_| NVALI D_| NSTANCE_ERROR;

NPError rv = NPERR_NO_ERROR;
static nslID scriptablell D = NS_| TESTPLUG N_I | D;

if (variable == NPPVpluginScri ptabl el nstance) {

/1 nslTestPlugin interface object should be associated with the plugin
// instance itself. For the purpose of this exanple to keep things sinple

/1 we just assign it to instance->pdata after we create it.

nsl Test Pl ugi n *scri ptabl ePeer = (nsl TestPlugin *)instance->pdat a;

/Il see if this is the first time and we haven't created it yet
if (!scriptabl ePeer) {
nsl Test Pl ugi n *scri pt abl ePeer = new nsScri pt abl ePeer () ;
if (scriptabl ePeer)
NS_ADDREF(scri pt abl ePeer); // addref for ourself,
/1 don't forget to rel ease on
/1 shutdown to trigger its destruction
}
/1 add reference for the caller requesting the object
NS_ADDREF(scri pt abl ePeer) ;
*(nsl Supports **)val ue = scri ptabl ePeer;
}
else if (variable == NPPVpluginScriptablellD {
nslID* ptr = (nslID *)NPN_MenAl | oc(si zeof (nslID));
*ptr = scriptablellD
*(nslID **)value = ptr;
}

return rv;

NPError NPP_Destroy (NPP instance, NPSavedData** save)
{

34 Gecko Plug-in APl Reference

if(instance == NULL)
return NPERR_| NVALI D_| NSTANCE_ERROR;

/1 release the scriptabl e object
NS_| F_RELEASE(i nst ance- >pdat a) ;

Building Plug-ins

Once you have added the special code and additional files to make your plug-in
scriptable as described in the previous section, the build processis quite straight-
forward. In addition to the DLL that goesin the pl ugi ns folder, you must also place
atype library and an extra header file in the appropriate places in your application
directory. This section describes those extra scriptability stepsin more detail.

Building, Platforms, and Compilers

Build resources have been supplied with the SDK for al of the major platforms. There
are makefiles for the Unix platform, project files for the Windows and Macintosh
IDEs, definition files, resources files, and other resources for building the samplesin
the SDK and your own plug-in projects. Netscape Gecko plug-ins can also be
compiled by well-known compilers on all the mgjor platforms—though using those
compilers competently is of course outside the scope of this manual.

All the resources you need—the definition files, the source files, the resource files—
can be found in the Plug-in SDK, which is available in the mozilla source tree and
also as separately downloadable and buildable software kit. The basic plug-in
example, located in the mozilla source at

mozi | | a/ modul es/ pl ugi n/ t ool s/ sdk/ sanpl es/ basi c, hasal the filesyou
need to build a simple plug-in on the major platforms.

Building Carbonized Plug-insfor Mac OSX

Thebuilding processfor Mac OSX plug-insisvery like that forMac “classic” plug-ins
and plug-ins on other platforms. There are, however, a couple of differences you must
be aware of if you are going to successfully compile your plug-in for the Mac OSX
platform.

The main changeisvisible in the npupp.h header file, where the preprocessor variable
_NPP_USE_UPP_ isset to FALSE or 0, because TARGET_API _VAC_CARBON s true:

/* NPP_Initialize */
#define _NPUPP_USE_UPP_ (TARGET_RT_MAC CFM && ! TARGET APl _NMAC_CARBON)

#if _NPUPP_USE_UPP_
t ypedef Universal ProcPtr NPP_InitializeUPP;

enum {
uppNPP_I ni tializeProcl nfo = kThi nkCSt ackBased
| STACK_ROUTI NE_PARAMETER(1, S| ZE_CODE(0))
| RESULT_SI ZE(Sl ZE_CODE(0))

B

#defi ne NewNPP_I niti al i zeProc(FUNC)\

(NPP_InitializeUPP) NewRoutineDescriptor((ProcPtr) (FUNC),
uppNPP_I nitializeProclnfo, GetCurrentArchitecture())

#define Call NPP_InitializeProc(FUNC)\

(voi d) Cal | Uni ver sal Proc((Uni versal ProcPtr) (FUNC),
uppNPP_I ni ti al i zeProcl nf o)

#el se
t ypedef void (* NP_LOADDS NPP_lnitializeUPP)(void);
#defi ne NewNPP_I niti al i zeProc(FUNC)\
((NPP_InitializeUPP) (FUNC))
#define Call NPP_InitializeProc(FUNC)\
(*(FUNQ)) ()

#endi f

36 Gecko Plug-in APl Reference

When thisisthe case, al of the function pointersin the NPPI ugi nFuncs struct, also
described in the npupp.h header file, will be actua function pointers and not “routine
descriptors,” which aren’t supported in the Carbon runtime:

t ypedef struct _NPPl ugi nFuncs {
uint 16 si ze;
ui nt 16 versi on;
NPP_NewUPP newp;
NPP_Dest r oyUPP dest roy;
NPP_Set W ndowUPP set wi ndow;
NPP_NewSt r eamJPP newst r eam
NPP_Dest r oySt r eamJPP destroystream
NPP_St reamAsFi | eUPP asfil e;
NPP_W it eReadyUPP wri t er eady;
NPP_WiteUPP write;
NPP_Pri nt UPP pri nt;
NPP_Handl eEvent UPP event ;
NPP_URLNot i f yUPP url noti fy;
JRI G obal Ref javad ass;
NPP_GCet Val ueUPP get val ue;
NPP_Set Val ueUPP set val ue;

} NPPI ugi nFuncs;

Finally, in the Mac Classic plug-ins, the main entry point isrequired to be an exported
symbol called “mainRD”, which is aroutine descriptor for the plug-ins main function:

#i fdef XP_MAC
/

R R R EEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEEEEEEEEEEEEEESS

* Mac platformspecific plugin glue stuff

R R EEEEEEEEEEEEEEEEEEEREEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEEEEEEEEEEEEEESS

*/

/*
* Main entry point of the plugin
* This routine will be called when the plugin is |oaded. The function

* tables are passed in and the plugin fills in the NPPl uginFuncs table

37

* and NPPShut downUPP for Netscape's use.
*/

#f _NPUPP_USE_UPP_

typedef Universal ProcPtr NPP_Mai nEnt ryUPP;
enum {
uppNPP_Mai nEnt ryProcl nfo = kThi nkCSt ackBased

| STACK_ROUTI NE_PARAMETER(1, S| ZE_CODE(si zeof (NPNet scapeFuncs*)))
| STACK_ROUTI NE_PARAMETER(2, Sl ZE CODE(si zeof (NPPI ugi nFuncs*)))
| STACK_ROUTI NE_PARAMETER(3, Sl ZE_CODE(si zeof (NPP_Shut downUPP*)))
| RESULT_SI ZE(Sl ZE_CODE(si zeof (NPError)))

H

#def i ne NewNPP_Mai nEnt r yProc(FUNC) \

(NPP_Mai nEnt r yUPP) NewRout i neDescri ptor ((ProcPtr) (FUNC),
uppNPP_Mai nEnt ryProcl nfo, GetCurrentArchitecture())

#define Cal | NPP_Mai nEntryProc(FUNC, netscapeFunc, pluginFunc, shutdownUPP)\

Cal | Uni ver sal Proc((Uni versal ProcPtr) (FUNC),
(Procl nf oType) uppNPP_Mai nEnt ryProcl nf o, (netscapeFunc),
(pl ugi nFunc), (shutdownUPP))

However, in the Carbon runtime plug-ins, it's good form if the plug-in exports a
“main” entry point, which is expected to have the same prototype. At abare
minimum, the shared library’s “main” entry point must be set to such aroutine.

38 Gecko Plug-in APl Reference

Getting and Using the xpidl Compiler

The xpidl compiler that you must use to create the type library and the header file for
your plug-inisaregular product of the mozillabuild process. In the bin directory of
your mozilla build, you ought to see the xpidl binary. Use the -m option to specify
which kind of output you want, as in the following usage note.

Usage: ./xpidl [-mnode] [-wW [-V]

[-1 path] [-o0 basenane | -e filenane.ext] filenane.idl

-a emt annotations to typelib
-w turn on warnings (reconmmended)
-v verbose node (NYI)

add entry to start of include path for " #include "nslThing.idl """’

-0 use basenane (e.g. " /tnp/nslThing'') for output
-e use explicit output filenane
-m speci fy output node:

header CGener ate C++ header (.h)
typelib CGener at e XPConnect typelib (. xpt)
doc CGenerate HTM. docunent ation (.htnl)
j ava Cenerate Java interface (.]java)

For example, to create a header file for aplug-in IDL file nsl TestPlugin.idl, you
would type the following at the command prompt:
./ xpidl -m header nsl TestPlugin.idl

The resulting header file, nsl TestPlugin.h, should then beincluded when the
nsTestPlug.dll is built.

TypelLibraries

In addition to the header file, you must also create atype library file for your plug-in.
This file—in our example, nsl TestPlugin.xpt—can a so easily be generated from the
xpidl compiler, and should be placed in the Plugins subdirectory of the browser
application.

The type library is aspecial binary independent interface file that exposes the
interface(s) of an object in away that allows them to be used uniformly across
platforms, languages, and programming environments. The type library providesthe
information about the interface at run-time, which isrequired in a cross-platform
component framework like XPCOM.

39

To create atype library file for the nsl TestPlugin.idl IDL, you would type the
following a the command prompt:
.Ixpidl -mtypelib nslTestPlugin.idl

Installing Plug-ins

With the redesign of the Netscape and Mozilla browsers, there has been a dramatic
change to the way that plug-ins and other software are installed. Netscape Gecko now
provides a cross-platform installation API that you can use to install new browser
components, plug-ins, applications, or any other software.

This API can be used in one of two ways. Y ou can create asmall installation script to
download and execute a binary installer for the plug-in, as described in the Native
Installer sbelow. Or you can do the entire installation using the X PInstall API, which
is documented in the XPI Plug-ins I nstallations section below that.

For more general information about the API, see:

The XPInstall APl Reference

Native Installers
Plug-ins must use the XPInstall API to install themselvesin the appropriate area.

They may also use other binary installers, as before, in which case the X PInstall
archive and its installation script are effectively a small wrapper for the installer

40 Gecko Plug-in APl Reference

http://developer.netscape.com/docs/manuals/xpinstall/xpinstal.html

executable, downloading that binary and executing it on the user's system. The
following installation script example gives you someidea of how simple this
"wrapper" can be.

/1 DJ Doubl e-Decker Plug-in Installer

err =initlnstall ("
DJ Doubl e- Decker Plug-in Installer",
“DIDD"
IIO. gll);
| ogComment ("initlnstall () returned: " + err);
err = execute("djdd.exe", "", true);
| ogComment ("execute() returned: " + err);
if(lerr)
{

err = performnstall();
| ogComment ("perform nstall () returned:

+ err);

Even with the optional logging (i.e., thel ogConment () method used after each main
step to check the return value of that function), the installation is less than ten lines.

Using an XPInstall script like thisto wrap the installer has the additional advantage of
running in the same process as the browser, which means that you can invoke the
installer executable and hand back control immediately.

initlnstall beginsevery installation script with parameters representing the name
and other information about the installation. The next line uses the execut e()
method (which isamember of the Install object, implicit in installation script just as
the window object isimplicit in browser scripts) to execute the installer contained
within the archive. per f or ml nst al | () beginsthe actua installation. Note that you
do not have to install theinstaller in order to execute it on the local system. See the
XPInstall API for more information about cross-platform installations, and see the
second example below for amore detailed plug-in installation, in which the X PInstall
API performs all of the necessary stepsto install the plug-in and its supporting files
and register it with the browser.

41

Thisscript isincluded in aspecia archive called a XPl. When a separate executable is
performing the actual installation, the contents of that XPl may be nothing other than
the installer executable and the install.js installation script.

XPI Plug-insInstallations

Y ou can a'so use the XPInstall API do the installation yourself, without using a third-
party installer. The following script works on any platform, and installs the JRE 1.3
plug-in the JRE in the Netscape 6 browser. This sort of script can easily be adapted to
install any type of plug-in.

/1 this function verifies disk space in kil obytes

function verifyDi skSpace(dirPath, spaceRequired)

{
var spaceAvail abl e;
/1 Get the avail able di sk space on the given path
spaceAvail abl e = fil eGet Di skSpaceAvai |l abl e(di r Pat h) ;
/1 Convert the avail able disk space into kil obytes
spaceAvai |l abl e = parsel nt (spaceAvail able / 1024);
/1 do the verification
i f (spaceAvail abl e < spaceRequi red)
{
| ogConment ("1 nsuf ficient disk space: " + dirPath);
| ogComment (" required : " + spaceRequired + " K');
| ogConmment (" available: " + spaceAvailable + " K');
return(false);
}
return(true);
}

var srDest = 38628;

42 Gecko Plug-in APl Reference

var err = initlnstall("Sun Java 2", "/Sun/Java2", "1.3");
Il ogComment ("initlnstall: " + err);
var fPlugins= getFol der ("Pl ugi ns");
| ogComment (" plugins folder: " + fPlugins);
if (verifyDi skSpace(fPlugins, srDest))
{
err = addDirectory("JRE_Pl ugi n_Li nux_i 386",
"1.3",
"jre-inage-i 386", /1 jar source folder
f Pl ugi ns, /1 target folder
"java2", /1 target subdir
true); /1 force flag
| ogConment ("addDirectory() returned: " + err);
/1 create symink: plugins/libjavaplugin_oji.so ->
11 pl ugi ns/j ava2/ pl ugi n/i 386/1i bj avapl ugin_oji.so
var Ink = fPlugins + "libjavaplugin_oji.so";
var tgt = fPlugins + "java2/plugin/i 386/ ns600/1ibjavaplugin_oji.so";
var ignoreErr = execute("symink.sh", tgt + " " + Ink, true);
| ogComment (" execute sym ink.sh "+tgt+" "+l nk+" returned: "+ignoreErr);
i f (err==SUCCESS)
{
err = performnstall();
| ogComment ("perform nstall () returned: " + err);
}
el se
{
cancel I nstall (err);
| ogComment ("cancel I nstall () returned: " + err);
}
}

el se

cancel I nstal | (1 NSUFFI Cl ENT_DI SK_SPACE) ;

Note that this script installs the Linux JRE plug-in and assumes you are running
Linux, but you can aso use the XPInstall API to check the platform type, check for
the presence of other files, and perform other preparatory functionsin your
installation scripts.

Also note the use of the“Plugins’ keyword in the get Fol der () function to locate
and specify the plug-ins subdirectory in a cross-platform way. The returned object,

f Pl ugi ns, isused asthe target folder for installation of this binary file in the

addDi rect ory() function that actually specifieswherethefilesin the XPI areto be
installed on the local machine.

Plug-in Installation and the Windows Registry

An important aspect of the installation process on the Windows platform isthe
reading of registry keysto determine how many Netscape Gecko-based browsers are
installed locally, which they are, and how they are configured for plug-ins.

Whether you are using a native Windows installer like Install Shield or writing
installation scripts using the XPInstall API (see“XPI Plug-ins Installations”), you
can access the registry, read and write data about your plug-in, and customize your
installation for the different Netscape Gecko installation targets, as this section
describes.

The registry keys that affect the installation of plug-ins are subkeys of the various
Netscape Gecko-based products enumerated under:
HKEY_LOCAL_MACHI NE\ Sof t war e\ Mozi | | a

The products are listed as subkeys of the Mozillakey. Y ou can enumerate these
subkeysto get the Netscape Gecko-based browsers, and further enumerate those
subkeysto read such important configuration information as where in the browser
application directories the plug-in should be installed, which version isinstalled, and
so on.

The Plugins key-value pair shows where plug-ins should be installed for that Netscape
Gecko-based product:

Pl ugi ns = C:\ Program Fil es\ Net scape\ Net scape 6\ Pl ugi ns

44 Gecko Plug-in APl Reference

For all but the newest Netscape Gecko-based products, the Components key-value
pair aso holds an important piece of information: As described in the “ Type
Libraries’ section above, Netscape Gecko-based products require that you put the
typelibrary file, or XPT, in the Conponent s subdirectory.

Conponents = C:\Program Fi |l es\ Net scape\ Net scape 6\ Conponents

Also, the product subkey (e.g., Mozilla/Netscape 6 6.2.1) has abi n subkey which
exposes the PathToExe key-val ue pair:
Pat hToExe = C:\ Program Fil es\ Net scape\ Net scape 6\ netscp6. exe

See the X PInstall registry manipulation example for more information about how
these key values from the registry can be used to steer your installation for different
targets.

If you are using anative installer, then that installer will have its own way to access
and update the registry. If you are using the XPInstall API, then you can use the
winReg function to find the plug-in subdirectories where your software should be
installed, as the following example demonstrates.

var winreg = get WnRegistry();

Wi nreg. set Root Key(wi nreg. HKEY_LOCAL_MACHI NE) ;

var index = O;

var baseKey = "Software\\Mzilla";
while ((MzillaVersion = w nreg. enunkKeys(baseKey, i ndex)) != null)
{

| ogComment (" Mozil |l aVersion = " + Mzill aVersion);

subkey = baseKey + "\\" + MozillaVersion + "\\Extensions";
pluginsDir = w nreg. getValueString (subkey, "Plugins");
if (pluginsDir)
| ogComment ("pluginsDir =" + pluginsDir);
el se
| ogComment ("No plugins dir for " + baseKey + "\\" + MzillaVersion);

i ndex++;

When combined with the installation examples above, this kind of parsing of the
Windows registry can make it easy for you to install plug-ins on different platforms
and browsers.

46 Gecko Plug-in APl Reference

| nitialization and Destruction

This chapter describes the methods that provide the basic processes of initialization,

instance creation and destruction, and shutdown.

* Initialization: The browser callsthe Plug-in API function NP_I nitialize when
the plug-in code is first loaded.

* Instance Creation: The browser calsthe Plug-in API function NPP_New when
the instance is created.

» Instance Destruction: The plug-in instance is deleted when the user leaves the
instance page or closes the instance window; the browser calls the function
NPP_Destroy to tell the plug-in that theinstance is being deleted.

e Shutdown: When the last instance of a plug-in is deleted, the plug-in code is
unloaded from memory and the browser calls the function NP_Shutdown. Plug-
ins consume no resources, other than disk space, if not referenced.

This chapter ends with I nitialize and Shutdown Example, which includes the
NP_lInitialize and NP_Shutdown methods.

Initialization

The browser calls NP_l nitialize when aplug-inisloaded and before thefirst instance
is created. Use this function to alocate the memory and resources shared by all
instances of your plug-in.

NPError NP_lnitialize(void){
}

After the last plug-in instance is deleted, the browser calls NP_Shutdown, which
releases the memory or resources allocated by NP_I ni ti al i ze. For an example that
showsthe use of boththe NP_I ni ti al i ze and NP_Shut down methods, see
Initialize and Shutdown Example

During initialization, when the browser encounters data of aMIME type registered for
aplug-in (either embedded in an HTML page or in aseparatefile), it loads the plug-in
code into memory (if it hasn't been loaded already) and creates a new instance of the
plug-in. For more information, see Registering Plug-ins

47

Plug-ins are native codelibraries: .DLL fileson Windows, .SO or .DSO files on Unix,
and PowerPC Shared Library files or 68K code resources on Mac OS. To reduce
memory overhead, plug-ins are usually loaded only when needed and released as soon
as possible.

In the initialization process, the browser passes the plug-in two tables of function

pointersfor al API calls:

* Onetablelistsal API callsfrom the plug-in to the browser. Thistableisfilled out
by the browser before the initialization call.

* Theother tablelistsal API calsfrom the browser to the plug-in. Thistableis
filled out by the plug-in during the initialization call.

The function tables also contain version information that the plug-in checks to verify
that it is compatible with the API capabilities provided by the application. To check
thisinformation, use NPN_Version.

No plug-in API calls can take place in either direction until the initialization
completes successfully, with the exception of the functionsNP_I ni ti al i ze and
NP_Shut down, which are not in the function tables. However, because
NP_Initializeiscaled at the end of theinitialization process, you can call other
methods, such as such as NPP_Memal | oc and NPP_St at us, from NP_I ni ti al i ze.

I nstance Creation

Afterinitialization, the plug-in instance is created. M ore than one instance of the same
plug-in can exist if a single page contains multiple embedded plug-ins, or if several
browser windows are open and display the same datatype. At this point, a plug-in can
call the NPN_SetValue function to specify whether it is windowed (the default) or
windowless.

Plug-in instance are created with NPP_New and destroyed with NPP_Destr oy.
NPP_New informs the plug-in of the creation of a new instance with the specified
MIME type. Y ou can allocate instance-specific private data at thistime.

NPError NPP_New(NPM METype pl ugi nType,
NPP i nstance, uint16 node,

int16 argc, char *argn[],

char *argv[], NPSavedData *saved);

Thepl ugi nType parameter represents the MIME type of thisinstance of the plug-in.
Y ou can assign more than one MIME type to a plug-in, which could potentially allow
the plug-in to respond to data streams of different types with different interfaces and
behavior.

48 Gecko Plug-in APl Reference

Thei nst ance parameter represents an NPP object, created by the browser. Y ou can
store the instance-specific private datain its pdata field (instance->pdata).

The node parameter identifies the display mode in which the plug-in was invoked,

either NP_EMBED or NP_FULL.

* NP_EMBED means that the instance was created by an EMBED and shares the
browser window with other content.

* NP_FULL meansthat theinstance was created by a separatefile and isthe primary
content in the window.

The next three parameters pass parameters from the EMBED tag that called the plug-in.
The argc parameter is the number of HTML argumentsin thetag. It determinesthe
number of attributes in the arrays specified by the argn and argv parameters.

The arguments in the EMBED tag are name-value pairs made up of the attribute name
(for example, ALI GN) and itsvalue (for example, top). The argn array containsthe
attribute names; the argv array contains the attribute val ues.

The browser ignores any nonstandard attributes in an EMBED tag, so the web page
author can use the arg parameters to specify private attributes defined for a particular
plug-in. For example, the following EMBED tag has the standard attributes SRC,

HEI GHT, and W DTH and the private attribute LOOP:

<EMBED SRC="novi e. avi" HEl GHT=100 W DTH=100 LOOP=TRUE>

With the EMBED tag in the example, the browser passes the valuesin argv to the plug-
in instance:

argc = 4
argn = { "SRC', "HEl GHT", "WDTH', "LOOP" }
argv = { "novie.avi", "100", "100", "TRUE" }

The saved parameter allows an instance of a plug-in to save its data and, when the
instance is destroyed, pass the data to the next instance of the plug-in at the same
URL. The datais saved in the History list. Aslong as the plug-in still appearsin this
list, that saved data is associated with the page; any new instances receive this data.

I nstance Destruction

Plug-in instances are created with NPP_New and destroyed with NPP_Destroy. The
browser calls NPP_Dest r oy when aplug-in instance is deleted, usually because the
user has | eft the page containing the instance, closed the window, or quit the
application. If thisisthe last instance created by a plug-in, NP_Shutdown is called.

49

Y ou should not perform any graphics operationsin NPP_Dest r oy because the
instance window is no longer guaranteed to be valid. Also, be sure to delete any
private instance-specific information stored in the plug-in's instance->pdata.
NPError NPP_Destroy(NPP instance, NPSavedData **save);

Thei nst ance parameter represents the plug-in instance to delete.

The plug-in can use the optional save parameter to save data for reuse by a new
instance with the same URL . The datais passed to NPP_New through its saved
parameter. For example, avideo player could save the last frame number to be
displayed. When the user returns to the page, the previous frame number is passed to
the new instance of the plug-in, so it can initially display the same frame.

Note that you cannot count on data being saved this way; the data may belost if the
browser restarts or purges memory. Ownership of the buf field of the NPSavedDat a
structure passes from the plug-in to the browser when NPP_Dest r oy returns.

The examplein this section sets up a buffer and allocates memory for it. Y ou can use
thistype of buffer to handle data saved from one instance of a plug-in to another. The
example shows the use of the optional save parameter of NPP_Dest r oy and saved
parameter of NPP_New.

* InNPP_New, the saved parameter contains previously saved datafor thisinstance
of the plug-in (saved by NPP_Dest r oy). The plug-in must free the memory for
NPSavedDat a and the buffer it contains.

* In NPP_Dest r oy, the save parameter specifies state or other information to save
for reuse by a new instance with the same URL.

To ensure that the browser does not crash or leak memory when the saved datais
discarded, the buf field should be aflat structure (a simple structure with no allocated
substructures) allocated with NPN_Men®l | oc, asin this example:

char* nyData = "Here is sone saved data.\n";
int32 nyLength = strlen(nyData) + 1;

save = (NPSavedDat a)
NPN_MermAl | oc(si zeof (NPSavedDat a)) ;

(*save)->len = nmylLengt h;
(*save)->buf = (void*) NPN_MenAll oc(nyLength);
strcpy((*save) - >buf, nyData);

If you allocate saved instance datain NPP_Dest r oy, be sure to allocate memory with
this function, since the browser can delete the saved data with the equivalent of
NPN_MemAl | oc at any time.

50 Gecko Plug-in APl Reference

Shutdown

When the application no longer needs the plug-in, it is shut down and rel eased.
NP_Shutdown gives you an opportunity to delete data allocated in NP_I nitialize to
be shared by all instances of aplug-in. The browser callsthe plug-in's NP_Shut down
function, which informs the plug-in that its library is about to be unloaded, and gives
it a chance to cancel any outstanding 1/0 requests, delete threads it created, free any
memory it allocated, and perform any other closing tasks.

The NP_Shut down function rel eases memory or resources shared across al instances
of aplug-in. It is called once after the last instance of the plug-in is destroyed, before
releasing the plug-in library itself.

voi d NP_Shut down(voi d);

For an example that shows both the NP_I ni ti al i ze and NPN_Shut down methods,
see "Initialize and Shutdown Example."

51

Initialize and Shutdown Example
This example demonstrates the use of the NP_I nitialize and NP_Shutdown methods.

/* Define global variable to hold the user agent string. */
static char* userAgent = NULL;

/* Initialize function. */

NPError NP_Initialize(void)

{

/* Get the user agent fromthe browser. */

char* result = NPN_UserAgent();

if (result == NULL) return NPERR_QUT_OF MEMORY_ERROCR;

/* Allocate sone nenory so that you can keep a copy of it. */
user Agent = (char*) NPN_MemAl | oc(strlen(result) + 1);
if (userAgent == NULL) return NPERR_OUT_OF_MEMORY_ERROR;

/* Copy the string to your nmenory. */
strcpy(userAgent, result);
return NPERR_NO_ERROR;

}

/* Shutdown function */

NPEr r or NP_Shut down(voi d)

{

/* Delete the nenory you allocated. */
if (userAgent != NULL)

NPN_Menfr ee(user Agent) ;

return NPERR_NO_ERROR;

}

52 Gecko Plug-in APl Reference

Drawing and Event Handling

This chapter tells how to determine whether a plug-in instance is windowed or
windowless, how to draw and redraw plug-ins, and how to handle plug-in events.

When it comes to determining the way a plug-in instance appearsin aweb page, you
(and the web page author) have many options. The content provider who writes the
web page determinesits display mode : whether the plug-in is embedded, or displayed
in its own separate page. Y ou determine whether a plug-in is windowed or
windowless by the way you define the plug-in itself.

* A windowed plug-in is drawn into its own native window (or portion of a native
window) on aweb page. A windowed plug-in is opaque, hiding the part of the
page beneath its display window. This type of plug-in determines when it draws
itself.

* A windowless plug-in does not require a native window. It is drawn in a target
called a drawable , which corresponds to either the browser window or an off-
screen bitmap. A drawable can be defined in several ways, depending on the plat-
form. Windowless plug-ins can be opaque or transparent. A windowless plug-in
drawsitself only in response to a paint message from the browser.

For information about the way HTM L determines plug-in display mode, see "Using
HTML to Display Plug-ins."

* TheNPWindow Structure

* Drawing Plug-ins

* Windowed Plug-ins

* WindowlessPlug-ins

NOTE: Windowless plug-ins are currently not supported on the X Windows platform.

The NPWindow Sructure

When aplug-inisloaded, it is drawn into atarget area. Thistarget is either the
windowed plug-in's native window, or the drawable of awindowless plug-in. The
NPWindow structure represents either the native window or a drawable. This
structure contains information about coordinate position, size, the state of the plug-in
(windowed or windowless), and some platform-specific information.

NOTE: When a plug-in is drawn to a window, the plug-in is responsible for preserving
state information and ensuring that the original state is restored.

For windowless plug-ins, the browser calls the NPP_Set W ndow method with an
NPW ndow structure that represents a drawable. For windowed plug-ins, the browser
callsthe NPP_Set W ndow method with an NPW ndow structure that represents a
window.

The NPWindow Structure

t ypedef enum {

NPW ndowTy peW ndow = 1,
NPW ndowTypeDr awabl e

} NPW ndowType;

t ypedef struct _NPW ndow

{

voi d* wi ndow; /* Pl atformspecific handl e */
uint32 x; /* Position of top-left corner */
uint32 vy; /* relative to a Netscape page */
uint32 w dth; /* Maxi mum wi ndow si ze */

uint32 height;

NPRect clipRect; /* Cipping rectangle in port
coordi nates */

#i fdef XP_UNI X

void* ws_info; /* Platform dependent additional data
*/

#endi f /* XP_UNI X */

NPW ndowType type; /* Whether this is a wi ndow or a
drawabl e */

} NPW ndow;

The window parameter is a platform-specific handle to a native window element in
the browser window hierarchy on Windows and Unix. On Mac OS, window is a
pointer to an NP_Por't .

Thex andy fields specify the top-left corner of the plug-in relative to the page.

Thewi dt h and hei ght fields specify the dimensions of the plug-in area. These
values should not be modified by the plug-in.

54 Gecko Plug-in APl Reference

Thecl i pRect field definesthe clipping rectangle of the plug-in in a coordinate
system wherethe origin isthe top-left corner of the drawable or window. The browser
calls NPP_Set W ndow whenever the drawable changes.

Thet ype field indicates the NPWindow type of the target area:

* NPW ndowTypeW ndow: Windowed plug-in. The window field holds a platform-
specific handle to a window.

* NPW ndowTypeDr awabl e: Windowless plug-in. The window field holds a plat-
form-specific handle to a drawable, as follows:

* Windows: HDC
* Mac OS: pointer to NP_Por t structure.

In both cases, the drawable can be an off-screen pixmap.

Drawing Plug-ins

This section describes the methods and processes you use in drawing both windowed
and windowless plug-ins. Processes that apply to only one of these plug-in types are
described in the following sections.

The plug-in uses these methods to draw plug-ins and to handle events:
Plug-in methods, called by the browser:

NPP_Handl eEvent Deliver a platform-specific event to the instance.

NPP_Pri nt Request a platform-specific print operation for the
instance.

NPP_Set W ndow Set the window in which a plug-in draws.

Browser -side methods, called by the plug-in:

NPN_For ceRedr aw Force a paint message to a windowless plug-in.

NPN_I nval i dat eRect Invalidate an areain awindowless plug-in before
repainting or refreshing.

NPN_I nval i dat eRegi on Invalidate a region in a windowless plug-in before
repainting or refreshing.

Printing the Plug-in

The browser calls the NPP_Print method to ask the plug-in instance to print itself.

voi d NPP_Print (NPP instance, NPPrint *printlnfo);

Thei nst ance parameter represents the current plug-in.

The Pri nt | nf o parameter determines the print mode. It is set to either NP_FULL to
indicate full-page plug-in printing, or NP_EMBED if thisis an embedded plug-in
printed as part of the window in which it is embedded.

An embedded plug-in shares printing with the browser. The plug-in printsthe part
of the page it occupies, and the browser handles the rest of the printing process,
including displaying print dial og boxes, getting the printer device context, and, of
course, printing the rest of the page.

An embedded plug-in can set the pl ugi nPri nt ed fieldinitsPrintl nf o
parameter to false (the default). Thisisafield of the _NPFul | Pri nt substructure
of the NPPr i nt structure. The browser displays the necessary print dialog boxes
and callsNPP_Pri nt again. Thistime, Print I nfo->node should be set to
NP_EMBED.

A full-page plug-in handles the print dialog boxes and printing process as it sees
fit. In this case, before the browser displays any print dialog boxes, NPP_Pri nt is
called with Pri nt | nf o- >npde equal to NP_FULL. On Mac OS, full-page
printing requiresthat the field Pri nt | nf o contain a standard Mac OS THPr i nt
(see Printing.h).

Of course, NPP_Pri nt isalso called with Pri nt I nf o- >npde equal to NP_EMBED
when the instance is embedded. In this case, platformPrint->embedPrint.window
contains the window in which the plug-in should print.

On MS Windows, note that the coordinates for the window rectangle are in TW PS
format. For this reason, you need to convert the x- and y-coordinates using the
Windows API call DPt oLP when you output text.

Setting the Window

The browser calls the NPP_SetWindow function to set the window in which a plug-
in draws or returns an error code. Thiswindow isvalid for the life of theinstance, or
until NPP_Set W ndow s called again with a different value.

56 Gecko Plug-in APl Reference

Subsequent callsto NPP_Set W ndow for a given instance usually mean that the
window has been resized. If either window or window->window is null, the plug-in
must not perform any additional graphics operations on the window and should free
any associated resources.

NPError NPP_Set W ndow(NPP i nst ance, NPW ndow *w ndow) ;
Thei nst ance parameter represents the current plug-in.

The window parameter is a pointer to the drawing target for the plug-in. For
windowless plug-ins, the platform-specific window information specified in window-
>window is a platform-specific handle to a drawable.

M S Windows and Unix

For windowed plug-ins on MS Windows and Unix, the window->window field isa
handle to a subwindow of the Netscape window hierarchy.

Mac OS

The window->window field pointsto an NP_Port structure.

Getting I nformation

To receive information from the browser, the plug-in callsthe NPN_GetValue
method.

NPEr ror NPN_Get Val ue(NPP i nst ance,
NPNVar i abl e vari abl e, void *val ue);

Thei nst ance parameter represents the current plug-in.
Unix and M SWindows

The queried information is returned in the variable parameter. This parameter is valid
only for the Unix and MS Windows platforms. For Unix, the values are either the
current display (NPNVxDi spl ay) or the application's context (NPNVxt AppCont ext).
For MS Windows, the value is the native window on which the plug-in drawing
occurs (NPNVnet scapeW ndow).

The value parameter contains the name of the plug-in.

Y ou can aso use NPN_Get Val ue to help create a menu or dialog box for a
windowless plug-in.

57

Windowed Plug-ins

The browser gives each windowed plug-in its own native window, often a child
window of the the browser window itself, to draw into. The plug-in has complete
control over drawing and event handling within that window.

On Mac OS, the browser does not give awindowed plug-in anative window, because
the Mac OS platform does not support child windows. Instead, the windowed plug-in
draws into the graphics port associated with the the browser window, at the offset that
the browser specifies.

On MS Windows and Unix, the browser creates a child window for each plug-in
instance and passes it a window through NPP_SetWindow. On Mac OS, the
application uses NPP_Set W ndowto dedicate arectangular part of its graphics port to
each instance. On any platform, the browser should be careful not to draw in the plug-
in'sarea, and vice versa. The data structure passed in NPP_Set W ndowisan

NPW indow object, which contains the coordinates of the instance's area and various
platform-specific data

Typicaly, the browser calls NPP_Set W ndow after creating the instance so that the
plug-in can begin drawing immediately. However, the browser can create invisible
instances for which NPP_Set W ndow is never called and awindow is never created.
This happens when plug-ins are invoked with an HTML OBJECT tag that has been
hidden with special CSS rules (see Plug-in Display M odesin the Introduction) or
with an EMBED tag whose the HI DDEN attribute has been set.

The browser should call NPP_Set W ndow again whenever the size or position of the
instance changes, passing it the same NPW ndow object each time, but with different
values.

The browser can also call NPP_Set W ndow multiple times with different values for
the window, including null. For example, if a user removes an instance from the page,
The browser should call NPP_Set W ndow with awindow value of null. This value
prevents the instance from drawing further until it is pasted back on the page and
NPP_Set W ndow is called again with a new value.

e MacOS
 Windows
e Unix

58 Gecko Plug-in APl Reference

Mac OS

On Mac OS, the browser passes an NP_Por t structure in the window field of the
NPW ndow structure. This structure contains a pointer to the graphics port

(CG aphPt r) into which the plug-in instance should draw and the x- and y-
coordinates of the upper-left corner of this port. The plug-in can use these coordinates
tocal Set Ori gi n(portx, porty) to placethe upper-left corner of its rectangle at
(0,0). The Mac OS Gr af Por t structure'scl i pRgn field should be set to the clipping
rectangle for the instance in port coordinates.

Because the plug-in and the browser share the same graphics port, they share the
responsibility for managing it correctly. The browser sets up the port for the plug-in
before passing the plug-in an update event in two ways:

» Thebrowser calls Set Ori gi n(npport->portx, npport->porty).This
method makes the instance's upper-left coordinate equal to (0,0).

* Thebrowser setsthe port's clip region to the region of the plug-in currently visible
(not scrolled off the page, obscured by floating pal ettes, or otherwise hidden).

However, for the plug-in to draw at any other time, for example, to highlight on a
mouse-down event or draw animation at idle time, it must save the current setting of
the port, set up itsdrawing environment as appropriate, draw, and then restore the port
to the previous settings. In this case, the plug-in makes it unnecessary for the browser
to save and restore its port settings before and after every call into the plug-in.

The browser and the plug-in can both install Drag Manager handlers for the shared
port. Because the Drag Manager calls both handlers no matter where the cursor is, the
browser does not show the drag highlight when the cursor is over an instance
rectangle. Also, the browser does nothing when a drop occurs within an instance
rectangle. The plug-in can then show the drag highlight and handle drops when they
occur within the instance rectangle.

The browser is also responsible for sending the plug-in all events targeted to an
instance, such as mouse clicks when the cursor is within the instance rectangle or
suspend and resume events when the application is switched in and out. Events are
sent to the plug-in with acall to NPP_Hand! eEvent ; for acomplete list of event
types, see the reference entry for NPEvent .

59

Windows

On Windows, the browser registers awindow class and creates an instance of that
class for the plug-in instance. The plug-in can then subclass the window to receive
any eventsit needs. If the plug-in needs to receive periodic time messages (for
example, for animation), it should use atimer or a separate thread.

Unix

On Unix, the browser creates a Motif Drawing Area widget for the instance and
passes the window ID of the widget in the window field of NPW ndow. Additionally,
the browser creates an NPSet W ndowCal | backSt r uct object and passesit in the
ws_i nf o field of NPW ndow. As on Windows, the plug-in can receive al events for
the instance, in this case through the widget. If the plug-in needs to receive periodic
time messages, it should install atimer or fork athread.

Event Handling for Windowed Plug-ins

All imaging and user interface events for a windowed plug-in instance are handled
according to the windowing system of its native platform. The Plug-in API providesa
native window handle within which an instance does its drawing through the API call
NPP_Set W ndow. NPP_Set W ndow passes the instance an NPW ndow object
containing the native window handle.

On Windows and Unix, each instance receives its own child window within the
browser window hierarchy, and imaging and event processing are relative to this
window. The Mac OS does not support child windows. The native window is shared
between the instance and the browser. The instance must restrict its drawing to a
specified area of the shared window, and it must always save the current settings, set
up the drawing environment, and restore the shared drawing environment to the
previous settings. On Mac OS, events are explicitly provided to the instance by
NPP_Handl eEvent .

Windowless Plug-ins

A windowless plug-in does not require a native window to draw into. Instead it draws
into adrawable (HDC on Windows or CGrafPtr on Mac OS), which can either be on-
screen or off-screen.

Windowless plug-ins provide the plug-in writer with some significant design
possibilities:

60 Gecko Plug-in APl Reference

* You can place awindowless plug-in within a section; other sections can exist both
above and below it.

* You can create transparent plug-ins. In this case, the browser draws the part of the
page that exists behind the plug-in. The windowless plug-in draws only the parts
of itself that are opague. Thisway, the plug-in can draw an irregularly shaped
area, such asafigure, or text over the existing background.

* Thebrowser supports off-screen drawing of plug-ins. This makes it possible to
manipul ate plug-in contents. For example, a3D application could use the contents
of aplug-in as atexture map.

Because windowless plug-ins can be layered or drawn to arbitrary drawables, the
browser (as opposed to the native windowing system) is responsible for controlling
both their drawing and their event handling.

See the following items for more information on controlling the drawing of the plug-
in instance:

» Specifying That a Plug-in Is Windowless
* Invalidating the Drawing Area

» Forcing a Paint M essage

» Making aPlug-in Opaque

* Making a Plug-in Transparent

» Creating Pop-up M enus and Dialog Boxes

» Event Handling for Windowless Plug-ins

Specifying That a Plug-in IsWindowless
To specify that a plug-in is windowless, use the NPN_SetValue method.

NPEr ror NPN_Set Val ue(NPP i nst ance,
NPPVari abl e vari abl e, void *val ue);

The instance parameter represents the current plug-in. The variable parameter

contains plug-in information to set. The value parameter returns the name of the plug-
in.

61

To specify that a plug-in is windowless, use NPN_Set Val ue with

NPPVpl ugi nW ndowBool asthe value of variable and false as the value of value.
The plug-in makes this call from its NPP_New method. If a plug-in does not make this
call, it is considered a windowed plug-in.

NPN_Set Val ue
t ypedef enum {

NPPVpl ugi nW ndowBool ,
NPPVpl ugi nTr anspar ent Bool
} NPPVari abl e;

NPEr r or NPN_Set Val ue(NPP i nstance, NPPVari abl e
variable, void *val ue);

Invalidating the Drawing Area

Before it can repaint or refresh part of its drawing area, a windowless plug-in must
first invalidate the area with either of these browser methods: NPN_I nval i dat eRect
or NPN_I nval i dat eRegi on. Both methods perform the same operations:

* They invalidate the specified drawing area prior to repainting or refreshing.
» They pass an update event or a paint message to the plug-in.

The browser redraws invalid areas of the document and windowless plug-ins at
regularly timed intervals. To force apaint message, the plug-in can call

NPN_For ceRedr aw after calling one of the invalidate methods. If a plug-in calls one
of these methods, it receives a paint message asynchronously.

voi d NPN_I nval i dat eRect (NPP i nstance,
NPRect *invali dRect);

voi d NPN_I nval i dat eRegi on(NPP i nst ance,
NPRegi on i nval i dRegi on) ;

Thei nst ance parameter represents the current plug-in. Thei nval i dRect and

i nval i dRegi on parametersrepresent the areato invalidate, specified in acoordinate
system whose origin is at the top left of the plug-in.

62 Gecko Plug-in APl Reference

Both methods cause the NPP_Hand| eEvent method to pass an update event or a
paint message to the plug-in.

#i f def XP_MAC

t ypedef RgnHandl e NPRegi on;
#el i f defined(XP_WN)

t ypedef HRGN NPRegi on;

#el i f defined(XP_UN X)

t ypedef Regi on NPRegi on;
#el se

t ypedef voi d* NPRegi on;
#endif /* XP_MAC */

voi d NPN_I nval i dat eRect (NPP i nstance, NPRect
*inval i dRect) ;

voi d NPN_I nval i dat eRegi on(NPP i nstance, NPRegi on
i nval i dRegi on) ;

Forcing a Paint M essage

Windowed and windowless plug-ins have different drawing models. A windowed
plug-in determines when it draws, whereas a windowl ess plug-in drawsin response to
a paint message from the browser. A plug-in can call NPN_For ceRedr aw to force a
paint message synchronously, once an area has been invalidated with

NPN_I nval i dat eRect or NPN_I nval i dat eRegi on.

voi d NPN_ForceRedraw(NPP i nst ance) ;
This method results in a synchronous update event or paint message for the plug-in.

A plug-in must not draw into its drawable unless it receives a paint message. It does
not need to call the platform-specific function to begin painting within a window.
That is, the plug-in does not call BeginPaint on Windows or BeginUpdate on Mac OS.

Windows

The plug-in receives a WM _PAI NT message. The| Par amparameter of WW_PAI NT
holds a pointer to an NPRect structure specifying the bounding box of the update
area. Because the plug-in and the browser share the same HDC, the plug-in must save
the current settings on the HDC, set up its own environment, draw itself, and restore the
HDC to the previous settings. The HDC settings must be restored whenever control
returns to the the browser, either before returning from NPP_Handl eEvent or before
calling adrawing- related browser-side method.

Mac OS

The plug-in receives an update event. The clip region of the drawable's CG af Pt r
port is set to the update region. Asis the case for windowed plug- ins on Mac OS, the
plug-in must first save the current settings of the port, setting up the drawing
environment as appropriate, drawing, and restoring the port to the previous setting.
This should happen before the plug-in returns from NP_Handl eEvent or before the
plug-in calls a drawing-related browser method.

Making a Plug-in Opaque

A windowless plug-in is opague if it has no transparent areas. When the browser
generates a paint message for the plug-in, it assumesthat the plug-in is responsible for
painting the entire areato be updated. Because the browser does not need to draw the
background behind the plug-in, opague windowless plug-ins are considerably more
efficient than transparent plug-ins.

A windowless plug-in is transparent by default. To make a transparent plug-in
opaque, call NPN_Set Val ue to set NPPVpl ugi nTr anspar ent Bool tofal se. The
plug-in can call this method any time after specifying that it is a windowless plug-in.

Making a Plug-in Transparent

A windowless plug-inistransparent if it hastransparent areas. Here are two examples
of plug-ins that have transparent areas:

* plug-in that is smaller than the area specified by the enclosing OBJECT or EMBED
tag

* plug-in with nonrectangular boundaries

The browser is responsible for rendering the background of atransparent windowless
plug-in. Before generating a paint message for the plug-in, the browser makes sure
that the background is already drawn into the areato be updated. The plug-in can then
draw the part of the update region that corresponds to its opaque areas. This ensures
that the transparent areas of the plug-in are always valid.

Windowless plug-ins are transparent by default. If you want to make an opaque
windowless plug-in transparent, call the NPN_Set Val ue method and set

NPPVpl ugi nTr anspar ent Bool tothevaluet r ue. The plug-in can call this method
any time after specifying that it is a windowless plug-in.

64 Gecko Plug-in APl Reference

Creating Pop-up Menus and Dialog Boxes
MS Windows only

A windowless plug-in does not draw in its own native window. Instead, it draws
directly in the drawable given to it. This behavior presents a problem if you need to
display pop-up menus and modal dialog boxesin aplug-in; a plug-in needs a parent
window in order to create windows like these.

To dea with this problem on Windows, use NPN_Get Val ue to find out where the
plug-in draws. Use NPNVnet scapeW ndow as the value for the variable parameter.

NPError NPN_Cet Val ue(NPP i nst ance,
NPNVar i abl e vari abl e, void *val ue);

The instance parameter represents the current plug-in. The variable parameter
contains the information the call is requesting, in this case NPNVnet scapeW ndow
(the native window in which plug-in drawing occurs). The requested information, a
value of type HWAD, isreturned in the value parameter.

In many cases, a plug-in may still have to create its own window (atransparent child
window of the the browser window) to act as the owner window for pop-up menus
and modal dialog boxes. Y ou can give this transparent child window its own
WindowProc process. The plug-in can use thisto deal with WV COMVAND messages
sent to it as aresult of tracking the pop-up menu or modal dialog box.

Event Handling for Windowless Plug-ins

On dll platforms, platform-specific events are passed to windowless plug-ins through
the NPP_Hand| eEvent method. The plug-in must return true from

NPP_Handl eEvent if it has handled the event and falseif it has not. Mac OS uses
this mechanism for both windowed and windowless plug-ins; on this platform,
NPP_Hand| eEvent isthe only way the plug-in can receive events from its host
application.

i nt 16 NPP_Handl eEvent (NPP i nstance, NPEvent *event);

Thei nst ance parameter represents the current plug-in. For alist of event typesthe
application is responsible for delivering to the plug-in, see the NPEvent structure.

This code shows the specific data passed through this method for each platform:

#i f def XP_MAC

t ypedef Event Record NPEvent;
#el i f defined(XP_WN)

t ypedef struct _NPEvent ({

intl6 event ;
intl6 wPar am
int32 | Par am
} NPEvent;

#el i f defined(XP_UN X)
t ypedef XEvent NPEvent;
#el se

t ypedef void NPEvent;
#endi f /* XP_MAC */

i nt 16 NPP_Handl eEvent (NPP i nstance, NPEvent* event);

On Mac OS, when NPP_Hand! eEvent iscalled, the current port is set up correctly so
that its origin matches the upper-left corner of the plug-in. A plug-in does not need to
set up the current port for mouse coordinate trandlation.

66 Gecko Plug-in APl Reference

Sreams

This chapter describes using Plug-in API functions to receive and send streams.

Streams are objects that represent URL s and the data they contain, or data sent by a
plug-in without an associated URL. Although a single stream is associated with one
specific instance of a plug-in, aplug-in can have more than one stream object per
instance. Streams can be produced by the browser and consumed by a plug-in
instance, or produced by an instance and consumed by the browser. Each stream has
an associated MIME type identifying the format of the data in the stream.

Streams produced by the browser can be automatically sent to or requested by the
plug-in instance. The browser calls the Plug-in methods NPP_NewStream,
NPP_WriteReady, NPP_Write, and NPP_DestroyStream to, respectively, create a
stream, find out how much data the plug-in can handle, push datainto the stream, and
deleteit.

The plug-in instance selects a transmission mode for streams produced by the
browser. Stream data can be pushed by the browser, pulled by the plug-in, or saved to
alocal file and passed to the plug-in.

» Normal mode: The browser usesthe NPP_W i t e method to "push” stream datato
the instance incrementally asit is available.

* Random-access mode: The plug-in callsthe NPN_Request Read method to "pull"
stream data. In general, this mode is more expensive, because the entire stream
must be downloaded to atemporary file before use unless the stream comes from
alocal fileor an HTTP server that supports the proposed byte-range extension to
HTTP

* Filemode: The browser savesthe entire stream to alocal file and passes the file
path to the plug-in instance through the NPP_St r eamAsFi | e method. Use this
feature only as alast resort; plug-ins should implement an incremental stream-
based interface wherever possible.

Streams sent by the plug-in to the browser are like normal-mode streams produced by
the browser, but in reverse. In normal-mode streams, the browser calls the plug-in to
tell it when a stream is created and to push more data. In contrast, for streams

67

produced by the plug-in, the plug-in calls the Plug-in APl methods NPP_NewSt r eam
NPP_W i t e, and NPP_Dest r oy St r eamto create a stream, push datainto it, and
deleteit.

* Receivinga Stream

* Sendinga Stream

Receiving a Sream

When the browser sends a data stream to the plug-in, it has several tasksto perform:
» Telling the Plug-in When a Stream |s Created

» Telling the Plug-in When a Stream |s Deleted

* Finding Out How Much Data the Plug-in Can Accept

* Writing the Stream to the Plug-in

* Sending the Stream in Random-Access M ode

* Sending the Stream in File Mode

Telling the Plug-in When a Stream |s Created

To tell the plug-in instance when a new stream is created, the browser callsthe
NPP_NewsSt r eammethod. This method a so determines which modeit should useto
send data to the plug-in. The browser can create a stream for severa different types of
data:

» for the file specified in the SRC attribute of the EMBED tag
+ foradatafile

» for afull-page instance

The NPP_Newst r eammethod has the following syntax:

NPEr ror NPP_NewSt ream(NPP i nstance, NPM METype type,
NPSt ream *st ream NPBool seekabl e, uintl16* stype);

Thei nst ance parameter refersto the plug-in instance receiving the stream; thet ype
parameter represents the stream's MIME type.

68 Gecko Plug-in API Reference

The st r eamparameter is a pointer to the new stream, which is valid until the stream
is destroyed.

The seekabl e parameter specifies whether the stream is seekable (t r ue) or not
(f al se). Seekable streams support random access (for example, local filesor HTTP
servers that support byte-range requests).

The plug-in can set the out put parameter t ype to one of these transmission modes:

* NP_NORVAL (Default): The plug-in can process the data progressively asit arrives
from the network or file system through series of callsto NPP_W i t eReady and
NPP_Wi te.

e NP_ASFI LEON\LY: This plug-in gets full random access to the data using platform-
specific file operations. The browser saves stream datato alocd file, and, when
the stream is complete, delivers the path of the file through a call to
NPP_St r eamAsFi | e.

e NP_ASFI LE: Thismode islike NP_ASFI LEONLY except that datais delivered to
the plug-in asit is saved to the file, through a series of callsto NPP_W i t e. You
should use NP_ASFI LEONLY whenever possiblein preference to NP_ASFI LE,
which isless efficient because it uses successive callsto NPP_W i t e to send the
data.

* NP_SEEK: The plug-in instance can randomly access stream data as needed,
through callsto NPN_Request Read. If the stream is not seekable, these requests
are fulfilled only when all the data has been read and stored in the cache.

Once all datain the stream has been written to the plug-in, the stream is destroyed. To
do this, either the browser can call NPP_Dest r oy St r eamor the plug-in can call
NPN_Dest r oy St r eam This appliesto all plug-in modes except NP_SEEK.

NOTE: A plug-in can also use the NPN_GetURL method to request a stream for an
arbitrary URL.

Telling the Plug-in When a Stream | s Deleted

The browser calls the NPP_Dest r oy St r eammethod when it completes the stream
sent to the plug-in, either successfully or abnormally. Once the plug-in returns from
this method, the browser del etes the NPSt r eamobject. The plug-in can terminate the
stream itself by calling NPN_Dest r oy St r eam

69

Y ou should delete any private data allocated in the plug-in's stream->pdata field when
you destroy a stream. The plug-in can store private data associated with the stream in
stream->pdata. The browser stores private data in stream->ndata; this value should
not be changed by the plug-in.

NPError NPP_DestroyStream NPP i nstance,
NPSt ream *st ream NPError reason);

Thei nst ance parameter is the current plug-in instance; the st r eamparameter
specifies the stream to be del eted.

Ther eason parameter specifies why the stream was destroyed. It can have one of
these values:

* NPRES_DONE (Most common): Normal completion; al data was sent to the
instance.

* NPRES_USER_BREAK: The user canceled the stream directly by clicking the Stop
button or indirectly by some action, such as by deleting the instance or initiating
higher-priority network operations.

* NPRES_NETWORK_ERR: The stream failed because of problems with the network,
disk 1/O error, lack of memory, or some other problem.

Finding Out How Much Data the Plug-in Can Accept

After acall to NPP_NewsSt r eamand before writing data to the plug-in, the browser
callsNPP_W i t eReady to determine the maximum number of bytes that the plug-in
can consume. This function allows the browser to send only as much data to the
instance as it can handle at one time, and it helps both the browser and the plug-in to
use their resources efficiently.

After acall to NPP_NewSt r eam in which the plug-in requested a normal-mode
stream, the browser delivers the datain the stream progressively in a series of callsto
NPP_W it eReady and NPP_W it e. The browser callsNPP_W i t eReady before
each call toNPP_Wi te.

The value returned by NPP_W i t eReady indicates how many bytes the plug-in
instance can accept for this stream. If the plug-in allocates memory for the entire
stream at once, it can return alarge number. This number tells the browser that it can
pass as much data to the instance as possible in asingle call to NPP_W i t e. The
browser can write a smaller amount of dataif desired or necessary (for example, if
only 8K of dataisavailable in a network buffer).

70 Gecko Plug-in APl Reference

For instance, suppose the plug-in alocates, in NPP_NewSt r eam an 8K buffer to hold
the data written from that stream. In thefirst call, NPP_W i t eReady could return
8192, resulting in acall to NPP_W i t e with abuffer of up to 8K bytes. After thisdata
is copied from the browser's buffer to the plug-in's buffer, the plug-in begins to
process the data asynchronously. At the next NPP_W i t eReady call, only half of the
data has been processed. To avoid alocating additional buffers, the plug-in could
return 4096, resulting in acall to NPP_W i t e with a buffer of up to 4K bytes.

The buffer passed to NPP_W i t e may accommodate more bytes than the maximum
number returned from NPP_W i t eReady . This maximum is only a promise to
consume a certain amount of data from the buffer, not an upper limit on the buffer
size. In the example above, suppose that the plug-in allocates an 8K buffer and returns
8192 from NPP_W i t eReady. If the plug-in gets 10000 bytes from the browser in a
subsequent call to NPP_W i t e, the plug-in should copy the first 8192 bytes from the
browser's buffer into its own buffer and return 8192 (the number of bytes actually
consumed) from NPP_W i t e.

int32 NPP_WiteReady(NPP instance, NPStream *strean);

Thei nst ance parameter is the current plug-in instance; the st r eamparameter
specifies the current stream.

Writing the Siream to the Plug-in

The next step is to write the data to a plug-in from a stream. After acall to
NPP_NewSt r eam in which the plug-in requested a normal-mode stream, the browser
delivers the datain the stream progressively in a series of callsto NPP_W i t eReady
and NPP_W ite.

The NPP_W i t e function should return the number of bytes consumed by the
instance. If thisis a negative number, the browser calls NPP_Dest r oy St r eamto
destroy the stream. If the number returned is smaller than the size of the buffer, the
browser sends the remaining datain the buffer to the plug-in through repeated calls to
NPP_WiteReady and NPP_Wite.

int32 NPP_Wite(NPP instance, NPStream *stream
int32 offset, int32 len, void *buf);

Thei nst ance parameter is the current plug-in instance; the st r eamparameter

specifies the current stream. The of f set parameter specifies the offset, in bytes, of
buf from the beginning of the datain the stream. The | en parameter specifiesthe

71

length, in bytes, of buf , the buffer of data (delivered by the stream). The buffer
allocated by the browser is deleted after returning from the function, so the plug-in
must make a copy of the data it needs to keep.

Asan example, suppose that a plug-in (and the HTTP server) supports byte-range
requests, and that the browser isin the process of pushing data to the plug-in. If the
user now requests a specific page of the document, the plug-in calls

NPN_Request Read with alist of byte ranges. The open stream is converted from
normal mode to seek mode in an effort to pass the plug-in data that was already on the
way, rather than just discarding it. All NPP_W i t e callsfor streaming data eventually
stop, and NPP_W i t e calls will be completed only for data requested with
NPN_Request Read.

The browser does not create anew stream for each byte range it requests. Instead,
additional NPP_W i t eReady and NPP_W i t e calls occur on the same stream. An
individual call to NPN_Request Read can request discontiguous ranges, and you can
have many outstanding NPN_Request Read calls. There is no guarantee that

NPP_W i t e will receive requests for ranges in the same order as you requested
(although thistypically is the case; the server controls the order). So, you'll need to
pay attention to the offsets as data is being written.

The stream processes all byte-range requests, and then is placed in seek mode (either
explicitly in NPP_NewSt r eam or implicitly by acall to NPN_Request Read). It
remains open until the plug-in closes it by calling NPN_Dest r oy St r eam or until the
instance is destroyed.

NOTE: If you want to be sure that the NPN_* St r eamfunctions are called in the order
you want and behave the way you expect, combine NPN_NewSt r eam NPN_W i t e,
and NPN_Dest r oy_St r eamin the same cal lback.

Sending the Stream in Random-Access Mode

In random-access mode, the plug-in "pulls' stream data by calling the
NPN_Request Read method. The browser must download the entire stream to a
temporary file before it can be used, unless the stream comes from alocal file or an
HTTP server that supports the proposed byte-range extension to HTTP. This mode
consumes more resources than the others.

Random-access mode is determined in NPP_NewSt r eamby setting the mode
NP_SEEK. This mode gives the plug-in instance random access to stream data as
needed, through calls to NPN_Request Read. If the stream is not seekable, these
requests are fulfilled only when all the data has been read and stored in the cache.

72 Gecko Plug-in APl Reference

The NPN_Request Read method requests arange of bytes from a seekable stream.
Typically, the only streams that are seekabl e are from data that isin memory or on the
disk, or from HTTP serversthat support byte-range requests.

» For streamsthat are not in NP_SEEK mode: The plug-in can call
NPN_Request Read as long asthe stream isinherently seekable;
NPN_Request Read automatically changes the mode to NP_SEEK.

» For streamsthat are not inherently seekable: The stream must be put in NP_SEEK
mode initially, because the browser must cache all the stream dataon disk in order
to access it randomly.

» For streamsthat are not inherently seekable and not initially in mode NP_SEEK:
NPN_Request Read returns the error code NPERR_STREAM _NOT_SEEKABLE.

The NPN_Request Read method has the following syntax:

NPError NPN_Request Read(NPStream *stream NPByteRange
*rangeli st);

The st r eamparameter is the stream from which to read bytes; ther angelLi st
parameter specifies the range of bytesin the form of alinked list of NPByt eRange
objects, which the plug-in must allocate. Because these objects are copied by the
browser, and so the plug-in can delete them as soon as the call to NPN_Request Read
returns.

The plug-in can request multiple ranges, either through alist of NPByt eRange objects
inasingle call to NPN_Request Read or through multiple callsto

NPN_Request Read. In this case, the browser can write individual rangesin any
order, with any number of NPP_W i t eReady and NPP_W i t e calls.

Sending the Stream in File Mode

If the stream is sent in file mode, the browser savesthe entire stream to alocal file and
passes the full file path to the plug-in instance through the NPP_St r eamAsFi | e
method. Use thisfeature only as alast resort; plug-ins should implement an
incremental stream-based interface whenever possible.

File mode is determined in NPP_NewsSt r eamby setting the mode NP_ASFI LEONLY .
This mode gives the plug-in full random access to the data with platform-specific file
operations. The browser saves stream datato alocal file, and, when the stream is
complete, deliversthe path of the file through acall to NPP_St r eamAsFi | e.

73

NOTE: Most plug-ins that need the stream saved to afile should use

NP_ASFI LEONLY mode rather than the older NP_ASFI LE; this mode is less efficient
because it uses successive callsto NPP_W i t e. NPP_St r eamAsFi | e provides the
plug-in with afull path to alocal file for the stream. It is a good idea to check that the
file existsin the directory at the start of this method. If an error occurs during data
retrieval or writing to the file, the browser passes null for the filename. If thefileis
created from a stream from the network, the file islocked in the the browser disk
cache until the stream or itsinstance is destroyed.

voi d NPP_StreamAsFi |l e(NPP i nstance, NPStream *stream
const char* fnane);

Thei nst ance parameter is the current plug-in; the st r eamparameter specifies the
current stream. The f name parameter specifies the full path to alocal file (or nul I if
an error occurs during data retrieval or writing to the file).

Sending a Sream

When a plug-in sends a data stream to the browser, it performs several tasks. The
plug-in calls the methods NPN_NewSt r eam NPN_W i t e, and NPN_Dest r oy St r eam
to create a stream, push datainto it, and deleteit. Streams produced by a plug-in have
a specific MIME type and can be sent to a particular browser window or frame for

display.

» Creating a Stream

* Pushing Datainto the Stream
* Deleting the Stream

For an example that demonstrates these processes, see "Example of Sending a
Stream.”

Creating a Stream

The plug-in calls NPN_NewSt r eamto send a new data stream to the browser. The
browser creates a new NPSt r eamobject and returns it to the plug-in as an output
parameter.

74 Gecko Plug-in APl Reference

The plug-in can use this stream object in subsequent NPN_W i t e callsto the browser.
When al the plug-in data is written into the stream, the plug-in must terminate the
stream and deall ocate the NPSt r eamobject by calling the NPN_Dest r oy St r eam
function.

NPError NPN_NewSt r eam(NPP i nst ance,
NPM METype type,
const char* target,
NPSt r eant* strean ;

Thei nst ance parameter is the plug-in instance that is creating the stream; the type
specifies the MIME type of the stream.

Thet ar get parameter specifies the window or frame. For the possible values of
named targets, see the reference entry for NPN_NewSt r eam The target should not be
the same window.

The st r eamparameter represents the stream that the browser creates.

For an example that demonstrates using this function with NPN_W i t e and
NPN_Dest r oy St r eam see "Example of Sending a Stream."

Pushing Data into the Stream

After creating a stream with NPN_NewsSt r eam the plug-in can call NPN_W i t e to
deliver a buffer of datafrom the plug-in to the browser. This function returns the
number of bytes written or a negative integer in case of an error during processing.
NPN_W i t e should send as much dataasis available. Unlike NPP_W i t e,
NPN_W i t e has no corresponding NPN_W i t eReady function.

int32 NPN_Wite(NPP instance, NPStream *stream
int32 len, void *buf);

The plug-in should terminate the stream by calling NPN_Dest r oy St r eam when al
data has been written to the stream, or in the event of an error.

Thei nst ance parameter is the current plug-in; the st r eamparameter is a pointer to
the stream being written to. The | en parameter specifies the length, in bytes, of data
written to the stream. The buf parameter is a pointer to the buffer holding the datato
write to the stream.

For an example that demonstrates using this function with NPN_NewSt r eamand
NPN_Dest r oy St r eam see "Example of Sending a Stream."

75

Deleting the Stream

When the stream is complete, the plug-in calls NPN_Dest r oy St r eamto close and
deleteit. This applies to streams the plug-in creates with NPN_NewSt r eamor streams
created by the browser with NPP_NewSt r eam

NPError NPN_DestroyStream(NPP i nstance, NPStreant stream
NPError reason);

Thei nst ance parameter is the current plug-in; the stream parameter specifies the
stream, created by either the browser or the plug-in. The reason parameter represents
the reason the stream was stopped, as follows:

* NPRES_DONE (most common): The stream completed normally; the plug-in sent
all data to the browser.

* NPRES_USER_BREAK: The plug-in terminated the stream because of a user
request.

* NPRES_NETWORK_ERR: The stream failed because of network problems.
For the complete list of codes, see "Result Codes."

For an example that demonstrates using this function with NPN_NewSt r eamand
NPN_W i t e, see "Example of Sending a Stream."

76 Gecko Plug-in APl Reference

Example of Sending a Stream

Thefollowing code creates anew stream of HTML text displayed by the browser in a
new window, writes it, and destroys the stream. Error handling has been omitted for
simplicity.

NPSt r eant stream
char* nyData = "<HTM.>This is a nessage from ny plug-in!</HIM.>";
int32 nyLength = strlen(nyData) + 1;

/* Create the stream */
err = NPN_NewStrean(instance, "text/htm", "_blank", &strean;

/* Push data into the stream */
err = NPN_Wite(instance, stream myLength, nyData);

/* Delete the stream */
err = NPN_DestroyStrean(instance, stream NPRES _DONE);

Y our plug-in can create another instance of itself by specifying its own MIME type
and a new target namein acall to NPN_NewSt r eam

v

78 Gecko Plug-in APl Reference

URLS

This chapter describesretrieving URLs and displaying them on specified target pages,
posting datato an HTTP server, uploading filesto an FTP server, and sending mail.

Uniform resourcelocator (URL) protocols provide ameans for locating and accessing
resources that are available on the Internet and on intranets. Plug-ins can request and
receive the data associated with URL s of any type that the browser can handle,
including HTTP, FTP, news, mailto, and gopher.

The table below summarizes URL s supported by the Netscape browser. In addition,
Netscape may support URLs not listed on this table.

URL Scheme
about

file

ftp

gopher
http

javascri pt

mailto

net hel p

news

nnt p

Description

Locates browser information or "fun" pages. Netscape
proprietary.

(Host-specific filenames) Locates files on a specific host
computer rather than an Internet resource.

(File Transfer Protocol) Locates files and directories on Internet
hosts for file download.

(Gopher protocal) Locates specified items on a Gopher server.
(Hypertext Transfer Protocol) Locates resources on the Internet.
Executes JavaScript code that follows the URL. Netscape-
specific.

(Electronic mail address) L ocates the I nternet mailing address of
an individual or service.

Displays a NetHelp topic in a NetHelp window. Browser-
specific.

(USENET news) Locates USENET news groups or individual
USENET articles.

(USENET news using nntp access) Locates USENET news
groups or individual USENET articles; alternate to news.

79

prospero (Prospero Directory Service) Locates a resource on a Prospero
directory server.

telnet (Reference to interactive sessions) Locates an interactive
service.
wais (Wide Area Information Servers) Locates WAIS databases and

their documents.

wysiwyg Placed before another URL; displays a page that JavaScript has
updated using document.write.

For more information, see RFC 1738, "Uniform Resource L ocators (URL).
* GettingURLSs

* Posting URLs

Getting URLs

Toretrievea URL and display it on a specified target page, use the NPN_GetURL,
NPN_GetURL Notify, and NPP_URL Notify functions. This section describes the
methods and procedure used for getting the URL and displaying the page.

The plug-in uses the NPN_Get URL function to ask the browser to display data
retrieved from a URL in a specified target window or frame, or deliver it to the plug-
in instance in anew stream. Thisisthe way that plug-ins provide hyperlinks to other
documents or retrieve data from the network.

If the browser cannot locate the URL and retrieve the data, it does not create a stream
for the instance; in this case, the plug-in receives notification of the result. To request
astream and receive notification of the result in al cases, use NPN_Get URLNot i fy.

For HTTP URLSs, the browser resolves NPN_Get URL as the HTTP server method
GET, which requests URL objects.

Note that NPN_Get URL istypically asynchronous: it returns immediately and only
later handles the request, such as displaying the URL or creating the stream for the
instance and writing the data. For this reason aswell, calling NPN_Get URLNot i fy
may be more useful than NPN_Get URL; the plug-in is notified upon either successful
or unsuccessful completion of the request.

NPError NPN_Get URL(NPP i nstance, const char *url, const char *target);

80 Gecko Plug-in APl Reference

The instance parameter represents the current plug-in instance. The url parameter is
the URL of the request, which can be of any type, including HTTP, FTP, news,
mailto, or gopher.

The target parameter represents the destination where the URL will be displayed, a
window or frame. If target refers to the window or frame containing the plug-in
instance, it is destroyed and the plug-in may be unloaded. If the target parameter is set
to null, the application creates a new stream and delivers the data to the plug-in
instance, through callsto NPP_NewStream, NPP_WriteReady and NPP_Write,
and NPP_DestroyStream.

In general, if a URL works in the location box of the Navigator, it works as a target
for NPN_Get URL, except for the _sel f target.

Make sure that the target matches the URL type sent to it. For example, anull target
does not make sense for some URL types (such as mailto). For some
recommendationsto help you with target parameter choice, seethe reference entry for
NPN_GetURL.

TheNPN_Get URLNot i fy method actslike NPN_Get URL. Both request the creation of
anew stream with the contents of the specified URL, and, in addition,

NPN_Get URLNot i f y notifies the plug-in of the successful or unsuccessful
completion of the request. The browser notifies the plug-in by calling the plug-in's
NPP_URLNot i fy function and passing it the not i f yDat a value, which may be used
to track multiple requests.

NPN_Get URLNot i f y handlesthe URL reguest asynchronously. It returns
immediately and only later handles the request and calls NPP_URLNot i fy. Without
this notification, the plug-in cannot tell whether arequest with a null target failed or a
request with a non-null target was completed.

NPError NPN_Get URLNoti fy(NPP i nstance, const char* url,

const char* target, void*
notifyData);

Theinstance, url, and target parameters have the same definitions as those of
NPN_Get URL. The notifyData parameter contains private plug-in datathat can be used
to associate the request with the subsegquent NPP_URLNot i fy call (which returns this
value) and/or to pass a pointer to some request-related payload.

81

If arequest is not completed successfully (for example, because the URL isinvalid or
aHTTP server isdown), the browser should call NPP_URLNot i f y assoon as
possible. If arequest completes successfully, and the target is non-null, the browser
callsNPP_URLNot i fy after it has finished loading the URL. If the target is null, it
callsNPP_URLNot i fy after calling NPP_Dest r oy St r eamto close the stream.

Both the NPN_Get URLNot i fy and NPN_Post URLNot i fy functions call the
NPP_URLNot i fy method to notify the plug-in of the result of areguest. Both
functions pass the notifyData value to NPP_URLNot i f y, which tellsthe plug-in that
the URL request was completed and the reason for completion.

voi d NPP_URLNoti fy(NPP instance, const char* url,
NPReason reason, void* notifyData);

Theinstance and url parameters have the same definitions as those of NPN_Get URL.
Thenot i f yDat a parameter contains the private plug-in data passed to the
corresponding call to NPN_Get URLNot i f y and NPN_Post URLNot i fy.

Getting the URL and Displaying the Page

Toretrievea URL and display it on a specified target page, you use the NPN_Get URL
and NPN_Get URLNot i fy functions. The URL can be displayed in the same window
or frame, a new window, or a different window or frame, depending on the value of
the target parameter. Specify the display target with one of these specia target names:

e _bl ank or _new: Load the URL in a new blank unnamed window. Safest target,
even though, when used with amailto or news URL, this creates an extra blank
the browser instance.

 _self or_current: Load the URL into the same window the plug-in instance
occupies. If this target refers to the window or frame containing the instance, the
instance is destroyed and the plug-in may be unloaded.

e _parent: Load the URL into the immediate FRAMESET parent of the plug-in
instance document. If the plug-in instance document has no parent, the default is
_self.

* _top: Load the URL into the plug-in instance window. The default is_sel f , if
the plug-in instance document is already at the top. Use for breaking out of adeep
frame nesting.

Be careful when you assign atarget. If the target refers to the window or frame
containing the instance or one of its parents/ancestors, the instance is destroyed and
the plug-in may be unloaded.

82 Gecko Plug-in APl Reference

Here's an example of getting a URL : A plug-in instance draws a button that actslike a
link to another web page. When the user clicks the button, the plug-in calls
NPN_Get URL to go to the page.

err = NPN_Get URL(
i nstance, "http://home. netscape.con ", "_blank");

Posting URL s

» Posting Datatoan HTTP Server
» Uploading Filesto an FTP Server
* Sending Mail

The plug-in callsNPN_PostURL to post data from afile or buffer to a URL. This
function is the counterpart of NPN_GetURL.

* NPN_Post URL writes data from afile or buffer to the URL and either displaysthe
server response in the target window or deliversit to the plug-in.

* NPN_Get URL reads datafrom the URL and either displaysit in the target window
or deliversit to the plug-in.

For HTTP URLs only, the browser resolves this method as the HTTP server method
POST, which transmits data to the server.

Y ou can use NPN_Post URL to post datato a URL from amemory buffer or file. The
result from the server can also be sent to a particular the browser window or frame for
display, or delivered to the plug-in instance in a new stream. Plug-ins can use this
capability to post form datato CGI scriptsusing HTTP or upload filesto a remote
server using FTP.

The browser resolves this method as the HTTP server method POST , which transmits
datato the server. The datato post can be contained either in alocal temporary file or
anew memory buffer. To post afile, set the flag file to true, the buffer buf to the path
name string for afile, and len to the length of the path string. Thefile-type URL prefix
"file://" isoptional.

NPN_Post URL istypically asynchronous: it returnsimmediately and only later
handles the request and calls NPP_Not i f y (which, inturn, calls NPP_URLNot i f y).

NPError NPN_Post URL(NPP i nstance, const char *url,
const char *target, uint32 |en,
const char *buf, NPBool file);

Theinst ance, url, andt ar get parameters have the same definitions as those of
NPN_Get URL.

Thebuf parameter identifies alocal temporary file or data buffer that contains the
data to post.

Windows and Mac

If afileis posted with any protocol other than FTP, the file must be text with Unix-
style line breaks (\n' separators only).

NPN_Post URL works identically with buffers and files. To post data from a memory
buffer, set the flag file to false, the buffer buf to the data to post, and len to the length
of the buffer.

Possible URL types include http (similar to an HTML form submission), mailto
(sending mail), news (posting a news article), and ftp (uploading afile). For protocols
in which the headers must be distinguished from the body, such as http , the buffer or
file should contain the headers, followed by a blank line, then the body. If no custom
headers are required, simply add a blank line (\n") to the beginning of the file or
buffer.

NOTE: You cannot use NPN_Post URL to specify headers (even ablank line) ina
memory buffer. To do this, use NPN_Post URLNot i f y for this purpose. § The
NPN_Post URLNot i fy function hasall the same capabilities and works like
NPN_Post URL in most ways except that (1) it supports specifying headers when
posting a memory buffer, and (2) it calls NPP_URLNot i f y upon successful or
unsuccessful completion of the request. NPN_Post URLNot i f y istypically
asynchronous: it returnsimmediately and only later handles the request and calls
NPP_URLNot i fy.

NPError NPN_Post URLNot i fy(

NPP i nst ance, const char *url,

const char *target, uint32 |en,

const char *buf, NPBool file, void* notifyData
i

84 Gecko Plug-in APl Reference

The parameters of this function have the same definitions as those of NPN_Post URL.
The notifyData parameter contains plug-in-private data passed by NPP_URLNot i f y
and may be used for tracking multiple posts.

Posting Datatoan HTTP Server

The following code posts two name-value pairsto a CGl script through HTTP. The
response from the server is displayed in a new window.

char* nyData = "Content Type:\tapplication/

x-ww- f or m ur | encoded\ nCont ent
Lengt h: \'t 25\ n\ nnanmel=val uel&ame2=val ue2\ n";
uint32 nyLength = strlen(nybData) + 1;

err = NPN_Post URL(i nstance, "http://
hoohoo. ncsa. ui uc. edu/

cgi - bi n/ post - query", " bl ank", myLength,
myDat a, FALSE);

Uploading Filesto an FTP Server

Plug-ins can use NPN_Post URL or NPN_Post URLNot i f y to upload files to aremote
server using FTP. This example uploads afile from the root of theloca file system to
an FTP server and displays the response in a frame named response:

char* nyData = "file:///c\/nyDirectory/nyFil eName";
uint32 nyLength = strlen(nyData) + 1;

err = NPN_Post URL(i nstance, "ftp://
fred@tp. sonewhere. com pub/ ",

"response", myLength, nyData, TRUE);

Sending Mail

A plug-in can send an email message using NPN_Post URL or NPN_Post URLNot i fy.
The following code sends a mail message with the default headers from the client
machine.

char* nyData = "\nH Fred, this is a nessage from ny
plug-in!";
uint32 nyLength = strlen(nyData) + 1;

err = NPN_Post URLNoti fy(i nstance,
"mai |l to: fred@onmewher e. cont',

NULL, nyLength, nyData, FALSE);

The example starts by defining the mail message, nyDat a, and itslength, nyLengt h.
It sends myData and myL ength to the mailto URL mailto:fred@somewhere.com. The
target window for displaying the message is null in the example. Normally, using a
null target window causes the response to be delivered from the server to the plug-in
instance in a new stream, but no response is expected for amailto URL.

Y ou cannot use either of these functions to set the body or attachments of an email
message.

86 Gecko Plug-in APl Reference

Memory

This chapter describes the Plug-in API functions that allocate and free memory as
needed by the plug-in.

Because plug-ins share memory space with the browser, they can take advantage of
any customized memory-allocation scheme the browser has. Browser memory
schemes may be more efficient than standard OS memory functions, and can give the
browser flexibility in the way it manages memory. In addition, the plug-in usually has
the option of using its own memory functions.

The methods that handle memory belong to the browser group of methods.

» NPN_MemAlloc allocates memory from the browser's memory space. Use this
function to allocate memory dynamically.

* NPN_MemFree requests that the browser free a specified block of memory. Use
this function to free memory allocated with NPN_MenAl | oc.

* NPN_MemFlush requests the browser to free up a specified amount of memory
if not enough is currently available for the plug-in's requirements.

Allocating and Freeing Memory
To alocate memory and free memory, use these paired functions:

* NPN_MemAl | oc allocates aspecified amount of memory in the browser's memory
space.

* NPN_MenFr ee deallocates a block of memory allocated using NPN_MenAl | oc.

The plug-in can call the Plug-in APl NPN_MenmAl | oc function instead of the standard
malloc function to allocate dynamic memory. Using NPN_MenAl | oc offers several
advantages to the plug-in.

* A cal toNPN_MemAl | oc ismore likely to succeed. The browser may be ableto
deallocate nonessential memory structuresin response to a request.

87

e NPN_MemAl | oc usesthe browser’s customized memory-allocation scheme,
whichistypically faster and causes |ess fragmentation than the standard OS
memory functions.

» If the plug-in uses NPN_MemAl | oc, the browser is able to manage memory more
efficiently because it knows how much memory the plug-in is using at any given
time.

Mac OS

The Mac OS browser frequently fillsits memory partition with cached data that is
purged only as necessary. Since NPN_MemAl | oc automatically frees cached
information if necessary to fulfill aregquest for memory, calls to NPN_MenAl | oc may
succeed where direct callsto NewPt r fail.

The NPN_MemAl | oc method has the following syntax:

voi d *NPN_MenAl | oc (uint32 size);

The si ze parameter isan unsigned long integer that represents the amount of
memory, in bytes, to allocate in the browser's memory space. This function returns a
pointer to the allocated memory or null if not enough memory isavailable.

The NPN_MenfFr ee method deall ocates a block of memory that was allocated using
NPN_MemAl | oc only. NPN_Menfr ee does not free memory allocated by other means.

voi d NPN_MenFree (void *ptr);

The pt r parameter represents a block of memory previously allocated using
NPN_MemAl | oc.

Flushing Memory (Mac OS only)

The NPN_Menf| ush method frees a specified amount of memory. Normally, plug-ins
should use NPN_MermAl | oc , which automatically frees nonessential memory if
necessary to fulfill the request. For Communicator 4.0 and later versions, thisfunction
is not necessary for the Mac OS platform; NPN_MemAl | oc how performs memory
flushing internally. Y ou need to use NPN_Menf| ush only when it is not possible to
call NPN_MemAl | oc, for example, when calling system methods that allocate memory
indirectly. If NPN_MemAl | oc iscalled, callsto NPN_MenFl ush have no effect.

88 Gecko Plug-in APl Reference

For example, suppose that the plug-in calls NewGWr | d, and that the call fails because
of insufficient memory. The plug-in should try calling NPN_Menf| ush to free enough
memory. If NPN_MenFl ush returns avalueindicating that enough memory was freed,
the plug-in can call NewGWorld again. Calling NPN_MenF| ush is particularly
important to systems with small amounts of RAM and with virtual memory turned
off.

To request that the browser free as much memory as possible, call NPN_MenFl ush
repeatedly until it returns 0.

ui nt 32 NPN_MenFl ush(ui nt32 si ze);
The size parameter is an unsigned long integer that represents the amount of memory,

in bytes, to free in the browser's memory space. This function returns the amount of
freed memory, in bytes, or 0 if no memory could be freed.

89

90 Gecko Plug-in API Reference

Version, Ul, and Satus | nformation

This chapter describes the functionsthat allow a plug-in to display a message on the
status line, get agent information, and check on the current version of the Plug-in API
and the browser.

» Displaying a SatusLine Message
* Getting Agent Information

» Gettingthe Current Version

* Finding Out if a Feature Exists

* Reloading a Plug-in

Displaying a Satus Line M essage

Users are accustomed to checking the Ul status line at the bottom of the browser
window for updates on the progress of an operation or the URL of alink on the page.
Y ou can a'so use the status line to notify the user of plug-in-related information. The
user might appreciate seeing the percentage completed of the current operation or the
URL of abutton or other link object when the cursor isover it, al of which the
browser shows. In fact, your plug-in interface should be consistent with the rest of the
browser in this way.

To accomplish this, the plug-in callsthe NPN_Status method to display your
message on the status line.

voi d NPN_Status(NPP instance, const char *nessage);
Thei nst ance parameter isthe current plug-ininstance, that is, the one that the status

message belongs to. In the nessage parameter, pass the string you want to display on
the statusline.

91

The browser always displays the last status line message it receives, regardless of the
message source. For this reason, your message is always displayed, but you have no
control over how long it staysin the status line before another message replacesiit.

Y ou should use adifferent method to display messages that the user needsto see, such
as error messages.

Getting Agent Information

A plug-in can check which browser isrunning on the user's current system. Browsers
communicate with HTTP servers, which store agent software name, version, and
operating system in auser_agent field. If you want to gather usage statistics or just
find out the version of your plug-in's host browser, this information can help you.

The plug-in callsthe NPN_User Agent method to retrieve the contents of the
user _agent field.

const char* NPN_User Agent (NPP i nstance);

Thei nst ance parameter represents the current plug-in instance. This function
returns a string that contains the user _agent field of the browser.

Getting the Current Version

Y our plug-in should make sure, possibly during initialization, that the version of the
Plug-in APl it isusing is compatible with the version the browser is using. To do so, it
must find the major and minor version numbers, which are determined when the plug-
in and Navigator are compiled, and compare them. If the versions are not compatible,
the plug-in can let the user know. The plug-in can also use the version number to find
out whether a particular feature exists on the version of the browser that the plug-inis
running in.

The browser and Plug-in APl major version numbers represent code rel ease numbers,
and their minor version numbers represent point release numbers. For example, Plug-
in API version 6.03 has amajor version number of 6 and a point release number of 3.

Differing version numbers may mean that the current Plug-in API and the browser
versions are incompatible. Changes to the minor version numbers indicate a smaller
difference than changes to the major version. Changes to the major version numbers
probably indicate incompatibility.

92 Gecko Plug-in APl Reference

The plug-in callsthe NPN_Ver sion method to check for changes in major and minor
Plug-in API version numbers. It gets the values from the plug-in rather than from the
browser.

voi d NPN_Version(int *plugin_major,
int *plugin_m nor,

int *netscape_ngj or,

int *netscape_m nor);

This function returns the plug-in version number in plugin_major, the plug-in point
release number in pl ugi n_mi nor , the browser version number in
net scape_naj or, and the browser point release number in net scape_mi nor.

This code declares variables to hold the version numbers and calls NPN_Ver si on to
return the major and minor version numbers for the browser and the Plug-in API.

int plugin_mgjor, plugin_mnor, netscape_ngjor,
net scape_minor; // declare variables to hold versi on nunbers

void NPN_Version(
&plugin_major, & plugin_minor, & netscape_major,
& netscape_minor

); /I find version numbers

Finding Out if a Feature Exists

A plug-in can figure out whether it isrunning in aversion of the browser that supports
aparticular feature by using version or NPVERS constants (see Version Feature
Constants). Each NPVERS constant represents a feature. The plug-in can compare the
NPVERS constant to the version number. If the version supports the feature, the plug-
in can operate according to plan. If not, the plug-in cannot use some functionality. If
an essential feature is unavailable, the developer must arrange for aternative
behavior, shut down the plug-in, or give the user a chance to decide what to do.

In this example, the has_wi ndow ess method finds out whether the current version
supports windowless plug-ins. It starts by using NPN_Ver si on to get the version
numbers. It then uses the netscape_minor version number to find out if the
windowless feature, represented by the NPVERS_HAS_W NDOWLESS constant, is

93

supported. If the method returns true, a windowless plug-in can confidently proceed.
If false is returned, windowless plug-ins will not work, and the developer must
provide alternatives.

Bool has_wi ndow ess()

{

int plugin_major, plugin_m nor;

int netscape_nmjor, netscape_m nor;

/* Find the version nunmbers. */
NPN_Ver si on(&l ugi n_maj or, &pl ugi n_m nor,
&net scape_mmj or, &netscape_m nor);

/* Use the netscape_m nor version nunber: */

/* Does this version support the wi ndow ess feature? */
if (netscape_m nor < NPVERS_HAS W NDOALESS) {

/* Plug-in is running in a version of the Navi gator */
/* that does not support w ndow ess plug-ins. */
return FALSE;

}

el se

/* Plug-in is running in a Navigator version */
/* that has wi ndow ess support */

return TRUE;

}

Reloading a Plug-in

When the browser starts up, it loads all the plug-insit findsin the Plugins directory for
the platform. If you call NPN_ReloadPlugins, the browser reloads all plug-insin the
Plugins directory without restarting. This causes the browser to install a new plug-in
and load it, or remove a plug-in, without having to restart. Consider using this
function as part of the plug-in's SmartUpdate process.

voi d NPN_Rel oadPI ugi ns(NPBool r el oadPages) ;

Ther el oadPages parameter is aboolean that indicates whether to reload the page
(true) ornot (f al se).

94 Gecko Plug-in APl Reference

Plug-in Side Plug-in API

This chapter describes methods in the plug-in API that are available for the pl ug-in
object. The names of all of these methods begin with NPP_ to indicate that they are
implemented by the plug-in and called by the browser. For an overview of how these
two sides of the plug-in API interact, see the How Plug-ins Work and Overview of
Plug-in Structure sections in the introduction.

Plugin Method Summary

NPP_Destroy
NPP_DestroyStream

NPP_GetValue

NPP_HandleEvent

NP_Initialize
NPP_New
NPP_NewStream

NPP_Print

NPP_SetValue
NPP_SetWindow

NP_Shutdown

Deletes a specific instance of a plug-in.

Tellsthe plug-in that a stream is about to be
closed or destroyed.

Allows the browser to query the plug-in for
information.

Delivers a platform-specific window event
to the instance.

Provides global initialization for a plug-in.
Creates a new instance of a plug-in.

Notifies a plug-in instance of a new data
stream.

Requests a platform-specific print operation
for an embedded or full-screen plug-in.

Sets information about the plug-in.

Tellsthe plug-in when awindow is created,
moved, sized, or destroyed.

Provides global deinitialization for a plug-in.

95

NPP_Destroy

NPP_StreamAsFile

NPP_URLNotify

NPP_Write
NPP_WriteReady

Providesalocal file namefor the datafrom a
stream.

Notifies the instance of the completion of a
URL request.

Delivers data to a plug-in instance.

Determines maximum number of bytes that
the plug-in can consume.

NPP_Destroy

Deletes a specific instance of a plug-in.

Syntax

#i ncl ude <npapi . h>
NPP_Dest r oy(NPP i nst ance,

NPEr r or

Parameters

NPSavedDat a **save);

The function has the following parameters:

i nst ance

**save

Returns

Pointer to the plug-in instance to delete.

State or other information to save for reuse
by a new instance of this plug-in at the same
URL. Passed to NPP_New.

If successful, the function returns NPERR_NO_ERRCR.

If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.

96 Gecko Plug-in APl Reference

Description

NPP_Dest r oy releases the instance data and resources associated with aplug-in. The
browser calls this function when a plug-in instance is deleted, typically because the
user has |eft the page containing the instance, closed the window, or quit the browser.
Y ou should delete any private instance-specific information stored in the plug-in's
instance->pdata at thistime.

If thisfunction is deleting the last instance of a plug-in, NP_Shut down is
subsequently called. Use NP_Shutdown to delete any dataallocated in NP_I nitialize
and intended to be shared by al instances of a plug-in.

Use the optiona save parameter if you want to save and reuse some state or other
information. Upon the user's return to the page, this information is passed to the new
plug-in instance when it is created with NPP_New.

Avoid trying to save critical data with this function. Ownership of the buf field of the
NPSavedData structure passes from the plug-in to the browser when NPP_Dest r oy

returns. The browser can and will discard this data based on arbitrary criteria such as
its size and the user's page history.

To ensure that the browser does not crash or leak memory when the saved datais
discarded, NPSavedDat a' s buf field should be aflat structure (asimple structure
with no allocated substructures) allocated with NPN_MemAlloc.

Mac OS

If you want to restore state information if this plug-in is later recreated, use
NP_MemAl | oc to create an NPSavedDat a structure. §

NOTE: Y ou should not perform any graphics operationsin NPP_Dest r oy asthe
instance's window is no longer guaranteed to be valid. §

See Also
NPP_New, NP_Shutdown, NPP, NPN_MermAl | oc, NPSavedDat a,

NPP_DestroyStream

NPP_DestroyStream 97

NPP_DestroyStream

Tellsthe plug-in that a stream is about to be closed or destroyed.
Syntax

#i ncl ude <npapi . h>

NPEr ror NPP_Dest r oySt r eam(NPP i nst ance,
NPSt r eant stream
NPReason reason);

Parameters

The function has the following parameters:

i nst ance Pointer to current plug-in instance.
stream Pointer to current stream.
reason Reason the stream was destroyed. Values:

NPRES_DONE (Most common): Completed
normally; all data was sent to the instance.

NPRES_USER BREAK: User canceled stream
directly by clicking the Stop button or
indirectly by some action such as deleting
the instance or initiating higher-priority
network operations.

NPRES_NETWORK_ERR: Stream failed due to
problems with network, disk 1/0O, lack of
memory, or other problems.

Returns
If successful, the function returns NPERR_NO_ERRCR.

If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.

98 Gecko Plug-in APl Reference

Description

The browser calls the NPP_Dest r oy St r eamfunction when a data stream sent to the
plug-inisfinished, either because it has completed successfully or terminated
abnormally. After this, the browser deletes the NPStream object.

Y ou should delete any private data alocated in stream->pdata at thistime, and should
not make any further references to the stream object.

See Also
NPP_NewSt ream NPP_DestroyStream NPStream

NPP_GetValue

Allows the browser to query the plug-in for information.

Syntax

#i ncl ude <npapi . h>

NPError NPP_Cet Val ue(voi d *inst ance,
NPPVar i abl e vari abl e,
voi d *val ue);

NPP_GetValue 99

NPP_GetValue

Parameters

The function has the following parameters:

i nst ance Pointer to the current plug-in instance.
vari abl e Unix only: Plug-in information the call gets.
Values:

NPPVp! ugi nNameSt ri ng: Gets the name
of the plug-in

NPPVpl ugi nDescri ptionString: Gets
the description string of the plug-in

NPPVp! ugi nW ndowBool : Tellswhether
the plug-in is windowless; true=windowl ess,
false=not windowless

NPPVpl ugi nTr anspar ent Bool : Tells
whether the plug-in is transparent;
true=transparent, false=not transparent

val ue Plug-in name, returned by the function.

Returns

If successful, the function returns NPERR_NO_ERROR.

If unsuccessful, the function returns an error code. For possible values, see Error
Codes.
Description

NPP_Get Val ue retrieves plug-in features set with NPP_SetValue, among them
whether a plug-in is windowed or windowless and whether JavaScript is enabled.

Y ou can use this method as an optional entry point that the browser can call to
determine the plug-in name and description. It returns the requested values, specified
by the variable and value parameters, to the plug-in.

See Also
NPP_Set Val ue

100 Gecko Plug-in API Reference

NPP_HandleEvent

Delivers a platform-specific window event to the instance.
For Windowed Plug-ins: Currently used only on Mac OS.

For Windowless Plug-ins: Windows and Mac OS.
Syntax

#i ncl ude <npapi . h>
i nt 16 NPP_Handl eEvent (NPP i nstance, void* event);
Parameters

The function has the following parameters:

i nst ance Pointer to the current plug-in instance.

event Platform-specific val ue representing the
event handled by the function. Values:

MS Windows: Pointer to NPEvent structure

Mac OS: Pointer to a standard Mac OS
Event Record

For alist of possible eventsfor MSWindows
and Mac OS, see NPEvent.

Returns
If the plug-in handles the event, the function should return true.

If the plug-in ignores the event, the function returns false.

NPP_HandleEvent 101

NP_Initiaize

Description

The browser calls NPP_HandleEvent to tell the plug-in when eventstake placein the
plug-in's window or drawable area. The plug-in either handles or ignores the event,
depending on the value given in the event parameter of this function. For alist of
event types the application is responsible for delivering to the plug-in, see the
NPEvent structure.

MSWindows

The browser gives each windowed plug-in its own native window, often a child
window of the browser window, to draw into. The plug-in has complete control over
drawing and event handling within that window. §

Mac OS

The browser does not give awindowed plug-in a native window, because the Mac OS
platform does not support child windows. Instead, the windowed plug-in draws into
the graphics port associated with the the browser window, at the offset that the
browser specifies. For this reason, NPP_HandleEvent isonly way the plug-in can
receive events from its host application on Mac OS. When NPP_HandleEvent is
called, the current port is set up so that its origin matches the top-left corner of the
plug-in. A plug-in does not need to set up the current port for mouse coordinate
translation. §

See Also
NPEvent

NP_Initialize

Provides global initialization for a plug-in.
Syntax

#i ncl ude <npapi . h>
NPError NP_Initialize(void)

102 Gecko Plug-in API Reference

Returns

If successful, the function returns NPERR_NO_ERROR.

If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.
Description

The browser calls this function only once: when aplug-in isloaded, before the first
instance is created. Thisisthe first function that the browser calls. NP_I nitialize tells
the plug-in that the browser hasloaded it and provides global initialization. Allocate
any memory or resources shared by all instances of your plug-in at this time.

After the last instance of a plug-in has been deleted, the browser calls NP_Shutdown,
where you can release allocated memory or resources.

MSWindows

See Also
NP_Shut down, NPP_New

NPP_New

Creates anew instance of aplug-in.

Syntax

#i ncl ude <npapi . h>
NPEr r or NPP_New(NPM METype pl ugi nType,
NPP instance, uintl16 node,
intl6 argc, char *argn[],
char *argv[], NPSavedData *saved);

NPP_New 103

NPP_New

Parameters

The function has the following parameters:

pl ugi nType

i nst ance

node

argc

argn[]

argv[]

saved

Returns

Pointer to the MIME type for new plug-in
instance.

Contains instance-specific private data for
the plug-in and the browser. This datais
stored in instance->pdata.

Display mode of plug-in. Values:

* NP_EMBED: (1) Instance was created by
an EMBED tag and shares the browser
window with other content.

e NP_FULL: (2) Instance was created by a
separate file and is the primary content
in the window.

Number of HTML arguments in the EMBED
tag for an embedded plug-in; determines the
number of attributes in the argn and argv
arrays.

Array of attribute names passed to the plug-
in from the EMBED tag.

Array of attribute values passed to the plug-
in from the EMBED tag.

Pointer to data saved by NPP_Dest r oy for a
previous instance of this plug-in at the same
URL. If non-null, the browser passes
ownership of the NPSavedDat a object back
to the plug-in. The plug-in is responsible for
freeing the memory for the NPSavedDat a
and the buffer it contains.

e If successful, the function returns NPERR_NO_ERROR.

» If unsuccessful, thefunction returns an error code. For possible values, see Error

Codes.

104 Gecko Plug-in API Reference

Description

NPP_New creates a new instance of aplug-in. It is called after NP_Initialize and
provides the MIME type, embedded or full-screen display mode, and, for embedded
plug-ins, information about HTML EMBED arguments.

The plug-in's NPP pointer is valid until the instance is destroyed with NPP_Destroy.

If instance datawas saved from a previous instance of the plug-in by the
NPP_Destroy function, it is returned in the saved parameter for the current instance
to use.

All attributes in the EMBED tag (standard and private) are passed in NPP_New in the
argn and argv arrays. The browser ignores any non-standard attributes within an
EMBED tag. This gives devel opers a chance to use private attributes to communicate
instance-specific options or other information to the plug-in. Place private options at
the end of the list of standard attributesin the EMBED Tag.

See Also
NPP_Destroy, NP_Shutdown, NPP, NPSavedDat a

NPP_NewStream

Notifies a plug-in instance of a new data stream.

Syntax

#i ncl ude <npapi . h>

NPEr ror NPP_NewSt r eam(NPP i nst ance,
NPM METype type,
NPStream *stream
NPBool seekabl e,
ui nt 16* stype);

NPP_NewStream 105

NPP_NewStream

Parameters

The function has the following parameters:

i nst ance

type
stream

seekabl e

st ype

106 Gecko Plug-in API Reference

Pointer to current plug-in instance.
Pointer to MIME type of the stream.
Pointer to new stream.

Boolean indicating whether the stream is
seekable:

t r ue: Seekable. Stream supports random
access through calls to NPN_RequestRead
(for example, local filesor HTTP servers
that support byte-range requests).

f al se: Not seekable. The browser must
copy datain the stream to the local cache to
satisfy random access requests made through
NPN_RequestRead.

Requested mode of new stream. For more
information about each of these values, see
Directionsin this section.

NP_NORVAL (Default): Delivers stream data
totheinstancein a series of callsto
NPP_WriteReady and NPP_Write.

NP_ASFI LEONLY: Saves stream datato afile
inthelocal cache.

NP_ASFI LE: File download. Like
NP_ASFI LEONLY except that datais
delivered to the plug-in asit is saved to the
file (asin mode NP_NORMAL).

NP_SEEK: Stream data randomly accessible
by the plug-in as needed, through calls to
NPN_RequestRead.

Returns

If successful, the function returns NPERR_NO_ERROR.

If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.

Description

NPP_NewsSt r eamnotifies the plug-in when anew stream is created. The NPSt r eant
pointer isvalid until the stream is destroyed. The plug-in can store plug-in-private
data associated with the stream in stream->pdata. The MIME type of the stream is
provided by the type parameter.

The data in the stream can be the file specified in the SRC attribute of the EMBED tag,
for an embedded instance, or the file itself, for afull-page instance. A plug-in can also
request a stream with the function NPN_GetURL . The browser calls

NPP_Destr oyStream when the stream completes (either successfully or abnormally).
The plug-in can terminate the stream itself by calling NPN_DestroyStream.

The parameter stype defines the mode of the stream. Values:

* NP_NORMAL (Default): Delivers stream datato the instance in a series of callsto
NPP_WriteReady and NPP_Write. The plug-in can process the data progres-
sively asit arrives from the network or file system.

* NP_ASFI LEONLY: The browser saves stream datato afilein the local cache.
When the stream is compl ete, the browser calls NPP_St r eamAsFi | e to deliver
the path of thefile to the plug-in. If the stream comes from alocal file, the
NPP_Write and NPP_WriteReady functions are not called.
NPP_StreamAsFileis simply called immediately. This mode alows the plug-in
full random access to the data using platform-specific file operations.

* NP_ASFI LE: File download. Differs from NP_ASFI LEONLY in that datais deliv-
ered to the plug-in, through a series of callsto NPP_WriteReady and
NPP_Write, asit issaved to the file (as in mode NP_NORVAL). When the stream
is complete, the browser calls NPP_StreamAsFile to deliver the path of thefile
to the plug-in. If the datain the stream comes from afilethat is already local, the
datais read, sent to the plug-in through NPP_W i t e, and written to afilein the
local cache.

NOTE: Most plug-insthat need the stream saved to afile should use the more
efficient mode NP_ASFI LEONLY (above); thismode is preserved for compatibility
only.

* NP_SEEK: Stream datais not automatically delivered to the instance, but can be
randomly accessed by the plug-in as needed, through callsto

NPP_NewStream 107

NPP_Print

NPN_RequestRead. If the stream is not seekable, placing the streamin
NP_SEEK mode causes the browser to save the entire stream to the disk cache.
NPN_RequestRead requests are only fulfilled when all data has been read and
stored in the cache. As an optimization to extract the maximum benefit from
existing network connections, the browser continues to read data sequentially out
of the stream (asin mode NP_NORMAL) until the first NPN_RequestRead call is
made.

NOTE: In any mode other than NP_SEEK, the application should call
NPP_DestroyStream once al datain the stream has been written to the plug-in.
The plug-in can also request termination of the stream at any time by calling
NPP_DestroyStream. §

See Also

NPN_NewSt ream NPP_StreamAsFile, NPP_Wite, NPP_WiteReady,
NPP_DestroyStream NPN_Request Read, NPStream NPN_Get URL

NPP_Print

Requests a platform-specific print operation for an embedded or full-screen plug-in.

Syntax

#i ncl ude <npapi . h>
voi d NPP_Print (NPP instance, NPPrint* Printlnfo);

Parameters

The function has the following parameters:

i nst ance Pointer to the current plug-in instance. Must
be embedded or full-screen.
printlnfo Pointer to NPPr i nt structure.

108 Gecko Plug-in API Reference

Description

NPP_Pri nt iscalled when the user requests printing for a web page that contains a
visible plug-in (either embedded or full-page). It uses the print mode set in the
NPPrint structure in its printinfo parameter to determine whether the plug-in should
print as an embedded plug-in or as a full-page plug-in.

* Anembedded plug-in shares printing with the browser; the plug-in prints the part
of the page it occupies, and the browser handles everything else, including dis-
playing print dial og boxes, getting the printer device context, and any other tasks
involved in printing, aswell as printing the rest of the page. For an embedded
plug-in, set the printinfo field to NPEmbedPrint.

* A full-page plug-in handles all aspects of printing itself. For afull-page plug-in,
set the printinfo field to NPFul | Pri nt or null.

For information about printing on your platform, see your platform documentation.
MSWindows

On MSWindows, pri nt | nf o->print. embedPrint. platfornPrint isthe
device context (DC) handle. Be sure to cast this to type HDC. §

The coordinates for the window rectangle are in TWIPS format. This means that you
need to convert the x-y coordinates using the Windows API call DPt oLP when you
output text. §

See Also
NPPrint, NPFull Print, NPEnmbedPrint

NPP_SetValue

Sets information about the plug-in.

NPP_SetValue 109

NPP_SetValue

Syntax

#i ncl ude <npapi . h>

NPError NPP_Set Val ue(void *instance,
NPPVar i abl e vari abl e,
voi d *val ue);

Parameters

The function has the following parameters:

i nst ance Pointer to the current plug-in instance.

vari abl e The plug-in information the call is setting.
For values, see NPP_Get Val ue.

val ue Destination for plug-in information returned
by the function.

Returns

If successful, the function returns NPERR_NO_ERROR.

If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.
Description

NPP_Set Val ue setsavariety of features for a plug-in, among them whether aplug-in
is windowed or windowless and whether JavaScript is enabled. For possible values,
see NPP_GetValue. The plug-in makesthis call from its NPP_New method.

For example, to specify that a plug-in is windowless, use NPP_Set Val ue with
NPPVpl ugi nW ndowBool asthe variable to set and false asthe value parameter. If a
plug-in does not make this call, it is considered a windowed plug-in.

See Also
NPP_New, NPP_GCet Val ue

110 Gecko Plug-in API Reference

NPP_SetWindow

Tellsthe plug-in when awindow is created, moved, sized, or destroyed.
Syntax

#i ncl ude <npapi . h>
NPError NPP_Set W ndow(NPP i nstance, NPW ndow *wi ndow) ;

Parameters

The function has the following parameters:

i nstance Pointer to the current plug-in instance. Must
be embedded or full-screen.
wi ndow Pointer to the window into which the

instance draws. The window structure
contains awindow handle and values for top
left corner, width, height, and clipping
rectangle (see note on Unix below).

Returns
If successful, the function returns NPERR_NO_ERRCR.

If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.

Description

The browser calls NPP_Set W ndow after creating the instance to allow drawing to
begin. Subsequent callsto NPP_Set W ndowindicate changesin size or position; these
calls pass the same NPWindow object each time, but with different values. If the
window handle is set to null, the window is destroyed. In this case, the plug-in must
not perform any additional graphics operations on the window and should free any
associated resources.

NPP_SetWindow 111

NP_Shutdown

The data structure passed in NPP_Set W ndowis an NPWindow object, which
contains the coordinates of the instance's area and various platform-specific data. This
window isvalid for the life of the instance, or until NPP_Set W ndowis called again
with a different value.

For windowed plug-ins on Windows and Unix, the window parameter contains a
handle to a subwindow of the browser window hierarchy. On Mac OS, thisfield
pointsto an NP_Port structure. For windowless plug-ins, it is a platform-specific
handle to a drawable.

Before setting the window parameter to point to a new window, it is a good ideato
compare the information about the new window to the previous window (if one
existed) to account for any changes.

NOTE: NPP_Set W ndow is useful only for embedded (NP_EMBED) or full-screen
(NP_FULL) plug-ins, which are drawn into windows. It isirrelevant for hidden plug-
ins.§

See Also
NPP_Handl eEvent, NPW ndow, NP_Port

NP_Shutdown

Provides global deinitialization for aplug-in.
Syntax

#i ncl ude <npapi . h>
voi d NP_Shut down(voi d);
Description

The browser calls this function once after the last instance of your plug-in is
destroyed, before unloading the plug-in library itself. Use NP_Shut down to delete any
data allocated in NP_Initialize to be shared by al instances of a plug-in.

112 Gecko Plug-in APl Reference

If you have defined a Java class for your plug-in, be sureto release it at thistime so
that Java can unload it and free up memory.

NOTE: If enough memory isavailable, the browser can keep the plug-in library
loaded if it expects to create more instances in the near future. The browser calls
NP_sShut down only when the library isfinally unloaded. §

MSWindows

See Also
NP_Initialize, NPP_Destroy

NPP_StreamAskFile

Provides alocal file name for the data from a stream.

Syntax
#i ncl ude <npapi . h>
voi d NPP_StreamAsFi | e(NPP i nstance,
NPSt r eant stream
const char* fnane);
Parameters

The function has the following parameters:

i nst ance Pointer to current plug-in instance.
stream Pointer to current stream.
f name Pointer to full path to alocal file. If an error

occurs while retrieving the data or writing
the file, fname may be null.

NPP_StreamAsFile 113

NPP_URLNotify

Description

When the stream is compl ete, the browser calls NPP_St r eamAsFi | e to provide the
instance with a full path name for alocal file for the stream. NPP_St r eamAsFi | e is
called for streams whose mode is set to NP_ASFI LEONLY or NP_ASFI LE only in a
previous call to NPP_NewStream.

If an error occurs while retrieving the data or writing the file, the file name (fname) is
null.

See Also
NPP_NewSt ream NPP_Wite, NPP_WiteReady, NPStream NPP

NPP_URLNOotify

Notifies the instance of the completion of a URL request.

Syntax
#i ncl ude <npapi . h>
voi d NPP_URLNot i fy(NPP i nst ance,
const char* url,
NPReason reason,
voi d* noti f yDat a) ;

114 Gecko Plug-in APl Reference

Parameters

The function has the following parameters:

i nst ance Pointer to the current plug-in instance.

url URL of the NPN_Get URLNot i fy or
NPN_Post URLNot i f y request.

reason Reason code for compl etion of reguest.

Values:

* NPRES_DONE (most common): Com-
pleted normally.

* NPRES_USER BREAK: User canceled
stream directly by clicking the Stop but-
ton or indirectly by some action such as
deleting the instance or initiating higher-
priority network operations.

* NPRES_NETWORK_ERR: Stream failed
due to problems with network, disk 1/0,
lack of memory, or other problems.

noti fyData Plug-in-private value for associating a
previous NPN_Get URLNot i fy or
NPN_Post URLNot i f y request with a
subsequent NPP_URLNot i fy call.

Description

The browser calls NPP_URLNot i f y after the completion of a NPN_GetURL Notify
or NPN_PostURL Notify request to inform the plug-in that the request was completed
and supply areason code for the completion.

The most common reason code is NPRES_DONE, indicating simply that the request
completed normally. Other possible reason codes are NPRES_USER_BREAK,
indicating that the request was halted due to a user action (for example, clicking the
Stop button), and NPRES_NETWORK_ERR, indicating that the request could not be
completed, perhaps because the URL could not be found.

The parameter not i f yDat a is the plug-in-private value passed as an argument by a
previous NPN_GetURL Notify or NPN_PostURL Notify call, and can be used as an
identifier for the request.

NPP_URLNotify 115

NPP_Write

See Also
NPN_Get URLNot i fy, NPN_Get URL, NPN_PostURLNotify, NPN_PostURL

NPP_Write

Delivers datato a plug-in instance.

Syntax

#i ncl ude <npapi . h>

int32 NPP_Wite(NPP instance,
NPSt r eant stream
int32 offset,
int32 | en,
voi d* buf);

Parameters

The function has the following parameters:

i nst ance Pointer to the current plug-in instance.
stream Pointer to the current stream.
of f set Offset in bytes of buf from the beginning of

the datain the stream. Can be used to check
stream progress or bye range requests from
NPN_Request Read.

I en Length in bytes of buf; number of bytes
accepted.
buf Buffer of data, delivered by the stream, that

contains len bytes of data offset bytes from
the start of the stream. The buffer isallocated
by the browser and is deleted after returning
from the function, so the plug-in should
make a copy of the datait needsto keep.

116 Gecko Plug-in APl Reference

Returns
If successful, the function returns the number of bytes consumed by the instance.

If unsuccessful, the function destroys the stream by returning a negative value.

Description

The browser callsthe NPP_W i t e function to deliver the data specified in a previous
NPP_WriteReady cal to the plug-in. A plug-in must consume at least as many bytes
asindicated in the NPP_WriteReady call.

After astreamiscreated by a call to NPP_NewStream, the browser callsNPP_W i t e

either:

» If the plug-in requested a normal-mode stream, the data in the stream is delivered
to the plug-in instance in a series of callsto NPP_WriteReady and NPP_W i t e.

» If the plug-in requested a seekable stream, the NPN_RequestRead function
requests reads of a specified byte range that resultsin a series of callsto
NPP_WriteReady and NPP_W i t e.

The plug-in can use the offset parameter to track the bytes that are written. This gives
you different information depending in the type of stream. In a normal-mode stream.,
the parameter val ue increases as the each buffer is written. The buf parameter is not
persistent, so the plug-in must process dataimmediately or allocate memory and save
acopy of it. In a seekable stream with byte range requests, you can use this parameter
to track NPN_RequestRead requests.

The plug-in should return the number of byteswritten (consumed by the instance). If
the return valueis smaller than the size of the buffer, the browser sends the remaining
datato the plug-in through subsequent callsto NPP_WriteReady and NPP_Wite. A
negative return value causes an error on the stream, which causes the browser to
destroy the stream with NPP_Destr oyStream.

See Also
NPP_DestroyStream NPP_NewStream NPP_WiteReady, NPStream NPP

NPP_WriteReady

Determines maximum number of bytesthat the plug-in can consume.

NPP_WriteReady 117

NPP_WriteReady

Syntax

#i ncl ude <npapi . h>
int32 NPP_WiteReady(NPP instance, NPStreant strean);

Parameters

The function has the following parameters:

instance Pointer to the current plug-in instance.
stream Pointer to the current stream.

Returns

Returns the maximum number of bytesthat an instance is prepared to accept from the
stream.

Description

The browser callsNPP_W i t eReady before each call to NPP_Write to determine
whether a plug-in can receive data and how many bytesit can receive. This function
allows the browser to send only as much datato the instance as it can handle at one
time, making resource use more efficient for both the browser and plug-in.

The NPP_W i t e function may pass alarger buffer, but the plug-in is required to
consume only the amount of data returned by NPP_W i t eReady.

The browser can write a smaller amount of dataif desired or necessary; for example,
if only 8K of datais available in a network buffer. If the plug-inis allocating memory
for the entire stream at once (an AS_FI LE stream), it can return a very large number.
Because it is not processing streaming data, the browser can pass as much data to the
instance as necessary in asingle NPP_Write.

If the plug-in receives avalue of zero, the data flow temporarily stops. The browser
checksto seeif the plug-in can receive data again by resending the data at regular
intervals.

See Also
NPP_Wite, NPStream NPP

118 Gecko Plug-in APl Reference

Browser Side Plug-in API

This chapter describes methods in the plug-in API that are available for the br owser .
The names of all of these methods begin with NPN_ to indicate that they are
implemented by the browser and called by the plug-in. For an overview of how these
two sides of the plug-in API interact, see the How Plug-ins Work and Overview of
Plug-in Structure sections in the introduction.

Netscape Plug-in M ethod Summary

NPN_DestroyStream
NPN_ForceRedraw

NPN_GetURL

NPN_GetURL Notify

NPN_GetValue

NPN_InvalidateRect

NPN_InvalidateRegion

NPN_MemAlloc

NPN_MemFlush

NPN_MemFree

Closes and deletes a stream.

Forces a paint message for a windowless
plug-in.

Asks the browser to create a stream for the
specified URL.

Requests creation of anew stream with the
contents of the specified URL; gets
notification of the result.

Allowsthe plug-in to query the browser for
information.

Invalidates specified drawing area prior to
repainting or refreshing a windowless plug-
in.

Invalidates specified drawing region prior to
repainting or refreshing a windowless plug-
in.

Allocates memory from the browser’s
memory space.

Requests that the browser free a specified
amount of memory.

Deallocates a block of allocated memory.

119

NPN_DestroyStream

NPN_NewStream Requests the creation of a new data stream
produced by the plug-in and consumed by
the browser.

NPN_PostURL Posts datato a URL.

NPN_PostURL Notify Posts datato a URL, and receives
notification of the result.

NPN_ReloadPlugins Reloads all plug-insin the Plugins directory.

NPN_RequestRead Requests arange of bytesfor a seekable
stream.

NPN_SetValue Sets windowless plug-in as transparent or
opague.

NPN_Status Displays a message on the status line of the
browser window.

NPN_UserAgent Returns the browser’ s user agent field.

NPN_Version Returns version information for the Plug-in
API.

NPN_Write Pushes data into a stream produced by the

plug-in and consumed by the browser.

NPN_DestroyStream

Closes and deletes a stream.

Syntax

#i ncl ude <npapi . h>

NPError NPN_Dest r oySt r eanm(NPP i nst ance,
NPSt r eant stream
NPEr r or reason);

120 Gecko Plug-in API Reference

Parameters

The function has the following parameters:

i nstance Pointer to current plug-in instance.

stream Pointer to current stream, initiated by either
the browser or the plug-in.

reason Reason the stream was stopped so the
application can give the user appropriate
feedback. Values:

* NPRES_DONE (most common): Stream
completed normally; all data was sent
by the plug-in to the browser.

* NPRES_USER BREAK: Plug-inistermi-
nating the stream due to a user request.

* NPRES_NETWORK_ERR: Stream failed
due to network problems.

Returns
If successful, the function returns NPERR_NO_ERROR.

If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.
Description

The plug-in callsthe NPN_Dest r oy St r eamfunction to close and delete a stream.
This stream can be either a stream that the browser created and passed to the plug-in
in NPP_NewSt r eam or a stream created by the plug-in through acall to

NPN_NewSt r eam

See Also
NPP_DestroyStream NPN_NewStream NPStream NPP

NPN_ForceRedraw

NPN_ForceRedraw 121

NPN_ForceRedraw

Forces a paint message for a windowless plug-in.

Syntax

#i ncl ude <npapi . h>
voi d NPN_For ceRedr aw(NPP i nst ance) ;

Parameters

The function has the following parameters:

i nst ance Plug-in instance for which the function
forces redrawing.

Description

A windowed plug-in determines when it draws, while a windowless plug-in draws
only in response to a paint message from the browser. NPN_For ceRedr aw forces a
paint message for a windowless plug-in.

Once avalue has been invalidated with NPN_I nvalidateRect or
NPN_InvalidateRegion, aplug-in can call NPN_For ceRedr aw to force a paint
message. This causes a synchronous update event or paint message for the plug-in.

MSWindows

The plug-in receives a WM _PAI NT message. The| Par amof the WM_PAI NT message
holds a pointer to an NPRect that isthe bounding box of the update area. Since the
plug-in and the browser share the same HDC, before drawing, the plug-inis
responsible for saving the current HDC settings, setting up its own environment,
drawing, and restoring the HDC to the previous settings. The HDC settings must be
restored whenever control returns back to the browser, either before returning from
NPP_Handl eEvent or before calling a drawing-related Netscape method. §

Mac OS

The plug-in receives an updateEvent. The clipRegion of the drawable's CGraf Ptr is set
to the update region. Asisthe case for windowed plug-ins on Mac OS, the plug-in
must first save the current settings of the port, setting up the drawing environment as
appropriate, drawing, and restoring the port to the previous setting. This should
happen before the plug-in returnsfrom NP_Hand| eEvent or beforethe plug-in callsa
drawing-related Navigator method. §

122 Gecko Plug-in API Reference

See Also
NPN_I nval i dat eRect, NPN_I nval i dat eRegi on, NPP

NPN_GetURL

Asksthe browser to create a stream for the specified URL.

Syntax

#i ncl ude <npapi . h>

NPError NPN_Get URL(NPP i nst ance,
const char* url,
const char* target);

NPN_GetURL 123

NPN_GetURL

Parameters

The function has the following parameters:

i nstance Pointer to the current plug-in instance.

url Pointer to the URL of the request. Can be of any
type, such asHTTP, FTP, news, mailto, gopher.

t ar get Name of the target window or frame, or one of the
following specia target names. Values:

e _blank or _new Loadthelink in anew
blank unnamed window. Safest target, even
though, when used with a mailto or news
URL, this creates an extra blank the browser
instance.

e _self or_current:Loadthelink intothe
same window the plug-in instance occupies.
Not recommended; see Warning. If target
refers to the window or frame containing the
instance, the instance is destroyed and the
plug-in may be unloaded. Use with
NPN_Get URL only if you want to terminate
the plug-in.

e _parent: Loadthelink into the immediate
FRAMESET parent of the plug-in instance's
document. If the plug-in instance's document
has no parent, the default is_sel f .

e _top: Load thelink into the plug-in instance
window. The default is _sel f, if the plug-in
instance's document is already at the top. Use
for breaking out of a deep frame nesting.

If null, the browser creates a new stream and
delivers the data to the current instance regardless
of the MIME type of the URL. In general, if a
URL worksin the location box of the Navigator, it
works here, except for the _sel f target.

Returns
e If successful, the function returns NPERR_NO_ERROR.

124 Gecko Plug-in API Reference

» If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.

Description

NPN_Get URL isused to load a URL into the current window or another target or
stream. Plug-ins can use this capability to provide hyperlinks to other documents or to
retrieve data from anywhere on the network. Thisis especially useful for enabling an
existing application to operate on the web.

For HTTP URLSs, the browser resolves this method asthe HTTP server method GET,
which requests URL objects.

Use NPN_PostURL Notify instead of NPN_PostURL in these cases:
» Torequest astream and receive notification of the result.
» If the buffer contains header information (even a blank line).

Make sure that the target matches the URL type sent to it. For example, anull target
does not make sense for some URL types (such as mailto). The following
recommendations about target choice apply to other methods that handle URL s as
well.

If the target parameter refers to the window or frame containing the current plug-in
instance, the instance is destroyed and the plug-in may be unloaded. If target is null,
the application creates a new stream and delivers the datato the plug-in instance,
through callsto NPP_NewStream, NPP_WriteReady and NPP_Write, and
NPP_DestroyStream. This means that if you want the plug-in to handle a new
stream, no matter what the MIME typeis, use null. If the application cannot locate the
URL and retrieve the data, it does not create a stream for the instance.

When the plug-in instance is part of aregular Navigator window, and it usesa
_bl ank target with amailto or news URL, another blank navigator window is opened
along with the mail or news window.

When theplug-inusesa_sel f target, no other instanceis created; the plug-in usually
continues to operate successfully in its own window. The safest target is _bl ank,
even though this creates an extra blank the browser instance.

For complete information on named targets for this function (as well as for normal
HTML links), see the Netscape document, " Targeting Windows."

NPN_GetURL 125

NPN_GetURL Notify

The plug-in developer cannot influence the way that the browser handles

NPN_Get URL. It istypically asynchronous but thisis not guaranteed. The plug-in
could call NPN_Get URL and receive data from the URL right away, but more often the
data arrives later. The rest of the the browser interface keeps running until the datais
available. §

See Also
NPN_Get URLNot i fy, NPN_Post URL, NPN_Post URLNotify, NPP_URLNotify

NPN_GetURLNotify

Requests creation of a new stream with the contents of the specified URL ; gets
notification of the result.

Syntax

#i ncl ude <npapi . h>

NPEr ror NPN_Get URLNot i f y(NPP i nst ance,
const char* url,
const char* target,
voi d* noti f yDat a) ;

Parameters

The function has the following parameters:

i nst ance Pointer to the current plug-in instance.
ur | Pointer to the URL of the request.
target Name of the target window or frame, or one

of several special target names. For values,
seeNPN_GetURL.

noti fyData Plug-in-private value for associating the
request with the subseguent
NPP_URL Notify call, which passesthis
value (see Description below).

126 Gecko Plug-in API Reference

Returns

e If successful, the function returns NPERR_NO_ERROR.
» If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.

Description

NPN_Get URLNot i fy worksjust like NPN_GetURL, with one exception.
NPN_Get URLNot i f y notifies the plug-in instance upon successful or unsuccessful
completion of the request by calling the plug-in's NPP_URL Notify function and
passing it thenot i f yDat a value.

NPN_Get URLNot i f y typically handlesthe URL request asynchronously. It returns
immediately and only later handles the request and calls NPP_URLNot i fy. This
notification isthe only way the plug-in can tell whether arequest with a null target
failed, or that a request with a non-null target completed.

For requests that complete unsuccessfully, the browser callsNPP_URLNot i f y assoon

as possible. For requests that complete successfully:

» If thetarget is non-null, the browser calls NPP_URLNot i f y after it has finished
loading the URL.

» If thetargetisnull, the browser callsNPP_URLNot i f y after closing the stream by
calling NPN_DestroyStream.

If this function is called with atarget parameter value of _sel f or aparentto _sel f,
this function should return an | NVALI D_PARAMNPETrror. Thisis the only way to
notify the plug-in onceit is deleted.

See Also
NPN_Get URL, NPN_Post URL, NPN_Post URLNotify, NPP_URLNotify, NPP

NPN_GetValue

Allows the plug-in to query the browser for information.

NPN_GetValue 127

NPN_GetValue

Syntax
#i ncl ude <npapi . h>
NPError NPN_Cet Val ue(NPP i nstance,
NPNVar i abl e vari abl e,
voi d *val ue) ;
Parameters

This function has the following parameters:

i nst ance Pointer to the current plug-in instance.
vari abl e Information the call gets. Valuesfor
NPNVar i abl e:

* NPNVxDi spl ay =1: Unix only: Returns the
current Display

* NPNVxt AppCont ext : Unix only: Returns
the application's Xt AppCont ext

* NPNVnet scapeW ndow: MSWindows only:
Gets the native window on which plug-in
drawing occurs; returns HWND

* NPNVj avascri pt Enabl edBool : Tells
whether JavaScript is enabled; true=JavaS-
cript enabled, false=not enabled

* NPNVasdEnabl edBool : Tells whether
SmartUpdate (former name: ASD) is
enabled; true=SmartUpdate enabled,
false=not enabled

e NPNVO flineBool : Tells whether offline
mode is enabled; true=offline mode enabled,
false=not enabled

val ue Function returns the name of the plug-in in the
value parameter.

Returns

e If successful, the function returns NPERR_NO_ERROR.
» If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.

128 Gecko Plug-in APl Reference

Description

NPN_Get Val ue returns the browser information set with NPN_Set Val ue. The
queried information is returned in the value parameter.

The method returns a value of type HWND. In many cases, a plug-in may still have to
create its own window (a transparent child window of the browser window) to act as
the owner window for popup menus and modal dialogs. This transparent child
window can have its own WindowProc within which the plug-in can deal with
WV_COMMAND messages sent to it aresult of tracking the popup menu or modal dialog.

Unix

The values for this parameter are the NPNvxDi spl ay (the current Display) and the
NPNVxt AppCont ext (the browser's Xt AppCont ext). §

MSWindows

Y ou can use this method to help create a menu or dialog box for awindowless plug-
in. In order to bring up popup menus and modal dialogs, a plug-in needs a parent
window. A windowless plug-in does not receive its own native window. Instead, it
draws directly into the drawable given to it. Use the NPNVnet scapeW ndow value to
get the native window on which plug-in drawing occurs. §

See Also
NPN_Set Val ue, NPP_Get Val ue, NPN_Set Val ue

NPN_InvalidateRect

Invalidates specified drawing area prior to repainting or refreshing a windowless
plug-in.

Syntax
#i ncl ude <npapi . h>

voi d NPN_I nval i dat eRect (NPP i nstance,
NP_Rect *invalidRect);

NPN_InvalidateRect 129

NPN_InvalidateRegion

Parameters

The function has the following parameters:

i nst ance Pointer to the current plug-in instance.

i nval i dRect The areato invalidate, specifiedin a
coordinate system that originates at the top
left of the plug-in.

Description

Before a windowless plug-in can repaint or refresh part of its drawing area, the plug-
in must first invalidate the area with either NPN_I nval i dat eRect or
NPN_InvalidateRegion.

NPN_I nval i dat eRect causes the NPP_HandleEvent method to pass an update
event or a paint message to the plug-in. After calling this method, the plug-in receives
a paint message asynchronously.

The browser redraws invalid areas of the document and any windowless plug-ins at
regularly timed intervals. To force apaint message, the plug-in can call
NPN_For ceRedraw after calling this method.

See Also
NPN_For ceRedr aw, NPN_| nval i dat eRegi on, NP_Rect, NPP

NPN_InvalidateRegion

Invalidates specified drawing region prior to repainting or refreshing a windowless
plug-in.

Syntax
#i ncl ude <npapi . h>

voi d NPN_I nval i dat eRegi on(NPP i nst ance,
NP_Regi on inval i dRegi on) ;

130 Gecko Plug-in API Reference

Parameters
The function has the following parameters:

i nstance Pointer to the current plug-in instance.

i nval i dRegi on Theareato invalidate, specifiedina
coordinate system that originates at the top
left of the plug-in.

Description

Before a windowless plug-in can repaint or refresh part of its drawing area, the plug-
in must first invalidate the areawith either NPN_InvalidateRect or
NPN_I nval i dat eRegi on.

NPN_I nval i dat eRegi on causes the NPP_HandleEvent method to pass an update
event or a paint message to the plug-in. If aplug-in calls this method, it receives a
paint message later. The browser redraws invalid areas of the document and
windowless plug-ins at regularly timed intervals. To force a paint message, the plug-
in can call NPN_ForceRedraw after calling this method.

See Also
NPN_For ceRedr aw, NPN_| nval i dat eRect, NP_Regi on, NPP

NPN_MemAlloc

Allocates memory from the browser’s memory space.
Syntax

#i ncl ude <npapi . h>
voi d *NPN_MenAl | oc (ui nt32 size);

NPN_MemAlloc 131

NPN_MemAlloc

Parameters

The function has the following parameters:

si ze Size of memory, in bytes, to allocate in the
browser's memory space.

Returns

» If successful, the function returns a pointer to the allocated memory, in bytes.
» If insufficient memory is available, the plug-in returns null.

Description

The plug-in callsNPN_MemAl | oc to allocate a specified amount of memory in the
browser's memory space. If you allocate saved instance data with NPP_Destr oy, be
sureto use NPN_MenAl | oc to alocate memory. This ensuresthat the browser can free
the saved data at alater time with the equivalent of NPN_MemFree.

Sincethe browser and plug-ins share the same memory space, NPN_MermAl | oc alows
plug-ins to take advantage of any customized memory allocation scheme the
application may have, and allows the application to manage its memory more flexibly
and efficiently.

Mac OS

NPN_MenAl | oc isparticularly important on Mac OS, since the Mac OS version of the
browser frequently fills its memory partition with cached data that is only purged as
necessary. Since NPN_MenAl | oc automatically frees cached information if necessary
to fulfill the request, callsto NPN_MemAl | oc may succeed where direct callsto
Newpt r fail. §

Mac OS

Existing callsto NPN_Menf| ush have no effect. Y ou only need to use
NPN_MenFl ush in situations where you cannot use NPN_MenAl | oc, for example,
when calling system methods that allocate memory indirectly. 8

See Also
NPN_MenFl ush, NPN_MenFree

132 Gecko Plug-in APl Reference

NPN_MemFlush

Requests that the browser free a specified amount of memory.

Implemented only on Mac OS.

Syntax

#i ncl ude <npapi . h>
ui nt 32 NPN_Men¥| ush(ui nt 32 si ze);

Parameters

The function has the following parameters:

si ze Size of memory, in bytes, to free in the
browser’s memory space.

Returns

» If successful, the function returns the amount of freed memory, in bytes.
» If no memory can be freed, the plug-in returns 0.

Description

The plug-in callsNPN_MenFl ush when it is not possible to call NPN_MemAlloc, for
example, when calling system APIs that indirectly allocate memory. To reguest that
the browser free as much memory as possible, call NPN_Ment| ush repeatedly until it
returns O.

On Mac OS, you can use this method to free memory before calling memory-
intensive Mac Toolbox calls.

In general, plug-ins should use NPN_MemAl | oc to allocate memory in the browser’s
memory space, since this function automatically frees cached data if necessary to
fulfill the request.

NPN_MemFlush 133

NPN_MemFree

See Also
NPN_MenFl ush, NPN_MenfFree

NPN_MemkFree

Deallocates a block of allocated memory.
Syntax

#i ncl ude <npapi . h>
voi d NPN_MenFree (voi d* ptr);

Parameters

The function has the following parameters:
ptr Block of memory previously allocated using
NPN_MemAl | oc.
Description

NPN_MenFr ee deallocates a block of memory that was allocated using
NPN_MemAlloc only. NPN_MenFr ee does not free memory allocated by any other
means.

See Also
NPN_MermAl | oc, NPN_Menfl ush

NPN_NewStream

134 Gecko Plug-in APl Reference

Requests the creation of a new data stream produced by the plug-in and consumed by
the browser.

Syntax

#i ncl ude <npapi . h>

NPErr or NPN_NewSt r eam(NPP i nst ance,
NPM METype type,
const char* target,
NPSt reant* stream;

Parameters

The function has the following parameters:

instance Pointer to current plug-in instance.
type MIME type of the stream.
target Name of the target window or frame, or one

of several special target names. For values,
see NPN_Get URL.

stream Stream to be created by the browser.

Returns

» If successful, the function returns NPERR_NO_ERRCR.

» If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.

Description

NPN_NewSt r eamcreates a new stream of data produced by the plug-in and consumed
by the browser.

The MIME parameter isthe MIME type of the plug-in to create. A plug-in can create
another instance of itself by specifying itsown MIME type and a new target namein a
call to NPN_NewsSt r eam

The stream isreturned in the stream parameter. The plug-in can use this object in
subsequent callsto NPN_Write to write data into the stream. When the plug-in has
written all of its datainto the stream, NPN_Destr oyStream terminates the stream and
deall ocates the NPSt r eamobject.

NPN_NewStream 135

NPN_PostURL

The target parameter is the name of the target window or frame, or one of several
special target names. For parameter values and information about how to use them,
see NPN_GetURL. If the new stream has the target of _sel f, this function should
return an | NVALI D_PARAMNPET r or .

See Also
NPP_NewSt ream NPP_Wite, NPP_DestroyStream NPStream NPP

NPN_PostURL

Posts datato aURL.
Syntax

#i ncl ude <npapi . h>

NPError NPN_Post URL(NPP i nstance, const char *url,
const char *target, uint32 |en,
const char *buf, NPBool file);

Parameters

The function has the following parameters:

i nst ance Pointer to the current plug-in instance.
ur | URL of the request, specified by the plug-in.

136 Gecko Plug-in APl Reference

target Display target, specified by the plug-in. If
null, pass the new stream back to the current
plug-in instance regardless of MIME type.
For values, see NPN_Get URL.

I en Length of the buffer buf.

buf Path to local temporary file or data buffer
that contains the data to post. Temporary file
is deleted after use. Datain buffer cannot be
posted for aprotocol that requires a header.

file A boolean value that specifies whether to
post afile. Values:
» true: Post the file whose the path is spec-
ified in buf, then delete thefile.
» false: Post theraw datain buf.

Returns

If successful, the function returns NPERR_NO_ERRCR.
If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.

Description

NPN_Post URL works similarly to NPN_GetURL, but in reverse.

NPN_Get URL reads data from the URL and either displaysit in the target window
or deliversit to the plug-in.

NPN_Post URL writes datafrom afile or buffer to the URL and either displaysthe
server's response in the target window or deliversit to the plug-in. If the target
parameter is null, the new stream is passed to the plug-in regardless of MIME

type.

When you use NPN_Post URL to send data to the server, you can handle the response
in several different ways by specifying different target parameters.

If target isnull, the server response is sent back to the plug-in. You can get the
dataand saveit in afile or useit in a program.

If you specify _current,_sel f, or _t op, the response dataiswritten to the
same plug-in window and the plug-in is unloaded.

If you specify _newor _bl ank, the response datais written to a new browser
window. You can also write the response data to a frame by specifying the frame
name as the target parameter.

NPN_PostURL 137

NPN_PostURL

For HTTP URLs only, the browser resolves this method as the HTTP server method
POST, which transmits data to the server.

The data to post can be contained either in alocal temporary file or a new memory

buffer.

» Topostto atemporary file, set the flag fileto true, the buffer buf to the path name
string for afile, and len to the length of the path string. The file-type URL prefix
“file://" isoptional.

MSWindows and Mac OS

If afileis posted with any protocol other than FTP, the file must be text with Unix-

style line breaks (\n' separators only). §

» To post data from a memory buffer, set the flag file to false, the buffer buf to the
data to post, and len to the length of buffer.

Possible URL typesinclude HTTP (similar to an HTML form submission), mail
(sending mail), news (posting a news article), and FTP (upload afile). Plug-ins can
use this function to post form datato CGI scriptsusing HTTP or upload filesto a
remote server using FTP.

Y ou cannot use NPN_Post URL to specify headers (even a blank line) in a memory
buffer. To do this, use NPN_PostURL Notify.

For protocolsin which the headers must be distinguished from the body, such as
HTTP, the buffer or file should contain the headers, followed by ablank line, then the
body. If no custom headers are required, simply add a blank line ("\n') to the beginning
of thefile or buffer.

NPN_Post URL istypically asynchronous: it returnsimmediately and only later
handles the request. For this reason, you may find it useful to call

NPN_Post URLNot i fy instead; this function notifies your plug-in upon successful or
unsuccessful completion of the request.

See Also

NPN_Get URL, NPN_Get URLNotify, NPN_PostURL, NPN_Post URLNoti fy,
NPP

138 Gecko Plug-in API Reference

NPN_PostURLNotify

Posts datato a URL, and receives notification of the result.

Syntax

#i ncl ude <npapi . h>

NPError NPN_Post URLNot i fy(NPP i nst ance,
const char* url,
const char* target,

ui nt 32 | en,

const char* buf,

NPBool file,

voi d* noti fyDat a) ;

Parameters

The function has the following parameters:

i nst ance Current plug-in instance, specified by the
plug-in.

url URL of the POST request, specified by the
plug-in.

t ar get Target window, specified by the plug-in. For
values, see NPN_Get URL.

| en Length of the buffer buf.

buf Path to local temporary file or data buffer
that contains the data to post.

file Whether to post afile. Values:

» true: Postthelocd filewhose path is
specified in buf, then delete the file.
* fal se: Postthe raw datain buf.

noti fydata Plug-in-private value for associating the
request with the subseguent
NPP_URLNot i fy call, which returns this
value (see Description below).

NPN_PostURL Notify 139

NPN_ReloadPlugins

Returns

e If successful, the function returns NPERR_NO_ERROR.
» If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.

Description

NPN_Post URLNot i fy functionsidentically to NPN_PostURL, with these

exceptions:

* NPN_Post URLNot i fy supports specifying headers when posting a memory
buffer.

* NPN_Post URLNoti fy callsNPP_URLNot i fy upon successful or unsuccessful
completion of the request. For more information, see NPN_Post URL.

NPN_Post URLNot i fy istypically asynchronous: it returnsimmediately and only
later handles the request and calls NPP_URL Notify.

If thisfunction is called with atarget parameter value of _self or aparent to _sel f,
this function should return an | NVALI D_PARAMNPET r or . Thisis the only way to
notify the plug-in onceit is deleted. See NPN_GetURL for information about this
parameter.

See Also
NPN_Get URL, NPP_URLNotify, NPN_Post URL

NPN_ReloadPlugins

Reloads all plug-insin the Plugins directory.

Syntax

#i ncl ude <npapi . h>
voi d NPN_Rel oadPI ugi ns(NPBool rel oadPages) ; code

140 Gecko Plug-in APl Reference

Parameters

The function has the following parameter:

r el oadPages Whether to reload pages. Values:
» true: Reload pages.
» false: Do not reload pages.

Description

NPN_Rel oadPl ugi ns reads the Plugins directory for the current platform and
reinstalls al of the plug-insit finds there.

Netscape Gecko knows about all installed plug-ins at start-up. If you add or remove
any plug-ins, the browser does not see them until you restart it. NPN_Rel oadPl ugi ns
allowsyou to install anew plug-in and load it, or to remove a plug-in, without having
to restart the browser. Y ou could use this function as part of the plug-in'sinstallation
process.

See Also
NPN_Ver si on

NPN_RequestRead

Requests a range of bytes for a seekable stream.

Syntax

#i ncl ude <npapi . h>
NPError NPN_Request Read(NPSt r eant stream
NPByt eRange* rangelLi st);

NPN_RequestRead 141

NPN_RequestRead

Parameters

The function has the following parameters:

stream Stream of type NP_SEEK from which to read
bytes. Communicator writes the requested
bytes to the plug-in through subsequent calls
to NPP_WriteReady and NPP_Write.

rangeli st Range of bytesin the form of alinked list of
NPByteRange objects, each of which
specifies arequest for arange of bytes.

Returns

e If successful, the function returns NPERR_NO_ERROR.
» If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.

Description

For a seekabl e stream, the browser sends data only in response to requests by the
plug-in. The plug-in callsNPN_Request Read to request data from a seekabl e stream.

The plug-in can use this function to make one or more requests for ranges of bytes.
These requests result in subsequent callsto NPP_WriteReady and NPP_Write. For
multiple requests, the function creates a linked list of NPByt eRange structures, each
of which represents a separate reguest.

If the plug-in requests multiple ranges (either through alist of NPByt eRange objects
inasingle call to NPN_Request Read, or multiple callsto NPN_Request Read), the
browser can write individual ranges in any order, and with any number of
NPP_WriteReady and NPP_Write calls.

The plug-in must allocate NPByt eRange objects, which the browser copies if
necessary. The plug-in can free these as soon as the call returns.

Seekable streams are created by calling NPP_NewStream with NP_SEEK as the stype

mode.

* Theplug-in can call NPN_Request Read on streams that were not initially in
NP_SEEK mode as long as the stream isinherently seekable; NPN_Request Read
automatically changes the mode to NP_SEEK.

142 Gecko Plug-in APl Reference

» If the stream is not inherently seekable, the stream must have been put in
NP_SEEK mode initially (since the browser must cache al the stream data on disk
in order to accessit randomly).

» If NPN_Request Read iscalled on astream that isnot inherently seekable and not
initially in mode NP_SEEK, it returns the error code
NPERR_STREAM NOT_SEEKABLE.

Typically, the only streamsthat are inherently seekable are those from in-memory or
on-disk data, or from HTTP servers that support byte-range requests.

See Also
NPP_NewSt r eam NPSt ream

NPN_SetValue

Sets various modes of plug-in operation.

Syntax
#i ncl ude <npapi . h>
NPError NPN_Set Val ue(NPP i nstance,
NPPVar i abl e vari abl e,
voi d *val ue) ;

NPN_SetValue 143

NPN_SetValue

Parameters

The function has the following parameters:

i nst ance Pointer to the current plug-in instance.

vari abl e Values the function can set:

* NPPVpl ugi nW ndowBool : Sets windowless
mode for display of a plug-in; true=windowless,
false=not windowless

* NPPVpl ugi nTr anspar ent Bool : Sets transpar-
ent mode for display of a plug-in; true=transpar-
ent, false=opaque

* NPPVj avascri pt PushCal | er Bool - Speci-
fies whether you are pushing or popping the
JSContext off the stack

e NPPVpl ugi nKeepLi braryl nMenory - Tells
browser that plugin dll should live longer than
usual

val ue The value of the specified variable to be set, TRUE or
FALSE.

Returns

» If successful, the function returns NPERR_NO_ERROR.
» If unsuccessful, the plug-in is not loaded and the function returns an error code.
For possible values, see Error Codes.

Description

A good place to set plug-in operation mode such as windowless modeis NPP_New,
so the browser knows right away what mode the plug-in is designed to operate in.

NPPVpl ugi nW ndowBool (Windows and Unix) specifies that plug-in operatesin
windowless mode. In this mode no window messages are send to the plug-in as there
is no window associated with it, all the browser to plug-in commucations related to
drawing and mouse and keyboard input are event based and accomplished via
NPP_HandleEvent. To set windowless operation plugin calls NPN_Set Val ue with
NPPVpl ugi nW ndowBool asitsvariable parameter and TRUE as its va ue parameter.
Asadefault, plug-ins are windowd, so if NPP_New does not contain this call the
plug-inis considered to be windowed.

144 Gecko Plug-in APl Reference

NPPVpl ugi nTr anspar ent Bool (Windows and Unix) specifiesthat aplug-inis
either opague or transparent. To specify an opague mode, the plugin calls

NPN_Set Val ue with NPPVpl ugi nTr anspar ent Bool for itsvariable parameter and
FALSE for its value parameter. To specify a transparent mode, the value parameter
should be set to TRUE.

NPPVj avascri pt PushCal | er Bool setswhether you are pushing or popping the
appropriate JSContext off of the stack (See the two-way scriptability article on the
Mozilla Plug-ins project page for more details).

NPPVpl ugi nKeepLi braryl nMenor y specifies that the plug-in does not want to be
unloaded from memory after the page which initiated it has gone. Normally, when the
browser navigates away from the page containing the plug-in al plug-in instances get
NPP_Dest r oy call, and if there is no more instances of the plug-in active the plug-in
iscaled itsNP_Shut down method and the plug-in dil gets unloaded from memory. If
thisis not desired the plug-in can instruct the browser not to unload the dil and not to
call NP_Shut down when the page is left. In such a case al this will be done on the
browser shutdown. Plug-in calls NPN_Set Val ue any time with

NPPVpl ugi nKeepLi braryl nMenor y as variable parameter and value set to TRUE.
By default, the dIl will be unloaded from memory preceded by NP_Shut down call.

Remarks

All four variable values are boolean. Although the function prototype has type of
valuevoid *, the actual boolean should be placed there, not apointer to aboolean. The
browser code reads this parameter as follows (NPPVpl ugi nW ndowBool asan
example):

NPError NP_EXPORT _setval ue(NPP npp, NPPVari abl e
variable, void *val ue)

{

BOCOL bW ndowl ess = (value == NULL);

So the proper way to call this function from a plug-in would be:

BOOL bW ndowed = FALSE;

NPN_Set Val ue(npp, NPPVpl ugi nW ndowBool , (
voi d *)bW ndowed) ;

NPN_SetValue 145

NPN_Status

See Also
NPP_New, NPN_Get Val ue, NPP_Set Val ue

NPN_Status

Displays a message on the status line of the browser window.

Syntax

#i ncl ude <npapi . h>
voi d NPN_Status(NPP i nstance, const char* nessage);

Parameters

The function has the following parameters:

instance Pointer to the current plug-in instance.
message Pointer the buffer that contains the status
message string to display.
Description

Y ou can use this function to make your plug-in user interface simulate the browser ‘s
behavior. When the user moves the cursor over alink in a browser window,
Communicator displays information about it in the status message area (on the lower
edge of the browser window). If your plug-in has a button or other object that actsasa
link when clicked, you can call NPN_Status to display a description or URL when the
user moves the cursor over it.

The browser always displays the last status line message it receives, regardless of the
message source. Y our messageis always displayed, but you have no control over how
long it staysin the status line before another message replacesiit.

See Also
NPN_User Agent, NPP

146 Gecko Plug-in APl Reference

NPN_UserAgent

Returns the browser’ s user agent field.

Syntax

#i ncl ude <npapi . h>
const char* NPN_User Agent (NPP i nst ance);

Parameters

The function has the following parameter:

instance Pointer to the current plug-in instance.

Returns

A pointer to a buffer that contains the user agent field of the browser.

Description

The user agent isthe part of the HT TP header that identifies the browser during
transfers. Y ou can use thisinformation to verify that the expected browser isin use, or
you can use it in combination with NPN_V ersion to supply different codefor different
versions of Netscape browsers.

See Also
NPN_St at us, NPN_Ver si on

NPN_Version

NPN_UserAgent 147

NPN_Version

Returns version information for the Plug-in API.
Syntax

#i ncl ude <npapi . h>

voi d NPN_Version(int* plugin_mgjor,
int* plugin_mnor,
int* netscape_nmjor,
int* netscape_m nor);

Parameters

The function has the following parameters:

pl ugi n_maj or Pointer to aplug-in's maor version number;
changes with major code release number.

pl ugi n_mi nor Pointer to a plug-in's minor version number;
changes with point release number.

net scape_maj or Pointer to the browser’s major version;
changes with major code release number.

net scape_mi nor Pointer to the browser’ s version; changes
with point release number.

Description

The values of the major and minor version numbers of the Plug-in API are determined
when the plug-in and the browser are compiled. For example, Plug-in APl version
4.03 has amajor version number of 4 and a point release number of 3. This function
gets the values from the plug-in rather than from the browser.

A plug-in can use this function to check that the version of the Plug-in API it isusing
is compatible with the version in use by the browser. This could be part of the
initialization process. For more information and an example, see "Getting the Current
Version."

You can use NPN_Ver si on to inquire on version constants (NPVERS constants),
which represent particular Communicator features. Once the plug-in obtainsaversion
number, it can inquire on aversion constant to find out if the feature it represents
exists in thisversion. For example, the plug-in could inquire on the constant
NPVERS_HAS W NDOW.ESS to seeif it isrunning in a version of Communicator that

148 Gecko Plug-in API Reference

supports windowless functionality. For more information and an example, see
"Finding Out if a Feature Exists." For alisting of version constants defined in the
Plug-in API, see "Version Feature Constants.”

NOTE: Platform-specific code in the Plug-in API files npwin.cpp, npmac.cpp, or
npunix.c checks version numbers automatically. A plug-in whose major version is
less than the major version of the browser is not loaded. §

See Also
NPN_User Agent, NP_Initialize

NPN_Write

Pushes data into a stream produced by the plug-in and consumed by the browser.

Syntax
#i ncl ude <npapi . h>
NPN_W i t e(NPP i nstance,
NPSt r eant stream
int32 | en,
voi d* buf) ;
Parameters

The function has the following parameters:

i nst ance Pointer to the current plug-in instance.
stream Pointer to the current stream.

I en Length in bytes of buf.

buf Buffer of data delivered for the stream.

NPN_Write 149

NPN_Write

Returns

» If successful, the function returns a positive integer representing the number of
bytes written (consumed by the browser). This number depends on the size of the
browser’s memory buffers, the number of active streams, and other factors.

» If unsuccessful, the plug-in returns a negative integer. This indicates that the
browser encountered an error while processing the data, so the plug-in should ter-
minate the stream by calling NPN_Dest r oy St r eam

Description

NPN_W i t e delivers abuffer from the stream to the instance. A plug-in can cal this
function multiple times after creating a stream with NPN_NewSt r eam The browser
makes a copy of the buffer if necessary, so the plug-in can free the buffer asthe
method returns, if desired. See "Example of Sending a Stream"” for an example that
includesNPN Wite.

See Also
NPP_NewSt ream NPP_DestroyStream NPP_Wite, NPStream NPP

150 Gecko Plug-in APl Reference

Structures

This chapter describesthe data structuresthat are used to represent the various objects

in the plug-in API.

Sructure Summary
NPAnyCallbackStruct
NPByteRange

NPEmbedPrint

NPEvent

NPFullPrint
NPP
NP_Port
NPPrint

NPPrintCallbackStruct

Containsinformation required during
embedded mode printing.

Represents a particular range of bytesfrom a
stream.

Substructure of NPPr i nt that contains
platform-specific information used during
embedded mode printing.

Represents an event passed by
NPP_Hand| eEvent to awindowless plug-
in.

Substructure of NPPr i nt that contains
platform-specific information used during
full-page mode printing.

Represents a single instance of a plug-in.
Containsinformation required by the
window field of an NPW ndow structure.

Containsinformation the plug-in needs to
print itself in full-page or embedded mode.

Containsinformation required by the
platformPrint field of the NPEnbedPr i nt
during embedded mode printing.

151

NPAnyCallbackStruct

NP_Rect Represents a rectangular area of a page.

NP_Region Represents a platform-defined region of a
page.

NPSavedData Block of instance information saved after the
plug-in is deleted; can be returned to the
plug-in.

NPSetWindowCallbackStruct Contains information about the plug-in's
Unix window environment.

NPStream Represents a stream of data either produced
by the browser and consumed by the plug-in,
or produced by the plug-in and consumed by
the browser.

NPWindow Containsinformation about the target into
which the plug-in instance can draw.

NPAnyCallbackStruct

Used on Unix only.

Contains information required during embedded mode printing.

Syntax

typedef struct

{
int32 type;
} NPAnyCal | backStruct ;

Fields
The data structure has the following field:

type Always contains NP_PRI NT.

152 Gecko Plug-in APl Reference

Description

Callback structures are used to pass platform-specific information. The
NPAnyCal | backSt ruct structure containsinformation required by the

pl atfornPrint field of the NPEmbedPrint structure during embedded mode
printing.

During printing in embedded mode, the pl at f or nPri nt field of the
NPEmbedPrint structure points to an NPAny Cal | backSt r uct . This structure
contains the file pointer to which the plug-in should write its Postscript data. At the
time the plug-in is called, the browser has already opened the file and written
Postscript for other parts of the page. When the plug-in is done, it should leave the file
open, as the browser can continue to write additional Postscript data to the file.

See Also

NPP_Print, NPEmbedPrint, NPSetW ndowCal | backStruct,
NPPri nt Cal | backSt ruct

NPByteRange

Represents a particular range of bytes from a stream.
Syntax

typedef struct _NPByteRange

{
int32 offset; /* negative offset = fromthe end */
ui nt 32 | engt h;
struct _NPByteRange* next;

} NPByt eRange;

NPByteRange 153

NPEmbedPrint

Fields

The data structure has the following fields:

of f set Offset in bytes of the requested range, either
positive or negative:
» Positive value: Offset from the begin-
ning of the stream.
* Negative value: Offset from the end of

the stream.
l ength Number of bytes to fetch from the specified
offset.
next Points to the next NPByt eRange request in
the list of requests, or null if thisisthe last
request.

Description

The plug-in seeks within a stream by building a linked list of one or more

NPByt eRange objects, which represents a set of discontiguous byte ranges. The only
Plug-in API call that uses the NPByt eRange type is NPN_ReguestRead, which
allows the plug-in to read specified parts of afile without downloading it.

The plug-inis responsible for deleting NPByt eRange objects when finished with
them. The browser makes a copy if it needs to keep the objects beyond the call to
NPN_RequestRead.

See Also
NPN_Request Read

NPEmbedPrint

Substructure of NPPrint that contains platform-specific information used during
embedded mode printing.

154 Gecko Plug-in APl Reference

Syntax

typedef struct _NPEnmbedPri nt
{

NPW ndow wi ndow;

voi d* platfornPrint; /* Platformspecific */
} NPEnbedPri nt ;

Fields
The data structure has the following fields:
wi ndow The NPW ndow the plug-in should use for
printing.
platfornPrint Additiona platform-specific printing
information.

e MacOS: THPri nt
e Unix: Pointer toa
NPPri nt Cal | backStruct.
Description

The NPP_Print function passes a pointer to an NPPrint object (previously allocated
by the browser) to the plug-in. The NPEmbedPri nt structure is used when the mode
field of NPPrint is set to NP_EMBED.

Unix

The plug-in location and size in the NPW ndow are in page coordinates (720/ inch),
but the printer requires point coordinates (72/inch).

See Also
NPFul | Print, NP_Port, NPP Print, NPPrint, NPPrintCallbackStruct

NPEvent

NPEvent 155

NPEvent

Represents an event passed by NPP_Hand| eEvent to awindowless plug-in.

Syntax
MSWindows

Mac OS

XWindows

156 Gecko Plug-in APl Reference

Fields

NPEvent on MS Windows

The data structure has the following fields:

event

wPar am

| Par am

One of the following event types:
e WM PAINT

* W _LBUTTONDOWN

s WM LBUTTONUP

e WM LBUTTONDBLCLK
« VWM _RBUTTONDOMN

« VWM _RBUTTONUP

e WM RBUTTONDBLCLK
« VWM _MBUTTONDOMN

« VWM _MBUTTONUP

e VM MBUTTONDBLCLK
« WM _MOUSEMOVE

« VWM KEYUP

¢ WM _KEYDOWN

« WM _SETCURSOR

« VW SETFOCUS

e VWM KI LLFOCUS

For information about these events, see your
M S Windows documentation.

32 bit field for Windows event parameter;
parameter value depends upon event type.

32 bit field for Windows event parameter;
parameter value depends upon event type.

NPEvent 157

NPEvent

EventRecord NPEvent on Mac OS
NPEvent isdefined as an EventRecord data structure, which has the following fields:

what Integer representing an event type. Both
windowed and windowless plug-ins receive
the same events. Values:

nul | Event

mouseDown

mouseUp

keyDown

keyUp

aut oKey

updat eEvt

di skEvt

activat eEvt

15 osEvt

23 kHi ghLevel Event

get FocusEvent 0, 1 (true, false)

| oseFocusEvent

adj ust CursorEvent 0, 1 (true,
fal se)

0 N ol WOWN PP O

For information about these events, see your
Mac OS documentation.

message Longl nt . Additional information about the
event. Type of information depends on the
event type. Undefined for null, mouseUp,
and mouseDown events.

when Longl nt . Ticks since start-up.
wher e Poi nt . Cursor location.
modi fiers I nt eger . Flags.

158 Gecko Plug-in APl Reference

Description

M S Windows Description

The type NPEvent represents an event passed by NPP_HandleEvent to a
windowless plug-in. For information about these events, see your MS Windows
documentation.

Mac OS Description

The NPEvent object represents an event passed by NPP_HandleEvent to a
windowless plug-in. This structure is defined as EventRecord, the event type used by
Mac OS platform. On Mac OS, plug-ins receive the same events for both windowed
and windowless plug-ins, as follows.

Mouse events: Sent if the mouse is within the bounds of the instance.

Key events: Sent if the instance has text focus (see below).

Update events: Sent if the update region intersects the instance's bounds.
Activate events: Sent to all instances in the window being activate or deactivated.
Suspend/Resume events: Sent to al instances in all windows.

Null events: Sent to al instancesin all windows.

In addition to these standard types, the browser provides three additional event types
that can be passed in the event->what field of the EventRecord:

getFocusEvent: Sent when the instance could become the focus of subseguent
key events, when the user clicks the instance or presses the tab key to focusthe
instance.

If your instance accepts key events, return true, and key events will be sent to the
instance until it receives aloseFocusEvent.

If your plug-in ignores key events, return fal se, and the key events will be pro-
cessed by Netscape itself.

loseFocusEvent: Sent when the instance has lost the text focus, as aresult of the
user clicking elsewhere on the page or pressing the Tab key to move the focus.
No key events are sent to the instance until the next get FocusEvent .
adjustCursorEvent: Send when the mouse enters or leaves the bounds of the
instance.

If your plug-in wants to set the cursor when the mouse is within the instance, set
the cursor and return true.

If you don't want a special cursor, return false and the browser will use the stan-
dard arrow cursor.

NPEvent 159

NPFullPrint

XWindows Description

The NPEvent object represents an event passed by NPP_HandleEvent to a
windowless plug-in. The NPEvent structure is defined as X Event, the definition of
the event type used by the XWindows platform. For information about the X Event
structure and XWindows events, see your XWindows documentation.

See Also
NPP_Hand| eEvent

NPFullPrint

Substructure of NPPr i nt that contains platform-specific information used during full-
page mode printing.

Syntax
typedef struct _NPFullPrint
{
NPBool pluginPrinted; /* true: print fullscreen */
NPBool pri nt One; /* true: print one copy */
[* to default printer */

void* platfornPrint; /* Platformspecific */
} NPFull Print;

160 Gecko Plug-in APl Reference

Fields

The data structure has the following fields:

plugi nPrinted Determineswhether the plug-in printsin
full-page mode. Values:
» true: Plug-in takes complete control of
the printing process and prints full-page.
o false: (Default) Plug-in rendersits area
of the page only (for embedded plug-in).

print One Not currently in use. Should always be false.
» true: Print single copy of page to the
default printer.
» false: Display print dialogs so user can
choose printer, other options.

platfornPrint Platform-specific printing information.
e MacOS: THPri nt
* MSWindows: Printer's device context

Description

The NPP_Print function passes the plug-in apointer to an NPPrint object
(previously alocated by the browser). The NPFul | Pri nt structure is used when the
mode field of NPPrint issetto NP_Ful | .

Thepl ugi nPri nt ed field of this structure determines whether the plug-in printsin
full-page mode or not. If you want the plug-in to take complete control of the printing
process, it should print the full page and set the field pluginPrinted to true before
returning.

If you want an embedded plug-in to simply render its area of the page, set
pluginPrinted to false and return immediately; the browser calls NPP_Print again
with the NPEmbedPrint substructure of NPPrint.

See Also
NPP_Print, NPPrint, NPEnrbedPrint

NPFullPrint 161

NPP

Represents a single instance of aplug-in.

Syntax

typedef struct _NPP
{
voi d* pdata; /* plug-in private data */
voi d* ndata; /* Netscape private data */
} NPP_t;
typedef NPP_t* NPP;

Fields
The data structure has the following fields:

pdat a Plug-in private value that a plug-in can use
to store a pointer to an internal data structure
associated with the instance; not modified by
the browser.

ndat a Private browser value that can store data
associated with the instance; should not be
modified by the plug-in.

Description

Netscape Gecko creates an NPP structure for each plug-in instance and passes a
pointer to it to NPP_New. This pointer identifies the instance on which API calls
should operate and represents the opague instance handle of a plug-in. NPP contains
private instance data for both the plug-in and the browser.

The NPP_Destroy function informs the plug-in when the NPP instance is about to be
deleted; after thiscall returns, the NPP pointer is no longer valid.

See Also
NPP_New, NPP_Dest roy

162 Gecko Plug-in API Reference

NP_Port

Used on Mac OSonly.

Containsinformation required by the window field of an NPWindow structure.

Syntax
typedef struct NP_Port
{
CGafPtr port; [* Gafport */
int32 portx; /* position inside the topnopst
wi ndow */
int32 porty;
} NP_Port;
Fields
The data structure has the following fields:
port Standard Mac OS port into which the plug-in
should draw.
portx, porty Top-left corner of the plug-in rectangle in

port coordinates (taking the scroll position
into account).

Description

On Mac OS, the window field of an NPWindow structure points to an NP_Por t
object, which is allocated by the browser. The NP_Por t isvalid for the lifetime of the
NPWindow, that is, until NPP_SetWindow is called again with a different value or
the instance is destroyed.

Since the port is shared between the plug-in and other plug-ins and the browser, the
plug-in should aways do the following:
» Draw only within the area designated by the NPW ndow.

NP_Port 163

NPPrint

* Savethe current port settings before changing the port for drawing.
» Setthedesired port settings before drawing.
* Restore the previous port settings after drawing.

See Also
NPP_Set W ndow, NPW ndow

NPPrint

Contains information the plug-in needsto print itself in full-page or embedded mode.

Syntax
typedef struct _NPPrint
{
ui nt 16 node; /* NP_FULL or NP_EMBED */
uni on
{
NPFul | Print fullPrint; /* if mode is NP_FULL */
NPEnbedPrint enmbedPrint; /* if nmbde i s NP_EMBED
*/
} print;
} NPPrint;

164 Gecko Plug-in APl Reference

Fields

The data structure has the following fields:

mode Determines whether plug-in printsin full-
page or embedded mode. Values:

e NP_FULL: Pointer to NPFul | Pri nt
structure. Plug-in can optionally printin
full-page mode. The fullPrint field of
theunionisvalid. See NPFul | Pri nt
and NPP_Print.

e NP_EMBED: Pointer to NPEnbedPr i nt
structure. Plug-in should print in embed-
ded mode. The embedPrint field of the
union isvalid. See NPEnbedPri nt .

Description

The NPP_Print function passes a pointer to an NPPr i nt object (previously allocated
by the browser) to the plug-in. The pointer and fields within the NPPr i nt structure
arevalid only for the duration of the NPP_Print call.

See Also
NPP_Print, NPFullPrint, NPEnrbedPri nt

NPPrintCallbackStruct

Used on Unix only.

Containsinformation required by the platformPrint field of the NPEmbedPrint
during embedded mode printing.

NPPrintCaIbackStruct 165

NP_Rect

Syntax
t ypedef struct
{
int32 type;
FI LE* fp;

} NPPrintcCal |l backStruct;

Fields
The data structure has the following fields:
type Always containsNP_PRI NT.
fp Pointer to file to which the plug-in should

write its Postscript data.

Description

Callback structures are used to pass platform-specific information. The

NPPri nt Cal | backSt ruct structure contains the file pointer to which the plug-in
should write its Postscript data. Thisinformation isrequired by the pl at f or nPri nt
field of the NPEmbedPrint structure during embedded mode printing.

At the timethe plug-in is called, the browser has already opened the file and written
Postscript for other parts of the page. When the plug-in is done, it should leave thefile
open, as the browser can continue to write additional Postscript data to the file.

See Also

NPP_Print, NPEnmbedPrint, NPSet W ndowCal | backStruct,
NPAnyCal | backSt ruct

NP_Rect

Represents a rectangul ar area of a page.

166 Gecko Plug-in APl Reference

Syntax

typedef struct _NPRect

{
ui nt 16 t op;
uint16 |eft;
uint 16 bottom
uint16 right;
} NPRect ;
Fields

The data structure has the following fields:

top, left, bottom right Top,leftside bottom, and right side
of therectangle.

Description

NPRect defines the bounding box of the area of the plug-in window to be updated,
painted, invalidated, or clipped to.

See Also

NPN_For ceRedr aw, NPN_| nval i dat eRect, NPN_I nval i dat eRegi on,
NP_Regi on, NPW ndow

NP_Region

Represents a platform-defined region of a page.

Syntax

MSWindows:

t ypedef HRGN NPRegi on;

NP_Region 167

NPSavedData

Mac OS:

t ypedef RgnHandl e NPRegi on;

XWindows:

typedef Regi on NPRegi on;

Description

NPRect definesthe region of the plug-in window to be updated, painted, invalidated,
or clipped to. For information about the region type definition used by your platform,
see your platform documentation.

See Also

NPN_For ceRedr aw, NPN_| nval i dat eRect, NPN_I nval i dat eRegi on,
NP_Regi on, NPW ndow

NPSavedData

Block of instance information saved after the plug-in is deleted; can be returned to the

plug-in.
Syntax
typedef struct _NPSavedDat a
{
int32 |en;
voi d* buf;

} NPSavedDat a;

168 Gecko Plug-in APl Reference

Fields

The data structure has the following fields:

| en Length in bytes of the buffer pointed to by
buf; set by the plug-in.

buf Pointer to amemory buffer allocated by the
plug-in with NPN_MemAl | oc. Can be any
reasonable size; its contents are private to the
plug-in and are not modified by the browser.

Description

The NPSavedDat a object contains a block of per-instance information that
Communicator saves after theinstance is deleted. Thisinformation can be returned to
another instance of the same plug-in if the user returns to the web page that contains
it.

Y ou can use the plug-in's NPP_Destr oy function to allocate an NPSavedDat a object
using the NPN_MemAlloc function, fill in the fields, and return it to the browser as
an output parameter. See"Instance Destruction” for a code example that shows how to
use NPSavedDat a.

If the user revisits aweb page that contains a plug-in, the browser returnsthe
NPSavedDat a to the new instance of the plug-inin acall to NPP_New. After this, the
plug-inis responsible for keeping or deleting the objects as necessary.

See Also
NPP_New, NPP_Dest roy

NPSetWindowCallbackStruct

Used only on Unix.

Containsinformation about the plug-in's Unix window environment.

NPSetWindowCa IbackStruct 169

NPSetWindowCallbackStruct

Syntax
t ypedef struct
{
int32 type;
Di spl ay* di spl ay;
Vi sual * vi sual ;
Col or map col or map;

unsi gned int depth;
} NPSet W ndowCal | backSt ruct ;

Fields
The data structure has the following fields:
type Always contains NP_Set W ndow.
di spl ay Standard X Toolkit attribute. Pointer to the

Display structure that represents the
browser-server connection.

vi sual Standard X Toolkit attribute. X Visual used
by the top-level shell window in the
Netscape window hierarchy.

col or map Standard X Toolkit attribute. Colormap for
the plug-in window.
dept h tandard X Toolkit attribute. Depth of the

plug-in window.

Description

Callback structures are used to pass platform-specific information. The
NPSet W ndowCal | backSt r uct object, allocated by the browser, contains
information required for thews_i nf o field of an NPWindow.

The NPP_SetWindow function passes a pointer to this structure to the plug-in. The
structure is valid for the lifetime of the NPWindow, that is, until NPP_SetWindow is
called again or the instance is destroyed.

Thetypefield of this structure always contains NP_Set W ndow. The remaining fields
are Standard X Toolkit attributes of the top-level shell window in the browser window
hierarchy.

170 Gecko Plug-in API Reference

See Also

NPP_Set W ndow, NPW ndow, NPPri nt Cal | backStruct,
NPAnyCal | backSt ruct

NPStream

Represents a stream of data either produced by the browser and consumed by the
plug-in, or produced by the plug-in and consumed by the browser.

Syntax

typedef struct _NPStream

{
voi d* pdat a; /* plug-in private data */
voi d* ndat a; /* Netscape private data */
const char* url;
ui nt 32 end;
ui nt 32 | ast nodi fi ed;
voi d* not i fyDat a;

} NPSt ream

NPStream 171

NPStream

Fields

The data structure has the following fields: Plug-in-private value that the plug-in can
use to store a pointer to private data associated with the instance; not modified by the
browser.

ndat a Browser-private value that can store data
associated with the instance; should not be
modified by the plug-in.

url The URL that the datain the stream is read
from or written to.

end Offset in bytes of the end of the stream
(equivalent to the length of the stream in
bytes). Can be zero for streams of unknown
length, such as streams returned from ol der
FTP serversor generated "on the fly" by CGI
scripts.

last nodi fied Timethe datain the URL was last modified
(if applicable), measured in seconds since
12:00 midnight GMT, January 1, 1970.

noti fyData Used only for streams generated in response

toaNPN_Get URLNot i fy or

NPN_Post URLNot i f y request.

» Forthesestreams, not i f yDat aissetto
the value of the notifyData parameter to
NPN_Get URLNot i fy or
NPN_Post URLNot i fy.

* For other streams, notifyDatais null.

Description

The browser allocates and initializes the NPSt r eamobject and passesit to the plug-in
in as a parameter to NPP_NewStream or NPN_NewStream. The browser cannot
delete the object until after it calls NPP_DestroyStream or the plug-in calls
NPN_DestroyStream.

Streams produced by the browser: the browser creates the NPSt r eamobject and
passesit to the plug-in initially as a parameter to NPP_NewsSt r eam All API callsthat
operate on the stream (such as NPP_W i t eReady and NPP_W i t e) use a pointer to
this stream. The browser informs the plug-in when the stream is about to be deleted
through NPP_Dest r oy St r eam after which the NPSt r eamobject is no longer valid.

172 Gecko Plug-in APl Reference

Streams produced by the plug-in: the browser creates the NPSt r eamobject and
returnsit as an output parameter when the plug-in callsNPP_NewSt r eam The plug-in
must pass a pointer to the NPSt r eamto al API callsthat operate on the stream, such
asNPN_W it e and NPN_Dest r oySt r eam

See Also
NPP_NewSt ream NPP_DestroyStream NPP_DestroyStream

NPWindow

Containsinformation about the target into which the plug-in instance can draw.

Syntax
typedef struct _NPW ndow
{
voi d* Wi ndow; /* Pl atform specific handl e */
ui nt 32 X; /* Coordinates of top |left corner */
ui nt 32 y; /* relative to a Netscape page */
ui nt 32 wi dt h; /* Maxi mum wi ndow si ze */
ui nt 32 hei ght ;
NPRect clipRect; /* dipping rectangle coordi nates */

/* in port - Used by Mac only */
#i fdef XP_UNI X
voi d * ws_info; /* Platform dependent additional data */
#endi f /* XP_UNI X */
NPW ndowType type; /* W ndow or drawable target */
} NPW ndow;

NPWindow 173

NPWindow

Fields

The data structure has the following fields:

wi ndow Platform-specific handle to a native window
element in the Netscape window hierarchy
on Windows (HWND) and Unix (X Window
ID). Mac OS: window is a pointer to an
NP_Port .

X,y The x and y coordinates for the top left
corner of the plug-in relative to the page (and
thus relative to the origin of the drawable).
Should not be modified by the plug-in.

174 Gecko Plug-in APl Reference

hei ght, wi dth The height and width of the plug-in area.
Should not be modified by the plug-in.

clipRect Clipping rectangle of the plug-in; the origin
is the top left corner of the drawable or
window. Clipping to the clipRect prevents
the plug-in from overwriting the status bar,
scroll bars, and other page elements when
partially scrolled off the screen. Mac OS:
clipRect is the rectangle in port coordinates
to which the plug-in should clip its drawing.

ws_info Unix: Contains information about the plug-
in's Unix window environment; points to an
NPSet W ndowCal | backStruct.

type NPW ndowType value that specifies whether
the NPW ndow instance represents a window
or adrawable. Values:

* NPW ndowTypeW ndow: Indicates that
the window field holds a platform-spe-
cific handle to awindow (as in Naviga-
tor 2.0 and Navigator 3.0). The plug-in
is considered windowed.

* NPW ndowTypeDr awabl e: Indicates
that the window field holds a platform-
specific handle to adrawable or an off-
screen pixmap. The plug-inis consid-
ered windowless. Values:

* Windows: HDC

* Mac OS: pointer to NP_Por t
structure

Description

The NPW ndow structure represents the native window or a drawable, and contains
information about coordinate position, size, whether the plug-in iswindowed or
windowless, and some platform-specific information. The plug-in areais anative
window element on Windows and Unix, or arectangle within a native window on
Mac OS. Thex, y, height, and width coordinates of NPW ndow specify the position
and size of this area.

NPWindow 175

NPWindow

The browser calls NPP_SetValue whenever the drawable changes.

A windowed plug-in isdrawn into anative window (or portion of anative window) on
aweb page. For windowed plug-ins, the browser calls the NPP_SetWindow method
with an NPWindow structure that represents a drawable (a pointer to an NPW ndow
allocated by the browser). This window isvalid until NPP_SetWindow is called
again with a different window or the instance is destroyed.

A windowless plug-in is drawn into atarget called a drawable, which can be defined
in several ways depending on the platform. For windowless plug-ins, the browser
callsthe NPP_SetWindow method with an NPWindow structure that represents a
drawable.

The plug-in should not modify the field valuesin this structure.

See Also
NPP_Set W ndow, NP_Port, NPSet W ndowCal | backStruct, NP_Rect

176 Gecko Plug-in APl Reference

Constants

This section is areference to the program definitions used by the Plug-in API. All

program definitions are found in npapi.h.

e Error Codes
* Result Codes

* Plug-in Version Constants
* Version Feature Constants

Error Codes

Code
NPERR_NO_ERROR
NPERR_GENERI C_ERROR
NPERR_| NVALI D_| NSTANCE_ERROR
NPERR_| NVALI D_FUNCTABLE_ERROR
NPERR_MODULE_LOAD FAI LED ERRCR
NPERR_OUT_OF MEMORY_ERROR
NPERR_| NVALI D_PLUG N_ERRCR
NPERR_| NVALI D_PLUG N_DI R_ERRCR

NPERR_| NCOVPATI BLE_VERSI ON_ERROR

NPERR_| NVALI D_PARAM

Value

Description
No errors occurred.
Error with no specific error code occurred.
Invalid instance passed to the plug-in.
Function table invalid.
Loading of plug-in failed.
Memory alocation failed.
Plug-in missing or invalid.
Plug-in directory missing or invalid.

Versions of plug-in and Communicator do not
match.

Parameter missing or invalid.

177

NPERR_| NVALI D_URL 10 URL missing or invalid.

NPERR_FI LE_NOT_FCUND 11 File missing or invalid.
NPERR_NO_DATA 12 Stream contains no data.
NPERR_STREAM NOT_SEEKABLE 13 Seekable stream expected.
Result Codes
Constant Value Description
NPRES_DONE 0 (Most common): Completed normally; all datawas sent to the
instance.
NPRES_NETWORK_ERR 1 Stream failed due to problems with network, disk /0, lack of

memory, or other problems.

NPRES_USER_BREAK 2 User canceled stream directly by clicking the Stop button or
indirectly by some action such as deleting the instance or
initiating higher-priority network operations.

Plug-in Version Constants

Constant Value Description
NP_VERSI ON_MAJOR 0 Major version number; changes with major code release
number.
NP_VERSI ON_M NOR 11 Minor version number; changes with point release number.

178 Gecko Plug-in APl Reference

Version Feature Constants

NPVERS Constant:
Version Feature Information

NPVERS_HAS_STREAMOUTPUT
NPVERS_HAS_NOTI FI CATI ON
NPVERS_HAS_LI VECONNECT
NPVERS_W N16_HAS LI VECONNECT
NPVERS_68K_HAS_LI VECONNECT
NPVERS_HAS_ W NDOW.ESS

NPVERS_HAS_XPCONNECT_SCRI PTI NG

11

11

13

Value

Supported Feature

Streaming data.
Notification of completion.
LiveConnect.

LiveConnect (Win16).
LiveConnect (68K).
Windowless plug-in.

Scriptable plug-in.

179

180 Gecko Plug-in API Reference

	Table of Contents
	Preface
	About This Guide
	Who Should Read This Guide
	The Plug-in Software Development Kit

	Plug-in Basics
	How Plug-ins Are Used
	Plug-ins and Helper Applications

	How Plug-ins Work
	Understanding the Runtime Model
	Plug-in Detection
	How Netscape Gecko Finds Plug-ins
	Checking Plug-ins by MIME Type

	Overview of Plug-in Structure
	Understanding the Plug-in API
	Plug-ins and Platform Independence

	Windowed and Windowless Plug-ins
	The Default Plug-in
	Using HTML to Display Plug-ins
	Plug-in Display Modes
	Using the OBJECT Tag for Plug-in Display
	Nesting Rules for HTML Elements
	Using the Appropriate Attributes
	Using the EMBED Tag for Plug-in Display
	Using Custom EMBED Attributes

	Plug-in References

	Plug-in Development Overview
	Writing Plug-ins
	Registering Plug-ins
	Mac OS
	MS Windows
	Unix

	Drawing a Plug-in Instance
	Handling Memory
	Sending and Receiving Streams
	Working with URLs
	Getting Version and UI Information
	Displaying Messages on the Status Line
	Making Plug-ins Scriptable
	How to call JavaScript from the plug-in
	Scriptable Plug-in Lifetime
	Scriptable plug-in building and installation overview

	Building Plug-ins
	Building, Platforms, and Compilers
	Building Carbonized Plug-ins for Mac OSX
	Getting and Using the xpidl Compiler
	Type Libraries

	Installing Plug-ins
	Native Installers
	XPI Plug-ins Installations
	Plug-in Installation and the Windows Registry

	Initialization and Destruction
	Initialization
	Instance Creation
	Instance Destruction
	Shutdown
	Initialize and Shutdown Example

	Drawing and Event Handling
	The NPWindow Structure
	The NPWindow Structure

	Drawing Plug-ins
	Printing the Plug-in
	Setting the Window
	Getting Information

	Windowed Plug-ins
	Mac OS
	Windows
	Unix
	Event Handling for Windowed Plug-ins

	Windowless Plug-ins
	Specifying That a Plug-in Is Windowless
	Invalidating the Drawing Area
	Forcing a Paint Message
	Making a Plug-in Opaque
	Making a Plug-in Transparent
	Creating Pop-up Menus and Dialog Boxes
	Event Handling for Windowless Plug-ins

	Streams
	Receiving a Stream
	Telling the Plug-in When a Stream Is Created
	Telling the Plug-in When a Stream Is Deleted
	Finding Out How Much Data the Plug-in Can Accept
	Writing the Stream to the Plug-in
	Sending the Stream in Random-Access Mode
	Sending the Stream in File Mode

	Sending a Stream
	Creating a Stream
	Pushing Data into the Stream
	Deleting the Stream
	Example of Sending a Stream

	URLs
	Getting URLs
	Getting the URL and Displaying the Page

	Posting URLs
	Posting Data to an HTTP Server
	Uploading Files to an FTP Server
	Sending Mail

	Memory
	Allocating and Freeing Memory
	Mac OS

	Flushing Memory (Mac OS only)

	Version, UI, and Status Information
	Displaying a Status Line Message
	Getting Agent Information
	Getting the Current Version
	Finding Out if a Feature Exists
	Reloading a Plug-in

	Plug-in Side Plug-in API
	Plugin Method Summary
	NPP_Destroy
	NPP_DestroyStream
	NPP_GetValue
	NPP_HandleEvent
	NP_Initialize
	NPP_New
	NPP_NewStream
	NPP_Print
	NPP_SetValue
	NPP_SetWindow
	NP_Shutdown
	NPP_StreamAsFile
	NPP_URLNotify
	NPP_Write
	NPP_WriteReady

	Browser Side Plug-in API
	Netscape Plug-in Method Summary
	NPN_DestroyStream
	NPN_ForceRedraw
	NPN_GetURL
	NPN_GetURLNotify
	NPN_GetValue
	NPN_InvalidateRect
	NPN_InvalidateRegion
	NPN_MemAlloc
	NPN_MemFlush
	NPN_MemFree
	NPN_NewStream
	NPN_PostURL
	NPN_PostURLNotify
	NPN_ReloadPlugins
	NPN_RequestRead
	NPN_SetValue
	NPN_Status
	NPN_UserAgent
	NPN_Version
	NPN_Write

	Structures
	Structure Summary
	NPAnyCallbackStruct
	NPByteRange
	NPEmbedPrint
	NPEvent
	NPFullPrint
	NPP
	NP_Port
	NPPrint
	NPPrintCallbackStruct
	NP_Rect
	NP_Region
	NPSavedData
	NPSetWindowCallbackStruct
	NPStream
	NPWindow

	Constants
	Error Codes
	Result Codes
	Plug-in Version Constants
	Version Feature Constants

